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Abstract

Probabilistic grammars offer great flexibility in modelidgcrete sequential data like natural lan-
guage text. Their symbolic component is amenable to ingpetly humans, while their proba-
bilistic component helps resolve ambiguity. They also petine use of well-understood, general-
purpose learning algorithms. There has been an increatsdshin using probabilistic grammars
in the Bayesian setting. To date, most of the literature basded on using a Dirichlet prior. The
Dirichlet prior has several limitations, including thac&nnot directly model covariance between
the probabilistic grammar’s parameters. Yet, various gnamparameters are expected to be cor-
related because the elements in language they represeatlisigaiistic properties. In this paper,
we suggest an alternative to the Dirichlet prior, a familyagfistic normal distributions. We derive
an inference algorithm for this family of distributions aexiperiment with the task of dependency
grammar induction, demonstrating performance improveswith our priors on a set of six tree-
banks in different natural languages. Our covariance freanlepermits soft parameter tying within
grammars an@crossgrammars for text in different languages, and we show eggligains in a
novel learning setting using bilingual, non-parallel data

Keywords: dependency grammar induction, variational inferenceistagnormal distribution,
Bayesian inference

1. Introduction

One of the motivating applications for grammar induction, or unsupervisaamatical structure
discovery, is for the syntactic analysis of text data. Grammar induction, icdéise, may lead to the
automatic acquisition of linguistic knowledge and the automatic construction ofsinganalyzers

for under-studied text domains and languages, without the costly cotistrof manually annotated
corpora. Grammar induction may also shed light on the cognitive procdaagiiage acquisition
in humans.

When it comes to the problem of grammar induction from natural language adtaitful
research direction has built on the view of a grammar as a parameterizentatjee process ex-
plaining the data (Pereira and Schabes, 1992; Carroll and Char@i@R; Chen, 1995; Klein and
Manning, 2002, 2004inter alia). If the grammar is a probability model, then learning a grammar
means selecting a model from a prespecified méataily. In much prior work, the family is de-
fined as the set of probabilistic grammar for a fixed set of grammar rulésasgrammar learning
amounts tgarameter estimatiofrom incomplete data: sentences in the language are yields of hid-
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den derivations from the grammar. Baker (1979) and Lari and Yoli®8Q) describe how dynamic
programming (the “inside-outside” algorithm) can be used within an Expect&tetimization al-
gorithm (Dempster et al., 1977) to estimate the grammar’s probabilities fronpasof text, in the
context-free case.

Probabilistic grammars are attractive for several reasons. Like symlyaliongars, they are
amenable to inspection by humans, so that it is relatively easy to understeatdemdencies the
model has captured if the underlying rules are understandable. Unliké/mymbolic grammars,
they model frequency and provide a mechanism for reasoning in theofammbiguity, which is
ubiquitous in natural language. Probabilistic grammars can be specialigeda@&hidden Markov
models for sequential structures) and generalized (e.g., as lexicaliaetungrs, as synchronous
models over tuples of strings, and as grammars in context-sensitive glaBsebabilistic gram-
mars are widely used to build models in natural language processingdnoiotateddata, thus
allowing easy comparison between unsupervised and supervised teefinlgLP applications of
probabilistic grammars and their generalizations include parsing (Colling; 208in and Man-
ning, 2003; Charniak and Johnson, 2005), machine translation (84, D8ng and Palmer, 2005;
Chiang, 2005), and question answering (Wang et al., 2007). Prolialgliammars are probabilistic
models, so they permit the use of well-understood methods for learning.

Meanwhile, in machine learning, significant attention has recently beeriedet@ Bayesian
models. The attraction of Bayesian models is that they manage uncertainty actéhefflearning
from incomplete data, while permitting the use of background knowledge, forttmsof aprior over
models. This prior can be used to inject bias into a model. Such bias candmatigpmportant
in cases where the sample size is not large or when the grammar is highlyerdifidadble, two
scenarios that hold with grammar induction (see Cohen and Smith, 2010dfscwssion of the
size of sample required for estimation of probabilistic grammars).

Bayesian methods have been applied to probabilistic grammars in variousspaggying pri-
ors over the parameters of a PCFG (Johnson et al., 2007; Headden2&08) as well as over
the statesin a PCFG (Finkel et al., 2007; Liang et al., 2007), and even over gramahdgciva-
tion structures larger than context-free production rules (Johnsdrn @086; Cohn et al., 2009).
The challenge in Bayesian grammar learning is efficiently approximating pili& inference.
Variational approximations (Johnson, 2007; Kurihara and Sato, 2&8@&)andomized sampling
approximations (Johnson et al., 2006; Goldwater, 2006) are typicalliedpp

Much of the Bayesian literature and its application to probabilistic grammarsoleasdd on
conjugate priordn the form of Dirichlet distributions. Conjugate priors were introduced BiffR
and Schaifer (1961), who gave a desiderata for prior families, incluatvadytical tractability. We
argue that the literature has focused on this desideratum only, ignopngssive power and inter-
pretability. We begin by motivating the modelingadvarianceamong the probabilities of grammar
derivation events, and propose the use of logistic normal distributionshfdte, 1986; Blei and
Lafferty, 2006) over multinomials to build priors over grammars (Section 3)r @otivation re-
lies on the observation that various grammar parameters are expectedduodiated because of
the elements in language they represent share linguistic properties. Natirgydinmars are built
out of a large collection of multinomials, we introduskaredlogistic normal distributions to al-
low arbitrary covariance among any grammar probabilities. We then describe efficientiitie
techniques to support decoding and learning with (shared) logistic nqumoes over grammars
(Section 4), facing the challenge of non-conjugacy of the logistic normiad fo the multinomial
family. We experiment with probabilistic dependency grammar induction frota mhesix lan-
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guages, showing how the new approach performs compared to n@siBaylternatives as well as
more traditional Dirichlet prior-based alternatives (Section 5.1 and Sect®)n B/e then demon-
strate that the approach can also be effective when learning ritatiilingual, non-parallel text,
softly tying parameters across languages (Section 5.4).

The research results in this paper build on work previously reporteddieiCet al. (2008)
and Cohen and Smith (2009). Here we provide a more extensive distussibe techniques,
connections to related work, a full derivation of the variational infeeealgorithms, and a larger
set of experiments on more data sets.

2. Probabilistic Grammars

We begin by discussing the general family of probabilistic grammars to whichethods are ap-
plicable. A probabilistic grammar defines a probability distribution over a cektathof structured
object (a derivation of the underlying symbolic grammar) explained stegtdjy as a stochastic
process. HMMs, for example, can be understood as a random walkgtheoprobabilistic finite-
state network, with an output symbol sampled at each state. PCFGs geteeste-structure trees
by recursively rewriting nonterminal symbols as sequences of “childiteyts (each itself either a
nonterminal symbol or a terminal symbol analogous to the emissions of an H®WMexperiments
will consider a particular family of PCFGs that represent dependenagtste (see Section 2.2).

Each step or emission of an HMM and each rewriting operation of a PCFGhitmmally
independent of the others given a single structural element (one HMMCBG state); this Markov
property permits efficient inference over derivations given a string.

In general, a probabilistic grammar defines the joint probability of a skiagd a grammatical

derivationy:®
K Nk

K Ng
fii(xy)
p(x,y|8) = 0,° =exp fri(X,y)log6k;, Q)
ey | 8)= [[] 8% 3.3 fuly)loghi,

K=1i
where fy; is a function that “counts” the number of times tkte distribution’sith event occurs in
the derivation. The parametedsare a collection oK multinomials(6s,...,6k), thekth of which
includesNy, competing events. Letting = (B 1,...,0k N, ), €achBy; is a probability, such that

VK, Vi, Bki >0, (2
Nk

VK, Oki=1. (3)
2,%

As is often the case in probabilistic modeling, there are different ways @ cgr the random
variables. We can think of andy as correlated structure variables (ofteis known ify is known),
or the derivation event count&,y) = (f;(X,Y))1<k<k 1<i<n, @S an integer-vector random variable
(useful for variational inference, in Section 4). In this papés, always observable andis hidden
until we use gold standard data for testing.

Note that there may be many derivationfor a given stringk—perhaps even infinitely many
in some kinds of grammars. For HMMs, there are three kinds of multinomials:ringtatate
multinomial, a transition multinomial per state and an emission multinomial per state. Ira&t c
K = 2s+ 1, wheres is the number of states. The valueNf depends on whether theh multi-
nomial is the starting state multinomial (in which cage= s), transition multinomial Kk = s) or

1. A table of notation can be found in Appendix A, Table 4, page 3042.
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emission multinomiallk = t, with t being the number of symbols in the HMM). For PCFGs, each
multinomial among th& multinomials correspond to a set Wf context-free rules headed by the
same nonterminaBy; is then the probability of thih rule for thekth nonterminal.

The field of grammatical inference also includes algorithms and methods fomgadhestruc-
ture of a (formal) language generator or grammar (Angluin, 1988; de la Hig@&05; Clark and
Thollard, 2004; Clark et al., 200&ter alia). This paper is complementary, focusing on the esti-
mation of theweightsassigned to the grammar’s rules. The choice of using a fixed model family
corresponds to a choice to work in a statistical parametric setting; extertsio@parametric
settings are possible (Goldwater, 2006; Johnson et al., 2006; Coladn 2010). We focus on
grammars which generate dependency structures for derivationgnbepcy syntax is a popular
representation that has been found useful in a wide range of natugaklge applications, including
machine translation (Lin, 2004; Gimpel and Smith, 2009), question answ@kiagg et al., 2007),
as well as deeper semantic processing tasks (Johansson and Ne@fliedas et al., 2010). The
grammars used in our experiments are extremely permissive, allowing exssiple dependency
structure for a sentence (see Section 2.2).

