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Abstract
Probabilistic grammars offer great flexibility in modelingdiscrete sequential data like natural lan-
guage text. Their symbolic component is amenable to inspection by humans, while their proba-
bilistic component helps resolve ambiguity. They also permit the use of well-understood, general-
purpose learning algorithms. There has been an increased interest in using probabilistic grammars
in the Bayesian setting. To date, most of the literature has focused on using a Dirichlet prior. The
Dirichlet prior has several limitations, including that itcannot directly model covariance between
the probabilistic grammar’s parameters. Yet, various grammar parameters are expected to be cor-
related because the elements in language they represent share linguistic properties. In this paper,
we suggest an alternative to the Dirichlet prior, a family oflogistic normal distributions. We derive
an inference algorithm for this family of distributions andexperiment with the task of dependency
grammar induction, demonstrating performance improvements with our priors on a set of six tree-
banks in different natural languages. Our covariance framework permits soft parameter tying within
grammars andacrossgrammars for text in different languages, and we show empirical gains in a
novel learning setting using bilingual, non-parallel data.

Keywords: dependency grammar induction, variational inference, logistic normal distribution,
Bayesian inference

1. Introduction

One of the motivating applications for grammar induction, or unsupervised grammatical structure
discovery, is for the syntactic analysis of text data. Grammar induction, in that case, may lead to the
automatic acquisition of linguistic knowledge and the automatic construction of linguistic analyzers
for under-studied text domains and languages, without the costly construction of manually annotated
corpora. Grammar induction may also shed light on the cognitive process oflanguage acquisition
in humans.

When it comes to the problem of grammar induction from natural language data, a fruitful
research direction has built on the view of a grammar as a parameterized, generative process ex-
plaining the data (Pereira and Schabes, 1992; Carroll and Charniak, 1992; Chen, 1995; Klein and
Manning, 2002, 2004,inter alia). If the grammar is a probability model, then learning a grammar
means selecting a model from a prespecified modelfamily. In much prior work, the family is de-
fined as the set of probabilistic grammar for a fixed set of grammar rules, sothat grammar learning
amounts toparameter estimationfrom incomplete data: sentences in the language are yields of hid-
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den derivations from the grammar. Baker (1979) and Lari and Young (1990) describe how dynamic
programming (the “inside-outside” algorithm) can be used within an Expectation-Maximization al-
gorithm (Dempster et al., 1977) to estimate the grammar’s probabilities from a corpus of text, in the
context-free case.

Probabilistic grammars are attractive for several reasons. Like symbolic grammars, they are
amenable to inspection by humans, so that it is relatively easy to understand what tendencies the
model has captured if the underlying rules are understandable. Unlike purely symbolic grammars,
they model frequency and provide a mechanism for reasoning in the faceof ambiguity, which is
ubiquitous in natural language. Probabilistic grammars can be specialized (e.g., as hidden Markov
models for sequential structures) and generalized (e.g., as lexicalized grammars, as synchronous
models over tuples of strings, and as grammars in context-sensitive classes). Probabilistic gram-
mars are widely used to build models in natural language processing fromannotateddata, thus
allowing easy comparison between unsupervised and supervised techniques. NLP applications of
probabilistic grammars and their generalizations include parsing (Collins, 2003; Klein and Man-
ning, 2003; Charniak and Johnson, 2005), machine translation (Wu, 1997; Ding and Palmer, 2005;
Chiang, 2005), and question answering (Wang et al., 2007). Probabilistic grammars are probabilistic
models, so they permit the use of well-understood methods for learning.

Meanwhile, in machine learning, significant attention has recently been devoted to Bayesian
models. The attraction of Bayesian models is that they manage uncertainty in the face of learning
from incomplete data, while permitting the use of background knowledge, in theform of aprior over
models. This prior can be used to inject bias into a model. Such bias can be especially important
in cases where the sample size is not large or when the grammar is highly non-identifiable, two
scenarios that hold with grammar induction (see Cohen and Smith, 2010, for adiscussion of the
size of sample required for estimation of probabilistic grammars).

Bayesian methods have been applied to probabilistic grammars in various ways: specifying pri-
ors over the parameters of a PCFG (Johnson et al., 2007; Headden et al., 2009) as well as over
the statesin a PCFG (Finkel et al., 2007; Liang et al., 2007), and even over grammatical deriva-
tion structures larger than context-free production rules (Johnson et al., 2006; Cohn et al., 2009).
The challenge in Bayesian grammar learning is efficiently approximating probabilistic inference.
Variational approximations (Johnson, 2007; Kurihara and Sato, 2006)and randomized sampling
approximations (Johnson et al., 2006; Goldwater, 2006) are typically applied.

Much of the Bayesian literature and its application to probabilistic grammars has focused on
conjugate priorsin the form of Dirichlet distributions. Conjugate priors were introduced by Raiffa
and Schaifer (1961), who gave a desiderata for prior families, includinganalytical tractability. We
argue that the literature has focused on this desideratum only, ignoring expressive power and inter-
pretability. We begin by motivating the modeling ofcovarianceamong the probabilities of grammar
derivation events, and propose the use of logistic normal distributions (Aitchison, 1986; Blei and
Lafferty, 2006) over multinomials to build priors over grammars (Section 3). Our motivation re-
lies on the observation that various grammar parameters are expected to be correlated because of
the elements in language they represent share linguistic properties. Noting that grammars are built
out of a large collection of multinomials, we introducesharedlogistic normal distributions to al-
low arbitrary covariance among any grammar probabilities. We then describe efficient inference
techniques to support decoding and learning with (shared) logistic normalpriors over grammars
(Section 4), facing the challenge of non-conjugacy of the logistic normal prior to the multinomial
family. We experiment with probabilistic dependency grammar induction from data in six lan-
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guages, showing how the new approach performs compared to non-Bayesian alternatives as well as
more traditional Dirichlet prior-based alternatives (Section 5.1 and Section 5.2). We then demon-
strate that the approach can also be effective when learning frommultilingual, non-parallel text,
softly tying parameters across languages (Section 5.4).

The research results in this paper build on work previously reported by Cohen et al. (2008)
and Cohen and Smith (2009). Here we provide a more extensive discussion of the techniques,
connections to related work, a full derivation of the variational inference algorithms, and a larger
set of experiments on more data sets.

2. Probabilistic Grammars

We begin by discussing the general family of probabilistic grammars to which our methods are ap-
plicable. A probabilistic grammar defines a probability distribution over a certainkind of structured
object (a derivation of the underlying symbolic grammar) explained step-by-step as a stochastic
process. HMMs, for example, can be understood as a random walk through a probabilistic finite-
state network, with an output symbol sampled at each state. PCFGs generatephrase-structure trees
by recursively rewriting nonterminal symbols as sequences of “child” symbols (each itself either a
nonterminal symbol or a terminal symbol analogous to the emissions of an HMM). Our experiments
will consider a particular family of PCFGs that represent dependency structure (see Section 2.2).

Each step or emission of an HMM and each rewriting operation of a PCFG is conditionally
independent of the others given a single structural element (one HMM orPCFG state); this Markov
property permits efficient inference over derivations given a string.

In general, a probabilistic grammar defines the joint probability of a stringx and a grammatical
derivationy:1

p(x,y | θ) =
K

∏
k=1

Nk

∏
i=1

θ fk,i(x,y)
k,i = exp

K

∑
k=1

Nk

∑
i=1

fk,i(x,y) logθk,i , (1)

where fk,i is a function that “counts” the number of times thekth distribution’sith event occurs in
the derivation. The parametersθ are a collection ofK multinomials〈θ1, . . . ,θK〉, thekth of which
includesNk competing events. Lettingθk = 〈θk,1, . . . ,θk,Nk〉, eachθk,i is a probability, such that

∀k,∀i, θk,i ≥ 0, (2)

∀k,
Nk

∑
i=1

θk,i = 1. (3)

As is often the case in probabilistic modeling, there are different ways to carve up the random
variables. We can think ofx andy as correlated structure variables (oftenx is known ify is known),
or the derivation event countsf(x,y) = 〈 fk,i(x,y)〉1≤k≤K,1≤i≤Nk as an integer-vector random variable
(useful for variational inference, in Section 4). In this paper,x is always observable andy is hidden
until we use gold standard data for testing.

Note that there may be many derivationsy for a given stringx—perhaps even infinitely many
in some kinds of grammars. For HMMs, there are three kinds of multinomials: a starting state
multinomial, a transition multinomial per state and an emission multinomial per state. In that case
K = 2s+1, wheres is the number of states. The value ofNk depends on whether thekth multi-
nomial is the starting state multinomial (in which caseNk = s), transition multinomial (Nk = s) or

1. A table of notation can be found in Appendix A, Table 4, page 3042.
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emission multinomial (Nk = t, with t being the number of symbols in the HMM). For PCFGs, each
multinomial among theK multinomials correspond to a set ofNk context-free rules headed by the
same nonterminal.θk,i is then the probability of theith rule for thekth nonterminal.

The field of grammatical inference also includes algorithms and methods for learning thestruc-
ture of a (formal) language generator or grammar (Angluin, 1988; de la Higuera, 2005; Clark and
Thollard, 2004; Clark et al., 2008,inter alia). This paper is complementary, focusing on the esti-
mation of theweightsassigned to the grammar’s rules. The choice of using a fixed model family
corresponds to a choice to work in a statistical parametric setting; extensionsto nonparametric
settings are possible (Goldwater, 2006; Johnson et al., 2006; Cohen etal., 2010). We focus on
grammars which generate dependency structures for derivations. Dependency syntax is a popular
representation that has been found useful in a wide range of natural language applications, including
machine translation (Lin, 2004; Gimpel and Smith, 2009), question answering(Wang et al., 2007),
as well as deeper semantic processing tasks (Johansson and Nugues,2007; Das et al., 2010). The
grammars used in our experiments are extremely permissive, allowing every possible dependency
structure for a sentence (see Section 2.2).

2.1 Simple Example: Class-Based Unigram Model

It is helpful to keep in mind a simple model with a relatively small number of parameters such as a
class-based unigram model (Brown et al., 1990). Let the observed symbols inx range over words in
some language’s vocabularyΓ. Let each word tokenxi have an associated word class from a finite
setΛ, denotedyi ; theyi are all hidden. The derivation in this model is the sequence〈y1, . . . ,yn〉. The
probabilistic model consists of two parts:

1. For ally∈ Λ∪{stop}, θc(y) is the probability that the next word will be generated by classy.
θc(stop) is the stopping probability.

