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Abstract
We present a polynomial update time algorithm for the inidecinference of a large class of
context-free languages using the paradigm of positive aatba membership oracle. We achieve
this result by moving to a novel representation, called €dnial Binary Feature Grammars
(CBFGs), which are capable of representing richly strieturontext-free languages as well as
some context sensitive languages. These representatiphsityy model the lattice structure of
the distribution of a set of substrings and can be inferred using a geneialtisat distributional
learning. This formalism is an attempt to bridge the gap ketwsimple learnable classes and
the sorts of highly expressive representations necessain§uistic representation: it allows the
learnability of a large class of context-free languages, iticludes all regular languages and those
context-free languages that satisfy two simple conssaifbhe formalism and the algorithm seem
well suited to natural language and in particular to the nindef first language acquisition. Pre-
liminary experimental results confirm the effectivenesthaf approach.

Keywords: grammatical inference, context-free language, positata dnly, membership queries

1. Introduction

In natural language processing, many applications require the learhipgnerful grammatical
models. One of the central concerns of generative linguistics is the defioitian adequate for-
malism that needs to satisfy two different objectives. On the one hankl,asf@ymalism must be
expressive enough to describe natural languages. On the otherihiasl to be sufficiently con-
strained to be learnable from the sort of linguistic data available to the childeeé&Chomsky,
1986). In this context, there are two possible research strategies. @meéaise a descriptively
adequate formalism such dsee Adjoining GrammargJoshi and Schabes, 1997) or some other
mildly context sensitive grammatical formalism and try to construct learningitiges for that
class. However, such a strategy is unlikely to be successful beclsses that are so powerful
are difficult to handle from a machine learning point of view. The otheraggh, which we adopt
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in this paper, consists in switching to a formalism that is in some sense intrinsicaihatde, and
seeing whether we can represent linguistically interesting formal languageat representation.

Grammatical inference is the machine learning domain which aims at studyinglé#ynof
formal languages. While many learnability results have been obtaineddgolardanguages (An-
gluin, 1987; Carrasco and Oncina, 1994), this class is not sufficiezdrtectly represent natural
languages. The next class of languages to consider is the class oftdoe¢elanguages (CFL).
Unfortunately, there exists no learnability results for the whole class. Thisbmaexplained by
the fact that this class relies on syntactic properties instead of intrinsieieg of the language
like the notion of residuals for regular languages (Denis et al., 2004js,Thost of the approaches
proposed in the literature are either based on heuristics (Nakamura dasdnvido, 2005; Langley
and Stromsten, 2000) or are theoretically well founded but concesnrestricted subclasses of
context-free languages (Eyraud et al., 2007; Yokomori, 2003; Hégaled Oncina, 2002). Some of
these approaches are built from the idealistributional learning! normally attributed to Harris
(1954). The basic principle—as we reinterpret it in our work—is to loothatset of contexts that
a substring can occur in. The distribution of a substring is the linguistic wagfefring to this
set of contexts. This idea has formed the basis of many heuristic algoritlreafaing context-
free grammars (see Adriaans, 2002 for instance). However, atrggproach by Clark and Eyraud
(2007), has presented an accurate formalisation of distributional IgarRtom this formulation,
a provably correct algorithm for context-free grammatical inference gien in the identification
in the limit framework, albeit for a very limited subclass of languages, thetitutable languages.
From a more general point of view, the central insight is that it is notsezgg to find the non-
terminals of the context-free grammar (CFG): it is enough to be able to myiré®e congruence
classes of a sufficiently large set of substrings of the language andaioldéo compute how they
combine. This result was extended to a PAC-learning result under a nofriiferent assumptions
(Clark, 2006) for a larger class of languages, and also to a family cfedasf learnable languages
(Yoshinaka, 2008).

Despite their theoretical bases, these results are still too limited to form thddrasisdels for
natural language. There are two significant limitations to this work: firseis as/ery crude measure
for determining the syntactic congruence, and secondly the number giftmorce classes required
will in real cases be prohibitively large. If each non-terminal corresisao a single congruence
class (the NTS languages Boasson and Senizergues, 1985), themblenpmay be tractable.
However in general the contexts of different non-terminals overlapnemasly: for instance the
contexts of adjective phrases and noun phrases in English both coatd#gxts of the form“{t
is”, “" ). Problems of lexical ambiguity also cause trouble. Thus for a CFG it mayebesaite that
the number of congruence classes corresponding to each non-temaindle exponentially large
(in the size of the grammar). But the situation in natural language is everewitrs CFG itself
may have an exponentially large number of non-terminals to start off with! &dional CFGs are
simply not sufficiently expressive to be cognitively plausible representitd natural language:
to write a CFG requires a multiplication of the numbers of non-terminals to handieoptena
like subject verb agreemergender featuregdisplaced constituentetc. This requires the use of a
formalism like GPSG (Generalised Phrase Structure Grammar) (Gazdlad888) to write a meta-
grammar—a compact way of specifying a very large CFG with richly strudtamn-terminals.

1. Note here that the word distributional does not refer to stochastic ditstrits, but to the occurrence of strings into
contexts. The distribution of a string corresponds to all the possible dsritewhich the string can appear.
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Thus we cannot hope to learn natural languages by learning oneuemgr class at a time: it is
vital to use a more structured representation.

This is the objective of the approach introduced in this article: for the first, timeecan bridge
the gap between theoretically well founded grammatical inference methodhendrts of struc-
tured representations required for modeling natural languages.

In this paper, we present a family of representations for highly struttostext-free languages
and show how they can be learned. This is a paper in learning, bufisigdrit may appear to be a
paper about grammatical representations: much of the work is done byswito a more tractable
formalism, a move which is familiar to many in machine learning. From a machine Iggooint
of view, it is a commonplace that switching to a better representation—for dearimpough a
non-linear map into some feature space—may make a hard problem very easy

The contributions of this paper are as follows: we present in Section 3 @réanmatical for-
malism, which we calContextual Binary Feature Gramma(€BFG). This grammar formalism is
defined using a set of contexts which play the role of features with a stricaistics attached to
these features. Though not completely original, since it is closely relatedumaer of other for-
malisms such as Range Concatenation Grammars (Boullier, 2000), it is oEimdieqt interest. We
consider then the case when the contextual features assigned to astragpond to the contexts
that the string can occur in, in the language defined by the grammar. Wheadpesty holds, we
call it anexact CBFG The crucial point here is that for languages that can be defined byat
CBFG, the underlying structure of the representation relies on intrinspepties of the language
easily observable on samples by looking at context sets.

The learning algorithm is defined in Section 4. We provide some conditiottspindhe context
sets and the learning set, to ensure the learnability of languages that ceprémented by CBFG.
We prove that this algorithm can identify in the limit this restricted class of CBF@®s positive
data and a membership oracle.

Some experiments are provided in Section 5: these experiments are interaEudostrate
that even quite naive algorithms based on this are efficient and effettiearning context-free
languages.

Section 6 contains a theoretical study on the expressiveness of CBFgSeatations. We inves-
tigate the links with the classical Chomsky hierarchy, some well known gramma{icasentations
used in natural language processing. An important result about thesskge power of the class of
CBFG is obtained: it contains all the context-free languages and someontextfree languages.
This makes this representation a good candidate for representing rlahgahges. However ex-
act CBFG do not include all context-free languages but do include sameontext-free ones,
thus they are orthogonal with the classic Chomsky hierarchy and caesesgra large class of
languages. This expressiveness is strengthened by the fact tbatlGB@G contains most of the
existing learnable classes of languages.

2. Basic Definitions and Notations

We begin by some standard notations and definitions used all along the paper

We consider a finite alphabgEtas a finite non-empty set of symbols also called letters. A string

(also called word) overZ is a finite sequence of lettetss= u; - - - uy. Let |u| denote the length of
u. The set of all strings oveX is denoted by *, corresponding to the free monoid generated by
A denotes the empty string alid = 2*\{A}. A languaged. is any subsett C *.
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We will write the concatenation af andv asuv, and similarly for sets of stringau € 2* is a
substring ofv € Z* if there are string$,r € * such thatv = lur. DefineSul{u) to be the set of
non-empty substrings of. For a set of stringS defineSul(S) = | J,.sSulju).

A context is an element &* x X*. For a stringu and a context = (I,r) we write f ©u = lur;
the insertion or wrapping operation. We extend this to sets of strings artext®im the natural
way. We define byon(w) = {(I,r)|3u e Z* : lur = w}, that is, the set of all contexts of a wond
Similarly, for a set of strings, we defin€on(S) = |J,,csCon(w).

We give now a formal definition of the set of contexts since it representdian often used in
the paper.

Definition 1 The set of contexts, or context distribution, of a string u in a language C, (s)) =
{(I,r) € * x Z*|lur € L}. We will often drop the subscript where there is no ambiguity.

Definition 2 Two strings u and v are syntactically congruent with respect to a languadenoted
u=_ v, ifandonly if G (u) = C_(v).

The equivalence classes under this relation aredngruencelasses of the language.
After these basic definitions and notations, we recall here the definitiocaftext-free gram-
mar which is a class which is close to the language class studied in this paper.

Definition 3 A context-free grammar (CFG) is a quadruple=5Z,V,P,S). Z is a finite alphabet
of terminal symbols, V is a set of non terminals &NV =0, PCV x (VUZ)™ is a finite set of
productions, & V is the start symbol.

We denote a production &: N — o with N € V anda € (VUZ)*. We will write uNv=-g uav
if there is a productiolN — o in G. =¢ denotes the reflexive transitive closure=of.

The language defined by a CFR&is L(G) = {w € Z*|S=c w}. In the following, we will
consider the CFG are represented in@r@msky normal forliCNF), that is, with right hand side
of production rules composed of exactly two non terminals or with exactly onerial symbol.

In general we will assume thatis not a member of any language.

3. Contextual Binary Feature Grammars (CBFG)

Distributional learning, in our view, involves explicitly modeling the distributiortted substrings
of the language—we would like to mod&l (w). Clearly a crucial element of this distribution is the
empty contextA,A): (A,A) € C_(w) if and only if w € L. Our goal is to construct a representation
that allows us to recursively compute a representation of the distributiostahgw, C(w), from
the (representations of) the distributions of its substrings.

The representation bgontextual binary feature grammarslies on the inclusion relation be-
tween sets of contexts of langudgeln order to introduce this formalism, we propose, for a start, to
present some preliminary results on context inclusion. These results wlilifeto define a relevant
representation for modeling these inclusion dependencies by the notiontektual binary feature
grammars

3.1 Preliminary Results about Context Inclusion

The objective of this section is to give some information about contexts thaheill to give an
intuition about the representation. The basic insight behind CBFGs is thatisteerelation between
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the contexts of a string and the contexts of its substrings. This is given by the following trivial
lemma:

Lemma 4 For any language L and for any stringsui, v,V if C(u) = C(u) and Q'v) = C(V), then
C(uv) =C(UuV).