2.1 Simple Example: Class-Based Unigram Model

It is helpful to keep in mind a simple model with a relatively small number of parasisteh as a
class-based unigram model (Brown et al., 1990). Let the obserwveldday inx range over words in
some language’s vocabulary Let each word toke®; have an associated word class from a finite
set/\, denotedy; they; are all hidden. The derivation in this model is the sequépgce. .,yn). The
probabilistic model consists of two parts:

1. For ally € AU {stop}, B:(y) is the probability that the next word will be generated by class
B¢(stop) is the stopping probability.

2. Forallye A and allxe I, By(x | y) is the conditional probability that clagswill generate
word X.

In this simple modelK = 1+ |A|, Ny = |A], and fork > 1, Ny = |['|. This model can be thought

of as a hidden Markov model with zero order, that is, it has no depereiehetween the different
hidden states. In addition, if we place a Dirichlet prior on the grammar paresfe(8ection 3.1)
and treatd as a latent variable sampled once per document, this model becomes equivaie
latent Dirichlet allocation model (Blei et al., 2003). (Ciyy is denoted3 in their notation.) In this
case, the derivation vectgrcorresponds to a set of topics selected for each word in the bag o$word
representing the document.

2.2 Dependency Model with Valence

Dependency grammar (Tesne, 1959) refers to linguistic theories that posit graphical representa
tions of sentences in which words are vertices and the syntax is a direegedSuch grammars
can be context-free or context-sensitive in power, and they can be pmababilistic (Gaifman,
1965). Dependency syntax is used in information extraction, machindatians question answer-
ing, and other natural language processing applications. Our expésiperiorm unsupervised
induction of probabilistic dependency grammars using a model known agefidency model with
valence” (Klein and Manning, 2004). The model is a probabilistic split F&dmaton grammar
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A/ /\@

$ DT NN INDT NN VBD IN RBR IN CD NN
The value of the share increased by more than 15 percent

x=($ DT NN IN DT NN VBD IN RBR IN CD NN)

P(x,y | 8) = 6c(VBD | $,r) x p(y') | VBD,6)
p(y™ | VBD, 8) = B5(—stop| VBD, 1, ) x 8. (NN | VBD, 1) x p(y'?) | NN, 8)
x Bs(stop| VBD, |, t) x Bs(—stop| VBD,r,f) x 6:(IN | VBD,r)
x p(y™ | IN,8) x B5(stop| VBD,r,t)
p(y'?) | NN, 8) = B5(—stop| NN, I, f) x 8.(DT | NN, 1) x 8s(stop| DT, r,f)
x Bg(stop| DT,1,f)8c(IN | NN, r) x p(y® | IN,8)
x Bs(stop| IN, I,f) x Bs(stop| NN, I, t) x Bs(stop| NN, r,t)
p(y® | IN,8) = 8s(—stop]| IN,r,f) x 8(NN | IN,r) x 8.(DT | NN, )
x Bs(stop| DT, r,f) x Bs(stop| DT, 1,f)
x Bs(stop| NN, r,f) x Bs(stop| NN, 1,t)
p(y™ | IN,8) = 8s(stop| IN, 1,f) x Bs(—stop| IN,r,f) x 8(NN | IN,r)
x Bs(stop| NN, r,f) x Bs(—stop| NN, I,f) x 8:(RBR| NN, r)
x Bs(stop| RBR,I,f) x p(y® | RBR,8)
p(y"® | RBR, 8) = B5(—stop| RBR,r,f) x 8(IN | RBR, r) x 6c(CD | IN, r)
x Bs(stop| IN, I,f) x Bs(stop| IN, r,t) x Bs(stop| CD, r,f)
(stop| CD,|,f)

X O

Figure 1: An example of a dependency tree (derivayiprand its probability. The part-of-speech
tags NN, VBD, DT, CD, RBR, and IN denote noun, past-tense verbrrdéter, number,
comparative adverb, and preposition, respectively, following Peeebenk conventions.
We break the probability of the tree down into recursive parts, one per\werd, marked
in blue (lighter). |, r, t, andf denote left, right, true, and false, respectively (see Equation
4).

(Alshawi and Buchsbaum, 1996) that renders inference cubic in tigghlerh the sentence (Eisner,
1997). The language of the grammar is context-free, though our mo@etseenissive and allow
the derivation of any string il*. This is a major point of departure between theoretical work in
grammatical inference and work on natural language text, particularly ysimbabilistic gram-
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mars; our goal is to induce a distribution over derivations so that the mokt tieeivations under
the model closely mimic those preferred by linguists (Smith and Eisner, 2005).

“Valence” here refers to the number of arguments controlled by the Heaglorase’. In the
DMV, each word has a binomial distribution over whether it has at leastednehild (similarly on
the right), and a geometric distribution over the number of further childare@ch side).

Let x = (x1,X2,...,X,) be a sentence (here, as in prior work, represented as a sequeyaré- of
of-speech tagsk is a special “wall” symbol, $, on the left of every sentence. A frésdefined by
a pair of functiongyiert andyyignt (both{0,1,2,...,n} — 2{1.2,... n}) that map each word to its sets of
left and right dependents, respectively. Here, the graph is coretréorbe gprojectivetree rooted
atxp = $: each word except $ has a single parent, and there are no cyclessing dependencies.
yiett(0) is taken to be empty, anglignt(0) contains the sentence’s single head. yBtdenote the
subtree rooted at positidr(i.e.,y' is a tree consisting of all descendentscoin the treey). The
probability P(y(") | x;,8) of generating this subtree, given its head wrrds defined recursively:

p(y" [ %,8) = [1 Os(stop|x.,D,[yo(i) = 0]) 4)
De{left right}
x [ s(-stop| x;,D,firsty(j)) x Bc(xj | %, D) x p(yV | x;,6),
jeyo(i)

where firs}( ) is a predicate defined to be truexifis the closest child (on either side) to its parent
x. The probability of the entire tree is given yx,y | 8) = p(y©) | $,8). The parameter8 are
the conditional multinomial distribution8s(- | -,-,-) and8¢(- | -,-). To follow the general setting
of Equation 1, we index these distributions@as...,6x. Figure 1 shows a dependency tree and its
probability under this model (Equation 4).

Note that if all weight® are greater than zero, the model perraity dependency tree ovany
sentence i *. Hence the goal of grammar induction is to modeldistributionof derivations, not
to separate grammatical strings or derivations from ungrammatical ones.

Klein and Manning’s (2004) dependency model with valence is widelygeiced as an effec-
tive probabilistic grammar for dependency grammar induction. Many retedies on dependency
grammar induction use it. For example, this model has been used to test estirtgiithms such
as Viterbi EM (Spitkovsky et al., 2010b), contrastive estimation (Smith angeEi2005), and al-
gorithms which gradually introduce more data to the learning process (Sghtkev al., 2010a); it
has been used to test the efficacy of multilingual learning through depeypndeammar induction
(Ganchev et al., 2009; Berg-Kirkpatrick and Klein, 2010); it has hesad as a base model that has
inspired more complex lexicalized models (Headden et al., 2009). The DM\alsa been used
as a base model within various estimation techniques with the goal of improvingrftaqance
by relying on other properties of language and text such as: deperddretween parameters in
the model (Berg-Kirkpatrick et al., 2010), sparsity (Gillenwater et al. 020ftireference for short
attachments (Smith and Eisner, 2006), and additional annotation offerbgpeytext markup as
found on the Web (Spitkovsky et al., 2010c). In addition, the DMV is rel&beltie head-outward
model used by Collins (2003) for supervised parsing; Collins’ parsemésof the best performing
parsers for English. In the rest of the paper, we assume we havedgyfixemarG for which we
estimate the parameters.

2. Here, we refer to “head of a phrase” as in the linguistic sense—the wa phrase that determines the syntactic
category of this phrase.
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2.3 Parameter Estimation by Maximum Likelihood

In the original framework, Klein and Manning (2004) treated the DMV as dehon its own, and
also in combination with a model over bracketing structures called the “congtitoatext model.”
Here we consider the DMV on its own as it is more capable of generalizatibhetter exemplifies
probabilistic grammars.

Klein and Manning learned the DMV using maximum likelihood estimation, carri¢typthe
Expectation-Maximization (EM) algorithm. Because EM for probabilistic gransrhas been well
documented elsewhere (Lari and Young, 1990; Pereira and S¢Ha$s Carroll and Charniak,
1992), we only briefly mention that it proceeds by alternating between tvps $tat update the
model parameters. LétY denote their values at time step

1. E-step: For each training examplginfer the posterior distributiop(y | x,e(t),G) = p(X,Yy |
81)/p(x |8V, G). This is accomplished by dynamic programming (for HMMs, the forward-
backward algorithm; for PCFGs, the inside-outside algorithm; for the DM¥lgorithm due
to Eisner, 1997), and the result is usually represented as a vectaiaftioie event expected
frequencies(Ep(_‘Xﬁ(t)7G) fii (X, ))k,i-

2. M-step: Estimat®*V from the expected frequencies, as if they were observed freqsencie
Since the model is built out of multinomials, there is a closed form solution obtdiyed
normalizing the frequencies.

It is helpful to consider the problem EM iterations aim to solve in its declardtive, the
problem of maximizing likelihood:

maxp(x | 6,G) = meaxg p(x,y [8,G).