2. For ally∈ Λ and allx∈ Γ, θw(x | y) is the conditional probability that classy will generate
wordx.

In this simple model,K = 1+ |Λ|, N1 = |Λ|, and fork > 1, Nk = |Γ|. This model can be thought
of as a hidden Markov model with zero order, that is, it has no dependencies between the different
hidden states. In addition, if we place a Dirichlet prior on the grammar parameters θ (Section 3.1)
and treatθ as a latent variable sampled once per document, this model becomes equivalent to the
latent Dirichlet allocation model (Blei et al., 2003). (Ourθw is denotedβ in their notation.) In this
case, the derivation vectory corresponds to a set of topics selected for each word in the bag of words
representing the document.

2.2 Dependency Model with Valence

Dependency grammar (Tesnière, 1959) refers to linguistic theories that posit graphical representa-
tions of sentences in which words are vertices and the syntax is a directed tree. Such grammars
can be context-free or context-sensitive in power, and they can be madeprobabilistic (Gaifman,
1965). Dependency syntax is used in information extraction, machine translation, question answer-
ing, and other natural language processing applications. Our experiments perform unsupervised
induction of probabilistic dependency grammars using a model known as “dependency model with
valence” (Klein and Manning, 2004). The model is a probabilistic split headautomaton grammar
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y =

x = 〈$ DT NN IN DT NN VBD IN RBR IN CD NN〉

p(x,y | θ) = θc(VBD | $, r)× p(y(1) | VBD,θ)

p(y(1) | VBD,θ) = θs(¬stop| VBD, l, f)×θc(NN | VBD, l)× p(y(2) | NN,θ)
×θs(stop| VBD, l, t)×θs(¬stop| VBD, r, f)×θc(IN | VBD, r)

× p(y(4) | IN,θ)×θs(stop| VBD, r, t)

p(y(2) | NN,θ) = θs(¬stop| NN, l, f)×θc(DT | NN, l)×θs(stop| DT, r, f)

×θs(stop| DT, l, f)θc(IN | NN, r)× p(y(3) | IN,θ)
×θs(stop| IN, l, f)×θs(stop| NN, l, t)×θs(stop| NN, r, t)

p(y(3) | IN,θ) = θs(¬stop| IN, r, f)×θc(NN | IN, r)×θc(DT | NN, l)

×θs(stop| DT, r, f)×θs(stop| DT, l, f)

×θs(stop| NN, r, f)×θs(stop| NN, l, t)

p(y(4) | IN,θ) = θs(stop| IN, l, f)×θs(¬stop| IN, r, f)×θc(NN | IN, r)

×θs(stop| NN, r, f)×θs(¬stop| NN, l, f)×θc(RBR | NN, r)

×θs(stop| RBR, l, f)× p(y(5) | RBR,θ)

p(y(5) | RBR,θ) = θs(¬stop| RBR, r, f)×θc(IN | RBR, r)×θc(CD | IN, r)

×θs(stop| IN, l, f)×θs(stop| IN, r, t)×θs(stop| CD, r, f)

×θs(stop| CD, l, f)

Figure 1: An example of a dependency tree (derivationy). and its probability. The part-of-speech
tags NN, VBD, DT, CD, RBR, and IN denote noun, past-tense verb, determiner, number,
comparative adverb, and preposition, respectively, following Penn Treebank conventions.
We break the probability of the tree down into recursive parts, one per head word, marked
in blue(lighter). l, r, t, andf denote left, right, true, and false, respectively (see Equation
4).

(Alshawi and Buchsbaum, 1996) that renders inference cubic in the length of the sentence (Eisner,
1997). The language of the grammar is context-free, though our models are permissive and allow
the derivation of any string inΓ∗. This is a major point of departure between theoretical work in
grammatical inference and work on natural language text, particularly using probabilistic gram-
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mars; our goal is to induce a distribution over derivations so that the most likely derivations under
the model closely mimic those preferred by linguists (Smith and Eisner, 2005).

“Valence” here refers to the number of arguments controlled by the head of a phrase.2 In the
DMV, each word has a binomial distribution over whether it has at least oneleft child (similarly on
the right), and a geometric distribution over the number of further children (for each side).

Let x = 〈x1,x2, ...,xn〉 be a sentence (here, as in prior work, represented as a sequence ofpart-
of-speech tags).x0 is a special “wall” symbol, $, on the left of every sentence. A treey is defined by
a pair of functionsyleft andyright (both{0,1,2, ...,n}→ 2{1,2,...,n}) that map each word to its sets of
left and right dependents, respectively. Here, the graph is constrained to be aprojectivetree rooted
atx0 = $: each word except $ has a single parent, and there are no cycles or crossing dependencies.
yleft(0) is taken to be empty, andyright(0) contains the sentence’s single head. Lety(i) denote the
subtree rooted at positioni (i.e., y(i) is a tree consisting of all descendents ofxi in the treey). The
probabilityP(y(i) | xi ,θ) of generating this subtree, given its head wordxi , is defined recursively:

p(y(i) | xi ,θ) = ∏
D∈{left,right}

θs(stop| xi ,D, [yD(i) = /0]) (4)

× ∏
j∈yD(i)

θs(¬stop| xi ,D,firsty( j))×θc(x j | xi ,D)× p(y( j) | x j ,θ),

where firsty( j) is a predicate defined to be true iffx j is the closest child (on either side) to its parent
xi . The probability of the entire tree is given byp(x,y | θ) = p(y(0) | $,θ). The parametersθ are
the conditional multinomial distributionsθs(· | ·, ·, ·) andθc(· | ·, ·). To follow the general setting
of Equation 1, we index these distributions asθ1, ...,θK . Figure 1 shows a dependency tree and its
probability under this model (Equation 4).

Note that if all weightsθ are greater than zero, the model permitsanydependency tree overany
sentence inΓ∗. Hence the goal of grammar induction is to model thedistributionof derivations, not
to separate grammatical strings or derivations from ungrammatical ones.

Klein and Manning’s (2004) dependency model with valence is widely recognized as an effec-
tive probabilistic grammar for dependency grammar induction. Many recentstudies on dependency
grammar induction use it. For example, this model has been used to test estimation algorithms such
as Viterbi EM (Spitkovsky et al., 2010b), contrastive estimation (Smith and Eisner, 2005), and al-
gorithms which gradually introduce more data to the learning process (Spitkovsky et al., 2010a); it
has been used to test the efficacy of multilingual learning through dependency grammar induction
(Ganchev et al., 2009; Berg-Kirkpatrick and Klein, 2010); it has beenused as a base model that has
inspired more complex lexicalized models (Headden et al., 2009). The DMV has also been used
as a base model within various estimation techniques with the goal of improving its performance
by relying on other properties of language and text such as: dependencies between parameters in
the model (Berg-Kirkpatrick et al., 2010), sparsity (Gillenwater et al., 2010), preference for short
attachments (Smith and Eisner, 2006), and additional annotation offered byhypertext markup as
found on the Web (Spitkovsky et al., 2010c). In addition, the DMV is relatedto the head-outward
model used by Collins (2003) for supervised parsing; Collins’ parser isone of the best performing
parsers for English. In the rest of the paper, we assume we have a fixed grammarG for which we
estimate the parameters.

2. Here, we refer to “head of a phrase” as in the linguistic sense—the word in a phrase that determines the syntactic
category of this phrase.
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2.3 Parameter Estimation by Maximum Likelihood

In the original framework, Klein and Manning (2004) treated the DMV as a model on its own, and
also in combination with a model over bracketing structures called the “constituent-context model.”
Here we consider the DMV on its own as it is more capable of generalization and better exemplifies
probabilistic grammars.

Klein and Manning learned the DMV using maximum likelihood estimation, carried out by the
Expectation-Maximization (EM) algorithm. Because EM for probabilistic grammars has been well
documented elsewhere (Lari and Young, 1990; Pereira and Schabes, 1992; Carroll and Charniak,
1992), we only briefly mention that it proceeds by alternating between two steps that update the
model parameters. Letθ(t) denote their values at time stept.

1. E-step: For each training examplex, infer the posterior distributionp(y | x,θ(t),G) = p(x,y |
θ(t))/p(x | θ(t),G). This is accomplished by dynamic programming (for HMMs, the forward-
backward algorithm; for PCFGs, the inside-outside algorithm; for the DMV, an algorithm due
to Eisner, 1997), and the result is usually represented as a vector of derivation event expected
frequencies,〈Ep(·|x,θ(t),G) fk,i(x, ·)〉k,i.

2. M-step: Estimateθ(t+1) from the expected frequencies, as if they were observed frequencies.
Since the model is built out of multinomials, there is a closed form solution obtainedby
normalizing the frequencies.

It is helpful to consider the problem EM iterations aim to solve in its declarativeform, the
problem of maximizing likelihood:

max
θ

p(x | θ,G) = max
θ ∑

y
p(x,y | θ,G).

(In fact, EM only locally maximizes this function.) In the above, we suppress the collection of
sentences constituting the training data; to be precise, we should take a product of probabilities or a
sum of log-probabilities for all training examples:

max
θ

M

∏
m=1

∑
y

p(xm,y | θ,G).

In the Bayesian approach, we treatθ not as a set of parameters to be estimated, but rather as a
random event. This contrasts with earlier research that aims to bias the grammar learner with prior
information. Klein and Manning (2004), for example, biased the learner byinitializing EM with
a “harmonic” posterior over dependency attachments that preferred linking words that are closer
together in the string to more distant words. Smith and Eisner (2006) more explicitly biased EM by
manipulating the posterior calculated in the E-step with penalties for longer dependency attachments
or, in an alternative model that permitted disconnected graphs, for contiguity.

3. Bayesian Models over Grammars

An attractive way to incorporate prior knowledge about grammars is through a prior distribution
over the grammar’s probabilitiesθ. Priors are often used to obtainsmoothestimates; Smith (2006)
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Model I:

Form∈ {1, . . . ,M}:

1. Drawθm from the priorp(θ |G, . . .).

2. Draw(xm,ym) from p(xm,ym | θm,G).

Model II:

1. Drawθ from the priorp(θ |G, . . .).

2. Form∈ {1, . . . ,M}:

Draw (xm,ym) from p(xm,ym | θ,G).

