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Abstract
Continuous-time Bayesian networksis a natural structured representation language for multi-
component stochastic processes that evolve continuously over time. Despite the compact represen-
tation provided by this language, inference in such models is intractable even in relatively simple
structured networks. We introduce a mean field variational approximation in which we use a prod-
uct of inhomogeneousMarkov processes to approximate a joint distribution over trajectories. This
variational approach leads to a globally consistent distribution, which can be efficiently queried.
Additionally, it provides a lower bound on the probability of observations, thus making it attractive
for learning tasks. Here we describe the theoretical foundations for the approximation, an efficient
implementation that exploits the wide range of highly optimized ordinary differential equations
(ODE) solvers, experimentally explore characterizationsof processes for which this approximation
is suitable, and show applications to a large-scale real-world inference problem.

Keywords: continuous time Markov processes, continuous time Bayesian networks, variational
approximations, mean field approximation

1. Introduction

Many real-life processes can be naturally thought of as evolving continuously in time. Examples
cover a diverse range, starting with classical and modern physics, butalso including robotics (Ng
et al., 2005), computer networks (Simma et al., 2008), social networks (Fan and Shelton, 2009),
gene expression (Lipshtat et al., 2005), biological evolution (El-Hay etal., 2006), and ecological
systems (Opper and Sanguinetti, 2007). A joint characteristic of all aboveexamples is that they
are complex systems composed of multiple components (e.g., many servers in a server farm and
multiple residues in a protein sequence). To realistically model such processes and use them in
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making sensible predictions we need to learn how to reason about systems that are composed of
multiple components and evolve continuously in time.

Generally, when an evolving system is modeled with sufficient detail, its evolution in time is
Markovian; meaning that its future state it determined by its present state—whether in a deter-
ministic or random sense—independently of its past states. A traditional approach to modeling a
multi-component Markovian process is to discretize the entire time interval into regular time slices
of fixed length and represent its evolution using aDynamic Bayesian network, which compactly
represents probabilistic transitions between consecutive time slices (Dean and Kanazawa, 1989;
Murphy, 2002; Koller and Friedman, 2009). However, as thoroughly explained in Nodelman et al.
(2003), discretization of a time interval often leads either to modeling inaccuracies or to an unnec-
essary computational overhead. Therefore, in recent years there isa growing interest in modeling
and reasoning about multi-component stochastic processes in continuoustime (Nodelman et al.,
2002; Ng et al., 2005; Rajaram et al., 2005; Gopalratnam et al., 2005; Opper and Sanguinetti, 2007;
Archambeau et al., 2007; Simma et al., 2008).

In this paper we focus oncontinuous-time Markov processeshaving a discrete product state
spaceS= S1 ×S2 × ·· · ×SD, whereD is the number of components and the size of eachSi is
finite. The dynamics of such processes that are alsotime-homogeneouscan be determined by a
single rate matrix whose entries encode transition rates among states. However, as the size of the
state space is exponential in the number of components so does the size of thetransition matrix.
Continuous-time Bayesian networks(CTBNs) provide an elegant and compact representation lan-
guage for multi-component processes that have a sparse pattern of interactions (Nodelman et al.,
2002). Such patterns are encoded in CTBNs using a directed graph whose nodes represent com-
ponents and edges represent direct influences among them. The instantaneous dynamics of each
component depends only on the state of its parents in the graph, allowing a representation whose
size scales linearly with the number of components and exponentially only with theindegree of the
nodes of the graph.

Inference in multi-component temporal models is a notoriously hard problem (Koller and Fried-
man, 2009). Similar to the situation in discrete time processes, inference in CTBNs is exponential
in the number of components, even with sparse interactions (Nodelman et al., 2002). Thus, we
have to resort to approximate inference methods. The recent literature has adapted several strategies
from discrete graphical models to CTBNs in a manner that attempts to exploit the continuous-time
representation, thereby avoiding the drawbacks of discretizing the model.

One class of approximations includes sampling-based approaches, where Fan and Shelton (2008)
introduce a likelihood-weighted sampling scheme, and more recently El-Hay etal. (2008) introduce
a Gibbs-sampling procedure. The complexity of the Gibbs sampling procedure has been shown
to naturally adapt to the rate of each individual component. Additionally it yields more accurate
answers with the investment of additional computation. However, it is hard to bound the required
time in advance, tune the stopping criteria, or estimate the error of the approximation.

An alternative class of approximations is based onvariational principles. Recently, Nodelman
et al. (2005b) and Saria et al. (2007) introduced anExpectation Propagationapproach, which can be
roughly described as a local message passing scheme, where each message describes the dynamics
of a single component over an interval. This message passing procedurecan be efficient. Moreover
it can automatically refine the number of intervals according to the complexity of the underlying
system. Nonetheless, it does suffer from several caveats. On the formal level, the approximation
has no convergence guarantees. Second, upon convergence, thecomputed marginals do not neces-
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sarily form a globally consistent distribution. Third, it is restricted to approximations in the form
of piecewise-homogeneous messages on each interval. Thus, the refinement of the number of in-
tervals depends on the fit of such homogeneous approximations to the target process. Finally, the
approximation of Nodelmanet al does not provide a provable approximation on the likelihood of
the observation—a crucial component in learning procedures.

Here, we develop an alternative variational approximation, which provides a different trade-
off. We use the strategy of structured variational approximations in graphical models (Jordan et al.,
1999), and specifically the variational approach of Opper and Sanguinetti (2007) for approximate
inference in latent Markov Jump Processes, a related class of models (see below for more elaborate
comparison). The resulting procedure approximates the posterior distribution of the CTBN as a
product of independent components, each of which is an inhomogeneous continuous-time Markov
process. We introduce a novel representation that is both natural and allows numerically stable com-
putations. By using this representation, we derive an iterative variationalprocedure that employs
passing information between neighboring components as well as solving a small set of differential
equations (ODEs) in each iteration. The latter allows us to employ highly optimized standard ODE
solvers in the implementation. Such solvers use an adaptive step size, which as we show is more
efficient than any fixed time interval approximation.

We finally describe how to extend the proposed procedure to branching processes and particu-
larly to models of molecular evolution, which describe historical dynamics of biological sequences
that employ many interacting components. Our experiments on this domain demonstrate that our
procedure provides a good approximation both for the likelihood of the evidence and for the ex-
pected sufficient statistics. In particular, the approximation provides a lower-bound on the likeli-
hood, and thus is attractive for use in learning.

The paper is organized as follows: In Section 2 we review continuous-time models and inference
problems in such models. Section 3 introduces a general variational principle for inference using a
novel parameterization. In Section 4 we apply this principle to a family of factored representations
and show how to find an optimal approximation within this family. Section 5 discusses related work.
Section 6 gives an initial evaluation. Section 7 presents branching process and further experiments,
and Section 8 discusses our results.

2. Foundations

CTBNs are based on the framework ofcontinuous-time Markov processes (CTMPs). In this section
we begin by briefly describing CTMPs. See, for example, Gardiner (2004) and Chung (1960) for
a thorough introduction. Next we review the semantics of CTBNs. We then discuss inference
problems in CTBNs and the challenges they pose.

2.1 Continuous Time Markov Processes

A continuous-time stochastic process with state space Sis an uncountable collection ofS-valued
random variables{X(t) : t ≥ 0} whereX(t) describes the state of the system at timet. Systems with
multiple components are described by state spaces that are Cartesian products of spaces,Si , each
representing the state of a single component. In this paper we consider aD-component stochastic
processX(t) = (X(t)

1 , . . . ,X(t)
D ) with state spaceS= S1×S2× . . .×SD, where eachSi is finite. The

states inSare denoted by vectors,x= (x1, . . . ,xD).
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A continuous-time Markov processis a continuous-time stochastic process in which the joint
distribution of every finite subset of random variablesX(t0),X(t1), . . . ,X(tK), wheret0 < t1 < · · ·< tK ,
satisfies the conditional independence property, also known as the Markov property:

Pr(X(tK) = xK |X
(tK−1) = xK−1, . . . ,X

(t0) = x0) = Pr(X(tK) = xK |X
(tK−1) = xK−1).

In simple terms, the knowledge of the state of the system at a certain time make its states at later
times independent of its states at former times. In that case the distribution of theprocess is fully
determined by the conditional probabilities of random variable pairs Pr(X(t+s)= y|X(s)= x), namely,
by the probability that the process is in statey at timet +s given that is was in statex at times, for
all 0≤ s< t andx,y∈ S. A CTMP is calledtime homogeneousif these conditional probabilities do
not depend ons but only on the length of the time intervalt, thus, the distribution of the process is
determined by theMarkov transition functions,

px,y(t)≡ Pr(X(t+s) = y|X(s) = x), for all x,y∈ Sandt ≥ 0,

which for every fixedt can be viewed as the entries of a stochastic matrix indexed by statesx andy.
Under mild assumptions on the Markov transition functionspx,y(t), these functions are differ-

entiable. Their derivatives att = 0,

qx,y = lim
t→0+

px,y(t)−11x=y

t
,

are the entries of therate matrixQ, where11 is the indicator function. This rate matrix describes the
infinitesimal transition probabilities,

px,y(h) = 11x=y+qx,yh+o(h), (1)

whereo(·) means decay to zero faster than its argument, that is limh↓0
o(h)

h = 0. Note that the off-
diagonal entries ofQ are non-negative, whereas each of its rows sums up to zero, namely,

qx,x =−∑
y6=x

qx,y.

The derivative of the Markov transition function fort other than 0 satisfies the so-calledforward, or
master equation,

d
dt

px,y(t) = ∑
z

qz,ypx,z(t). (2)

A similar characterization for the time-dependent probability distribution,p(t), whose entries are
defined by

px(t) = Pr(X(t) = x), x∈ S,

is obtained by multiplying the Markov transition function by entries of the initial distribution p(0)
and marginalizing, resulting in

d
dt

p= pQ. (3)

The solution of this ODE is
p(t) = p(0)exp(tQ),
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Figure 1: An example of a CTMP trajectory: The process starts at statex1 = s0, transitions to
x2 = s2 at t1, to x3 = s1 at t2, and finally tox4 = s2 at t3.

where exp(tQ) is a matrix exponential, defined for any square matrixA by the Taylor series,

exp(A) = I +
∞

∑
k=1

Ak

k!
.

Applying this solution to the initial conditionpx′(0) = 11x=x′ , we can express the Markov transition
function px,y(t) using the rate matrixQ as

px,y(t) = [exp(tQ)]x,y. (4)

Although a CTMP is an uncountable collection of random variables (the state of the system at
every timet), a trajectoryσ of {X(t)}t≥0 over a time interval[0,T] can be characterized by a finite
number of transitionsK, a sequence of states(x0,x1, . . . ,xK) and a sequence of transition times
(t0 = 0, t1, . . . , tK , tK+1 = T). We denote byσ(t) the state at timet, that is,σ(t) = xk for tk ≤ t < tk+1.
Figure 1 illustrates such a trajectory.

