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Abstract

Continuous-time Bayesian networlss a natural structured representation language for multi-
component stochastic processes that evolve continuoushtine. Despite the compact represen-
tation provided by this language, inference in such modeistractable even in relatively simple
structured networks. We introduce a mean field variatioppt@ximation in which we use a prod-
uct ofinhomogeneoullarkov processes to approximate a joint distribution ovajettories. This
variational approach leads to a globally consistent distidn, which can be efficiently queried.
Additionally, it provides a lower bound on the probabilitiyabservations, thus making it attractive
for learning tasks. Here we describe the theoretical fotiodsa for the approximation, an efficient
implementation that exploits the wide range of highly ofitied ordinary differential equations
(ODE) solvers, experimentally explore characterizatioifrocesses for which this approximation
is suitable, and show applications to a large-scale realdvioference problem.

Keywords: continuous time Markov processes, continuous time Bageséworks, variational
approximations, mean field approximation

1. Introduction

Many real-life processes can be naturally thought of as evolving canisty in time. Examples
cover a diverse range, starting with classical and modern physicajdmincluding robotics (Ng
et al., 2005), computer networks (Simma et al., 2008), social networksgie Shelton, 2009),
gene expression (Lipshtat et al., 2005), biological evolution (El-Haal.eR006), and ecological
systems (Opper and Sanguinetti, 2007). A joint characteristic of all abxamples is that they
are complex systems composed of multiple components (e.g., many serverswerafaen and

multiple residues in a protein sequence). To realistically model such pescass use them in
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making sensible predictions we need to learn how to reason about systémasetitamposed of
multiple components and evolve continuously in time.

Generally, when an evolving system is modeled with sufficient detail, its evolititime is
Markovian; meaning that its future state it determined by its present statethavha a deter-
ministic or random sense—independently of its past states. A traditionadagpto modeling a
multi-component Markovian process is to discretize the entire time interval igtdanetime slices
of fixed length and represent its evolution usin@ynamic Bayesian netwaorkvhich compactly
represents probabilistic transitions between consecutive time slices (Ddakamazawa, 1989;
Murphy, 2002; Koller and Friedman, 2009). However, as thorougkiyaéned in Nodelman et al.
(2003), discretization of a time interval often leads either to modeling inaciesrar to an unnec-
essary computational overhead. Therefore, in recent years themgrdsving interest in modeling
and reasoning about multi-component stochastic processes in contititmeu@Nodelman et al.,
2002; Ng et al., 2005; Rajaram et al., 2005; Gopalratnam et al., 20qier@nd Sanguinetti, 2007;
Archambeau et al., 2007; Simma et al., 2008).

In this paper we focus onontinuous-time Markov processkaving a discrete product state
spaceS= 5 x S x --- x §p, whereD is the number of components and the size of eScis
finite. The dynamics of such processes that are titse-homogeneousan be determined by a
single rate matrix whose entries encode transition rates among states. lHaeethe size of the
state space is exponential in the number of components so does the sizdrah#igon matrix.
Continuous-time Bayesian networfGTBNSs) provide an elegant and compact representation lan-
guage for multi-component processes that have a sparse pattern attimies (Nodelman et al.,
2002). Such patterns are encoded in CTBNs using a directed grapgewlodes represent com-
ponents and edges represent direct influences among them. The imstarstalynamics of each
component depends only on the state of its parents in the graph, allowipgeseatation whose
size scales linearly with the number of components and exponentially only withdegree of the
nodes of the graph.

Inference in multi-component temporal models is a notoriously hard proleite( and Fried-
man, 2009). Similar to the situation in discrete time processes, inference in €iEENXponential
in the number of components, even with sparse interactions (Nodelman €dG2). 2Thus, we
have to resort to approximate inference methods. The recent literatiaglapted several strategies
from discrete graphical models to CTBNs in a manner that attempts to exploibtii@wous-time
representation, thereby avoiding the drawbacks of discretizing the model.

One class of approximations includes sampling-based approaches,memesind Shelton (2008)
introduce a likelihood-weighted sampling scheme, and more recently El-Hey(2008) introduce
a Gibbs-sampling procedure. The complexity of the Gibbs sampling proedtis been shown
to naturally adapt to the rate of each individual component. Additionally it gieldre accurate
answers with the investment of additional computation. However, it is hardundthe required
time in advance, tune the stopping criteria, or estimate the error of the apptmtima

An alternative class of approximations is basedrariational principles Recently, Nodelman
et al. (2005b) and Saria et al. (2007) introducedapectation Propagatioapproach, which can be
roughly described as a local message passing scheme, where eaagentesscribes the dynamics
of a single component over an interval. This message passing proceaiube efficient. Moreover
it can automatically refine the number of intervals according to the complexityeofiniderlying
system. Nonetheless, it does suffer from several caveats. On thelfavel, the approximation
has no convergence guarantees. Second, upon convergenceimneted marginals do not neces-
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sarily form a globally consistent distribution. Third, it is restricted to appnations in the form

of piecewise-homogeneous messages on each interval. Thus, thenefing the number of in-
tervals depends on the fit of such homogeneous approximations to thepargess. Finally, the
approximation of Nodelmagt al does not provide a provable approximation on the likelihood of
the observation—a crucial component in learning procedures.

Here, we develop an alternative variational approximation, which prevéddifferent trade-
off. We use the strategy of structured variational approximations in gralpinodels (Jordan et al.,
1999), and specifically the variational approach of Opper and Sasttjuip007) for approximate
inference in latent Markov Jump Processes, a related class of modelse{se for more elaborate
comparison). The resulting procedure approximates the posterior digtnitnf the CTBN as a
product of independent components, each of which is an inhomogegeatinuous-time Markov
process. We introduce a novel representation that is both naturallanwd aumerically stable com-
putations. By using this representation, we derive an iterative variatmoakedure that employs
passing information between neighboring components as well as solvinglaseta differential
equations (ODES) in each iteration. The latter allows us to employ highly optimizadaxd ODE
solvers in the implementation. Such solvers use an adaptive step size, whighsbow is more
efficient than any fixed time interval approximation.

We finally describe how to extend the proposed procedure to branchicggses and particu-
larly to models of molecular evolution, which describe historical dynamics dbgical sequences
that employ many interacting components. Our experiments on this domain deatetisat our
procedure provides a good approximation both for the likelihood of theeeerml and for the ex-
pected sufficient statistics. In particular, the approximation provides ardowaend on the likeli-
hood, and thus is attractive for use in learning.

The paper is organized as follows: In Section 2 we review continuous-tirdelshand inference
problems in such models. Section 3 introduces a general variational peif@ipnference using a
novel parameterization. In Section 4 we apply this principle to a family of fadtogpresentations
and show how to find an optimal approximation within this family. Section 5 dissustated work.
Section 6 gives an initial evaluation. Section 7 presents branching grandgurther experiments,
and Section 8 discusses our results.

2. Foundations

CTBNs are based on the frameworkaaitinuous-time Markov processes (CTMRB)this section
we begin by briefly describing CTMPs. See, for example, Gardiner4280d Chung (1960) for
a thorough introduction. Next we review the semantics of CTBNs. We thaushsinference
problems in CTBNs and the challenges they pose.

2.1 Continuous Time Markov Processes

A continuous-time stochastic process with state sparsegd uncountable collection &valued
random variable$X® : t > 0} whereX®) describes the state of the system at ttm8ystems with
multiple components are described by state spaces that are Cartesiactpaidspacess, each
representing the state of a single component. In this paper we condideomponent stochastic
procesX ) = (Xl(t), . .,x§>> with state spac&=S; x S x ... x S, where eacl§ is finite. The
states ifSare denoted by vectors= (x1,...,Xp).
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A continuous-time Markov process a continuous-time stochastic process in which the joint
distribution of every finite subset of random variabi®), X . X&) wheretg <t; < --- < tk,
satisfies the conditional independence property, also known as theWarbperty:

Pr(X ) =y [ X&) = x g, ..., X1 = xg) = Pr(X ) = x| X 1) = xe_4).

In simple terms, the knowledge of the state of the system at a certain time make gsastatier
times independent of its states at former times. In that case the distribution @fodess is fully
determined by the conditional probabilities of random variable pa{g$ ¥ = y|X(® = x), namely,
by the probability that the process is in stgtat timet + s given that is was in stateat times, for
all0<s<tandx,ye S ACTMP is calledtime homogeneoukthese conditional probabilities do
not depend o3 but only on the length of the time interviglthus, the distribution of the process is
determined by th&larkov transition functions

Pry(t) = Pr(X™9 = y|X® =x),  forall x,y € Sandt >0,

which for every fixed can be viewed as the entries of a stochastic matrix indexed by gtateky.
Under mild assumptions on the Markov transition functiggg(t), these functions are differ-
entiable. Their derivatives at= 0,

. px~y(t) — Iy—y
= |lim =———"—~2
Oy t—0+ t ’

are the entries of theate matrixQ, wherel is the indicator function. This rate matrix describes the
infinitesimal transition probabilities,

Pxy(h) = Li—y+ axyh+o(h), 1)

whereo(-) means decay to zero faster than its argument, that i@di&@ = 0. Note that the off-
diagonal entries of) are non-negative, whereas each of its rows sums up to zero, namely,

qX,X = - ; clx,y-
Y#X

The derivative of the Markov transition function foother than 0 satisfies the so-calfedward, or
master equation

d
GiP )= 3 CeyPeclt). @

A similar characterization for the time-dependent probability distributih), whose entries are
defined by
px(t) =PrXY =x),  xes

is obtained by multiplying the Markov transition function by entries of the initial diation p(0)
and marginalizing, resulting in

d
aiP= pPQ. 3)

The solution of this ODE is
p(t) = p(0) exptQ),
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Figure 1: An example of a CTMP trajectory: The process starts at sfatesy, transitions to
X2 = S atty, toxz = 51 atty, and finally toxs = s, atts.

where extQ) is a matrix exponential, defined for any square matriy the Taylor series,

00 Ak
exp(A) =1+ 3% -
& K

Applying this solution to the initial conditiopy (0) = 1,_,, we can express the Markov transition
function pyy(t) using the rate matrig) as

Pxy(t) = [exp(tQ)]y . 4)

Although a CTMP is an uncountable collection of random variables (the dtéte system at
every timet), atrajectoryo of {XU};~o over a time interval0, T] can be characterized by a finite
number of transition&, a sequence of statgso,xs,...,Xx) and a sequence of transition times
(to=0,ty1,...,t,tk+1=T). We denote by(t) the state at timg, that is,o(t) = xx for ty <t <ty 1.
Figure 1 illustrates such a trajectory.