Figure 2: Two variations on Bayesian modeling of probabilistic grammars.

explored symmetric Dirichlet priors in the DMV in a maximuma posterioriframework for learning
that can still be accomplished by EM:

max
θ

p(θ | α,G)
M

∏
m=1

∑
y

p(xm,y | θ,G), (5)

whereα denotes the parameters of the prior over grammars. EM is efficient whenp(θ | α,G) is a
collection of Dirichlet distributions with eachα ≥ 1 (discussed below). For the moment, we leave
aside the form of the prior, though it is a major focus of this article.

In this paper, we go farther. We treatθ as a hidden variable, not unlikey. It will therefore be
integrated out in defining the probability of the data:

p(x1, . . . ,xM | α,G) =
∫

p(θ | α,G)
M

∏
m=1

∑
y

p(xm,y | θ,G) dθ. (6)

In this setting, it isα, the distribution over grammar parameters, that encodes knowledge aboutthe
grammar, and it will beα that we estimate when we perform learning.

We consider two alternative variations on the Bayesian idea, illustrated in Figure 2. In the first,
called “model I,” the grammar’s probabilitiesθ are drawn randomly once per sentence for the whole
corpusx1, . . . ,xM. In “model II,” the grammar parameters are drawnoncefor all of the sentences in
the corpus.

Conceptually, both options have advantages and disadvantages when modeling natural language.
Drawing θ for each derivation permits more flexibility across derivations, perhaps allowing the
learner to capture variation across the corpus (even if not systematically,as the grammars are drawn
IID), arising from different authors, for example. Generatingθ only once suggests we need to do
inference in a smaller space: we only need to find the posterior over a singleθ, perhaps leading to
better generalization. We will consider both forms in our experiments (Section5.1).

The question of the choice of a prior distribution still remains. In their pioneering work about
conjugate priors,3 Raiffa and Schaifer (1961) set desiderata for prior distributions in parametric
models. These desiderata, which serve as the foundation forconjugate priors, include: (i) analytical
tractability—the posterior using a certain prior family should stay in the prior family, while it is
reasonably easy to identify the posterior from a sample and a prior; (ii) richness—there should be a
member in the prior family that is able to express the modeler’s beliefs and prior information; (iii)

3. A prior family is conjugate for a family of distributions if the posterior overthe family, after observing some data, is
also in the prior family. See Raiffa and Schaifer (1961).
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interpretability—the prior should be easily interpreted so the modeler can verify that the choice of
prior matches prior judgments.

Unfortunately, much of the Bayesian literature for probabilistic grammars andeven in gen-
eral has diverged considerably from these desiderata, and focused only on the first requirement of
analytical tractability. As a result, most of the Bayesian language learning literature has focused
on Bayesian models with a Dirichlet prior (Johnson et al., 2007; Goldwater and Griffiths, 2007;
Toutanova and Johnson, 2007; Kurihara and Sato, 2006,inter alia), which is conjugate to the multi-
nomial family. We argue that the last two requirements are actually more importantthan the first
one, which is motivated by mere mathematical and computational convenience. We suggest re-
placing the first requirement with “computational tractability”—it should be easy to represent the
posterior (or an approximation of it) computationally. In that case, the modeler can focus on choos-
ing rich priors that can more properly model different structural elements of a grammar. To solve
the problem of inference, we can now use approximate inference algorithms such as the one we
give in Section 4 and Appendix B. Indeed, approximations are sometimes required even for the
conjugate case, and are always required when the data are incomplete.

We next give an overview of the Dirichlet prior that provides analytical tractability for prob-
abilistic grammars, and then demonstrate the alternative which focuses on the second and third
requirements, the logistic normal distribution. The logistic normal, we suggest, improves over the
Dirichlet from the perspective of desideratum (ii), though we must take further steps to achieve
sufficient “richness” to account for arbitrary covariance and for multilingual text data.

3.1 Dirichlet Distributions

From the computational perspective, the Dirichlet distribution is indeed a natural choice for a prior
over the parameters of the grammar because of its analytical tractability, whichmakes inference
more elegant and less computationally intensive in both the maximuma posteriori(Equation 5) and
Bayesian (Equation 6) settings. In addition, a Dirichlet prior can encourage sparse solutions (i.e.,
manyθk,i = 0), a property which is desirable in natural language learning (Johnsonet al., 2007),
as it corresponds to eliminating unnecessary grammar rules. (Indeed, learning to exclude rules by
setting their probabilities to zero is one way of going about symbolic grammar induction.)

If we use a Dirichlet distribution with a probabilistic grammar, then the hyperparameters for the
grammar consist ofK vectors with positive elements, thekth of which has lengthNk. We denote
these hyperparameters byα, in which case the prior over the grammar parametersθ has the form:

p(θ | α) =
K

∏
k=1




∏Nk

i=1 Γ(αk,i)

Γ
(

∑Nk
i=1 αk,i

)

Nk

∏
i=1

θαk,i−1
k,i



= B(θ)×
K

∏
k=1

Nk

∏
i=1

θαk,i−1
k,i ,

whereΓ(·) is the Gamma function andB(θ) is a constant term with respect toθ.
Consider again the simple model of Section 2.1. If we embed it inside model I (Figure 2) we

arrive exactly at the latent Dirichlet allocation model of Blei et al. (2003),where each example is a
document (not a sentence).

The Dirichlet distribution can also be derived as a normalized set of variables of exponentiated
independentGamma-distributed variables. More precisely, for each multinomialθk (k∈{1, . . . ,K}),
we can drawNk independent random samplesvk,1, . . . ,vk,Nk from Gamma distributions with shapes

3025



COHEN AND SMITH

αk,1, . . . ,αk,Nk, respectively, and scale 1 and then let:

θk,i =
vk,i

∑Nk
i′=1vk,i′

.

This alternative representation of the Dirichlet distribution points to a weakness: there is no
explicit covariance structure present whenθ are drawn from a Dirichlet. The only wayθk covary is
through the normalization that mapsvk,i to the probability simplex. In fact, the correlation between

θk,i andθk,i′ is always negative and equals−
(αk,iαk,i′)

1/2

((αk,0−αk,i)(αk,0−αk,i′))
1/2

whereαk,0 = ∑Nk
i=1 αk,i .

This relates back to the desiderata of Raiffa and Schaifer: the covariance (and in fact, variance)
structure that the Dirichlet distribution offers is not rich. This is especially true when modeling
language, as we explain in the section below.

3.2 Modeling Covariance with Logistic Normal Distributions

When we consider probabilistic grammars for natural languages, especially those over words or
word classes like parts of speech, wedo expect to see covariance structure. Intuitively, the prob-
ability of a particular word or word class having singular nouns as arguments is likely tied to the
probability of the same word havingplural nouns as arguments. Words that tend to attach to one
type of parent are expected to tend to attach to similar parents. This follows because words and
word classes tend to follow patterns. This is a large part of the empirical motivation for syntactic
theories that make use of part of speech and phrase categories.

A natural candidate for a distribution that models covariance is the multivariatenormal distri-
bution. However, values drawn from the multivariate normal distribution canbe both positive and
negative, and they also do not necessarily normalize to 1, both are requirements fromθ (see Equa-
tions 2–3). Aitchison (1986) suggested a logistic transformation on a multivariate normal variable
to get values which correspond to points on the probabilistic simplex. He calledit the “logistic
normal” distribution.

The logistic normal (LN) distribution maps a(d− 1)-dimensional multivariate Gaussian to a
distribution on thed-dimensional probability simplex,{〈z1, . . . ,zd〉 ∈ R

d : zi ≥ 0,∑d
i=1zi = 1}, as

follows:

1. Drawη = 〈η1, . . . ,ηd−1〉 from a multivariate Gaussian with meanµ and covariance matrixΣ.

2. Letηd = 0.

3. Fori ∈ {1, . . . ,d}, let:

zi =
expηi

∑d
j=1expη j

.

Drawing from a(d−1)-dimensional Gaussian preserves identifiability; ad-dimensional Gaussian
would have an extra degree of freedom, allowing more than one outcome ofη to lead to the samez.

For probabilistic grammars, we define one LN distribution per multinomial. This gives a prior
over eachθk that permits covariance among〈θk,1, . . . ,θk,Nk〉.

Blei and Lafferty (2006) and Ahmed and Xing (2007) successfully used the LN distribution for
topic models, extending the latent Dirichlet allocation model (Blei et al., 2003).In Cohen et al.
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I1 = {1:2,3:6,7:9} = { I1,1, I1,2, I1,L1 }
I2 = {1:2,3:6} = { I2,1, I2,L2 }
I3 = {1:4,5:7} = { I3,1, I3,L3 }
IN = {1:2} = { I4,L4 }

J1 J2 JK







prt. struct.S

η1 = 〈η1,1,η1,2, η1,3,η1,4,η1,5,η1,6, η1,7,η1,8,η1,ℓ1〉 ∼ Normal(µ1,Σ1)
η2 = 〈η2,1,η2,2, η2,3,η2,4,η2,5,η2,ℓ2〉 ∼ Normal(µ2,Σ2)
η3 = 〈η3,1,η3,2,η3,3,η3,4, η3,5,η3,6,η3,ℓ3〉 ∼ Normal(µ3,Σ3)
η4 = 〈η4,1,η4,ℓ4〉 ∼ Normal(µ4,Σ4)







sampleη

η̃1 = 1
3〈η1,1+η2,1+η4,1, η1,2+η2,2+η4,2〉

η̃2 = 1
3〈η1,3+η2,3+η3,1, η1,4+η2,4+η3,2, η1,5+η2,5+η3,3,
η1,6+η2,6+η3,4〉

η̃3 = 1
2〈η1,7+η3,5, η1,8+η3,6, η1,9+η3,7〉







combineη

θ1 = (expη̃1)
/

∑N1
i′=1expη̃1,i′

θ2 = (expη̃2)
/

∑N2
i′=1expη̃2,i′

θ3 = (expη̃3)
/

∑N3
i′=1expη̃3,i′







softmax

Figure 3: An example of a shared logistic normal distribution, illustrating Def. 1. N = 4 experts are
used to sampleK = 3 multinomials;L1 = 3,L2 = 2,L3 = 2,L4 = 1, ℓ1 = 9, ℓ2 = 6, ℓ3 = 7,
ℓ4 = 2,N1 = 2,N2 = 4, andN3 = 3. From top to bottom: the partition structureS describes
I j which tell how segment a normal expert into parts which are matched to multinomials
(“prt. struct. S”). Each normal expert is sampled from a multivariate normal (“sample
η”), and then matched and averaged according to the partition strcture (“combineη”).
The final step is exponentiating and normalizingη to getθ (“softmax”). This figure is
best viewed in color.

