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Abstract
We present a polynomial update time algorithm for the inductive inference of a large class of
context-free languages using the paradigm of positive dataand a membership oracle. We achieve
this result by moving to a novel representation, called Contextual Binary Feature Grammars
(CBFGs), which are capable of representing richly structured context-free languages as well as
some context sensitive languages. These representations explicitly model the lattice structure of
the distribution of a set of substrings and can be inferred using a generalisation of distributional
learning. This formalism is an attempt to bridge the gap between simple learnable classes and
the sorts of highly expressive representations necessary for linguistic representation: it allows the
learnability of a large class of context-free languages, that includes all regular languages and those
context-free languages that satisfy two simple constraints. The formalism and the algorithm seem
well suited to natural language and in particular to the modeling of first language acquisition. Pre-
liminary experimental results confirm the effectiveness ofthis approach.
Keywords: grammatical inference, context-free language, positive data only, membership queries

1. Introduction

In natural language processing, many applications require the learning of powerful grammatical
models. One of the central concerns of generative linguistics is the definitionof an adequate for-
malism that needs to satisfy two different objectives. On the one hand, such a formalism must be
expressive enough to describe natural languages. On the other hand, it has to be sufficiently con-
strained to be learnable from the sort of linguistic data available to the child learner (Chomsky,
1986). In this context, there are two possible research strategies. One isto take a descriptively
adequate formalism such asTree Adjoining Grammars(Joshi and Schabes, 1997) or some other
mildly context sensitive grammatical formalism and try to construct learning algorithms for that
class. However, such a strategy is unlikely to be successful because classes that are so powerful
are difficult to handle from a machine learning point of view. The other approach, which we adopt
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in this paper, consists in switching to a formalism that is in some sense intrinsically learnable, and
seeing whether we can represent linguistically interesting formal languages in that representation.

Grammatical inference is the machine learning domain which aims at studying learnability of
formal languages. While many learnability results have been obtained for regular languages (An-
gluin, 1987; Carrasco and Oncina, 1994), this class is not sufficient tocorrectly represent natural
languages. The next class of languages to consider is the class of context-free languages (CFL).
Unfortunately, there exists no learnability results for the whole class. This may be explained by
the fact that this class relies on syntactic properties instead of intrinsic properties of the language
like the notion of residuals for regular languages (Denis et al., 2004). Thus, most of the approaches
proposed in the literature are either based on heuristics (Nakamura and Matsumoto, 2005; Langley
and Stromsten, 2000) or are theoretically well founded but concern very restricted subclasses of
context-free languages (Eyraud et al., 2007; Yokomori, 2003; Higuera and Oncina, 2002). Some of
these approaches are built from the idea ofdistributional learning,1 normally attributed to Harris
(1954). The basic principle—as we reinterpret it in our work—is to look atthe set of contexts that
a substring can occur in. The distribution of a substring is the linguistic way ofreferring to this
set of contexts. This idea has formed the basis of many heuristic algorithms for learning context-
free grammars (see Adriaans, 2002 for instance). However, a recent approach by Clark and Eyraud
(2007), has presented an accurate formalisation of distributional learning. From this formulation,
a provably correct algorithm for context-free grammatical inference was given in the identification
in the limit framework, albeit for a very limited subclass of languages, the substitutable languages.
From a more general point of view, the central insight is that it is not necessary to find the non-
terminals of the context-free grammar (CFG): it is enough to be able to represent the congruence
classes of a sufficiently large set of substrings of the language and to beable to compute how they
combine. This result was extended to a PAC-learning result under a number of different assumptions
(Clark, 2006) for a larger class of languages, and also to a family of classes of learnable languages
(Yoshinaka, 2008).

Despite their theoretical bases, these results are still too limited to form the basisfor models for
natural language. There are two significant limitations to this work: first it uses a very crude measure
for determining the syntactic congruence, and secondly the number of congruence classes required
will in real cases be prohibitively large. If each non-terminal corresponds to a single congruence
class (the NTS languages Boasson and Senizergues, 1985), then the problem may be tractable.
However in general the contexts of different non-terminals overlap enormously: for instance the
contexts of adjective phrases and noun phrases in English both contain contexts of the form (“it
is” , “.” ). Problems of lexical ambiguity also cause trouble. Thus for a CFG it may be the case that
the number of congruence classes corresponding to each non-terminalmay be exponentially large
(in the size of the grammar). But the situation in natural language is even worse: the CFG itself
may have an exponentially large number of non-terminals to start off with! Conventional CFGs are
simply not sufficiently expressive to be cognitively plausible representations of natural language:
to write a CFG requires a multiplication of the numbers of non-terminals to handle phenomena
like subject verb agreement, gender features, displaced constituents, etc. This requires the use of a
formalism like GPSG (Generalised Phrase Structure Grammar) (Gazdar et al., 1985) to write a meta-
grammar—a compact way of specifying a very large CFG with richly structured non-terminals.

1. Note here that the word distributional does not refer to stochastic distributions, but to the occurrence of strings into
contexts. The distribution of a string corresponds to all the possible contexts in which the string can appear.
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Thus we cannot hope to learn natural languages by learning one congruence class at a time: it is
vital to use a more structured representation.

This is the objective of the approach introduced in this article: for the first time, we can bridge
the gap between theoretically well founded grammatical inference methods andthe sorts of struc-
tured representations required for modeling natural languages.

In this paper, we present a family of representations for highly structured context-free languages
and show how they can be learned. This is a paper in learning, but superficially it may appear to be a
paper about grammatical representations: much of the work is done by switching to a more tractable
formalism, a move which is familiar to many in machine learning. From a machine learning point
of view, it is a commonplace that switching to a better representation—for example, through a
non-linear map into some feature space—may make a hard problem very easy.

The contributions of this paper are as follows: we present in Section 3 a rich grammatical for-
malism, which we callContextual Binary Feature Grammars(CBFG). This grammar formalism is
defined using a set of contexts which play the role of features with a strict semantics attached to
these features. Though not completely original, since it is closely related to anumber of other for-
malisms such as Range Concatenation Grammars (Boullier, 2000), it is of independent interest. We
consider then the case when the contextual features assigned to a string correspond to the contexts
that the string can occur in, in the language defined by the grammar. When thisproperty holds, we
call it anexact CBFG. The crucial point here is that for languages that can be defined by anexact
CBFG, the underlying structure of the representation relies on intrinsic properties of the language
easily observable on samples by looking at context sets.

The learning algorithm is defined in Section 4. We provide some conditions, both on the context
sets and the learning set, to ensure the learnability of languages that can berepresented by CBFG.
We prove that this algorithm can identify in the limit this restricted class of CBFGs from positive
data and a membership oracle.

Some experiments are provided in Section 5: these experiments are intended todemonstrate
that even quite naive algorithms based on this are efficient and effectiveat learning context-free
languages.

Section 6 contains a theoretical study on the expressiveness of CBFG representations. We inves-
tigate the links with the classical Chomsky hierarchy, some well known grammatical representations
used in natural language processing. An important result about the expressive power of the class of
CBFG is obtained: it contains all the context-free languages and some non context-free languages.
This makes this representation a good candidate for representing naturallanguages. However ex-
act CBFG do not include all context-free languages but do include some non context-free ones,
thus they are orthogonal with the classic Chomsky hierarchy and can represent a large class of
languages. This expressiveness is strengthened by the fact that exact CBFG contains most of the
existing learnable classes of languages.

2. Basic Definitions and Notations

We begin by some standard notations and definitions used all along the paper.
We consider a finite alphabetΣ as a finite non-empty set of symbols also called letters. A string

(also called word)u overΣ is a finite sequence of lettersu= u1 · · ·un. Let |u| denote the length of
u. The set of all strings overΣ is denoted byΣ∗, corresponding to the free monoid generated byΣ.
λ denotes the empty string andΣ+ = Σ∗\{λ}. A languageL is any subsetL⊆ Σ∗.

2709



CLARK , EYRAUD AND HABRARD

We will write the concatenation ofu andv asuv, and similarly for sets of strings.u∈ Σ∗ is a
substring ofv ∈ Σ∗ if there are stringsl , r ∈ Σ∗ such thatv = lur. DefineSub(u) to be the set of
non-empty substrings ofu. For a set of stringsSdefineSub(S) =

⋃
u∈SSub(u).

A context is an element ofΣ∗×Σ∗. For a stringu and a contextf = (l , r) we write f ⊙u= lur;
the insertion or wrapping operation. We extend this to sets of strings and contexts in the natural
way. We define byCon(w) = {(l , r)|∃u∈ Σ+ : lur = w}, that is, the set of all contexts of a wordw.
Similarly, for a set of strings, we define:Con(S) =

⋃
w∈SCon(w).

We give now a formal definition of the set of contexts since it represents anotion often used in
the paper.

Definition 1 The set of contexts, or context distribution, of a string u in a language L is,CL(u) =
{(l , r) ∈ Σ∗×Σ∗|lur ∈ L}. We will often drop the subscript where there is no ambiguity.

Definition 2 Two strings u and v are syntactically congruent with respect to a languageL, denoted
u≡L v, if and only if CL(u) =CL(v).

The equivalence classes under this relation are thecongruenceclasses of the language.
After these basic definitions and notations, we recall here the definition of acontext-free gram-

mar which is a class which is close to the language class studied in this paper.

Definition 3 A context-free grammar (CFG) is a quadruple G= (Σ,V,P,S). Σ is a finite alphabet
of terminal symbols, V is a set of non terminals s.t.Σ∩V = /0, P⊆V× (V ∪Σ)+ is a finite set of
productions, S∈V is the start symbol.

We denote a production ofP: N→ α with N ∈V andα ∈ (V∪Σ)+. We will write uNv⇒G uαv
if there is a productionN→ α in G.

∗
⇒G denotes the reflexive transitive closure of⇒G.

The language defined by a CFGG is L(G) = {w ∈ Σ∗|S ∗
⇒G w}. In the following, we will

consider the CFG are represented in theChomsky normal form(CNF), that is, with right hand side
of production rules composed of exactly two non terminals or with exactly one terminal symbol.

In general we will assume thatλ is not a member of any language.

3. Contextual Binary Feature Grammars (CBFG)

Distributional learning, in our view, involves explicitly modeling the distribution ofthe substrings
of the language—we would like to modelCL(w). Clearly a crucial element of this distribution is the
empty context(λ,λ): (λ,λ) ∈CL(w) if and only if w∈ L. Our goal is to construct a representation
that allows us to recursively compute a representation of the distribution of astringw, CL(w), from
the (representations of) the distributions of its substrings.

The representation bycontextual binary feature grammarsrelies on the inclusion relation be-
tween sets of contexts of languageL. In order to introduce this formalism, we propose, for a start, to
present some preliminary results on context inclusion. These results will lead us to define a relevant
representation for modeling these inclusion dependencies by the notion ofcontextual binary feature
grammars.

3.1 Preliminary Results about Context Inclusion

The objective of this section is to give some information about contexts that willhelp to give an
intuition about the representation. The basic insight behind CBFGs is that there is a relation between
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the contexts of a stringw and the contexts of its substrings. This is given by the following trivial
lemma:

Lemma 4 For any language L and for any strings u,u′,v,v′ if C(u) =C(u′) and C(v) =C(v′), then
C(uv) =C(u′v′).