2.2 Multi-component Representation - Continuous-Time Bayesian Neorks

Equation (4) indicates that the distribution of a homogeneous Markov gsasdully determined

by an initial distribution and a single rate matfix However, since the number of states iDa
component Markov Process is exponentiaDinan explicit representation of this transition matrix

is often infeasible.Continuous-time Bayesian networ&ge a compact representation of Markov
processes that satisfy two assumptions. First it is assumed that onlyrmpement can change at a
time, thus transition rates involving simultaneous changes of two or more comtp@me zero. Sec-

ond, the transition rate of each componettpends only on the state of some subset of components
denotedPa C {1,...,D}\ {i} and on its own state. This dependency is represented using a directed
graph, where the nodes are indexed fhy. .., D} and the parent nodes iohrePg (Nodelman et al.,

2002). With each componeinte then associate a conditional rate ma@i{ia for each statey of

Pg. The off-diagonal entrieefxlipyai“ui represent the rate at whicf transitions from statg; to state
y; given that its parents are in state The diagonal entries a '|_F_’X?"‘ui = — Syisx qilpy?\un ensuring

that each row in each conditional rate matrix sums up to zero. The dynami¢8 afe defined by
a rate matrixQ with entriesqyy, which combines the conditional rate matrices as follows:

y =9 Zi qlxii?Iui X=Yy ©)
0 otherwise
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whered(x,y) = {]|xj # y;} denotes the set of components in whidtiiffers fromy.

To have another perspective on CTBN's, we may consider a discreteappm®ximation of
the process. Leh be a sampling interval. The subset of random varialks : k > 0}, where
tx = kh, is a discrete-time Markov process ovebalimensional state-spac&ynamic Bayesian
networks (DBNsjprovide a compact modeling language for such processes, namely tidarad
distribution of a DBN R(Xt&+1)|X (%) is factorized into a product of conditional distributions of
x"%1) given the state of a subset ¥f% UX (1), Whenh is sufficiently small, the CTBN can be
approximated by a DBN whose parameters depend on the rate iffedfitne CTBN ,

D
Ph(x(tkH) _ y]X(t") — X) — .I—lph(xi(tkﬂ) =i ‘Xi(tk) _ X|,U () — L,|i)7 (6)
=

where " iIPa
Ph()(l k+1 y ‘)(I — X| U tk) — ul) 1X|:y| +q|)(|i.;‘Ui h (7)

Each such term is the local conditional probability tb(étf“) =V; given the state oK; andU; at
timety. These are valid conditional distributions, because they are non-vegati are normalized,

that is o
2, (B tagph) =1
Vi€

for everyx; andu;. Note that in this discretized process, transition probabilities involving @sang
in more than one component aséh), as in the CTBN. Moreover, using Equations (1) and (5) we
observe that

Pr(X D) = y|x W = x) = Py(X &Y = y|x ) = x) +-o(h).

(See Appendix A for detailed derivations). Therefore, the CTBN aedafiproximating DBN are
asymptotically equivalent ds— 0.

Example 1 An example of a multi-component process is th@gmamic Ising modelwhich corre-
sponds to a CTBN in which every component can be in one of two stategir +1, and each
component prefers to be in the same state as its neighbor. These modelvareddy two
parameters: aoupling parametef (it is the inverse temperature in physical models, which deter-
mines the strength of the coupling between two neighboring componentsy,ratedlparameter,
which determines the propensity of each component to change its state alu®s i3 correspond

to weak coupling (high temperature). More formally, we define the conditrat@matrices as

-1
q;(‘:;?lw =T <1+ eizyiﬁzjepai Xj)
wherex; € {—1,1}. This model is derived by plugging the Ising grid@mntinuous-Time Markov
Networks which are the undirected counterparts of CTBNs (El-Hay et al., 2006).

Consider a two component Ising model whose structure and corresgdbBiN are shown in

Figure 2. This system is symmetric, that is, the conditional rate matrices atealdori € {1,2}.
As an example, for a specific choicefandt we have:
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(@)

Figure 2: Two representations of a two binary component dynamic modca¥ The associated
CTBN. (b) The DBN corresponding to the CTBN in (a). The models are equivaleatiwh
h— 0.

The local conditional distributions of the DBN can be directly inferred frequation (7). For
example

PhOX™ ) = 1x ™ = —1, x{% = 1) = 10n.

Here, in both components the conditional rates are higher for transitionstétés that are identical
to the state of their parent. Therefore, the two components have a dispadibemg in the same
state. To support this intuition, we examine the amalgamated rate matrix:

- -+ +- ++
- 1=-2 1 1 0
Q = -+ (10 =20 O 10

+- |10 0 -20 10
++| O 1 1 -2

Clearly, transition rates into states in which both components have the samés\ailgteer. Higher
transitions rate imply higher transition probabilities, for example:

p-+.--(h) = 10h+o(h),
p---+(N) = h+oh).

Thus the probability of transitions into a coherent state is much higher thamimae@herent state.
1

2.3 Inference in Continuous-time Markov Processes

Our setting is as follows: we receive evidence of the states of seveadll @ymponents within a
time interval[O, T]. The two possible types of evidence that may be given are continuoleneeid
where we know the state of a subse€ X continuously over some sub-interyal t;] C [0, T], and
point evidence of the state bf at some point € [0, T]. For convenience we restrict our treatment
to a time interval0, T] with full end-point evidenc& (© = ey andX(T) = er. We shall discuss the
more general case in Section 5.

Given a continuous-time Bayesian network and evidence of the abovenvgpeould like to
evaluate the likelihood of the evidence,(&:er; Q) and to compute pointwise posterior proba-
bilities of various events (e.g., Rl(t) = ulep, er) for someU C X). Another class of queries are
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conditional expectations of statistics that involve entire trajectories of theepso Two important
examples for queries are thefficient statisticsequired for learning. These statistics are the amount
of time in whichX is in statex; andPg are in statay;, and the number of transitions th¥§tun-
derwent fromx; to y; while its parents were in statg (Nodelman et al., 2003). We denote these
statistics byT);‘ui and qu,yilui respectively. For example, in the trajectory of the univariate process
in Figure 1, we havds, =t —t; +t4 —tz andMg, 5, = 1.

Exact calculation of these values is usually a computationally intractable taskingtance,
calculation of marginals requires first calculating the pointwise distributionXweting a forward-
backward like calculation:

_ peo7x(t) pX7eT (T t) (8)

PrixY =xleer) = =5
€o,e1

and then marginalizing

PrUY = uley,er) = ¥ PXY = xjev,er),

X\U

wherepyy(t) = [exp(tQ)]xy, and the size of is exponential in the number of components. More-
over, calculating expected residence times and expected number of transitiolves integration
over the time interval of these quantities (Nodelman et al., 2005a):

1 T
BN = o /O Pesx(t) Prer (T —t)dlt,

1 T
E [Myy] = Fm(-r)/() Peox(t) Oy Pyer (T —t)dt .

These make this approach infeasible beyond a modest number of compdresas we have to
resort to approximations.

3. Variational Principle for Continuous-Time Markov Processes

Variational approximations to structured models aim to approximate a complebulistn by a
simpler one, which allows efficient inference. This problem can be viesgedn optimization
problem: given a specific model and evidence, find the “best” approximedithin a given class of
simpler distributions. In this setting the inference is posed as a constraitiedzapion problem,
where the constraints ensure that the parameters correspond to vallelitd@ts consistent with
the evidence. Specifically, the optimization problem is constructed by definiagrer bound to
the log-likelihood of the evidence, where the gap between the bound artduthéikelihood is
the divergence of between the approximation and the true posterior. Waiteshlting problem
is generally intractable, it enables us to derive approximate algorithms bpxapgating either
the functional or the constrains that define the set of valid distributionghisrsection we define
the lower-bound functional in terms of a general continuous-time Markoegss (that is, without
assuming any network structure). Here we aim at defining a lower baufrRg (er|ep) as well as
to approximating the posterior probabiliy (- | €, er), whereRy is the distribution of the Markov
process whose instantaneous rate-matriQ.idVe start by examining the structure of the posterior
and introducing an appropriate parameterization.
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Recall that the distribution of a time-homogeneous Markov process isatbdred by the con-
ditional transition probabilitiegyy(t), which in turn is fully redetermined by the constant rate
matrix Q. It is not hard to see that whenever the prior distribution of a stochastteps is that of a
homogeneous Markov process with rate mafpixthen the posterioy(-|ep, er) is also a Markov
process, albeit generally not a homogeneous one. The distribution@ftmwous-time Markov
processes that is not homogeneous in time is determined by conditional tramsibioabilities,
Pxy(S,s+1), which depend explicitly on both initial and final times. These transition prities
can be expressed by means of a time-dependent matrix-valued furiRftonwhich describes in-
stantaneous transition rates. The connection between the time-depeatdenatrixR(t) and the
transition probabilitiespy y(s,s+t) is established by the master equation,

d
apx_yy(s,Sth) = Z rzy(S+1t)Pxz(S,s+t),

wherer,y(t) are the entries dR(t). This equation is a generalization of Equation (2) for inhomoge-
neous processes. As in the homogeneous case, it leads to a mastendquétie time-dependent
probability distribution,

S o) = 3 ()
y

thereby generalizing Equation (3).

By the above discussion, it follows that the posterior process can lbesmyed by a time-
dependent rate matrik(t). More precisely, writing the posterior transition probability using basic
properties of conditional probabilities and the definition of the Markov ftimsfunction gives

h) By (T —t+h)
Po(XEH = yiX® = x X(T) = gr) = Pxy( er .
ol d ) Prer (T —t)

Taking the limith — O we obtain the instantaneous transition rate of the posterior process

i Po(XTN = y XU = x X(T) = er) o Pyer (T —t)

)

(9)

Fxy(t)

This representation, although natural, proves problematic in the frameidgterministic ev-
idence because aspproached the transition rate into the observed state tends to infinity. In par-

ticular, whenx # er andy = er, the posterior transition rate @ e, - %. This term diverges
ast — T, because the numerator approaches 1 while the denominator apprbashiegherefore
consider an alternative parameterization for this inhomogeneous prbeddss more suitable for

variational approximations.