(2008), we demonstrated how the LN distribution is an effective alternativeto the Dirichlet for
probabilistic dependency grammar induction in the Bayesian setting.

We note that the family of logistic normal distributions and the family of Dirichlet distributions
are very different from each another. One cannot find two distributions from each class which are
arbitrary close to each other in any meaningful sense. However, it can be shown (Aitchison, 1986)
that given a Dirichlet distribution with very largeα, we can find a logistic normal distribution such
that the KL-divergence between the Dirichlet distribution and logistic normaldistribution is small.

3.3 Sharing Across Multinomials

The LN distribution has an inherent limitation when we consider probabilistic models made up
of more than one multinomial distribution, such as probabilistic grammars. Each multinomial is
drawn separately from an independent Gaussian, so that covariancecan only be imposed among
events competing within one multinomial, not across multinomials. With the DMV, for example,
the probability of a past-tense verb (VBD) having a noun as a right child might correlate with the
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probability that other kinds of verbs (VBZ, VBN, etc.) have a noun as a right child. This correlation
cannot be captured by the LN distribution, because the VBZ and VBN as parents are represented
using their own multinomials over children, unrelated to that of VBD as a parent.

One way to mend this limitation is to define a single Gaussian overN , ∑K
k=1Nk variables

with one N×N covariance matrix. Then, instead of applying the logistic transformation to the
whole vector as a single multinomial, we can apply it to subvectors to get disjoint multinomials.
When learning, the large covariance matrix captures correlations betweenall pairs of events in all
multinomials. The induced distribution is called thepartitionedlogistic normal (PLN) distribution.
It is a generalization of the LN distribution (see Aitchison, 1986).

In practice, creating a covariance matrix of sizeN×N is likely to be too expensive. DMV,
for example, hasO(t2) weights for a part-of-speech vocabulary of sizet, requiring a very large
multivariate normal distribution withO(t4) covariance parameters.

To solve this problem, we suggest a refinement of the class of PLN distributions. Instead of
using a single normal vector for all of the multinomials, we use several normalvectors, partition
each one and thenrecombineparts which correspond to the same multinomial, as an average. Next,
we apply the logistic transformation on the mixed vectors (each of which is normally distributed
as well). Figure 3 gives an example of a non-trivial case of using a SLN distribution, where three
multinomials are generated from four normal experts.

We now formalize this notion. For a natural numberN, we denote by 1:N the set{1, . . . ,N}.
For a vector inv∈ R

N and a setI ⊆ 1:N, we denote byvI the vector created fromv by using the
coordinates inI . Recall thatK is the number of multinomials in the probabilistic grammar, andNk

is the number of events in thekth multinomial. We define a shared logistic normal distribution with
N “experts” over a collection ofK multinomial distributions:

Definition 1 Let ηn∼ Normal(µn,Σn) be a set of multivariate normal variables for n∈ 1:N, where
the length ofηn is denotedℓn. Let In = {In, j}

Ln
j=1 be a partition of1:ℓn into Ln sets, such that

∪Ln
j=1In, j = 1:ℓn and In, j ∩ In, j ′ = /0 for j 6= j ′. Let Jk for k ∈ 1:K be a collection of (disjoint) sub-

sets of{In, j | n ∈ 1:N, j ∈ 1:ℓn, |In, j | = Nk}, such that all sets in Jk are of the same size, Nk. Let
η̃k =

1
|Jk|

∑In, j∈Jk
ηn,In, j , andθk,i = exp(η̃k,i)

/

∑i′ exp(η̃k,i′) . We then sayθ distributes according to

the shared logistic normal distributionwith partition structureS = ({In}Nn=1,{Jk}
K
k=1) and normal

experts{(µn,Σn)}
N
n=1 and denote it byθ∼ SLN(µ,Σ,S).

The partitioned LN distribution in Aitchison (1986) can be formulated as a shared LN distribu-
tion whereN = 1. The LN collection presented in Section 3.2 is the special case whereN = K, each
Ln = 1, eachℓk = Nk, and eachJk = {Ik,1}.

We note that there is an issue with identifiability that we need to resolve with SLN distributions,
as with the LN distribution. It is required that for all multinomials, we set the firstvalue of the
samples from the normal expert to 0. For simplicity, we did not include it explicitlyin Definition 1,
because this can be achieved by setting the normal expert’s mean and variance values to 0 in the
first index of each normal expert (ηn,1 = 0 for all n).

The covariance among arbitraryθk,i is not defined directly; it is implied by the definition of
the normal expertsηn,In, j , for eachIn, j ∈ Jk. We note that a SLN can be represented as a PLN by
relying on the distributivity of the covariance operator, and merging all the partition structure into
one (perhaps sparse) covariance matrix. SLNs, in that case, represent a subset of PLNs with a
factored structure on the covariance matrices.
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It is convenient to think of eachηi, j as a weight associated with a unique event’s probability,
a certain outcome of a certain multinomial in the probabilistic grammar. By letting different ηi, j

covary with each other, we strengthen the relationships amongθk, j and permit learning of the one
to affect the learning of the other. Definition 1 also implies that we multiply several multinomials
together in a product-of-experts style (Hinton, 1999), because the exponential of an average of
normals becomes a product of (unnormalized) probabilities.

We note that the partition structure is a hyperparameter. In our experiments,it encodes domain
knowledge about the languages we experiment with (Section 5.3). We believe this is a key advantage
of SLN in this setting: marrying the notions of prior knowledge and a Bayesianprior. The beliefs
of the model about a language can be encoded into a distribution over the parameters. We leave for
future work the discovery of partition structure during the learning process.

3.4 Local Log-Linear Models over Parameters

We give now another interpretation of the shared logistic normal prior usinga feature representation,
which is related to recent work by Berg-Kirkpatrick et al. (2010). A probabilistic grammar with a
shared logistic normal prior can be thought of as a probabilistic grammar where the grammar’s
parameters are themselves modeled using a local log-linear model with a Gaussian prior over the
weights of this log-linear model. Letθk be a multinomial in the collection of multinomials for a
probabilistic grammar. Then, according to Definition 1 we have:

θk,i =
exp(gk(i) ·η)

Zk(η)
,

whereη is a vector of length∑N
n=1ℓn, a concatenation of all normal experts, andgk(i) is a feature

vector, again of length∑N
n=1ℓn, which is divided into subvectorsgk,n(i) each of lengthℓn. gk,n, j(i) =

1/|Jk| if the ith event in thekth multinomial uses thejth coordinate of thenth normal expert—that
is, there exists anIn,r ∈ In∩Jk such thatj ∈ In,r (according to Definition 1)—and 0 otherwise. The
termZk(η) is a normalization constant of the form:

Zk(η) = ∑
i′

exp
(
gk(i

′) ·η
)
.

Note that the features in the local log-linear model refer to thehyperparametersof the SLN,
more specifically, the partition structure. They do not refer to the observed data or the latent struc-
tural elements in the probabilistic grammar. These features have a Gaussian prior over them, repre-
sented by the normal experts’ mean values and covariance matrices (µandΣ). In that case, the Gaus-
sian prior which we optimize during inference using empirical Bayes (Section4) can be thought of
as a quadratic penalty on the local log-linear weights. We note that in most cases in the literature,
Gaussian priors (orL2 regularizers) are used with mean value 0 and a uniform diagonal covariance
matrix, in order to push feature weights to values close to 0. This is not the case with our model.

Berg-Kirkpatrick et al. (2010) used the idea of local log-linear models for several natural lan-
guage processing tasks, including dependency grammar induction and part-of-speech tagging. In-
stead of using features that are based on a Gaussian prior, they used aset of ordinary binary features,
which describe relationships between different parameters in a similar way tothe ones presented in
Section 5.3.
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4. Inference and Learning

Having defined a family of probability models over grammars, we now considerthe problem of
inferring posterior distributions under this model. We first consider inference overy, then overθ,
then learning the parameters of the distribution over grammars in an empirical Bayesian framework.

4.1 Decoding: Inferring y

Classical statistical approaches to language processing normally assume that inputs (here, sentences
x) are independently and identically distributed. Decoding is the problem of choosing an analysis
(here, grammatical derivationy) given the input. Most commonly this is accomplished by choosing
the most probable analysis:

y∗ = argmax
y

p(y | x,θ,G) = argmax
y

p(x,y | θ,G). (7)

This is commonly called “Viterbi” decoding, referring to the algorithm that accomplishes the maxi-
mization for hidden Markov models. An alternative is to choose the analysis that minimizesrisk, or
the expectation (under the model) of a cost function. Let cost(y,y∗) denote the nonnegative cost of
choosing analysisy when the correct analysis isy∗.

y∗ = argmax
y

Ep(·|x,θ,G)cost(y, ·) = argmax
y

∑
y′

p(y′ | x,θ,G) cost(y,y′).

This is known as minimum Bayes risk (MBR) decoding.4 For dependency parsing, the cost function
counts the number of words attached to the wrong parent.

Decoding is a crucial step in evaluation of models of natural language. Typically for supervised
and unsupervised models, decoding output is compared to expert human-annotated gold standard
analyses, providing an objective measure of the quality of the learned model. Best practice measures
quality on new test data unseen during training, to test the generalization abilityof the learned
model. This is an attractive approach to evaluating the quality of unsupervisedly induced grammars.

In the Bayesian setting, decoding might be accomplished using the posterior over derivations,
marginalizing out the unknown grammar weights. For model I, Viterbi decoding would correspond
to:

y∗ = argmax
y

p(y | α,G) = argmax
y

∫
p(θ | α,G)p(x,y | θ,G) dθ. (8)

Unfortunately, there is no closed-form solution for the integral in Equation8 and findingy∗ is
intractable. We therefore have to resort to approximate inference (Section 4.2). Model II creates
dependence among the derivations of the different sentences in the training set, requiring a different
inference procedure.

In this work, we consider three decoding techniques. The first takes a point estimate ofθ and
applies Viterbi decoding (Equation 7). The point estimate is derived using techniques discussed
below. After estimating theµ (and theΣ), we use the logistic transformation onµ to obtain this
point estimate for Viterbi decoding. Recall that for the DMV, decoding canbe accomplished in
cubic time using dynamic programming (Section 2.2).