(In fact, EM only locally maximizes this function.) In the above, we suppressctilection of
sentences constituting the training data; to be precise, we should takeuatfprbdrobabilities or a
sum of log-probabilities for all training examples:

M
max[] > p(xmY|8,G).

m=1Yy

In the Bayesian approach, we tréanot as a set of parameters to be estimated, but rather as a
random event. This contrasts with earlier research that aims to bias the grésamar with prior
information. Klein and Manning (2004), for example, biased the learnenibglizing EM with
a “harmonic” posterior over dependency attachments that preferreddinkinds that are closer
together in the string to more distant words. Smith and Eisner (2006) moreidyliased EM by
manipulating the posterior calculated in the E-step with penalties for longendepey attachments
or, in an alternative model that permitted disconnected graphs, for captigu

3. Bayesian Models over Grammars

An attractive way to incorporate prior knowledge about grammars is thraugrior distribution
over the grammar’s probabiliti€s Priors are often used to obtasmoothestimates; Smith (2006)
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Model I: Model II:

Forme {1,...,M}: 1. Draw® from the priorp(8 | G, ...).
1. Draw8y, from the priorp(0 | G,...). 2. Forme{1,...,M}:

2. Draw (Xm, Ym) from p(Xm,Ym | 8m, G). Draw (Xm, ym) from p(Xm, ym [ 6,G).

Figure 2: Two variations on Bayesian modeling of probabilistic grammars.

explored symmetric Dirichlet priors in the DMV in a maximwposterioriframework for learning
that can still be accomplished by EM:

M
meaxp(e |a,G) |'| z P(Xm,Y | 6,G), (5)

m=1Yy

wherea denotes the parameters of the prior over grammars. EM is efficient pitelo, G) is a
collection of Dirichlet distributions with each > 1 (discussed below). For the moment, we leave
aside the form of the prior, though it is a major focus of this article.

In this paper, we go farther. We trelas a hidden variable, not unlike It will therefore be
integrated out in defining the probability of the data:

M
p(xa,-- x| 0,G) = [ p(8] @) [] Y Plxmy| 8.G) . (6)

m=1Yy

In this setting, it isa, the distribution over grammar parameters, that encodes knowledgetabout
grammar, and it will bex that we estimate when we perform learning.

We consider two alternative variations on the Bayesian idea, illustrated ine=2gun the first,
called “model I,” the grammar’s probabiliti€sare drawn randomly once per sentence for the whole
Corpusxy,...,Xuv. In “model Il,” the grammar parameters are dramncefor all of the sentences in
the corpus.

Conceptually, both options have advantages and disadvantages whelimgnadtural language.
Drawing 6 for each derivation permits more flexibility across derivations, perhdpwiag the
learner to capture variation across the corpus (even if not systematasathye grammars are drawn
IID), arising from different authors, for example. Generatéhgnly once suggests we need to do
inference in a smaller space: we only need to find the posterior over a Singgehaps leading to
better generalization. We will consider both forms in our experiments (Sestign

The question of the choice of a prior distribution still remains. In their piangexork about
conjugate priors, Raiffa and Schaifer (1961) set desiderata for prior distributions iarpatric
models. These desiderata, which serve as the foundatiacomjugate priorsinclude: (i) analytical
tractability—the posterior using a certain prior family should stay in the prior famihile it is
reasonably easy to identify the posterior from a sample and a prior; (iNegd+—there should be a
member in the prior family that is able to express the modeler’s beliefs and pidomiation; (iii)

3. A prior family is conjugate for a family of distributions if the posterior ottee family, after observing some data, is
also in the prior family. See Raiffa and Schaifer (1961).
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interpretability—the prior should be easily interpreted so the modeler cary vieaf the choice of
prior matches prior judgments.

Unfortunately, much of the Bayesian literature for probabilistic grammarseaed in gen-
eral has diverged considerably from these desiderata, and tbouseon the first requirement of
analytical tractability. As a result, most of the Bayesian language learningtiiterhas focused
on Bayesian models with a Dirichlet prior (Johnson et al., 2007; GoldwaigGxiffiths, 2007;
Toutanova and Johnson, 2007; Kurihara and Sato, 20@#,alia), which is conjugate to the multi-
nomial family. We argue that the last two requirements are actually more impdnemthe first
one, which is motivated by mere mathematical and computational convenieneesudgest re-
placing the first requirement with “computational tractability"—it should beygasepresent the
posterior (or an approximation of it) computationally. In that case, the modathefiocus on choos-
ing rich priors that can more properly model different structural elements o&mgrar. To solve
the problem of inference, we can now use approximate inference algsrishich as the one we
give in Section 4 and Appendix B. Indeed, approximations are sometimaseécven for the
conjugate case, and are always required when the data are incomplete.

We next give an overview of the Dirichlet prior that provides analyticatt@bility for prob-
abilistic grammars, and then demonstrate the alternative which focuses oactivedsand third
requirements, the logistic normal distribution. The logistic normal, we suggestywep over the
Dirichlet from the perspective of desideratum (ii), though we must takihdu steps to achieve
sufficient “richness” to account for arbitrary covariance and foltilmgual text data.

3.1 Dirichlet Distributions

From the computational perspective, the Dirichlet distribution is indeed aatatwoice for a prior
over the parameters of the grammar because of its analytical tractability, wisikbs inference
more elegant and less computationally intensive in both the maxianposteriori(Equation 5) and
Bayesian (Equation 6) settings. In addition, a Dirichlet prior can engeusaarse solutions (i.e.,
many6y; = 0), a property which is desirable in natural language learning (Johetsah, 2007),
as it corresponds to eliminating unnecessary grammar rules. (Indegdntgto exclude rules by
setting their probabilities to zero is one way of going about symbolic grammactiod)

If we use a Dirichlet distribution with a probabilistic grammar, then the hyparpaters for the
grammar consist oK vectors with positive elements, théh of which has lengtiN,. We denote
these hyperparameters tiyin which case the prior over the grammar paramedras the form:

K K Nk
|_|| 1 ak'

p(@](x):lgl <ZI lakl) r!eak| _ I—leak. 7

wherel (-) is the Gamma function ar(0) is a constant term with respect@o

Consider again the simple model of Section 2.1. If we embed it inside modeluré~®) we
arrive exactly at the latent Dirichlet allocation model of Blei et al. (2008)ere each example is a
document (not a sentence).

The Dirichlet distribution can also be derived as a hormalized set of Vesialb exponentiated
independenBGamma-distributed variables. More precisely, for each multinoitd € {1,...,K}),
we can drawNy independent random samphgs, . . ., Vikn, from Gamma distributions with shapes
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Oy1,...,0k N, respectively, and scale 1 and then let:

Vi,i

ek,i =N
2irma Vkiif

This alternative representation of the Dirichlet distribution points to a wesskniere is no
explicit covariance structure present whare drawn from a Dirichlet. The only wad covary is
through the normalization that mapg to the probability simplex. In fact, the correlation between

o )1/2

B«i andBy; is always negative and equals (OkiOt)
((ako — Ok;)(Ako— ki)
This relates back to the desiderata of Raiffa and Schaifer: the covar{and in fact, variance)

structure that the Dirichlet distribution offers is not rich. This is especiallg ivhen modeling
language, as we explain in the section below.

whereay o = M ay.

12

3.2 Modeling Covariance with Logistic Normal Distributions

When we consider probabilistic grammars for natural languages, ebypéb@se over words or
word classes like parts of speech, deexpect to see covariance structure. Intuitively, the prob-
ability of a particular word or word class having singular nouns as argtgigtikely tied to the
probability of the same word havinglural nouns as arguments. Words that tend to attach to one
type of parent are expected to tend to attach to similar parents. This follavesise words and
word classes tend to follow patterns. This is a large part of the empirical atiotivfor syntactic
theories that make use of part of speech and phrase categories.

A natural candidate for a distribution that models covariance is the multivarateal distri-
bution. However, values drawn from the multivariate normal distributiontEahoth positive and
negative, and they also do not necessarily normalize to 1, both areaewuits frond (see Equa-
tions 2-3). Aitchison (1986) suggested a logistic transformation on a multearcamal variable
to get values which correspond to points on the probabilistic simplex. He daliled “logistic
normal” distribution.

The logistic normal (LN) distribution maps @ — 1)-dimensional multivariate Gaussian to a
distribution on thed-dimensional probability simplexX,(z,...,zy) € RY:z >0, zid:lzi =1}, as
follows:

1. Drawn = (n1,...,Nd-1) from a multivariate Gaussian with megrand covariance matrix.
2. Letng =0.

3. Forie{1,...,d}, let:
expni

Z=—g——.
2 j=1€XPN;j

Drawing from a(d — 1)-dimensional Gaussian preserves identifiabilitgt-dimensional Gaussian
would have an extra degree of freedom, allowing more than one outcomt®déad to the same
For probabilistic grammars, we define one LN distribution per multinomial. Thissga/prior
over eacly that permits covariance amor@ 1, . . ., Ok n,)-
Blei and Lafferty (2006) and Ahmed and Xing (2007) successfullyglike LN distribution for
topic models, extending the latent Dirichlet allocation model (Blei et al., 2008)Cohen et al.
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i = {12367:9 = { lu1, liz li, }
o = {11236} = { l21, lap, }
Iz = {1:457} = { l31, la, } prt. struct.8
In = {12 = { law, }
N Jo Jk
n. = (Nu1,N12, N1.3,N14,N15 N6, N17.N18,N1ey) ~ Normalpy, ;)
N2 = (N21,N22, N23,N24,N25,N2.,) ~  Normaly,, 22) samplen
N = (N31,N32,N33,N34, N35,MN36,N3/¢5) ~ Normal(ys, Z3)
Na = (Na1,Nag,) ~ Normally, Z4)
ﬁl = %mll+ﬂzl+ﬂ4b N12+N22+N42)
N2 = 3(N13+N23+N31, N14a+N24+N32, N15+N25+N33, combinen
) N16+N26+N34)
ls = 3(N17+N35 Nig+Nse Nig+N37)
6 = (expiiy) / 3}, expiia,
08, = (expiiy) / zi’\,'ilexpﬁz,i/ softmax
B = (eXpﬁs)/Zr/‘ileXpﬁsy

Figure 3: An example of a shared logistic normal distribution, illustrating Defl &+ 4 experts are
used to samplK = 3 multinomials)L; =3,L, =2,L3=2,L4=1,/1=9,(,=6,(3=7,
ly=2,N;1=2,Np =4, andN3 = 3. From top to bottom: the partition structuyelescribes
I which tell how segment a normal expert into parts which are matched to multinomials
(“prt. struct. 8”). Each normal expert is sampled from a multivariate normal (“sample
n"), and then matched and averaged according to the partition strctunalffnen”).

The final step is exponentiating and normalizipgo get® (“softmax”). This figure is
best viewed in color.