Proof We write out the proof completely as the ideas will be used later on. Suppose we have
u,v,u′,v′ that satisfy the conditions. If(l , r) ∈C(uv), then(l ,vr) ∈C(u) and thus(l ,vr) ∈C(u′). As
a consequence,(lu′, r) ∈C(v) and then(lu′, r) ∈C(v′) which implies that(l , r) ∈C(u′v′). Symmet-
rically, by using the same arguments, we can show that(l , r) ∈C(u′v′) implies(l , r) in C(uv). Thus
C(uv) =C(u′v′).

This establishes that the syntactic monoidΣ∗/ ≡L is well-defined; from a learnability point of
view this means that if we want to compute the contexts of a stringw we can look for a split into
two stringsuv whereu is congruent tou′ andv is congruent tov′; if we can do this and we know
how u′ andv′ combine, then we know that the contexts ofuv will be exactly the contexts ofu′v′.
There is also a slightly stronger result:

Lemma 5 For any language L and for any strings u,u′,v,v′ if C(u)⊆C(u′) and C(v)⊆C(v′), then
C(uv)⊆C(u′v′).

Proof See proof of Lemma 4.

C(u) ⊆C(u′) means that we can replace any occurrence in a sentence ofu with a u′, without
affecting the grammaticality, but not necessarily vice versa. Note that noneof these strings need to
correspond to non-terminals: this is valid for any fragment of a sentence.

We will give a simplified example from English syntax: the pronoun “it” can occur everywhere
that the pronoun “him” can, but not vice versa.2 Thus given a sentence “I gave him away”, we can
substitute “him” for ” it”, to get the grammatical sentence “I gave it away”, but we cannot reverse
the process. For example, given the sentence “it is raining”, we cannot substitute “him” for “ it”, as
we will get the ungrammatical sentence “him is raining”. Thus we observeC(him)(C(it ).

Looking at Lemma 5 we can also say that, if we have some finite set of stringsK, where we
know the contexts, then:

Corollary 6 For any language L and for any set of strings K, we have:

C(w)⊇
⋃

u′,v′:
u′v′=w

⋃

u∈K:
C(u)⊆C(u′)

⋃

v∈K:
C(v)⊆C(v′)

C(uv).

This is the basis of our representation: a wordw is characterised by its set of contexts. We
can compute the representation ofw, from the representation of its partsu′,v′, by looking at all of
the other matching stringsu andv where we understand how they combine (with subset inclusion).
Rather than representing just the congruence classes, we will represent the lattice structure of the
set of contexts using subset inclusion; sometimes called Dobrušin-domination (Marcus, 1967).

The key relationships are given by context set inclusion.Contextual binary feature grammars
allow a proper definition of the combination of context inclusion.

2. This example does not account for a number of syntactic and semantic phenomena, particularly the distribution of
reflexive anaphors.

2711



CLARK , EYRAUD AND HABRARD

3.2 Contextual Binary Feature Grammars

The formalism ofcontextual binary feature grammarshas some resemblance withGeneralized
Phrase Structure Grammar (GPSG)(Gazdar et al., 1985), and most importantly the class ofRange
Concatenation Grammars (RCG)(Boullier, 2000); these relationships will be detailed in Section 6.
As we will see later, note that our formalism defines a class orthogonal to theclass of context-free
grammars, indeed the use of subsets inclusion allows to model non context-free languages.

Definition 7 A Contextual Binary Feature Grammar (CBFG) G is a tuple〈F,P,PL,Σ〉:

• F is a finite set of contexts, (i.e., F⊂ Σ∗×Σ∗) called features, where we write E= 2F for the
power set of F defining the categories of the grammar, and where(λ,λ) ∈ F.

• P⊆ E×E×E is a finite set of productions that we write x→ yz where x,y,z∈ E,

• PL ⊆ E×Σ is a set of lexical rules, written x→ a,

• Σ denotes the alphabet.

Given a CBFGG we can recursively define a functionfG from Σ∗→ E as follows:

fG(λ) = /0,

fG(w) =
⋃

(c→w)∈PL

c iff |w|= 1,

fG(w) =
⋃

u,v:uv=w

⋃

x→yz∈P:
y⊆ fG(u)∧
z⊆ fG(v)

x iff |w|> 1.

Given a CBFGG and a stringw it is possible to computefG(w) in time O(|F||P||w|3) using
standard dynamic programming techniques. A straightforward modification ofthe Cocke-Kasami-
Younger algorithm for parsing Context-Free Grammars will suffice.

Thus a CBFG,G, defines for every stringu a set of contextsfG(u): this will be a representation
of the context distribution.fG(u) will be a subset ofF : we will want fG(u) to approximateCL(u)∩
F . The natural way to define the membership of a stringw in L(G) is to have the context(λ,λ) ∈
fG(w).

Definition 8 The language defined by a CBFG G is the set of all strings that are assigned the empty
context: L(G) = {u|(λ,λ) ∈ fG(u)}.

We give here more explanation about the functionfG. A rulex→ yzis applied to analyse a string
w if there is a split orcut of the stringw into two stringsu andv such thatuv= w s.t. y⊆ fG(u) and
z⊆ fG(v)—recall thaty andz are sets of features.

One way of viewing a productionx→ yz is as an implication: if two stringsu andv are such
that they have the featuresy andz, then their concatenation will have the featuresx. As features
correspond to contexts, intuitively, the relation given by the production rule is linked with Lemma 5:
x is included in the set of features ofw = uv. From this relationship, for any(l , r) ∈ x we have
lwr ∈ L(G).
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The complete computation offG is then justified by Corollary 6:fG(w) defines all the possible
contextual features associated byG to w with all the possible cutsuv= w (i.e., all the possible
derivations).

Note the relation between the third clause above and Corollary 6. In general we will apply more
than one production at each step of the analysis.

We will discuss the relation between this class and the class of CFGs in some detail in Section 6.
For the moment, we will just make the following points. First, the representation is quite close to
that of a CFG where the non-terminals correspond to sets of contexts (subsets ofF). There are,
however, crucial differences: the very fact that they are represented by sets means that the non-
terminals are no longer atomic symbols but rather structures; the formalism cancombine different
rules together at each step. Secondly, the functionfG can combine different parsing paths. It is not
the case that every feature assigned tow must come from the same split ofw into u andv. Rather
some features could come from one split, and some from another: these two sets of features can be
combined in a single derivation even though they come from different splits (which correspond to
different derivation trees in CFG). It is this property that takes the classof languages out of the class
of context-free languages. In the special case where all of the productions involve only singleton
sets then this will reduce to a CFG—the non-terminals will correspond to the individual features,
and fG(w) will correspond to the set of non-terminals that can derive the stringw.

Clearly by the definition ofL(G) we are forcing a correspondence between the occurrence of
the context(λ,λ) in CL(w) and the occurrence of the feature(λ,λ) in fG(w). But ideally we can also
require thatfG defines exactly the possible features that can be associated to a given string according
to the underlying language. Indeed, we are interested in cases where there is a correspondence
between the language theoretic interpretation of a context, and the occurrence of that context as a
feature in the grammar: in this case the features will be observable which will lead to learnability.

This is formalised via the following definitions.

Definition 9 Given a finite set of contexts F= {(l1, r1), . . . ,(ln, rn)} and a language L we can
define the context feature function FL : Σ∗ → 2F which is just the function u7→ {(l , r) ∈ F |lur ∈
L}=CL(u)∩F.

Using this definition, we now need a correspondence between the language theoretic context
feature functionFL and the representation in our CBFG,fG.

Definition 10 A CBFG G isexactif for all u ∈ Σ∗, fG(u) = FL(G)(u).

Example.Let L = {anbn|n> 0}. Let 〈F,(λ,λ),P,PL,Σ〉 a CBFG s.t.

F = {(λ,λ),(a,λ),(aab,λ),(λ,b),(λ,abb)}.

The lexical productions inPL are:

{(λ,b),(λ,abb)}→ a,and

{(a,λ),(aab,λ)}→ b.

Note that these lexical productions are of the formx→ a, wherex is a subset ofF , that is to say, a
set of features. The rule{(λ,b),(λ,abb)}→ a therefore says that the lettera will be assigned both
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of the features/contexts(λ,b) and(λ,abb). Since this is the only lexical rule fora, we will have that
fG(a) = {(λ,b),(λ,abb)}. The productions inP, denoted byx→ yz, wherex,y,z are again sets of
contexts, are defined as:

{(λ,λ)}→ {(λ,b)}{(aab,λ)},

{(λ,λ)}→ {(λ,abb)}{(a,λ)},

{(λ,b)}→ {(λ,abb)}{(λ,λ)},and

{(a,λ)}→ {(λ,λ)}{(aab,λ)}.

In each of these rules, in this trivial case, the sets of contexts are singleton sets. In general, these
productions may involve sets that have more than one element. This defines anexact CBFG for
L. Indeed, the grammar assigns only(λ,λ) to the elements of the language; for all elementsw of
{anbn+1 : n> 1} we havefG(w) = {(a,λ)}= FL(w) and for all all elementsw of {an+1bn : n> 1},
fG(w) = {(λ,b)}= FL(w); The lexical rules assign correct contexts to each letter.

Exact CBFGsare a more limited formalism than CBFGs themselves; without any limits on
the interpretation of the features, we can define a class of formalisms that is equal to the class of
Conjunctive Grammars(see Section 6.2.3). However, exactness is an important property because
it allows to associate the intrinsic structure of a language to the structure of therepresentation.
Contexts are easily observable from a sample and moreover it is only when the features correspond
to the contexts that distributional learning algorithms can infer the structure ofthe language.

3.3 A Parsing Example

To clarify the relationship with CFG parsing, we will give a simple worked example. Consider the
CBFGG= 〈{(λ,λ),(aab,λ),(λ,b),(λ,abb),(a,λ)}, P,PL,{a,b}〉 with

PL = { {(λ,b),(λ,abb)}→ a,
{(a,λ),(aab,λ)}→ b }.

and P= { {(λ,λ)}→ {(λ,b)}{(aab,λ)},
{(λ,λ)}→ {(λ,abb)}{(a,λ)},
{(λ,b)}→ {(λ,abb)}{(λ,λ)},
{(a,λ)}→ {(λ,λ)}{(aab,λ)} }.

If we want to parse a stringw the usual way is to have a bottom-up approach. This means that
we recursively compute thefG function on the substrings ofw in order to check whether(λ,λ)
belongs tofG(w).

For example, supposew= aabb. Figure 1 graphically gives the main steps of the computation of
fG(aabb). Basically there are two ways to splitaabbthat allow the derivation of the empty context:
aab|b anda|abb. The first one corresponds to the top part of the figure while the secondone is
drawn at the bottom. We can see for instance that the empty context belongs tofG(ab) thanks to the
rule{(λ,λ)}→ {(λ,abb)}{(a,λ)}: {(λ,abb)} ⊆ fG(a) and{(a,λ)} ⊆ fG(b). But for symmetrical
reasons the result can also be obtained using the rule{(λ,λ)}→ {(λ,b)}{(aab,λ)}.

As we trivially have fG(aa) = fG(bb) = /0, since no right-hand side contains the concatenation
of the same two features, an induction proof can be written to show that(λ,λ) ∈ fG(w)⇔ w ∈
{anbn : n> 0}.