3.1 Marginal Density Representation

Let Pr be the distribution of a Markov process, generally not time homagsn&Ve define a family
of functions:

_ Pr(XU) = x XE) — ) (10)
Yey(t) = lim h
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The functionu(t) is the marginal probability thatY) = x. The functiony(t) is the probability
density thaiX transitions from statg to y at timet. Note that this parameter is not a transition rate,
but rather a product of a point-wise probability with the point-wise transitioe of the distribution,
that is, the entries of the time-dependent rate matrix of an equivalentgsroaa be defined by

Yy (D)
I’x7y(t) = { gx(t) uxg; >0, (11)
Hx(l) = U.

Hence, unlike the (inhomogeneous) rate matrix at timgy(t) takes into account the probability
of being in statex and not only the rate of transitions.

We aim to use the family of functiong andy as a representation of the posterior process.
To do so, we need to characterize the set of constraints that these fsnstitisfy. We begin by
constraining the marginajs(t) to be valid distributions that is, € p(t) < 1 andy,p(t) = 1.
A similar constraint on the pairwise distributions implies tiagf(t) > 0 for x # y. Next, we infer
additional constraints from consistency properties between distributiemgpairs of variables and
their uni-variate marginals. Specifically, Equation (10) implies thaktgry

Pr(X® = x, XN = y) =y, (t) h+o(h). (12)
Plugging this identity into the consistency constraint

Hy(t) = P ZPr D= x, XEW —

Yax(t ;ny

PI‘(X(U = X,X(H_h) =y) = lx:yp-x(t) +Vx7y(t) h+o(h), (13)

defining

and rearranging, we obtain

which unlike (12) is valid for alk,y. Marginalizing (13) with respect to the second variable,

P t+h Z Pr tJrh) — X),
we obtain a forward update rule for the uni-variate marginals
Hx(t+h) = (t) +h > yyx(t) +o(h).
y
Rearranging terms and taking the lirit- O gives a differential equation fa(t),

1) =3 wxlt)
y

Finally, whenevepy(t) = 0 we have RiX(t) = x, X+ = y) = 0, implying in that case thak(t) =
0. Based on these observations we define:

2754



MEAN FIELD APPROXIMATION FORCONTINUOUS-TIME BAYESIAN NETWORKS

Definition 1 A family n = {p(t),yxy(t) : 0 <t < T} of functions is aMarkov-consistent density
setif the following constraints are fulfilled:

Y

H(t) 0, z ix(0) =1,

Yuy(t) > 0 vy # X,
Yax(t) = = Wy(l),

d
a“x(t) = %Vy,x(t)a

andyyy(t) = 0 whenevepy(t) = 0. We denote byM the set of all Markov-consistent densitids.

Using standard arguments we can show that there exists a correspermdween (generally
inhomogeneous) Markov processes and densitysedpecifically, givem, we construct a process
by defining an inhomogeneous rate matkixt) whose entries are defined in Equation (11) and
prove the following:

Lemma 2 Letn = {x(t),yxy(t) :0<t <T}. If n € M, then there exists a continuous-time Markov
processPrfor which | andyyy satisfy (10) for every t in the right-open interval [0, T).

Proof See appendix B |

The converse is also true: for every integrable inhomogeneous rate fétyithe corresponding
marginal density set is defined I@/ux(t) = Yy lyx(t)ky(t) andyxy(t) = Px(t)rxy(t). The processes
we are interested in, however, have additional structure, as theyspore to the posterior distri-
bution of a time-homogeneous process with end-point evidence. In thatmaltiplying Equation
(9) by (t) gives

oy = 0 ey DT (14
Plugging in Equation (8) we obtain

O Do (T —t
Yxy(t) = Peo.x(t) - Gy Pyer ( )7
Pey,er (T)

which is zero whery # er andt = T. This additional structure implies that we should only con-
sider a subset off. Specifically the representatiancorresponding to the posterior distribution
Po(-|eo, er) satisfiequ(0) = Iy—q), Ix(T) = Ix—e,, Yxy(0) = O for all x # ep andyyy(T) = O for all

y # er. We denote byM C M the subset that contains Markov-consistent density sets satisfying
these constraints. This analysis suggests that for every homogemeusatrix and point evi-
dencee there is a member ifif; that corresponds to the posterior process. Thus, from now on we
restrict our attention to density sets frah..

3.2 Variational Principle

The marginal density representation allows us to state the variational prif@iglentinuous pro-
cesses, which closely tracks similar principles for discrete processescifially, we define a
functional of functions that are constrained to be density sets fiyn The maximum over this
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set is the log-likelihood of the evidence and is attained for a density setethagsents the poste-
rior distribution. This formulation will serve as a basis for the mean-field@ppration, which is
introduced in the next section.

Define afree energy functional

F(n;Q) =E(N; Q)+ #H(n),

which, as we will see, measures the quality)ads an approximation d¥y(-|e). (For succinctness,
we will assume that the evideneds clear from the context.) The two terms in the functional are
theaverage energy

£(N;Q) = /0 ' > [ux(t)qx,x+ > Yay(t)Ingyy | dt,

yAX
and theentropy

T
H) =[5 T O+ nps®) vy (1))t
X y#X
The following theorem establishes the relation of this functional to the KulHhadiler (KL)
divergence and the likelihood of the evidence, and thus allows us to easatiational inference
into an optimization problem.

Theorem 3 LetQ be a rate matrix, e= (ep, er) be states of X, ang € M. Then
F(n;Q) =InPy(er|eo) — D(Py[[Pg(-e))

where B is the distribution corresponding g and D(P,||Py(-|e)) is the KL divergence between
the two processes.

We conclude from the non-negativity of the KL divergence that thegsnmctional 7 (n; Q) is
a lower bound of the log-likelihood of the evidence. The closer the ajppaiion to the target
posterior, the tighter the bound. Moreover, since the KL divergencerisiz and only if the two
distributions are equal almost everywhere, finding the maximizer of thisefneegy is equivalent
to finding the posterior distribution from which answers to different qsesan be efficiently com-
puted.

3.3 Proof of Theorem 3

We begin by examining properties of distributions of inhomogeneous Mamtanesses. Let®) be
an inhomogeneous Markov process with rate ma(ity. As in the homogeneous case, a trajectory
o of {XU};~¢ over a time interval0, T| can be characterized by a finite number of transitiéna
sequence of statdso, x1,...,Xx) and a sequence of transition timgg = 0,t1,...,tk,tk 11 =T).
We denote byz the set of all trajectories okK[%T). The distribution overz can be character-
ized by a collection of random variables that consists of the number ofittcarssk, a sequence
of states(xo,...,X«x) and transition timegts,...,Tc). Note that the number of random variables
that characterize the trajectory is by itself a random variable. The defisiyf a trajectory
o = {K,xo,...,Xk,t1,...,tk } is the derivative of the joint distribution with respect to transition
times, that is,

aK

fr(0) = ——=—Pr(K=K,Xo = X0, ..., XK = Xk, T1 <t1,..., Tk <tk),
oty oty
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which is given by
K-1
fr(0) = Py (0) - l_L |:eftk rxk‘xk(t)dtthXkJrl(tk+1):| ek g (t
k=
For example, in casi(t) = Q is a homogeneous rate matrix this equation reduces to
K-1
fQ(O’) = pXo(O) . |_L |:equ-Xk(tk+1_tk)qu7Xk+1:| . equvXK (tK+1—tK)'

k=

The expectation of a random variahjgo) is an infinite sum (because one has to account for all
possible numbers of transitions) of finite dimensional integrals,

Er, [0 /fR //tK /fR 0)dty - dic.

The KL-divergencebetween two densities that correspond to two inhomogeneous Markov pro-
cesses with rate matric@t) andS(t) is

fr(0)

5(0) do . (15)
We will use the convention 0In€ 0 and assume the supportfgfis contained in the support df.
That is fr(0) = 0 wheneverfs(o) = 0. The KL-divergence satisfid3( fr| fs) > 0 and is exactly
zero if and only iffg = fs almost everywhere (Kullback and Leibler, 1951).

Let n € M, be a marginal density set consistent wih As we have seen, this density set
corresponds to a Markov process with rate makik) whose entries are defined by Equation (11),
hence we identifyf, = fr

Given evidence on some event we denofg(0,e) = fp(0) - Ie, and note that

Po(e) = /{ o Ta(0)00= /z fo(o,e)do |

whereo |= eis a predicate which is true @ is consistent with the evidence. The density function
of the posterior distributioy(-|e) satisfiesfs(o) = fQ(c(’ ? whereS(t) is the time-dependent rate

matrix that corresponds to the posterior process.
Manipulating (15), we get

D(fa| fs) = /z () I

D(anfS):/zfn(o)ln fn(o)do—/zfn(o)ln f5(0)do = Ex, [In f(0)] — Es, [Infs(0)]

Replacing Infs(o) by Infg(o,e) —InPy(e) and applying simple arithmetic operations gives
InPg(e) = Ef, [In fo(o,€)] — Eg, [In fy(0)] 4+ D(fy | fs).
The crux of the proof is in showing that the expectations in the right-hamdssitisfy

Ef, [Infg(o,e)] = £(n; Q),
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and
—Ef, [Infy(0)] = H(n),

implying that# (n; Q) is a lower bound on the log-probability of evidence with equality if and only
if f, = fgo almost everywhere.

