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Abstract

To handle problems created by large data sets, we propos¢hadnhat uses a decision tree to
decompose a given data space and train SVMs on the deconmegsaas. Although there are other

means of decomposing a data space, we show that the decesdrats several merits for large-scale
SVM training. First, it can classify some data points by igameans, thereby reducing the cost
of SVM training for the remaining data points. Second, itfficent in determining the parameter

values that maximize the validation accuracy, which helpsitain good test accuracy. Third, the
tree decomposition method can derive a generalizatiom bawnd for the classifier. For data sets
whose size can be handled by current non-linear, or kermstdy SVM training techniques, the

proposed method can speed up the training by a factor of &maolgs and still achieve comparable
test accuracy.

Keywords: binary tree, generalization errdsound, margin-based theory, pattern classification,
tree decomposition, support vector machine, VC theory

1. Introduction

Support vector machines (SVMs) have proven very effective fivirsp pattern classification prob-
lems (Cortes and Vapnik, 1995; Vapnik, 1995). Because of the grotsamgl to apply them to
various domains of interest, including bioinformatics, computer vision, data gharid knowledge
discovery, the size of training data sets continues to grow at a rapid ratee Bame time, there is
an ongoing effort to speed up the SVM training. One approach, calledutmerical techniquén
this paper, seeks efficient solutions to SVM optimization problems.

Well-known numerical methods for solving dual optimization problems includeesgtial min-
imal optimization (SMO) (Platt, 1998) and SV (Joachims, 1998). Both methods break a large
problem into a series of small problems in order to reduce the amount of meewuired for
computation. SMO, in particular, has proven superior to similar methods, suttiegrojected
conjugated gradient “chunking” algorithm (Burges, 1998) and Osualgorithm (Osuna et al.,
1997). For solving dual problems, there are now many new and fasteodsetincluding LASVM
(Bordes et al., 2005), maximum-gain working set selection (Glasmacheiglen 2006), SVMe'f
(Joachims, 2006), LaRank (Bordes et al., 2007), Pegasos (SBhleartz et al., 2007), bundle
methods (Smola et al., 2007), and LIBLINEAR (Fan et al., 2008).
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A new direction that has attracted increasing interest in recent yea shesstochastic gradient
descent (SGD) technique to solve large-scale SVM problems. The tadeaof SGD is that it
implements an online learning process that converges to an optimal solutioa @xamination of
the training samples. The above-mentioned LASVM, LaRank and Peglagoihrans apply SGD
to dual optimization problems. There are also algorithms that apply SGD to prptiadipation
problems, for example, NORMA (Kivinen et al., 2004) and SGD-QN (Bsret al., 2009).

In addition to the methods for solving dual or primal problems, a number afoappes for
solving large SVMs have been proposed, including core vector macfiisasg et al., 2005) and
OCAS (Franc and Sonnenburg, 2008). Readers may refer to a psgier by Menon (2009) for
more details of the numerical methods.

Another type of approach, callethta-reductionn this paper, reduces a large training data set
to one or several small data sets. If only one reduced set is obtainemlitlee methodingle-set
reduction(SSR); and if multiple reduced sets are obtained, we call the metitigple-set reduction
(MSR). In the latter case, SVM training is conducted on each of the reliets and all the SVMs
are combined into a final classifier.

We review MSR methods first. Perhaps the simplest MSR method is bagginméBrel 996).

It employs a number of down-sampled data sets to train SVMs, which jointlyifl@stest object
based on majority vote. The boosting method (Schapire, 1990; Schapir@iager, 2000) trains
SVMs in a sequential manner, and the training of a particular SVM is depéwotethe training
and performance of previously trained SVMs. The divide-and-condtimgegy (Rida et al., 1999)
decomposes an input space into possibly overlapping regions, asaigmsegion a local predic-
tor, and combines the local predictors to derive a global solution to thécpicedproblem. The
Bayesian committee machine (Tresp, 2000) partitions a large data set into som&légrand the
SVMs trained on the reduced sets jointly define the posteriori probabilitibealasses into which
test objects are categorized. The method proposed by Collobert ed@2)(@ivides a set of input
samples into smaller subsets, assigns each subset a local expert,ragd foop to re-assign sam-
ples to local experts according to how well the experts perform. TheadassVM method (Graf
et al., 2004) also splits a large data set into smaller sets and extracts siggpors (SVs) from each
of them. The resulting SVs are combined and filtered in a cascade of SVK&sv passes through
the cascade ensures that the optimal solution is found.

Onthe SSR side of the data-reduction approach, the squashing methloy @al., 2000) uses
a likelihood-based squashing technique to obtain a reduced data seteartdaihs linear SVMs
on that set. The sparse greedy approximation method (Smola afitk§eh 2000) constructs a
compressed representation of the design matrix involved in the QP probleite; inflormation
vector machines (Lawrence et al., 2003) use a sparse Gaussiastocelect training samples
using criteria based on information-theoretic principles. Clustering-b8%&d (Yu et al., 2003)
applies a hierarchical clustering algorithm to obtain a reduced data seh ishised to train SVMs.
The concept boundary detection (CBD) method (Panda et al., 20Q@gneenearest-neighbor lists
as training samples, and uses a special down-sampling technique to thérdata points that lie
close to class boundaries. This method can find a single set of neaddrgyroints for all class
pairs. In contrast, many other methods that use SVMs to analyze trainindesahgve to find
different reduced sets for different class pairs, since SVMs canwaork on one class pair at a
time. For more details of data-reduction methods proposed up to 2001rsend refer to Tresp
(2001).
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Finally, we remark that the numerical and data reduction approachesadnstecompeting,
can actually complement each other’s functions. The data reductionasgbpnoust train SVMs on
reduced data sets, so having an efficient numerical method to perforiasthevould certainly be
useful. The numerical approach, on the other hand, could benefsity an efficient data reduction
method to reduce its computational burden.

In this paper, we propose a method that decomposes a large data set umber rof smaller
ones and trains SVMs on each of them. This approach can reduce theditialg time because
the time complexity of training an SVM is in the order of, wheren is the number of training
samples (Platt, 1998; Joachims, 1998) . If each smaller problem deal®\s#dimples, then the
complexity of solving all the problems is in the order(of/ o) x 6% = na, which is much smaller
thann? if nis significantly higher thaw. Decomposing a large problem into smaller problems has
the added benefit of reducing the number of SVs in each of the resulfdid.SSince a test sample
is classified by only one of these SVMs, the decomposition strategy retheéise required for
the testing process in which the number of SVs dominates the complexity of theutatiop. One
additional benefit of the decomposition approach is the ease of using mdtpacallel/distributed
computing for further speedup, since the SVM problems associated witlettwengbosed regions
can be parallelized idealistically.

The proposed method can be categorized as an MSR method. Howevierd flom other
MSR methods in that it usesdecision treeto obtain multiple reduced data sets, whereas other
methods use non-supervised clustering (Rida et al., 1999), randonlirsgufgreiman, 1996), or
random partition (Tresp, 2000; Collobert et al., 2002; Graf et al., RO0# thus call our method a
decision-tree support vector machifi@TSVM) and the resultant classifier a DTSVM classifier.

A decision tree decomposes a data space recursively into smaller relgid@sns of the ways
the regions are formed, a decision tree can be classified into three tyepasallel, oblique and
\Voronoi types. In the axis-parallel type, the regions are boundedypgrplanes represented as
Xi = ¢, wherex; is a feature and is a real number (Breiman et al., 1984; Quinlan, 1986). In the
oblique type, the regions are bounded by hyperplanes represenyeuias= c, wherea; are real
numbers (Murthy et al., 1994; Bennett and Blue, 1998; Wu et al., 1988n8&tt et al., 2000). In the
Voronoi type, the regions are formed as Voronoi cells by way of varustering techniques (for
a survey, see Dattatreya and Kanal, 1985).

In this paper, we take an axis-parallel decision tree as our decompositieme because of its
speed in both the training and testing phases. The other two types of decésisitan certainly be
used as decomposition schemes, but their computational cost is significghity than that of the
axis-parallel type. Without conducting a tradeoff study, it is rather dilfito determine whether
the additional cost would yield a noteworthy benefit; therefore, we havildd not to adopt them
at this stage.

A number of studies have attempted to combine decision trees and SVMs. Stmeradthods
were designed to improve the classification accuracy (e.g., Bennett aed1B@8; Wu et al., 1999;
Bennett et al., 2000; Ramaswamy, 2006; Tibshirani and Hastie, 200#g others were designed
to speed up the SVM testing process (e.g., Platt et al., 2000; Sahbi anchG200&; Sun et al.,
2007). To the best of our knowledge, using a decision tree to speeceumthing of multiclass
SVMs has not been proposed previously.

Using a decision tree as a decomposition scheme can yield following benefitsdehling with
large-scale SVM problems. First, the decision tree may decompose the datasspthat certain
decomposed regions become homogeneous; that is, they contain santpiesarhe labels. Then,
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in the testing phase, when a data point flows to a homogeneous region, wg siagsify it in
terms of the common label of that region. This alleviates the burden of SVMnggiwhich is
only conducted in heterogeneous regions. In fact, our experimergaleevthat, for certain data
sets, more than 90% of the training samples reside in homogeneous regimshéhdecision tree
method saves an enormous amount of time when training SVMs. Random paditidime other
hand, cannot produce such an effect, since random pooling ofad setples can hardly create a
homogeneous data set due to the independent sampling operation.