Proof We write out the proof completely as the ideas will be used later on. Suppedeve
u,v, U,V that satisfy the conditions. {f,r) € C(uv), then(l,vr) € C(u) and thugl,vr) € C(U). As
a consequencélu’,r) € C(v) and then(Iu’,r) € C(V') which implies thatl,r) € C(uV). Symmet-
rically, by using the same arguments, we can show(tha}t € C(u'V') implies(l,r) in C(uv). Thus
C(uv) =C(u'V). [ |

This establishes that the syntactic mongigf = is well-defined; from a learnability point of
view this means that if we want to compute the contexts of a stkimge can look for a split into
two stringsuv whereu is congruent tal andv is congruent to/; if we can do this and we know
how U andVv combine, then we know that the contextsusfwill be exactly the contexts aff'v'.
There is also a slightly stronger result:

Lemma 5 For any language L and for any stringsul, v,V if C(u) C C(u') and Q'v) C C(V'), then
C(uv) CC(UV).

Proof See proof of Lemma 4. |

C(u) C C(U) means that we can replace any occurrence in a sentencwiti a u’, without
affecting the grammaticality, but not necessarily vice versa. Note thatafdhese strings need to
correspond to non-terminals: this is valid for any fragment of a sentence.

We will give a simplified example from English syntax: the pronoith¢an occur everywhere
that the pronounHim’ can, but not vice versa.Thus given a sentencé §ave him away, we can
substitute him” for " it”, to get the grammatical sentenckedave it away, but we cannot reverse
the process. For example, given the senteiitds faining”, we cannot substitutelim’ for “ it”, as
we will get the ungrammatical sentendarh is raining'. Thus we observ€(him) C C(it).

Looking at Lemma 5 we can also say that, if we have some finite set of stingdere we
know the contexts, then:

Corollary 6 For any language L and for any set of strings K, we have:

cw> | U U Cuv).

u.V: uekK: veK:
u'v =wC(U)SC(U) C(v)SC(V)
This is the basis of our representation: a werds characterised by its set of contexts. We
can compute the representatiorvgffrom the representation of its parsV, by looking at all of
the other matching stringsandv where we understand how they combine (with subset inclusion).
Rather than representing just the congruence classes, we will repteedattice structure of the
set of contexts using subset inclusion; sometimes called Bokdomination (Marcus, 1967).
The key relationships are given by context set inclusiGontextual binary feature grammars
allow a proper definition of the combination of context inclusion.

2. This example does not account for a number of syntactic and sienplienomena, particularly the distribution of
reflexive anaphors.
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3.2 Contextual Binary Feature Grammars

The formalism ofcontextual binary feature grammatss some resemblance wi@eneralized
Phrase Structure Grammar (GPS@azdar et al., 1985), and most importantly the clasRarige
Concatenation Grammars (RC@oullier, 2000); these relationships will be detailed in Section 6.
As we will see later, note that our formalism defines a class orthogonal tabe of context-free
grammars, indeed the use of subsets inclusion allows to model non comtexXtfiguages.

Definition 7 A Contextual Binary Feature Grammar (CBFG) G is a tufieP, R, %):

e F is afinite set of contexts, (i.e.,E =* x =*) called features, where we writeE 2F for the
power set of F defining the categories of the grammar, and widebe € F.

e PCE x E x E is afinite set of productions that we writexyz where xy,z€ E,
e B CE xXisasetoflexical rules, written x> a,

e > denotes the alphabet.

Given a CBFGG we can recursively define a functida from Z* — E as follows:

fa(A) =0,
few)= (J ¢ iff |w| =1,
(c—»w)eR.
few)= |J U x iff |w| > 1.
UV.uv=w x—yzeP
yCf(u)A
zCfe(v)

Given a CBFGG and a stringw it is possible to computég(w) in time O(|F||P||w|®) using
standard dynamic programming techniques. A straightforward modificatibtredfocke-Kasami-
Younger algorithm for parsing Context-Free Grammars will suffice.

Thus a CBFGG, defines for every string a set of contexts$g(u): this will be a representation
of the context distributionfg(u) will be a subset oF: we will want fg(u) to approximate, (u) N
F. The natural way to define the membership of a stuinig L(G) is to have the contexiA,A) €
fg(W).

Definition 8 The language defined by a CBFG G is the set of all strings that are assigapempty
context: LG) = {u|(A,A) € fg(u)}.

We give here more explanation about the functignA rule x — yzis applied to analyse a string
w if there is a split orcut of the stringw into two stringsu andv such thauv=ws.t.y C fg(u) and
zC fg(v)—recall thaty andz are sets of features.

One way of viewing a productior — yzis as an implication: if two stringa andv are such
that they have the featurgsandz, then their concatenation will have the featuresAs features
correspond to contexts, intuitively, the relation given by the productilensdinked with Lemma 5:
x is included in the set of features of= uv. From this relationship, for anfl,r) € x we have
lwr € L(G).
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The complete computation d§ is then justified by Corollary 6fg(w) defines all the possible
contextual features associated Gyto w with all the possible cutsiv= w (i.e., all the possible
derivations).

Note the relation between the third clause above and Corollary 6. In deveevéll apply more
than one production at each step of the analysis.

We will discuss the relation between this class and the class of CFGs in sorhénde¢ation 6.
For the moment, we will just make the following points. First, the representationits ¢jose to
that of a CFG where the non-terminals correspond to sets of contextse{sutfF). There are,
however, crucial differences: the very fact that they are reptedeby sets means that the non-
terminals are no longer atomic symbols but rather structures; the formalisoooarine different
rules together at each step. Secondly, the functipoan combine different parsing paths. It is not
the case that every feature assigneavtmust come from the same split wfinto u andv. Rather
some features could come from one split, and some from another: thesetsaaf features can be
combined in a single derivation even though they come from different splitek correspond to
different derivation trees in CFG). It is this property that takes the dBlssiguages out of the class
of context-free languages. In the special case where all of the giiods involve only singleton
sets then this will reduce to a CFG—the non-terminals will correspond to théidodi features,
and fg(w) will correspond to the set of non-terminals that can derive the siving

Clearly by the definition of (G) we are forcing a correspondence between the occurrence of
the contextA,A) in C_(w) and the occurrence of the featyde ) in fg(w). But ideally we can also
require thatfg defines exactly the possible features that can be associated to a givgastording
to the underlying language. Indeed, we are interested in cases whezdgteecorrespondence
between the language theoretic interpretation of a context, and the agwmiEthat context as a
feature in the grammar: in this case the features will be observable whichadlt¢éelearnability.

This is formalised via the following definitions.

Definition 9 Given a finite set of contexts £ {(I1,r1), ...,(In,rn)} and a language L we can
define the context feature function £=* — 2% which is just the function u+ {(I,r) € F|lur €
L} =CL(u)nF.

Using this definition, we now need a correspondence between the lanthuegretic context
feature functior. and the representation in our CBF{g,

Definition 10 A CBFG G isexactif for all u € 2%, fg(u) = F_g)(u).
ExampleLetL = {a"b"|n > 0}. Let (F, (A,A\),P,P.,Z) a CBFG s.t.
F={(A\A),(aA),(aab ), (A,b), (A abb)}.
The lexical productions if_ are:
{(A,b),(A,abb)} — a,and

{(a,)\), (aah)\)} —b.

Note that these lexical productions are of the form a, wherex is a subset oF, that is to say, a
set of features. The rulgA,b), (A,abb)} — atherefore says that the lettamwill be assigned both
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of the features/contexta, b) and(A,abb). Since this is the only lexical rule fa, we will have that
fa(a) = {(A,b),(A,abb)}. The productions if?, denoted by — yz, wherex,y, z are again sets of
contexts, are defined as:

{AN)} = {(\.b)H(aab M)},
{AA)} = {(Aabb)}{(a, M)},
{(A\,b)} — {(A,abb)}{(\,\)},and

{(@A)} = {(AA)}H{(aabA)}.

In each of these rules, in this trivial case, the sets of contexts are simglets In general, these
productions may involve sets that have more than one element. This defiega@nCBFG for
L. Indeed, the grammar assigns ol/A) to the elements of the language; for all elememtsf
{a"v™?1:n> 1} we havefg(w) = {(a,A\)} = F_(w) and for all all elementw of {a"*1b": n > 1},
fo(w) = {(A\,b)} = F_(w); The lexical rules assign correct contexts to each letter.

Exact CBFGsare a more limited formalism than CBFGs themselves; without any limits on
the interpretation of the features, we can define a class of formalisms thgiaste the class of
Conjunctive Grammarg§see Section 6.2.3). However, exactness is an important propertysgecau
it allows to associate the intrinsic structure of a language to the structure oéphesentation.
Contexts are easily observable from a sample and moreover it is only whéeatiures correspond
to the contexts that distributional learning algorithms can infer the structuhedénguage.

3.3 A Parsing Example

To clarify the relationship with CFG parsing, we will give a simple worked exam@onsider the
CBFGG = ({(A,}), (aab), (A,b), (A,abb), (a,\)}, P.PL, {a,b}) with

H-:{ {()\,b),()\,abb)}—>a, andP:{ {(A,A)}%{(A,b)}{(aan)\)},
{(@A),(aabA)} — b }. {(AA)} = {(A,abb)}{(a, M)},
{(A, D)} — {(A,abb) }{(A, M)},

{@A)} = {(A\A)}H{(aab )} }.

If we want to parse a string the usual way is to have a bottom-up approach. This means that
we recursively compute th&s function on the substrings of in order to check whetheA, A)
belongs tofg(w).

For example, suppose= aabh Figure 1 graphically gives the main steps of the computation of
fc(aabb). Basically there are two ways to spiiibbthat allow the derivation of the empty context:
aabb andalabb. The first one corresponds to the top part of the figure while the secoads
drawn at the bottom. We can see for instance that the empty context belofgal thanks to the
rule {(A,A\)} — {(A,abb}{(a,A)}: {(A,abb)} C fg(a) and{(a,A)} C fs(b). But for symmetrical
reasons the result can also be obtained using the{(dl&)} — {(A,b)}{(aabA)}.

As we trivially havefg(aa) = fg(bb) = 0, since no right-hand side contains the concatenation
of the same two features, an induction proof can be written to show(iha} € fg(w) < w e
{a"p":n> 0}.