This is a simple example that illustrates the parsing of a string given a CBFG. Thisexample does
not fully express the power of CBFG since no element of the right hand side of a rule is composed
of more than one context. A more complex example, corresponding to a context-sensitive language,
will be presented in Section 6.1.3.
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Figure 1: The two derivations to obtain(λ,λ) in fG(aabb) in the grammarG.

We stop here the presentation of the CBFG formalism and we present our learning algorithm in
the next section. However, if the reader wishes to become more familiar with CBFGs a study on
their expressiveness is provided in Section 6.

4. Learning Algorithm

We have carefully defined the representation so that the inference algorithm will be almost trivial.
Given a set of strings, and a set of contexts, we can simply write down a CBFG that will approximate
a particular language.

4.1 Building CBFGs from Sets of Strings and Contexts

Definition 11 Let L be a language, F be a finite set of contexts such that(λ,λ) ∈ F, K a finite set of
strings, PL = {FL(u)→ u|u∈ K∧|u|= 1} and P= {FL(uv)→ FL(u)FL(v)|u,v, uv∈ K}. We define
G0(K,L,F) as the CBFG〈F,P, PL,Σ〉.

OftenK will be closed under substrings: that is,Sub(K) = K. This grammar is a CBFG, since
K andF are finite, and soP andPL are too by construction. In general it will not be exact.
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We will call K here thebasisfor the language. The set of productions is defined merely by
observation: we take the set of all productions that we observe as the concatenation of elements of
the small setK.

Let us explain the construction in more detail.PL is the set of lexical productions—analogous to
rules of the formN→ a in a CFG in Chomsky normal form. These rules just assign to the terminal
symbols their observed distribution—this will obviously be correct in thatfG(a) = FL(a). P is the
interesting set of productions: these allow us to predict the features of a string uv from the features
of its partu andv. To constructP we take all triples of stringsu,v,uv that are in our finite setK. We
observe thatu has the contextsFL(u) andv has the set of contextsFL(v): our rule then states that
we can combine any string that has all of the contexts inFL(u) together with any string that has the
contexts inFL(v) and the result will have all of the contexts inFL(uv).

We will now look at a simple example. LetL = {anbn | n > 0}, F , the set of features is
{(λ,λ),(a,λ),(λ,b)} and K, the basis, is{a,b,ab,aa,aab}. For each of the elements ofK we
can compute the set of features that it has:

• FL(a) is just{(λ,b)}—this is the only one of the three contexts inF such thatf ⊙a∈ L,

• FL(b) = {(a,λ)},

• FL(aa) = /0,

• FL(ab) = {(λ,λ)},

• FL(aab) = {(λ,b)}.

G0 will therefore have the following lexical productionsPL = {(λ,b)} → a, {(a,λ)} → b. We
can now consider the productions inP. Looking atK we will see that there are only four possible
triples of strings of the formuv,u,v: these are(aa,a,a), (ab,a,b), (aab,aa,b) and(aab,a,ab). Each
of these will give rise to an element ofP:

• The rule given byab= a◦b: {(λ,λ)}→ {(λ,b)}{(a,λ)},

• aa= a◦a gives /0 →{(λ,b)}{(λ,b)},

• aab= aa◦b gives{(λ,b)}→ /0{(a,λ)},

• aab= a◦abgives{(λ,b)}→ {(λ,b)}{(λ,λ)}.

Given K,F and an oracle forL we can thus simply write down a CBFG. However, in this
case, the languageL(G0) is not the same asL; moreover, the resulting grammar is not exact.
Applying the rules for the recursive computation offG, we can see thatfG0(aab) = {(λ,b)} and
fG0(abb) = fG0(aabb) = {(λ,b),(λ,λ)} butFL(G0)(abb) = {(a,λ),(λ,b),(λ,λ)} and thusG0 is not
exact. The problem here is caused by the fact that the production{(λ,b)} → /0{(a,λ)} allows any
string to occur in the place specified by the/0: indeed since/0⊆ fG0(aab) and{(a,λ)} ⊆ fG0(b) the
rule holds foraabband thus{(λ,b)} ⊆ fG0(aabb). This is actually caused by the fact that there are
no contexts inF that correspond to the stringaa in K.

Fixing L for the moment, clearly the language defined depends on two factors: the set of strings
K and the set of featuresF . GivenK andF , and access to a membership oracle, we can write down
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a CBFG with almost no computation, but we still have the problem of finding suitableK andF—it
might be that searching for exactly the right combination ofK andF is intractably hard. It turns out
that it is also very easy to find suitable sets.

In the next section we will establish two important lemmas that show that the search for K and
F is fundamentally tractable: first, that asK increases the language defined byG0(K,L,F) will
increase, and secondly that asF increases the language will decrease.

Let us consider one example that illustrates these properties. Consider thelanguageL = {anb |
n≥ 0}∪{bam |m≥ 0}∪{a}.

First, letK = {a,b,ab} andF = {(λ,λ)}; then, by the definition ofG0, we have the following
productions:

• {(λ,λ)}→ a,

• {(λ,λ)}→ b,

• {(λ,λ)}→ {(λ,λ)}{(λ,λ)}.

It is easy to see thatL(G0) = Σ+.
Now, suppose thatF = {(λ,λ),(λ,b)} with K unchanged; then, by constructionG0 will have

the following productions:

• {(λ,λ),(λ,b)}→ a,

• {(λ,λ)}→ b,

• {(λ,λ)}→ {(λ,λ),(λ,b)}{(λ,λ)}.

The language defined byG0 containsanb and alsoan since{(λ,λ)} ⊂ {(λ,λ),(λ,b)} allowing the
third production to accept strings ending with ana. Thus, the language has been reduced such that
L(G0) = {anb | n≥ 0}∪{am |m≥ 0}.

We continue by leavingF = {(λ,λ),(λ,b)} and we enlargeK such thatK = {a,b,ab,ba}. The
productions inG0 are:

• {(λ,λ),(λ,b)}→ a,

• {(λ,λ)}→ b,

• {(λ,λ)}→ {(λ,λ),(λ,b)}{(λ,λ)}; the rule given byab= a◦b,

• {(λ,λ)}→ {(λ,λ)}{(λ,λ),(λ,b)}; the rule given byba= b◦a.

The addition of the last rule allows the grammar to recognizeban and it can be easily shown
that by a combination of the last two productionsanbam belongs to the language defined by the
grammar. Then,L(G0) has been increased such thatL(G0) = {anbak | n,k≥ 0}∪{am |m≥ 0}.

In this example, the addition of(λ,b),(a,λ) and(λ,a) to F and the addition ofaabandbaa to
K will then define the correct language. In fact this illustrates one principle of our approach: in the
infinite data limit, the constructionG0 will define the correct language. In the following lemma we
abuse notation and useG0 for when we have infiniteK, andF : in this lemma we letK be the set of
all non-empty strings and we letF be the set of all possible contexts(Σ∗×Σ∗). Recall that in this
case for every stringw CL(w) = FL(w).
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Lemma 12 For any language L, let G= G0(Σ+,L,Σ∗×Σ∗). Then for all w∈ Σ+ fG(w) =CL(w)
and therefore L(G) = L.

Proof By induction on the length ofw. If |w| = 1, andw = a then there is a lexical production
CL(a)→ a and by the definition offG(a) = CL(a). Suppose this is true for allw with |w| ≤ k.
Let w be some string of lengthk+ 1. Consider any split ofw into u,v such thatw = uv. fG(w)
is the union over all these splits of a function. We will show that every such split will give the
same result ofCL(w). By inductive hypothesisfG(u) = CL(u), fG(v) = CL(v). Sinceu,v,w are in
K = Σ+ we will also have an element ofP of the formCL(w)→ CL(u)CL(v), so we know that
fG(w) ⊇ FL(w). We now show thatfG will not predict any extra contexts. Consider every pro-
duction inP, FL(u′v′)→ FL(u′)FL(v′), that applies tou,v, that is, withFL(u′)⊆ fG(u) =CL(u) and
FL(v′)⊆ fG(v) =CL(v). Lemma 5 shows that in this caseFL(u′v′)⊆ FL(w) and thus we deduce that
fG(w)⊆ FL(w), which establishes the lemma.

Informally if we takeK to be every string andF to be every context, then we can accurately
define any language. Of course, we are just interested in those cases where this can be defined
finitely and we have a CBFG, in which caseL will be decidable, but this infinite limit is a good
check that the construction is sound.

4.2 Monotonicity Lemmas

We now prove two lemmas that show that the size of the language, and more particularly the features
predicted will increase or decrease monotonically as a function of the basisK, and the feature setF ,
respectively. In fact, they give also a framework for approaching a target language fromK andF .

Lemma 13 Suppose we have two CBFGs defined by G= G0(K,L,F) and G′ = G0(K,L,F ′) where
F ⊆ F ′. Then for all u, fG(u)⊇ fG′(u)∩F.

Proof Let G′ have a set of productionsP′,P′L, andG have a set of productionsP,PL. Clearly if
x→ yz∈ P′ thenx∩F → (y∩F)(z∩F) is in P by the definition ofG0, and likewise forPL,P′L. By
induction on|u| we can show that any feature infG′(u)∩F will be in fG(u). The base case is trivial
sinceF ′L(a)∩F = FL(a); if it is true for all strings up to lengthk, then if f ∈ fG′(u)∩F; there must
be a production inF ′ with f on the head. By the inductive hypothesis, the right hand sides of the
corresponding production inP will be triggered, and sof must be infG(u).

Corollary 14 Suppose we have two CBFGs defined by G= G0(K,L,F) and G′ = G0(K,L,F ′)
where F⊆ F ′; then L(G)⊇ L(G′).

Proof It is sufficient to remark that ifu∈ L(G′) then(λ,λ) ∈ fG′(u)⊆ fG(u) and thusu∈ L(G).

Conversely, we can show that as we increaseK, the language and the mapfG will increase. This
is addressed by the next lemma.

Lemma 15 Suppose we have two CBFGs defined by G= G0(K,L,F) and G′ = G0(K′,L,F) where
K ⊆ K′. Then for all u, fG0(K,L,F)(u)⊆ fG0(K′,L,F)(u).
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Proof Clearly the sets of productions ofG0(K,L,F) will be a subset of the set of productions of
G0(K′,L,F), and so anything that can be derived by the first can be derived by thesecond, again by
induction on the length of the string.

A simple result is that whenK contains all of the substrings of a word, thenG0(K,L,F) will
generate all of the correct features for this word.

Lemma 16 For any string w, if Sub(w)⊂ K, and let G= G0(K,L,F), then FL(w)⊆ fG(w).

Proof By recursion on the size ofw. Let G= G0(K,L,F) = 〈F,P,PL,Σ〉. First, notice that ifw is of
length 1 then we haveFL(w)→ w in PL and thus the lemma holds. Then suppose that|w|= k≥ 2.
Let u andv in Σ+ be such thatw = uv. As Sub(w) ⊂ K we haveu,v in K. Therefore the rule
FL(w)→ FL(u)FL(v) belongs toP. As |u| < |w| and|v| < |w|, by recursion we getFL(u) ⊆ fG(u)
andFL(v)⊆ fG(v). Thus the rule can be applied and thenFL(w)⊆ fG(w).

In particular ifw∈ L, andSub(w)⊆ K, thenw∈ L(G). This means that we can easily increase
the language defined byG just by addingSub(w) to K. In general we do not need to add every
element ofSub(w)—it is enough to have one binary bracketing.