2.2 Multi-component Representation - Continuous-Time Bayesian Networks

Equation (4) indicates that the distribution of a homogeneous Markov process is fully determined
by an initial distribution and a single rate matrixQ. However, since the number of states in aD-
component Markov Process is exponential inD, an explicit representation of this transition matrix
is often infeasible.Continuous-time Bayesian networksare a compact representation of Markov
processes that satisfy two assumptions. First it is assumed that only one component can change at a
time, thus transition rates involving simultaneous changes of two or more components are zero. Sec-
ond, the transition rate of each componenti depends only on the state of some subset of components
denotedPai ⊆ {1, . . . ,D}\{i} and on its own state. This dependency is represented using a directed
graph, where the nodes are indexed by{1, . . . ,D} and the parent nodes ofi arePai (Nodelman et al.,

2002). With each componenti we then associate a conditional rate matrixQ
i|Pai

·|ui
for each stateui of

Pai . The off-diagonal entriesqi|Pai

xi ,yi |ui
represent the rate at whichXi transitions from statexi to state

yi given that its parents are in stateui . The diagonal entries areqi|Pai

xi ,xi |ui
= −∑yi 6=xi

qi|Pai

xi ,yi |ui
, ensuring

that each row in each conditional rate matrix sums up to zero. The dynamics ofX(t) are defined by
a rate matrixQ with entriesqx,y, which combines the conditional rate matrices as follows:

qx,y =











qi|Pai

xi ,yi |ui
δ(x,y) = {i}

∑i q
i|Pai

xi ,xi |ui
x= y

0 otherwise,

(5)
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whereδ(x,y) = { j|x j 6= y j} denotes the set of components in whichx differs fromy.
To have another perspective on CTBN’s, we may consider a discrete-timeapproximation of

the process. Leth be a sampling interval. The subset of random variables{Xtk : k ≥ 0}, where
tk = kh, is a discrete-time Markov process over aD-dimensional state-space.Dynamic Bayesian
networks (DBNs)provide a compact modeling language for such processes, namely the conditional
distribution of a DBN Ph(X(tk+1)|X(tk)) is factorized into a product of conditional distributions of

X(tk+1)
i given the state of a subset ofX(tk)∪X(tk+1). Whenh is sufficiently small, the CTBN can be

approximated by a DBN whose parameters depend on the rate matrixQ of the CTBN ,

Ph(X
(tk+1) = y|X(tk) = x) =

D

∏
i=1

Ph(X
(tk+1)
i = yi |X

(tk)
i = xi ,U

(tk) = ui), (6)

where
Ph(X

(tk+1)
i = yi |X

(tk)
i = xi ,U

(tk) = ui) = 11xi=yi +qi|Pai

xi ,yi |ui
h. (7)

Each such term is the local conditional probability thatX(tk+1)
i = yi given the state ofXi andU i at

time tk. These are valid conditional distributions, because they are non-negative and are normalized,
that is

∑
yi∈Si

(

11xi=yi +qi|Pai

xi ,yi |ui
h
)

= 1

for everyxi andui . Note that in this discretized process, transition probabilities involving changes
in more than one component areo(h), as in the CTBN. Moreover, using Equations (1) and (5) we
observe that

Pr(X(tk+1) = y|X(tk) = x) = Ph(X
(tk+1) = y|X(tk) = x)+o(h).

(See Appendix A for detailed derivations). Therefore, the CTBN and the approximating DBN are
asymptotically equivalent ash→ 0.

Example 1 An example of a multi-component process is thedynamic Ising model, which corre-
sponds to a CTBN in which every component can be in one of two states,−1 or +1, and each
component prefers to be in the same state as its neighbor. These models are governed by two
parameters: acoupling parameterβ (it is the inverse temperature in physical models, which deter-
mines the strength of the coupling between two neighboring components), anda rate parameterτ,
which determines the propensity of each component to change its state. Low values ofβ correspond
to weak coupling (high temperature). More formally, we define the conditional rate matrices as

qi|Pai

xi ,yi |ui
= τ
(

1+e−2yiβ∑ j∈Pai
x j

)−1

wherex j ∈ {−1,1}. This model is derived by plugging the Ising grid toContinuous-Time Markov
Networks, which are the undirected counterparts of CTBNs (El-Hay et al., 2006).

Consider a two component Ising model whose structure and corresponding DBN are shown in
Figure 2. This system is symmetric, that is, the conditional rate matrices are identical for i ∈ {1,2}.
As an example, for a specific choice ofβ andτ we have:

Q
i|Pai

·|−1 =

- +

- −1 1
+ 10 −10

Q
i|Pai

·|+1 =

- +

- −10 10
+ 1 −1
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(a) (b)

Figure 2: Two representations of a two binary component dynamic process. (a) The associated
CTBN. (b) The DBN corresponding to the CTBN in (a). The models are equivalent when
h→ 0.

The local conditional distributions of the DBN can be directly inferred fromEquation (7). For
example

Ph(X
(tk+1)
1 = 1|X(tk)

1 =−1,X(tk)
2 = 1) = 10h.

Here, in both components the conditional rates are higher for transitions intostates that are identical
to the state of their parent. Therefore, the two components have a dispositionof being in the same
state. To support this intuition, we examine the amalgamated rate matrix:

Q =

- - -+ +- ++

- - −2 1 1 0
-+ 10 −20 0 10
+- 10 0 −20 10
++ 0 1 1 −2.

Clearly, transition rates into states in which both components have the same valueis higher. Higher
transitions rate imply higher transition probabilities, for example:

p-+ ,--(h) = 10h+o(h),

p-- ,-+(h) = h+o(h).

Thus the probability of transitions into a coherent state is much higher than into an incoherent state.

2.3 Inference in Continuous-time Markov Processes

Our setting is as follows: we receive evidence of the states of several orall components within a
time interval[0,T]. The two possible types of evidence that may be given are continuous evidence,
where we know the state of a subsetU ⊆ X continuously over some sub-interval[t1, t2]⊆ [0,T], and
point evidence of the state ofU at some pointt ∈ [0,T]. For convenience we restrict our treatment
to a time interval[0,T] with full end-point evidenceX(0) = e0 andX(T) = eT . We shall discuss the
more general case in Section 5.

Given a continuous-time Bayesian network and evidence of the above typewe would like to
evaluate the likelihood of the evidence, Pr(e0,eT ;Q) and to compute pointwise posterior proba-
bilities of various events (e.g., Pr(U (t) = u|e0,eT) for someU ⊆ X). Another class of queries are
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conditional expectations of statistics that involve entire trajectories of the process. Two important
examples for queries are thesufficient statisticsrequired for learning. These statistics are the amount
of time in whichXi is in statexi andPai are in stateui , and the number of transitions thatXi un-
derwent fromxi to yi while its parents were in stateui (Nodelman et al., 2003). We denote these
statistics byT i

xi |ui
andMi

xi ,yi |ui
respectively. For example, in the trajectory of the univariate process

in Figure 1, we haveTs2 = t2− t1+ t4− t3 andMs0,s2 = 1.
Exact calculation of these values is usually a computationally intractable task. For instance,

calculation of marginals requires first calculating the pointwise distribution overX using a forward-
backward like calculation:

Pr(X(t) = x|e0,eT) =
pe0,x(t) px,eT (T − t)

pe0,eT (T)
, (8)

and then marginalizing

Pr(U (t) = u|e0,eT) = ∑
x\u

Pr(X(t) = x|e0,eT),

wherepx,y(t) = [exp(tQ)]x,y, and the size ofQ is exponential in the number of components. More-
over, calculating expected residence times and expected number of transitions involves integration
over the time interval of these quantities (Nodelman et al., 2005a):

E [Tx] =
1

pe0,eT (T)

∫ T

0
pe0,x(t) px,eT (T − t)dt,

E [Mx,y] =
1

pe0,eT (T)

∫ T

0
pe0,x(t)qx,y py,eT (T − t)dt .

These make this approach infeasible beyond a modest number of components, hence we have to
resort to approximations.

3. Variational Principle for Continuous-Time Markov Processes

Variational approximations to structured models aim to approximate a complex distribution by a
simpler one, which allows efficient inference. This problem can be viewedas an optimization
problem: given a specific model and evidence, find the “best” approximation within a given class of
simpler distributions. In this setting the inference is posed as a constrained optimization problem,
where the constraints ensure that the parameters correspond to valid distributions consistent with
the evidence. Specifically, the optimization problem is constructed by defininga lower bound to
the log-likelihood of the evidence, where the gap between the bound and thetrue likelihood is
the divergence of between the approximation and the true posterior. While the resulting problem
is generally intractable, it enables us to derive approximate algorithms by approximating either
the functional or the constrains that define the set of valid distributions. Inthis section we define
the lower-bound functional in terms of a general continuous-time Markov process (that is, without
assuming any network structure). Here we aim at defining a lower bound on lnPQ(eT |e0) as well as
to approximating the posterior probabilityPQ(· | e0,eT), wherePQ is the distribution of the Markov
process whose instantaneous rate-matrix isQ. We start by examining the structure of the posterior
and introducing an appropriate parameterization.
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Recall that the distribution of a time-homogeneous Markov process is characterized by the con-
ditional transition probabilitiespx,y(t), which in turn is fully redetermined by the constant rate
matrixQ. It is not hard to see that whenever the prior distribution of a stochastic process is that of a
homogeneous Markov process with rate matrixQ, then the posteriorPQ(·|e0,eT) is also a Markov
process, albeit generally not a homogeneous one. The distribution of a continuous-time Markov
processes that is not homogeneous in time is determined by conditional transition probabilities,
px,y(s,s+ t), which depend explicitly on both initial and final times. These transition probabilities
can be expressed by means of a time-dependent matrix-valued function,R(t), which describes in-
stantaneous transition rates. The connection between the time-dependent rate matrixR(t) and the
transition probabilities,px,y(s,s+ t) is established by the master equation,

d
dt

px,y(s,s+ t) = ∑
z

rz,y(s+ t)px,z(s,s+ t),

whererz,y(t) are the entries ofR(t). This equation is a generalization of Equation (2) for inhomoge-
neous processes. As in the homogeneous case, it leads to a master equation for the time-dependent
probability distribution,

d
dt

px(t) = ∑
y

ry,x(t)py(t),

thereby generalizing Equation (3).
By the above discussion, it follows that the posterior process can be represented by a time-

dependent rate matrixR(t). More precisely, writing the posterior transition probability using basic
properties of conditional probabilities and the definition of the Markov transition function gives

PQ(X
(t+h) = y|X(t) = x,X(T) = eT) =

px,y(h)py,eT (T − t +h)

px,eT (T − t)
.