(2008), we demonstrated how the LN distribution is an effective alternéditee Dirichlet for
probabilistic dependency grammar induction in the Bayesian setting.

We note that the family of logistic normal distributions and the family of Dirichlet itistions
are very different from each another. One cannot find two distribsitimmm each class which are
arbitrary close to each other in any meaningful sense. However, iteeahdwn (Aitchison, 1986)
that given a Dirichlet distribution with very large, we can find a logistic normal distribution such
that the KL-divergence between the Dirichlet distribution and logistic nodisaiibution is small.

3.3 Sharing Across Multinomials

The LN distribution has an inherent limitation when we consider probabilistic lmadade up
of more than one multinomial distribution, such as probabilistic grammars. Each omiéhis
drawn separately from an independent Gaussian, so that covadanaanly be imposed among
events competing within one multinomial, not across multinomials. With the DMV, fomela
the probability of a past-tense verb (VBD) having a noun as a right child treiginelate with the
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probability that other kinds of verbs (VBZ, VBN, etc.) have a noun asla ggild. This correlation
cannot be captured by the LN distribution, because the VBZ and VBN r@n{zaare represented
using their own multinomials over children, unrelated to that of VBD as a parent.

One way to mend this limitation is to define a single Gaussian bvér SK_; Ny variables
with oneN x N covariance matrix. Then, instead of applying the logistic transformation to the
whole vector as a single multinomial, we can apply it to subvectors to get disjoiltinoraials.
When learning, the large covariance matrix captures correlations bebddlgairs of events in all
multinomials. The induced distribution is called tpartitionedlogistic normal (PLN) distribution.

It is a generalization of the LN distribution (see Aitchison, 1986).

In practice, creating a covariance matrix of side< N is likely to be too expensive. DMV,
for example, ha®(t?) weights for a part-of-speech vocabulary of sizeequiring a very large
multivariate normal distribution witlD(t*) covariance parameters.

To solve this problem, we suggest a refinement of the class of PLN distrilsutimstead of
using a single normal vector for all of the multinomials, we use several norewabrs, partition
each one and theecombingparts which correspond to the same multinomial, as an average. Next,
we apply the logistic transformation on the mixed vectors (each of which is tigroistributed
as well). Figure 3 gives an example of a non-trivial case of using a S&itition, where three
multinomials are generated from four normal experts.

We now formalize this notion. For a natural numid&érwe denote by N the set{1,...,N}.
For a vector inv € RN and a set C 1:N, we denote by, the vector created from by using the
coordinates in. Recall thaK is the number of multinomials in the probabilistic grammar, &lpd
is the number of events in theh multinomial. We define a shared logistic normal distribution with
N “experts” over a collection ok multinomial distributions:

Definition 1 Letn, ~ Normal,,2,) be a set of multivariate normal variables fornl:N, where
the length ofn, is denoted(,,. Let |, = {In_,j}?”zl be a partition ofl:/, into L, sets, such that
"dnj=1¢nand hjNlyjy=0for j # j'. Let X for k € 1:K be a collection of (disjoint) sub-
sets of{lnj | n€ LN, j € Ly, [Inj| = N¢}, such that all sets inJare of the same size N Let
Nk = ‘Jlk| S e Mo and6y; = exp(fix;) /z,,exp(r]kv) We then say distributes according to

the shared Ioglstlc normal distributiowith partition structureS = ({In}N_;, {J}{_,) and normal
experts{ (i, Zn)}\_; and denote it bp ~ SLN(l, %, 8).

The partitioned LN distribution in Aitchison (1986) can be formulated as aeshiaN distribu-
tion whereN = 1. The LN collection presented in Section 3.2 is the special case Wherk, each
Ln = 1, each¥y = Ny, and eacld = {Ix1}.

We note that there is an issue with identifiability that we need to resolve with Slthbdisons,
as with the LN distribution. It is required that for all multinomials, we set the fiedtie of the
samples from the normal expert to 0. For simplicity, we did not include it explititefinition 1,
because this can be achieved by setting the normal expert's mean anttearédues to O in the
first index of each normal exper{1 = O for all n).

The covariance among arbitraby; is not defined directly; it is implied by the definition of
the normal expertsy, ., for eachlnj € J. We note that a SLN can be represented as a PLN by
relying on the distributivity of the covariance operator, and merging all #rétjpn structure into
one (perhaps sparse) covariance matrix. SLNs, in that case, eapieesubset of PLNs with a
factored structure on the covariance matrices.
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It is convenient to think of each; j; as a weight associated with a unique event’s probability,
a certain outcome of a certain multinomial in the probabilistic grammar. By letting eliftey; ;
covary with each other, we strengthen the relationships arfippgnd permit learning of the one
to affect the learning of the other. Definition 1 also implies that we multiply séveu#tinomials
together in a product-of-experts style (Hinton, 1999), because thenexpial of an average of
normals becomes a product of (unnormalized) probabilities.

We note that the partition structure is a hyperparameter. In our experintaarispdes domain
knowledge about the languages we experiment with (Section 5.3). Wed#tilievs a key advantage
of SLN in this setting: marrying the notions of prior knowledge and a Bayqwi@mn. The beliefs
of the model about a language can be encoded into a distribution overrdragtars. We leave for
future work the discovery of partition structure during the learning mece

3.4 Local Log-Linear Models over Parameters

We give now another interpretation of the shared logistic normal prior @siegture representation,
which is related to recent work by Berg-Kirkpatrick et al. (2010). Ahabilistic grammar with a
shared logistic normal prior can be thought of as a probabilistic grammarevthe grammar’s
parameters are themselves modeled using a local log-linear model with a@Bgussr over the
weights of this log-linear model. L& be a multinomial in the collection of multinomials for a
probabilistic grammar. Then, according to Definition 1 we have:

Ok =

wheren is a vector of Iengtt‘[ﬁzlﬁn, a concatenation of all normal experts, apd) is a feature
vector, again of lengtly\_, £n, which is divided into subvectoig (i) each of lengtttn. gknj(i) =
1/|J| if the ith event in thekth multinomial uses théth coordinate of thath normal expert—that
is, there exists afy, € InNJk such thatj € I,,, (according to Definition 1)—and 0 otherwise. The
termZy(n) is a normalization constant of the form:

Z(n) = ZeXp(gk(i’>-n)-

Note that the features in the local log-linear model refer tohyygerparametersf the SLN,
more specifically, the partition structure. They do not refer to the obdeatata or the latent struc-
tural elements in the probabilistic grammar. These features have a Gaussiaver them, repre-
sented by the normal experts’ mean values and covariance majraedY). In that case, the Gaus-
sian prior which we optimize during inference using empirical Bayes (Sedjican be thought of
as a quadratic penalty on the local log-linear weights. We note that in maest rathe literature,
Gaussian priors (dr, regularizers) are used with mean value 0 and a uniform diagonal coearia
matrix, in order to push feature weights to values close to 0. This is not teengdsour model.

Berg-Kirkpatrick et al. (2010) used the idea of local log-linear modelséveral natural lan-
guage processing tasks, including dependency grammar induction draf-ppeech tagging. In-
stead of using features that are based on a Gaussian prior, theyseteaf ardinary binary features,
which describe relationships between different parameters in a similar vilag tmes presented in
Section 5.3.
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4. Inference and Learning

Having defined a family of probability models over grammars, we now consigeproblem of
inferring posterior distributions under this model. We first consider imiezeovery, then overo,
then learning the parameters of the distribution over grammars in an empirigegiBa framework.

4.1 Decoding: Inferringy

Classical statistical approaches to language processing normally asstimetts (here, sentences
x) are independently and identically distributed. Decoding is the problemarfsihg an analysis
(here, grammatical derivatioy) given the input. Most commonly this is accomplished by choosing
the most probable analysis:

y* =argmaxp(y | x,6,G) = argmaxp(x,y | 6,G). (7)
y y

This is commonly called “Viterbi” decoding, referring to the algorithm that agglishes the maxi-
mization for hidden Markov models. An alternative is to choose the analysimihanizesrisk, or
the expectation (under the model) of a cost function. Let(gogt) denote the nonnegative cost of
choosing analysig when the correct analysisys.

y = argyrnaﬂEp(‘\x@,G)cosw, )= argymaxz p(y' | x,8,G) costy,y’).
y

This is known as minimum Bayes risk (MBR) decodih§or dependency parsing, the cost function
counts the number of words attached to the wrong parent.

Decoding is a crucial step in evaluation of models of natural languagécaliypfor supervised
and unsupervised models, decoding output is compared to expert humetatd gold standard
analyses, providing an objective measure of the quality of the learned .nBmt practice measures
quality on new test data unseen during training, to test the generalization albilitg learned
model. This is an attractive approach to evaluating the quality of unsupéiywisduced grammars.

In the Bayesian setting, decoding might be accomplished using the postegiodearivations,
marginalizing out the unknown grammar weights. For model |, Viterbi degpaiould correspond
to:

y* =argmaxp(y |a,G) = argmax/ p(6|a,G)p(x,y | 6,G) db. (8)
y y

Unfortunately, there is no closed-form solution for the integral in Equaiaand findingy* is
intractable. We therefore have to resort to approximate inference (8ecfp. Model Il creates
dependence among the derivations of the different sentences in thiegrsén, requiring a different
inference procedure.

In this work, we consider three decoding techniques. The first takeinagstimate oB and
applies Viterbi decoding (Equation 7). The point estimate is derived usoigigues discussed
below. After estimating th@ (and theX), we use the logistic transformation @nto obtain this
point estimate for Viterbi decoding. Recall that for the DMV, decoding loaraccomplished in
cubic time using dynamic programming (Section 2.2).