To establish learnability, we need to prove that for a target languageL, if we have a sufficiently
largeF thenL(G0(K,L,F)) will be contained withinL and that if we have a sufficiently largeK,
thenL(G0(K,L,F)) will containL.

4.3 Fiducial Feature Sets and Finite Context Property

We need to be able to prove that for anyK if we have enough features then the language defined
will be included within the target languageL. We formalise the idea of having enough features in
the following way:

Definition 17 For a language L and a string u, a set of features F is fiducial on u if for all v∈ Σ∗,
FL(u)⊆ FL(v) implies CL(u)⊆CL(v).

Note that ifF is fiducial onu andF ⊂ F ′ thenF ′ is fiducial onu. Therefore we can naturally
extend this to sets of strings.

Definition 18 For a language L and a set of strings K, a set of features F is fiducial on Kif for all
u∈ K, F is fiducial on u.

Clearly, for any stringw, CL(w) will be fiducial onw; but this is vacuous—we are interested
in cases where there is a finite set of contexts which is fiducial forw, but whereCL(w) is infinite.
If u and v are both inK then having the same features means they are syntactically congruent.
However if two strings, neither of which are inK, have the same features this does not mean they
are necessarily congruent (for instance ifFL(v) = FL(v′) = /0). For non finite state languages, the set
of congruence classes will be infinite, and thus we cannot have a finite fiducial set for the set of all
strings inSub(L), but we can have a feature set that is correct for a finite subset of strings, or more
generally for an infinite set of strings, if they fall into a finite number of congruence classes.
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Let us consider our running exampleL= {anbn|n> 0}. Take the stringab. CL(ab) is infinite and
contains contexts of the form(λ,λ),(a,b),(aa,bb) and so on. Consider a set with just one of these
contexts, sayF = {(a,b)}. This set is clearly fiducial forab, since the only strings that will have this
context are those that are congruent toab. Consider now the stringaab; clearly{(λ,b)} is fiducial
for aab, even though the stringa, which is not congruent toaabalso occurs in this context. Indeed,
this does not violate fiduciality sinceCL(a)⊃CL(aab). However, looking at stringa, {(λ,b)} is not
fiducial, sinceaabhas this context but does not include all the contexts ofa such as, for example,
(λ,abb).

In these trivial examples, a context set of cardinality one is sufficient to be fiducial, but this is
not the case in general. Consider the finite languageL = {ab,ac,db,ec,dx,ey}, and the stringa. It
has two contexts(λ,b) and(λ,c) neither of which is fiducial fora on its own. However, the set of
both contexts is:{(λ,b),(λ,c)} is fiducial fora.

We now define the finite context property, which is one of the two conditions that languages
must satisfy to be learnable in this model; this condition is a purely language theoretic property.

Definition 19 A language L has the Finite Context Property (FCP) if every string has a finite fidu-
cial feature set.

Clearly if L has the FCP, then any finite set of substrings,K, has a finite fiducial feature set
which will be the union of the finite fiducial feature sets for each element ofK. If u 6∈ Sub(L) then
any set of features is fiducial sinceCL(u) = /0.

We note here that all regular languages have the FCP. We refer the reader to the Section 6.1.1
about CBFG and regular languages where the Lemma 35 and the associatedconstruction proves
this claim.

We can now state the most important lemma: this lemma links up the definition of the feature
map in a CBFG, with the fiducial set of features to show that only correct features will be assigned
to substrings by the grammar. It states that the features assigned by the grammar will correspond to
the language theoretic interpretation of them as contexts.

Lemma 20 For any language L, given a set of strings K and a set of features F, let G=G0(K,L,F).
If F is fiducial on K, then for all w∈ Σ∗ fG(w)⊆ FL(w).

Proof We proceed by induction on length of the string.Base case:strings of length 1.fG(w) will
be the set of observed contexts ofw, and since we have observed these contexts, they must be in the
language.Inductive step:let w a string of lengthk.

Take a featuref on fG(w); by definition this must come from some productionx→ yzand a split
u,v of w. The production must be from some elements ofK, u′,v′ andu′v′ such thaty= FL(u′),z=
FL(v′) andx= FL(u′v′). If the production applies this means thatFL(u′) = y⊆ fG(u)⊆ FL(u) (by in-
ductive hypothesis), and similarlyFL(v′)⊆ FL(v). By fiduciality of F this means thatC(u′)⊆C(u)
andC(v′) ⊆ C(v). So by Lemma 5C(u′v′) ⊆ C(uv). Since f ∈ C(u′v′) then f ∈ C(uv) = C(w).
Therefore, sincef ∈ F andC(w)∩F = FL(w), f ∈ FL(w), and thereforefG(w)⊆ FL(w).

Corollary 21 If F is fiducial on K then L(G0(K,F,L))⊆ L.

Therefore for any finite setK from an FCP language, we can find a set of features so that the
language defined by those features onK is not too big.
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4.4 Kernel and Finite Kernel Property

We will now show a complementary result, namely that for a sufficiently largeK the language
defined byG0 will include the target language. We will start by formalising the idea that a setK is
large enough, by defining the idea of akernel.

Definition 22 A finite set K⊆ Σ∗ is a kernel for a language L, if for any set of features F,
L(G0(K,F,L))⊇ L.

Consider again the languageL = {anbn|n≥ 0}. The setK = {a,b,ab} is not a kernel, since
if we have a large enough set of features, then the language defined willonly be{ab} which is a
proper subset ofL. HoweverK = {a,b,ab,aab,abb,aabb} is a kernel: no matter how large a set of
features we have the language defined will always includeL. Consider a languageL′ = L∪{b16}.
In this case, a kernel forL′ must include, as well as a kernel forL, some set of substrings ofb16: it
is enough to haveb16,b8,b4,bb,b.

To prove that a set is a kernel, it suffices to show that if we consider all the possible features for
building the grammar, we will contain the target language; any smaller set of features defines then
a larger language. In our case, we can take the infinite set of all contextsand define productions
based on the congruence classes. IfF is the set of all contexts then we haveFL(u) =CL(u), thus the
productions will be exactly of the formC(uv)→C(u)C(v). This is a slight abuse of notation since
feature sets are normally finite.

Lemma 23 Let F= Σ∗×Σ∗; if L(G0(K,L,F))⊇ L then K is a kernel.

Proof By monotonicity ofF : any finite feature set will be a subset ofF .

Not all context-free languages will have a finite kernel. For exampleL = {a+}∪{anbm|n< m}
is clearly context-free, but does not have a finite kernel. Assume that thesetK contains all strings
of length less than or equal tok. Assume w.l.o.g. that the fiducial set of features forK includes all
features(λ,bi), wherei ≤ k+1. Consider the rules of the formFL(ak)→ FL(a j)FL(ak− j); we can
see that no matter how largek is, the derived CBFG will undergenerate asak is not congruent to
ak−1.

Definition 24 A context-free grammar GT = 〈V,S,P,Σ〉 has the Finite Kernel Property (FKP) iff
for every non-terminal N∈V there is a finite set of strings K(N) such that a∈ K(N) if a ∈ Σ and
N→ a∈P and such that for all k∈K(N),N

∗
⇒ k and where for every string w∈ Σ∗ such that N

∗
⇒w

there is a string k∈ K(N) such that C(k) ⊆C(w). A CFL L has the FKP, if there is a grammar in
CNF for it with the FKP.

Notice that all regular languages have the FKP since they have a finite number of congruence
classes.

Lemma 25 Any context-free language with the FKP has a finite kernel.

Proof Let GT = 〈V,S,P,Σ〉 be such a CNF CFG with the FKP. Define

K(GT) =
⋃

N∈V

(

K(N)∪
⋃

X→MN∈P

K(M)K(N)

)

.
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We claim thatK(GT) is a kernel. Assume thatF = Σ∗ × Σ∗ and let G be such thatG =
G0(K(GT),L(GT),F) = 〈F,(λ,λ),P,PL,Σ〉.

We will show, by induction on the length of derivation ofw in GT , that for allN,w if N
∗
⇒ w

then there is ak in K(N) such thatfG(w) ⊇ C(k). If length of derivation is 1, then this is true
since|w| = 1 and thusw∈ K(N): thereforeC(w)→ w∈ PL. Suppose it is true for all derivations
of length less thanj. Take a derivation of lengthj; sayN

∗
⇒ w. There must be a production in

GT of the formN→ PQ, whereP⇒∗ u andQ⇒∗ v, andw = uv. By inductive hypothesis; we
have fG(u) ⊇ C(ku) and fG(v) ⊇ C(kv). By constructionkukv ∈ K(GT) and then there will be a
ruleC(kukv)→C(ku)C(kv) in P. ThereforefG(uv)⊇C(kukv). SinceN

∗
⇒ kukv there must be some

kuv∈ K(N) such thatC(kuv)⊆C(kukv). ThereforefG(w)⊇C(kukv)⊇C(kuv).
Now we can see that ifw∈ L, thenS

∗
⇒ w, then there is ak∈ K(S) such thatfG(w)⊇C(k) and

S
∗
⇒ k, therefore(λ,λ) ∈ fG(w) since(λ,λ) ∈C(k), thusw∈ L(G) and thereforeK is a kernel.

4.5 Learning Algorithm

Before we present the algorithm, we will discuss the learning model that we use. The class of
languages that we will learn is suprafinite and thus we cannot get a positive data only identifica-
tion in the limit result (Gold, 1967). Ultimately we are interested in a more realistic probabilistic
learning paradigm, but for mathematical convenience it is appropriate to establish the basic results
in a symbolic paradigm. The ultimate goal is to model natural languages, where negative data, or
equivalence queries are generally not available or are computationally impossible. Accordingly, we
have decided to use the model of positive data together with membership queries: an oracle can tell
the learner whether a string is in the language or not (Angluin, 1988). Thepresented algorithm runs
in time polynomial in the size of the sampleS: since the strings are of variable length, this size must
be the sum of the lengths of the strings inS, ‖S‖= ∑w∈S|w|. We should note that this is not a strong
enough result: Pitt (1989) showed that any algorithm can be made polynomial, by only processing a
small prefix of the data. It is hard to tighten the model sufficiently: the suggestion of de la Higuera
(1997) for a polynomial characteristic set is inapplicable for representations, such as the ones in this
paper, that are powerful enough to define languages whose shortest strings are exponentially long.
Accordingly we do not require in this model a polynomial dependence on thesize of the represen-
tation. We note that the situation is unsatisfactory, but we do not intend to propose a solution in this
paper. We merely point out that the algorithm is genuinely polynomial and processes all of the data
in the sample without “delaying tricks” of the type discussed by Pitt.

Definition 26 A class of languagesL is identifiable in the limit (IIL) from positive data and a
membership oracle with polynomial time and queries iff there exist two polynomials p(),q() and an
algorithm A such that:

• Given an infinite presentation of positive examples S, where Sn is the first n examples of the
presentation,

1. A returns a representation G= A(Sn) in time p(‖Sn‖).

2. A asks at most q(‖Sn‖) queries to build A(Sn).

• For each language L∈ L, for each presentation S of L, there exists an index n such that for
all N ≥ n: A(SN) = A(Sn) and L(A(Sn)) = L.
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K

F

K0

Overgeneral

Correct

Undergeneral

Wrong

Figure 2: The relationship betweenK andF : The diagonal line is the line of fiduciality: above this
line means thatF is fiducial onK. K0 is a kernel for the language.