To prove these identities for the energy and entropy, we treat trajecasrfasctionss : § — R
whereR is the set of real numbers by denotiag) = XV (o)—the state of the system at tire
Using this notation we introduce two lemmas that allow us to replace integrationacset of
trajectories by a one dimensional integral, which is defined over a time varidblke first result
handles expectations of functions that depend on specific states:

Lemma4 Lety: Sx R — R be a function, then

Eq | wiow e - [ T;uxa)w(x )dt

Proof See Appendix C.1 |

As an example, by setting(X,t) = I,_x we obtain that the expected residence time in stase
Et, [Ty = o (t)dt. The second result handles expectations of functions that deperahsitions
between states:

Lemma5 Lety(x,y,t) be a function from & Sx R to R that is continuous with respect to t and
satisfieap(x,x,t) = 0, ¥x,Vt then

K9 T
Efn [z w(xglaxgvtkc)] :/ z yX,y(t)Lp(Xayat)dt7
k=1 0 % Y#X

where the superscrig stresses that K x? and {? are associated with a specific trajectasy

Proof See Appendix C.2 |

Continuing the example of the previous lemma, here by sefiixgy’,t) = Loy 1,y 1y, the sums
within the left hand expectation become the number of transitions in a trajectdityus, we obtain
that the expected number of transitions frato y is E+ [Myy] = fOT Yy y(t)dt

We now use these lemmas to compute the expectations involved in the enerigrfahSup-
posee= {ey, er} is a pair of point evidence anfle M. Applying these lemmas witly(x,t) = oy
andy(x,y,t) = L.y -Inayy gives

.
ey Info(o.e)= [ 3 [uxqu,x(t) + 3 ¥l Inqx,ya)] dt.

Similarly, setting(x,t) = ryx(t) and(x,y,t) = Iz, - Inryy(t), whereR(t) is defined in Equation
(11), we obtain

—Ey, [Infy(o,€)] / z [ux

Yay (1) _
t)In ™o ] dt=H(n).
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4. Factored Approximation

The variational principle we discussed is based on a representationalsatamplex as the original
process—the number of functioggy(t) we consider is equal to the size of the original rate ma-
trix Q. To get a tractable inference procedure we make additional simplifyingrggsons on the
approximating distribution.

Given aD-component process we consider approximations that factor into geodiuiadepen-
dent processes. More precisely, we detMéato be the continuous Markov-consistent density sets
over the componerX;, that are consistent with the evidenceXrat times 0 and . Given a collec-
tion of density setg?, ..., nP for the different components, the product densitynsetn® x - - - x nP
is defined as

() = rlulx.(t)

Vx.,y.() () 6(X’y):{i}
Vo) = zmo 't x=y

otherwise

whereuX t) =Njx uxl( ) is the joint distribution at time of all the components other than thih
(it is not hard to see that if' € 44 for all i, thenn € M). We defme the sedf to contain all
factored density sets. From now on we assumerihai® x --- x nP € MF.

Assuming that) is defined by a CTBN, and thatis a factored density set, we can rewrite

Z/ Z[ Epi) [Ooxjui] + > V;q,yi(t)Ep\i(t) [InChy yju;] | dt

Xi,Yi#Xi

(see derivations in Appendix D). Similarly, the entropy term factors as
=>H(n)
I

Note that terms such &8 [ xu;] involve only i (t) for j € Pa, becauseE iy, [f(Ui)] =
S My () f(u). Therefore, this decomposition involves only local terms that either incluglitih
component, or include thé&h component and its parents in the CTBN definiig

To make the factored nature of the approximation explicit in the notation, we kaiteeforth,

FM;Q) =Fn"....n°%Q).

4.1 Fixed Point Characterization

The factored form of the functional and the independence betweeiiffiredtn' allows optimiza-
tion by block ascentoptimizing the functional with respect to each parameter set in turn. To,do so
we should solve the following optimization problem:

Fixingi, and givem?,...,n"" 2 n'*1 ... nPin g}, ... ¢i-1 ag+1, ... MP, respec-
tively, find

arg max¥ (nt,....n%Q) .
n'emg
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If for all i, we have ai € M, which is a solution to this optimization problem with respect to
each component, then we have a (local) stationary point of the energtyoiaal within 2/

To solve this optimization problem, we define a Lagrangian, which includesoii&raints in
the form of Definition 1. These constraints are to be enforced in a contnfiashion, and so the
Lagrange muItipIiers&i(i (t) are continuous functions ofas well. The Lagrangian is a functional of
the functiongu (t), y , (t) andAj (t), and takes the following form

~ D T . d . .
L:T(H:Q)—Zl/o Ay () <mu;q(t)—zvxhyi(t)> dt .
i= Yi

A necessary condition for the optimality of a density 1gaé$ the existence of such thatn,A) is a
stationary pointof the Lagrangian. A stationary point of a functional satisfiesEbker-Lagrange
equations, namely thiinctional derivativesvith respect tau, y and A vanish (see Appendix E
for a brief review). The detailed derivation of the resulting equations isppehdix F. Writing
these equations in explicit form, we get a fixed point characterization afdhution in term of the
following set of ODEs:

d

SHO= Y O —vhy ©).
g Yi#X.i | | | | .
g™ (0 = k() (Bex O+ ) = 5 8Oy (®)

YiFX
along with the following algebraic constraint

wherep' are the exponents of the Lagrange multipligrsin these equations we use the following
shorthand notations for the average rates

q)ii,Xi (t) = Eu\i(t) |:ql)<‘|x?1|U|i| )
By ) = By [, 1)

wherep\ (1) is the product distribution ofit(t), ..., 1(t), i +1(t),...,uP(t). Similarly, we have
the following shorthand notations for the geometrically-averaged rates,

qi)(i i (t) = exp{ Eu\i (t) |:Inql)(‘liaul:| } )
" iP
q;(ivyi‘xj (t)= exp{E“\i(t) [In qlx‘i,;lui ‘Xj:|} :
The last auxiliary term is
Wi (t) = > 3 [uij 07 O+ S Wy, <t>lnqij,yjm<t>]
jeChildren X; X|ZYij

To uniquely solve the two differential Equations (16) ﬂ;ir(t) andpiq (t) we need to set boundary
conditions. The boundary condition fpy, is defined explicitly iV as

“;q (0) = 1Xi:ei‘o : (18)
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The boundary condition &t is slightly more involved. The constraints  imply thatui)q (T)=
1-¢ - As stated in Section 3.1, we have thit , (T) = 0 whenx # & 1. Plugging these values

into (17), and assuming that all element€f? are non-zero we getthag, (T) =0 forallx # e 1

(It might be possible to use a weaker condition tQais irreducible). In addition, we notice that
Pe - (T) # 0, for otherwise the whole system of equationsgowill collapse to 0. Finally, notice

that the solution of (16,17) fqr andy is insensitive to the multiplication gf by a constant. Thus,
we can arbitrarily sepe ; (T) = 1, and get the boundary condition

Py (T) = Iy—q- (19)

Putting it all together we obtain a characterization of stationary points of tigifunal as stated in
the following theorem:

Theorem 6 n' € M is a stationary point (e.g., local maxima) éf(nl, ...,nP; Q) subject to the
constraints of Definition 1 if and only if it satisfies (16—19).

Proof see Appendix F [ |

Itis straightforward to extend this result to show that at a maximum with réspalti the component
densities, this fixed-point characterization must hold for all componentdtaimeously.

Example 2 Consider the case of a single component, for which our procedurddshe®exact, as
no simplifying assumptions are made on the density set. In that case, thgexveates]' and the
geometrically-averaged ratgsboth reduce to the unaveraged rajeandy = 0. Thus, the system
of equations to be solved is

d
— (1) =) (Wx(t) = Yxy(l)),
dt y;x Y, y

d
apx(t) =— gqupy(t),

along with the algebraic equation

Px(t)yxy(t) = Ix(t)axyPy(t), y # X

These equations have a simple intuitive interpretation. First, the backwapdgation rule for
px implies that

px(t) = Pr(er X = x).

To prove this identity, we recall the notatigrny(h) = Pr(X*" = y|X® = x) and write the dis-
cretized propagation rule

Prier X" =x) = $ pey(h) - Pr(er XM =y) .
y

Using the definition ofy (Equation 1), rearranging, dividing lhyand taking the limith — O gives

d
il O —y) — _ . t _
i PreriXY =) == 5 auy-Prer X =),
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which is identical to the differential equation for Second, dividing the above algebraic equation
by px(t) whenever it is greater than zero we obtain

~—

py(t
Px(t)

Yxy(t) = bx(t)Oxy (20)
Thus, we reconstructed Equation (14).

This analysis suggest that this system of ODEs is similar to forward-badkprapagation,
except that unlike classical forward propagation, here the forwesgagation already takes into
account the backward messages to directly compute the posterior. Giganténpretation, it is
clear that integratingy(t) from T to O followed by integratingi(t) from 0 toT computes the exact
posterior of the processes.

This interpretation opy(t) also allows us to understand the roleypj(t). Equation (20) sug-
gests that the instantaneous rate combines the original rate with the relatlibkleof the evi-
dence afl giveny andx. If yis much more likely to lead to the final state, then the rates are biased
towardy. Conversely, ify is unlikely to lead to the evidence the rate of transitions to it are lower.
This observation also explains why the forward propagatiopyofill reach the observegy(T)
even though we did not impose it explicitly.

Example 3 Let us return to the two-component Ising chain in Example 1 with initial 3(1%\%: -1

andXz(O) =1, and a reversed state at the final timg,) =1 andXZ(T) = —1. For alarge value d3,
this evidence is unlikely as at both end points the components are in a uddasifggurations. The
exact posterior is one that assigns higher probabilities to trajectoriegwherof the components
switches relatively fast to match the other, and then toward the end of theahttrey separate
to match the evidence. Since the model is symmetric, these trajectories are e#lédn avhich
both components are most of the time in statk, or ones where both are most of the time in
state 1 (Figure 3(a)). Due to symmetry, the marginal probability of each coempas around
0.5 throughout most of the interval. The variational approximation canmutioathe dependency
between the two components, and thus converges to one of two local marmesponding to the
two potential subsets of trajectories (Figure 3(b)). Examining the valpé efe see that close to
the end of the interval they bias the instantaneous rates significantly. &opéx a$ approaches 1,
pi(t)/pt,(t) approaches infinity and so does the instantaneougratét) /pt , (1), thereby forcing
X1 to switch to state 1 (Figure 3(c)). 7

This example also allows to examine the implications of modeling the posterior by ig@gmo
neous Markov processes. In principle, we might have used as aoxapption Markov processes
with homogeneous rates, and conditioned on the evidence. To examineewbetlapproximation
behaves in this manner, we notice that in the single component case we have

~Px(t)yxy(t)

b= o Ot

which should be constant.