Taking the limith→ 0 we obtain the instantaneous transition rate of the posterior process

rx,y(t) = lim
h→0

PQ(X(t+h) = y|X(t) = x,X(T) = eT)

h
= qx,y ·

py,eT (T − t)

px,eT (T − t)
. (9)

This representation, although natural, proves problematic in the frameworkof deterministic ev-
idence because ast approachesT the transition rate into the observed state tends to infinity. In par-

ticular, whenx 6= eT andy= eT , the posterior transition rate isqx,eT ·
peT ,eT (T−t)
px,eT (T−t) . This term diverges

ast → T, because the numerator approaches 1 while the denominator approaches0. We therefore
consider an alternative parameterization for this inhomogeneous processthat is more suitable for
variational approximations.

3.1 Marginal Density Representation

Let Pr be the distribution of a Markov process, generally not time homogeneous. We define a family
of functions:

µx(t) = Pr(X(t) = x),

γx,y(t) = lim
h↓0

Pr(X(t) = x,X(t+h) = y)
h

, x 6= y.
(10)
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The functionµx(t) is the marginal probability thatX(t) = x. The functionγx,y(t) is the probability
density thatX transitions from statex to y at timet. Note that this parameter is not a transition rate,
but rather a product of a point-wise probability with the point-wise transition rate of the distribution,
that is, the entries of the time-dependent rate matrix of an equivalent process can be defined by

rx,y(t) =

{

γx,y(t)
µx(t)

µx(t)> 0,

0 µx(t) = 0.
(11)

Hence, unlike the (inhomogeneous) rate matrix at timet, γx,y(t) takes into account the probability
of being in statex and not only the rate of transitions.

We aim to use the family of functionsµ and γ as a representation of the posterior process.
To do so, we need to characterize the set of constraints that these functions satisfy. We begin by
constraining the marginalsµx(t) to be valid distributions that is, 0≤ µx(t) ≤ 1 and∑xµx(t) = 1.
A similar constraint on the pairwise distributions implies thatγx,y(t) ≥ 0 for x 6= y. Next, we infer
additional constraints from consistency properties between distributions over pairs of variables and
their uni-variate marginals. Specifically, Equation (10) implies that forx 6= y

Pr(X(t) = x,X(t+h) = y) = γx,y(t)h+o(h). (12)

Plugging this identity into the consistency constraint

µx(t) = Pr(X(t) = x) = ∑
y

Pr(X(t) = x,X(t+h) = y),

defining
γx,x(t) =−∑

y6=x

γx,y(t)

and rearranging, we obtain

Pr(X(t) = x,X(t+h) = y) = 11x=yµx(t)+ γx,y(t)h+o(h), (13)

which unlike (12) is valid for allx,y. Marginalizing (13) with respect to the second variable,

Pr(X(t+h) = x) = ∑
y

Pr(X(t) = y,X(t+h) = x),

we obtain a forward update rule for the uni-variate marginals

µx(t +h) = µx(t)+h ∑
y

γy,x(t)+o(h).

Rearranging terms and taking the limith→ 0 gives a differential equation forµx(t),

d
dt

µx(t) = ∑
y

γy,x(t).

Finally, wheneverµx(t) = 0 we have Pr(X(t) = x,X(t+h) = y) = 0, implying in that case thatγx,y(t) =
0. Based on these observations we define:
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Definition 1 A family η = {µx(t),γx,y(t) : 0 ≤ t ≤ T} of functions is aMarkov-consistent density
setif the following constraints are fulfilled:

µx(t) ≥ 0, ∑
x

µx(0) = 1,

γx,y(t) ≥ 0 ∀y 6= x,

γx,x(t) = −∑
y6=x

γx,y(t),

d
dt

µx(t) = ∑
y

γy,x(t),

andγx,y(t) = 0 wheneverµx(t) = 0. We denote byM the set of all Markov-consistent densities.

Using standard arguments we can show that there exists a correspondence between (generally
inhomogeneous) Markov processes and density setsη. Specifically, givenη, we construct a process
by defining an inhomogeneous rate matrixR(t) whose entries are defined in Equation (11) and
prove the following:

Lemma 2 Letη= {µx(t),γx,y(t) : 0≤ t ≤ T}. If η∈M , then there exists a continuous-time Markov
processPr for which µx andγx,y satisfy (10) for every t in the right-open interval [0,T).

Proof See appendix B

The converse is also true: for every integrable inhomogeneous rate matrixR(t) the corresponding
marginal density set is defined byddtµx(t) = ∑y ry,x(t)µy(t) andγx,y(t) = µx(t)rx,y(t). The processes
we are interested in, however, have additional structure, as they correspond to the posterior distri-
bution of a time-homogeneous process with end-point evidence. In that case, multiplying Equation
(9) byµx(t) gives

γx,y(t) = µx(t) ·qx,y ·
py,eT (T − t)
px,eT (T − t)

. (14)

Plugging in Equation (8) we obtain

γx,y(t) =
pe0,x(t) ·qx,y · py,eT (T − t)

pe0,eT (T)
,

which is zero wheny 6= eT andt = T. This additional structure implies that we should only con-
sider a subset ofM . Specifically the representationη corresponding to the posterior distribution
PQ(·|e0,eT) satisfiesµx(0) = 11x=e0, µx(T) = 11x=eT , γx,y(0) = 0 for all x 6= e0 andγx,y(T) = 0 for all
y 6= eT . We denote byMe ⊂M the subset that contains Markov-consistent density sets satisfying
these constraints. This analysis suggests that for every homogeneous rate matrix and point evi-
dencee there is a member inMe that corresponds to the posterior process. Thus, from now on we
restrict our attention to density sets fromMe.

3.2 Variational Principle

The marginal density representation allows us to state the variational principlefor continuous pro-
cesses, which closely tracks similar principles for discrete processes. Specifically, we define a
functional of functions that are constrained to be density sets fromMe. The maximum over this
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set is the log-likelihood of the evidence and is attained for a density set that represents the poste-
rior distribution. This formulation will serve as a basis for the mean-field approximation, which is
introduced in the next section.

Define afree energy functional,

F (η;Q) = E(η;Q)+H (η),

which, as we will see, measures the quality ofη as an approximation ofPQ(·|e). (For succinctness,
we will assume that the evidencee is clear from the context.) The two terms in the functional are
theaverage energy,

E(η;Q) =
∫ T

0
∑
x

[

µx(t)qx,x+ ∑
y6=x

γx,y(t) lnqx,y

]

dt,

and theentropy,

H (η) =
∫ T

0
∑
x

∑
y6=x

γx,y(t)[1+ lnµx(t)− lnγx,y(t)]dt.

The following theorem establishes the relation of this functional to the Kullback-Leibler (KL)
divergence and the likelihood of the evidence, and thus allows us to cast the variational inference
into an optimization problem.

Theorem 3 LetQ be a rate matrix, e= (e0,eT) be states of X, andη ∈Me. Then

F (η;Q) = lnPQ(eT |e0)− ID(Pη||PQ(·|e))

where Pη is the distribution corresponding toη and ID(Pη||PQ(·|e)) is the KL divergence between
the two processes.

We conclude from the non-negativity of the KL divergence that the energy functionalF (η;Q) is
a lower bound of the log-likelihood of the evidence. The closer the approximation to the target
posterior, the tighter the bound. Moreover, since the KL divergence is zero if and only if the two
distributions are equal almost everywhere, finding the maximizer of this freeenergy is equivalent
to finding the posterior distribution from which answers to different queries can be efficiently com-
puted.

3.3 Proof of Theorem 3

We begin by examining properties of distributions of inhomogeneous Markovprocesses. LetX(t) be
an inhomogeneous Markov process with rate matrixR(t). As in the homogeneous case, a trajectory
σ of {X(t)}t≥0 over a time interval[0,T] can be characterized by a finite number of transitionsK, a
sequence of states(x0,x1, . . . ,xK) and a sequence of transition times(t0 = 0, t1, . . . , tK , tK+1 = T).
We denote byΣ the set of all trajectories ofX[0,T]. The distribution overΣ can be character-
ized by a collection of random variables that consists of the number of transitions κ, a sequence
of states(χ0, . . . ,χκ) and transition times(τ1, . . . ,τκ). Note that the number of random variables
that characterize the trajectory is by itself a random variable. The densityfR of a trajectory
σ = {K,x0, . . . ,xK , t1, . . . , tK} is the derivative of the joint distribution with respect to transition
times, that is,

fR(σ) =
∂K

∂t1 · · ·∂tK
PR(κ = K,χ0 = x0, . . . ,χK = xK ,τ1 ≤ t1, . . . ,τK ≤ tK),
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which is given by

fR(σ) = px0(0) ·
K−1

∏
k=0

[

e
∫ tk+1
tk

rxk,xk(t)dtrxk,xk+1(tk+1)
]

·e
∫ tK+1
tK

rxK ,xK (t)dt.

For example, in caseR(t) =Q is a homogeneous rate matrix this equation reduces to

fQ(σ) = px0(0) ·
K−1

∏
k=0

[

eqxk,xk(tk+1−tk)qxk,xk+1

]

·eqxK ,xK (tK+1−tK).

The expectation of a random variableψ(σ) is an infinite sum (because one has to account for all
possible numbers of transitions) of finite dimensional integrals,

E fQ [ψ]≡
∫

Σ
fR(σ)ψ(σ)dσ ≡

∞

∑
K=0

∑
x0

· · ·∑
xK

∫ T

0

∫ tK

0
· · ·

∫ t2

0
fR(σ)ψ(σ)dt1 · · ·dtK .

TheKL-divergencebetween two densities that correspond to two inhomogeneous Markov pro-
cesses with rate matricesR(t) andS(t) is

ID( fR|| fS) =
∫

Σ
fR(σ) ln

fR(σ)
fS(σ)

dσ . (15)

We will use the convention 0ln0= 0 and assume the support offS is contained in the support offR.
That is fR(σ) = 0 wheneverfS(σ) = 0. The KL-divergence satisfiesID( fR|| fS) ≥ 0 and is exactly
zero if and only if fR = fS almost everywhere (Kullback and Leibler, 1951).

Let η ∈ Me be a marginal density set consistent withe. As we have seen, this density set
corresponds to a Markov process with rate matrixR(t) whose entries are defined by Equation (11),
hence we identifyfη ≡ fR.

Given evidenceeon some event we denotefQ(σ,e)≡ fQ(σ) ·11σ|=e, and note that

PQ(e) =
∫
{σ:σ|=e}

fQ(σ)dσ =
∫

Σ
fQ(σ,e)dσ ,

whereσ |= e is a predicate which is true ifσ is consistent with the evidence. The density function

of the posterior distributionPQ(·|e) satisfiesfS(σ) =
fQ(σ,e)
PQ(e)

whereS(t) is the time-dependent rate
matrix that corresponds to the posterior process.

Manipulating (15), we get

ID( fη|| fS) =
∫

Σ
fη(σ) ln fη(σ)dσ−

∫
Σ

fη(σ) ln fS(σ)dσ ≡ E fη [ln fη(σ)]−E fη [ln fS(σ)] .