4. In some cases, decoding selects only certain salient aspects ofaidey such as the derived tree corresponding to
a tree adjoining grammar&erivationtree. In such cases, Viterbi and/or MBR decoding may require appations.
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The second approach makes use of the same point estintaterdy with MBR decoding, as de-
scribed above. The loss function we use is dependency attachmanfartbe task of dependency
grammar induction. MBR decoding in this case works as follows: uBiagd the inside-outside
algorithm, we compute the posterior probability of each dependency attatkdirexcted edge in
the graph) being present in the grammatical derivation for the sentehea, We find the tree with
the largest score, the score being the sum of the posterior probabilittexlofedge present in the
tree.

Neither Viterbi nor MBR decoding uses the entire distribution over gramméaghige In the
LN case, for example, the covariance maftixs ignored. We suggest “committee decoding,” in
which a set of randomly sampled grammar weights are drawn for each sentebe parsed. The
weights are drawn from the learned distribution over grammar weightsmesesized by andx
in the LN case. Viterbi or MBR decoding can then be applied. Note that tlsisdileg mechanism
is randomized: we sample a grammar per sentence, and use it to decodppWihis decoding
mechanism ten times, and average performance. This decoding methodcigvattsacause it has
generalization error guarantees: in a PAC-Bayesian framework, ibeahown that the error of
committee parsing on the sample given should be close to the expected ee@dsger, 2002;
McAllester, 2003; Banerjee, 2006).

4.2 Variational Inference with Logistic Normal Distributions

The lack of conjugacy of the logistic normal distribution to the multinomial family corapdis the
inference of distributions oveéy and distributions over the hidden derivationsom the probabilis-
tic grammar, given a sequence of observed senteqces xy.

Mimno et al. (2008) explored inference with the logistic normal distribution gus@ampling
with an auxiliary variable method. However, sampling is notoriously slow to @g®; especially
with complicated structures such as grammatical derivations. The algorithmadvetral. suggest
is also rather complicated, while alternatives, such as mean-field variaitibe@nce (Wainwright
and Jordan, 2008), offer faster convergence and a more intuitivécsoto the problem of non-
conjugacy of the logistic normal distribution.

Variational inference algorithms have been successfully applied to ggiammar and syntax
learning tasks (Kurihara and Sato, 2006; Liang et al., 2007; Headdén 2009; Boyd-Graber and
Blei, 2010; Cohen et al., 201hter alia). We give the full technical details of mean-field variational
inference for probabilistic grammars with logistic normal priors in Appendiai®g] turn to give a
brief overview of the main technical details next, under the simplifying assumgieat we have a
single observation.

Mean-field variational inference in the Bayesian setting relies on two pehajproximations:
the first approximation is done to the marginalized log-likelihood. Using J&nsayuality and
an auxiliary distributiong(0,y), later to be used as our approximate posterior, we bound the log-
likelihood, marginalizing out the parameters and the hidden derivations irrdnengar:

log [ 3 p(x.y.0| i%,8.G) dO > Eqllogp(x.y.0| 1 %.8.G)] (©)
y
The goal of the approximation in Equation 9 is to derive a bound which is optimizth

respect tay, instead of optimizing the marginalized log-likelihood, which is intractaflgerves as
our approximate posterior.
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The bound in Equation 9 requires further approximation, the mean-fielebepation, to be
tractable. This mean-field approximation states ¢fi@ty) is factorized and has the following form:

ae,y) =q()a(y).

The variational distributionsg(6) andq(y) can take an arbitrary form, as long as the bound in
Equation 9 can be efficiently maximized with respect to these variational disriisu For the
case of logistic normal priors, an additional approximation will be necegsdiirst-order Taylor
approximation to the log of the normalization of the logistic normal distribution)abse of the lack
of conjugacy of the logistic normal priors to the multinomial family (see AppendiX/Be show in
Appendix B that even thoug)y) can have an arbitrary form, in order to maximize the variational
bound it needs to have the form of a probabilistic grammar, dominated byahenar’s variational
parameters. This makes inference applicable through the use of an asggige algorithm with a
weighted grammar of the same form as the original model. The mean-fieldxapgation yields
an elegant algorithm, which looks similar to the Expectation-Maximization algori8eut{on 2.3),
alternating between optimizing the bound in Equation 9 with respegt@pand with respect to

aly).

4.3 Variational EM

The variational inference algorithm in Section 4.2 assumes thaji ued >~ are fixed. We are
interested in obtaining aestimatefor pandz, so that we can fit the data and then use the learned
model as described in Section 4.1 to decode new data (e.g., the test seteixpetiments). To
achieve this, we will use the above variational method within an EM algorithmetstahatesu
andZX in empirical Bayes fashion. (For Viterbi and MBR decoding, we then estidaigy, the
mean of the learned prior; see Section 4.1.) In the E-step, we maximize thd tdthnrespect

to the variational parameters using coordinate ascent as in Section 4.ptvidé&ze each of these
separately in turn, cycling through them, using appropriate optimization algwifbr each. In the
M-step, we apply maximum likelihood estimation with respeqt tmdZ given sufficient statistics
gathered from the variational parameters in the E-step. Appendix Gloesthe algorithm in full.

5. Experiments

We applied our modeling framework to unsupervised learning of the depegpdanodel discussed
in Section 2.2. We consider four scenarios:

1. (Section 5.1) Experiments with dependency grammar induction for Enghsluseng the
logistic normal distribution.

2. (Section 5.2) Experiments with text in five additional languages: Chifestjguese, Turk-
ish, Czech, and Japanese.

3. (Section 5.3) Experiments with the shared logistic normal distribution for fyargmeters
which correspond to the same coarse part-of-speech tag (Englishg®ese, and Turkish).

4. (Section 5.4) Experiments with the shared logistic normal distributidsilimgual settings
(English, Portuguese, and Turkish).
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attachment accuracy (%)
Viterbi decoding MBR decoding Committee decoding
<10 <20 all <10 <20 al <10 <20 all

MLE 458 | 39.1| 34.2|| 46.1| 39.9| 35.9 *
Dirichlet-1 459| 394|349 46.1| 40.6| 36.9 *
LN-I, Zl(f)) =1 | 56.5| 42.9| 36.6| 58.4| 45.2| 39.5| 56.4c001 | 42.3:001 | 36.2-001
LN-I, families 59.3| 45.1| 39.0 59.4| 459 40.5 56.3:t01 41.3.01 34.9:.005
LN-IL 2% =1 | 26.1| 24.0 228 27.9| 26.1| 25.3| 22.0.0| 20.1e0z| 19.L.02
LN-1I, families | 24.9| 21.0| 19.2| 26.3| 22.8| 21.5| 26.6-003 | 22.7:.003 | 20.8: 0006

Table 1: Attachment accuracy of different learning methods on unseeateta from the Penn Tree-
bank of varying levels of difficulty imposed through a length filter. MLE is jgrogluction
of an earlier result using EM (Klein and Manning, 2004). LN-I and Lildnote using the
logistic normal with model | and model Il (Figure 2), respectively. Committezding
includes ten averaged runs. Numbers in small font denote variancelts|asold denote
best results in a column. Training is done on sentences of lendi®, though testing is
done on longer sentences as well.

5.1 English Text

We begin our experiments with th¥all Street JournaPenn treebank (Marcus et al., 1993). Fol-
lowing standard practice, sentences were stripped of words and ptinotueaving part-of-speech
tags for the unsupervised induction of dependency structure. We djéntkhis setting, using gold
standard part-of-speech tags as the input to the learning algorithm is cofiheonand Manning,
2004; Smith and Eisner, 2006; Spitkovsky et al., 2010b,a; Gillenwater €04l0,inter alia).

We train on §2-21, tune on 8§22 (without using annotations), and repaitriésults on §23.
Details of this data set (and others) are found in Table 2. Unsuperveadhty for these data sets
can be costly, and requires iteratively running a cubic-time inside-outsidentic programming
algorithm, so we follow Klein and Manning (2004) in restricting the training seetaences of ten
or fewer words in length. Short sentences are also less structurally @ooisignd may therefore be
easier to learn from.

To evaluate the performance of our models, we report the fraction alsmwhose predicted
parent matches the gold standard annotation in the tre€ba@ihls performance measure is known
asattachment accuracyWe will report attachment accuracy on three subsets of the test corpus
sentences of lengtkt 10 (typically reported in prior work and most similar to the training data
set), length< 20, and the full test corpus. We considered the three decoding methotismeel in
Section 4.1. For MBR decoding, we use the number of dependency attacbmars as the loss
function. This means that at decoding time, we minimize the expected numberabiraétat errors
according to the prediction of the estimated model. Because committee decodirandoaized

algorithm, we run it ten times on the unseen data, and then average the elepeattachment
accuracy.

5. The Penn Treebank’s phrase-structure annotations were temhterdependencies using the head rules of Yamada
and Matsumoto, which are very similar to the ones by Collins (1999) hekwww.jaist.ac.jp/ ~h-yamada .
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Initialization is important for all conditions, because likelihood and our vamatfitoound are
non-concave functions. For the values of the multinomi@iswe use the harmonic initializer from
Klein and Manning (2004). It estimat@sising soft counts on the training data where, imdength
sentence, (i) each word is counted as the sentence’s%t‘emdas, and (ii) each worg attaches to
X;j proportional tdi — j| =1, normalized to a single attachment per word. This initializer is used with
MLE and Dirichlet-I (“I” stands for model | from Figure 2). In the caskLdN-I and LN-II, it is
used as an initializer both farand inside the E-step.

For learning with the logistic normal prior, we consider two initializations of theadance
matrices>k. The first is theNk x Nk identity matrix. We then tried to bias the solution by injecting
prior knowledge about the part-of-speech tags. To do that, we manugllyadahe tag set (34 tags)
to twelve disjoint tag “families.” These are simply coarser tags: adjectiwerhgdconjunction, for-
eign, interjection, noun, number, particle, preposition, pronoun, prepeh. The coarse tags were
chosen to loosely account for the part-of-speech tag sets of seedamies in different languages.
The mapping from fine-grained tags to coarser tags are based on titatésmguidelines of the rel-
evant treebank. This mapping into families provides the basis for an initializatiive covariance
matrices for the dependency distributions: 1 on the diagonalh&ween probabilities of possible
child tags that belong to the same family, and 0 elsewhere. These resulenatedi“families” and
are compared to the identity matrix as an initializer.