Consider the analogous quantity in the multi-component cd&g:(tj, the geometric average
of the rate ofX;, given the probability of parents state. Not surprisingly, this is exactly anrfiel
approximation, where the influence of interacting components is approxirbgitéukir average
influence. Since the distribution of the parents (in the two-component sytftermther component)
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Figure 3: Numerical results for the two-component Ising chain desciib&sample 3 where the
first component starts in statel and ends at tim€& = 1 in state 1. The second component
has the opposite behaviofa) Two likely trajectories depicting the two modes of the
model. (b) Exact (solid) and approximate (dashed/dotted) margidj_s(ls. (c) The log
ratio logp} (t)/p" ;(t). (d) The expected rateﬁ;l(t) andq‘{lﬁl(t) of componenk; of the
Ising chain in Example 1. We can notice that the averaged rates are highlyomstant,
and so cannot be approximated well with a constant rate matrix.

changes in time, these rates change continuously, especially near theteadime interval. This
suggests that a piecewise homogeneous approximation cannot captdyedi@cs without a loss
in accuracy. As expected in a dynamic process, we can see in Figyrin&{(dhe inhomogeneous
transition rates are very erratic. In particular, the rateXjo$pike at the transition point selected
by the mean field approximation. This can be interpreted as putting most of igbatved the
distribution on trajectories which transition from state -1 to 1 at that pBint.

4.2 Optimization Procedure

If Q is irreducible, therpi(i and pi(i are non-zero throughout the open inter@|T). As a result,
we can solve (17) to expre$§hyi as a function ofl andp', thus eliminating it from (16) to get
evolution equations solely in terms gfandp'. Abstracting the details, we obtain a set of ODEs of
the form

S =a@O.u'®)  pl(T)=gien

S0 =B, 601 1) 1 (0) = given
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wherea andf3 are defined by the right-hand side of the differential equations (16%eShe evo-
lution of p' does not depend o, we can integrate backward from tirfleto solve forp'. Then,
integrating forward from time 0, we compuge After performing a single iteration of backward-
forward integration, we obtain a solution that satisfies the fixed-pointtigque 6) for thei’'th com-
ponent (this is not surprising once we have identified our procedure éovariation of a standard
forward-backward algorithm for a single component). Such a solutionbeila local maximum

of the functional w.r.t. ta)' (reaching a local minimum or a saddle point requires very specific
initialization points).

This suggests that we can use the standard procedure of asynehrpuates, where we update
each component in a round-robin fashion. Since each of these simglgenent updates converges
in one backward-forward step, and since it reaches a local maximuimsegzimproves the value
of the free energy over the previous one. As the free energy fumti®bounded by the probability
of the evidence, this procedure will always converge, and the rate dfd¢b energy increase can be
used to test for convergence.

Potentially, there can be many scheduling possibilities. In our implementation theeup
scheduling is simply random. A better choice would be to update the compoméstit would
maximally increase the value of the functional in that iteration. This idea is similaetsdhedul-
ing of Elidan et al. (2006), who approximate the change in the beliefs byding theresidualsof
the messages, which give an approximation of the benefit of updatingeagionent.

Another issue is the initialization of this procedure. Since the iteration ofittheomponent
depends op\', we need to initialize1 by some legal assignment. To do so, we create a fictional rate
matrix Qi for each component and initializ& to be the posterior of the process given the evidence
&0 ande 1. As a reasonable initial guess, we choose at random one of the coatlitiv@sQ'“
using some random assignmento determine the fictional rate matrix.

The general optimization procedure is summarized in the following algorithm:

For each i, initialize jtusing some legal marginal function.
while not convergedio

1. Pick a componentd {1,...,D}.
2. Updatep'(t) by solving thep' backward differential equation in (16).

3. Update fxt) andy (t) by solving the lforward differential equation in (16) and
using the algebraic equation in (17).

end
Algorithm 1: Mean field approximation in continuous-time Bayesian networks

4.3 Exploiting Continuous-Time Representation

The continuous-time update equations allow us to use standard ODE methodmnvéttaptive
step size (here we use the Runge-Kutta-Fehlberg (4,5) method). Atiteegirsome overhead,
these procedures automatically tune the trade-off between error and timelagity. Moreover,
this overhead is usually negligible compared to the saving in computation timeydecadaptive
integration can be more efficient thanyfixed step size integration by an order of magnitude (Press
et al., 2007).
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To further save computations, we note that while standard integration methadge only
initial boundary conditions at= 0, the solution of! is also known at = T. Therefore, we stop
the adaptive integration whe(t) ~ | (T) andt is close enough t@. This modification reduces
the number of computed points significantly because the derivatiye tehds to grow near the
boundary, resulting in a smaller step size.

The adaptive solver selects different time points for the evaluation of @aponent. There-
fore, updates aff' require access to marginal density sets of neighboring components at iime po
that differ from their evaluation points. To allow efficient interpolation, vee a piecewise linear
approximation ofj whose boundary points are determined by the evaluation points that aencho
by the adaptive integrator.

5. Perspectives and Related Work

Variational approximations for different types of continuous-time preegshave been recently
proposed. Examples include systems with discrete hidden components @ngp8anguinetti,
2007); continuous-state processes (Archambeau et al., 20071 hybdels involving both discrete
and continuous-time components (Sanguinetti et al., 2009; Opper andiSettig 2010); and spa-
tiotemporal processes (Ruttor and Opper, 2010; Dewar et al., 20ll@hese models assume noisy
observations in a finite number of time points. In this work we focus on stredtdiscrete-state
processes with noiseless evidence.

Our approach is motivated by results of Opper and Sanguinetti (2007 dedeloped a varia-
tional principle for a related model. Their model is similar to an HMM, in which thel@rdchain
is a continuous-time Markov process and there are (noisy) observatidiscrete points along the
process. They describe a variational principle and discuss the fothe dfinctional when the ap-
proximation is a product of independent processes. There are two riffeireinices between the
setting of Opper and Sanguinetti and ours. First, we show how to explatreture of the target
CTBN to reduce the complexity of the approximation. These simplifications implythikaipdate
of thei'th process depends only on its Markov blanket in the CTBN, allowing ustelop effi-
cient approximations for large models. Second, and more importantly, tletstrwf the evidence
in our setting is quite different, as we assume deterministic evidence at thed endraals. This
setting typically leads to a posterior Markov process in which the instantana®ssused by Opper
and Sanguinetti diverge toward the end point—the rates of transition intdodexwed state go to
infinity, leading to numerical problems at the end points. We circumvent thidgaroby using the
marginal density representation which is much more stable numerically.

Taking the general perspective of Wainwright and Jordan (2008).gbresentation of the dis-
tribution uses the natural sufficient statistics. In the case of a contirtimadvarkov process, the
sufficient statistics arg, the time spent in state andMyy, the number of transitions from statéo
y. In a discrete-time model, we can capture the statistics for every randdableardn a continuous-
time model, however, we need to consider the time derivative of the statistdeednas shown in
Section 3.3 we have

d d
aE[TX(t)]:Uxa) and &E[Mx,y(t)] = Yxy(t).

Thus, our marginal density sefsprovide what we consider a natural formulation for variational
approaches to continuous-time Markov processes.
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Our presentation focused on evidence at two ends of an interval. @oufation easily extends
to deal with more elaborate types of evidence: (1) If we do not obseevnitial state of tha’'th
component, we can sgf(0) to be the prior probability ok (¥ = x. Similarly, if we do not observi
attimeT, we sep! (T) = 1 as initial data for the backward step. (2) In a CTBN where one (or more)
components are fully observed throughout some interval, we simply &mtthese components to
be a distribution that assigns all the probability mass to the observed traje&omylarly, if we
observe different components at different times, we may update eagboo@nt on a different time
interval. Consequently, maintaining for each component a marginal distmuittbroughout the
interval of interest, we can update the other ones using their evidencmpatte

6. Evaluation on Ising Chains

To gain better insight into the quality of our procedure, we performed nicaldgests on models
that challenge the approximation. Specifically, we use Ising chains with lagngéerization in-
troduced in Example 1, where we explore regimes defined by the degoeeipling between the
components (the paramet@r and the rate of transitions (the parameter We evaluate the error
in two ways. The first is by the difference between the true log-likelihoodaamdestimate. The
second is by the average relative error in the estimate of different &deaufficient statistics de-
fined byy ;|8; —6j|/6;, whered; is exact value of thg'th expected sufficient statistics afi is
the approximation. To obtain a stable estimate the average is taken o¥gr-all.05 max; 0;..

Applying our procedure on an Ising chain with 8 components, for whictcavestill perform
exact inference, we evaluated the relative error for different esoaf3 andt. The evidence in
this experiment i€y = {+,+,+,+,+,+,—,—}, T =0.64 ander = {—,—,—,+,+,+,+,+}. As
shown in Figure 4(a), the error is larger whemand 3 are large. In the case of a weak coupling
(smallB), the posterior is almost factored, and our approximation is accurate. delmwith few
transitions (smatt), most of the mass of the posterior is concentrated on a few canonicak™tgp
trajectories that can be captured by the approximation (as in Example 3)ghtransition rates,
the components tend to transition often, and in a coordinated manner, whishdeaposterior that
is hard to approximate by a product distribution. Moreover, the resultewdnergy landscape is
rough with many local maxima. Examining the error in likelihood estimates (Figung(d)) we
see a similar trend.

Next, we examine the run time of our approximation when using fairly stand&xd sblver
with few optimizations and tunings. The run time is dominated by the time needed twmerf
the backward-forward integration when updating a single componenthatite number of such
updates until convergence. Examining the run time for different choicBsaadt (Figure 5), we
see that the run time of our procedure scales linearly with the number of cemizoin the chain.
The differences among the different curves suggest that the runtinffeéseal by the choice of
parameters, which in turn affect the smoothness of the posterior dertsity se

7. Evaluation on Branching Processes

The above-mentioned experimental results indicate that our approximaticousage when rea-
soning about weakly-coupled components, or about time intervals involeimgransitions (low
transition rates). Unfortunately, in many domains we face strongly-couaplegponents. For exam-
ple, we are interested in modeling the evolution of biological sequences (BNA, and proteins).
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Figure 5: Evaluation of the run time of the approximation versus the run timesot @ference as
a function of the number of components.