Replacing lnfS(σ) by ln fQ(σ,e)− lnPQ(e) and applying simple arithmetic operations gives

lnPQ(e) = E fη [ln fQ(σ,e)]−E fη [ln fη(σ)]+ ID( fη|| fS).

The crux of the proof is in showing that the expectations in the right-hand side satisfy

E fη [ln fQ(σ,e)] = E(η;Q),
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and
−E fη [ln fη(σ)] =H (η),

implying thatF (η;Q) is a lower bound on the log-probability of evidence with equality if and only
if fη = fQ almost everywhere.

To prove these identities for the energy and entropy, we treat trajectoriesas functionsσ :R →R

whereR is the set of real numbers by denotingσ(t) ≡ X(t)(σ)—the state of the system at timet.
Using this notation we introduce two lemmas that allow us to replace integration overa set of
trajectories by a one dimensional integral, which is defined over a time variable. The first result
handles expectations of functions that depend on specific states:

Lemma 4 Let ψ : S×R → R be a function, then

E fη

[∫ T

0
ψ(σ(t), t)dt

]

=
∫ T

0
∑
x

µx(t)ψ(x, t)dt.

Proof See Appendix C.1

As an example, by settingψ(x′, t) = 11x′=x we obtain that the expected residence time in statex is
E fη [Tx] =

∫ T
0 µx(t)dt. The second result handles expectations of functions that depend on transitions

between states:

Lemma 5 Let ψ(x,y, t) be a function from S×S×R to R that is continuous with respect to t and
satisfiesψ(x,x, t) = 0, ∀x,∀t then

E fη

[

Kσ

∑
k=1

ψ(xσ
k−1,x

σ
k , t

σ
k )

]

=
∫ T

0
∑
x

∑
y6=x

γx,y(t)ψ(x,y, t)dt,

where the superscriptσ stresses that Kσ, xσ
k and tσk are associated with a specific trajectoryσ.

Proof See Appendix C.2

Continuing the example of the previous lemma, here by settingψ(x′,y′, t) = 11x′=x11y′=y11x6=y the sums
within the left hand expectation become the number of transitions in a trajectoryσ. Thus, we obtain
that the expected number of transitions fromx to y is E f [Mx,y] =

∫ T
0 γx,y(t)dt.

We now use these lemmas to compute the expectations involved in the energy functional. Sup-
posee= {e0,eT} is a pair of point evidence andη ∈Me. Applying these lemmas withψ(x, t) = qx,x

andψ(x,y, t) = 11x6=y · lnqx,y gives

E fη [ln fQ(σ,e)] =
∫ T

0
∑
x

[

µx(t)qx,x(t)+ ∑
y6=x

γx,y(t) lnqx,y(t)

]

dt .

Similarly, settingψ(x, t) = rx,x(t) andψ(x,y, t) = 11x6=y · ln rx,y(t), whereR(t) is defined in Equation
(11), we obtain

−E fη [ln fη(σ,e)] =−
∫ T

0
∑
x

[

µx(t)
γx,x(t)
µx(t)

+ ∑
y6=x

γx,y(t) ln
γx,y(t)

µx(t)

]

dt =H (η) .
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4. Factored Approximation

The variational principle we discussed is based on a representation that isas complex as the original
process—the number of functionsγx,y(t) we consider is equal to the size of the original rate ma-
trix Q. To get a tractable inference procedure we make additional simplifying assumptions on the
approximating distribution.

Given aD-component process we consider approximations that factor into products of indepen-
dent processes. More precisely, we defineM i

e to be the continuous Markov-consistent density sets
over the componentXi , that are consistent with the evidence onXi at times 0 andT. Given a collec-
tion of density setsη1, . . . ,ηD for the different components, the product density setη=η1×·· ·×ηD

is defined as

µx(t) = ∏
i

µi
xi
(t),

γx,y(t) =











γi
xi ,yi

(t)µ\i
x (t) δ(x,y) = {i}

∑i γi
xi ,xi

(t)µ\i
x (t) x= y

0 otherwise

whereµ\i
x (t) = ∏ j 6=i µ

j
x j (t) is the joint distribution at timet of all the components other than thei’th

(it is not hard to see that ifηi ∈M i
e for all i, thenη ∈Me). We define the setM F

e to contain all
factored density sets. From now on we assume thatη = η1×·· ·×ηD ∈M F

e .
Assuming thatQ is defined by a CTBN, and thatη is a factored density set, we can rewrite

E(η;Q) = ∑
i

∫ T

0
∑
xi

[

µi
xi
(t)Eµ\i(t)

[

qxi ,xi |U i

]

+ ∑
xi ,yi 6=xi

γi
xi ,yi

(t)Eµ\i(t)

[

lnqxi ,yi |U i

]

]

dt

(see derivations in Appendix D). Similarly, the entropy term factors as

H (η) = ∑
i

H (ηi) .

Note that terms such asEµ\i(t)

[

qxi ,xi |U i

]

involve only µj(t) for j ∈ Pai , becauseEµ\i(t) [ f (U i)] =

∑ui
µui (t) f (ui). Therefore, this decomposition involves only local terms that either include the i’th

component, or include thei’th component and its parents in the CTBN definingQ.
To make the factored nature of the approximation explicit in the notation, we writehenceforth,

F (η;Q) = F̃ (η1, . . . ,ηD;Q).

4.1 Fixed Point Characterization

The factored form of the functional and the independence between the differentηi allows optimiza-
tion by block ascent, optimizing the functional with respect to each parameter set in turn. To do so,
we should solve the following optimization problem:

Fixing i, and givenη1, . . . ,ηi−1,ηi+1, . . . ,ηD, in M 1
e , . . .M

i−1
e ,M i+1

e , . . . ,M D
e , respec-

tively, find
arg max

ηi∈M i
e

F̃ (η1, . . . ,ηD;Q) .
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If for all i, we have aµi ∈M i
e, which is a solution to this optimization problem with respect to

each component, then we have a (local) stationary point of the energy functional withinM F
e .

To solve this optimization problem, we define a Lagrangian, which includes the constraints in
the form of Definition 1. These constraints are to be enforced in a continuous fashion, and so the
Lagrange multipliersλi

xi
(t) are continuous functions oft as well. The Lagrangian is a functional of

the functionsµi
xi
(t), γi

xi ,yi
(t) andλi

xi
(t), and takes the following form

L = F̃ (η;Q)−
D

∑
i=1

∫ T

0
λi

xi
(t)

(

d
dt

µi
xi
(t)−∑

yi

γi
xi ,yi

(t)

)

dt .

A necessary condition for the optimality of a density setη is the existence ofλ such that(η,λ) is a
stationary pointof the Lagrangian. A stationary point of a functional satisfies theEuler-Lagrange
equations, namely thefunctional derivativeswith respect toµ, γ and λ vanish (see Appendix E
for a brief review). The detailed derivation of the resulting equations is in Appendix F. Writing
these equations in explicit form, we get a fixed point characterization of thesolution in term of the
following set of ODEs:

d
dt

µi
xi
(t) = ∑

yi 6=xi

(

γi
yi ,xi

(t)− γi
xi ,yi

(t)
)

,

d
dt

ρi
xi
(t) =−ρi

xi
(t)
(

q i
xi ,xi

(t)+ψi
xi
(t)
)

− ∑
yi 6=xi

ρi
yi
(t)q̃i

xi ,yi
(t)

(16)

along with the following algebraic constraint

ρi
xi
(t)γi

xi ,yi
(t) = µi

xi
(t)q̃i

xi ,yi
(t)ρi

yi
(t), xi 6= yi (17)

whereρi are the exponents of the Lagrange multipliersλi . In these equations we use the following
shorthand notations for the average rates

q i
xi ,xi

(t) = Eµ\i(t)

[

qi|Pai

xi ,xi |U i

]

,

q i
xi ,xi |x j

(t) = Eµ\i(t)

[

qi|Pai

xi ,xi |U i
| x j

]

,

whereµ\i(t) is the product distribution ofµ1(t), . . . ,µi−1(t),µi+1(t), . . . ,µD(t). Similarly, we have
the following shorthand notations for the geometrically-averaged rates,

q̃i
xi ,yi

(t) = exp
{

Eµ\i(t)

[

lnqi|Pai

xi ,yi |U i

]}

,

q̃i
xi ,yi |x j

(t) = exp
{

Eµ\i(t)

[

lnqi|Pai

xi ,yi |U i
| x j

]}

.

The last auxiliary term is

ψi
xi
(t) = ∑

j∈Childreni

∑
x j

[

µj
x j
(t)q j

x j ,x j |xi
(t)+ ∑

x j 6=y j

γ j
x j ,y j

(t) ln q̃ j
x j ,y j |xi

(t)

]

.

To uniquely solve the two differential Equations (16) forµi
xi
(t) andρi

xi
(t) we need to set boundary

conditions. The boundary condition forµi
xi

is defined explicitly inM F
e as

µi
xi
(0) = 11xi=ei,0 . (18)

2760



MEAN FIELD APPROXIMATION FORCONTINUOUS-TIME BAYESIAN NETWORKS

The boundary condition atT is slightly more involved. The constraints inM F
e imply thatµi

xi
(T) =

11xi=ei,T . As stated in Section 3.1, we have thatγi
ei,T ,xi

(T) = 0 whenxi 6= ei,T . Plugging these values

into (17), and assuming that all elements ofQi|Pai are non-zero we get thatρxi (T) = 0 for all xi 6= ei,T

(It might be possible to use a weaker condition thatQ is irreducible). In addition, we notice that
ρei,T (T) 6= 0, for otherwise the whole system of equations forρ will collapse to 0. Finally, notice
that the solution of (16,17) forµi andγi is insensitive to the multiplication ofρi by a constant. Thus,
we can arbitrarily setρei,T (T) = 1, and get the boundary condition

ρi
xi
(T) = 11xi=ei,T . (19)

Putting it all together we obtain a characterization of stationary points of the functional as stated in
the following theorem:

Theorem 6 ηi ∈M i
e is a stationary point (e.g., local maxima) ofF̃ (η1, . . . ,ηD;Q) subject to the

constraints of Definition 1 if and only if it satisfies (16–19).

Proof see Appendix F

It is straightforward to extend this result to show that at a maximum with respect to all the component
densities, this fixed-point characterization must hold for all components simultaneously.

Example 2 Consider the case of a single component, for which our procedure should be exact, as
no simplifying assumptions are made on the density set. In that case, the averaged ratesq i and the
geometrically-averaged rates ˜qi both reduce to the unaveraged ratesq, andψ ≡ 0. Thus, the system
of equations to be solved is

d
dt

µx(t) = ∑
y6=x

(γy,x(t)− γx,y(t)) ,

d
dt

ρx(t) =−∑
y

qx,yρy(t),

along with the algebraic equation

ρx(t)γx,y(t) = µx(t)qx,yρy(t), y 6= x.