Another benefit of using the decision tree is the convenience it provitlea searching for all
the relevant parameter values to maximize the solution’s validation accurhh i turn helps
maintain good test accuracy rates. The goal of the DTSVM method is to attaipacable vali-
dation accuracy while consuming less time than training SVMs on full data setachieve our
objective, we found that it is important to control the sizef the tree-decomposed regions as well
as the SVM-parameter values. For some data setsuld be set at 1,500; but for other data sets,
it had to be set at a larger value. Thus, in the DTSVM metlmod an additional parameter to
the usual SVM-parameters. Other MSR methods do not attempt to searttie foptimal size of
decomposed regions. Such searches are particularly easy undér$hvd/Dmethod because a de-
cision tree is constructed in a recursive manner; hence, obtaining aitrea larger size ob does
not require the reconstruction of a decision tree corresponding toitleadfso.

Using a decision tree also reduces the cost of searching for the optilmed vd SVM-parameters.
Searching for these values is important, but it takes a tremendous amdime péspecially when
training non-linear SVMs. To the best of our knowledge, no data-temumethod has attempted
to reduce the cost of this operation. Our strategy involves training SVMsallittombinations
of SVM-parameter values, buainly for decomposed regions with an initiatlevel. The optimal
values of the SVM-parameters obtained at this level are not necessargithe as those obtained
at higher levels. However, we observe that the best values for arHayed are usually among the
top-ranked values for the initial level. Therefore, when we want to tréfiM&for a highero-level,
we only train them with the top-ranked values obtained for the initial level. i@iven?-complexity
of SVM training, restricting the full search of SVM-parameter values teoregwith the initialo-
level certainly reduces the SVM training time. In fact, our experiments stidlsg such savings
were possible even when the optinmalevel was higher than that of the full size data set.

Although the decision tree method may not be the only way to achieve the aboeétb for
large-scale SVM problems, its effect can be understood in theory aedexaization error bound
can be derived for the DTSVM classifier. The bound is the sum of two tetfmesfirst term domi-
nates in magnitude and is associated with SVM training; and the second tersnasadsd with tree
training. Our experimental results show that the numerical value of the dotrtgran is as small
as, or of the same order of magnitude as, its counterpart in the generalieatio bound for SVM
training conducted on the whole data set. This finding constitutes indire@rameacf the efficacy
of tree decomposition for large-scale SVM problems.

Finally, we remark that it is possible to have multiple decompositions of the samesukta
with multiple trees. These trees can be obtained by using a randomized, tretheéhe optimal,
split point at each tree node (Dietterich, 2000). By so doing, we train $¥Mall the decomposed
regions and classify the test data based on a majority vote strategy. Wadtaedy studied the
effect of such multiple decompositions. In terms of test accuracy, multiplendigasitions are
not as effective as searching for the optinsalevel of decomposed regions in a single decision
tree. In fact, under the latter search scheme, introducing multiple decompsesites not lead to
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any significant improvement. Therefore, to avoid unnecessary compfisatie only consider the
decomposition of a data space by a single tree in this paper.

In the experimental study, we divided each data set into training, validatidriesst compo-
nents. We then used the training component to build DTSVM classifiers, lidatan component
to determine the optimal parameters, and the test component to measure tleeuestya We
adopted two types of SVM training: one-against-one (1A1) (Knerr ett800) and one-against-
others (1AO) (Bottou et al., 1994) . Furthermore, we built non-linear S\éWlthe data sets. When
evaluating the DTSVM method, we found it could train DTSVM classifiers thhieved compara-
ble test accuracy rates to those of SVM classifiers. For seven mediurdag&sets, in which the
largest number of sample was 494K and the largest number of featul@2Ka®TSVM achieved
speedup factors between 4 and 3,691 for 1A1 training, and betweardZ®&75 for 1AO training.
Moreover, DTSVM achieved much higher speedup factors than delateareduction methods and
numerical methods. To demonstrate that DTSVM can train classifiers effjcienlarger data sets,
we applied it to four large-size data sets in which the largest number of ssampte4.9M and the
largest number of features was 16.6M. For all the data sets, DTSVM couiglete 1A1 training
and 1AO training within 18.25 hours. Note that the training time included the timéresbjio build
a decision tree, the time to train SVMs on all the leaves, and the time to searcle foptilmal
parameters.

The remainder of this paper is organized as follows. In Section 2, weaibdesbe DTSVM
method. Section 3 details the experimental results. In Section 4, we provtetical results for
the DTSVM method. Section 5 contains some concluding remarks.

2. The DTSVM Method

In this section, we describe the decision tree that we use as the decompsditiane, and discuss
the training process for the DTSVM method. An implementation of the DTSVM mathehilable
at

http://ocrwksll.iis.sinica.edu.tw dar/Downl oad/ WebPages/ DTSVM ht m

2.1 The Decision Tree

For the decomposition scheme, we adopt CART (Breiman et al., 1984) oagyliid.5 scheme
(Quinlan, 1986) that allows two child nodes to grow from each node thattia leaf. Using a C4.5
scheme that allows multiple child nodes is feasible; however, we do not ewrisid this paper,
since a binary C4.5 performs the job rather well for us.

To grow a binary tree, we follow a recursive process, whereby gatting sample flowing to a
node is sent to its left-hand or right-hand child node. At a given ridecertain featurdg of the
training samples flowing t& is compared with a certain valwg so that all samples witlfie < vg
are sent to the left-hand child node, and the remaining samples are sentiggntHeand child node.
The values offg andvg are determined as follows. First, teelit point v of each featured is
calculated by

vi = argmaxR(f,v),
\
where
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RES EN
E E

Sis the set of all samples flowing & St consists of the elements 8fwith f < v; St>y = S\St<y;
|X| is the size of any data s&t andl (X) is the impurity ofX. The impurity function used in our
experiments is the entropy measure, defined as

IR(f.v) = 1(S) | (Stov) — 1(St=v),

1(S)=-3 p(S)logp(S),
y
wherep(S)) is the proportion of S’s samples whose labg}.iFhen,
fe =argmaxR(f,vs),
f

andvg is taken as the split point dt.

We stop splitting a nod& when one of the following conditions is satisfied: (i) the number of
samples that flow t& is smaller than &eiling sizeo; or (i) whenIR(f,v) =0 for all f andv at
E. The value ofo in the first condition is determined in a data-driven fashion, which we dmscr
in Section 2.2. The second condition occurs mainly in the following casegll(dle samples that
flow to E are homogeneous; or (b) a subset of them is homogeneous and theingnsaimples,
although carrying different labels, are identical to some members of thedg@rmous subset. There
are other possible cases for the second condition, but their occerieaxtremely rare. If we want
to splitE in these cases, we can choose the following split point to minimize the difietsteeen
|St<v| @and|Ss>y|, that is,

vi = argmin||Stoy| — [St=v|| -
\

After growing a tree, we train an SVM on each of its leaves, using samplefidghato each
leaf as training data (Figure 1). The values of the SVM parameters aréetisonined in a data-
driven fashion. A tree and all SVMs associated with its leaves constituteSVDITclassifier, as
shown in Figure 1. In the training phase, all the SVMs in a DTSVM classifierti@ined with
the same parameter values. We explain how the optimal values are obtainedidm 8. In the
validation/testing process, we first input a given validation/test olyjéctthe tree. Ifx reaches a
leaf that contains homogeneous samples, we classifythe label of those samples; otherwise, we
classify it with the SVM associated with that leaf.

2.2 The DTSVM Training Process

Given a training and validation component, we build a DTSVM classifier on #igiig component
and determine its optimal parameter values with the help of the validation compdinenparam-
eters associated with a DTSVM classifier areoti}he ceiling size of the decision tree; and (ii) the
SVM parameters. Their optimal values are determined in the following manner.

We begin by training a binary tree with an initial ceiling siag and then train SVMs on the
leaves with SVM-parametefisc ©, where® is the set of all possible SVM-parameter values whose
effects we want to evaluate. Note that we expi@ss boldface to indicate that it may consist of
more than one parameter. Wb, 0) be the validation accuracy of the resultant DTSVM classifier.
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Figure 1: The architecture of a DTSVM classifier: a tree and all its ledves(L6) are produced
and SVMs are trained on the leaves.

Next, we want to construct DTSVM classifiers with larger ceiling sizeswaionly train their
associated SVMs witk top-ranked. To do this, we ranlé in descending order of ag, 8). Let Oy

be the set that consists ktop-ranked.
More specifically, we implement the following sub-process, denot&ua®roces®), for each

0 € Bx.

1. Sett =0 and get the binary tree with the ceiling sizg

2. Increasd by 1 and set; = 4 x 0;_1. Modify the tree with ceiling sizer;_1 to obtain a tree
with ceiling sizeo;. This is done by moving from the root towards the leaves and retaining
each node whose parent’s size is greater thaiThen, train SVMs on the leaves with SVM-
parameter§. Letv(oy, 0) be the validation accuracy of the resultant DTSVM classifier.

3. Ifv(ot,8) —v(oi—1,0) > 0.5% andoy is less than the size of the training component, proceed
to step 2.

4. Leto(8) = or_1 if v(ot,0) —Vv(01-1,0) < 0.5% oro(B) = oy if oy is greater than or equal to
the size of the training component.