Before we present the algorithm we hope that it is intuitively obvious how the approach will
work. Figure 2 diagrammatically shows the relationship betweenK andF . When we have a large
enoughK, we will be to the right of the vertical line; when we have enough features for thatK we
will be above the diagonal line. Thus the basis of the algorithm is to move to the right, until we have
enough data, and then to move up vertically, increasing the feature set untilwe have a fiducial set.

We can now define our learning algorithm in Algorithm 1. Informally,D is the list of all strings
that have been seen so far andGn is the current grammar obtained with the firstn strings ofD. The
algorithm uses two tests: one test is just to determine if the current hypothesisundergeneralises. This
is trivial, since we have a positive presentation of the data, and so eventually we will be presented
with a string inL\L(Gn). In this case we need to increaseK; we accordingly increaseK to the set
of all substrings that we have observed so far. The second test is a bitmore delicate. We want to
detect if our algorithm overgeneralises. This requires us to search through a polynomially bounded
set of strings looking for a string that is inL(Gn)\L. An obvious candidate set isCon(D)⊙Sub(D);
but though we conjecture that this is adequate, we have not yet been ableto prove that is correct, as
it might be that the overgenerated string does not lie inCon(L)⊙Sub(L).

Here we use a slightly stricter criterion: we try to detect whetherF is fiducial forK: we search
through a polynomially bounded set of strings,Sub(D), to find a violation of the fiduciality condi-
tion. If we find such a violation, then we know thatF is not fiducial forK, and so we increaseF to
the set of all contexts that we have seen so far,Con(D).

In Algorithm 1, G0(K,O,F) denotes the same construction asG0(K,L,F), except that we use
membership queries with the oracleO to computeFL for each element inK. We give the identifi-
cation in the limit version of the algorithm, that is, that admits an infinite positive presentation of
strings in input.
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Algorithm 1 : CBFG learning algorithm IIL

Data: A sequence of stringsS= {w1,w2 . . . ,}, membership oracleO
Result: A sequence of CBFGsG1,G2, . . .
K← /0 ; D← /0 ; F ←{(λ,λ)} ; G= G0(K,O,F) ;
for wi do

D← D∪{wi}; C←Con(D); S← Sub(D);
if ∃w∈ D\L(G) then

K← S ; F ←C ;
end
else if∃v∈ S,u∈ K, f ∈C such that FL(u)⊆ FL(v) and f⊙u∈ L but f⊙v 6∈ L then

F ←C ;
end
G= G0(K,O,F) ;
OutputGi = G ;

end

Theorem 27 Algorithm 1 runs in polynomial time in the size of the sample, and makes a polynomial
number of calls to the membership oracle.

Proof The value ofD will just be the set of observed strings;Sub(D) andCon(D) are both polyno-
mially bounded by the size of the sample, and therefore so are|K| and|F|. Therefore the number of
calls to the oracle is clearly polynomial, as it is bouned by|K||F|. ComputingG0 is also polynomial,
since|P| ≤ |K|2, and all strings involved are inSub(D).

4.6 Identification in the Limit Result

In the following, we consider the class of context-free languages havingthe FCP and the FKP,
represented by CBFG.Kn denotes the value ofK at thenth loop, and similarly forF , D.

Definition 28 LCFG is the class of all context-free languages that satisfy the FCP and the FKP.

In what follows we assume thatL is an element of this class, and thatw1, . . . ,wn, . . . is a infinite
presentation of the language. The proof is straightforward and merely requires an analysis of a few
cases. We will proceed as follows: there are 4 states that the model can bein, that correspond to the
four regions of the diagram in Figure 2.

1. K is a kernel andF is fiducial for K; in this case the model has converged to the correct
answer. This is the region labeledcorrect in Figure 2.

2. K is a kernel andF is not fiducial forK: thenL ⊆ L(G), and at some later point, we will
increaseF to a fiducial set, and we will be in state 1: this is the region labeledovergeneral.

3. K is not a kernel andF is fiducial. EitherL(G) = L, in which case we have converged to a
correct answer or, if not, we will define a proper subset of the targetlanguage. In the later
case we will change hypothesis at some later point, increaseK to a kernel, and move to state
2 or state 1. This is the area labeledundergeneral.
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4. K is not a kernel andF is not fiducial: in this case at some point we will move to states 1 or
2. This is the area labeledwrong.

We will start by making some basic statements about properties of the algorithm:

Lemma 29 If there is some n, such that Fn is fiducial for Kn and L(Gn) = L, then the algorithm will
not change its hypothesis: that is, for all n> N, Kn = KN,Fn = FN and therefore Gn = GN.

Proof If L(Gn) is correct, then the first condition of the loop will never be met; ifFn is fiducial for
Kn, then the second condition will never be satisfied.

Lemma 30 If there is some N such that KN is a kernel, then for all n> N, Kn = KN.

Proof Immediate by definition of a kernel, and of the algorithm.

We now prove that ifF is not fiducial then the algorithm will be able to detect this.

Lemma 31 If there is some n such that Fn is not fiducial for Kn, then there is some index n′ ≥ n at
which Fn will be increased.

Proof If Fn is not fiducial, then by definition there is someu∈ K, v∈ Σ+ such thatFL(u)⊆ FL(v),
but there is anf ∈CL(u) that is not inCL(v). By constructionFL(u) is always non-empty, and so
is FL(v). Thusv∈ Sub(L). Note f ⊙u∈ L, so f ∈Con(L). Let n′ be the smallest index such that
v∈ Sub(Dn) and f ∈Con(Dn): at this point, eitherFn will have changed, or not, in which case it
will be increased at this point.

We now prove that we will always get a fiducial feature set.

Lemma 32 For any n, there is some n′ such that Fn′ is fiducial for Kn.

Proof If Fn is fiducial thenn′ = n satisfies the condition. Assume otherwise. LetF be a finite set
of contexts that is fiducial forKn. We can assume thatF ⊆Con(L). Let n1 be the first index such
thatCon(Dn1) containsF . At this point we are not sure thatFn1 = Con(Dn1) since the conditions
for changing the set of contexts may not be reached. Anyhow, if it is the case thenFn1 is fiducial,
thenn1 = n′ satisfies the condition. If not, then by the preceding lemma, there must be some point
n2 at which we will increase the set of contexts of the current grammar;Fn2 = Con(n2) must con-
tainF sinceCon(Dn1)⊂Con(Dn2), and is therefore fiducial, and son2 = n′ satisfies the condition.

Lemma 33 For every positive presentation of an L∈ LCFG, there is some n such that either the
algorithm has converged to a correct grammar or Kn is a kernel.
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Proof Let m be the smallest number such thatSub(Dm) is a kernel. Recall that any superset of a
kernel is a kernel, and that all CFL with the FKP have a finite kernel (Lemma 25), and that such a
kernel is a subset ofSub(L), so such anm must exist.

Consider the grammarGm; there are three possibilities:
1. L(Gm) = L, andFm is fiducial, in which case the grammar has converged.
2. L(Gm) is a proper subset ofL andFm is fiducial. Letm′ be the first point at whichwm′ is in
L\L(Gm); at this pointKm′ will be increased to includeSub(Dm) and it will therefore be a kernel.
3. Fm is not fiducial: in this case by Lemma 32; there is somen at whichFn is fiducial forKm. Either
Kn = Km in which case this reduces to Case 2; orKn is larger thanKm in which case it must be a
kernel, since it will includeSub(Dm) which is a kernel.

We now can prove the main result of the paper:

Theorem 34 Algorithm 1 identifies in the limit the class of context-free languages with the finite
context property and the finite kernel property.

Proof By Lemma 33 there is some point at which it converges or has a kernel. IfKn is a kernel then
by Lemma 32, there is some pointn′ at which we have a fiducial feature set. ThereforeL(Gn′) = L,
and the algorithm has converged.

4.7 Examples

We will now give a worked example of the algorithm.
SupposeL = {anbn|n> 0}.
G0 will be the empty grammar, withK = /0,F = {(λ,λ)} and an empty set of productions.

L(G0) = /0.

1. Supposew1 = ab. D = {ab}. This is not inL(G0) so we set

• K = Sub(D) = {a,b,ab}.

• F =Con(D) = {(λ,λ),(a,λ),(λ,b)}.

This gives us one production:FL(ab) → FL(a)FL(b) which corresponds to{(λ,λ)} →
{(λ,b)}{(a,λ)}, and the lexical productions{(λ,b)} → a,{(a,λ)} → b. The language de-
fined is thusL(G1) = {ab}.

2. Supposew2 = aabb. D = {ab,aabb}. This is not inL(G1) so we set

• K = Sub(D) = {a,b,ab,aa,bb,aab,abb,aabb}.

• F =Con(D) = {(λ,λ),(a,λ),(λ,b),(aa,λ),(a,b),(λ,bb),(aab,λ),(aa,b),
(a,bb),(λ,abb)}.

We then have the following productions:
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• FL(ab)→ FL(a),FL(b) which is

{(λ,λ),(a,b)}→ {(a,bb),(λ,abb),(λ,b)},{(aa,b),(aab,λ),(a,λ)}.

• FL(aab)→ FL(a),FL(ab) which is

{(a,bb),(λ,b)}→ {(a,bb),(λ,abb),(λ,b)},{(λ,λ),(a,b)}.

• FL(aab)→ FL(aa),FL(b) which is

{(a,bb),(λ,b)}→ {(λ,bb)},{(aa,b),(aab,λ),(a,λ)}.

• FL(bb)→ FL(b),FL(b) which is

{(aa,λ)}→ {(aa,b),(aab,λ),(a,λ)},{(aa,b),(aab,λ),(a,λ)}.

• FL(aa)→ FL(a),FL(a) which is

{(λ,bb)}→ {(a,bb),(λ,abb),(λ,b)},{(a,bb),(λ,abb),(λ,b)}.

• FL(aabb)→ FL(a),FL(abb) which is

{(λ,λ),(a,b)}→ {(a,bb),(λ,abb),(λ,b)},{(aa,b),(a,λ)}.

• FL(aabb)→ FL(aa),FL(bb) which is

{(λ,λ),(a,b)}→ {(λ,bb)},{(aa,λ)}.

• FL(aabb)→ FL(aab),FL(b) which is

{(λ,λ),(a,b)}→ {(a,bb),(λ,b)},{(aa,b),(aab,λ),(a,λ)}.

• FL(abb)→ FL(a),FL(bb) which is

{(aa,b),(a,λ)}→ {(a,bb),(λ,abb),(λ,b)},{(aa,λ)}.

• FL(abb)→ FL(ab),FL(b) which is

{(aa,b),(a,λ)}→ {(λ,λ),(a,b)},{(aa,b),(aab,λ),(a,λ)}.

and the two lexical productions:

• FL(a)→ a which is{(a,bb),(λ,abb),(λ,b)}→ a

• FL(b)→ b which is{(aa,b),(aab,λ),(a,λ)}→ b.

K is now a kernel andL(G) = L, butF is not fiducial forK, since(λ,bb) is not fiducial foraa
(consideraaab).