This is a simple example that illustrates the parsing of a string given a CBFGeXdnisple does
not fully express the power of CBFG since no element of the right hamdddid rule is composed
of more than one context. A more complex example, corresponding to a teetesitive language,
will be presented in Section 6.1.3.
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£ (aabb) 2 {(AA)}
A —
- Rule: (\A) — (Ab) (aab,4) o
£ (aab) 2 {(\b)}
A
~ ~

Rule: (A\b) — (Aabb) (AA)

fi(ab) 2 {(AA)}
A

7" Rule: (AA) — (Aabb) (a,A) >
{(A\,b),(A,abb)}  {(A,b),(A,abb)} {(a,h),(aab,\)} {(a,A),(aab,\)}
a a b b
{(\,b),(A,abb)}  {(A,b),(A,abb)} {(a,A),(aab,A)} {(a,A),(aab,A)}

 Rule: (h4) = (\b) (aab,/\)/
e
fs(ab) 2 {(A,A)}

Rule: (a,A) — (AA) (aab,A)

N—
—~
f.(abb) 2 {(a,A)}
Rule: (A,A) — (A,abb) (a,A)
N—
——— _

f (aabb) 2 {(AA)}

Figure 1: The two derivations to obtaih,A) in fg(aabb) in the grammag.

We stop here the presentation of the CBFG formalism and we present minggalgorithm in
the next section. However, if the reader wishes to become more familiar wiHFGSE study on
their expressiveness is provided in Section 6.

4. Learning Algorithm

We have carefully defined the representation so that the inferencetlahgavill be almost trivial.
Given a set of strings, and a set of contexts, we can simply write dowrF&@Bat will approximate
a particular language.

4.1 Building CBFGs from Sets of Strings and Contexts

Definition 11 Let L be a language, F be a finite set of contexts such(that) € F, K a finite set of
strings, R = {F_(u) — ulue KA |u| =1} and P= {F_(uv) — F_(u)R_(v)|u,v, uve K}. We define
Go(K,L,F) as the CBFGF,P, P, ).

OftenK will be closed under substrings: that 8uliK) = K. This grammar is a CBFG, since
K andF are finite, and s® andP_ are too by construction. In general it will not be exact.

2715



CLARK, EYRAUD AND HABRARD

We will call K here thebasisfor the language. The set of productions is defined merely by
observation: we take the set of all productions that we observe asttoatenation of elements of
the small seK.

Let us explain the construction in more deté&ll.is the set of lexical productions—analogous to
rules of the formN — ain a CFG in Chomsky normal form. These rules just assign to the terminal
symbols their observed distribution—this will obviously be correct in tiida) = F_(a). P is the
interesting set of productions: these allow us to predict the featurestiohg v from the features
of its partu andv. To construcP we take all triples of strings, v, uvthat are in our finite seék. We
observe thati has the contexts, (u) andv has the set of contexts (v): our rule then states that
we can combine any string that has all of the contexfs {iu) together with any string that has the
contexts inF_(v) and the result will have all of the contextskn(uv).

We will now look at a simple example. Lét= {a"b" | n > 0}, F, the set of features is
{(\A),(a,A),(A\,b)} andK, the basis, ifa,b,ab,aa aab}. For each of the elements &f we
can compute the set of features that it has:

e F (a)isjust{(A,b)}—this is the only one of the three contextsHrsuch thatf ©a c L,

(

R(b) ={(@MN)},
F(ag) =
Fu(
F(

ab) = {(A,A\)},
aab) = {(A,b)}.

Go will therefore have the following lexical productioRs = {(A,b)} — a, {(a,A)} — b. We
can now consider the productionsin Looking atK we will see that there are only four possible
triples of strings of the formv,u,v: these aréaa a,a), (ab,a,b), (aab aa b) and(aah a,ab). Each
of these will give rise to an element Bf

e The rule given byab=aob: {(A,A)} — {(A,b)}{(a,A\)},
e aa=aoagivesd — {(A\,b)}{(A,b)},

e aab=aaobgives{(A,b)} — 0{(a,N)},

e aab=aoabgives{(A,b)} — {(A,b)}{(A,A)}.

Given K,F and an oracle fo. we can thus simply write down a CBFG. However, in this
case, the language(Gop) is not the same ak; moreover, the resulting grammar is not exact.
Applying the rules for the recursive computation fef, we can see thafg,(aab) = {(A,b)} and
fe, (abb) = fg,(aabl) = {(A,b), (A, A)} butF_ g, (abb) = {(a,A),(A,b),(A,A)} and thusGo is not
exact. The problem here is caused by the fact that the produgtlob)} — 0{(a,A)} allows any
string to occur in the place specified by ieindeed sincd C fg,(aab) and{(a,A)} C fg,(b) the
rule holds foraabband thus{(A,b)} C fg,(aabb). This is actually caused by the fact that there are
no contexts irF that correspond to the striregin K.

Fixing L for the moment, clearly the language defined depends on two factors:t thfestings
K and the set of featurds. GivenK andF, and access to a membership oracle, we can write down
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a CBFG with almost no computation, but we still have the problem of finding suikalled F—it
might be that searching for exactly the right combinatioK@&ndF is intractably hard. It turns out
that it is also very easy to find suitable sets.

In the next section we will establish two important lemmas that show that thehsieaul€ and
F is fundamentally tractable: first, that &sincreases the language defined ®&y(K,L,F) will
increase, and secondly thatfasncreases the language will decrease.

Let us consider one example that illustrates these properties. Considendgloagd. = {a"b |
n>0}u{ba" | m>0}uU{a}.

First, letK = {a,b,ab} andF = {(A,A)}; then, by the definition o6y, we have the following
productions:

e {AN)}—a,
e {(A\AN)}—b,

o {AN} = {ANH AN

It is easy to see thdt(Gg) = 2.
Now, suppose that = {(A,A), (A, b)} with K unchanged; then, by constructi@y will have
the following productions:

e {(MA),(A,b)} —a,
e {(\,A)}— b,

o {AN} = {A), (A B HAA) L

The language defined i, containsa"b and alsaa" since{(A,A)} C {(A,A),(A,b)} allowing the
third production to accept strings ending withanThus, the language has been reduced such that
L(Gp) ={a"|n>0}u{a™| m> 0}.

We continue by leaving = {(A,\A), (A,b)} and we enlarg& such thaK = {a,b,ab,ba}. The
productions inGg are:

e {(\A),(A,b)} — 4,

e {(\,N)} —h,

o {(MN)} = {(A\AN),(A,b)}{(A,A)}; the rule given byab=aob,
(

o {(AMAN)} = {(A\N)H(AAN), (A, b)}; the rule given bypa=boa.

The addition of the last rule allows the grammar to recogbi@kand it can be easily shown
that by a combination of the last two producticef®a™ belongs to the language defined by the
grammar. Then.,.(Gp) has been increased such théGo) = {a"ba | n,.k > 0}u{a™ | m> 0}.

In this example, the addition @i, b), (a,A) and(A,a) to F and the addition odabandbaato
K will then define the correct language. In fact this illustrates one principdeiloapproach: in the
infinite data limit, the constructio®g will define the correct language. In the following lemma we
abuse notation and u&® for when we have infinit&, andF: in this lemma we leK be the set of
all non-empty strings and we |€t be the set of all possible contexs* x *). Recall that in this
case for every stringy C_(w) = F_(w).
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Lemma 12 For any language L, let G- Go(Z*,L,Z* x £*). Then for all we =t fg(w) = C(w)
and therefore (G) = L.

Proof By induction on the length ofv. If |w| =1, andw = a then there is a lexical production
CiL(a) — a and by the definition offg(a) = C_(a). Suppose this is true for alt with |w| < k.
Let w be some string of lengtk+ 1. Consider any split ofv into u,v such thatw = uv. fg(w)

is the union over all these splits of a function. We will show that every spih\ill give the
same result o€ (w). By inductive hypothesidg(u) = C(u), fg(v) = C(v). Sinceu,v,w are in

K = Z* we will also have an element & of the formC_(w) — C_(u)C_(v), so we know that
fe(w) 2 F.(w). We now show thatfg will not predict any extra contexts. Consider every pro-
duction inP, F_(uV) — F_(U)F_(V), that applies ta,v, that is, withF_(u) C fg(u) = C_(u) and
FL(V) C fg(v) =Ci(v). Lemma 5 shows that in this caBg(u'V') C F_(w) and thus we deduce that
fe(w) C F_(w), which establishes the lemma. [ |

Informally if we takeK to be every string an& to be every context, then we can accurately
define any language. Of course, we are just interested in those chees tliis can be defined
finitely and we have a CBFG, in which cakewill be decidable, but this infinite limit is a good
check that the construction is sound.

4.2 Monotonicity Lemmas

We now prove two lemmas that show that the size of the language, and mticalpéy the features
predicted will increase or decrease monotonically as a function of thelaaiw the feature sé&,
respectively. In fact, they give also a framework for approachinggetdaanguage frork andF.

Lemma 13 Suppose we have two CBFGs defined by Go(K, L,F) and G = Go(K,L,F’) where
F CF'. Thenforallu, §(u) 2 fe(u)NF.

Proof Let G’ have a set of productior®,P’, andG have a set of productio@ B_. Clearly if
x—yze P thenxNF — (ynF)(zNF) is in P by the definition 0fGy, and likewise foiR_,P/. By
induction on|u| we can show that any feature fg (u) N F will be in fg(u). The base case is trivial
sinceF/(a) NF = F_(a); if it is true for all strings up to lengtk, then if f € fg (u) NF; there must

be a production i’ with f on the head. By the inductive hypothesis, the right hand sides of the
corresponding production A will be triggered, and sé must be infg(u). [ ]

Corollary 14 Suppose we have two CBFGs defined by Go(K,L,F) and G = Go(K,L,F’)
where FC F’; then L(G) D L(G).

Proof Itis sufficient to remark that ifi € L(G') then(A,A) € fe(u) C fg(u) and thusu € L(G). &

Conversely, we can show that as we incragsthe language and the még will increase. This
is addressed by the next lemma.

Lemma 15 Suppose we have two CBFGs defined by Go(K,L,F) and G = Go(K’,L,F) where
KC K’. Then for all u, éo(K7L7F)(u) - fGo(K’,L7F)(U)'
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Proof Clearly the sets of productions &f(K,L,F) will be a subset of the set of productions of
Go(K’,L,F), and so anything that can be derived by the first can be derived lsgetmand, again by
induction on the length of the string. [ |

A simple result is that wheK contains all of the substrings of a word, th&g(K,L,F) will
generate all of the correct features for this word.

Lemma 16 For any string w, if Subw) C K, and let G= Go(K, L,F), then It (w) C fg(w).

Proof By recursion on the size @f. LetG = Go(K,L,F) = (F,P, P, ). First, notice that ifv is of
length 1 then we havE_ (w) — win B and thus the lemma holds. Then suppose [tgt k > 2.
Letu andv in ' be such thatv = uv. As Sukiw) C K we haveu,v in K. Therefore the rule
FL(w) — F_(u)R_(v) belongs toP. As |u| < |w| and|v| < |w|, by recursion we geff (u) C fg(u)
andF_(v) C fg(v). Thus the rule can be applied and thgriw) C fg(w). [ |

In particular ifw € L, andSulfw) C K, thenw € L(G). This means that we can easily increase
the language defined b just by addingSuliw) to K. In general we do not need to add every
element ofSuliw)—it is enough to have one binary bracketing.