When we have completegubProceg®) for all 6 € B, we define
Bopt = argmaw(a(6),0) andagp: = 0(Bop).
006k
We then output the DTSVM classifier with the SVM-paramé@igs and the ceiling sizep:.
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Figure 2: The test accuracy rates obtained by DTSVM on the sevenatataisernoy = 1,500 and
k=1,3,5, 7and9.

Note that, in eaclsubProces®), we seto; as quadruple the size (rather than double the size)
of o;_1 for two reasons. First, quadrupling the size produces more signifidéeretices between
v(ot,0) andv(o;_1,0), especially when is small. This means that if ubProcesterminates at a
smallt, there is less risk of a low validation accuracy rate. Second, quadruplgjze enables the
training process to progress at a faster pace. This means thatbfRrocesterminates at a large
it moves more rapidly towards that end of the process.

The initial ceiling sizeog (=1,500) and the numbér(=5) of the top-ranked parameters are set
heuristically. To observe how these settings impact the test accuracystviixfiog at 1,500 and
vary k from 1 to 9 at a step size of 2; we then plot the test accuracy rates obtajr@dSVM on
the seven data sets whose details are shown in Table 1. Figure 2 shoasytivatue ofk is good
for all the data sets except “Letter”, whilke= 5 or 7 is particularly good for “Letter”. Moreover,
setting the right value df improves the test accuracy of “Letter” significantly. Next, weliat 5
and varyap from 500 to 3,000 with a step size of 500. As shown in Figure 3, varying ahe=\of
0o doesnot affect the test accuracy of any data set significantly.

3. Experimental Results

In this section, we describe the data sets used in the experiments and thestlegttece compared.
We then present and discuss the experimental results.
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Figure 3: The test accuracy rates obtained by DTSVM on the sevenetatatserk = 5, andog =
500, 1,000, 1,500, 2,000, 2,500 and 3,000.

3.1 The Data Sets

In the experiments, we divided the data sets into two groups. The firgb gvas used to evaluate
the efficiency of DTSVM and some alternative methods in terms of speedi8y Nptraining. The
second group was used to verify that the DTSVM method could handle miggr data sets, for
which most of the alternative methods required an excessive amount of tcamfaete the training
process. The first group comprised seven medium-size data setsgrénoginlOK to 494K in size,
as shown in Table 1. Most of the data sets have less than 50 featurédse bNews20” has 62,060
features. The second group comprised four large-size data seig)ygdrom 240K to 4,898K in
size, as shown in the Table 2. The “Webspam” data set is not very largems té the number of
samples (240K), but the number of features is more than 16M; thus, ve&eoiit a large-size data
set. All the data sets were obtained from UPI repository (Newman et aB),1®@8h the following
two exceptions: “PPI”, which was used in a protein-protein interactionysfliseng et al., 2010),
and “Webspam”, which was obtained from

http://ww. cc. gat ech. edu/ proj ect s/ doi / WebbSpanCor pus. ht m
Note that the actual “Poker” data set in the repository contains 1 million sanmalegver, we only
used its training component in our experiments.

We randomly divided each data set into six parts of approximately equalaideused four
parts as the training component, one part as the validation component, aathtiring part as the
test component. The DTSVM classifiers were trained on the training andatialidcomponents,
as described in Section 2.2. On completion of the training process, we afiiedtput DTSVM
classifier to the corresponding test data set to obtain the test accuiacliahe data sets, divided
into training, validation and test components, are available on the followingiteeb
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Data set No. of Labels No. of Samples No. of Features
Pen Hand Written (PHW) 10 10,992 16
Letter 26 20,000 16
Shuttle 7 58,000 9
Poker 10 25,010 10
Census Income (CI) 2 45,222 14
News20 20 19,927 62,060
KDD CUP 10% (KDD-10%) 5 494,021 41

Table 1: The medium-size data sets used in our experiments.

Dataset No. of Labels No. of Samples No. of Features

Forest 7 581,012 54
PPI 2 1,249,814 14
KDD-full 5 4,898,431 41
Webspam 2 240,000 16,609,143

Table 2: The large-size data sets used in our experiments.

http://ocrwksll.iis. sinica.edu.tw dar/ Downl oad/ Dat aSet s/ DTSVM dat asets. ht m

In each data set, we normalized all the feature values to a real numbeebdvaad 1. We did
this by transforming each valweof featuref into (Vv— fmin)/( fmax— fmin), wherefmaxand fmin are
the maximum and minimum values bfrespectively.

We only studied non-linear SVMs in our experiments. Moreover, we usedRBF kernel
function to measure the similarity between vectors. As a result, we had two SWaieters: the
penalty factoiC, whose values were taken frotn= {107 : a= —1,0,...,5}; and they parameter
in the RBF function, whose values were taken fridha- {1dD :b=—-4,-3,...,4}. Thus, the set of
all SVM parameter values wa = ® x W, which comprised 63 pairs of values f@2, y).

SVM training is implemented under the 1A1 and 1A0 approaches. When thafigrbach is
used, there are(n— 1)/2 classifiers, whera is the number of labels. Each classifier assigns one
of two possible labels to a given validation/test sample. We use all the clestifidassify a given
validation/test sample, based on a majority vote. Note that a more efficient technique (Platt et al.,
2000) that only requires classifiers can be used in the validation/testing procedure. However, we
adopt Knerr et al's (1990) technique, which requings — 1) /2 classifiers, because we are only
interested in the relative, rather than the absolute, performance of thedsatbmpared in our
experiments. When the 1A0 approach is used, theraatecision functions, each of which is
associated with a label. We assigithe label associated with the decision function that yields the
highest functional value.

3.2 Methods Compared

The following methods are compared in our experiments.
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CART.CART (Breiman et al., 1984) is similar to the decomposition scheme used in DTSVM,
but it differs in terms of the stop and classification criteria. In the trainings@h&ART stops
splitting a node whenR(f,v) = 0 for all featuresf and their valuew. In the testing phase, it
classifies a test sampteby the label shared by the majority of samples residing at the leaf to which
x flows. Although CART is not designed for speeding up SVMs, it serege hs a benchmark for
DTSVM. If CART performs as well as DTSVM in every respect, then there need for DTSVM,
since CART runs much faster than DTSVM in both the training and testing phases

RDSVMRDSVM (randomized SVM) is an alternative to DTSVM that differs from D/Ibin
the way it decomposes a data space. In the training phase, wherodasgieen, DTSVM randomly
assigns a training sample to onedb$ubsets, wherd is the smallest integer that is greater than or
equal ton/o andn is the number of training samples. RDSVM uses the same procedure as DTSVM
to search for the optimal parameters. In the testing phase, RDSVM randesifyna a test sample
to a subset and classifies it according to the SVM associated with that.subse

Bagging. When implementing bagging (Breiman, 1996), we created a number of SViMs fo
eachB € ©. Each SVM was trained on 1,500 training samples chosen at random. ¢tod,ghe
training was conducted sequentially. We stopped at therfish that the validation accuracy rate
of mSVMs did not exceed that ofi— 1 SVMs by more than 0.5%.

CBD. The training process of CBD (Panda et al., 2006) comprises two ste@sidfia reduced
set, and training an SVM on that set for edck ©. The first part involves finding thk-nearest
neighbors of each training sample and deriving the reduced data sedaiamasampling technique.
Following Panda et al. (2006), we detit 100. When searching for the 100 nearest neighbors of
each training sampbe, we keep the current list of 100 nearest neighbons. dfor another training
samplez, letd(x,z) be the distance betwe&randz. We need to compare this distance wdilx, w),
wherew is on the current list and has the largest distance witSince the squared distance is the
sum of the squared feature differences, we can speed up the coonplgyisomputing the partial
sum ofd?(x,z). When this partial sum exceed$(x,w), we stop the comparison and exclude
from the current list ok.

LIBSVM.LIBSVM (Fan et al., 2005) is now the most widely used software for trairand
testing SVMs. We take it as the baseline in our experiments; thus, the sp&edopis 1 by
assumption. If a compared method is faster in training than LIBSVM, it hasedsp factor above
1.

LASVM.LASVM (Bordes et al., 2005) is a method that solves a dual optimization probie
way of a stochastic gradient descent method that converges to an ogilotadrsin one examina-
tion of the training samples.

LIBLINEAR.LIBLINEAR (Fan et al., 2008) is a fast version of training and testiimgar
SVMs. lts training speed is comparable to, or even faster than, that esBeg¢Shalev-Shwartz
et al., 2007) and SVRF (Joachims, 2006). Since LIBLINEAR isot a method for speeding up
non-linear SVMs, we only include it in our experiments for large-size detts for which bagging,
CBD, LIBSVM and LASVM take too long to complete the training process. Wiertrain linear
SVMs, the values of the penalty factGrare taken fron® = {10 : a= —1,0,...,5}, which com-
prises 7 real numbers. Furthermore, we require the discriminant furadtibe classifier to include
a bias term.

Among the above methods, DTSVM, RTSVM, bagging and CBD are datatiedunethods,
while LIBSVM, LASVM and LIBLIEAR are numerical methods.
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3.3 Results on Medium-Size Data Sets

The results of applying seven methods, CART, DTSVM, RDSVM, baggti®p), LIBSVM and
LASVM, to the seven medium-size data sets are shown in Figures 4-8 foitraing, and in
Figures 9-13 for 1AO training. In all SVM training sessions, exceptlfaGVM, we used the
LIBSVM software (Fan et al., 2005). We adopted all default options efdbftware, except the
parameter values, which we specified in Section 3.1.