In such systems, we havephylogenetic treghat represents the branching process that leads to
current day sequences (see Figure 6).

It is common in sequence evolution to model this process as a continuous-tirkevMao-
cess over a tree (Felsenstein, 2004). More precisely, the evolutiog ebwh branch is a stan-
dard continuous-time Markov process, and branching is modeled byieatem, after which each
replica evolves independently along its sub-branch. Common applicatefsraed to assume that
each character in the sequence evolves independently of the other.

In some situations, assuming an independent evolution of each chardmtgrysunreasonable.
Consider the evolution of an RNA sequence that folds onto itself to forrmetifinal structure,
as in Figure 7(a). This folding is mediated by complementary base-pairirig, @-G, etc) that
stabilizes the structure. During evolution, we expect to see compensattayions. That is, if a
A changes intdC then its based-paired will change into aG soon thereafter. To capture such
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Figure 6: An example of a phylogenetic tree. Branch lengths denote timealgémtween events.
The interval used for the comparison with non-branching processeghisgmted.

Figure 7: (a) Structure of an RNA molecule. The 3 dimensional structure dictates the diepeias
between the different positiongb) The form of the energy function for encoding RNA
folding, superimposed on a fragment of a folded structure; each gragdnotes a term
that involves four nucleotides.

coordinated changes, we need to consider the joint evolution of theatiiffeharacters. In the case
of RNA structure, the stability of the structure is determinedtacking potentialthat measure the
stability of two adjacent pairs of interacting nucleotides. Thus, if we considactor network to
represent the energy of a fold, it will have structure as shown in Fig(be We can convert this
factor graph into a CTBN using procedures that consider the energyida as a fitness criteria
in evolution (El-Hay et al., 2006; Yu and Thorne, 2006). Unfortunateligrence in such models
suffers from computational blowup, and so the few studies that deal wéRpiicitly resort to
sampling procedures (Yu and Thorne, 2006).
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Figure 8: Structure of the branching proceg¢a) The discretized CTBN underlying the process
in an intersection(b) lllustration of the ODE updates on a directed tree, updapiiig
backwards using (21) and(t) forwards using (22).

7.1 Representation

To consider phylogenetic trees, we should take a common approach ini@vaty analysis, in
which inference of the tree topology and branch lengths is performeatatepy from inference

of sequence dynamics. Thus, we need to extend our framework to dbdiranching processes,
where the branching points are fixed and known. In a linear-time modeljemetlie process as a
map from[0, T] into random variableX . In the case of a tree, we view the process as a map from a
pointt = (b,t) on a treeZ (defined by branch and the time within it) into a random variablX(®.
Similarly, we generalize the definition of the Markov-consistent density $etinclude functions

on trees. We define continuity of functions on trees in the obvious manner.

To gain intuition on this process we return to the discrete case, where ancHing process
can be viewed as a branching of the Dynamic Bayesian Network from ramelbto two separate
branches at the vertex, as in Figure 8(a).

7.2 Inference on Trees

The variational approximation on trees is thus similar to the one on intervals. Veidaim branch,

we deal with the same update formulas as in linear time. We denqtf,g (yt) and p‘)q(b,t) the
messages computed on bramcht timet. The only changes occur at vertices, where we cannot use
the Euler-Lagrange equations (Appendix E), therefore we musteddhas propagation equations
using a different method.

The following proposition establishes the update equations for the paramiéteandp' (t) at
the vertices, as depicted in Figure 8(b):
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Figure 9: Comparison of exact vs. approximate inference along the higgdigtath fromC to D
in the tree of Figure 6 with and without additional evidence at other leavethellatter
case the problem is equivalent to inference on a linear segment. Exaginedarare
shown in solid lines, whereas approximate marginals are in dashed linebofihental
gray lines indicate branch points along the path. Notice that evidence atthes leesult
in discontinuities of the derivatives at such points. The two panels shovdifferent
components.

Proposition 7 Given a vertex T with an incoming branbhand two outgoing branchés, bs. The
following are the correct updates for our parametefst) andp; (t):

Pl (b1, T) = pi(b2,0)p5 (b3,0), 1)
W (b,0) = W(b,T) k=23 (22)
Proof See Appendix G |

Using Proposition 7 we can set the updates of the different parameteesbinathching process
according to (21-22). In the backward propagatiop'othe value at the end df; is the product
of the values at the start of the two outgoing branches. This is the napeadtmn when we recall
the interpretation op' as the probability of the downstream evidence given the current stateh(wh
is its exact meaning in a single component process): the downstreamaviofdr is independent
of the downstream evidence b, given the state of the process at the vertex T). The forward
propagation off simply uses the value at the end of the incoming branch as initial value for the
outgoing branches.

When switching to trees, we essentially increase the amount of evidenae iatesmediate
states. Consider for example the tree of Figure 6 with an Ising chain masléh the previous
subsection). We can view the span fr@rmo D as an interval with evidence at its end. When
we add evidence at the tip of other branches we gain more information mibeunhediate points
betweerC andD. Even though this evidence can represent evolution from these intetepdiats,
they do change our information state about them. To evaluate the impact efdh@sges on our
approximation, we considered the tree of Figure 6, and compared it te@mntern the backbone
betweernC andD (Figure 4). Comparing the true marginal to the approximate one along the main
backbone (see Figure 9) we see a major difference in the quality of thexamation. The evidence
in the tree leads to a much tighter approximation of the marginal distribution. A rgetersatic
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comparison (Figure 10) demonstrates that the additional evidence sdtieaeagnitude of the error

throughout the parameter space.
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Figure 10: (a) Evaluation of the relative error in expected sufficient statistics for ag lsiain in
branching-time; compare to Figure 4(#h),(c) Evaluation of the estimated likelihood
on a tree w.r.t. the rateand coupling3; compare to Figure 4(b),(c).
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Figure 11: Evaluation of the run time vs. accuracy trade-off for séwhi@ices of parameters for
mean field and Gibbs sampling on the branching process of Figure 6.

Similarly to mean-field, the Gibbs sampling procedure for CTBNs (El-Hay eR@D8) can
also be extended to deal with branching processes. Comparing our metiedGdbs sampling
procedure we see (Figure 11) that the faster mean field approach desniha Gibbs procedure
over short run times. However, as opposed to mean field, the Gibbsdpreces asymptotically
unbiased, and with longer run times it ultimately prevails. This evaluation alsesstiat the
adaptive integration procedure in our methods strikes a better tradeaoffuging a fixed time

granularity integration.
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Figure 12: Comparison of estimates of expected sufficient statistics in theienmof 18 interact-
ing nucleotides, using a realistic model of RNA evolution. Each point is aecizd
value of: (a) residence time in a specific state of a component and its pafients;
number of transition between two states. Baxis is the estimate by the variational
procedure, whereas tlyeaxis is the estimate by Gibbs sampling.

As a more demanding test, we applied our inference procedure to a moder sortie one
introduced by Yu and Thorne (2006) for a stem of 18 interacting RNAeautdicles in 8 species in
the phylogeny of Figure 6. In this model the transition rate between two segsi¢hat differ in
a single nucleotide depends on difference between their folding erepggifically, the transition
rate from sequenceto sequencg is given by

Oxy = 1.6 (1+ eEfold(Y)—Efold(X)> ’ 13(x,y)| = 1,

wherekE;syq is the folding energy of the sequence. This equation implies that transitics aete
increasing monotonically with the reduction of the folding energy. Hencentbdel tends to evolve
into low energy states. The folding energy in turn is a sum of local stackiegges, involving
guadruples of nucleotides as described by the factors in Figure 7.tiDgtloe subset of positions
contained in each quadruple By, the energy is

Efold(X) = Z Efia(XIDy)s

wherex|p, is the subset of nucleotides that belong fagtofhis model is equivalent to a CTBN in
which the parents of each components are the other components thathehsaene factors. This
property follows from the fact that for any pairmandy, whered(x,y) = {i}, the difference between
the energies of these two sequences depends only on the factorsrita@t co

We compared our estimate of the expected sufficient statistics of this modek®db&ined
by the Gibbs sampling procedure. The Gibbs sampling estimates were clyoseming the pro-
cedure with an increasing computation time until there was no significant elatige results. The
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final estimates was obtained using 5000 burn-in rounds, 10000 numbampies and 100 rounds
between two consecutive samples. The results, shown in Figure 12, dest@tisat over all the two

approximate inference procedures are in good agreement aboutubeo¥éhe expected sufficient
statistics.

8. Discussion

In this paper we formulate a general variational principle for contindimas-Markov processes (by
reformulating and extending the one proposed by Opper and Sanguifiéft), 2nd use it to derive
an efficient procedure for inference in CTBNSs. In this mean field appration, we use a product
of independent inhomogeneous processes to approximate the multi-cathposgerior.

Our procedure enjoys the same benefits encountered in discrete-time et@@ndcedure (Jor-
dan et al., 1999): it provides a lower-bound on the likelihood of the egigland its run time scales
linearly with the number of components. Using asynchronous updates iiameed to converge,
and the approximation represents a consistent joint distribution. It alfrséiom expected short-
comings: the functional has multiple local maxima, it cannot capture complexati@ns in the
posterior (Example 3). By using a time-inhomogeneous representatiopguxémation does cap-
ture complex patterns in the temporal progression of the marginal distributeech component.
Importantly, the continuous-time parameterization enables straightforwardniraptation using
standard ODE integration packages that automatically tune the trade-ofdretiune granularity
and approximation quality. We show how it is extended to perform inferengdglogenetic trees,
where the posterior distribution is directly affected by several evidenog#sy and show that it
provides fairly accurate answers in the context of a real applicationf@&itp).

A key development is the introduction of marginal density sets. Using thigseptation we
reformulate and extend the variational principle proposed by Opperamgu$etti (2007) , which
incorporates a different inhomogeneous representation. This modificdtmwvs handling direct
evidence of the state of the process, as in the case of CTBNs, while gabpimepresentation of
the approximation bounded. The extension of this principle to CTBNSs follonexbploiting their
networks structure. This adaptation of continuously inhomogeneoussepations to CTBNS in-
creases the flexibility of the approximation relative to the piecewise homogsmepresentation of
Saria et al. (2007) and, somewhat surprisingly, also significantly simplifeesesulting formula-
tion.