4. In some cases, decoding selects only certain salient aspects of a derivation, such as the derived tree corresponding to
a tree adjoining grammar’sderivationtree. In such cases, Viterbi and/or MBR decoding may require approximations.
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The second approach makes use of the same point estimate ofθ, only with MBR decoding, as de-
scribed above. The loss function we use is dependency attachment error, for the task of dependency
grammar induction. MBR decoding in this case works as follows: usingθ and the inside-outside
algorithm, we compute the posterior probability of each dependency attachment (directed edge in
the graph) being present in the grammatical derivation for the sentence. Then, we find the tree with
the largest score, the score being the sum of the posterior probabilities ofeach edge present in the
tree.

Neither Viterbi nor MBR decoding uses the entire distribution over grammar weights. In the
LN case, for example, the covariance matrixΣ is ignored. We suggest “committee decoding,” in
which a set of randomly sampled grammar weights are drawn for each sentence to be parsed. The
weights are drawn from the learned distribution over grammar weights, parameterized byµ andΣ
in the LN case. Viterbi or MBR decoding can then be applied. Note that this decoding mechanism
is randomized: we sample a grammar per sentence, and use it to decode. We apply this decoding
mechanism ten times, and average performance. This decoding method is attractive because it has
generalization error guarantees: in a PAC-Bayesian framework, it canbe shown that the error of
committee parsing on the sample given should be close to the expected error (see Seeger, 2002;
McAllester, 2003; Banerjee, 2006).

4.2 Variational Inference with Logistic Normal Distributions

The lack of conjugacy of the logistic normal distribution to the multinomial family complicates the
inference of distributions overθ and distributions over the hidden derivationsy from the probabilis-
tic grammar, given a sequence of observed sentencesx1, ...,xM.

Mimno et al. (2008) explored inference with the logistic normal distribution using sampling
with an auxiliary variable method. However, sampling is notoriously slow to converge, especially
with complicated structures such as grammatical derivations. The algorithm Mimno et al. suggest
is also rather complicated, while alternatives, such as mean-field variationalinference (Wainwright
and Jordan, 2008), offer faster convergence and a more intuitive solution to the problem of non-
conjugacy of the logistic normal distribution.

Variational inference algorithms have been successfully applied to various grammar and syntax
learning tasks (Kurihara and Sato, 2006; Liang et al., 2007; Headden et al., 2009; Boyd-Graber and
Blei, 2010; Cohen et al., 2010,inter alia). We give the full technical details of mean-field variational
inference for probabilistic grammars with logistic normal priors in Appendix B,and turn to give a
brief overview of the main technical details next, under the simplifying assumption that we have a
single observationx.

Mean-field variational inference in the Bayesian setting relies on two principal approximations:
the first approximation is done to the marginalized log-likelihood. Using Jensen’s inequality and
an auxiliary distributionq(θ,y), later to be used as our approximate posterior, we bound the log-
likelihood, marginalizing out the parameters and the hidden derivations in the grammar:

log
∫

∑
y

p(x,y,θ | µ,Σ,S,G) dθ≥ Eq[logp(x,y,θ | µ,Σ,S,G)]. (9)

The goal of the approximation in Equation 9 is to derive a bound which is optimized with
respect toq, instead of optimizing the marginalized log-likelihood, which is intractable.q serves as
our approximate posterior.
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The bound in Equation 9 requires further approximation, the mean-field approximation, to be
tractable. This mean-field approximation states thatq(θ,y) is factorized and has the following form:

q(θ,y) = q(θ)q(y).

The variational distributions,q(θ) and q(y) can take an arbitrary form, as long as the bound in
Equation 9 can be efficiently maximized with respect to these variational distributions. For the
case of logistic normal priors, an additional approximation will be necessary (a first-order Taylor
approximation to the log of the normalization of the logistic normal distribution), because of the lack
of conjugacy of the logistic normal priors to the multinomial family (see Appendix B). We show in
Appendix B that even thoughq(y) can have an arbitrary form, in order to maximize the variational
bound it needs to have the form of a probabilistic grammar, dominated by the grammar’s variational
parameters. This makes inference applicable through the use of an inside-outside algorithm with a
weighted grammar of the same form as the original model. The mean-field approximation yields
an elegant algorithm, which looks similar to the Expectation-Maximization algorithm (Section 2.3),
alternating between optimizing the bound in Equation 9 with respect toq(θ) and with respect to
q(y).

4.3 Variational EM

The variational inference algorithm in Section 4.2 assumes that theµ and Σ are fixed. We are
interested in obtaining anestimatefor µ andΣ, so that we can fit the data and then use the learned
model as described in Section 4.1 to decode new data (e.g., the test set in ourexperiments). To
achieve this, we will use the above variational method within an EM algorithm thatestimatesµ
andΣ in empirical Bayes fashion. (For Viterbi and MBR decoding, we then estimateθ asµ, the
mean of the learned prior; see Section 4.1.) In the E-step, we maximize the bound with respect
to the variational parameters using coordinate ascent as in Section 4.2. We optimize each of these
separately in turn, cycling through them, using appropriate optimization algorithms for each. In the
M-step, we apply maximum likelihood estimation with respect toµ andΣ given sufficient statistics
gathered from the variational parameters in the E-step. Appendix C describes the algorithm in full.

5. Experiments

We applied our modeling framework to unsupervised learning of the dependency model discussed
in Section 2.2. We consider four scenarios:

1. (Section 5.1) Experiments with dependency grammar induction for English text using the
logistic normal distribution.

2. (Section 5.2) Experiments with text in five additional languages: Chinese,Portuguese, Turk-
ish, Czech, and Japanese.

3. (Section 5.3) Experiments with the shared logistic normal distribution for tyingparameters
which correspond to the same coarse part-of-speech tag (English, Portuguese, and Turkish).

4. (Section 5.4) Experiments with the shared logistic normal distribution inbilingual settings
(English, Portuguese, and Turkish).
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attachment accuracy (%)
Viterbi decoding MBR decoding Committee decoding
≤ 10 ≤ 20 all ≤ 10 ≤ 20 all ≤ 10 ≤ 20 all

MLE 45.8 39.1 34.2 46.1 39.9 35.9 ∗
Dirichlet-I 45.9 39.4 34.9 46.1 40.6 36.9 ∗

LN-I, Σ(0)
k = I 56.5 42.9 36.6 58.4 45.2 39.5 56.4±.001 42.3±.001 36.2±.001

LN-I, families 59.3 45.1 39.0 59.4 45.9 40.5 56.3±.01 41.3±.01 34.9±.005

LN-II, Σ(0)
k = I 26.1 24.0 22.8 27.9 26.1 25.3 22.0±.02 20.1±.02 19.1±.02

LN-II, families 24.9 21.0 19.2 26.3 22.8 21.5 26.6±.003 22.7±.003 20.8±.0006

Table 1: Attachment accuracy of different learning methods on unseen test data from the Penn Tree-
bank of varying levels of difficulty imposed through a length filter. MLE is a reproduction
of an earlier result using EM (Klein and Manning, 2004). LN-I and LN-II denote using the
logistic normal with model I and model II (Figure 2), respectively. Committee decoding
includes ten averaged runs. Numbers in small font denote variance. Results in bold denote
best results in a column. Training is done on sentences of length≤ 10, though testing is
done on longer sentences as well.

5.1 English Text

We begin our experiments with theWall Street JournalPenn treebank (Marcus et al., 1993). Fol-
lowing standard practice, sentences were stripped of words and punctuation, leaving part-of-speech
tags for the unsupervised induction of dependency structure. We note that, in this setting, using gold
standard part-of-speech tags as the input to the learning algorithm is common(Klein and Manning,
2004; Smith and Eisner, 2006; Spitkovsky et al., 2010b,a; Gillenwater et al.,2010,inter alia).

We train on §2–21, tune on §22 (without using annotations), and report final results on §23.
Details of this data set (and others) are found in Table 2. Unsupervised training for these data sets
can be costly, and requires iteratively running a cubic-time inside-outside dynamic programming
algorithm, so we follow Klein and Manning (2004) in restricting the training set tosentences of ten
or fewer words in length. Short sentences are also less structurally ambiguous and may therefore be
easier to learn from.

To evaluate the performance of our models, we report the fraction of words whose predicted
parent matches the gold standard annotation in the treebank.5 This performance measure is known
asattachment accuracy. We will report attachment accuracy on three subsets of the test corpus:
sentences of length≤ 10 (typically reported in prior work and most similar to the training data
set), length≤ 20, and the full test corpus. We considered the three decoding methods mentioned in
Section 4.1. For MBR decoding, we use the number of dependency attachment errors as the loss
function. This means that at decoding time, we minimize the expected number of attachment errors
according to the prediction of the estimated model. Because committee decoding is arandomized
algorithm, we run it ten times on the unseen data, and then average the dependency attachment
accuracy.

5. The Penn Treebank’s phrase-structure annotations were converted to dependencies using the head rules of Yamada
and Matsumoto, which are very similar to the ones by Collins (1999). Seehttp://www.jaist.ac.jp/ ˜ h-yamada .
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Initialization is important for all conditions, because likelihood and our variational bound are
non-concave functions. For the values of the multinomials (θ), we use the harmonic initializer from
Klein and Manning (2004). It estimatesθ using soft counts on the training data where, in ann-length
sentence, (i) each word is counted as the sentence’s head1

n times, and (ii) each wordxi attaches to
x j proportional to|i− j|−1, normalized to a single attachment per word. This initializer is used with
MLE and Dirichlet-I (“I” stands for model I from Figure 2). In the case of LN-I and LN-II, it is
used as an initializer both forµ and inside the E-step.

For learning with the logistic normal prior, we consider two initializations of the covariance
matricesΣk. The first is theNk×Nk identity matrix. We then tried to bias the solution by injecting
prior knowledge about the part-of-speech tags. To do that, we manually mapped the tag set (34 tags)
to twelve disjoint tag “families.” These are simply coarser tags: adjective, adverb, conjunction, for-
eign, interjection, noun, number, particle, preposition, pronoun, proper, verb. The coarse tags were
chosen to loosely account for the part-of-speech tag sets of seven treebanks in different languages.
The mapping from fine-grained tags to coarser tags are based on the annotation guidelines of the rel-
evant treebank. This mapping into families provides the basis for an initializationof the covariance
matrices for the dependency distributions: 1 on the diagonal, 0.5 between probabilities of possible
child tags that belong to the same family, and 0 elsewhere. These results are denoted “families” and
are compared to the identity matrix as an initializer.