3. Supposew3 = aaabbb. Now |Con(D3)| = 21; there are now several elements ofCon(D3)
that are similar. For example(λ,λ),(a,b) and(aa,bb) are identical but as it is harmless for
the resulting grammar, it does not mind. Now we will detect thatF is not fiducial: we will
find v = aaab, u = aa and f = (λ,abbb); FL(aa) = {(λ,bb)} = FL(aaab), but f ⊙ aaab=
aaababbbwhich is not inL. We will therefore increaseF to beCon(D3), and then the
algorithm will have converged. The final grammar will have 10 productionsand 2 lexical
productions;|K|= 8 and|F |= 21.
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5. Practical Behavior of the Algorithm

In this section, we propose to study the behavior of our algorithm from a practical point of view. We
focus more specifically on two important issues. The first one deals with the learning ability of the
algorithm when the conditions for the theoretical learning result are not reached. Indeed, although
the identification in the limit paradigm proves that with sufficient data it is possibleto obtain exact
convergence, it says nothing about the convergence when fewer learning examples are available:
does the output get closer and closer to the target until it reaches it or does it stay far from the
expected solution until receives enough data? The second question concerns the learning behavior
of the algorithm: does it tend to over-generalise or to under-generalise?

For our experimental setup, we need to select appropriate data sets. In grammatical inference
little has been done concerning benchmarking. The main available corpora are those of the on line
competitions organised by the International Colloquium on Grammatical Inference. Three different
competitions have recently taken place: theAbbadingo One(Lang et al., 1998) which was about
regular languages, theOmphaloscompetition on context-free languages (Starkie et al., 2004) and
theTenjinocompetition (Starkie et al., 2006) dealing with transducers learning. Note thatsome of
these data sets correspond to extremely hard learning problems since their main objective was to
push the state of the art (some problems of theAbbadingo Onecompetition are still unsolved more
than ten years after its official end!)

However, these data sets can not be directly used for evaluating our algorithm because the
solutions or the target models are not available. Our algorithm needs an oracle and thus we need a
way to give answers to membership queries. In order to overcome this drawback, we chose to build
synthetically some data sets following the experimental setup proposed by these competitions. More
precisely, we decided to randomly generate target context-free grammarsfollowing what has been
done for theOmphaloscompetition. Each grammar is then used either to generate training and test
sets or as an oracle for answering membership queries.

In the following paragraphs we describe first the generation of the target context-free gram-
mars, then the experimental setup with learning and test data sets used and finally the results and
conclusions that can be drawn.

5.1 Generation of Target Context-free Grammars

To generate the target grammars we follow the process used for theOmphaloscompetition (Starkie
et al., 2004). We built 30 different grammars randomly according the following principles. For
each grammar, we first fix the number of non-terminals and terminals which arerandomly chosen
between 4 and 7 for the non-terminals (including the start symbol) and between 2 and 4 for terminal
symbols. Then we randomly generate 20 context-free rules in Chomsky normal form such that
every non-terminal appears at least once in the left hand side of a grammar rule. In order to avoid
the presence of useless rules, we apply two simple procedures: if a non-terminal can not generate
any terminal string, a new terminal rule generating one terminal symbol is created for this non-
terminal; if a non-terminal can not be reached from the start symbol, we erase it from the grammar
(i.e., we remove all the rules containing this non-terminal). From these grammarswithout useless
rules, we force them to generate non finite languages by checking that thestart symbol is used at
least once in a right hand side of a grammar rule (in average this symbol appears in a right hand side
of a rule more than 3 times per grammar).
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The main difference with theOmphalosgeneration process is that we do not especially need
non-regular languages. Indeed, one of the aim of these experiments is togive an idea on the behavior
of the algorithm when its theoretical assumptions are not likely to be valid. Fromthis standpoint,
all randomly generated non-finite languages are good candidates as learning targets. However, with
a similar principle used for theOmphaloscompetition, we checked that some of the generated
grammars can not be easily solved by methods for regular languages. Although we can not decide
if these grammars define non regular context-free languages, it ensures us that the target models are
at least not too simple.

5.2 Experimental Setup

For each target grammar we generate a learning and a test sample following the Omphaloscom-
petition requirements. We build the learning sample by first creating astructurally complete setof
strings for each grammar. This set is built such that for each rule of the target grammar, at least one
string of the set can be derived using this rule (Parekh and Honavar, 1996). This would guarantee
that the complete learning set would have the minimal amount of information for finding the struc-
ture of the grammar. We then complete this learning set by randomly generating new strings from
the grammar in order to have a total of 50 examples. We chose arbitrarily this value for two reasons:
first it is sufficient to ensure that each sample strictly contains a structurallycomplete set for each
target grammar and secondly we are likely to be far from the guarantees ofthe identification in the
limit framework.

The construction of the test set needs particular attention. Since the learning phase uses a mem-
bership oracle, when the hypothesis is being constructed, some new strings may be built and queried
for the oracle by picking a substring and a context from the learning sample. Thus, even if the test set
does not contain any string of the learning sample, the constructionG0 may consider some strings
present in the test set. In order to avoid this drawback, that is, to guarantee that no string of the test
could be seen during the construction of the CBFG, each test string has a length of at least 3 times
the maximal length of the strings in the learning set, which is by construction the maximal size of
the strings queried. According to this procedure, we randomly generate atest set of 1000 strings
over the alphabet of terminal symbols used to define the target grammar (1000 examples is twice
the size of the small test sets of theOmphaloscompetition). The test sequences are then labeled
positive or negative depending on their membership to the language definedby the grammar. We
repeat this process until we have the desired number of strings. The ratiobetween strings in the
language and strings outside the language is fixed to be between 40% and 60%.

In order to study the behavior of our algorithm, we define the following setup. For each target
context-free grammar, we construct a CBFG by applying the constructionG0(K,O,F) with K =
Sub(S) andF =Con(S) whereS is a set of strings drawn from the learning set and using the target
grammar as the oracleO for the membership queries. We generate different setsS by drawing an
increasing number of learning examples (from 2 to 50) from the learning sample of the considered
grammar. Then, we evaluate the learned CBFG on the test sample by measuringthe accuracy of
correct classification. We present the results averaged on the 30 test sets of the different target
context-free grammars.
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5.3 Results and Discussion

Figure 3 shows the averaged accuracy over the different target grammars according to the number
of strings in the learning sample. We can note that a high correct classification rate (nearly 90%) is
reached with 20 examples and with only 5 examples an accuracy of 75% is obtained. These results
indicate that a relevant hypothesis can be found even with few examples. The standard deviations
represented by vertical bars show a good stability of the results from learning sets of 20 strings.
This confirms that our algorithm is able to learn partly correct representations even when learning
sets may not have a kernel or a fiducial learning set and thus are far from the identification in the
limit assumptions.
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Figure 3: Evolution of the average percentage of correct classificationaccording to the number of
learning examples.

The analysis of the behavior of the algorithm in terms of false positive and false negative rates
is shown in Table 1. The proportion of false negatives (i.e., positive strings classified as negative) is
higher than the proportion of false positives (i.e., negative strings classified as positive), whatever
the size of the learning sample is. Thus the output of the algorithm tends more to under-generalise
than the converse. As it is generally admitted that over-generalisation is the main trouble when
learning from positive examples, this tendency confirms that the algorithm behaves well. However,
it is difficult to draw firm conclusions without a natural distribution over negative examples.
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Number of strings inS false positive false negative
02 07.2 %± 12.3 36.4 %± 7.0
05 04.5 %± 4.7 28.4 %± 9.1
10 03.8 %± 2.9 22.4 %± 8.4
15 03.9 %± 2.6 14.1 %± 6.6
20 04.1 %± 3.0 09.4 %± 6.1
30 04.2 %± 2.8 07.9 %± 5.5
40 03.9 %± 2.6 05.6 %± 4.7
50 04.4 %± 1.6 04.8 %± 3.9

Table 1: Average percentage of false positive and false negative rates obtained over the test samples.

The preceding results show that despite its simplicity the algorithm behaved nicely during these
experiments, in particular concerning over-generalisation. We focus now on the amount of queries
needed by the algorithm for building the CBFG. The growth of the number of requested queries
according to the average size of the learning sample is shown in Figure 4 (recall that here the size
of the sample means the sum of the string lengths of the sample). While a very worst case analysis
of the grammar construction used byG0 would lead to a complexity inO(|S|5), we can observe
that the number of queries seems to be quadratic, at least in the case of the grammars we consider
here. However, the volume of queries used is large, which can be explained by the simplicity of the
algorithm. From a practical standpoint, it is clear that much work has to be done in order to try to
minimise the number of queries needed by selecting the most informative examples, but this point
is out of the scope of the paper.

Finally, we can note that these experiments suffer of the lack of comparisonwith other ap-
proaches. This is due to the fact that, as far as we know, no other algorithm uses a positive learning
sample and a membership oracle only. Indeed, since the work of Angluin about the Minimum
Adequate Teacher (Angluin, 1988) all algorithms using membership queriesare designed with the
additional help of equivalence queries. The point of view adopted in this paper is rather theoretical
since our aim was to show the relevance of CBFG representations for language learning. However,
a perspective of our work is to try to avoid the use of the oracle (by using statistical or simulation
methods) which will allow us to compare more easily our approach with other methods.

6. Expressiveness of CBFG

In this section, we compare the expressiveness of CBFG with other well known representations. As
noted earlier, we are primarily interested in the class of exact CBFGs—theseare CBFGs where the
presence of a contextual feature in the representation corresponds exactly to the language theoretic
interpretation of the context. The class of unrestricted CBFG is significantly larger, but less relevant.

The algorithm presented in this paper cannot learn the entire class of exact CBFGs, but we
conjecture that there are more powerful algorithms that can; see Clark (2009) for some steps in this
direction.
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6.1 Exact CBFGs and the Chomsky Hierarchy

We start by examining the class of languages defined by exact CBFGs. Wewill show that this class

• includes all regular languages

• does not include all context free languages

• includes some non-context-free languages.

This class is thus orthogonal to the Chomsky hierarchy.

6.1.1 REGULAR LANGUAGES

Any regular language can be defined by an exact CBFG. We will show a way of constructing an
exact CBFG for any regular language. Suppose we have a regular languageL: we consider the left
and right residual languages:

u−1L = {w|uw∈ L},

Lu−1 = {w|wu∈ L}.

2732



USING CONTEXTUAL REPRESENTATIONS

For anyu ∈ Σ∗, let lmin(u) be the lexicographically shortest element such thatl−1
minL = u−1L.

The number of suchlmin is finite by the Myhill-Nerode theorem, we denote byLmin this set, that is,
{lmin(u)|u∈ Σ∗}. We define symmetricallyRmin for the right residuals (Lr−1

min = Lu−1).
We define the set of contexts as:

F(L) = Lmin×Rmin.

F(L) is clearly finite by construction.

 q0

q1a
q2b

a

b
a,b

Figure 5: Example of a DFA. The left residuals are defined byλ−1L, a−1L, b−1L are the right ones
by Lλ−1, Lb−1, Lab−1 (note here thatLa−1 = Lλ−1).

If we consider the regular language defined by the deterministic finite automataof Figure 5, we
obtainLmin = {λ,a,b} andRmin = {λ,b,ab} and thus

F(L) = {(λ,λ),(a,λ),(b,λ),(λ,b),(a,b),(b,b),(λ,ab),

(a,ab),(b,ab)}.

By considering this set of features, we can prove the following lemma:

Lemma 35 For any strings u,v such that FL(u)⊃ FL(v) then CL(u)⊃CL(v).