To establish learnability, we need to prove that for a target languaifj@ve have a sufficiently
largeF thenL(Go(K,L,F)) will be contained withinL and that if we have a sufficiently lardé,
thenL(Go(K,L,F)) will containL.

4.3 Fiducial Feature Sets and Finite Context Property

We need to be able to prove that for aRyif we have enough features then the language defined
will be included within the target language We formalise the idea of having enough features in
the following way:

Definition 17 For a language L and a string u, a set of features F is fiducial on u if for a3,
FL(u) C R (v) implies G (u) C C.(v).

Note that ifF is fiducial onu andF C F’ thenF' is fiducial onu. Therefore we can naturally
extend this to sets of strings.

Definition 18 For a language L and a set of strings K, a set of features F is fiducial difdt all
uc K, F is fiducial on u.

Clearly, for any stringv, C(w) will be fiducial onw; but this is vacuous—we are interested
in cases where there is a finite set of contexts which is fiduciafdyut whereCy (w) is infinite.
If uandv are both inK then having the same features means they are syntactically congruent.
However if two strings, neither of which are i, have the same features this does not mean they
are necessarily congruent (for instancgifv) = F_(V') = 0). For non finite state languages, the set
of congruence classes will be infinite, and thus we cannot have a finimdidet for the set of all
strings inSul{L), but we can have a feature set that is correct for a finite subseirajstor more
generally for an infinite set of strings, if they fall into a finite number of colegce classes.
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Let us consider our running examgle= {a"b"|n > 0}. Take the stringb. C_(ab) is infinite and
contains contexts of the forifA,A), (a,b), (aa bb) and so on. Consider a set with just one of these
contexts, saff = {(a,b)}. This setis clearly fiducial foab, since the only strings that will have this
context are those that are congruen&ko Consider now the stringaly clearly {(A,b)} is fiducial
for aab, even though the string, which is not congruent taabalso occurs in this context. Indeed,
this does not violate fiduciality sin€g (a) D Ci (aab). However, looking at string, {(A,b)} is not
fiducial, sinceaab has this context but does not include all the contexts sifich as, for example,
(A,abb).

In these trivial examples, a context set of cardinality one is sufficienetfidoicial, but this is
not the case in general. Consider the finite language{ab,ac,db,ec dx ey}, and the string. It
has two context$A, b) and (A, ¢) neither of which is fiducial fom on its own. However, the set of
both contexts is{(A,b), (A,c)} is fiducial fora.

We now define the finite context property, which is one of the two conditioatslédmguages
must satisfy to be learnable in this model; this condition is a purely languagestivgmmoperty.

Definition 19 A language L has the Finite Context Property (FCP) if every string hasit fiilu-
cial feature set.

Clearly if L has the FCP, then any finite set of substringshas a finite fiducial feature set
which will be the union of the finite fiducial feature sets for each elemekt df u ¢ SulfL) then
any set of features is fiducial sin€g(u) = 0.

We note here that all regular languages have the FCP. We refer ther tedtie Section 6.1.1
about CBFG and regular languages where the Lemma 35 and the asscoigédiction proves
this claim.

We can now state the most important lemma: this lemma links up the definition of theefeatur
map in a CBFG, with the fiducial set of features to show that only correttifes will be assigned
to substrings by the grammar. It states that the features assigned byriraayravill correspond to
the language theoretic interpretation of them as contexts.

Lemma 20 For any language L, given a set of strings K and a set of features F,4eGg(K, L, F).
If F is fiducial on K, then for all we >* fg(w) C F_(w).

Proof We proceed by induction on length of the strifBpse casestrings of length 1.fg(w) will
be the set of observed contextsmmfand since we have observed these contexts, they must be in the
languagelInductive stepietw a string of lengttk.

Take a featurd on fg(w); by definition this must come from some productior> yzand a split
u,v of w. The production must be from some element&pf/,v andu'v' such thaty = F_(U),z=
FL(V) andx=F_(UV). If the production applies this means tlafu’) =y C fg(u) C F_(u) (by in-
ductive hypothesis), and similarfy (V') C F_(v). By fiduciality of F this means that(u') C C(u)
andC(V) C C(v). So by Lemma Z(u'V') C C(uv). Sincef € C(UuV) thenf € C(uv) = C(w).
Therefore, sincd € F andC(w) NF = F_(w), f € F_(w), and therefordg(w) C F_(w). [

Corollary 21 If F is fiducial on K then Go(K,F,L)) C L.

Therefore for any finite séf from an FCP language, we can find a set of features so that the
language defined by those features<ois not too big.
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4.4 Kernel and Finite Kernel Property

We will now show a complementary result, namely that for a sufficiently l&ghe language
defined byGp will include the target language. We will start by formalising the idea that & set
large enough, by defining the idea okernel

Definition 22 A finite set KC >* is a kernel for a language L, if for any set of features F,
L(Go(K,F,L)) D L.

Consider again the languagie= {a"b"|n > 0}. The setk = {a,b,ab} is not a kernel, since
if we have a large enough set of features, then the language defineshlyilbe {ab} which is a
proper subset df. HoweverK = {a, b, ab, aab abb aabb} is a kernel: no matter how large a set of
features we have the language defined will always includ€onsider a languade = L U {b'®}.

In this case, a kernel fdr’ must include, as well as a kernel foy some set of substrings b#5: it
is enough to have®® b8 b* bb, b.

To prove that a set is a kernel, it suffices to show that if we considereafitssible features for
building the grammar, we will contain the target language; any smaller seanirés defines then
a larger language. In our case, we can take the infinite set of all costestdefine productions
based on the congruence classes. i§ the set of all contexts then we haugu) = Ci_(u), thus the
productions will be exactly of the for@(uv) — C(u)C(v). This is a slight abuse of notation since
feature sets are normally finite.

Lemma 23 Let F=Z* x Z*; if L(Go(K,L,F)) 2 L then K is a kernel.

Proof By monotonicity ofF: any finite feature set will be a subsetfof |

Not all context-free languages will have a finite kernel. For exarhpte{a™ } U{a"b™n < m}
is clearly context-free, but does not have a finite kernel. Assume thaetlecontains all strings
of length less than or equal to Assume w.l.0.g. that the fiducial set of featuresKoincludes all
featuresA,b'), wherei < k+ 1. Consider the rules of the forf (&) — F_(al )R (a“); we can

see that no matter how largeis, the derived CBFG will undergenerate asis not congruent to
k-1
a“ct.

Definition 24 A context-free grammar = (V,S P, Z) has the Finite Kernel Property (FKP) iff
for every non-terminal N= V there is a finite set of strings(Kl) such that ac K(N) if a € ~ and

N — a€ P and such that for all k K(N),N = k and where for every string @Z* such that N= w
there is a string ke K(N) such that Gk) C C(w). A CFL L has the FKP, if there is a grammar in
CNF for it with the FKP.

Notice that all regular languages have the FKP since they have a finite nomé@ngruence
classes.

Lemma 25 Any context-free language with the FKP has a finite kernel.

Proof LetGr = (V,S P,Z) be such a CNF CFG with the FKP. Define

K(Gﬂ:U(K(N)U U K(I\/I)K(N)).

NeV X—MNeP
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We claim thatK(Gr) is a kernel. Assume thdt = X* x ¥* and letG be such thaG =
GO(K(GT)v L(GT)7 F) = <F’ ()\7)\)7 P, PL72>

We will show, by induction on the length of derivationwfin G, that for allN,w if N = w
then there is & in K(N) such thatfg(w) D C(k). If length of derivation is 1, then this is true
since|w| = 1 and thusw € K(N): thereforeC(w) — w € B.. Suppose it is true for all derivations
of length less tharj. Take a derivation of lengtli; sayN = w. There must be a production in
Gr of the formN — PQ, whereP =* u andQ =* v, andw = uv. By inductive hypothesis; we
have fg(u) O C(k,) and fg(v) 2 C(ky). By constructionkk, € K(Gr) and then there will be a
rule C(kyky) — C(ky)C(ky) in P. Thereforefg(uv) O C(kyky). SinceN = kyk, there must be some
Kuv € K(N) such thaC(kyy) € C(kyky). Thereforefg(w) O C(kuky) 2 C(kuy).

Now we can see that i € L, thenS=- w, then there is & € K(S) such thatfg(w) D C(k) and
S= k, thereforg(A,\) € fg(w) since(A,\) € C(k), thusw € L(G) and therefor« is a kernel. H

4.5 Learning Algorithm

Before we present the algorithm, we will discuss the learning model thatsee The class of
languages that we will learn is suprafinite and thus we cannot get a podéta only identifica-
tion in the limit result (Gold, 1967). Ultimately we are interested in a more realistiogtitistic
learning paradigm, but for mathematical convenience it is appropriate taisktthe basic results
in a symbolic paradigm. The ultimate goal is to model natural languages, wbgative data, or
equivalence queries are generally not available or are computationallgsibpe Accordingly, we
have decided to use the model of positive data together with membershipsg@erieracle can tell
the learner whether a string is in the language or not (Angluin, 1988)pigsented algorithm runs
in time polynomial in the size of the sam@esince the strings are of variable length, this size must
be the sum of the lengths of the stringsSif|§| = ¥ s|w|. We should note that this is not a strong
enough result: Pitt (1989) showed that any algorithm can be made polyinbgnanly processing a
small prefix of the data. It is hard to tighten the model sufficiently: the suigmesf de la Higuera
(1997) for a polynomial characteristic set is inapplicable for repreenta such as the ones in this
paper, that are powerful enough to define languages whose shstriegs are exponentially long.
Accordingly we do not require in this model a polynomial dependence ositkeof the represen-
tation. We note that the situation is unsatisfactory, but we do not intend togeapsolution in this
paper. We merely point out that the algorithm is genuinely polynomial anckpees all of the data
in the sample without “delaying tricks” of the type discussed by Paitt.

Definition 26 A class of languagek. is identifiable in the limit (IIL) from positive data and a
membership oracle with polynomial time and queries iff there exist two polials @),q() and an
algorithm A such that:

e Given an infinite presentation of positive examples S, wheie the first n examples of the
presentation,

1. Areturns a representation § A(S,) in time || S,||).
2. A asks at most(|S,||) queries to build AS,).

e For each language k L, for each presentation S of L, there exists an index n such that for
allN >n: A(Sy) =A(S) and LA(S))) = L.
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Correct

Undergeneral

Overgeneral

Wrong

Ko K

Figure 2: The relationship betwe&andF: The diagonal line is the line of fiduciality: above this
line means thaf is fiducial onK. Kq is a kernel for the language.