We compared several models, where learning is accomplished usindi¢raipEM: MLE,
standard maximum-likelihood estimation using EM; Dirichlet-l, a common baseline litghagure
which uses a Dirichlet prior together with variational EM; and LN-I (LN-l& model with the
logistic normal distribution using model | (model 11). In all cases, we eitluer the (variational)
EM algorithm until convergence of the log-likelihood (or its bound) or un# tbg-likelihood on
an unannotated development set of sentences does not increase.

We note that on the full test set, attaching each word to the word on its rigtia€h-Right”)
achieves about 30% accuracy, and attaching each word to the word l&ft i{$Attach-Left”)
achieves about 20% accuracy.

Table 1 shows the experimental results. Note that there are two variants ednsistently
get lower performance than their counterparts: using model Il (varsug model 1) and using
committee decoding instead of Viterbi or MBR decoding. This suggests thebtiagiance matrices
play a useful role during the learning process, but are not informathen performing decoding,
since they are not used by Viterbi and MBR decoding. Interestingly, Smdtcésner (2006) report
a similar result forstructurally biasedDMV—a model that includes a parameter to control the
length of the decoded dependencies. Their bias parameter is usefduoinly the learning process,
but never during decoding. In general, the logistic normal distribution witdehboutperforms
substantially the baselines. It is interesting to note that LN-I outperformsHetit and MLE even
when using identity covariance matrices for initialization. The reason coulthdéact that the
logistic normal distribution, even when permitting only just diagonal covadanatrices (the case
with identity covariance matrix initialization is weaker—we only initialize with diagonalrines)
allows to model the variance directly in the parameters. This is not possible witBitichlet
distribution.

When we tested model Il and committee decoding on other languages, thepante decrease
was consistent. For the rest of the experiments, we report only MBRo@ssibly Viterbi) decoding
results using model I. The reason for the underperformance of mioclild be the small number
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language | tag set training development test baselines

tokens  sent| tokens sent| tokens sent| A-R | A-L
English 34| 55340 7179 35021 1700 49363 2416/ 30.2| 20.4
Chinese 34| 27357 4775 5824 350 7007 348| 32.9| 9.7
Portuguese 21| 15976 2477 14558 907, 5009 288| 25.9| 31.1
Turkish 29 | 18873 4497 7812 500| 6288 623| 68.2| 4.3
Czech 47 | 67756 10674 32647 2535 33147 2535 24.4| 28.3
Japanese 74| 39121 10300 14666 1700/ 13648 1700/ 66.4 | 13.4

Table 2: Information about the data sets used in this paper. “Tag set’sstanthe size of the
part-of-speech tag set. Train, development and test columns showrttteenof tokens
and number of sentences in each data set. The training set consistseoicesrof length
ten or less, as described in the text. The development set and the testsgtthve any
length restriction. The development set includes unannotated set oficesifeom the re-
spective language. A-R (A-L) stands for Attach-Right (Attach-Left)ich are attachment
accuracy baselines on the test set for all sentences. See text fitg.deta

of parameters which is defined by the model. This small set of parametersta@apture well the
nuances across sentences in the data.

5.2 Additional Languages

Following Section 5.1, we experiment with other languages: Chinese, Peseglurkish, Czech
and Japanese.

e For Chinese, we used the Chinese treebank (Xue et al., 2004). We tr&t-270, use
8§301-1151 for development and test on §271-300.

e For Portuguese, we used the Bosque treebank (Afonso et al., 2082}te CoNLL shared
task in 2006 (Buchholz and Marsi, 2006).

e For Turkish, we used the METU-Sabanci treebank (Atalay et al., 2008zer et al., 2003)
from the CoNLL shared task in 2006.

e For Czech, we used the Prague treebank Hsfjial., 2000) from the CoNLL shared task in
2007 (Nivre et al., 2007).

e For Japanese, we used the VERBMOBIL Treebank for Japanes@a{and Bartels, 2000)
from the CoNLL shared task in 2006.

Whenever using CoNLL shared task data, we used the first 80% of thelidé&ributed in the shared
task for training, and the rest was divided equally for development atidge Table 2 gives statis-
tics about the data sets used with the performance of the Attach-Right arahAg# baselines

given for the whole test data. As in the case for English, sentencessiv@ped of words and

punctuation, leaving part-of-speech tags for the unsupervised induztidependency structure.
All learning algorithms were run on sentences of length ten words or lesg. tNat strong perfor-

mance is achieved for Turkish and Japanese by the Attach-Right baseline
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Results of running the different learning algorithms are given in Figurbld@te that for Por-
tuguese, the difference is much smaller between the EM baselines and logrstial variational
EM when only short sentences are considered, but there is a widésrdapger sentences; the LN
models appear to generalize better to longer sentences. For Turkishthmdroatperforms Attach-
Right, but there is still a big gap between variational EM with the logistic norntliaa other EM
baselines. The case is similar for Japanese, though logistic normal dipesfoum the Attach-
Right baselines for shorter sentences. For Czech, it seems like DiraaideEM do somewhat
better than the logistic normal prior, but performance of all four methodes$eclt is conceivable
that the approximation inherent in a projective syntax representationsf@zbch sentences (whose
gold-standard analyses have a relatively large fraction of nonpngesttipendencies) interacts with
different models in different ways.

In general, the covariance matrices learned when initializing with the identigriemce matrix
are rather sparse, but there is a high degree of variability across gandigfor the variance values
learned). For the DMV, when using an identity initializer, diagonal matriceste local optimum
that is reached by the variational EM algorithm. When initializing the covariarateices with the
tag families initializer, the learned matrices are still rather sparse, but theyahavger number of
significant correlations (for Portuguese, for example, usintgat for testing the significance of the
correlation, we found that 0.3% of the values in the covariance matricesdnaiticant correlationy.

5.3 SLN with Nouns, Verbs, and Adjectives

We now turn to experiments where the partition structure lets parameters acuttthomials co-
vary, making use of the expressive power of the shared logistic noristebdtion. We use a few
simple heuristics to decide which partition structdréo use. Our heuristics rely mainly on the
centrality of content words: nouns, verbs, and adjectives. For deainghe English treebank, the
most common attachment errors (with the LN prior) happen with a noun (2m08&o)yerb (16.9%)
parent. The fact that the most common errors happen with these attachesetisfrom nouns and
verbs being the most common parents in most of the data sets we experimented with

Following this observation, we compare four different settings in our x@ats (all SLN
settings include one normal expert for each multinomial on its own, equivedehe regular LN
setting):

e TIEV: We add normal experts that tie all probabilities corresponding to a vedrant any
verbal parent, using the coarse tags of Cohen et al., 2008, betthe set of part-of-speech tags
that belong to the verb category. For each direcfiofieft or right), the set of multinomials of
the form6.(- | v, D), for v e V, all share a normal expert. For each directidand each boolean
valueB of the predicate firgt-), the set of multinomials(- | v,D,B) for v € V share a normal
expert.

e TIEN: This is the same asI&EV, only for nominal parents.

6. We note that we also experimented with other languages, including Weime Arabic. We do not include these
results, because in these cases all methods, including MLE, Dirichletidd performed badly (though Dirichlet-
and MLE could do better than LN-I). We believe that for these languaged)MV is probably not the appropriate
model. Developing better grammatical models for these languages ind#y®scope of this paper.

7. However, it is interesting to note that most of the elements of the cocariaatrices were not exactly zero. For
example, 90% of the values in the covariance matrices were larger lusbsalue) than 3 x 105,

3036



COVARIANCE IN UNSUPERVISEDLEARNING OF PROBABILISTIC GRAMMARS

English Chinese
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Length <10 Length <20 Length <10 Length <20
Attachment accuracy Attachment accuracy
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Attachment accuracy Attachment accuracy
Czech Japanese
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] g
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Length <10 Length <20 Length <10 Length <20
Attachment accuracy Attachment accuracy

Figure 4: Attachment accuracy results for English (equivalent to Tahl€Hinese, Portuguese,
Turkish, Czech and Japanese. The decoding mechanism used is MBé&nd._for the
baselines: MLE (green, first column in each block); Dirichlet-1 (yellomgand column);

Legend for the methods in this paper: LNEI&O) =1 (blue, third column), and LN-I,
families initializer (red, fourth column).

e TIEV&N: Tie both verbs and nouns (in separate partitions). This is equivadé¢aking the union
of the partition structures of the above two settings.

e TIEA: This is the same asIEV, only for adjectival parents.
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English Portuguese Turkish
<10 <20 all || <10 <20 all || <10 <20 all
MLE 46.1] 39.9] 35.9]| 443 35.4[29.3| 35.6| 32.4]31.4
Dirichlet-l | 46.1| 40.6| 36.9| 43.8| 34.1|28.0| 38.6| 36.7|35.9
sz’):l 59.1| 45.9| 40.5| 45.6| 45.9| 46.5| 55.3| 47.2|44.0
families 59.4| 45.9| 40.5| 459| 44.0| 44.4|| 555| 47.6| 44.4
= | TIEV 60.2| 46.2| 40.0| 45.4| 43.7|445| 756.5| 48.7| 455
-t_"—; TIEN 60.2| 46.7| 40.9| 45.7| 44.3| 45.0|| 51.1| 43.7|41.2
5 | TIEV&N 61.3| 47.4| 41.4| 46.3| 44.6| 45.1|| 55.9| 48.2| 452
| o | TIEA 59.9| 45.8| 39.6| 45.4| 43.8| 44.6| 49.8| 43.2| 408
= § TIEV 62.1| 48.1| 42.2]| 45.2| 42.3]423| 56.7| T48.6| 45.1
2|2 | TEN 60.7| 46.9| 40.9| 45.7| 42.8| 42.9| 33.2| 29.8|28.7
£ § | TIEV&N 61.4| 47.8| 42.0| 46.3| 44.6| 45.1| 56.7| 49.2| 46.0
= | TIEA 62.1| 47.8| 41.8| 45.2| 42.7| 42.7|| 31.5| 284|275
< | TIEV 62.5| 48.3| 42.4]| 45.4| 43.2]43.7| 55.2| 47.3]44.0
2 | TIEN 61.0| 47.2| 41.2| 459| 439| 44.4| 45.1| 39.8|37.8
E TIEV&AN | 762.3| 48.3| T42.3| 46.7| 44.3| 446| 55.7| 48.7| 455
TIEA 762.3| 48.0| 42.1| 45.1| 43.2|43.7| 386| 34.0| 325

Table 3: Attachment accuracy of different monolingual tying models andgoiintying models in
varying levels of difficulty imposed through a length filter (Sections 5.3 angd Bno-
lingual results (Section 5.3) are described when the languages in botbltimencand the
row are identical (blocks on the diagonal). Results for MLE and Dirichketel identical
to Figure 4. Results foZl((o) =1 and families are identical to Table 1 and Figure 4. Each
block contains the results of tying one language with the other, specifyifigrpence for
the column language. Results in bold denote best results in a column, andstfigar&s
that are not significantly worse (binomial sign tgsk: 0.05).