These equations have a simple intuitive interpretation. First, the backward propagation rule for
ρx implies that

ρx(t) = Pr(eT |X
(t) = x).

To prove this identity, we recall the notationpx,y(h) ≡ Pr(X(t+h) = y|X(t) = x) and write the dis-
cretized propagation rule

Pr(eT |X
(t) = x) = ∑

y
px,y(h) ·Pr(eT |X

(t+h) = y) .

Using the definition ofq (Equation 1), rearranging, dividing byh and taking the limith→ 0 gives

d
dt

Pr(eT |X
(t) = x) =−∑

y
qx,y ·Pr(eT |X

(t) = y),
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which is identical to the differential equation forρ. Second, dividing the above algebraic equation
by ρx(t) whenever it is greater than zero we obtain

γx,y(t) = µx(t)qx,y
ρy(t)
ρx(t)

. (20)

Thus, we reconstructed Equation (14).
This analysis suggest that this system of ODEs is similar to forward-backward propagation,

except that unlike classical forward propagation, here the forward propagation already takes into
account the backward messages to directly compute the posterior. Given this interpretation, it is
clear that integratingρx(t) from T to 0 followed by integratingµx(t) from 0 toT computes the exact
posterior of the processes.

This interpretation ofρx(t) also allows us to understand the role ofγx,y(t). Equation (20) sug-
gests that the instantaneous rate combines the original rate with the relative likelihood of the evi-
dence atT giveny andx. If y is much more likely to lead to the final state, then the rates are biased
towardy. Conversely, ify is unlikely to lead to the evidence the rate of transitions to it are lower.
This observation also explains why the forward propagation ofµx will reach the observedµx(T)
even though we did not impose it explicitly.

Example 3 Let us return to the two-component Ising chain in Example 1 with initial stateX(0)
1 =−1

andX(0)
2 = 1, and a reversed state at the final time,X(T)

1 = 1 andX(T)
2 =−1. For a large value ofβ,

this evidence is unlikely as at both end points the components are in a undesired configurations. The
exact posterior is one that assigns higher probabilities to trajectories where one of the components
switches relatively fast to match the other, and then toward the end of the interval, they separate
to match the evidence. Since the model is symmetric, these trajectories are either ones in which
both components are most of the time in state−1, or ones where both are most of the time in
state 1 (Figure 3(a)). Due to symmetry, the marginal probability of each component is around
0.5 throughout most of the interval. The variational approximation cannot capture the dependency
between the two components, and thus converges to one of two local maxima, corresponding to the
two potential subsets of trajectories (Figure 3(b)). Examining the value ofρi , we see that close to
the end of the interval they bias the instantaneous rates significantly. For example, ast approaches 1,
ρ1

1(t)/ρ1
−1(t) approaches infinity and so does the instantaneous rateγ1

−1,1(t)/µ1
−1(t), thereby forcing

X1 to switch to state 1 (Figure 3(c)).
This example also allows to examine the implications of modeling the posterior by inhomoge-

neous Markov processes. In principle, we might have used as an approximation Markov processes
with homogeneous rates, and conditioned on the evidence. To examine whether our approximation
behaves in this manner, we notice that in the single component case we have

qx,y =
ρx(t)γx,y(t)

ρy(t)µx(t)
,

which should be constant.
Consider the analogous quantity in the multi-component case: ˜qi

xi ,yi
(t), the geometric average

of the rate ofXi , given the probability of parents state. Not surprisingly, this is exactly a mean field
approximation, where the influence of interacting components is approximatedby their average
influence. Since the distribution of the parents (in the two-component system,the other component)
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(a) (b)

(c) (d)

Figure 3: Numerical results for the two-component Ising chain describedin Example 3 where the
first component starts in state−1 and ends at timeT = 1 in state 1. The second component
has the opposite behavior.(a) Two likely trajectories depicting the two modes of the
model. (b) Exact (solid) and approximate (dashed/dotted) marginalsµi

1(t). (c) The log
ratio logρi

1(t)/ρi
−1(t). (d)The expected rates ˜q1

1,−1(t) andq̃1
−1,1(t) of componentX1 of the

Ising chain in Example 1. We can notice that the averaged rates are highly non-constant,
and so cannot be approximated well with a constant rate matrix.

changes in time, these rates change continuously, especially near the end of the time interval. This
suggests that a piecewise homogeneous approximation cannot capture thedynamics without a loss
in accuracy. As expected in a dynamic process, we can see in Figure 3(d) that the inhomogeneous
transition rates are very erratic. In particular, the rates ofX1 spike at the transition point selected
by the mean field approximation. This can be interpreted as putting most of the weight of the
distribution on trajectories which transition from state -1 to 1 at that point.

4.2 Optimization Procedure

If Q is irreducible, thenρi
xi

andµi
xi

are non-zero throughout the open interval(0,T). As a result,
we can solve (17) to expressγi

xi ,yi
as a function ofµi andρi , thus eliminating it from (16) to get

evolution equations solely in terms ofµi andρi . Abstracting the details, we obtain a set of ODEs of
the form

d
dt

ρi(t) = α(ρi(t),µ\i(t)) ρi(T) = given,

d
dt

µi(t) = β(µi(t),ρi(t),µ\i(t)) µi(0) = given.
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whereα andβ are defined by the right-hand side of the differential equations (16). Since the evo-
lution of ρi does not depend onµi , we can integrate backward from timeT to solve forρi . Then,
integrating forward from time 0, we computeµi . After performing a single iteration of backward-
forward integration, we obtain a solution that satisfies the fixed-point equation (16) for thei’th com-
ponent (this is not surprising once we have identified our procedure to be a variation of a standard
forward-backward algorithm for a single component). Such a solution willbe a local maximum
of the functional w.r.t. toηi (reaching a local minimum or a saddle point requires very specific
initialization points).

This suggests that we can use the standard procedure of asynchronous updates, where we update
each component in a round-robin fashion. Since each of these single-component updates converges
in one backward-forward step, and since it reaches a local maximum, each step improves the value
of the free energy over the previous one. As the free energy functional is bounded by the probability
of the evidence, this procedure will always converge, and the rate of the free energy increase can be
used to test for convergence.

Potentially, there can be many scheduling possibilities. In our implementation the update
scheduling is simply random. A better choice would be to update the component which would
maximally increase the value of the functional in that iteration. This idea is similar to the schedul-
ing of Elidan et al. (2006), who approximate the change in the beliefs by bounding theresidualsof
the messages, which give an approximation of the benefit of updating eachcomponent.

Another issue is the initialization of this procedure. Since the iteration on thei’th component
depends onµ\i , we need to initializeµ by some legal assignment. To do so, we create a fictional rate
matrix Q̃i for each component and initializeµi to be the posterior of the process given the evidence
ei,0 andei,T . As a reasonable initial guess, we choose at random one of the conditional ratesQi|ui

using some random assignmentui to determine the fictional rate matrix.
The general optimization procedure is summarized in the following algorithm:

For each i, initialize µi using some legal marginal function.
while not convergeddo

1. Pick a component i∈ {1, . . . ,D}.

2. Updateρi(t) by solving theρi backward differential equation in (16).

3. Update µi(t) andγi(t) by solving the µi forward differential equation in (16) and
using the algebraic equation in (17).

end
Algorithm 1 : Mean field approximation in continuous-time Bayesian networks

4.3 Exploiting Continuous-Time Representation

The continuous-time update equations allow us to use standard ODE methods withan adaptive
step size (here we use the Runge-Kutta-Fehlberg (4,5) method). At the price of some overhead,
these procedures automatically tune the trade-off between error and time granularity. Moreover,
this overhead is usually negligible compared to the saving in computation time, because adaptive
integration can be more efficient thananyfixed step size integration by an order of magnitude (Press
et al., 2007).
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To further save computations, we note that while standard integration methodsinvolve only
initial boundary conditions att = 0, the solution ofµi is also known att = T. Therefore, we stop
the adaptive integration whenµi(t) ≈ µi(T) andt is close enough toT. This modification reduces
the number of computed points significantly because the derivative ofµi tends to grow near the
boundary, resulting in a smaller step size.

The adaptive solver selects different time points for the evaluation of eachcomponent. There-
fore, updates ofηi require access to marginal density sets of neighboring components at time points
that differ from their evaluation points. To allow efficient interpolation, we use a piecewise linear
approximation ofη whose boundary points are determined by the evaluation points that are chosen
by the adaptive integrator.

5. Perspectives and Related Work

Variational approximations for different types of continuous-time processes have been recently
proposed. Examples include systems with discrete hidden components (Opper and Sanguinetti,
2007); continuous-state processes (Archambeau et al., 2007); hybrid models involving both discrete
and continuous-time components (Sanguinetti et al., 2009; Opper and Sanguinetti, 2010); and spa-
tiotemporal processes (Ruttor and Opper, 2010; Dewar et al., 2010). All these models assume noisy
observations in a finite number of time points. In this work we focus on structured discrete-state
processes with noiseless evidence.

Our approach is motivated by results of Opper and Sanguinetti (2007) who developed a varia-
tional principle for a related model. Their model is similar to an HMM, in which the hidden chain
is a continuous-time Markov process and there are (noisy) observationsat discrete points along the
process. They describe a variational principle and discuss the form ofthe functional when the ap-
proximation is a product of independent processes. There are two main differences between the
setting of Opper and Sanguinetti and ours. First, we show how to exploit thestructure of the target
CTBN to reduce the complexity of the approximation. These simplifications imply thatthe update
of the i’th process depends only on its Markov blanket in the CTBN, allowing us to develop effi-
cient approximations for large models. Second, and more importantly, the structure of the evidence
in our setting is quite different, as we assume deterministic evidence at the end of intervals. This
setting typically leads to a posterior Markov process in which the instantaneousrates used by Opper
and Sanguinetti diverge toward the end point—the rates of transition into the observed state go to
infinity, leading to numerical problems at the end points. We circumvent this problem by using the
marginal density representation which is much more stable numerically.

Taking the general perspective of Wainwright and Jordan (2008), the representation of the dis-
tribution uses the natural sufficient statistics. In the case of a continuous-time Markov process, the
sufficient statistics areTx, the time spent in statex, andMx,y, the number of transitions from statex to
y. In a discrete-time model, we can capture the statistics for every random variable. In a continuous-
time model, however, we need to consider the time derivative of the statistics. Indeed, as shown in
Section 3.3 we have

d
dt

E [Tx(t)] = µx(t) and
d
dt

E [Mx,y(t)] = γx,y(t).