We compared several models, where learning is accomplished using (variational) EM: MLE,
standard maximum-likelihood estimation using EM; Dirichlet-I, a common baseline in theliterature
which uses a Dirichlet prior together with variational EM; and LN-I (LN-II), a model with the
logistic normal distribution using model I (model II). In all cases, we either run the (variational)
EM algorithm until convergence of the log-likelihood (or its bound) or until the log-likelihood on
an unannotated development set of sentences does not increase.

We note that on the full test set, attaching each word to the word on its right (“Attach-Right”)
achieves about 30% accuracy, and attaching each word to the word on itsleft (“Attach-Left”)
achieves about 20% accuracy.

Table 1 shows the experimental results. Note that there are two variants which consistently
get lower performance than their counterparts: using model II (versususing model I) and using
committee decoding instead of Viterbi or MBR decoding. This suggests that thecovariance matrices
play a useful role during the learning process, but are not informativewhen performing decoding,
since they are not used by Viterbi and MBR decoding. Interestingly, Smith and Eisner (2006) report
a similar result forstructurally biasedDMV—a model that includes a parameter to control the
length of the decoded dependencies. Their bias parameter is useful onlyduring the learning process,
but never during decoding. In general, the logistic normal distribution with model I outperforms
substantially the baselines. It is interesting to note that LN-I outperforms Dirichlet-I and MLE even
when using identity covariance matrices for initialization. The reason could bethe fact that the
logistic normal distribution, even when permitting only just diagonal covariance matrices (the case
with identity covariance matrix initialization is weaker—we only initialize with diagonal matrices)
allows to model the variance directly in the parameters. This is not possible with the Dirichlet
distribution.

When we tested model II and committee decoding on other languages, the performance decrease
was consistent. For the rest of the experiments, we report only MBR (andpossibly Viterbi) decoding
results using model I. The reason for the underperformance of model II could be the small number
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language tag set training development test baselines
tokens sent. tokens sent. tokens sent. A-R A-L

English 34 55340 7179 35021 1700 49363 2416 30.2 20.4
Chinese 34 27357 4775 5824 350 7007 348 32.9 9.7
Portuguese 21 15976 2477 14558 907 5009 288 25.9 31.1
Turkish 29 18873 4497 7812 500 6288 623 68.2 4.3
Czech 47 67756 10674 32647 2535 33147 2535 24.4 28.3
Japanese 74 39121 10300 14666 1700 13648 1700 66.4 13.4

Table 2: Information about the data sets used in this paper. “Tag set” stands for the size of the
part-of-speech tag set. Train, development and test columns show the number of tokens
and number of sentences in each data set. The training set consists of sentences of length
ten or less, as described in the text. The development set and the test set do not have any
length restriction. The development set includes unannotated set of sentences from the re-
spective language. A-R (A-L) stands for Attach-Right (Attach-Left),which are attachment
accuracy baselines on the test set for all sentences. See text for details.

of parameters which is defined by the model. This small set of parameters cannot capture well the
nuances across sentences in the data.

5.2 Additional Languages

Following Section 5.1, we experiment with other languages: Chinese, Portuguese, Turkish, Czech
and Japanese.

• For Chinese, we used the Chinese treebank (Xue et al., 2004). We train on §1–270, use
§301–1151 for development and test on §271–300.

• For Portuguese, we used the Bosque treebank (Afonso et al., 2002) from the CoNLL shared
task in 2006 (Buchholz and Marsi, 2006).

• For Turkish, we used the METU-Sabancı treebank (Atalay et al., 2003;Oflazer et al., 2003)
from the CoNLL shared task in 2006.

• For Czech, we used the Prague treebank (Hajič et al., 2000) from the CoNLL shared task in
2007 (Nivre et al., 2007).

• For Japanese, we used the VERBMOBIL Treebank for Japanese (Kawata and Bartels, 2000)
from the CoNLL shared task in 2006.

Whenever using CoNLL shared task data, we used the first 80% of the data distributed in the shared
task for training, and the rest was divided equally for development and testing. Table 2 gives statis-
tics about the data sets used with the performance of the Attach-Right and Attach-Left baselines
given for the whole test data. As in the case for English, sentences werestripped of words and
punctuation, leaving part-of-speech tags for the unsupervised induction of dependency structure.
All learning algorithms were run on sentences of length ten words or less. Note that strong perfor-
mance is achieved for Turkish and Japanese by the Attach-Right baseline.
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Results of running the different learning algorithms are given in Figure 4.Note that for Por-
tuguese, the difference is much smaller between the EM baselines and logistic normal variational
EM when only short sentences are considered, but there is a wider gapfor longer sentences; the LN
models appear to generalize better to longer sentences. For Turkish, no method outperforms Attach-
Right, but there is still a big gap between variational EM with the logistic normal and the other EM
baselines. The case is similar for Japanese, though logistic normal does outperform the Attach-
Right baselines for shorter sentences. For Czech, it seems like Dirichletand EM do somewhat
better than the logistic normal prior, but performance of all four methods is close. It is conceivable
that the approximation inherent in a projective syntax representation for the Czech sentences (whose
gold-standard analyses have a relatively large fraction of nonprojective dependencies) interacts with
different models in different ways.6

In general, the covariance matrices learned when initializing with the identity covariance matrix
are rather sparse, but there is a high degree of variability across the diagonal (for the variance values
learned). For the DMV, when using an identity initializer, diagonal matrices are the local optimum
that is reached by the variational EM algorithm. When initializing the covariancematrices with the
tag families initializer, the learned matrices are still rather sparse, but they have a larger number of
significant correlations (for Portuguese, for example, using at-test for testing the significance of the
correlation, we found that 0.3% of the values in the covariance matrices hadsignificant correlation).7

5.3 SLN with Nouns, Verbs, and Adjectives

We now turn to experiments where the partition structure lets parameters across multinomials co-
vary, making use of the expressive power of the shared logistic normal distribution. We use a few
simple heuristics to decide which partition structureS to use. Our heuristics rely mainly on the
centrality of content words: nouns, verbs, and adjectives. For example, in the English treebank, the
most common attachment errors (with the LN prior) happen with a noun (25.9%)or a verb (16.9%)
parent. The fact that the most common errors happen with these attachments results from nouns and
verbs being the most common parents in most of the data sets we experimented with.

Following this observation, we compare four different settings in our experiments (all SLN
settings include one normal expert for each multinomial on its own, equivalent to the regular LN
setting):

• TIEV: We add normal experts that tie all probabilities corresponding to a verbal parent (any
verbal parent, using the coarse tags of Cohen et al., 2008). LetV be the set of part-of-speech tags
that belong to the verb category. For each directionD (left or right), the set of multinomials of
the formθc(· | v,D), for v∈V, all share a normal expert. For each directionD and each boolean
valueB of the predicate firsty(·), the set of multinomialsθs(· | v,D,B) for v∈V share a normal
expert.

• TIEN: This is the same as TIEV, only for nominal parents.

6. We note that we also experimented with other languages, including Hebrew and Arabic. We do not include these
results, because in these cases all methods, including MLE, Dirichlet-I and LN-I performed badly (though Dirichlet-I
and MLE could do better than LN-I). We believe that for these languages,the DMV is probably not the appropriate
model. Developing better grammatical models for these languages is beyond the scope of this paper.

7. However, it is interesting to note that most of the elements of the covariance matrices were not exactly zero. For
example, 90% of the values in the covariance matrices were larger (in absolute value) than 2.3×10−6.
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Figure 4: Attachment accuracy results for English (equivalent to Table 1), Chinese, Portuguese,
Turkish, Czech and Japanese. The decoding mechanism used is MBR. Legend for the
baselines: MLE (green, first column in each block); Dirichlet-I (yellow, second column);
Legend for the methods in this paper: LN-I,Σ(0)

k = I (blue, third column), and LN-I,
families initializer (red, fourth column).

• TIEV&N: Tie both verbs and nouns (in separate partitions). This is equivalent to taking the union
of the partition structures of the above two settings.

• TIEA: This is the same as TIEV, only for adjectival parents.
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English Portuguese Turkish
≤ 10 ≤ 20 all ≤ 10 ≤ 20 all ≤ 10 ≤ 20 all

MLE 46.1 39.9 35.9 44.3 35.4 29.3 35.6 32.4 31.4
Dirichlet-I 46.1 40.6 36.9 43.8 34.1 28.0 38.6 36.7 35.9

Σ(0)
k = I 59.1 45.9 40.5 45.6 45.9 46.5 55.3 47.2 44.0

families 59.4 45.9 40.5 45.9 44.0 44.4 55.5 47.6 44.4

T
ra

in
ed

w
ith

E
ng

lis
h TIEV 60.2 46.2 40.0 45.4 43.7 44.5 † 56.5 48.7 45.5

TIEN 60.2 46.7 40.9 45.7 44.3 45.0 51.1 43.7 41.2
TIEV&N 61.3 47.4 41.4 46.3 44.6 45.1 55.9 48.2 45.2
TIEA 59.9 45.8 39.6 45.4 43.8 44.6 49.8 43.2 40.8

P
or

tu
gu

es
e

TIEV 62.1 48.1 42.2 45.2 42.3 42.3 56.7 † 48.6 45.1
TIEN 60.7 46.9 40.9 45.7 42.8 42.9 33.2 29.8 28.7
TIEV&N 61.4 47.8 42.0 46.3 44.6 45.1 56.7 49.2 46.0
TIEA 62.1 47.8 41.8 45.2 42.7 42.7 31.5 28.4 27.5

T
ur

ki
sh

TIEV 62.5 48.3 42.4 45.4 43.2 43.7 55.2 47.3 44.0
TIEN 61.0 47.2 41.2 45.9 43.9 44.4 45.1 39.8 37.8
TIEV&N † 62.3 48.3 † 42.3 46.7 44.3 44.6 55.7 48.7 45.5
TIEA † 62.3 48.0 42.1 45.1 43.2 43.7 38.6 34.0 32.5

Table 3: Attachment accuracy of different monolingual tying models and bilingual tying models in
varying levels of difficulty imposed through a length filter (Sections 5.3 and 5.4). Mono-
lingual results (Section 5.3) are described when the languages in both the column and the
row are identical (blocks on the diagonal). Results for MLE and Dirichlet-Iare identical
to Figure 4. Results forΣ(0)

k = I and families are identical to Table 1 and Figure 4. Each
block contains the results of tying one language with the other, specifying performance for
the column language. Results in bold denote best results in a column, and † marks figures
that are not significantly worse (binomial sign test,p< 0.05).