Figure 4 and Figure 9 show the training times of the seven methods. The tramangf each
method comprises the time required to obtain reduced data sets if it is a dathoeduethod, the
time to train all SVMs and the time to search for optimal parameters; however, thedgqueed
to input or output data isot included. The computation for all the medium-size data sets was
performed on an Intel Xeon CPU 3.2 GHz with a 2GB RAM, while that for alll#rge-size data
sets was performed on a Quad-Core Intel Xeon X5365 3.0GHz CPUZBHE RAM.

Figure 5 and Figure 10 show tlspeedup factorsf all the methods except LIBSVM, where the
speedup factor of a methat is computed as LIBSVM's training time divided By/’s training
time.

Figure 6 and Figure 11 show the test accuracy rates of the four cothpeethods. Note that
the DTSVM test accuracy is that of the DTSVM classifier with the ceiling sigg and SVM-
parameterd,p;. When classifying a test sample with SVMs, the most time-consuming part is
computing a decision function, whose complexity can be measured in termgohloy SVs are
encountered in the classification. Therefore, we use tinenber of encountered support vectors
(NESV) as a measure of the time-complexity of the test process. NESV iedefmthe number
of SVs contained in the decision function used to classify a test sample. WBaEVM or an
RDSVM classifier is used, the NESV is associated with the leaf that the testestions to. Thus,
in the two cases, NESV is treveragenumber of SVs encountered by a test sample.

Figure 7 and Figure 12 list the NESVs of the four methods; while Figure §~ande 13 show
theNESV ratioof all the methods except LIBSVM and CART, where the NESV ratio of a ntktho
M is computed as LIBSVM’s NESV divided by/’s NESV.

We now summarize the results shown in Figures 4 to 13.

1. There is no doubt that CART was extremely fast in training, but its testracy was poor,
except on the “Shuttle” and “KDD-10%" data sets, where its accuracyhmadtthe best of all
the other methods.

2. In terms of training time, DTSVM outperformed all the other methods, exC&RT; and
in terms of test accuracy and NESV, DSTVM outperformed or perforneadparably to all
the other methods. It also achieved very large speedup factors ard idESs on “Shuttle”,
“Poker”, “CI” and “KDD-10%".

3. RDSVM, being an alternative approach to DTSVM, achieved comfmtabt accuracy to
DTSVM. However, it performed worse in terms of training time on “Shuttle"oKBr” and
“KDD-10%". It also performed worse in terms of NESV on “Shuttle”, “Poke'CI” and
“KDD-10%".

4. CBD achieved speedup factors above 1 and NESV ratios above lgimlata sets; however,
its scores were overall not as high as those of DTSVM. In addition CBQelddgehind
DTSVM in terms of test accuracy on “Letter” and “News20".
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10,000,000.0
Training Time (1A1, Medium)
1,000,000.0 -
100,000.0
10,000.0
1,0000
1000 A
100 o
1.0 +
01
PHW Letter Shuttle Poker Cl Mews20 | KDD-10%
W CART 04 4.3 0.3 12.4 131 306.0 10.3
B DTSVM 275 768 23 3,533 5,209 3,053 371
B RDSVM 278 841 542 9,234 3,174 5,223 4,014
W CBD 697 2,558 303 106,819 215,219 39,590 57,789
W Bagging 2,204 7,575 2,100 7,979 6,100 35,176 17,123
LASVM 924 4,001 5670 | 546,417 | 492,764 | 23,339 |1,261,639
LIBSWVM 1,192 4,157 5,006 1,307,667 315,130 27,071 1,369,600

Figure 4: Training times of the seven compared methods, expressetamnds Training type =
1A1. CART, DTSVM and RDSVM outperformed the other methods.

1,000,000.0 -
Speedup Factor (1A1, Medium)
100,000.0
10,000.0
1,000.0 -
1000 -+
100 A
1.0 -
0.1
PHW Letter Shuttle Poker cl News20 kDD-
10%
B CART 3,320.3 o744 19,1579 105,143, |24 ,066.7 8B5S 133,009,
W DTSVM 4.3 54 2216 3701 60.5 B9 3,691.6
H RDSWVM 4.3 4.9 9.4 141.6 993 5.2 341.2
= CBD 1.7 1.6 16.8 12.2 15 a7 237
© Bagging s a5 2.4 1639 51.7 .8 200
LASWM 1.3 1.0 o9 z.4 o6 1.2 1.1

Figure 5: Speedup factors of all the methods except LIBSVM.
DTSVM and RDSVM outperformed the other methods.
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11000%

Test Accuracy (1A1, Medium)

10000%

90.00%

£0.00%

70.00%

60.00%

50.00%

40.00%
PHW Letter Shuttle Poker cl News20 KDD-10%
B CART 9551% B7.18% 99.95% 49.72% B097% 46.50% 99.95%
W OTSVM 99.42% 97.60% 99.93% 57.56% B4.81% B83.22% 99.96%
W ROSVM 99.10% 07.54% 99.61% 57.18% B348% B83.10% 99.43%
L j=:) 99.63% 05.25% 99.85% 56.75% B4.08% 75.23% 9991%
W Bagging 95.52% 93.09% 99.66% 56.29% B83.75% 76.55% 99.68%
W LASVM 090.63% 07.54% 80.91% 56.70% B4.13% B83.10% 00.94%
LIBSYM 99.63% 07.54% 99.92% 56.75% B84.25% B83.10% 99.85%

Figure 6: Test accuracy rates of all the methods. Training type = 1ARTO#erformed poorly on
several data sets; while CBD and Bagging lagged behind DTSVM on soaseis.

1,000,000 "
SV (1A1, Medium)
100,000
10,000 A
1,000 -
100 A
10 -
1 -
a
PHW Letter Shuttle Poker cl News20 | KDD-10%
M DTSV 1,140 183,450 05 5,718 300 207,302 4
M RD5VIM 4,040 183,450 202 133,578 2,070 210,558 169
m CBD 7,785 109,376 1,098 109,182 9,560 138,078 2,783
M Bagging | 38,376 663,315 2,465 93,425 5,381 534,963 1,873
LASVM 2,220 81,037 808 35,613 10,280 121,837 1,374
LIBSVM 8,073 183,450 1,134 140,950 10,451 210,560 2,287

Figure 7: The NESVs of all the methods except CART. Training type = 1RTSVM outper-
formed all the other methods.
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10,000.0 " .
NESV Ratio (1A1, Medium)
1,000.0
100.0
100
1.0 4
01
PHW Letter Shuttle Poker cl Mews20 | KDD-10%
B DT5VM 7.1 1.0 2,268.0 4.7 348 1.0 5B86.4
W RDSVM 2.0 1.0 56 1.1 5.0 1.0 135
N CBD 1.0 1.7 1.0 1.3 11 15 08
= Bagging 0.z 0.3 0.3 1.5 1.8 04 1.2
LASVM 36 2.3 1.4 4.0 1.0 1.7 1.7

Figure 8: The NESV ratios of all the methods except CART and LISBSMinimg type = 1A1.
DTSVM outperformed all the other methods.

10,000,000.0 ) . .
Training Time (1A0, Medium)
1,000,000.0
100,000.0
10,0000 -
1,0000 1
1000 -
10.0 A
10 4
01
PHW Letter Shuttle Poker Cl MNews20 KDD-10%
B CART 04 43 03 124 131 306.0 10.3
M DTSVM 672 3,281 36 8,068 5191 13,373 435
HRDSVM 1,385 6,073 1,168 17,645 3463 39,166 12,333
HCBD 5,893 87,179 700 623,222 215,219 276,078 57,706
W Bagging| 12,271 105,121 5,359 36,764 6,100 598,753 46,879
LASVIM 4,699 9p,363 23,639 1,146,038 | 492,764 297,887 | 2,713,331
LIBSVIM 19,988 151,476 36,680 2,923,776 | 315,130 779,852 | 2,512,134

Figure 9: Training times of all the methods, expressedeoonds Training type = 1A0. CART,
DTSVM and RDSVM outperformed the other methods.
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1,000,000.0 -
Speedup Factor (1A0, Medium)
100,000.0
10,0000 <
1,0000 -
1000 o
100 o
1.0 o
01
PHW Letter Shuttle Poker Cl MNews20 | KDD-10%
B CART 55,6769 | 35507.7 |137,928.6|235,086.9| 24,066.7 | 2,5485 |243,967.6
B DTSVM 287 46.2 10151 3624 0.7 58.3 57750
W RDSVM 144 249 314 165.7 Q1.0 189 2037
W CBD 34 1.7 524 4.7 1.5 2.8 435
I Bagging 16 1.4 6.8 795 517 1.3 536
LASVIM 43 16 16 26 0.6 26 asg

Figure 10: Speedup factors of all the methods except LIBSVM. Traitypg = 1AO. CART,
DTSVM and RDSVM outperformed the other methods.