Thus, our marginal density setsη provide what we consider a natural formulation for variational
approaches to continuous-time Markov processes.
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Our presentation focused on evidence at two ends of an interval. Our formulation easily extends
to deal with more elaborate types of evidence: (1) If we do not observe the initial state of thei’th
component, we can setµi

x(0) to be the prior probability ofX(0)= x. Similarly, if we do not observeXi

at timeT, we setρi
x(T) = 1 as initial data for the backward step. (2) In a CTBN where one (or more)

components are fully observed throughout some interval, we simply setµi for these components to
be a distribution that assigns all the probability mass to the observed trajectory. Similarly, if we
observe different components at different times, we may update each component on a different time
interval. Consequently, maintaining for each component a marginal distribution µi throughout the
interval of interest, we can update the other ones using their evidence patterns.

6. Evaluation on Ising Chains

To gain better insight into the quality of our procedure, we performed numerical tests on models
that challenge the approximation. Specifically, we use Ising chains with the parameterization in-
troduced in Example 1, where we explore regimes defined by the degree ofcoupling between the
components (the parameterβ) and the rate of transitions (the parameterτ). We evaluate the error
in two ways. The first is by the difference between the true log-likelihood andour estimate. The
second is by the average relative error in the estimate of different expected sufficient statistics de-
fined by∑ j |θ̂ j −θ j |/θ j , whereθ j is exact value of thej ’th expected sufficient statistics andθ̂ j is
the approximation. To obtain a stable estimate the average is taken over allθ j > 0.05maxj ′ θ j ′ .

Applying our procedure on an Ising chain with 8 components, for which wecan still perform
exact inference, we evaluated the relative error for different choices ofβ andτ. The evidence in
this experiment ise0 = {+,+,+,+,+,+,−,−}, T = 0.64 andeT = {−,−,−,+,+,+,+,+}. As
shown in Figure 4(a), the error is larger whenτ andβ are large. In the case of a weak coupling
(smallβ), the posterior is almost factored, and our approximation is accurate. In models with few
transitions (smallτ), most of the mass of the posterior is concentrated on a few canonical “types” of
trajectories that can be captured by the approximation (as in Example 3). At high transition rates,
the components tend to transition often, and in a coordinated manner, which leads to a posterior that
is hard to approximate by a product distribution. Moreover, the resulting free energy landscape is
rough with many local maxima. Examining the error in likelihood estimates (Figure 4(b),(c)) we
see a similar trend.

Next, we examine the run time of our approximation when using fairly standard ODE solver
with few optimizations and tunings. The run time is dominated by the time needed to perform
the backward-forward integration when updating a single component, andby the number of such
updates until convergence. Examining the run time for different choices of β andτ (Figure 5), we
see that the run time of our procedure scales linearly with the number of components in the chain.
The differences among the different curves suggest that the runtime is affected by the choice of
parameters, which in turn affect the smoothness of the posterior density sets.

7. Evaluation on Branching Processes

The above-mentioned experimental results indicate that our approximation is accurate when rea-
soning about weakly-coupled components, or about time intervals involvingfew transitions (low
transition rates). Unfortunately, in many domains we face strongly-coupledcomponents. For exam-
ple, we are interested in modeling the evolution of biological sequences (DNA, RNA, and proteins).
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Figure 4: (a) Relative error as a function of the coupling parameterβ (x-axis) and transition ratesτ
(y-axis) for an 8-component Ising chain.(b) Comparison of true vs. estimated likelihood
as a function of the rate parameterτ. (c) Comparison of true vs. likelihood as a function
of the coupling parameterβ.

Figure 5: Evaluation of the run time of the approximation versus the run time of exact inference as
a function of the number of components.

In such systems, we have aphylogenetic treethat represents the branching process that leads to
current day sequences (see Figure 6).

It is common in sequence evolution to model this process as a continuous-time Markov pro-
cess over a tree (Felsenstein, 2004). More precisely, the evolution along each branch is a stan-
dard continuous-time Markov process, and branching is modeled by a replication, after which each
replica evolves independently along its sub-branch. Common applications are forced to assume that
each character in the sequence evolves independently of the other.

In some situations, assuming an independent evolution of each character ishighly unreasonable.
Consider the evolution of an RNA sequence that folds onto itself to form a functional structure,
as in Figure 7(a). This folding is mediated by complementary base-pairing (A-U, C-G, etc) that
stabilizes the structure. During evolution, we expect to see compensatory mutations. That is, if a
A changes intoC then its based-pairedU will change into aG soon thereafter. To capture such
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Figure 6: An example of a phylogenetic tree. Branch lengths denote time intervals between events.
The interval used for the comparison with non-branching processes is highlighted.

Figure 7: (a) Structure of an RNA molecule. The 3 dimensional structure dictates the dependencies
between the different positions.(b) The form of the energy function for encoding RNA
folding, superimposed on a fragment of a folded structure; each gray box denotes a term
that involves four nucleotides.

coordinated changes, we need to consider the joint evolution of the different characters. In the case
of RNA structure, the stability of the structure is determined bystacking potentialsthat measure the
stability of two adjacent pairs of interacting nucleotides. Thus, if we consider a factor network to
represent the energy of a fold, it will have structure as shown in Figure7(b). We can convert this
factor graph into a CTBN using procedures that consider the energy function as a fitness criteria
in evolution (El-Hay et al., 2006; Yu and Thorne, 2006). Unfortunately,inference in such models
suffers from computational blowup, and so the few studies that deal with itexplicitly resort to
sampling procedures (Yu and Thorne, 2006).
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Figure 8: Structure of the branching process.(a) The discretized CTBN underlying the process
in an intersection.(b) Illustration of the ODE updates on a directed tree, updatingρi(t)
backwards using (21) andµi(t) forwards using (22).

7.1 Representation

To consider phylogenetic trees, we should take a common approach in evolutionary analysis, in
which inference of the tree topology and branch lengths is performed separately from inference
of sequence dynamics. Thus, we need to extend our framework to deal with branching processes,
where the branching points are fixed and known. In a linear-time model, we view the process as a
map from[0,T] into random variablesX(t). In the case of a tree, we view the process as a map from a
pointt= 〈b, t〉 on a treeT (defined by branchb and the timet within it) into a random variableX(t).
Similarly, we generalize the definition of the Markov-consistent density setη to include functions
on trees. We define continuity of functions on trees in the obvious manner.

To gain intuition on this process we return to the discrete case, where our branching process
can be viewed as a branching of the Dynamic Bayesian Network from one branch to two separate
branches at the vertex, as in Figure 8(a).

7.2 Inference on Trees

The variational approximation on trees is thus similar to the one on intervals. Withineach branch,
we deal with the same update formulas as in linear time. We denote byµi

xi
(b, t) andρi

xi
(b, t) the

messages computed on branchb at timet. The only changes occur at vertices, where we cannot use
the Euler-Lagrange equations (Appendix E), therefore we must derive the propagation equations
using a different method.

The following proposition establishes the update equations for the parameters µi(t) andρi(t) at
the vertices, as depicted in Figure 8(b):
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Figure 9: Comparison of exact vs. approximate inference along the highlighted path fromC to D
in the tree of Figure 6 with and without additional evidence at other leaves. In the latter
case the problem is equivalent to inference on a linear segment. Exact marginals are
shown in solid lines, whereas approximate marginals are in dashed lines. Thehorizontal
gray lines indicate branch points along the path. Notice that evidence at the leaves result
in discontinuities of the derivatives at such points. The two panels show twodifferent
components.

Proposition 7 Given a vertex T with an incoming branchb1 and two outgoing branchesb2,b3. The
following are the correct updates for our parameters µi

xi
(t) andρi

xi
(t):

ρi
xi
(b1,T) = ρi

xi
(b2,0)ρi

xi
(b3,0), (21)

µi
xi
(bk,0) = µi

xi
(b1,T) k= 2,3. (22)

Proof See Appendix G

Using Proposition 7 we can set the updates of the different parameters in the branching process
according to (21–22). In the backward propagation ofρi , the value at the end ofb1 is the product
of the values at the start of the two outgoing branches. This is the natural operation when we recall
the interpretation ofρi as the probability of the downstream evidence given the current state (which
is its exact meaning in a single component process): the downstream evidence ofb2 is independent
of the downstream evidence ofb3, given the state of the process at the vertex〈b1,T〉. The forward
propagation ofµi simply uses the value at the end of the incoming branch as initial value for the
outgoing branches.

When switching to trees, we essentially increase the amount of evidence about intermediate
states. Consider for example the tree of Figure 6 with an Ising chain model (as in the previous
subsection). We can view the span fromC to D as an interval with evidence at its end. When
we add evidence at the tip of other branches we gain more information aboutintermediate points
betweenC andD. Even though this evidence can represent evolution from these intermediate points,
they do change our information state about them. To evaluate the impact of these changes on our
approximation, we considered the tree of Figure 6, and compared it to inference in the backbone
betweenC andD (Figure 4). Comparing the true marginal to the approximate one along the main
backbone (see Figure 9) we see a major difference in the quality of the approximation. The evidence
in the tree leads to a much tighter approximation of the marginal distribution. A more systematic
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comparison (Figure 10) demonstrates that the additional evidence reduces the magnitude of the error
throughout the parameter space.

Figure 10: (a) Evaluation of the relative error in expected sufficient statistics for an Ising chain in
branching-time; compare to Figure 4(a).(b),(c) Evaluation of the estimated likelihood
on a tree w.r.t. the rateτ and couplingβ; compare to Figure 4(b),(c).

Figure 11: Evaluation of the run time vs. accuracy trade-off for several choices of parameters for
mean field and Gibbs sampling on the branching process of Figure 6.

Similarly to mean-field, the Gibbs sampling procedure for CTBNs (El-Hay et al.,2008) can
also be extended to deal with branching processes. Comparing our method tothe Gibbs sampling
procedure we see (Figure 11) that the faster mean field approach dominates the Gibbs procedure
over short run times. However, as opposed to mean field, the Gibbs procedure is asymptotically
unbiased, and with longer run times it ultimately prevails. This evaluation also shows that the
adaptive integration procedure in our methods strikes a better trade-off than using a fixed time
granularity integration.

2771



COHN, EL-HAY, FRIEDMAN AND KUPFERMAN

Figure 12: Comparison of estimates of expected sufficient statistics in the evolution of 18 interact-
ing nucleotides, using a realistic model of RNA evolution. Each point is an expected
value of: (a) residence time in a specific state of a component and its parents;(b)
number of transition between two states. Thex-axis is the estimate by the variational
procedure, whereas they-axis is the estimate by Gibbs sampling.