Since learning a model with parameter tying can be computationally intensive, wefirst run
the inference algorithm without parameter tying, and then add parameter tyingto the rest of the
inference algorithm’s execution until convergence.

For the covariance matrices, we follow the setting described in Section 5.1. Foreach treebank,
we divide the tags into twelve disjoint tag families. The covariance matrices for all dependency
distributions were initialized with 1 on the diagonal, 0.5 between tags which belong to the same
family, and 0 otherwise.

The results are given in the blocks on the diagonal of Table 3, where the languages in the
columns and rows are identical. MBR decoding was used. For English, there are small improve-
ments when adding the expressive power of SLN. The best results are achieved when tying both
nouns and verbs together. Portuguese shows small benefits compared on shorter sentences, and
when compared to the families-initialized LN-I model, but not the stronger identity-initialized LN-I
model. For Turkish, tying across multinomials hurts performance.
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5.4 Bilingual Experiments

Leveraging linguistic information from one language for the task of disambiguating another lan-
guage has received considerable attention (Dagan, 1991; Yarowskyet al., 2001; Hwa et al., 2005;
Smith and Smith, 2004; Snyder and Barzilay, 2008; Burkett and Klein, 2008). Usually such a set-
ting requires a parallel corpus or other annotated data that ties between those two languages. One
notable exception is Haghighi et al. (2008), where bilingual lexicons were learned from non-parallel
monolingual corpora.

Our bilingual experiments use the data for English, Portuguese, and Turkish (two at a time),
which are not parallel corpora, to train parsers for two languages at atime, jointly. Sharing infor-
mation between two models is accomplished by softly tying grammar weights in the two hidden
grammars.

For each pair of languages, we first merge the models for these two languages by taking a union
of the multinomial families of each and the corresponding prior parameters. Wethen add a normal
expert that ties between the parts of speech in the respective partition structures for both grammars
together. Parts of speech are matched through the single coarse tag set. For example, with TIEV, let
V = VEng∪VPor be the set of part-of-speech tags which belong to the verb category foreither the
English or Portuguese treebank (to take an example). Then, we tie parameters for all part-of-speech
tags inV. We tested this joint model for each of TIEV, T IEN, TIEV&N, and TIEA. After running
the inference algorithm which learns the two models jointly, we use unseen datato test each learned
model separately.

We repeat the generative story specifically for the bilingual setting, usingthe example of TIEV.
For each language, there are normal experts for all part-of-speechtags, for the basic DMV. In
addition, there are normal experts, for each language, that combine together all part-of-speech tags
that belong to the verb category. Finally, there are normal experts, for the two languagestogether,
that combine together all part-of-speech tags that belong to the verb category in either language. For
each sentence in the corpus, the following two steps are conducted as before (model I): the normal
experts are sampled from the SLN distribution and combined into multinomials to parameterize the
DMV; a grammar derivation is sampled from the resulting DMV.

Table 3 presents the results for these experiments (blocks not on the diagonal). English grammar
induction shows moderate gains when tied with Portuguese and strong gains with Turkish. Cohen
and Smith (2009) reported qualitatively similar results when English was tied with Chinese. For
Portuguese, there is not much gain from tying it with other languages, though it improves the per-
formance of the other two languages. In general, the table shows that with the proper selection of
pair of languages and multinomials to tie together, we can usually get improvementover the LN
baselines and the technique is not harmful (cf. Turkish grammar induction with SLN, on its own).
We note that selection of the multinomials to tie encodes prior knowledge about thelanguages. This
knowledge simply requires being able to map fine-grained, treebank-specific part-of-speech tags to
coarse categories. In addition, bilingual learning with SLN does not require bitext parsing at any
point, which is an expensive operation. The runtime of the variational E-step for a sentencex is still
cubic in the length ofx, as in EM, so that the runtime of the variational E-step scales in the multi-
lingual case the same as it would be if we added an equivalent amount of data in the monolingual
case.

Since the experiments reported here were conducted, others, notably Gillenwater et al. (2010)
and Spitkovsky et al. (2010b), have reported performance surpassing ours, for some of the languages
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in our experiments. Differences in the experimental settings prevent direct comparisons. Some of
the improvements in dependency grammar induction are achieved because oftechniques which are
orthogonal to ours, such as improvements in the underlying grammar (insteadof DMV; Headden
et al., 2009; Gillenwater et al., 2010), and those techniques could be incorporated into the Bayesian
model we described. Others are somewhat different (e.g., Viterbi training).

6. Discussion

We have shown that modeling covariance among grammar weights within a probabilistic gram-
mar’s multinomial distributions,acrossits distributions, andacrossgrammars in two languages can
have benefits for learning dependency structure in an unsupervised empirical Bayesian framework.
This approach addresses one of the desiderata of Raiffa and Schaifer (1961) for prior distributions,
“richness.” The empirical benefits of modeling covariance, we have shown, are compelling.

We believe, however, that more remains to be done to incorporate prior linguistic knowledge
into unsupervised grammar induction. Covariance structure is, perhaps,not the mostinterpretable
kind of prior knowledge about grammars that might be brought to bear on learning. The empir-
ical Bayesian paradigm explored here, and the use of variational approximations for coping with
non-conjugacy, will be important tools in future work that brings together prior knowledge and
unannotated data for grammar induction.

For natural language data, a direction for future work is to capture deeper linguistic phenomena.
Here, background knowledge abounds: the entire field of theoretical linguistics has contributed
both descriptive facts about the structure of specific natural languages and general theories about
the way that structure is constrained. Viewing the logistic normal prior as local log-linear models
(Section 3.4) is a first step towards encoding such prior knowledge. Similarto Berg-Kirkpatrick
et al. (2010), it permits the use of arbitrary features in the parameterizationof the grammar.

We note that our inference algorithm, described in detail in Appendix B, canbe easily adapted
to scenarios which do not necessarily use the multivariate normal distributionas the base distribu-
tion in the prior. The “softmax” can be applied to any multivariate sample to get a point in the
probability simplex—perhaps capturing other tendencies in the data than covariance. The conve-
nience of performing such an extension depends on the ability to effectively compute the moment
generating function of the distribution replacing the multivariate Gaussian, in which case we can
develop Equation 13 and proceed with optimizing the variational bound using this distribution.

7. Conclusion

In this paper we demonstrated the effectiveness of estimating probabilistic grammars in a Bayesian
setting. We used the Bayesian setting to model covariance between the different parameters of
probabilistic grammars. To model the covariance, we used the logistic normal distribution as a prior
over the grammar parameters. In addition, we extended the logistic normal distribution to a new
family of distributions, in order to model covariance across the multinomial family ina probabilistic
grammar.

We proposed a variational inference algorithm for estimating the parametersof the probabilis-
tic grammar, providing a fast, parallelizable,8 and deterministic alternative to MCMC methods to
approximate the posterior over derivations and grammar parameters.

8. We used a cluster running MapReduce (Dean and Ghemawat, 2004) toperform inference when training our models.
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We experimented with grammar induction on six different languages, demonstrating the use-
fulness of our approach. Our experiments include a novel promising setting, in which syntactic
trees are inferred in a bilingual setting that uses multilingual, non-parallel corpora. Notably, our
approach tends to generalize better to longer sentences, despite learning(as in previous research)
on short sentences. The focus of the experiments was on dependencygrammar induction with
the dependency model with valence. Our choice of the DMV is motivated by thefact that it is a
widespread grammar for dependency grammar induction (Section 2.2), enabling us to tease apart
the problem of estimation of the grammar from the problem of deciding on the grammar structure.
Our inference algorithm, though, could be applied to any probabilistic grammarthat has an efficient
procedure, such as the inside-outside algorithm, for computing sufficientstatistics in the form of
expected counts of rule firing in grammar derivations.
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Appendix A. Notation

Table 4 gives a table of notation for symbols used throughout this paper.

Appendix B. Variational Inference with Logistic Normal Prior s

We give a derivation of a variational inference algorithm for model I, withthe shared logistic normal
distribution as a prior. The derivation is based on the one given in Blei andLafferty (2006). The
derivation for model II can be followed similarly, as explained below. For model I, we seek to
find an approximation posterior functionq(η1, ...,ηM,y1, ...,yM) that maximizes a lower bound (the
negated variational free energy) on the log-likelihood, a bound which is achieved using Jensen’s
inequality (the following probability quantities should be understood as if we always condition on
the grammarG):

M

∑
m=1

∑
y

logp(xm,y | µ,Σ,S)

≥
M

∑
m=1

(
N

∑
i=1

Eq
[
logp(ηm,i | µi ,Σi)

]
+Eq [logp(xm,ym | ηm,S)]

)

+H(q). (10)

H(·) denotes the Shannon entropy.
We make a mean-field assumption, and assume that the posterior has the following form:

q(η1, ...,ηM,y1, ...,yM) =
M

∏
m=1

qm(ηm,ym), (11)
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symbol description
gr

am
m

ar
s

an
d

da
ta G grammar (for example, context-free grammar rules)

M number of observed sentences
xm mth observed sentence in the available data
ym inferred derivation grammatical structure forxm

θ parameters of a probabilistic grammar
K number of multinomials in the probabilistic grammar
Nk size of thekth multinomial of the probabilistic grammar

fk,i(x,y) number of times theith event fires in thekth multinomial in the derivationsx
andy

pr
io

rs

α hyperparameters for the Dirichlet prior of a probabilistic grammar
Σ covariance matrices for the (shared) logistic normal prior of a probabilistic

grammar
µ mean values for the (shared) logistic normal prior of a probabilistic grammar
η values drawn from the Gaussians for (S)LN, before the logistic transformation

is applied
S partition structure for the shared logistic normal distribution
N number of normal experts for the SLN
ln length ofnth normal expert (SLN)
In partition of thenth normal expert into segments mapping to multinomials inG

(SLN)
Jk collection of segments of normal experts mapping tokth multinomial in G

(SLN)

va
ria

tio
na

lE
M

qm(θ,y) variational distribution which is used as an approximation posterior for themth
datum

µ̃m,k,i variational parameter for mean value of theith event in thekth for the mth
datum

σ̃m,k,i variational parameter for variance of theith event in thekth for themth datum
f̃m,k,i expected count of theith event in thekth for themth datum

ψ̃m,k,i intermediate quantity aggregating variational parameters
ζ̃m,k variational parameter for the first-order Taylor approximation of LN’s denom-

inator

Table 4: Table of notation symbols used in this paper.

where

qm(ηm,ym) =

(
N

∏
k=1

Lk

∏
i=1

qm(ηm,k,i | µ̃m,k,i , σ̃2
m,k,i)

)

×qm(ym),

andqm(ηm,k,i | µ̃m,k,i , σ̃2
m,k,i) is a Gaussian with mean ˜µm,k,i and variancẽσ2

m,k,i . Note that this means
that thevariational distributions have a diagonal matrix for their covariance structure. The model
covariance matrices (the hyperparametersΣ) can still have covariance structure. This selection of
variational distributions makes inference much easier. The factorized form of Equation 11 implies
the following identities:

3042



COVARIANCE IN UNSUPERVISEDLEARNING OF PROBABILISTIC GRAMMARS

Eq
[
logp(ηm,i | µi ,Σi)

]
= Eqm

[
logp(ηm,i | µi ,Σi)

]
,

Eq [logp(xm,ym | ηm,S)] = Eqm [logp(xm,ym | ηm,S)] ,

H(q) =
N

∑
m=1

H(qm).