110.00%

Test Accuracy (1A0, Medium)

100.00% -

80.00% -
B80.00% o
70.00% A
60.00% A
50.00% A 1
40.00% <

PHW Letter Shuttle Poker cl News20 | KDD-10%

CART 05.51% 87.18% 90.95% 49.72% BO9T% 46.50% 99.85%
DTSVM | 99.52% 97.66% 99.89% 30.73% B84.81% B84.34% 99.96%
ROSVM | 99.10% 97.66% 959.58% 56.75% B4.13% B4.76% 99.35%

CBD 99.63% 06.20% 90.83% 55.69% B4.08% TTA4A3% 99.91%
Bagging| 99.47% 93.80% 89.67% 35.43% B83.75% 80.02% 99.68%
LASVM | 9958% 97.48% 99.83% 52.65% B4.13% B4.64% 99 89%

LIBSWVM | oo0g3% | 97.66% 99.91% 56.25% | B4.25% B4.76% | 99.96%

Figure 11: Test accuracy rates of all the methods. Training type = 1R Terformed poorly
on several data sets; while CBD and Bagging lagged behind DTSVM ondatasets.
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1,000,000.0
ESV (1A0, Medium)
100,000.0
10,0000 -
1,0000 1
1000 A
100 A
1.0 A
01
PHW Letter Shuttle Poker cl News20 KDD-10%
B DTSVM 2480 16,2000 04 2,665.0 3000 35,1140 18
B RDSVM 7240 16,2010 1820 34,0450 6,944.0 42,628.0 2240
B CED 1,164.0 14,6800 611.0 33,2379 95600 66,212.8 1,576.0
® Bagging| £,771.0 2403940 1,0700 29,912.0 5,381.0 325,637.2 756.0
T LASVM 1,026.0 13,9120 476.0 30,831.0 10,2800 37,4250 13,761.0
LIBSVM 1,210.0 16,2010 2660 39,0240 10,4510 42,6280 1,566.0

Figure 12: The NESVs of all the methods except CART. Training type =.1B0SVM outper-
formed all the other methods.

1,000.0 - -
NESV Ratjp (1A0, Medium)
100.0
10.0
1.0 4
0.1
0.0
PHW Letter Shuttle Poker cl News20 | KDD-10%
W DTS5V 49 1.0 665.0 146 348 1.1 E70.0
H RDSVM 1.7 1.0 1.5 1.1 1.5 1.0 7.0
HCBD 1.0 11 0.4 1.2 11 06 10
[ Bagging 0.2 01 0.2 1.3 18 01 21
LASVM 12 12 06 13 10 11 01

Figure 13: The NESV ratios of all the methods except CART and LIBSViMiring type = 1A0.
DTSVM outperformed all the other methods.
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PHW Letter Shuttle Poker Cl News20 KDD-10%
1A1 DTSVM 7,694 183,450 181 88,935 8,975 207,290 1,638
LIBSVM 8,073 183,450 1,134 140,990 10,451 210,560 2,287
1A0 DTSVM 1,775 16,200 195 42,775 8,975 39,122 1,580
LIBSVM 1,210 16,201 266 39,024 10,451 42,628 1,566

Table 3: The total number of SVs produced by DTSVM and LIBSVM on medgize data sets.
The two methods produced about the same numbers of SVs, even tho@WiMDhas
much smaller NESVs than LIBSVM.

5. Bagging achieved speedup factors below 1 and NESV ratios belovsévenal data sets. It
also lagged behind DTSVM in terms of test accuracy on “Letter” and “N@s

6. LASVM, being an alternative numerical method to LIBSVM, achieveadpe factors slightly
above 1 on most data sets, but its scores were much lower than those ¥MDTASVM
also achieved NESV ratios above 1 on most data sets, although they wemlbgenot as
high as those of DTSVM. An unexpected result occurred in the 1AO trgiom “KDD-
10%”", where LASVM obtained very high NESVs compared to LIBSVM,ulérg in a low
NESV ratio (0.1). We double checked the process to confirm that theeabsult was correct.

Finally, we provide some additional information about DTSVM. In Table 3 sivew thetotal
number of support vectofd NSV) produced by DTSVM and LIBSVM on all medium-size data
sets. TNSV expresses the space-complexity of a training processeaghESV expresses the
time-complexity of a test process. For DTSVM, the NESV is smaller than the TIN®\0Ost cases,
because a test sample usually encounters only some, rather than all, 3\ $BEVM, NESV is
always the same as TNSV. Note that DTSVM achieved much smaller NESVs 1oy aata sets,
but it produced about the same TNSV on all the data sets.

Table 4 shows the DTSVM testing times, as well as the LIBSVM and CART testing tiore
comparison. As expected from the NESV results, DTSVM's testing time igeshtiran that of
LIBSVM on all the data sets. We further divide DTSVM's testing time into the timenspn the
decision-tree component (DTC) and that spent on local SVMs (ISVMsTable 4, the times are
separated by a semi-colon. Clearly, the DTC testing time takes an extremely sopalttppn of
DTSVM's testing time. In fact, it is so small that it cannot be measured atatyray the timing
mechanism. CART’s testing time, on the other hand, is higher than that of thebBdalise CART-
trees usually grow to deeper levels than DTC-trees.

3.4 Results on Large-Size Data Sets

The results of applying four methods, CART, DTSVM, RDSVM and LIBHAR, to the four large-

size data sets are shown in Figures 14-16 for 1Al training, and in Figuré&8d for 1AO training.

Once again, we used the LIBSVM software for all SVM training sessiéDT&VM and RDSVM.
We summarize the results on large-size data sets as follows.

1. Even though DTSVM was not as fast as CART and LIBLINEAR in tragpiit achieved
consistently high test accuracy rates on all the four data sets. It cutped LIBLINEAR
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PHW Letter  Shuttle Poker Cl News20 KDD-10%

CART 0.063 0.125 0.360 0.157 0.204 0.093 2.187
DTSVM 0.047 3.844 0.000 0.406 0.219 38.141 0.063

1A1 0;0.047 0;3.844 0;0.000 0;0.406 0;0.219 0;38.141 0; 0.063
LIBSVM 0.265 4.078 0.187 7.406 8.453 39.062 7.344
DTSVM 0.062 7.344 0.000 1.125 0.219 126 0.063

1A0 0;0.062 0;7.344 0;0.000 0;1.125 0;0.219 0;126 0; 0.063
LIBSVM 0.328 7.328 0.250 17.313 8.453  138.000 19.875

Table 4: The testing time required by CART, DTSVM and LIBSVM on medium-d&ta sets. The
time required by DTSVM is lower than that required by LIBSVM. The DTC tastime
takes a very small proportion of DTSVM's testing time. CART's testing time is highe
than that of DTC.

10,000,000
1,000,000 <
100,000
10,000 -
1,000 A

100 -

10 A
1 -

Forest

PRI

KDD-full

Webspam

B CART

1,912

23,217

29,332

B LIBLINEAR

2,633

3,571

6,074

B DTSVM

16,927

65,696

63,015

RDSVM

388,416

373,948

1,175,616

Figure 14: Training times of the four methods, expresseskoonds Training type = 1A1. CART

and LIBLINEAR outperformed the other methods.

and RDSVM on “Forest” and “PPI1”, and surpassed CART on “PPlalsignificant margin.
Moreover, DTSVM achieved much lower NESVs than RDSVM on all the dets s

2. Recall that RDSVM achieved equally good test accuracy rates oneathédium-size data
sets. However, on the large-size data sets, it achieved much loweaegcates on “Forest”
and “PPI”, and it yielded much higher NESVs on all the data sets. Thétseshow that
RDSVM is nota good substitute for DTSVM in solving large-scale SVM problems.

3. The results also show that, despite their efficiency in training, CART dBUINEAR are
not good substitutes for DTSVM in solving large-scale problems. LIBLINEARIiaved the
best test accuracy rate on “Webspam”, presumably because a lineal fit®this data set
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105.00%
100.00% A
95.00%

90.00% A
85.00% A

80.00% A
75.00% A
70.00% A

63.00% A

Forest EDD-full Webspam
B CART 9331% 5999% S544%
M LIBLINEAR 7279% S087% 89953%
W DTSV 9461% 8999% 99.03%
RDSWVM 774e% 89972% 9945%

Figure 15: Test Accuracy of the four methods. Training type = 1A1. YWSutperformed, or
performed comparably to, the other methods. CART performed rather eveppared to

LIBLINEAR.
1,000,000.0
ESV(1A1, Large)
100,000.0
10,000.0
1,000.0
1000 A
100 4
1.0 -
Forest PPI KDD-full Webspam
B OTSVM 3500 6629 47 337
B RDSVM 259,768.5 1,498.4 911 3,878.4

Figure 16: The NESVs of DTSVM and RDSVM. Training type = 1A1. DTS\&dhieved much
lower NESVs than RDSVM.

rather well. However, to verify this assumption, we need to compare thectastay rates of
linear and non-linear models. DTSVM offers us an opportunity to make awcmparison.

We also show the total number of SVs produced by DTSVM in Table 5, whiléetang times
required by DTSVM and CART are shown in Table 6. DTSVM’s testing timeighir divided into
the amount of time required by the DTC and that required by ISVMs. Onde,ag#s clear that
DTC's testing time only takes a very small proportion of DTSVM’s testing time. TAResting
time is higher than that of DTC because CART-trees usually grow to deeds than DTC-trees.
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10,000,000

1,000,000 -
100,000
10,000 -
1,000 -

100
10 7

' Forest PPI KOD-full Webspam
B CART 1,912 23,217 320 28,332
B LIBLINEAR 5,160 3,571 23,218 6,074
B DTSVM 26,108 65,696 18,550 63,015
ROSVIM 1,468,540 373,848 41,450 1,175,616

Figure 17: Training times of the four methods, expressestoondsTraining type = 1A0. CART
and LIBLINEAR outperformed the other methods.