Before we present the algorithm we hope that it is intuitively obvious how pipecach will
work. Figure 2 diagrammatically shows the relationship betweemdF. When we have a large
enoughK, we will be to the right of the vertical line; when we have enough featwethhtK we
will be above the diagonal line. Thus the basis of the algorithm is to move to tie wigtil we have
enough data, and then to move up vertically, increasing the feature setartive a fiducial set.

We can now define our learning algorithm in Algorithm 1. Informallyis the list of all strings
that have been seen so far dgglis the current grammar obtained with the finsdtrings ofD. The
algorithm uses two tests: one test is just to determine if the current hypatinelsiggeneralises. This
is trivial, since we have a positive presentation of the data, and so ellgnteawill be presented
with a string inL \ L(Gp). In this case we need to increadsewe accordingly increasi to the set
of all substrings that we have observed so far. The second test isret@tdelicate. We want to
detect if our algorithm overgeneralises. This requires us to searagthepolynomially bounded
set of strings looking for a string that isir{Gp) \ L. An obvious candidate set@on(D) ® Sul{D);
but though we conjecture that this is adequate, we have not yet beeio gideve that is correct, as
it might be that the overgenerated string does not li@on(L) ® Sul(L).

Here we use a slightly stricter criterion: we try to detect whethés fiducial forK: we search
through a polynomially bounded set of strin@aliD), to find a violation of the fiduciality condi-
tion. If we find such a violation, then we know tHatis not fiducial forK, and so we increade to
the set of all contexts that we have seen soGan(D).

In Algorithm 1, Go(K, O,F) denotes the same construction@gK, L, F), except that we use
membership queries with the oraaleto computeF_ for each element itK. We give the identifi-
cation in the limit version of the algorithm, that is, that admits an infinite positiveeptasion of
strings in input.
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Algorithm 1: CBFG learning algorithm IIL

Data: A sequence of stringS= {wy,w,..., }, membership oracl®
Result A sequence of CBFGG1, Gy, ...

K«0; D<0; F<{(AN}; G=Go(K,O,F);

for w; do

D« DU{w;}; C«+ConD); S« SuldD);

if 3we D\L(G) then

| K« S;F«+C;

end

elseifave Sue K, f € C such that F(u) C R (v) and foue L but fovE L then
| F+C;

end

G=Gy(K,O, F) ;

OutputG; =G;

end

Theorem 27 Algorithm 1 runs in polynomial time in the size of the sample, and makes agooigh
number of calls to the membership oracle.

Proof The value oD will just be the set of observed stringSul{D) andCon(D) are both polyno-
mially bounded by the size of the sample, and therefore siKa@nd|F|. Therefore the number of
calls to the oracle is clearly polynomial, as it is bounedilyF |. ComputingGo is also polynomial,
since|P| < |K|?, and all strings involved are i@ul{D). [ |

4.6 ldentification in the Limit Result

In the following, we consider the class of context-free languages hakimdg-CP and the FKP,
represented by CBF&,, denotes the value & at then" loop, and similarly forF, D.

Definition 28 Lcrg is the class of all context-free languages that satisfy the FCP and the FKP.

In what follows we assume thétis an element of this class, and that, ..., w,, ... is a infinite
presentation of the language. The proof is straightforward and mehyres an analysis of a few
cases. We will proceed as follows: there are 4 states that the model @aritis correspond to the
four regions of the diagram in Figure 2.

1. K is a kernel and- is fiducial forK; in this case the model has converged to the correct
answer. This is the region labeledrrectin Figure 2.

2. K is a kernel and- is not fiducial forK: thenL C L(G), and at some later point, we will
increasd- to a fiducial set, and we will be in state 1: this is the region labelezigeneral

3. Kiis not a kernel andF is fiducial. EitherL(G) = L, in which case we have converged to a
correct answer or, if not, we will define a proper subset of the tdaggjuage. In the later
case we will change hypothesis at some later point, incri€asea kernel, and move to state
2 or state 1. This is the area label@adergeneral
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4. K is not a kernel ané is not fiducial: in this case at some point we will move to states 1 or
2. This is the area labeledrong

We will start by making some basic statements about properties of the algorithm:

Lemma 29 If there is some n, such that I5 fiducial for K, and L(Gy,) = L, then the algorithm will
not change its hypothesis: that is, for albnN, K, = Ky, F, = Fy and therefore G = Gy.

Proof If L(Gp) is correct, then the first condition of the loop will never be mek,ifs fiducial for
Kn, then the second condition will never be satisfied. [ |

Lemma 30 If there is some N such thaiKs a kernel, then for all n> N, Ky = Ky.

Proof Immediate by definition of a kernel, and of the algorithm. |

We now prove that i is not fiducial then the algorithm will be able to detect this.

Lemma 31 If there is some n such tha, s not fiducial for K, then there is some indexh n at
which F, will be increased.

Proof If R, is not fiducial, then by definition there is some& K, v e £ such thaty_(u) C F_(v),
but there is arf € Ci(u) that is not inC(v). By constructionF_(u) is always non-empty, and so
is FL(v). Thusv € Sul{L). Notef ©ue L, sof € ConL). Letn’ be the smallest index such that
v e Sul{Dy) and f € Con(Dy): at this point, eithef, will have changed, or not, in which case it
will be increased at this point. |

We now prove that we will always get a fiducial feature set.
Lemma 32 For any n, there is somé€ such that k is fiducial for K,.

Proof If F, is fiducial thenn’ = n satisfies the condition. Assume otherwise. Edbe a finite set
of contexts that is fiducial foK,. We can assume th& C Con(L). Letn; be the first index such
thatCon(Dy,) containsF. At this point we are not sure th&, = Con(Dy,) since the conditions
for changing the set of contexts may not be reached. Anyhow, if it isdke therf,, is fiducial,
thenn; = ' satisfies the condition. If not, then by the preceding lemma, there must be sime p
np at which we will increase the set of contexts of the current gramfar= Con(ny) must con-
tainF sinceCon(Dy,,) C Con(Dy, ), and is therefore fiducial, and s = n’ satisfies the conditior

Lemma 33 For every positive presentation of and_£Lcrg, there is some n such that either the
algorithm has converged to a correct grammar qyiK a kernel.
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Proof Let mbe the smallest number such ti&ik{Dy,) is a kernel. Recall that any superset of a
kernel is a kernel, and that all CFL with the FKP have a finite kernel (LemByaatd that such a
kernel is a subset @ukl{L), so such am must exist.
Consider the grammas,; there are three possibilities:

1. L(Gm) =L, andRy is fiducial, in which case the grammar has converged.
2. L(Gp) is a proper subset df andFy, is fiducial. Letm' be the first point at whichwgy is in
L\ L(Gm); at this pointKy will be increased to includ8uliD,) and it will therefore be a kernel.
3. Fmis not fiducial: in this case by Lemma 32; there is sana¢ whichF, is fiducial forKy,. Either
Kn = Ky in which case this reduces to Case 2Kgris larger tharK, in which case it must be a
kernel, since it will includeSuldD,) which is a kernel.

[ |

We now can prove the main result of the paper:

Theorem 34 Algorithm 1 identifies in the limit the class of context-free languages with the finite
context property and the finite kernel property.

Proof By Lemma 33 there is some point at which it converges or has a kerrigl.idfa kernel then
by Lemma 32, there is some poimitat which we have a fiducial feature set. Therefof€,) =L,
and the algorithm has converged. |

4.7 Examples

We will now give a worked example of the algorithm.

Supposd. = {a"b"|n > 0}.

Go will be the empty grammar, witl = 0,F = {(A,A)} and an empty set of productions.
L(Go) =0.

1. Supposev; = ab. D = {ab}. This is not inL(Gp) so we set

e K =SullD) = {a,b,ab}.
o F :COI’(D) = {()\,)\),(&,)\),()\,b)}

This gives us one productionF_(ab) — F_(a)F_(b) which corresponds td(A,A)} —
{(A\,b)}{(a,A\)}, and the lexical production§A,b)} — a,{(a,A\)} — b. The language de-
fined is thud (G;) = {ab}.

2. Supposev, = aabh D = {ab,aabb}. This is not inL(G;) so we set

e K =SuliD) = {a,b,ab aa bb,aab abb aabb}.

o F :COI'(D) = {()\,)\),(a,)\),()\,b),(aa,)\),(a, b),()\,bb),(&&h}\),(&&, b)a
(a,bb), (A,abb)}.

We then have the following productions:
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e F (ab) — F_(a),F_(b) which is
{(A2),(a,b)} — {(a bb),(A,abb),(A,b)}, {(aa b), (aab A), (a,A)}.

e F (aab) — F_(a),FR_(ab) which is

{(a,bb), (A,b)} — {(a,bb), (A,abb), (A,b)},{(A,N),(a,b)}.
e F (aab) — F_(aa),F_(b) which is

{(a,bb),(A,b)} — {(A,bb)},{(aa b),(@aab ), (a,A)}.
e F_(bb) — F_(b),F (b) which is
{(aaA)} — {(aa b),(aab A),(a,A)}, {(aa b), (aabA), (a,A)}-
e F (aa) — F.(a),F_(a) which is
{(A\,bb)} — {(a,bb), (A,abb), (A,b)},{(a,bb), (A,abb), (A,b)}.

e F (aabb — F_(a),F_(abb) which is

{(AA),(a,b)} — {(a,bb), (A,abb), (A, b)}, {(aa b),(a,A)}.
e F (aabb — F_(aa),F (bb) whichis

{(AA),(ab)} — {(A,bb)}, {(aa A)}.

e [ (aabb — F_(aab),F_(b) which is

{(AA),(a,b)} — {(a,bb), (A,b)},{(aa b), (aab A), (a,A)}.
e F (abb) — F_(a),FR_(bb) which is

{(aa,b),(a,A)} — {(a,bb), (A,abb), (A,b)}, {(aa A)}.

e F (abb) — F_(ab),F_(b) which is

{(aab),(aA)} = {(\,A),(a,b)}, {(aa b), (aabA), (a,A)}-

and the two lexical productions:

e F (a) —» awhichis{(a,bb),(A,abb),(A,b)} —a
e F (b) — bwhichis{(aab),(aabA),(a,A)} — b.

K is now a kernel antl(G) = L, butF is not fiducial forK, since(A, bb) is not fiducial foraa
(consideraaal).