Let ηC
k,i be an intermediate variable, denoting the average of the normal experts which appear in

the partition structure and determine the value of theith event in thekth multinomial of the grammar.
More formally, we define the vectorηC

k of lengthNk to be:

ηC
k ,

1
|Jk|

∑
Ir, j∈Jk

ηr,Ir, j .

Unfolding the expectation with respect toqm(ym) in the second term in Equation 10, while
recalling thatθm is a deterministic function ofηm that averages different subvectors from the col-
lection of multinomialsηm according to the partition structureS, we have that:

Eqm [logp(xm,ym | ηm,S)]

= Eqm(ηm)

[
K

∑
k=1

∑Nk
i=1 ∑

y
qm(ym) fk,i(xm,ym)

︸ ︷︷ ︸

f̃m,k,i

logθm,k,i

]

= Eqm(ηm)

[
K

∑
k=1

Nk

∑
i=1

f̃m,k,i

(

ηC
m,k,i− log

Nk

∑
i′=1

expηC
m,k,i′

)]

, (12)

where f̃m,k,i is the expected number of occurrences of theith event in distributionk, underqm(ym).
With many kinds of probabilistic grammars, this quantity can be computed using a dynamic pro-
gramming algorithm like the forward-backward or inside-outside algorithm.

The logarithm term in Equation 12 is problematic because of the expectation with respect to
qm(ηm). We approximate it with a first-order Taylor expansion, introducingM×K more variational
parameters̃ζm,k for m∈ {1, ...,M} andK ∈ {1, ...,K}:

log

(
Nk

∑
i′=1

expηC
m,k,i′

)

≤ logζ̃m,k−1+
1

ζ̃m,k

Nk

∑
i′=1

expηC
m,k,i′ . (13)

We note that the valueEqm(ηm)

[

exp(ηC
m,k,i′)

]

can be calculated by evaluating the moment-generating

function of the normal distributiong(t) = Eqm(ηm)

[

exp(tηC
m,k,i′)

]

at t = 1. We now have:
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Algorithm 1 : Variational EM for probabilistic grammars with LN prior

Input : initial parametersµ(0), Σ(0), training datax, and development datax′

Output : learned parametersµ, Σ
t← 1 ;
repeat

Call E-Step for each training example m= 1, ...,M (Algorithm 2)
Call M-Step (Algorithm 3)
t← t +1;

until likelihood of held-out data, p(x′ | E[µ(t)]), decreases;
return µ(t), Σ(t)

Eqm[logp(xm,ym | ηm,S)]

≥ Eqm(ηm)

[
K

∑
k=1

Nk

∑
i=1

f̃m,k,i

(

ηm,k,i− logζ̃m,k+1−
1

ζ̃m,k

Nk

∑
i′=1

expηm,k,i′

)]

=
K

∑
k=1

Nk

∑
i=1

f̃m,k,i

(

µ̃m,k,i− logζ̃m,k+1−
1

ζ̃m,k

Nk

∑
i′=1

exp

(

µ̃C
m,k,i +

(σ̃C
m,k,i)

2

2

))

︸ ︷︷ ︸

ψ̃m,k,i

=
K

∑
k=1

Nk

∑
i=1

f̃m,k,iψ̃m,k,i

where we use again the properties of the shared logistic normal distribution and rely on the partition
structureS to define:

µ̃C
m,k ,

1
|Jk|

∑
Ir, j∈Jk

µ̃m,r,Ir, j ,

(σ̃C
m,k)

2 ,
1
|Jk|2

∑
Ir, j∈Jk

σ̃2
m,r,Ir, j .

Note the shorthand̃ψk,i to denote an expression involving ˜µC, σ̃C, andζ̃.
The final form of our bound is:9

logp(x,y | µ,Σ)≥

(
K

∑
k=1

Eq [logp(ηk | µk,Σk)]

)

+

(
K

∑
k=1

Nk

∑
i=1

f̃k,iψ̃k,i

)

+H(q). (14)

Using an EM-style algorithm, we will alternate between finding the maximizingq(η) and the
maximizingq(y). Maximization with respect toqm(ηm) is not hard, becauseq(η) is parameterized.
The following lemma shows that fortunately, finding the maximizingqm(ym), which we did not
parameterize originally, is not hard either:

9. A tighter bound, based on a second-order approximation, was proposed in Ahmed and Xing (2007). We use a first-
order approximation for simplicity, similar to Blei and Lafferty (2006).
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Algorithm 2 : E-Step (subroutine for Algorithm 1)

repeat

optimize forµ̃(t)m,k,k= 1, ...,K: use conjugate gradient descent with

∂B
∂µ̃m,k,i

=−
(

(Σ(t−1)
k )−1)(µ(t−1)

k − µ̃m,k)
)

i
− f̃m,k,i

+
Nk

∑
i′=1

(

f̃m,k,i′/ζ̃m,k

)

exp

(

µ̃k,i′+ σ̃2
k,i′

2

)

optimizeσ̃(t)
m,k,k= 1, ...,K: use Newton’s method for each coordinate (withσ̃m,k,i > 0)

with

∂B

∂σ̃2
m,k,i

=−
Σ(t−1)

k,ii

2
−

(

∑Nk
i′=1 f̃m,k,i′

)

exp

(
µ̃m,k,i+σ̃2

m,k,i

2

)

2ζ̃m,k
+

1

2σ̃2
m,k,i

updateζ̃(t)m,k,∀k:

ζ̃(t)m,k←
Nk

∑
i=1

exp



µ̃(t)m,k,i +
(σ̃(t)

m,k,i)
2

2





updateψ̃(t)
m,k,∀k:

ψ̃(t)
m,k,i ← µ̃(t)m,k,i− logζ̃(t)m,k+1−

1

ζ̃(t)m,k

Nk

∑
i′=1

exp



µ̃(t)m,k,i +
(σ̃(t)

m,k,i)
2

2





compute expected countsf̃(t)m,k,k= 1, ...,K: use an inside-outside algorithm to re-estimate

expected counts̃f (t)m,k,i in weighted grammarq(y) with weightseψ̃m ;
until B does not change;

Lemma 2 Let r(ym | xm,eψ̃m) denote the conditional distribution overym givenxm defined as:

rm(ym | xm,e
ψ̃) =

1
Zm(ψ̃m)

K

∏
k=1

Nk

∏
i=1

exp(ψ̃m,k,i fm,k,i(xm,ym))

where Zm(ψ̃m) is a normalization constant. Then qm(ym) = rm(ym | xm,eψ̃m) maximizes the bound
in Equation14.

Proof First note thatH(qm) = H(qm(ηm | µ̃m, σ̃m))+H(qm(ym)). This means that the terms we are
interested in maximizing from Equation 14 are the following, after plugging inf̃m,k,i explicitly:

L = argmax
qm(ym)

∑
ym

qm(ym)

(
K

∑
k=1

Nk

∑
i=1

fm,k,i(xm,ym)ψ̃m,k,i

)

+H(qm(ym)).
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Algorithm 3 : M-Step (subroutine for Algorithm 1)

Estimateµ(t) andΣ(t) using the following maximum likelihood closed-form solution:

µ(t)k,i ←
1
M

M

∑
m=1

µ̃(t)m,k,i

[

Σ(t)
k

]

i, j
←

1
M

(
M

∑
m=1

µ̃(t)m,k,iµ̃
(t)
m,k, j +(σ̃(t))2

m,k,iδi, j +Mµ(t)k,i µ
(t)
k, j

−µ(t)k, j

M

∑
m=1

µ̃(t)m,k,i−µ(t)k,i

M

∑
m=1

µ̃(t)m,k, j

)

,

whereδi, j = 1 if i = j and 0 otherwise.

Then, note that:

L = argmin
qm(ym)

DKL
(
qm(ym)

∥
∥ rm(ym | xm,e

ψ̃m)
)
, (15)

whereDKL denotes the KL divergence. To see that, combine the definition of KL divergence with
the fact that∑K

k=1 ∑Nk
i=1 fm,k,i(x,y)ψ̃m,k,i − logZm(ψ̃m) = logrm(ym | xm,eψ̃m) where logZm(ψ̃) does

not depend onqm(ym). Equation 15 is minimized whenqm = rm.

The above lemma demonstrates that the minimizingqm(ym) has the same form as the probabilis-
tic grammarG, only without having sum-to-one constraints on the weights (leading to the required
normalization constantZm(ψ̃m)). As in classic EM with probabilistic grammars, we never need to
representqm(ym) explicitly; we need onlỹfm, which can be calculated as expected feature values
underrm(ym | xm,eψ̃m) using dynamic programming.

Variational inference for model II is done similarly to model I. The main difference is that
instead of having variational parameters for eachqm(ηm), we have a single distributionq(η), and
the sufficient statistics from the inside-outside algorithm are used altogether toupdate it during
variational inference.

Appendix C. Variational EM for Logistic-Normal Probabilisti c Grammars

The algorithm for variational inference with probabilistic grammars using logistic normal prior
is defined in Algorithms 1–3.10 Since the updates for̃ζ(t)k are fast, we perform them after each
optimization routine in the E-step (suppressed for clarity). There are variational parameters for
each training example, indexed bym. We denote byB the variational bound in Equation 14. Our
stopping criterion relies on the likelihood of a held-out set (Section 5) usinga point estimate of the
model.

10. An implementation of the algorithm is available athttp://www.ark.cs.cmu.edu/DAGEEM . For simplicity, we give
the vanilla logistic normal version of the algorithm in this appendix. The full version requires a more careful indexing
and can be derived using the equations from Appendix B.
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