105.00%
100.00% A
8500%

2000% A
85300% A
B000% A
7500% +
7000% -

B5.00% o
Forest KDD-full Webspam
B CART 9331% 059.993% 05 .44%
B LIBLINEAR 71.50% 08.E1% 858.53%
N DTSVM 94.59% 859.99% 29.03%
ROSWVM B83.19% 89.72% 99.45%

Figure 18: Test Accuracy of the four methods. Training type = 1A0. DWSutperformed, or
performed as well as, the other methods.

3.5 Further Discussion

To gain insight into why DTSVM is so effective, we show in Table 7 the; derived by DTSVM
on medium-size data sets, along with the proportion of training samples that floowtogeneous
leaves. Note that a single table suffices to show all the results becauseaiig and 1AO training
employ the same decision trees and DTSVM yields the saypevalue for both approaches.

First, we observe that DTSVM required a low ceiling size of 1,500 on all Hia dets, except
“Letter” and “News20.” This explains why DTSVM generally achievedd®speedup factors and
NESV ratios. Furthermore, the proportion of training samples that flowednwbhgeneous leaves
under DTSVM was very high in “Shuttle” and “KDD-10%". Since no SVM ssier is involved
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1,000,000.0

ESV (1AOQ, Large)

100,000.0

10,000.0

1,000.0

100.0 A

100 +

1.0 A

Forest

PPI

KoD-full

Webspam

W DTSVM

289.0

662.9

104

33.7

m RD5VM

350,552.0

1,498.4

713

3,878.4

Figure 19: The NESVs of DTSVM and RDSVM. Training type = 1A0. DTS\Adhieved much
lower NESVs than RDSVM.

Forest PPl KDD-full Webspam
DTSVM 1A1 140,008 594,687 2,752 8,116
1AO0 114,958 594,687 2,781 8,116

Table 5: The total number of SVs produced by DTSVM on large-size @d$a s

Forest PPl KDD-full Webspam
CART 0.109 0.563 0.281 151.860
1A1 2.485 38.453 1.094 127.000
DTSVM 0.047;2.438 0.235;38.218 0.25;0.844 75;52.000
1A0 3.859 38.453 1.485 127.000

0.047;3.812 0.235;38.218 0.25;1.235 75;52.000

Table 6: The testing time required by CART and DTSVM on large-size data Bai€'’s testing
time only takes a very small proportion of DTSVM's testing time. CART'’s testing time is

higher than that of DTC.
PHW Letter Shuttle Poker Cl News20 KDD-10%
Oopt 1,500 24,000 1,500 1,500 1,500 24,000 1,500
Proportion 0% 0% 98.42% 0% 15.76% 0% 97.35%

Table 7: Theogt obtained by DTSVM on the medium-size data sets and the proportion of training
samples that flow to homogeneous leaves.
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PHW  Letter Shuttle Poker Cl News20 KDD-10%
1A1 DTSVM 1,500 24,000 1,500 1,500 1,500 24,000 1,500
RDSVM 1,500 24,000 1,500 24,000 6,000 24,000 1,500
1A0 DTSVM 1,500 24,000 1,500 1,500 1,500 24,000 1,500
RDSVM 1,500 24,000 1,500 24,000 24,000 24,000 1,500

Table 8: Theo, values derived by DTSVM and RDSVM on the medium-size data sets.

Data Set Training Mode 1,500 6,000 24,000

Letter 1A1 633 45 90
1A0 2,730 178 373
News20 1A1 1,631 665 757
1A0 7,056 2,952 3,365

Table 9: The DTSVM training times required for different ceiling sizes.

Data Set Training Mode 1,500 6,000 24,000

Letter 1A1 95.35% 96.61% 97.60%
1A0 95.71% 96.91% 97.66%
News20 1A1 67.02% 76.92% 83.22%
1A0 70.82% 79.06% 84.34%

Table 10: The DTSVM test accuracy rates that correspond to diffeeging sizes.

in any homogeneous leaves, DTSVM achieved very high speedupgactdMNESYV ratios on these
two data sets. The same fact also explains why DTSVM achieved such ISV $|Evhich even fell
below 1 on “Shuttle”. Note that this phenomenon occurs because decisengroup neighboring
samples into the same leaf. RDSVM, on the other hand, does not produsantieecffect because
the probability that all samples will carry the same label in the same randomlyngesed region
is extremely small.

The lack of homogeneous leaves is not the only reason for RDSVM'’s pexdormance in

training. Table 8 shows the,; values derived by DTSVM and RDSVM. The results explain why
RDSVM achieved much smaller speedup factors and NESV ratios on “@I*Roker”.

Next, we examine the DTSVM results for the “Letter” and “News20” data setshich the
optimal sizes Theo,p: exceeded the size of the training component. Thus, the output DTSVM
classifier was trained on the full training component. Even so, DTSVM stillexed speedup
factors above 1 because it only trained ISVMs for all the parameter vatuksaves with a ceiling
size of 1,500, which took much less time than training them on the full training coempo The
amount of time spent on higher ceiling sizes did not increase at a fastebeatrise DTSVM only
trained a small number of ISVMs. Moreover, the ISVMs were trained with &oyked parameters,
which tended to require less time than those trained with bottom-ranked parsmeter
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Forest PPl  KDD-full Webspam
Oopt 1,500 1,500 1,500 1,500
Proportion 5.55% 1.64% 42.05% 80.63%

Table 11: Theogp values obtained by DTSVM on the large-size data sets and the proportion of
training samples that flowed to homogeneous leaves.

Forest PPl KDD-full Webspam

1A1 DTSVM 1,500 1,500 1,500 1,500
RDSVM 96,000 1,500 1,500 96,000
1A0 DTSVM 1,500 1,500 1,500 1,500
RDSVM 1,536,000 1,500 1,500 96,000

Table 12: Theg, values obtained by DTSVM and RDSVM on the large-size data sets.

Table 9 shows the training times required for different ceiling sizes. Weregbshat DTSVM
spent most of its time on the leaves with the lowest ceiling size. In addition, Tatdkdws the test
accuracy rates corresponding to different ceiling sizes, assuminthéh&xtining was terminated at
those sizes. The results demonstrate the benefit of searching toggHeecause, if we terminated
the training at ceiling size 1,500 or 6,000, we would obtain significantly lowéatzsiracy rates.

Thus far, we have only discussed the DTSVM results for medium-size eetaFor complete-
ness, Table 11 shows tlag; values obtained by DTSVM on the large-size data sets, along with the
proportion of training samples that flowed to homogeneous leaves. In Tapige show thes,
values obtained by DTSVM and RDSVM. The results explain why RDSVMiireg much longer
training times and more NESVs for “Forest”, “PPI” and “Webspam”.

Since DTSVM’so,pt = 1,500 for all four data sets, we do not have any tables for the large-size
data sets correspond to Tables 9 and 10 for the medium-size data sets.

4. Generalization Error Bounds for the DTSVM Classifier

To provide a generalization error bound of DTSVM, we start with the fdligWramework. LeR®
be the d-dimensional Euclidean space. We assume that a set of training exaiples
{(X1,Y1), - .-, (Xn,Yn)} is given, wheréxy, yk) € R4 x {—1,1} fork=1,...,n. The DTSVM method
produces a classifidr(x, 11, f), in which 1tis a binary tree comprised &f leavesf = (fy,..., fL),
and f; is related to the ISVM trained on leafof tfori = 1,...,L. The binary treat produces a
partition function that maps an input RY to {1, ...,L}, and letr(x) be the leaf thak flows to.
On the other hand, the ISVM trained on leayé=1,...,L is expressed af o ®, where® maps
an input inRY to a Hilbert spacéd, and f; is alinear function fromH to R. Note that for a linear
functiong: H — R, there exists som& € H such that

9(2) = (W 2)

for all ze H, and we definég|| = (w,w)/2.

2958



TREEDECOMPOSITION FORLARGE-SCALE SVM PROBLEMS

Note that ifi(x) = i, thenh(x, Tt f) = sign(fi(®(x)). Let us define the functiofi" : RY —
{_17 1} by

It follows thath(x, Tt f) = sign(f™(x)).
Sometimes® is only defined implicitly. That is, instead of specifying the functional form of
®, only the inner product ob(u) and®(v) is specified as

(®(u), ®(v)) = k(u,v),

whereu,v € RY | andk(-,-) is a kernel function. In the remainder of this section, we assume that
the function® is given and fixed.

Next, we define several notations used in this sectMris the set of natural number™ is
the set of positive real numberg; (RY) is the class of all functions froRY to {1,...,L}; R(H)
is the class of all functions frod to R; and L(H) is the class of allinear functions fromH to R.
Moreover, if T is a set, we defin@" = {(ty,...,t.) :t; € Tfori=1,... L}, thatis,T- comprises
all theL-tuples ofT’s elements.

To provide a bound for the generalization errorhék, 1, f), we need the standard notions of
shatter coefficients, margins and covering numbers, which are defh@d. b-urther details can be
found in Vapnik (1995) and Cristianini and Shawe-Taylor (2000).tRive define the notion of the
shatter coefficient, which we use to measure the complexity of the partitiotidnecorresponding
to binary decision trees. Informally, tiné shatter coefficient of a clagpC ?L(Rd) is the maximum
number of ways in whic points can be partitioned into parts by functions inG. Formally, we
have the following definition.

Definition 1 LetG C A (RY). For any ne N, the ri" shatter coefficient of; is

V(g,n)

= max |{ms:me ,
Sng,|S|:n|{ g G}

whereTis is the function obtained by restrictimgto the domain S.