. Supposens = aaabbb Now [Con(D3)| = 21; there are now several elementsCafn(D3)
that are similar. For exampl@,\), (a,b) and(aa bb) are identical but as it is harmless for
the resulting grammar, it does not mind. Now we will detect thas not fiducial: we will
find v=aaah u=aaandf = (A,abbb); F_(aa) = {(A,bb)} = F_(aaab), but f © aaab=
aaababbbwhich is not inL. We will therefore increas& to be Con(D3), and then the
algorithm will have converged. The final grammar will have 10 productams 2 lexical
productionsjK| = 8 and|F| = 21.
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5. Practical Behavior of the Algorithm

In this section, we propose to study the behavior of our algorithm fromactipal point of view. We
focus more specifically on two important issues. The first one deals withdhang ability of the
algorithm when the conditions for the theoretical learning result are achel. Indeed, although
the identification in the limit paradigm proves that with sufficient data it is possibddtain exact
convergence, it says nothing about the convergence when fewaimigaxamples are available:
does the output get closer and closer to the target until it reaches itesridstay far from the
expected solution until receives enough data? The second questicgriesihe learning behavior
of the algorithm: does it tend to over-generalise or to under-generalise?

For our experimental setup, we need to select appropriate data setanimatical inference
little has been done concerning benchmarking. The main available comeoifzoae of the on line
competitions organised by the International Colloquium on Grammatical hiderél' hree different
competitions have recently taken place: #igbadingo OndlLang et al., 1998) which was about
regular languages, tf@mphaloscompetition on context-free languages (Starkie et al., 2004) and
the Tenjinocompetition (Starkie et al., 2006) dealing with transducers learning. Notedhat of
these data sets correspond to extremely hard learning problems since timegljeative was to
push the state of the art (some problems ofAbbadingo Oneompetition are still unsolved more
than ten years after its official end!)

However, these data sets can not be directly used for evaluating ouitlalgdecause the
solutions or the target models are not available. Our algorithm needs @a aral thus we need a
way to give answers to membership queries. In order to overcome thidacaywve chose to build
synthetically some data sets following the experimental setup proposed bytrapetitions. More
precisely, we decided to randomly generate target context-free grarfoliavéing what has been
done for theOmphaloscompetition. Each grammar is then used either to generate training and test
sets or as an oracle for answering membership queries.

In the following paragraphs we describe first the generation of thettaoygext-free gram-
mars, then the experimental setup with learning and test data sets usedadlgdHaresults and
conclusions that can be drawn.

5.1 Generation of Target Context-free Grammars

To generate the target grammars we follow the process used f@mtiphaloscompetition (Starkie
et al., 2004). We built 30 different grammars randomly according the fallgwrinciples. For
each grammar, we first fix the number of non-terminals and terminals whialaagdemly chosen
between 4 and 7 for the non-terminals (including the start symbol) and be&eed 4 for terminal
symbols. Then we randomly generate 20 context-free rules in Chomskyahéorm such that
every non-terminal appears at least once in the left hand side of a grammaln order to avoid
the presence of useless rules, we apply two simple procedures: if @moimal can not generate
any terminal string, a new terminal rule generating one terminal symbol is dréat¢his non-
terminal; if a non-terminal can not be reached from the start symbol, vge &fom the grammar
(i.e., we remove all the rules containing this non-terminal). From these gramvitacit useless
rules, we force them to generate non finite languages by checking thsiiatheymbol is used at
least once in a right hand side of a grammar rule (in average this symtes@ip a right hand side
of a rule more than 3 times per grammar).
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The main difference with th©mphalosgeneration process is that we do not especially need
non-regular languages. Indeed, one of the aim of these experimenggvie tn idea on the behavior
of the algorithm when its theoretical assumptions are not likely to be valid. Engnstandpoint,
all randomly generated non-finite languages are good candidatesraadgargets. However, with
a similar principle used for th®mphaloscompetition, we checked that some of the generated
grammars can not be easily solved by methods for regular languagesugtitae can not decide
if these grammars define non regular context-free languages, it engitleat the target models are
at least not too simple.

5.2 Experimental Setup

For each target grammar we generate a learning and a test sample folloei@gthhaloscom-
petition requirements. We build the learning sample by first creatstguaturally complete seif
strings for each grammar. This set is built such that for each rule of thettgrammar, at least one
string of the set can be derived using this rule (Parekh and Hon&8@8).1This would guarantee
that the complete learning set would have the minimal amount of information @bngjrihe struc-
ture of the grammar. We then complete this learning set by randomly generatingtrings from
the grammar in order to have a total of 50 examples. We chose arbitrarily thésfea two reasons:
first it is sufficient to ensure that each sample strictly contains a structwaihplete set for each
target grammar and secondly we are likely to be far from the guarantéles wfentification in the
limit framework.

The construction of the test set needs particular attention. Since the tpph@ee uses a mem-
bership oracle, when the hypothesis is being constructed, some nevg stiglydoe built and queried
for the oracle by picking a substring and a context from the learning saffiples, even if the test set
does not contain any string of the learning sample, the constru@janay consider some strings
present in the test set. In order to avoid this drawback, that is, to geartirat no string of the test
could be seen during the construction of the CBFG, each test string hagth & at least 3 times
the maximal length of the strings in the learning set, which is by construction thiemalesize of
the strings queried. According to this procedure, we randomly genetatt aet of 1000 strings
over the alphabet of terminal symbols used to define the target grammar éx@fples is twice
the size of the small test sets of temphaloscompetition). The test sequences are then labeled
positive or negative depending on their membership to the language dbfinbd grammar. We
repeat this process until we have the desired number of strings. Theeditieen strings in the
language and strings outside the language is fixed to be between 40%%nd 60

In order to study the behavior of our algorithm, we define the following sefgp each target
context-free grammar, we construct a CBFG by applying the constru@oi, O,F) with K =
Sul{S) andF = Con(S) whereSis a set of strings drawn from the learning set and using the target
grammar as the oracle for the membership queries. We generate different Sélg drawing an
increasing number of learning examples (from 2 to 50) from the learnimglesof the considered
grammar. Then, we evaluate the learned CBFG on the test sample by medlsaratwguracy of
correct classification. We present the results averaged on the 3G:tegifghe different target
context-free grammars.

2729



CLARK, EYRAUD AND HABRARD

5.3 Results and Discussion

Figure 3 shows the averaged accuracy over the different targangaes according to the number
of strings in the learning sample. We can note that a high correct classificate(nearly 90%) is
reached with 20 examples and with only 5 examples an accuracy of 75% isazbtahese results
indicate that a relevant hypothesis can be found even with few examphesstdndard deviations
represented by vertical bars show a good stability of the results fromimhgasets of 20 strings.
This confirms that our algorithm is able to learn partly correct represensa¢ieen when learning
sets may not have a kernel or a fiducial learning set and thus arefartifire identification in the
limit assumptions.

100 . . . . .
95 | .
90 | ]
85 | ]
go b | .

75 | .

70 | .
65 .

60 7

% of average accuracy over the test sets

55 | | | | |
0 10 20 30 40 50

Number of strings in the learning sample

Figure 3: Evolution of the average percentage of correct classificatioording to the number of
learning examples.

The analysis of the behavior of the algorithm in terms of false positive ds€ feegative rates
is shown in Table 1. The proportion of false negatives (i.e., positive stalagsified as negative) is
higher than the proportion of false positives (i.e., nhegative strings cldsifi positive), whatever
the size of the learning sample is. Thus the output of the algorithm tends mandéo generalise
than the converse. As it is generally admitted that over-generalisation is thetnmable when
learning from positive examples, this tendency confirms that the algorithawbs well. However,
it is difficult to draw firm conclusions without a natural distribution over aiidge examples.
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Number of strings ir6 | false positive | false negative
02 07.2 %+ 12.3| 36.4 %+ 7.0
05 04.5%+ 4.7 | 28.4 %+ 9.1
10 03.8%+ 2.9 | 22.4 %+ 8.4
15 03.9%+ 26 | 14.1 %+ 6.6
20 04.1 %+ 3.0 | 09.4 %+ 6.1
30 04.2%+ 2.8 | 07.9 %+ 5.5
40 03.9 %+ 2.6 | 05.6 %+ 4.7
50 04.4%+ 1.6 | 04.8%+ 3.9

Table 1. Average percentage of false positive and false negatigeoiatiined over the test samples.

The preceding results show that despite its simplicity the algorithm behavey diceng these
experiments, in particular concerning over-generalisation. We foonsondhe amount of queries
needed by the algorithm for building the CBFG. The growth of the numbeegidested queries
according to the average size of the learning sample is shown in Figureadl (fet here the size
of the sample means the sum of the string lengths of the sample). While a vestyoase analysis
of the grammar construction used By would lead to a complexity i©(|S°), we can observe
that the number of queries seems to be quadratic, at least in the case wrtimaays we consider
here. However, the volume of queries used is large, which can be exglajnthe simplicity of the
algorithm. From a practical standpoint, it is clear that much work has to be idoorder to try to
minimise the number of queries needed by selecting the most informative exabyl#sis point
is out of the scope of the paper.

Finally, we can note that these experiments suffer of the lack of companigbrother ap-
proaches. This is due to the fact that, as far as we know, no other algaréiés a positive learning
sample and a membership oracle only. Indeed, since the work of Angluint & Minimum
Adequate Teacher (Angluin, 1988) all algorithms using membership queeedesigned with the
additional help of equivalence queries. The point of view adopted in #psipis rather theoretical
since our aim was to show the relevance of CBFG representations fardgedearning. However,
a perspective of our work is to try to avoid the use of the oracle (by usatgtical or simulation
methods) which will allow us to compare more easily our approach with other aetho

6. Expressiveness of CBFG

In this section, we compare the expressiveness of CBFG with other welirkrepresentations. As
noted earlier, we are primarily interested in the class of exact CBFGs—dine$&BFGs where the
presence of a contextual feature in the representation correspanttl/do the language theoretic
interpretation of the context. The class of unrestricted CBFG is significanggrgbut less relevant.

The algorithm presented in this paper cannot learn the entire class df @R&¢s, but we
conjecture that there are more powerful algorithms that can; see CROR)Yfor some steps in this
direction.
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Figure 4: Growth of the number of membership queries versus the avefdye total size of the
learning sample (using log log scale).

6.1 Exact CBFGs and the Chomsky Hierarchy

We start by examining the class of languages defined by exact CBFGsilMghow that this class
¢ includes all regular languages
¢ does not include all context free languages
e includes some non-context-free languages.

This class is thus orthogonal to the Chomsky hierarchy.

6.1.1 REGULAR LANGUAGES

Any regular language can be defined by an exact CBFG. We will shoayaofvconstructing an
exact CBFG for any regular language. Suppose we have a reguipralgel: we consider the left
and right residual languages:

ulL = {wjuwe L},

Lut={wwuelL}.
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For anyu € Z*, let Imin(u) be the lexicographically shortest element such tmét = ulL.
The number of suchyi, is finite by the Myhill-Nerode theorem, we denote Ly, this set, that is,
{Imin(u)|u € Z*}. We define symmetricalliRmin for the right residuaIsL(rr;iln =Lu™).