Proof SupposeFL(u) ⊃ FL(v) and let(l , r) be a context inCL(v). Let l ′ be the lexicographically
shortest element of{u : u−1L = l−1L} andr ′ the lexicographically shortest element of{u : Lu−1 =
Lr−1}. By construction we have(l ′, r ′) ∈ F(L) and l ′vr′ ∈ L, asvr′ ∈ l ′−1L = l−1L. FL(v) is con-
tained inFL(u) therefore we havel ′ur′ ∈ L. l ′−1L = l−1L implies lur ′ ∈ L. As r ′ is congruent tor,
lur ∈ L.

This lemma means that the set of featuresF is sufficient to represent context inclusion.
Note that the number of congruence classes of a regular language is finite. Each congruence

class is represented by a set of contextsFL(u). Let KL be finite set of strings formed by taking the
lexicographically shortest string from each congruence class. The final grammar can be obtained by
combining elements ofKL. For every pair of stringsu,v∈ KL, we define a rule

FL(uv)→ FL(u)FL(v)

and we add lexical productions of the formFL(a)→ a, a∈ Σ.
The following lemma shows the correctness and the exactness of the grammar.

2733



CLARK , EYRAUD AND HABRARD

Lemma 36 For all w ∈ Σ∗, fG(w) = FL(w).

Proof (Sketch)The proof is in two steps:fG(w)⊆ FL(w) andFL(w)⊆ fG(w). Each step is made by
induction on the length ofw and uses the rules created to build the grammar, the derivation process
of a CBFG and the fiduciality for the second step.

First, we show∀w ∈ Σ∗, fg(w) ⊆ FL(w) by induction on the length ofw. For |w| = 1, the
inclusion is trivial since all the lexical rulesFL(a)→ a are included in the grammar. Suppose that
a stringw, |w|= n> 1, is parsed by the CBFGG, then there exists a cut ofw in uv= w and a rule
z→ xy in G such thatx⊆ fG(u) andy⊆ fG(v). By induction hypothesis,x⊆ FL(u) andy⊆ FL(v).
By construction of the grammar, there exists two stringsu′,v′ ∈ KL such thatu, resp. v, belongs
to same congruence class thanu′, resp. v′ and the ruleFL(u′v′) → FL(u′)FL(v′) belongs to the
productions of the grammar. By induction hypothesis,x⊆ FL(u) = FL(u′) andy⊆ FL(v) = FL(v′)
and thusfG(w)⊆ FL(w).
Second, we prove that∀w∈ Σ∗,FL(w)⊆ fG(w) by induction on the length ofw. The key point relies
on the fact that when a stringw is parsed by a CBFGG, there exists a cut ofw into uv= w (u, v
∈ Σ∗) and a rulez→ xy in G such thatx⊆ fG(u) andy⊆ fG(v). The rulez→ xy is also obtained
from a substring from the set used to build the grammar using theFL function. By the inductive
hypothesis we obtain inclusion betweenfG andFL onu andv.

For the language of Figure 5, the following set is sufficient to build an exact CBFG:
{a,b,aa,ab,ba,aab,bb,bba} (this corresponds to all the substrings ofaabandbba). We have:

FL(a) = F(L)\{(λ,λ),(a,λ)}→ a,

FL(b) = F(L)→ b,

FL(aa) = FL(a)→ FL(a)FL(a),

FL(ab) = F(L)→ FL(a)FL(b) = FL(a)F(L),

FL(ba) = F(L)→ FL(b)FL(a) = F(L)FL(a),

FL(bb) = F(L)→ FL(b)FL(b) = F(L)F(L),

FL(aab) = FL(bba) = FL(ab) = FL(ba).

The approach presented here gives a canonical form for representing a regular language by an
exact CBFG. Moreover, this is iscompletein the sense that every context of every substring will be
represented by some element ofF : this CBFG will completely model the relation between contexts
and substrings.

6.1.2 EXACT CBFGS DO NOT INCLUDE ALL CFLS

First, it is clear that the class of exact CBFGs includes some non-regular context-free languages:
the grammar defined in Section 3.3 is an exact CBFG for the context-free andnon regular language
{anbn|n> 0}, showing the class of exact CBFG has some elements properly in the class ofCFGs.

We give now a context-free languageL that can not be defined by an exact CBFG:

L = {anb|n> 0}∪{ancm|m> n> 0}.
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Suppose that there exists an exact CBFG that recognizes it and letN be the length of the biggest
feature (i.e., the longest left part of the feature). For any sufficiently largek > N, the sequencesck

andck+1 share the same features:FL(ck) = FL(ck+1). Since the CBFG is exact we haveFL(b) ⊆
FL(ck). Thus any derivation ofak+1b could be a derivation ofak+1ck which does not belong to the
language.

However, this restriction does not mean that the class of exact CBFG is too restrictive for model-
ing natural languages. Indeed, the example we have given is highly unnatural and such phenomena
appear not to occur in attested natural languages.

6.1.3 CBFGAND NON CONTEXT-FREE LANGUAGES

CBFGs are more powerful than CFGs in two respects. First, CBFGs can compactly represent lan-
guages like the finite language of alln! permutations of ann-letter alphabet, that have no concise
representation as a CFG (Asveld, 2006). Secondly, as we now show, there are some exact CBFGs
that are not context-free. In particular, we define a language closely related to theMIX language
(consisting of strings with an equal number of a’s, b’s and c’s in any order) which is known to be
non context-free, and indeed is conjectured to be outside the class of indexed grammars (Boullier,
2003).

Let M = {{a,b,c}+}, the set of all strings of length at least one that can be built on the alphabet
{a,b,c}. We consider now the language

L = Labc∪Lab∪Lac∪{a
′a,b′b,c′c,dd′,ee′, f f ′} :

Lab = {wd|w∈M, |w|a = |w|b},

Lac = {we|w∈M, |w|a = |w|c},

Labc= {w f |w∈M, |w|a = |w|b = |w|c}.

In order to define a CBFG recognizingL, we have to select features (contexts) that can represent
exactly the intrinsic components of the languages composingL. We propose to use the following
set of features for each sublanguage:

• For Lab: (λ,d) and(λ,ad),(λ,bd).

• For Lac: (λ,e) and(λ,ae),(λ,ce).

• For Labc: (λ, f ′).

• For the lettersa′,b′,c′,a,b,c we add:(λ,a),(λ,b),(λ,c),(a′,λ),(b′,λ),(c′,λ).

• For the lettersd,e, f ,d′,e′, f ′ we add;(λ,d′),(λ,e′),(λ, f ′),(d,λ),(e,λ),( f ,λ).

Here,Lab will be represented by(λ,d), but we will use(λ,ad),(λ,bd) to define the internal deriva-
tions of elements ofLab. The same idea holds forLac with (λ,e) and(λ,ae),(λ,ce).

For the lexical rules and in order to have an exact CBFG, note the specialcase fora,b,c:

{(λ,bd),(λ,ce),(a′,λ)}→ a,

{(λ,ad),(b′,λ)}→ b,
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{(λ,ae),(c′,λ)}→ c.

For the nine other letters, each one is defined with only one context, for example using the rule
{(λ,d′)}→ d.

For the production rules, the most important one is:(λ,λ)→{(λ,d),(λ,e)},{(λ, f ′)}.
Indeed, this rule, with the presence of two contexts in one of categories, means that an element

of the language has to be derived so that it has a prefixu such thatfG(u) ⊇ {(λ,d),(λ,e)}. This
meansu is both an element ofLab andLac. This rule represents the languageLabc since{(λ, f ′)}
can only represent the letterf .

The other parts of the language will be defined by the following rules:

(λ,λ)→{(λ,d)},{(λ,d′)},

(λ,λ)→{(λ,e)},{(λ,e′)},

(λ,λ)→{(λ,a)},{(λ,bd),(λ,ce),(a′,λ)},

(λ,λ)→{(λ,b)},{(λ,ad),(b′,λ)},

(λ,λ)→{(λ,c)},{(λ,ae),(c′,λ)},

(λ,λ)→{(λ,d′)},{(d,λ)},

(λ,λ)→{(λ,e′)},{(e,λ)},

(λ,λ)→{(λ, f ′)},{( f ,λ)}.

This set of rules is incomplete, since for representingLab, the grammar must contain the rules
ensuring to have the same number of a’s and b’s, and similarly forLac. To lighten the presentation
here, the complete grammar is presented in Appendix.

We claim this is an exact CBFG for a context-sensitive language.L is not context-free since
if we intersectL with the regular languageΣ∗d, we get an instance of the non context-free MIX
language (withd appended). The exactness comes from the fact that we chose the contexts in
order to ensure that strings belonging to a sublanguage can not belong toanother one and that the
derivation of a substring will provide all the possible correct features with the help of the union of
all the possible derivations.

Note that the MIX language on its own is not definable by an exact CBFG: it isonly when other
parts of the language can distributionally define the appropriate partial structures that we can get
context sensitive languages. Far from being a limitation of this formalism (a bug), we argue this is
a feature: it is only in rather exceptional circumstances that we will get properly context sensitive
languages. This formalism thus potentially accounts not just for the existence of non context-free
natural languages but also for their rarity.

6.2 Inexact CBFGs

We are less interested in the class of all CBFGs: these are CBFGs where thecontexts are just
arbitrary features and there is no relation betweenfG(u) andCL(u) except for the presence of(λ,λ).
However, it is important to understand the language theoretic power of this class as this upper
bounds the hypothesis class of the algorithm, and is easier to analyse.
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6.2.1 CONTEXT-FREEGRAMMARS

First, we note that this class contains all context-free languages. Given acontext-free language,
that does not include the empty string, we can take a CFG in Chomsky normal form and convert
it directly into a CBFG. LetV be the set of non-terminals of such a CFG. We pick an arbitrary set
of distinct contexts to represent the elements ofV, subject only to the constraint thatScorresponds
to (λ,λ). Let C(N) be the context corresponding to the non-terminalN. For every production rule
in the CFG of the formN→ PQ, we add a CBFG production{C(N)} → {C(P)},{C(Q)}. For
every production in the CFG of the formN→ a, we add a CBFG production toPL of the form
{C(N)}→ a. It is easy to see that this will define the same language.

6.2.2 RANGE CONCATENATION GRAMMARS

While CBFG formalism has some relationship to a context-free grammar, and someto a semi-
Thue system (also known as a string rewriting system), it is not formally identical to either of
these. One exact equivalence is to a restricted subset of Range Concatenation Grammars; a very
powerful formalism (Boullier, 2000). We include the following relationship,but suggest that the
reader unfamiliar with RCGs proceeds to the discussion of the relationship withthe more familiar
class of context-free grammars.

Lemma 37 For every CBFG G, there is a non-erasing positive range concatenation grammar of
arity one, in 2-var form that defines the same language.

Proof SupposeG= 〈F,P,PL,Σ〉. Define a RCG with a set of predicates equal toF and the following
clauses, and the two variablesU,V. For each productionx→ yz in P, for each f ∈ x, wherey =
{g1, . . .gi}, z= {h1, . . .h j} add clauses

f (UV)→ g1(U), . . .gi(U),h1(V), . . .h j(V).

For each lexical production{ f1 . . . fk}→ a add clauses

fi(a)→ ε.

It is straightforward to verify thatf (w) ⊢ ε iff f ∈ fG(w).

6.2.3 CONJUNCTIVE GRAMMAR

A tighter correspondence is to the class of Conjunctive Grammars (Okhotin,2001), invented inde-
pendently of RCGs.