As a more demanding test, we applied our inference procedure to a model similar to the one
introduced by Yu and Thorne (2006) for a stem of 18 interacting RNA nucleotides in 8 species in
the phylogeny of Figure 6. In this model the transition rate between two sequences that differ in
a single nucleotide depends on difference between their folding energy.Specifically, the transition
rate from sequencex to sequencey is given by

qx,y = 1.6
(

1+eEfold(y)−Efold(x)
)−1

, |δ(x,y)|= 1,

whereEfold is the folding energy of the sequence. This equation implies that transition rates are
increasing monotonically with the reduction of the folding energy. Hence, thismodel tends to evolve
into low energy states. The folding energy in turn is a sum of local stacking energies, involving
quadruples of nucleotides as described by the factors in Figure 7. Denoting the subset of positions
contained in each quadruple byDk, the energy is

Efold(x) = ∑
k

Ek
fold(x|Dk),

wherex|Dk is the subset of nucleotides that belong factork. This model is equivalent to a CTBN in
which the parents of each components are the other components that sharethe same factors. This
property follows from the fact that for any pairx andy, whereδ(x,y) = {i}, the difference between
the energies of these two sequences depends only on the factors that contain i.

We compared our estimate of the expected sufficient statistics of this model to these obtained
by the Gibbs sampling procedure. The Gibbs sampling estimates were chosen by running the pro-
cedure with an increasing computation time until there was no significant change in the results. The
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final estimates was obtained using 5000 burn-in rounds, 10000 number ofsamples and 100 rounds
between two consecutive samples. The results, shown in Figure 12, demonstrate that over all the two
approximate inference procedures are in good agreement about the value of the expected sufficient
statistics.

8. Discussion

In this paper we formulate a general variational principle for continuous-time Markov processes (by
reformulating and extending the one proposed by Opper and Sanguinetti, 2007), and use it to derive
an efficient procedure for inference in CTBNs. In this mean field approximation, we use a product
of independent inhomogeneous processes to approximate the multi-component posterior.

Our procedure enjoys the same benefits encountered in discrete-time mean field procedure (Jor-
dan et al., 1999): it provides a lower-bound on the likelihood of the evidence and its run time scales
linearly with the number of components. Using asynchronous updates it is guaranteed to converge,
and the approximation represents a consistent joint distribution. It also suffers from expected short-
comings: the functional has multiple local maxima, it cannot capture complex interactions in the
posterior (Example 3). By using a time-inhomogeneous representation our approximation does cap-
ture complex patterns in the temporal progression of the marginal distribution of each component.
Importantly, the continuous-time parameterization enables straightforward implementation using
standard ODE integration packages that automatically tune the trade-off between time granularity
and approximation quality. We show how it is extended to perform inference on phylogenetic trees,
where the posterior distribution is directly affected by several evidence points, and show that it
provides fairly accurate answers in the context of a real application (Figure 12).

A key development is the introduction of marginal density sets. Using this representation we
reformulate and extend the variational principle proposed by Opper and Sanguinetti (2007) , which
incorporates a different inhomogeneous representation. This modification allows handling direct
evidence of the state of the process, as in the case of CTBNs, while keeping the representation of
the approximation bounded. The extension of this principle to CTBNs follows by exploiting their
networks structure. This adaptation of continuously inhomogeneous representations to CTBNs in-
creases the flexibility of the approximation relative to the piecewise homogeneous representation of
Saria et al. (2007) and, somewhat surprisingly, also significantly simplifiesthe resulting formula-
tion.

The proposed representation is natural in the sense that its functions arethe time-derivatives of
the expected sufficient statistics that we are willing to evaluate. Hence, oncefinding the optimal
value of the lower bound, calculating these expectations is straightforward. This representation is
analogous to mean parameters which have proved powerful in variationalapproximations of expo-
nential families over finite random variable sets (Wainwright and Jordan, 2008).

We believe that even in cases where evidence is indirect and noisy, the marginal density rep-
resentation should comprise smoother functions than posterior rates. Intuitively, in the presence of
a noisy observation the posterior probability of some statex can be very small. In such cases, the
posterior transition rate formx into a state that better explains the observation might tend to a large
quantity. This reasoning suggests that marginal density representations should be better handled by
adaptive numerical integration algorithms. An interesting direction would be to test this conjecture
empirically.
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A possible extension is using our variational procedure to generate the initial distribution for
the Gibbs sampling procedure and thus skip the initial burn-in phase and produce accurate samples.
Another attractive aspect of this new variational approximation is its potentialuse for learning model
parameters from data. It can be easily combined with the EM procedure forCTBNs (Nodelman
et al., 2005a) to obtain a Variational-EM procedure for CTBNs, which monotonically increases the
likelihood by alternating between steps that improve the approximationη (the updates discussed
here) and steps that improve the model parametersθ (an M-step Nodelman et al., 2005a). Finally,
marginal density sets are a particularly suitable representation for adaptingricher representations
such as Bethe, Kikuchi and convex approximations to non-homogeneousversions (El-Hay et al.,
2010). Further work in that direction should allow bridging the gap in the wealth of inference
techniques between finite domain models and continuous-time models.
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Appendix A. The Relation Between CTBNs and DBNs

In this section we show that the DBN construction of Equations (6-7) is suchthat ash approaches
0, the distributionPh approaches Pr. To show this, it suffice to show that

lim
h→0

Ph(X(tk+1) = y|X(tk) = x)−11x=y

h
= qx,y .

We ensured this condition holds component-wise, and now need to show thatthis leads to global
consistency.

Plugging Equation (7) into Equation (6), the transition probability of the DBN is

Ph(X
(tk+1) = y|X(tk) = x) = ∏

i

(

11xi=yi +qi|Pai

xi ,yi |ui
·h
)

.

Since we consider the limit ash approaches 0, any term that involveshd with d > 1 is irrelevant.
And thus, we can limit our attention to the constant terms and terms linear inh. Expanding the
product gives

Ph(X
(tk+1) = y|X(tk) = x) = ∏

i
11xi=yi +∑

i

qi|Pai

xi ,yi |ui
·h∏

j 6=i

11x j=y j +o(h) .

Now, ∏i 11xi=yi = 11x=y. Moreover, it is easy to verify that

qx,y = ∑
i

qi|Pai

xi ,yi |ui ∏
j 6=i

11x j=y j .

Thus,
Ph(X

(tk+1) = y|X(tk) = x) = 11x=y+qx,yh+o(h),

proving the required condition.
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Appendix B. Marginal Density Sets and Markov Processes - Proof of Lemma 2

Proof Givenη, we define theinhomogeneous rate matrixR(t) as in Equation (11).R(t) is a valid
rate matrix because its off-diagonals are non-negative as they are the quotient of two non-negative
functions, and because applying the requirement onγx,x(t) in Definition 1

rx,x(t) =
γx,x(t)
µx(t)

=−
∑y6=x γx,y(t)

µx(t)
=−∑

y6=x

rx,y(t) ,

we see thatR(t)’s diagonals are negative and the rows sum to 0. We can use these rates with the
initial valueµx(0) to construct the Markov processPη from the forward master equation

d
dt

Pη(X
(t) = x) = ∑

y
Pη(X

(t) = y)ry,x(t) ,

and
Pη(X

(0)) = µ(0) .

To conclude the proof we show thatPη and the marginal density set satisfy (10). First, from
Definition 1 it follows thatµ(t) is the solution to the master equation ofPη(X(t)), because the initial
values match att = 0 and the time-derivatives of the two functions are identical. Thus

Pη(X
(t) = x) = µx(t) .

Next, the equivalence of the joint probability densities can be proved:

lim
h→0

Pr(X(t) = x,X(t+h) = y)
h

= lim
h→0

µx(t)Pr(X(t+h) = y|Pr(X(t) = x)
h

= lim
h→0

µx(t)rx,y(t)h

h
= µx(t)rx,y(t) .

From the definition ofrx,y(t) and the fact thatγx,y(t) = 0 wheneverµx(t) = 0, it follows that
µx(t)rx,y(t) is exactlyγx,y(t)

Appendix C. Expectations in Inhomogeneous Processes

This section includes the proofs of the lemmas used in the proof of the variational lower bound
theorem.

C.1 Expectations of Functions of States - Proof of Lemma 4

Proof Changing the order of integration we obtain

E fη

[∫ T

0
ψ(σ(t), t)dt

]

≡
∫

Σ
fη(σ)

∫ T

0
ψ(σ(t), t)dtdσ =

∫ T

0

∫
Σ

fη(σ) ·ψ(σ(t), t)dσdt .
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For eacht ∈ T we decompose the inner integral according to possible states at that time:∫
Σ

fη(σ) ·ψ(σ(t), t)dσ = ∑
x

∫
Σ

fη(σ) ·11σ(t)=x ·ψ(x, t)dσ

= ∑
x

ψ(x, t)
∫

Σ
fη(σ) ·11σ(t)=xdσ

= ∑
x

ψ(x, t)µx(t) .

C.2 Expectations of Functions of Transitions - Proof of Lemma 5

Proof Given a trajectoryσ there exists a small enoughh> 0 such that for every transition and for
everyt ∈ (tk−h, tk) we haveσ(t) = xk−1 andσ(t +h) = xk. In that case we can rewrite the sum in
the expectation term as

Kσ

∑
k=1

ψ(xσ
k−1,x

σ
k , t

σ
k ) =

Kσ

∑
k=1

1
h

∫ tk

tk−h
ψ(σ(t),σ(t +h), t)dt+

o(h)
h

=
1
h

∫ T−h

0
ψ(σ(t),σ(t +h), t)dt+

o(h)
h

,

where the first equality follows from continuity and the second one from therequirement that
ψ(x,x, t) = 0. Taking the limith→ 0 and using this requirement again gives

Kσ

∑
k=1

ψ(xσ
k−1,x

σ
k , t

σ
k ) =

d
ds

[∫ T

0
ψ(σ(t),σ(t +s), t)dt

]

s=0
.

Taking expectation we obtain
∫

Σ
f (σ)

d
ds

[∫ T

0
ψ(σ(t),σ(t +s), t)dt

]

s=0
dσ

=
∫

Σ
f (σ)

d
ds

[∫ T

0
∑
x

∑
y6=x

ψ(x,y, t)11σ(t)=x11σ(t+s)=ydt

]

s=0

dσ

=
d
ds

[∫ T

0
∑
x

∑
y6=x

ψ(x,y, t)
∫

Σ
f (σ)11σ(t)=x11σ(t+s)=ydσ dt

]

s=0

.

The inner integral in the last term is a joint probability∫
Σ

f (σ)11σ(t)=x11σ(t+s)=ydσ = Pr(X(t) = x,X(t+s) = y) .

Switching the order of integration and differentiation and using

d
ds

Pr(X(t) = x,X(t+s) = y)

∣

∣

∣

∣

s=0
= γxy(t), x 6= y,

gives the desired result.
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Appendix D. Proof of the Factored Representation of the Energy Functional

Proof We begin with the definition of the average energy

E(η;Q) =
∫ T

0
∑
x

[

µx(t)qx,x+ ∑
y6=x

γx,y(t) lnqx,y

]

dt

=
∫ T

0
∑
x

[

µx(t)qx,x+∑
i

∑
yi 6=xi

γi
xi ,yi

(t)µ\i(t) lnqx,y

]

dt .

where the equality stems from the observation that the only statesy that may haveγx,y(t) > 0, are
those withδ(x,y) ≤ 1 (all the rest are 0). Thus, the enumeration over all possible states collapses
into an enumeration over all componentsi and all statesyi 6= xi . Due to the fact that we are only
considering transitions in single components, we may replace the global joint density γx,y with
γi

xi ,yi
·µ\i(t), as per definition.