We define the set of contexts as:
F(L) = Lmin X Rmin.

F(L) is clearly finite by construction.

Figure 5: Example of a DFA. The left residuals are defined biL, a_L, b—L are the right ones
by LA~%, Lb~1, Lab™! (note here thata=! = LA™1).

If we consider the regular language defined by the deterministic finite autarinigure 5, we
obtainLmin = {A,a,b} andRmin = {A,b,ab} and thus

F(L) ={(AA), (@A), (b,A), (A, b), (ab), (b,b), (A, ab),

(a,ab), (b,ab)}.

By considering this set of features, we can prove the following lemma:
Lemma 35 For any strings uv such that E(u) D F_(v) then G (u) D C(v).

Proof Suppose_(u) D F_(v) and let(l,r) be a context irC (v). Letl’ be the lexicographically
shortest element dfu : u=1L = |~1L} andr’ the lexicographically shortest element{af: Lu! =
Lr—1}. By construction we havé’,r') € F(L) andl’vr’ € L, asvr’ € I""*L = 171L. F_(v) is con-
tained inF_(u) therefore we havEur’ € L. I’"1L = I-1L implieslur’ € L. Asr’ is congruent ta,
lur e L. [

This lemma means that the set of featufeis sufficient to represent context inclusion.

Note that the number of congruence classes of a regular language is Eaith congruence
class is represented by a set of contdkta). Let K_ be finite set of strings formed by taking the
lexicographically shortest string from each congruence class. Télggfimammar can be obtained by
combining elements df, . For every pair of strings, v € K _, we define a rule

R (uv) = R (U)R.(v)

and we add lexical productions of the fofn(a) — a, a € .
The following lemma shows the correctness and the exactness of the grammar.
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Lemma 36 For all w € ¥*, fg(w) = F_(w).

Proof (Sketch)The proof is in two stepsfs(w) C F_(w) andF_(w) C fg(w). Each step is made by
induction on the length ofv and uses the rules created to build the grammar, the derivation process
of a CBFG and the fiduciality for the second step.

First, we showvw € Z*, fg(w) C F_(w) by induction on the length ofv. For |w| = 1, the
inclusion is trivial since all the lexical rulés (a) — a are included in the grammar. Suppose that
a stringw, |w| = n> 1, is parsed by the CBFG, then there exists a cut @fin uv=w and a rule
z— xyin G such thax C fg(u) andy C fg(v). By induction hypothesiss C F_(u) andy C F_(v).

By construction of the grammar, there exists two strings’ € K; such thatu, resp. v, belongs
to same congruence class than resp. v and the ruleF_(uV) — F_(U)F. (V) belongs to the
productions of the grammar. By induction hypothesis, F_(u) = F_(u) andy C F_(v) = (V)
and thusfg(w) C F_(w).

Second, we prove thatv € *, F_(w) C fg(w) by induction on the length af.. The key point relies
on the fact that when a string is parsed by a CBF®&, there exists a cut of into uv=w (u, v
€ 2*) and a rulez— xyin G such tha C fg(u) andy C fg(v). The rulez— xy is also obtained
from a substring from the set used to build the grammar usindgqtifenction. By the inductive
hypothesis we obtain inclusion betwegnandF_onu andv. [ |

For the language of Figure 5, the following set is sufficient to build an texGRFG:
{a,b,aa ab,ba aab bb,bba} (this corresponds to all the substringsaab andbba). We have:

FL(@) =F(L\{(AA), (@A)} —a,

FL(b) =F(L) — b,

F.(aa) =F.(a) — R.(a)R.(a),
FL(ab) = F(L) = R(a)R(b) = F(a)F (L),
F.(ba)=F(L) » R (b)R.(a) =F(L)R.(a),
FL(bb) = F(L) = F.(b)R.(b) = F(L)F(L),

FL(aab) = F (bba) = F (ab) = F (ba).

The approach presented here gives a canonical form for repiega regular language by an
exact CBFG. Moreover, this is @mpletdan the sense that every context of every substring will be
represented by some elementofthis CBFG will completely model the relation between contexts
and substrings.

6.1.2 EXxAcT CBFGs Do NOT INCLUDE ALL CFLs

First, it is clear that the class of exact CBFGs includes some non-requrigext-free languages:

the grammar defined in Section 3.3 is an exact CBFG for the context-fremoamegular language

{a"b"|n > 0}, showing the class of exact CBFG has some elements properly in the clab&ef
We give now a context-free languagehat can not be defined by an exact CBFG:

L={a"bn>0}u{a"c"m>n> 0}.
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Suppose that there exists an exact CBFG that recognizes it aNdoetthe length of the biggest
feature (i.e., the longest left part of the feature). For any sufficientyela> N, the sequence
andc“t! share the same feature;(c¥) = F_(c*"1). Since the CBFG is exact we hafg(b) C
F_(ck). Thus any derivation of**'b could be a derivation od**1cX which does not belong to the
language.

However, this restriction does not mean that the class of exact CBFG isdiztive for model-
ing natural languages. Indeed, the example we have given is highlyurahand such phenomena
appear not to occur in attested natural languages.

6.1.3 CBFGAND NON CONTEXT-FREE LANGUAGES

CBFGs are more powerful than CFGs in two respects. First, CBFGs capamily represent lan-
guages like the finite language of all permutations of am-letter alphabet, that have no concise
representation as a CFG (Asveld, 2006). Secondly, as we now shew,dhe some exact CBFGs
that are not context-free. In particular, we define a language closklied to theMIX language
(consisting of strings with an equal number of a’s, b's and c’'s in ang®pndhich is known to be
non context-free, and indeed is conjectured to be outside the class éthgemmmars (Boullier,
2003).

LetM = {{a,b,c} "}, the set of all strings of length at least one that can be built on the alphabe
{a,b,c}. We consider now the language

L == Labcu LabU LacU {a/a, b/b, C/C,dd/,eé, ff,} :

Lab = {wdjw e M, |w|a = |w|p},
Lac = {welw € M, |w|q = |W|c},
Labc= {Wf‘WE M, |W|a = |W|b = ‘W‘C}'

In order to define a CBFG recognizihgwe have to select features (contexts) that can represent
exactly the intrinsic components of the languages compdsiriy/e propose to use the following
set of features for each sublanguage:

ForLap: (A,d) and(A,ad), (A, bd).

ForLac: (A,e) and(A,ae), (A,ce).

ForLapc (A, ).

For the letters(, b/, ¢, a,b,c we add:(A,a), (A,b), (A,c), (&,\), (H,A),(c,N).

For the lettersl, e, f,d’, €, f" we add;(A,d’), (A, €), (A, ), (d,A), (e A), (f,N).

Here,Lap will be represented byA, d), but we will use(A,ad), (A, bd) to define the internal deriva-
tions of elements df 5. The same idea holds fage with (A, e) and(A,ae), (A, ce).
For the lexical rules and in order to have an exact CBFG, note the spasmfora, b, c:

{(\,bd), (A,ce), (d,\)} — a,

{(\,ad), (b',\)} — b,
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{(\,ae),(c,\)} —c.

For the nine other letters, each one is defined with only one context, fonpeausing the rule
{(A\,d)} —d.

For the production rules, the most important ongAsA) — {(A,d), (A,e)}, {(A, f')}.

Indeed, this rule, with the presence of two contexts in one of categoriesisnieat an element
of the language has to be derived so that it has a pte$ch thatfg(u) 2 {(A,d),(A,e)}. This
meansu is both an element df,, andL,c. This rule represents the languagg. since{(A, ')}
can only represent the lettér

The other parts of the language will be defined by the following rules:

M) = {(A,d)} {(A )},

AN = {(\ e} {(A€)},
(AA) = {(A,a)}, {(A,bd), (A, ce), (a, M)},

(AA) = {(A.b)}, {(A,ad), (0, M)},
AA) = {(A, 0}, {(A,a8),(c, M)},

(

(
AA) = {(A,d)} {(d M)},
AA) = {(A )} {(e )},

AA) = {0}

This set of rules is incomplete, since for representing the grammar must contain the rules
ensuring to have the same number of a’s and b’s, and similarlyforTo lighten the presentation
here, the complete grammar is presented in Appendix.

We claim this is an exact CBFG for a context-sensitive languagis. not context-free since
if we intersectL with the regular languagg&*d, we get an instance of the non context-free MIX
language (withd appended). The exactness comes from the fact that we chose thgtgante
order to ensure that strings belonging to a sublanguage can not belangtter one and that the
derivation of a substring will provide all the possible correct featurigis thie help of the union of
all the possible derivations.

Note that the MIX language on its own is not definable by an exact CBFGoiithiswhen other
parts of the language can distributionally define the appropriate partiatwstes that we can get
context sensitive languages. Far from being a limitation of this formalismdg lae argue this is
a feature: it is only in rather exceptional circumstances that we will ggtgohp context sensitive
languages. This formalism thus potentially accounts not just for the exést#nmon context-free
natural languages but also for their rarity.

6.2 Inexact CBFGs

We are less interested in the class of all CBFGs: these are CBFGs wherentegts are just
arbitrary features and there is no relation betwégfu) andC, (u) except for the presence O, A).
However, it is important to understand the language theoretic power of ldgs as this upper
bounds the hypothesis class of the algorithm, and is easier to analyse.
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6.2.1 GONTEXT-FREE GRAMMARS

First, we note that this class contains all context-free languages. Gigentext-free language,
that does not include the empty string, we can take a CFG in Chomsky normabfad convert

it directly into a CBFG. LeV be the set of non-terminals of such a CFG. We pick an arbitrary set
of distinct contexts to represent the element¥ p§ubject only to the constraint th&corresponds

to (A\,A). LetC(N) be the context corresponding to the non-termMalFor every production rule

in the CFG of the forrN — PQ, we add a CBFG productiofC(N)} — {C(P)},{C(Q)}. For
every production in the CFG of the fortld — a, we add a CBFG production t8_ of the form
{C(N)} — a. Itis easy to see that this will define the same language.

6.2.2 RANGE CONCATENATION GRAMMARS

While CBFG formalism has some relationship to a context-free grammar, and teoaneemi-
Thue system (also known as a string rewriting system), it is not formally idgrticeither of
these. One exact equivalence is to a restricted subset of Ranget€wimm Grammars; a very
powerful formalism (Boullier, 2000). We include the following relationsHipf suggest that the
reader unfamiliar with RCGs proceeds to the discussion of the relationshigheitimore familiar
class of context-free grammars.

Lemma 37 For every CBFG G, there is a non-erasing positive range concatenatiamiar of
arity one, in 2-var form that defines the same language.