The proposed representation is natural in the sense that its functiothe dimme-derivatives of
the expected sufficient statistics that we are willing to evaluate. Hence,fimdeg the optimal
value of the lower bound, calculating these expectations is straightforwaid representation is
analogous to mean parameters which have proved powerful in variatippedximations of expo-
nential families over finite random variable sets (Wainwright and Jord208)2

We believe that even in cases where evidence is indirect and noisy, thgalatensity rep-
resentation should comprise smoother functions than posterior rates.viyyiin the presence of
a noisy observation the posterior probability of some statan be very small. In such cases, the
posterior transition rate forminto a state that better explains the observation might tend to a large
guantity. This reasoning suggests that marginal density representdtmnd be better handled by
adaptive numerical integration algorithms. An interesting direction would bestahis conjecture
empirically.
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A possible extension is using our variational procedure to generate thé dhigidbution for
the Gibbs sampling procedure and thus skip the initial burn-in phase addgaraccurate samples.
Another attractive aspect of this new variational approximation is its poterstgfior learning model
parameters from data. It can be easily combined with the EM procedu@T®BNs (Nodelman
et al., 2005a) to obtain a Variational-EM procedure for CTBNs, which manicadly increases the
likelihood by alternating between steps that improve the approximatithe updates discussed
here) and steps that improve the model paramé&éasm M-step Nodelman et al., 2005a). Finally,
marginal density sets are a particularly suitable representation for adaictieg representations
such as Bethe, Kikuchi and convex approximations to non-homogeweosisns (El-Hay et al.,
2010). Further work in that direction should allow bridging the gap in theltives inference
techniques between finite domain models and continuous-time models.
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Appendix A. The Relation Between CTBNs and DBNs

In this section we show that the DBN construction of Equations (6-7) is thathash approaches
0, the distributiorR, approaches Pr. To show this, it suffice to show that
 Ph(X 1) = y|X ) = x) — 1.,
lim =
h—0 h

Oxy -

We ensured this condition holds component-wise, and now need to shothithtads to global
consistency.
Plugging Equation (7) into Equation (6), the transition probability of the DBN is

on
Ph(X (1) — yX® = x) = [T (1*:“ + ‘h> '

Since we consider the limit @sapproaches 0, any term that involM@swith d > 1 is irrelevant.
And thus, we can limit our attention to the constant terms and terms lindar Expanding the
product gives

i|P
H’I(X(thrl) = y‘X(tk) = X) = |_| 1y + Zq;‘h)?lui -h I;I 1Xj:yj +o(h) )
| | gl
Now, ;i Ix—y; = Ix—y. Moreover, it is easy to verify that
i|P
Gy =D q;‘a N D Tg—y; -
I J#

Thus,
pn(x(thrl) — y|X(tk) = X) = 1X:y+ qX,yh + O(h)7

proving the required condition.
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Appendix B. Marginal Density Sets and Markov Processes - Prooffd.emma 2

Proof Givenn, we define thénhomogeneous rate matri(t) as in Equation (11)R(t) is a valid
rate matrix because its off-diagonals are non-negative as they aredtienquf two non-negative
functions, and because applying the requiremengg(t) in Definition 1

yxx( ) o _Zy;éxyx,y(t) _
0= un T w0

we see thaR(t)’s diagonals are negative and the rows sum to 0. We can use these ithatéisew
initial value iy (0) to construct the Markov proce&s from the forward master equation

d
i Z Py (XY = y)ryx(t) ,

and
Py (X'9) = p(0) .

To conclude the proof we show thB} and the marginal density set satisfy (10). First, from
Definition 1 it follows thatu(t) is the solution to the master equationRyf X (t)), because the initial
values match at= 0 and the time-derivatives of the two functions are identical. Thus

Pa(X® =x) = () -

Next, the equivalence of the joint probability densities can be proved:

im PrX® =x X" =y) i Bx(®) PI(X XN =y Pr(X®) = x)
h—0 h h—0 h
h—0 h

= Wx(Orxy(t) -

From the definition ofryy(t) and the fact thatyy(t) = 0 wheneveruy(t) = 0, it follows that
Hx(t)rxy(t) is exactlyyy(t) u

Appendix C. Expectations in Inhomogeneous Processes

This section includes the proofs of the lemmas used in the proof of the vadhtawer bound
theorem.

C.1 Expectations of Functions of States - Proof of Lemma 4

Proof Changing the order of integration we obtain

Er, [/OTl]J(G dt] /fr, / o(t),t)dtdo — //fn ),t)dodt .
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For eacht € T we decompose the inner integral according to possible states at that time:

/fn ),t)do Z/zfﬂ(o-)'lo(t)—x'w(wido

AT [ 1(0)- T xdo
— T WKL)

C.2 Expectations of Functions of Transitions - Proof of Lemma 5

Proof Given a trajectory there exists a small enoudp> 0 such that for every transition and for
everyt € (tx — h,tx) we haveo(t) = xc_1 ando(t + h) = x. In that case we can rewrite the sum in
the expectation term as

K2 ) 0 +0 _ K2 1 i O(h)
kzlw(xkflvxkvtk) = Zﬁ - qJ(o(t),o(t—i—h),t)dt—i—T

h
_ h/T Wio(t).oft+h).Hat+ A

where the first equality follows from continuity and the second one fromrélggirement that
Y(x,x,t) = 0. Taking the limith — 0 and using this requirement again gives

K° T
3 W0E 10 = g | [ wio.ot+9.0a

Taking expectation we obtain

d T
/zf(o)d—s / L|J(0(t),0(t+s),t)dt} _do
= /f dS [/ UJXy, 10(t)_x10(t+s)_ydt] _Odc

- ES [/0 Zy XL|J(X7y7t)/ ( )lo(t x10(t+s do dt]

The inner integral in the last term is a joint probability

/ f(0) Io(t)=xTo(t +9)—ydO = PT(X( ) = X,X(t+s) =y).
b2

Switching the order of integration and differentiation and using
d

s Pr(X® = x, X+ = y)

gives the desired result. |

s=0

s=0

=Yy(l), X#Y,

s=0

2776



MEAN FIELD APPROXIMATION FORCONTINUOUS-TIME BAYESIAN NETWORKS

Appendix D. Proof of the Factored Representation of the Energ Functional

Proof We begin with the definition of the average energy
T
EM;Q) = /0 z (1) O x + ;Vx,y(t)anX,y dt
X
— / z [uX qu+Z ; \/X| wlt Inqu] dt.
YiFXi

where the equality stems from the observation that the only syatest may havey y(t) > 0, are
those withd(x,y) < 1 (all the rest are 0). Thus, the enumeration over all possible statessasllap
into an enumeration over all componentnd all statey; £ x;. Due to the fact that we are only
considering transitions in single components, we may replace the global joisitydg,, with
Yey - MV (), as per definition.

Using (5), we can decompose the transition raggsanddayy to get

EM;Q) = Z/ Z[Hx q><.x.\U.+y;XIV'X,y, mQX.yu]dt
_ .Z /0 ; [u‘m (t)%uii\i () x u U%‘)Xm (t)LQ‘\i(t)mqui] dt

To get to the last equality we use the factorizationu@f as a product ofi (t) with p\i(t) and the
reordering of the summation. Next we simply write the previous sum as actetija overX \ i

Z/ zUx. By q)(‘)(“u +Z/ ylx4y| Eyi) [IaniM\Ui]dh

i #Xl

which concludes the proof.
Turning to the entropy-like term we have:

H(n) = / T Yy (D[4 INpi(t) — Iy (0]l

X y7x

- Z/OTZ ;A“\i(t)yw,ya(t)[l-Fzmuiq( — Ny (t ;muxj

X Vi #Xi

- Z/OTZ VVXi,yi(t)[le'nuLi(t)—Inym,yi(t)]dt

I X YiFXi

= M)

where, the first equality is definition . The second one follows from the definition of the fac-
tored density set. The third one is obtained by algebraic manipulation and tleaéais again the
definition of A. [ |
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Appendix E. Euler-Lagrange Equations

The problem of finding the fixed points &inctionalswhose arguments are continuous functions
comes from the field a€alculus of variationsWe briefly review the usage Euler-Lagrange equation
for solving optimization problems over functionals. Additional information cafdund in Gelfand
and Fomin (1963).

A functional is a mapping from a vector space to its underlying field. In ase¢he functional
is the Lagrangian introduced in Section 4, which is an integral over réadddunctions, and the
underlying field is the real numbers.

Given a functional over a normed space of continuously differentigalefunctions of the form

_ /abfa,y(t),y(t))dt

wherey (t) is the time-derivative of the function(t), we would like to find a functiory(t) that
minimizes (or in our case maximizes) the functional subject(&) = y, andy(b) = yp. In the
simplest case, when there are no additional constraints, a necesaditforofor y to be a local
optimum is thaty is astationary point Roughly, a stationary point is a functign wherel[y] is
insensitive to small variations i That is, given a functioh(t) whereh(a) = 0 andh(b) = 0, the
change of the functiondly+ h] — I [y] is small relative to the norm df. Fory(t) to be a stationary
point, it must satisfy th&uler-Lagrangesquations (Gelfand and Fomin, 1963)

Ty - g (5 fy0.y©)) =0 23)

In this paper we have additional constraints describing the time derivdtiMe ©he general-
ization of the Euler-Lagrange equations to that case is straightforwaemoting the subsidiary

constraints by(t,y(t),y(t)) =0, we simply replacé (t,y,y) by f(t,y,y) —A(t)g(t,y,y) in Equa-
tion 23.

An example for the use of this equation is in the following proof.

Appendix F. Stationary Points of the Lagrangian - Proof of Theaem 6

Proof For convenience, we begin by rewriting the Lagrangian in explicit fafm; fOT f(y(t),y(t))dt
wherey(t) = (u(t),y(t),A(t)) is a concatenation of the parameters and Lagrange multiplier and

fy).ym) = 335 [IJ;(. (OB [Oxjui] + ; Yy (DE i) [N Gy u1]
YiFXi

T Z Yxyi [1+Inuixi(t)_lnyi(iYi(t)] )\I (dtux' Z\/'x.y. >] .