Next, we extend the standard notion of the margin to a collection of margingpoeach part
of a patrtition, in the following way.

Definition 2 Letf = (fy,..., L) € (R(H))\, me A (RY), X CRYx {~1,1}, andy= (y1,...,y.) €
(R*)L. We say that™ has marginy on X,, or mg(f™, X,) >y, if

y-fix) =y fi(®(x)) > v
foranyie {1,...,L} and any(x,y) € X, with 1(x) = i.

In addition, we adopt the following notion of a covering number proposedlon et al. (1997).
We use it to measure the complexity of the classifiers corresponding to |ISvifdsmally, a cover-
ing of a classF C R (H) of functions with respect to a sBtof ninputs is a collection of functions
in R (H) such that any functiori € ¥ is covered by some functiagin the collection, in the sense
that their values are within some distang®n all the inputs irD. The goal is to find the small-
est such collection for any sét of n inputs in some domai&. Formally, we define the covering
number as follows.
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Definition 3 Letn € R* and ¥ C R (H). For a subset DC H, let C(#,D,n) be the smallest
collection of functions from D t& such that, for each & 7, we have g C(¥,D,n) with |f(z) —
d(z)| < n for each ze D. For E C H and ne N, we define the covering number $fwith respect
to E, nandn as

N(7.Enn) = max [C(F,D.n)l.

4.1 Hard Margin Bounds

We have a sekK, of n training examples drawn independently and at random according to the
distributionD. Moreover, we have a learned classian(f™), with e 7 (RY) andf € (R (H))*,
which classifies all the training examples correctly with a large margin. Ouciblgas to bound the
generalization erroof the classifiesign(f™), which is defined as the probability theign(f™(x)) #

y, with (X,y) sampled according t®. The following lemma gives such a bound, which generalizes
a known result for SVMs (cf. Cristianini and Shawe-Taylor, 2000).

Lemma4 Let G C A (RY), y= (y1,...,y) € (RN):, and F = F1 x --- x F, where F; € R (H)

for 1 <i < L. In addition, letD be a probability distribution oiR? x {—1,1}, and let n be a large
enough integer. Suppose a set of n sampjearX drawn independently and at random according
to P, and consider any classifier si¢if), with te G andf € 7, such that m¢f™, X,) >y. Then,
with probability 1 — &, the generalization error of ™) will be at most

i[.i'OgN(f’E’Zn»\ﬁ/Z)+|09V(g,2n)+log(2/5) :

where E= {®(X) : (X,y) € supg D)} and supp?) is the support ofD.

We provide the proof in Appendix A, as it is rather lengthy and closely fallte standard
approach and that of Cristianini and Shawe-Taylor (2000). The ideaskow that the functions
f, with te G andf € F, can be “well covered” by a small number of functions, so that a union
bound can be applied to provide an upper bound on the probability thatiassifier has a large
generalization error.

Before proceeding further, we explain the meaning of Lemma 4. Suppossimeg and
F = F1x---x F, we can build a classifiign(f™) with me G andf € ¥ that has a large margin
and zero training error. Then, Lemma 4 gives us an upper bound orettexaiization error of
sign(f™) in terms of the complexity ofy and %, where we measure the complexity gfby its
shatter coefficien¥ (G, 2n) and the complexity of eacf by its covering numbeX ( F, E, 2n,vi/2).

To obtain a small generalization error, we need to hagewith a smallV(G,2n) and an% with

a smallN(%,E,2n,y;/2). However, this does not suggest that we can simply choos&amnyd F

with smallV(G,2n) andN( %, E, 2n,y;/2) for any classification task. This is because we may not
be able to build a classifier fromg and % to classify every training example correctly with a large
margin. For example, if we do not choogeproperly (say, by using a random partition), the training
examples in some parts of the partition may not be separated by SVMs with arlargen. Our
main contribution is the discovery that decision trees are good partition fasatiben combined
with SVMs, since they allow a large margin and only require a short training tmiS¥/Ms.

Lemma 4 states a general result for appnd any#; for 1 <i < L. We now consider our choice
of G and %, which correspond to decision trees and SVMs respectively.proR™, we define
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L(H,B) as the class of all linear functioriscs L(H) with || f|| < 8. A bound can be obtained for the
covering number of_(H, 3) with respect tde, n andn, provided thak is a bounded subset &f
(see, for example, Bartlett and Shawe-Taylor, 1998). This showsdatiabugh there is an infinite
number of functions irC(H, B), they can be covered by a small number of function® iiH) with
respect to any set of points inE. As a result, the complexity of the claggH, ) is low when
measured by its covering number.

Lemmab5 Leta,B,n € R™ and let ne N. Consider any EC H with ||z|| < p for every z E. Then,
there is a constant ¢ such that
p°p?

IogN(L(H,B%E,mn)f§c7$;4092n

We also defineB_ (RY) as the class of partition functions associated with binary trees containing
L leaves that partition the spa&¢ into L axis-aligned parts, as described in Section 2. Clearly,
B (RY) C A (RY). The following lemma provides a bound on thi& shatter coefficient ofs_ (RY).

Lemma6 Letd n L e N. Then
V(B.(RY),n) < Llog(dnL?).

Proof Consider any-element subse C RY. We need to cu§into L parts. Initially, there is only
one part inS. We perform the cut operation iteratively in the following way. Each time, h@ose
one part from at modt — 1 existing parts oS and cut it into two parts. To do this, we pick one of
thed dimensions and at most one of the- 1 cutting hyperplanes on that dimension. Thus, there
are at mostL — 1)d(n— 1) < dnL ways to perform one cut operation. To obtaiparts, we repeat
the cut operatioh-1 times; hence, the number of possible partitions is at rfest)-—* < (dnL)".
Finally, there ard.! ways to order the parts of each partition, yielding the following result:

V(BL(RY),n) < (dnb)- - (L!) < (dnl?)".

From the above three lemmas, we immediately derive the following theorem.

Theorem 7 Letpe R*,Bie Rt for1<i<L,y=(ys,...,y.) € (RH)-, andF = L(H,B1) x --- X
L(H,BL). In addition, letD be a probability distribution orR? x {—1,1} such that||®(x)|| < p
for every(x,y) € supd D), and let n be a large enough integer. Suppose a gatfh samples
are drawn independently and at random accordingpand consider any classifier sigf), with
e fB._(Rd) andf € F, such that mg™ X,) > y. Then, with probabilityl — 3, the generalization
error of sign(f™) will be at most

cls P i2|092n+ Llog(dnL?) 4 log(1/3)
n i; ¥ ’
for some constant c.
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From Theorem 7, we conclude that if a classifier partitions the training @atmte a small
number of parts (i.e.l. is sufficiently small), and it classifies each training sample with a large
margin (i.e.,y; is large for each), then the classifier is likely to have a small generalization error.
However, this theorem does not indicate how to find a good valué fegcause, in general, it is
hard to know howL affects the margins and the generalization error bound. Instead of bdiby le
any analytical result, the DTSVM learning algorithm takes a data driveroaph to find a goodl.

Note that the bound in Theorem 7 has a similar form to the generalizationtsuod of the
perceptron decision trees proposed by Bennett et al. (2000). Thediffagirence is that in their
bound.y; is the margin at thé" internal node and the sum is over all the internal nodes. We remark
that it is hard to tell which one of these two bounds is better because, imagjemwe do not know
their actual values for different learning tasks.

4.2 Soft Margin Bounds

Note that Theorem 7 works in the case where the training ¥atzan be separated with a mar-
gin vectory. If the data is non-separable or noisy, we need to consider the notionsofta
margin (Cristianini and Shawe-Taylor, 2000). Suppose we hawe? (RY), which partitions
Xn into L parts: an,...,x,ﬁ"), where X\ = {(x,y) € Xy : 1(x) =i}, and let us denote =
{(Xi1,¥i1),---, Xin,Yin)} for somen; € N, for 1 <i <L. In addition, suppose we hafe=
(f1,...,fL) € L(H,B1) x --- x L(H,BL), wheref; € RT for 1 <i < L. Then, we can define the
margin slack vector of; as follows.

Definition 8 Lety= (y1,...,y.) € (RN For1<i<Landl< j<n,let
&i.j = max(0,yi —i - fi(P(xi))).

The definition reflects how far the eIements)df) are from having a margiy. Therefore, for
1<i <L, we call the vectog; = (& 1,...,& ) the margin slack vector of with respect tatand
Vi overX.

To find a bound for the generalization errorafn(f™) in the case of such a soft margin, we
follow the approach of Shawe-Taylor and Cristianini (1999, 2002)icwkvorks for the case of
L= 1. The idea is to map points éf to a higher dimensional spatkso that, for each the image
of x,$'> can be separated by some functipwith the desired margin. Theorem 7 can then be applied.
To find eachf;, we present the following lemma, which is a simple extension of Shawe-Taylor &
Cristianini’s approach. For completeness, we provide the proof in Agipéh

Lemma 9 Suppose thaf®(x)|| < p for any (x,y) € supd?D). Then, there exists a spaté a
mappingt, : H — H, and a sequencke= (fy,..., f_) of L functions such that the following four
facts hold.

1. Forany(x,y) € sup D), [|Tp(®(x))|| < v2p.

2. For1<i<L, fie L(A,B) with B < /B2 + |I&]12/p>.

3. For1<i<L,any(xij,Vij) € x.&” will be classified correctly with a margin

yij - fi(te(@(xi))) > vi.
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4. For1<i <L and forany(x,y) ¢ Xn, ﬂ(rp(d)(x))) = fi(P(x)).
According to this lemma, we define

W=1,0®, and

) = e (WX)).