Using (5), we can decompose the transition ratesqx,x andqx,y to get

E(η;Q) = ∑
i

∫ T

0
∑
x

[

µx(t)qxi ,xi |ui
+ ∑

yi 6=xi

γi
xi ,yi

(t)µ\i(t) lnqxi ,yi |ui

]

dt

= ∑
i

∫ T

0
∑
xi

[

µi
xi
(t)∑

x\i

µ\i
x\i(t)qxi ,xi |ui

+ ∑
yi 6=xi

γi
xi ,yi

(t)µ\i
x\i(t) lnqxi ,yi |ui

]

dt .

To get to the last equality we use the factorization ofµ(t) as a product ofµi(t) with µ\i(t) and the
reordering of the summation. Next we simply write the previous sum as an expectation overX \ i

E(η;Q) = ∑
i

∫ T

0
∑
xi

µi
xi
(t)Eµ\i(t)

[

qxi ,xi |U i

]

+∑
i

∫ T

0
∑

yi 6=xi

γi
xi ,yi

(t)Eµ\i(t)

[

lnqxi ,yi |U i

]

dt ,

which concludes the proof.
Turning to the entropy-like term we have:

H (η) =
∫ T

0
∑
x

∑
y6=x

γx,y(t)[1+ lnµx(t)− lnγx,y(t)]dt

= ∑
i

∫ T

0
∑
x

∑
yi 6=xi

µ\i(t)γxi ,yi (t)[1+∑
i

lnµi
xi
(t)− lnγxi ,yi (t)−∑

j 6=i

lnµx j (t)]dt

= ∑
i

∫ T

0
∑
xi

∑
yi 6=xi

γxi ,yi (t)[1+ lnµi
xi
(t)− lnγxi ,yi (t)]dt

= ∑
i

H (ηi) ,

where, the first equality is definition ofH . The second one follows from the definition of the fac-
tored density set. The third one is obtained by algebraic manipulation and the last one is again the
definition ofH .
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Appendix E. Euler-Lagrange Equations

The problem of finding the fixed points offunctionalswhose arguments are continuous functions
comes from the field ofCalculus of variations. We briefly review the usage Euler-Lagrange equation
for solving optimization problems over functionals. Additional information can be found in Gelfand
and Fomin (1963).

A functional is a mapping from a vector space to its underlying field. In our case the functional
is the Lagrangian introduced in Section 4, which is an integral over real-valued functions, and the
underlying field is the real numbers.

Given a functional over a normed space of continuously differentiable real functions of the form

I [y] =
∫ b

a
f (t,y(t),y′(t))dt

wherey′(t) is the time-derivative of the functiony(t), we would like to find a functiony(t) that
minimizes (or in our case maximizes) the functional subject toy(a) = ya andy(b) = yb. In the
simplest case, when there are no additional constraints, a necessary condition for y to be a local
optimum is thaty is a stationary point. Roughly, a stationary point is a functiony, whereI [y] is
insensitive to small variations iny. That is, given a functionh(t) whereh(a) = 0 andh(b) = 0, the
change of the functionalI [y+h]− I [y] is small relative to the norm ofh. Fory(t) to be a stationary
point, it must satisfy theEuler-Lagrangeequations (Gelfand and Fomin, 1963)

∂
∂y

f (t,y(t),y′(t))−
d
dt

(

∂
∂y′

f (t,y(t),y′(t))

)

= 0 . (23)

In this paper we have additional constraints describing the time derivative of µ. The general-
ization of the Euler-Lagrange equations to that case is straightforward. Denoting the subsidiary
constraints byg(t,y(t),y′(t)) = 0 , we simply replacef (t,y,y′) by f (t,y,y′)−λ(t)g(t,y,y′) in Equa-
tion 23.

An example for the use of this equation is in the following proof.

Appendix F. Stationary Points of the Lagrangian - Proof of Theorem 6

Proof For convenience, we begin by rewriting the Lagrangian in explicit form:L =
∫ T

0 f (y(t),y′(t))dt
wherey(t) = 〈µ(t),γ(t),λ(t)〉 is a concatenation of the parameters and Lagrange multiplier and

f (y(t),y′(t)) =
D

∑
i=1

∑
xi

[

µi
xi
(t)Eµ\i(t)

[

qxi ,xi |U i

]

+ ∑
yi 6=xi

γi
xi ,yi

(t)Eµ\i(t)

[

lnqxi ,yi |U i

]

+ ∑
yi 6=xi

γxiyi

[

1+ lnµi
xi
(t)− lnγi

xiyi
(t)
]

−λi
xi
(t)

(

d
dt

µi
xi
(t)−∑

yi

γi
xiyi

(t)

)]

.

The Euler-Lagrange equations of the Lagrangian define its stationary points w.r.t. the parameters of
each componentµi(t), γi(t) andλi(t).

First, we take the partial derivatives off w.r.t to µi
xi
(t) as well asd

dtµ
i
xi
(t) and plug them into

Equation 23. We start by handling the energy terms. These terms involve expectations in the form
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Eµ\ j (t) [g(U j)] = ∑u j
µu j (t)g(u j). The parameterµi

xi
(t) appears in these terms only wheni is a parent

of j andu j is consistent withxi . In that case ∂
∂µi

xi
µu j = µu j/µi

xi
. Thus,

∂
∂µi

xi

Eµ\ j (t) [g(U j)] = Eµ\ j (t) [g(U j) | xi ] ·δ j∈Childreni

Recalling the definitions of the averaged rates

q i
xi ,xi |x j

(t) = Eµ\i(t)

[

qi|Pai

xi ,xi |U i
| x j

]

and
q̃i

xi ,yi |x j
(t) = exp

{

Eµ\i(t)

[

lnqi|Pai

xi ,yi |U i
| x j

]}

we obtain
∂

∂µi
x j

Eµ\ j (t)

[

q j
x j ,x j |U j

]

= δ j∈Childreni q
j

x j ,x j |xi
(t)

and
∂

∂µi
x j

Eµ\ j (t)

[

lnq j
x j ,x j |U j

]

= δ j∈Childreni ln q̃ j
x j ,x j |xi

(t).

Therefore the derivative of the sum overj 6= i of the energy terms is

ψi
xi
(t)≡ ∑

j∈Childreni

∑
x j

[

µj
x j
(t)q j

x j ,x j |xi
(t)+ ∑

x j 6=y j

γ j
x j ,y j

(t) ln q̃ j
x j ,y j |xi

(t)

]

.

Additionally, the derivative of the energy term forj = i is q i
xi ,xi

(t) ≡ Eµ\i(t)

[

qxi ,xi |U i

]

. Next, the

derivative of the entropy term isγi
xi ,xi

(t)/µi
xi
(t). Finally, the derivative off with respect tod

dtµ
i
xi(t)

is−λi
xi
(t). Plugging in these derivatives into Equation (23) we obtain

q i
xi ,xi

(t)+ψi
xi
(t)−

γi
xi ,xi

µi
xi
(t)

+
d
dt

λi
xi
(t) = 0 . (24)

Next, the derivative w.r.t.γi
xi ,yi

(t) gives us

lnµi
xi
(t)+ ln q̃i

xi ,yi
(t)− lnγi

xi ,yi
(t)+λi

yi
(t)−λi

xi
(t) = 0 . (25)

Denotingρi
xi
(t) = exp{λi

xi
(t)}, Equation (25) becomes

γi
xi ,yi

(t) = µi
xi
(t)q̃i

xi ,yi
(t)

ρi
yi
(t)

ρi
xi
(t)

,

which is the algebraic equation ofγ. Using this result and the definition ofγi
xi ,xi

we have

γi
xi ,xi

(t) =− ∑
yi 6=xi

γi
xi ,yi

(t) =−µi
xi
(t) ∑

xi ,yi

q̃i
xi ,yi

(t)
ρi

yi
(t)

ρi
xi
(t)

.

Plugging this equality into (24) and using the identityd
dt ρ

i
xi
(t) = d

dt λ
i
xi
(t)ρi

xi
(t) gives

d
dt

ρi
xi
(t) =−ρi

xi
(t)
(

q i
xi ,xi

(t)+ψi
xi
(t)
)

− ∑
yi 6=xi

q̃i
xi ,yi

ρi
yi
(t) .

Thus the stationary point of the Lagrangian matches the updates of (16–17).

2779



COHN, EL-HAY, FRIEDMAN AND KUPFERMAN

Appendix G. Proof of Proposition 7

Proof We denote the time at the vertext0 = (b1,T), the time just before ast1 = (b1,T −h) and the
times just after it on each brancht2 = (b2,h) andt3 = (b3,h), as in Figure 13.

Figure 13: Branching process with discretization points of Lemma 7.

The marginalsµi
xi
(b1, t) are continuous, as they are derived from the forward differential equa-

tion. To derive the propagation formula for theρi
xi
(t) requires additional care. Theρi

xi
(t) have been

derived from the constraints on the time-derivative ofµi
xi
(t). In a vertex this constraint is threefold,

as we now have the constraints onb1

µi
xi
(t0)−µi

xi
(t1)

h
= ∑

yi

γi
xi ,yi

(t1)

and those on the other branchesbk for k= 2,3

µi
xi
(tk)−µi

xi
(t0)

h
= ∑

yi

γi
xi ,yi

(t0) .

The integrand of the Lagrangian corresponding to pointt0 is

L|t0 = F̃ (η;Q)|t0 +λ0(t1)

(

µi
xi
(t0)−µi

xi
(t1)

h
−∑

yi

γi
xi ,yi

(t1)

)

− ∑
k=2,3

λk(t0)

(

µi
xi
(tk)−µi

xi
(t0)

h
−∑

yi

γi
xi ,yi

(t0)

)

,

as this is the only integrand which involvesµxi (t0), the derivative of the Lagrangian collapses into

∂
∂µi

xi
(t0)

L =
∂

∂µi
xi
(t0)

L|t0

=
λ0(t1)

h
−

(

λ2(t0)
h

+
λ3(t0)

h

)

+
∂

∂µi
xi
(t0)

F̃ (η;Q)|t0 = 0 .

Rearranging the previous equation and multiplying byh, we get

λ0(t1) = λ2(t0)+λ3(t0)+
∂

∂µi
xi
(t0)

F̃ (η;Q)|t0h .
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Looking at (24) we can see that ast0 is not a leaf, and thusµi
xi
(t0) > 0 and the derivative of the

functional cannot diverge. Therefore, ash→ 0 this term vanishes and we are left with

λ0(t1) = λ2(t0)+λ3(t0)

which after taking exponents gives (21).
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