Since learning a model with parameter tying can be computationally intensivéiysiveun
the inference algorithm without parameter tying, and then add parameterttythg rest of the
inference algorithm’s execution until convergence.

For the covariance matrices, we follow the setting described in Section 5.&aEbitreebank,
we divide the tags into twelve disjoint tag families. The covariance matricedlfdependency
distributions were initialized with 1 on the diagonal5etween tags which belong to the same
family, and O otherwise.

The results are given in the blocks on the diagonal of Table 3, where tigedges in the
columns and rows are identical. MBR decoding was used. For Englisle, #nersmall improve-
ments when adding the expressive power of SLN. The best resultslzieved when tying both
nouns and verbs together. Portuguese shows small benefits compastdrter sentences, and
when compared to the families-initialized LN-I model, but not the stronger ideiniifgplized LN-I
model. For Turkish, tying across multinomials hurts performance.
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5.4 Bilingual Experiments

Leveraging linguistic information from one language for the task of disanaligg another lan-

guage has received considerable attention (Dagan, 1991; Yar@wsky 2001; Hwa et al., 2005;
Smith and Smith, 2004; Snyder and Barzilay, 2008; Burkett and Klein,)2008ually such a set-

ting requires a parallel corpus or other annotated data that ties betwesenttflanguages. One
notable exception is Haghighi et al. (2008), where bilingual lexicong¥earned from non-parallel
monolingual corpora.

Our bilingual experiments use the data for English, Portuguese, angsiytko at a time),
which are not parallel corpora, to train parsers for two languagesitea jointly. Sharing infor-
mation between two models is accomplished by softly tying grammar weights in the tdenhid
grammars.

For each pair of languages, we first merge the models for these two Feghgtaking a union
of the multinomial families of each and the corresponding prior parametershéfleadd a normal
expert that ties between the parts of speech in the respective partitiotustsifor both grammars
together. Parts of speech are matched through the single coarse tag ss@ariple, with TEV, let
V =VEengUVpor be the set of part-of-speech tags which belong to the verb categoeitifier the
English or Portuguese treebank (to take an example). Then, we tie pamsfoetd| part-of-speech
tags inV. We tested this joint model for each ofelV, TIEN, TIEV&N, and TIEA. After running
the inference algorithm which learns the two models jointly, we use unseetodatd each learned
model separately.

We repeat the generative story specifically for the bilingual setting, ukagxample of TEV.
For each language, there are normal experts for all part-of-spagsh for the basic DMV. In
addition, there are normal experts, for each language, that combirteeogé part-of-speech tags
that belong to the verb category. Finally, there are normal experts,ddwit languagetogether
that combine together all part-of-speech tags that belong to the verlooategither language. For
each sentence in the corpus, the following two steps are conductedoas prabdel I): the normal
experts are sampled from the SLN distribution and combined into multinomials tmptedze the
DMV, a grammar derivation is sampled from the resulting DMV.

Table 3 presents the results for these experiments (blocks not on thaaiadinglish grammar
induction shows moderate gains when tied with Portuguese and strong gtiarntuvkish. Cohen
and Smith (2009) reported qualitatively similar results when English was tied wiihe€e. For
Portuguese, there is not much gain from tying it with other languages, hhbirgproves the per-
formance of the other two languages. In general, the table shows that wigndper selection of
pair of languages and multinomials to tie together, we can usually get improvewemthe LN
baselines and the technique is not harmful (cf. Turkish grammar inducitbrSkN, on its own).
We note that selection of the multinomials to tie encodes prior knowledge abdahtheages. This
knowledge simply requires being able to map fine-grained, treebankisgecat-of-speech tags to
coarse categories. In addition, bilingual learning with SLN does notireditext parsing at any
point, which is an expensive operation. The runtime of the variationalfcfsta sentence is still
cubic in the length ok, as in EM, so that the runtime of the variational E-step scales in the multi-
lingual case the same as it would be if we added an equivalent amountadghdae monolingual
case.

Since the experiments reported here were conducted, others, notablyn@ike et al. (2010)
and Spitkovsky et al. (2010b), have reported performance sumgass's, for some of the languages
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in our experiments. Differences in the experimental settings prevent dmagarisons. Some of
the improvements in dependency grammar induction are achieved becadeskrifjlues which are
orthogonal to ours, such as improvements in the underlying grammar (ircit€dV,; Headden
et al., 2009; Gillenwater et al., 2010), and those techniques could bgorated into the Bayesian
model we described. Others are somewhat different (e.g., Viterbi tgginin

6. Discussion

We have shown that modeling covariance among grammar weights within abprstimgram-
mar’s multinomial distributionsacrossits distributions, anécrossgrammars in two languages can
have benefits for learning dependency structure in an unsuperviggdal Bayesian framework.
This approach addresses one of the desiderata of Raiffa and $¢haié) for prior distributions,
“richness.” The empirical benefits of modeling covariance, we haveishare compelling.

We believe, however, that more remains to be done to incorporate prioidiingknowledge
into unsupervised grammar induction. Covariance structure is, penmmaiphie mostnterpretable
kind of prior knowledge about grammars that might be brought to bearanitey. The empir-
ical Bayesian paradigm explored here, and the use of variationabxpmations for coping with
non-conjugacy, will be important tools in future work that brings togeth@rknowledge and
unannotated data for grammar induction.

For natural language data, a direction for future work is to capturestléieguistic phenomena.
Here, background knowledge abounds: the entire field of theoretigalisitics has contributed
both descriptive facts about the structure of specific natural languaws general theories about
the way that structure is constrained. Viewing the logistic normal prior a$ logdinear models
(Section 3.4) is a first step towards encoding such prior knowledge. SitniBerg-Kirkpatrick
et al. (2010), it permits the use of arbitrary features in the parameteriz#ttbe grammar.

We note that our inference algorithm, described in detail in Appendix Bbeagasily adapted
to scenarios which do not necessarily use the multivariate normal distritagitre base distribu-
tion in the prior. The “softmax” can be applied to any multivariate sample to getirg p the
probability simplex—perhaps capturing other tendencies in the data thariacsme& The conve-
nience of performing such an extension depends on the ability to effigctiompute the moment
generating function of the distribution replacing the multivariate Gaussianhiolwcase we can
develop Equation 13 and proceed with optimizing the variational bound usmdigtribution.

7. Conclusion

In this paper we demonstrated the effectiveness of estimating probabilstioyars in a Bayesian
setting. We used the Bayesian setting to model covariance between therdifi@rameters of
probabilistic grammars. To model the covariance, we used the logistic noistrébution as a prior
over the grammar parameters. In addition, we extended the logistic normé#idistn to a new
family of distributions, in order to model covariance across the multinomial fam#yprobabilistic
grammar.

We proposed a variational inference algorithm for estimating the parantdtdrs probabilis-
tic grammar, providing a fast, parallelizai@nd deterministic alternative to MCMC methods to
approximate the posterior over derivations and grammar parameters.

8. We used a cluster running MapReduce (Dean and Ghemawat, 2Q@tfdaom inference when training our models.
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We experimented with grammar induction on six different languages, deratingtthe use-
fulness of our approach. Our experiments include a novel promising geitirwhich syntactic
trees are inferred in a bilingual setting that uses multilingual, non-paralipbca. Notably, our
approach tends to generalize better to longer sentences, despite Idamingrevious research)
on short sentences. The focus of the experiments was on depergiamegnar induction with
the dependency model with valence. Our choice of the DMV is motivated bfathehat it is a
widespread grammar for dependency grammar induction (Section 2.BJjngnas to tease apart
the problem of estimation of the grammar from the problem of deciding on timengaa structure.
Our inference algorithm, though, could be applied to any probabilistic grarivaiias an efficient
procedure, such as the inside-outside algorithm, for computing suffistetistics in the form of
expected counts of rule firing in grammar derivations.
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Appendix A. Notation

Table 4 gives a table of notation for symbols used throughout this paper.