Definition 38 A conjunctive grammar is defined as a quadruple〈Σ,N,P,S〉, in which: Σ is the al-
phabet; N is the set of non terminal symbols; P is the set of rules, each ofthe form A→ α1& ...&αm,
where A∈V and∀i < m,αi ∈ (V ∪Σ)∗; S∈ N is the start symbol.

In this formalism, a stringw is derived fromA∈V iff there exists a ruleA→ α1& ...&αm in P and
for all i < m, αi derivesw.

We claim that for every every languageL generated by a conjunctive grammar there is a CBFG
representingL# (where the special character # is not included in the original alphabet).
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Suppose we have a conjunctive grammarG= 〈Σ,N,P,S〉 in binary normal form (as defined in
Okhotin, 2003). We construct the equivalent CBFGG′ = 〈F,P′,PL,Σ〉 as followed:

• For every lettera we add a context(la, ra) to F such thatlaara ∈ L;

• For every rulesX→ a in P, we create a rule{(la, ra)}→ a in PL.

• For every non terminalX ∈ N, for every ruleX→ P1Q1& . . .&PnQn we add distinct contexts
{(lPiQi , rPiQi )} to F, such that for alli it existsui , lPiQi uirPiQi ∈ L andPiQi

∗
⇒G ui ;

• Let FX, j = {(lPiQi , rPiQi ) : ∀i} the set of contexts corresponding to thej th rule applicable toX.
For all (lPiQi , rPiQi ) ∈ FX, j , we add toP′ the rules(lPiQi , rPiQi )→ FPi ,kFQi ,l (∀k, l).

• We add a new context(w,λ) to F such thatS
∗
⇒G w and(w,λ)→ # toPL;

• For all j, we add toP′ the rule(λ,λ)→ FS, j{(w,λ)}.

It can be shown that this construction gives an equivalent CBFG.

7. Discussion and Conclusion

One of the main objective of our approach is to provide a framework that helps to bridge the gap
between theoretical methods of grammatical inference and the structured representations required
in linguistics. We provide a conclusion and a discussion of our work according to these two stand-
points.

7.1 Grammatical Inference

In this paper, we have presented a new formalism theContextual Binary Feature Grammarsand
shown its relevance for representing a large class of languages. We have proposed a learning algo-
rithm using only membership queries and shown that this algorithm can identify inthe limit the class
of context-free languages satisfying the FCP and FKP assumptions. Firstof all, we should establish
how large the class of languages with the FCP and the FKP is: it includes all finite languages and all
regular languages, since the set of congruence classes is finite for finite state languages. It similarly
includes the context-free substitutable languages (Clark and Eyraud, 2007), since every string in a
substitutable language belongs to only one syntactic congruence class. Asalready stated it does
not include all CFLs since not all CFLs have the FCP and/or the FKP. However it does include
languages like the Dyck languages of arbitrary order, Lukacevic language and most other classic
simple examples. As a special case consider the equivalence relation between contextsf ∼=L f ′ iff
∀u we have thatf ⊙u∈ L iff f ′⊙u∈ L. The class of CFLs where the context distribution of every
string is a finite union of equivalence classes of contexts clearly has both the FKP and the FCP.

If we now focus on the algorithm proposed: it is relatively simple but has twomain drawbacks.
First, the algorithm is not conservative since once we have found the correct language, the represen-
tation may change—if the feature set found is not fiducial—until the fiduciality isreached. Second,
the CBFG output by the algorithm may not be consistent with some answers provided by the ora-
cle. Indeed, when the algorithm checks the fiduciality of the feature setF , the membership of new
strings is tested. These strings do not appear in the list of learning examplesgiven to the oracle but
are built from all the possible contexts and substrings that can be extracted from this list. Then, it is
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possible that, among these new strings, some of them belong to the target language but are not rec-
ognized by the current grammar. In this case, the output grammar is nevertheless not modified. We
can imagine a procedure that changes the grammar by adding these new positive strings for building
the CBFG, however this could lead to having to deal with an exponential number of strings. Thus,
a more reasonable procedure is to wait for these strings in the positive datapresentation. One pro-
posal for future work, from these two remarks, is a new learning algorithm that overcomes these
drawbacks.

One important point is whether this result can be extended to a result which also bounds the
number of samples as a polynomial function of the size of the representation.A preliminary result in
this direction is presented in Clark (2010), which presents a polynomial result using the Minimally
Adequate Teacher model of Angluin (1987). It seems likely that it will be possible to extend that
result, which uses only context-free grammars, to the class of CBFGs.

Our approach to context-free grammatical inference is based on a generalisation of distributional
learning, following the work of Clark and Eyraud (2007). The currentstate of the art in context-free
inductive inference from flat unstructured examples only has been rather limited. When learning
from stochastic data or using a membership oracle, it is possible to have powerful results, if we
allow exponential computation (see for example Horning, 1969). The main contribution of this
paper is to show that efficient learning is possible, with an appropriate representation. We currently
rely on using a membership oracle, but under suitable assumptions about distributions, it should
be possible to get a PAC-learning result for this class along the lines of Clark (2006), placing some
bounds on the number of features required. Another interesting and important issue is the adaptation
of this approach to stochastic languages.

We have focused on context-free grammatical inference, however, wehave shown that our rep-
resentation is also relevant for modeling non context-free languages. Then, another perspective of
this work is to study learnability results for larger classes of languages. This would allow us to com-
pare with other formalisms such as External Contextual Grammars (Boullier, 2001; Mitrana, 2005)
and other learning methods dealing with non context-free languages (Oateset al., 2006; Yoshinaka,
2009).

7.2 Linguistics

The field of grammatical inference has close relations to the study of language acquisition. Attempts
to model natural languages with context-free grammars require additional machinery: natural lan-
guage categories such as noun phrases contain many overlapping subclasses with features such as
case, number, gender and similarly for verbal categories. Modelling this requires either an expo-
nential explosion of the number of non-terminals employed or a switch to a richer set of features.
Our formalism can be seen as a first step to integrate such features.

While we have implemented the algorithm described here, and verified that it works in accor-
dance with theory on small artificial examples, there are a number of modifications that would need
to be made before it can be applied to real grammar induction on natural language. First, the algo-
rithm is very naive; in practice a more refined algorithm could select both thekernel and the feature
set in a more sophisticated way. Secondly, considering features that correspond to individual con-
texts may be too narrow a definition for natural language given the well known problems of data
sparseness and it will be necessary to switch to features corresponding to sets of contexts, which
may overlap. Thus for example one might have features that correspondto sets of contexts of the
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form F(u,v) = {(lu,vr)|l , r ∈ Σ∗}. This would take this approach closer to methods that have been
shown to be effective in unsupervised learning in NLP (Klein and Manning, 2004) where typically
|u|= |v|= 1. In any event, we think such modifications will be necessary for the acquisition of non
context-free languages. Finally, at the moment the algorithm has polynomial update time, but in the
worst case, there are deterministic finite state automata such that the size of thesmallest kernel will
be exponential in the number of states. There are, however, natural algorithms for generalising the
productions by removing features from the right hand sides of the rules;this would have the effect
of accelerating the convergence of the algorithm, and removing or weakening the requirement for
the Finite Kernel Property.
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Appendix A.

We give here an explicit exact CBFG for the following non context-free language

L = Labc∪Lab∪Lac∪{a
′a,b′b,c′c,dd′,ee′, f f ′}

defined on the alphabetΣ = {a,b,c,d,e, f ,a′,b′,c′,d′,e′, f ′} and such that:

Lab = {wd|w∈ {a,b,c}+, |w|a = |w|b},

Lac = {we|w∈ {a,b,c}+, |w|a = |w|c},

Labc= {w f |w∈ {a,b,c}+, |w|a = |w|b = |w|c}.

Here is the list of productions of the grammar.

{(λ,λ)}→ {(λ,d),(λ,e)},{(λ, f ′)},

{(λ,λ)}→ {(λ,d)},{(λ,d′)},

{(λ,λ)}→ {(λ,e)},{(λ,e′)},

{(λ,λ)}→ {(λ,a)},{(λ,bd),(λ,ce),(a′,λ)},

{(λ,λ)}→ {(λ,b)},{(λ,ad),(b′,λ)},

{(λ,λ)}→ {(λ,c)},{(λ,ae),(c′,λ)},

{(λ,λ)}→ {(λ,d′)},{(d,λ)},
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{(λ,λ)}→ {(λ,e′)},{(e,λ)},

{(λ,λ)}→ {(λ, f ′)},{( f ,λ)},

{(λ,d)}→ {(λ,d)},{(λ,d)},

{(λ,d)}→ {(λ,ad)},{(λ,bd)},

{(λ,d)}→ {(λ,bd)},{(λ,ad)},

{(λ,d)}→ {(λ,d)},{(λ,ad),(λ,ae),(c′,λ)},

{(λ,d)}→ {(λ,ad),(λ,ae),(c′,λ)},{(λ,d)},

{(λ,ad)}→ {(λ,ad),(λ,ae),(c′,λ)},{(λ,ad)},

{(λ,ad)}→ {(λ,ad)},{(λ,ad),(λ,ae),(c′,λ)},

{(λ,ad)}→ {(λ,ad),(b′,λ)},{(λ,d)},

{(λ,ad)}→ {(λ,d)},{(λ,ad),(b′,λ)},

{(λ,bd)}→ {(λ,ad),(λ,ae),(c′,λ)},{(λ,bd)},

{(λ,bd)}→ {(λ,bd)},{(λ,ad),(λ,ae),(c′,λ)},

{(λ,bd)}→ {(λ,bd),(λ,ce),(a′,λ)},{(λ,d)},

{(λ,bd)}→ {(λ,d)},{(λ,bd),(λ,ce),(a′,λ)},

{(λ,e)}→ {(λ,e)},{(λ,e)},

{(λ,e)}→ {(λ,ae)},{(λ,ce)},

{(λ,e)}→ {(λ,ce)},{(λ,ae)},

{(λ,e)}→ {(λ,e)},{(λ,ad),(b′,λ)},

{(λ,e)}→ {(λ,ad),(b′,λ)},{(λ,e)},

{(λ,ae)}→ {(λ,ad),(b′,λ)},{(λ,ae)},

{(λ,ae)}→ {(λ,ae)},{(λ,ad),(b′,λ)},

{(λ,ae)}→ {(λ,ad),(λ,ae),(c′,λ)},{(λ,e)},

{(λ,ae)}→ {(λ,e)},{(λ,ad),(λ,ae),(c′,λ)},

{(λ,ce)}→ {(λ,ad),(b′,λ)},{(λ,ce)},

{(λ,ce)}→ {(λ,ce)},{(λ,ad),(b′,λ)},

{(λ,ce)}→ {(λ,bd),(λ,ce),(a′,λ)},{(λ,e)},
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{(λ,ce)}→ {(λ,e)},{(λ,bd),(λ,ce),(a′,λ)},

{(λ,bd),(λ,ce),(a′,λ)}→ a,

{(λ,ad),(b′,λ)}→ b,

{(λ,ae),(c′,λ)}→ c,

{(λ,d′)}→ d,

{(λ,e′)}→ e,

{(λ, f ′)}→ f ,

{(λ,a)}→ a′,

{(λ,b)}→ b′,

{(λ,c)}→ c′,

{(d,λ)}→ d′,

{(e,λ)}→ e′,

{( f ,λ)}→ f ′.
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