Proof Supposé& = (F,P, R, ). Define a RCG with a set of predicates equdttand the following
clauses, and the two variablesV. For each productior — yzin P, for eachf € x, wherey =
{91,...0i}, z={hy,...h;} add clauses

f(UV) = 0g1(U),...qi(U),hy(V),...hj(V).
For each lexical productiofif; ... fy} — aadd clauses
fi(a) — €.

It is straightforward to verify thaf (w) - € iff f € fg(w). [ |

6.2.3 GONJUNCTIVE GRAMMAR

A tighter correspondence is to the class of Conjunctive Grammars (OkB6ti,), invented inde-
pendently of RCGs.

Definition 38 A conjunctive grammar is defined as a quadru{feN, P, S), in which: X is the al-
phabet; N is the set of non terminal symbols; P is the set of rules, edbb &drm A— a1&...&ap,
where Ac V andVi < m,a; € (VUZ)*; Se N is the start symbol.

In this formalism, a stringv is derived fromA € V iff there exists a rulé — a;1&...&amy in P and
for alli < m, a; derivesw.

We claim that for every every languagegenerated by a conjunctive grammar there is a CBFG
representind.# (where the special character # is not included in the original alphabet).
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Suppose we have a conjunctive gramr@ae (X, N,P,S) in binary normal form (as defined in
Okhotin, 2003). We construct the equivalent CBEG= (F,P’,P_, %) as followed:

e For every lettea we add a contextla, ra) to F such thataar, € L;
e Forevery rulexX — ain P, we create arulg¢(la,ra)} — ain BL..

e For every non terminaX € N, for every ruleX — P1Q:1& ... &P,Q,, we add distinct contexts
{(lpa;"Ro;)} to F, such that for al it existsu;, Ipg Uirpg, € L andP.Qj = U;;

o LetFx j={(lra,rrg) : Vi} the set of contexts corresponding to ifferule applicable teX.
For all (Ipg;,rra) € Fx.j, we add toP the rules(lpg;,rra ) = FrkFa1 (VK 1).

e We add a new contextv,A) to F such thaS=g wand(w,\) — # toP;
e Forall j, we add to® the rule(A\,A) — Fsj{(w,A)}.

It can be shown that this construction gives an equivalent CBFG.

7. Discussion and Conclusion

One of the main objective of our approach is to provide a framework thHps e bridge the gap
between theoretical methods of grammatical inference and the structpredertations required
in linguistics. We provide a conclusion and a discussion of our work daugto these two stand-
points.

7.1 Grammatical Inference

In this paper, we have presented a new formalismGbatextual Binary Feature Grammassd
shown its relevance for representing a large class of languages. v&/@imosed a learning algo-
rithm using only membership queries and shown that this algorithm can identiifg Imit the class
of context-free languages satisfying the FCP and FKP assumptionsofratstwe should establish
how large the class of languages with the FCP and the FKP is: it includestelléinguages and all
regular languages, since the set of congruence classes is finitatiosfate languages. It similarly
includes the context-free substitutable languages (Clark and Eyra0id), Zince every string in a
substitutable language belongs to only one syntactic congruence clasdreAdy stated it does
not include all CFLs since not all CFLs have the FCP and/or the FKP. tewedoes include
languages like the Dyck languages of arbitrary order, Lukacevic Eggjand most other classic
simple examples. As a special case consider the equivalence relatiorebeatoreextsf =~ f’ iff
Yuwe have thaf ®u e L iff f"©ue L. The class of CFLs where the context distribution of every
string is a finite union of equivalence classes of contexts clearly has kiR and the FCP.

If we now focus on the algorithm proposed: it is relatively simple but hasmham drawbacks.
First, the algorithm is not conservative since once we have found thectteinguage, the represen-
tation may change—if the feature set found is not fiducial—until the fiducialitydshed. Second,
the CBFG output by the algorithm may not be consistent with some answeftiggnidy the ora-
cle. Indeed, when the algorithm checks the fiduciality of the featurE sttte membership of new
strings is tested. These strings do not appear in the list of learning exagiygedo the oracle but
are built from all the possible contexts and substrings that can be extfemte this list. Then, itis
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possible that, among these new strings, some of them belong to the targetdarimu are not rec-
ognized by the current grammar. In this case, the output grammar is relesgmot modified. We
can imagine a procedure that changes the grammar by adding these itexg poggs for building
the CBFG, however this could lead to having to deal with an exponential nuohis&ings. Thus,
a more reasonable procedure is to wait for these strings in the positivpréatntation. One pro-
posal for future work, from these two remarks, is a new learning algoritrat overcomes these
drawbacks.

One important point is whether this result can be extended to a result wisichlb@unds the
number of samples as a polynomial function of the size of the representateliminary result in
this direction is presented in Clark (2010), which presents a polynomialt resng the Minimally
Adequate Teacher model of Angluin (1987). It seems likely that it will besfige to extend that
result, which uses only context-free grammars, to the class of CBFGs.

Our approach to context-free grammatical inference is based on agjeaton of distributional
learning, following the work of Clark and Eyraud (2007). The curigate of the art in context-free
inductive inference from flat unstructured examples only has beearrthited. When learning
from stochastic data or using a membership oracle, it is possible to havefpbresults, if we
allow exponential computation (see for example Horning, 1969). The maitriloation of this
paper is to show that efficient learning is possible, with an appropriategeptation. We currently
rely on using a membership oracle, but under suitable assumptions abwibutns, it should
be possible to get a PAC-learning result for this class along the lines df (2@06), placing some
bounds on the number of features required. Another interesting andtampimsue is the adaptation
of this approach to stochastic languages.

We have focused on context-free grammatical inference, howevdraweshown that our rep-
resentation is also relevant for modeling non context-free languages, @&hother perspective of
this work is to study learnability results for larger classes of languages wiculd allow us to com-
pare with other formalisms such as External Contextual Grammars (Bouliet; Mitrana, 2005)
and other learning methods dealing with non context-free languages @ales2006; Yoshinaka,
2009).

7.2 Linguistics

The field of grammatical inference has close relations to the study of laageagiisition. Attempts
to model natural languages with context-free grammars require additiorchimeay: natural lan-
guage categories such as noun phrases contain many overlappitagsabavith features such as
case, number, gender and similarly for verbal categories. Modellingdhisires either an expo-
nential explosion of the number of non-terminals employed or a switch to a iet@f features.
Our formalism can be seen as a first step to integrate such features.

While we have implemented the algorithm described here, and verified thatks woaccor-
dance with theory on small artificial examples, there are a number of modifisatiahwould need
to be made before it can be applied to real grammar induction on naturabigeghirst, the algo-
rithm is very naive; in practice a more refined algorithm could select botketimel and the feature
set in a more sophisticated way. Secondly, considering features thasgond to individual con-
texts may be too narrow a definition for natural language given the welkryoblems of data
sparseness and it will be necessary to switch to features correspdodiets of contexts, which
may overlap. Thus for example one might have features that correspaeds of contexts of the
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form F(u,v) = {(lu,vr)|l,r € Z*}. This would take this approach closer to methods that have been
shown to be effective in unsupervised learning in NLP (Klein and Manr6g4) where typically

|ul = |v|] = 1. In any event, we think such modifications will be necessary for theisitiqn of non
context-free languages. Finally, at the moment the algorithm has polynogpaiateitime, but in the
worst case, there are deterministic finite state automata such that the sizemftlest kernel will

be exponential in the number of states. There are, however, naturaltahgs for generalising the
productions by removing features from the right hand sides of the rhlissjvould have the effect

of accelerating the convergence of the algorithm, and removing or wieaktre requirement for

the Finite Kernel Property.
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Appendix A.

We give here an explicit exact CBFG for the following non context-fregleage
L = Lach LabU LacU {a/a, b/b, C/C7 dd/7 eé, f f/}

defined on the alphab&t= {a,b,c.d,e f,a,b’,c’,d’,€, f'} and such that:

Lab = {wdjw € {a,b,c} ", |W|a = |w|p},

Lac - {qu S {a, b7 C}Jr, |W|a — ’W’(:},
Labc= {wflwe {a,b,c} ", |w|a = [W|p = |W|c}.

Here is the list of productions of the grammar.

{AN)} = {(Ad), (A e} {(A 1)},
{AN} = {(Ad)}{(d)},
{AN} = {\ e} {(A\e)},

{AN)} = {(Aa)},{(A,bd), (A, ce), (@, M)},

{AN)} = {(\ )}, {(A,ad), (b, M)},

{AN} = {(A 0} {(\ae),(c M)},
{AN)} = {d)}{(dN)},
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{AN} = {A )} {eM},

{AAN)) = {(Af M}

{(Ad)} = {(Ad)}{(Ad)},

{(\d)} = {(A,ad)}, {(A,bd)},

{(Ad)} = {(A,bd)}, {(A,ad)},
{Ad)} = {(Ad)} {(A.ad),(A,ae), (¢, M)},
{(A,d)} = {(A,ad), (A, ae), (¢, M)}, {(Ad)},

{(A,ad)} — {(A,ad), (A, ae), (¢, M)}, {(A,ad)},
{(A,ad)} — {(A,ad)},{(A,ad), (A.ae), (¢, )},
{(A,ad)} — {(A,ad), (', )}, {(A,d)},
{(\ad)} — {(A,d)}, {(A,ad), (b, M)},

{(\,bd)} — {(A,ad), (A, ae),(c,A)}, {(A,bd)},
{(A,bd)} — {(A,bd)},{(A,ad),(A,ae),(c,\)},
{(A,bd)} — {(A,bd),(A,ce), (@, M)}, {(A,d)},
{(A,bd)} = {(A,d)}, {(A,bd), (A, ce), (M)},

)
N

{8} = {(r.e)}{(A.e)},
(A8} — {(A,a8)}, {(A,ce)},
{(Ae)} = {(A,ce},{(\a8)},

{A 8} = {(\e},{(Aad), (0N},
{A @)} = {(\.ad), (0, M)}, {(Ae)},

{(A,ae)} = {(A,ad), (b, M)}, {(A,a8)},
{(A,a9)} — {(A,ag)}, {(A,ad), (W', \)},
{(A,ae)} — {(A,ad), (A,ae),(c, M)}, {(A. &)},
{(A,ag)} = {(A, @)}, {(A\.ad),(A.ae), (¢, )},

{(A.ce)} = {(A,ad), (b, M)}, {(A,ce)},
{A,ce)} = {(\.ce}, {(A.ad),(b',A)},

{(A,ce)} — {(A,bd),(A,ce), (@, M)}, {(A, )},
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{(A,ce)} — {(A,€)},{(A,bd), (A, ce), (&, M)},

{(\,bd), (A, ce),(d,N\)} — a,
{(\,ad), (b,\)} — b,
{(\,ae),(c,\)} —c,

{(\d)}—d,
{(\€)}—e
{(\ 1)} = o,
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