Appendix B. Variational Inference with Logistic Normal Prior s

We give a derivation of a variational inference algorithm for model |, whthshared logistic normal
distribution as a prior. The derivation is based on the one given in BleLaffdrty (2006). The
derivation for model Il can be followed similarly, as explained below. Fodehd, we seek to
find an approximation posterior functigyin, ...,Ny, Y1, ---, ym) that maximizes a lower bound (the
negated variational free energy) on the log-likelihood, a bound whickhgged using Jensen’s
inequality (the following probability quantities should be understood as if wayas condition on
the grammaf):

M
> > logp(Xmy | K Z,8)
y

m=1

M N
> n; (;Eq logp(Nm; | K>Zi)] +Eq[log p(Xm, Ym | nm,8)1> +H(q). (10)

H(-) denotes the Shannon entropy.
We make a mean-field assumption, and assume that the posterior has the épftmwin

M

aiNg, - NwsY1, - YM) = rl Am(Nm: Ym), (11)

m=1
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symbol | description
« G grammar (for example, context-free grammar rules)
§ M number of observed sentences
e Xm mth observed sentence in the available data
g Ym inferred derivation grammatical structure gy
T 0 parameters of a probabilistic grammar
g K number of multinomials in the probabilistic grammar
c Nk size of thekth multinomial of the probabilistic grammar
o fii(x,y) | number of times théth event fires in théth multinomial in the derivations
andy
a hyperparameters for the Dirichlet prior of a probabilistic grammar
> covariance matrices for the (shared) logistic normal prior of a probabilistic
grammar
U mean values for the (shared) logistic normal prior of a probabilistic grammar
n values drawn from the Gaussians for (S)LN, before the logistic tramsfiion
) is applied
2 S partition structure for the shared logistic normal distribution
= N number of normal experts for the SLN
In length ofnth normal expert (SLN)
In partition of thenth normal expert into segments mapping to multinomial&in
(SLN)
Jk collection of segments of normal experts mappindtio multinomial in G
(SLN)
gm(8,y) | variational distribution which is used as an approximation posterior famthe
datum
E Fmk,i variational parameter for mean value of tile event in thekth for the mth
c_és datum
S | Omki | variational parameter for variance of titk event in thekth for themth datum
8 f~m,k,i expected count of thiegh event in thekth for themth datum
g Pmki | intermediate quantity aggregating variational parameters
Cmk variational parameter for the first-order Taylor approximation of LN'saia-
inator
Table 4: Table of notation symbols used in this paper.
where

N Ly

_ N7
Am(Nm, Ym) = (I!jliuCIm(ﬂm,k,l | Um,k,hcm,k,l)> X Gm(Ym),

anddm(Nmki | Fimki, 02,,;) is @ Gaussian with meamyk; and variancé?,, ;. Note that this means
that thevariational distributions have a diagonal matrix for their covariance structure. Thesmod
covariance matrices (the hyperparameersan still have covariance structure. This selection of
variational distributions makes inference much easier. The factorizeddbEquation 11 implies

the following identities:
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Eq [logp(Nm; | 1, Zi)] = Eq, [logp(Nm; | K, Zi)]

Eq[log p(Xm, Ym [ Nm, 8)] = Eqy, 109 P(Xm, Ym | Nm, S)],
N
M@ = S Hidm).

m=1

Letn¢, be an intermediate variable, denoting the average of the normal expertsagiear in
the partition structure and determine the value ofithevent in thekth multinomial of the grammar.
More formally, we define the vectaryf of lengthN to be:

1

C A

Nk = 777 Nrlej-
|Jk| |r_JZ€Jk !

Unfolding the expectation with respect ¢tg(ym) in the second term in Equation 10, while
recalling thatd, is a deterministic function of),, that averages different subvectors from the col-
lection of multinomials,,, according to the partition structuée we have that:

Eq, 109 P(Xm, Ym | Nm, S)]

K
= Eqoy(np) Z EiN:kl ZQm(ym) fici (Xm, Ym) 109 Omp; ]
K=1 v

f’m‘k,i
MK Ng

- Nk
=Equnm | D Z fmki (ﬂ%k,i —log > eXpﬂ%,k,i/)] ; (12)
| k=1i= i=1

where flm7k7i is the expected number of occurrences ofitheevent in distributiork, undergm(ym)-
With many kinds of probabilistic grammars, this quantity can be computed usingaamiypro-
gramming algorithm like the forward-backward or inside-outside algorithm.

The logarithm term in Equation 12 is problematic because of the expectationesjleat to
dm(Nm). We approximate it with a first-order Taylor expansion, introdudihg K more variational
parametergm, forme {1,.... M} andK € {1,...,K}:

N . 1 Nk
log expnS. i | <loglmk—1+ = expn® . .. (13)
<izl mKk,i m, Zm,k igl mkK,i

We note that the valugg y [exp(n%w)] can be calculated by evaluating the moment-generating

function of the normal distributiog(t) = Eq, 1 ) {exp(tn?nki,)} att = 1. We now have:
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Algorithm 1: Variational EM for probabilistic grammars with LN prior

Input : initial parameterst?), =9, training datax, and development daid
Output: learned parametefs =
t«1;
repeat
Call E-Step for each training example=ml, ..., M (Algorithm 2)
Call M-Step (Algorithm 3)
t—t+1,
until likelihood of held-out data, (' | E[u")]), decreases
return pt, =®

Eq,[109 P(Xm, Ym | Nm, S)]

K Nk 1
>E fmk Nmk,i —
LEA I I mk|

K Nkf I Z 1 Ny c (~m 2
ki | Pmki —109¢mk+1— exp| fmi k
k—1|21 e I " kai:l ki 2
Dk
K Nk

= k;i; fink i Omki

where we use again the properties of the shared logistic normal distributicelgron the partition
structures to define:

1
~C A ~
Mmk = 777 Hmyr I, ;
' ’\]k’ ,JZEJk "
1
~C \2 ~2
( m,k) éﬁ Z cjm,nl,,,--
Irj &k

Note the shorthandy; to denote an expression invoIvirpﬁ,”dC, andZ.
The final form of our bound i&:

K Ne
logp(x,y [ 1,2) (ZEq [log p(ni | H: Z) ) ( Zlfqu—'m) +H(q). (14)
k—ll

Using an EM-style algorithm, we will alternate between finding the maximigimp and the
maximizingq(y). Maximization with respect tqm(n,,) is not hard, becausgn) is parameterized.
The following lemma shows that fortunately, finding the maximizipgdym), which we did not
parameterize originally, is not hard either:

9. A tighter bound, based on a second-order approximation, wassedpn Ahmed and Xing (2007). We use a first-
order approximation for simplicity, similar to Blei and Lafferty (2006).
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Algorithm 2 : E-Step (subroutine for Algorithm 1)
repeat

optimize forpf;?k, k=1,...,K: use conjugate gradient descent with

B B o B
aﬁmki = ((Zlit 1))71)(‘11(: Y- um.,k))i - fm,k,i

+3 (fsn) p<uk;>

optimizec”fg)k, k=1,...,K: use Newton’s method for each coordinate (Withy; > 0)

with
Mk fki Finki+ 0
0B Zi((tﬂl) (Zi/—lfm,k,./>exp< ; ) .
aa%n.,k,i 2 20 mk 25%1’k’i

updatezr(;?k,Vk:

. Ni (5'(t) _)2
t ~(t K,
Zﬁn?k — i;exp (pfﬂ)kl + m2 i

updatetIJth]?k, vk:

t) ®) S (1) 1 N t) (N
ki < Pk — 1098 +1— =7 Z exp| oy +——°
’ {51 7 2

compute expected courﬁ%)k, k=1,...,K: use an inside-outside algorithm to re-estimate

expected countﬁ%i in weighted grammag(y) with weightse¥m ;
until B does not changge

Lemma 2 Let r(Ym | Xm, e‘f’m) denote the conditional distribution ovgg, givenx, defined as:

1 K Nk

Fm(Ym | Xmaeqj) = Zon(Gr) ﬂ[le)(p(q’m,k,i fmki (Xm, Ym))

where Z,({,,) is a normalization constant. Themy/m) = rm(Ym | Xm, €¥m) maximizes the bound
in Equation14.

Proof First note thaH (gm) = H (dm(Nm | Fm, Gm)) + H(Am(Ym)). This means that the terms we are
interested in maximizing from Equation 14 are the following, after plugginfyigy explicitly:

Am(Ym) Ym

K Nk
L= argmaxz Om(Ym) (kz Zi ki (Xm, Ym) q:'mk,i) +H (dm(ym))-
—1i=
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Algorithm 3: M-Step (subroutine for Algorithm 1)

Estimatep® and=V) using the following maximum likelihood closed-form solution:

M
0, 1 &~
Hii < Mnglp’mk,i
(t) 18 0 ~(t)\2 ) (t)
[Zk LJW_M ngl im0 )mci O+ Mg TRy
M M
t ~(t t ~(t
WS WY uss)
m=1 m=1

whereg; j = 1if i = j and 0 otherwise.

Then, note that:

L= arg(m)inDKL (Am(ym) || rm(Ym | Xm, €%m)), (15)
Om(Ym

whereDg denotes the KL divergence. To see that, combine the definition of KLgkvee with

the fact thatzE:1 zi'\il ki (6 Y)Omki — 109 Zm(Dp,) = 10grm(Ym | Xm, eﬂ’m) where lo@Zm(]) does
not depend ojm(Ym). Equation 15 is minimized wheag, = rp,. [ |

The above lemma demonstrates that the minimigifpm,) has the same form as the probabilis-
tic grammarG, only without having sum-to-one constraints on the weights (leading to thereelq
normalization constardm(J,,)). As in classic EM with probabilistic grammars, we never need to
representim(ym) explicitly; we need onlyfm, which can be calculated as expected feature values
underry(Ym | Xm, €¥m) using dynamic programming.

Variational inference for model Il is done similarly to model I. The main défere is that
instead of having variational parameters for eggfn,,), we have a single distributiog(n), and
the sufficient statistics from the inside-outside algorithm are used altogethgdede it during
variational inference.

Appendix C. Variational EM for Logistic-Normal Probabilisti ¢ Grammars

The algorithm for variational inference with probabilistic grammars using fiegigormal prior

is defined in Algorithms 1-3% Since the updates fcfrl((t) are fast, we perform them after each
optimization routine in the E-step (suppressed for clarity). There aretizangh parameters for
each training example, indexed by We denote byB the variational bound in Equation 14. Our
stopping criterion relies on the likelihood of a held-out set (Section 5) wspgnt estimate of the
model.

10. An implementation of the algorithm is availablehtip://www.ark.cs.cmu.edu/DAGEEM . For simplicity, we give
the vanilla logistic normal version of the algorithm in this appendix. The fulios requires a more careful indexing
and can be derived using the equations from Appendix B.
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