ViFEXi

The Euler-Lagrange equations of the Lagrangian define its stationamg por.t. the parameters of
each component (t), y (t) andA'(t).

First, we take the partial derivatives 6fw.r.t to i (t) as well as$ i (t) and plug them into
Equation 23. We start by handling the energy terms. These terms involeetakpns in the form

2778



MEAN FIELD APPROXIMATION FORCONTINUOUS-TIME BAYESIAN NETWORKS

Ein 19U )] = Sy My ()9(uj). The parametqniQ (t) appears in these terms only whiéa a parent
of j anduj is consistent with;. In that casq,—ggpuj = Wy, /M- Thus,

0
A Epi |
Recalling the definitions of the averaged rates

—i P
B, (1) = By [, 1]

gUj)] = Epig) [9(U) | xi] - Bjechildren

and "
~ 1
G i (1) = eXp{ Ejig ['” Aeyu | XJ} }
we obtain
9 al
au|xj H\J ) |:qXJ XJ‘U :| 6] eChildren qXJ 7Xj|Xi (t)
and

0 j ~i
aTli<J'E“\"(t) [Inqxj:xj\Uj} = Ojciidren NG, (1)

Therefore the derivative of the sum ovief i of the energy terms is

P (t) = > 3 [ui,. O O+ S Yoy, (t)lnqij,mt)]
jeChildren X;j Xj£Yj
Additionally, the derivative of the energy term fgr=i is Gy  (t) = Ejui) [ xu;]- Next, the
derivative of the entropy term ig , (t)/u (t). Finally, the derivative off with respect to%L;(t)
is —A} (t). Plugging in these derivatives into Equation (23) we obtain

Y.
u: (’“) + &AN t)=0 . (24)

q)i(i X (t> + qJ;(, ( )
Next, the derivative w.r.ty;, ., (t) gives us

Ik (1) -+ NGy, (1) — Ny, y, (1) + A} (1) =Ny (1) =0 . (25)
Denotingp (t) = exp{AL (t)}, Equation (25) becomes

g P
yJX,y,() ()q;('y'()p'x,(t) ’
which is the algebraic equation @f Using this result and the definition Vi!fx. we have
PN (9
Y, \/ Gy (D) 5
Xi, X| ¥ Xi y. )thi leyl( )p;(, (t)

Plugging this equality into (24) and using the |den§f}oxi (t) = %)\iq (t)pi(i (t) gives
d . . . . L
YiZEXi
Thus the stationary point of the Lagrangian matches the updates of (16—-17 |
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Appendix G. Proof of Proposition 7

Proof We denote the time at the verte}= (b1, T), the time just before as = (b;, T —h) and the
times just after it on each branth= (b, h) andtz = (bz, h), as in Figure 13.

b1

t1

Figure 13: Branching process with discretization points of Lemma 7.

The margmaI%(bl, ) are continuous, as they are derived from the forward differentizdeq
tion. To derive the propagation formula for tbg requires additional care. Tipg (t) have been
derived from the constraints on the time-derivativelpft). In a vertex this constraint is threefold,
as we now have the constraintslon

Ed@gﬂig__zﬁmh

and those on the other branchgdor k = 2,3

p'X| (tk) UX Z y1 tO
Xi,Yi

The integrand of the Lagrangian corresponding to pigirg

Ly, = ?(ni(@)no +20(ty) <Hx(t0) - z\/m wta )

ZAK ( zvx,yl to> :

as this is the only integrand which involveg(to), the derivative of the Lagrangian collapses into

0 - 2
O (to) O (to) ©
_ ANty)  (A3(to) | N(to) 0 & oy _
Rearranging the previous equation and multiplyincthbwe get
I
Wltr) =X(0) +X°(10) + 51575 F (N Q)
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Looking at (24) we can see that gsis not a leaf, and thuai(i (to) > 0 and the derivative of the
functional cannot diverge. Therefore,tas+ 0 this term vanishes and we are left with

A0(ty) = A%(to) +A3(to)

which after taking exponents gives (21). |

References

C. Archambeau, M. Opper, Y. Shen, D. Cornford, and J. ShawtsiTaVariational inference for
diffusion processes. lAdvances in Neural Information Processing System$/0 Press, 2007.

K. L. Chung. Markov Chains with Stationary Transition ProbabilitieSSpringer Verlag, Berlin,
1960.

T. Dean and K. Kanazawa. A model for reasoning about persistemteaasationComput. Intell,
5(3):142-150, 1989.

M. Dewar, V. Kadirkamanathan, M. Opper, and G. Sanguinetti. Paramstieration and inference
for stochastic reaction-diffusion systems: application to morphogenesisrialdnogasteBMC
Systems Biology(1):21, 2010.

T. El-Hay, N. Friedman, D. Koller, and R. Kupferman. Continuous time mamketworks. In
Proc. Twenty-second Conference on Uncertainty in Artificial Intelligghizd), 2006.

T. El-Hay, N. Friedman, and R. Kupferman. Gibbs sampling in factorizedirmaous-time markov
processes. IfProc. Twenty-fourth Conference on Uncertainty in Artificial Intelligenc@l)y)
2008.

T. El-Hay, I. Cohn, N. Friedman, and R. Kupferman. Continuous-time bphepagation. In
Proceedings of the 27th International Conference on Machine Leafihi@igL), 2010.

G. Elidan, I. Mcgraw, and D. Koller. Residual belief propagation: infed scheduling for asyn-
chronous message passing.Aroc. Twenty-second Conference on Uncertainty in Artificial In-
telligence (UAI) 2006.

Y. Fan and C. R. Shelton. Sampling for approximate inference in continuousBa@yesian net-
works. InTenth International Symposium on Artificial Intelligence and Mathema2i@88.

Y. Fan and C. R. Shelton. Learning continuous-time social network dysamm®roc. Twenty-fifth
Conference on Uncertainty in Artificial Intelligence (UABOO9.

J. Felsensteininferring PhylogeniesSinauer, 2004.
C. W. GardinerHandbook of Stochastic MethodSpringer-Verlag, New-York, third edition, 2004.

I. M. Gelfand and S. V. FominCalculus of Variations Prentice-Hall, 1963.

2781



COHN, EL-HAY, FRIEDMAN AND KUPFERMAN

K. Gopalratnam, H. Kautz, and D. S. Weld. Extending continuous time bayesi&avorks. In
Proceedings of the 20th National Conference on Atrtificial IntelligenceAl\pages 981-986.
AAAI Press, 2005.

M. 1. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An intrtdaodo variational approx-
imations methods for graphical models. In M. I. Jordan, editegrning in Graphical Models
MIT Press, Cambridge MA, 1999.

D. Koller and N. Friedman.Probabilistic Graphical Models: Principles and TechniqueMIT
Press, Cambridge, MA, 2009.

S. Kullback and R. A. Leibler. On information and sufficien@je Annals of Mathematical Statis-
tics, 22(1):79-86, 1951.

A. Lipshtat, H. B. Perets, N. Q. Balaban, and O. Biham. Modeling of negatitoregulated genetic
networks in single cellsGeng 347:265, 2005.

K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference and LearRinD thesis,
University of California, Berkeley, 2002.

B. Ng, A. Pfeffer, and R. Dearden. Continuous time patrticle filteringPiloc. of the Nineteenth
International Joint Conference on Artificial Intelligence (IJCA2D05.

U. Nodelman, C. R. Shelton, and D. Koller. Continuous time Bayesian neswdndroc. Eigh-
teenth Conference on Uncertainty in Artificial Intelligence (UAges 378—-387, 2002.

U. Nodelman, C. R. Shelton, and D. Koller. Learning continuous time Bayastworks. In
Proc. Nineteenth Conference on Uncertainty in Artificial Intelligence (Up8ges 451-458,
2003.

U. Nodelman, C. R. Shelton, and D. Koller. Expectation maximization and cordpietion distri-
butions for continuous time Bayesian networksPhoc. Twenty-first Conference on Uncertainty
in Artificial Intelligence (UAI) pages 421-430, 2005a.

U. Nodelman, C. R. Shelton, and D. Koller. Expectation propagation fotirmmaous time Bayesian
networks. InProc. Twenty-first Conference on Uncertainty in Artificial Intelligenc&llJpages
431-440, 2005b.

M. Opper and G. Sanguinetti. Variational inference for Markov jump @sses. IrAdvances in
Neural Information Processing Systems ROT Press, 2007.

M. Opper and G. Sanguinetti. Learning combinatorial transcriptionalmijcgfrom gene expres-
sion data.Bioinformatics 26(13):1623-1629, 2010.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannélymerical Recipes 3rd Edition:
The Art of Scientific ComputingCambridge University Press, New York, NY, USA, 3 edition,
2007.

S. Rajaram, T. Graepel, and R. Herbrich. Poisson-networks: A modstrfictured point processes.
In Proc. Tenth International Workshop on Artificial Intelligence and Statigdd¢STATS)January
2005.

2782



MEAN FIELD APPROXIMATION FORCONTINUOUS-TIME BAYESIAN NETWORKS

A. Ruttor and M. Opper. Approximate parameter inference in a stochaatitoa-diffusion model.
In Proc. Thirteenth International Conference on Artificial Intelligence atatiStics (AISTATS)
volume 9, pages 669-676, 2010.

G. Sanguinetti, A. Ruttor, M. Opper, and C. Archambeau. Switching remylanodels of cellular
stress respons@&ioinformatics 25(10):1280-1286, 2009.

S. Saria, U. Nodelman, and D. Koller. Reasoning at the right time granulariBroc. Twenty-third
Conference on Uncertainty in Artificial Intelligence (UA2007.

A. Simma, M. Goldszmidt, J. MacCormick, P. Barham, R. Black, R. IsaacsRaMortier. Ct-nor:
Representing and reasoning about events in continuous tinkrotn Twenty-fourth Conference
on Uncertainty in Artificial Intelligence (UAJ)2008.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential fasjib@d variational infer-
ence.Found. Trends Mach. Learnl:1-305, 2008.

J. Yu and J. L. Thorne. Dependence among sites in RNA evolultwi. Biol. Evol, 23:1525-37,
2006.

2783