Then, we know that™ has a margirfys, ..., yL) on X,. Moreover, for(x,y) € supg(D), we have
WO < [ITp(®()) ] < V2p.

Now we can apply Theorem 7, with the spateeplaced by:| and the mappin@ replaced by¥,
to obtain a bound on the generalization errosigh(f™), but with the quantityp?B?/y? replaced by
20°(B7 + [I&11%/0%) _ 2(p°BF + |1&l1°)

¥ ¥

Finally, to bound the generalization errorsagn(f™), by Lemma 9, we know that for ar{x, y) ¢
Xn, sign(fT(x)) = sign(f(x)); therefore signf™) andsign(f™) have the same generalization error
for inputs that do not fall withirX,. However, it is possible that the elements@fmisclassified by
sign(f™) take a nontrivial measure in D, which resultsign(f™) having a larger generalization error
over D thansign(f™). As suggested by Shawe-Taylor and Cristianini (2002), this can beiéthn
by modifyingsign(f™™) on the misclassified elementsXq. We call this new function th¥,-filtered
version ofsign(f™). Then, we have the following theorem.

Theorem 10 Letp e R*,Bic RT for1<i<L,y= (y1,...,y.) € (Rt andF = L(H,B1) x -+~ x
L(H,BL). In addition, letD be a probability distribution orR? x {—1,1} such that||®(x)|| < p

for every(x,y) € sup D), and let n be a large enough integer. Suppose a set of n samples, X
are drawn independently and at random accordingZtp and consider anyt ¢ B(RY) andf =
(f1,...,fL) € F, such that for K i <L, fi has a margin slack vectd; with respect tatandy; over

Xn. Then, with probabilityl — 8, the generalization error of thepXiltered version of sigf™) will

be at most

: (i (W) log?n+ Llog(dnL?) + Iog(1/6)> :

n

for some constant c.

Theorem 10 shows that if we can build a classifier with a sina@hd a small|§;|| for every

i, then the first two terms inside the parentheses of the bound will be small, armdassifier is
likely to have a small generalization error. As with Theorem 7, this doesuggest a way to
choose the numbdr. Instead, the learning algorithm in Section 2 finds a gbad a data-driven
manner. To facilitate a better understanding of the bound, we provide mainelues for the two
terms derived by DTSVM classifiers. We also compare the numerical vaitieselated quantities
derived by global SVM (gSVM) classifiers, that is, SVM classifiers buiitthe full training data
set.
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Data Set 1A1 1A0
T1 T2 T1 T2
PHW 1,699 55 5,769 55
Shuttle 1,152,495 110 2,756,183 110
Cl 202,354 481 202,354 481
Poker 12,253 139 48,893 139

KDD-10% 1,297,678 287 64,238 287

Table 13: The values of two leading terMsand T, that appear in the generalization error bound
for DTSVM classifiers. Training types = 1A1 and 1A0.

4.3 A Numerical Investigation

Note that in Theorem 1@; andy; are interdependent quantities foxli < L, so we can fix one
of them and try to optimize the other. In the formulation of the SVM optimization propthe
objective is to minimizg3; under the constraint thgt= 1 for 1 <i < L. Under this convention, the
bound in Theorem 10 becomes

n

c/L
= (21 (p?B7+11&l") log?n+ L log(dnL?) +og(1/3) | (1)
i=
Recall that a DTSVM classifier is associated with a tree Wwilraves and each leaf is associated
with an ISVM. If the tree has only one leaf (i..= 1), then the DTSVM classifier will be reduced
to a gSVM classifier, which has the following generalization error bound

= (%82 +[1€]2) log?n-+ log(1/3) @

(cf. Cristianini and Shawe-Taylor, 2000).

Let us compare the terms that appear in parentheses in (1) and (2)ectmelgerni log(dnl?)
in (1) is the shatter coefficient of the partition functmassociated with a binary tree. We claim that
the value of (1) achieved by DTSVM is dominated by the first term, which isuheaf L quantities
associated with. leaves of a binary tree, as opposed to the single quantity in (2). Morebeer
first term in (1) achieved by DTSVM is comparable to the correspondirtify in (2) achieved
by gSVM. The following results confirm the above two claims.

To validate the first claim, we compare the two leading terms in parentheses ifh&)first
termisTy = Y-, (p?R? +|&;]|?) log? n and the second term & = L log(dnL?). The results, shown
in Table 13, confirm the claim thak far exceedsl, and (1) is dominated by;. Note that we
computeT; under the following assumptions. (i) When the data set contains more thankels,la
Ty is taken as the average of the quantities over all classifiers. (i) The vRjues@lways 1 when
RBF kernels are involved. (iii) The value ¢, || is obtained from the solution to the quadratic
programming optimization problem. Further details can be found in CristianinSaadve-Taylor
(2000), Section 6.1.2.

To validate the second claim, we comp&e- SL ; (p?B7 + ||&;||?) andS= p?p? + ||€||, which
are derived, respectively, from the first terms in the generalizatimr bounds for DTSVM and
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Data Set 1A1 1A0
S R R/L S R R/L
PHW 74 133 17 326 450 56
Shuttle 114,786 75,630 5,402 593,967 180,990 12,928
Cl 16,422 13,599 257 16,422 13,599 257
Poker 370 874 49 2,328 3,486 194

KDD-10% 100,227 70,796 2,212 5,089 3,505 110

Table 14: The values dd andR, which appear in the generalization error bound for gSVM and
DTSVM classifiers respectively, and the valuefdf. Training types = 1A1 and 1A0.

gSVM classifiers (i.e., in (1) and (2)) with the common factoPlogemoved from them. To ensure
a meaningful comparison betweRandS, both classifiers have to take the sai@ey) values, which
we specify as the optimal values for gSVM. As a result, we had to train ne8MDM classifiers for
some data sets, using the same decomposition schemes (i.e., the same binandtsaase ceiling
sizes) as the old classifiers, but differé@ty) values.

Table 14 shows the values & R and R/L, derived from five data sets. The “Letter” and
“News20” data sets are not included in the table because the DTSVM @assifing the designated
values of(C,y) would be the same as the gSVM on those data sets. It is clear that the vaRies of
are as small as (less than 150), or of the same order of magnitude aspthtoseorresponding.

In fact, S can be viewed as the slack-to-margin ratio &ds the sum of such ratios. The results
show that each ISVM generates smaller slack-to-margin ratios than theponging gSVM, while
the sum of ISVM ratios is comparable to the corresponding gSVM ratio. Tiplsims why the test
accuracy rates of DTSVM classifiers are comparable to those of gS\Adifitas.

5. Conclusion

We have proposed a method that uses a binary tree to decompose aawepace and trains an
ISVM on each of the decomposed regions. The resultant DTSVM classdfiebe constructed in a
much shorter time than the gSVM classifier, and still achieve comparablesagagates to the latter.
We also provide a generalization error bound for the DTSVM classifisingJsome data sets to
compute the theoretical bounds for gSVM and DTSVM classifiers, we fitdh&VM classifiers
generate comparable error bounds to those generated by gSVM ciassliies finding explains
why DTSVM classifiers can achieve more or less the same accuracy say&/d classifiers.

Appendix A. Proof of Lemma 4

Let G C A (RY),y= (y1,...,y1) € (R, and % C R (H) fori=1,...,L. The samples iiX, are
drawn independently and at random according to the distribdbion

Our goal is to find an upper bound for the probability of the following event.
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e A;: there existte G andf = (f1,...,f) € F x--- x F such thatmg(f™, X,) >y and
err(f™, D) > €, whereerr(f™, D) is the probability thasign(f"(x)) # y with (x,y) being sam-
pled according ta@.

Note thaterr(f™, D) is the generalization error afign(f(x)). We relate even#\; to another
eventA; in which an additional set af independent sampleX,, are drawn at random according to
D and the empirical error afign(f™(x)) overX, is considered.

e Ay there existte G andf = (fl, L) € 71 x --- x F such thatmg(f™, X,) >y and
err(f, Xq) > £/2, whereerr (f', X,) = |{(x y) € Xn: S|gr‘(f”( ) #YH/n.

Following a standard argument (Vapnik, 1995), one can relate thelglidpaf A; with that of
Az. More precisely, we have

Xn,Xn
and by Chebyshev’s inequality, one can show that

Pr [Az] > Pr [Az/\A]_] PF[A]_] . P[ [Az‘Al],
Xn Xn, Xn

Pr [As]Ay] =1— Pr [-Ay|A] >1—-1/(ne?) >1/2,

for a large enough. Consequently, we have

eria) < (1/ Pr (RalAs]) - Pr ing] < 2. P A

To find a bound for P>{1,>A<n [Az], let us consider the foIIowmg everfiz, where a set of@samples,
Xon, are drawn independently and at random according t@nd Xz, is further divided randomly
into two disjoint parts of equal siz&h andWs.

e Az: there existte G andf = (f1,...,fL) € F1 x --- x F such thatmg(f",W;) >y and
err(fW,) > ¢/2.

We observe that the distribution QKn,Xn) is identical to that of(\Wy, W) over randomXayp;
consequently we have

Pr = Pr [A].
szWl’Wz[Aa] ann[ 2]

The next step is to find a bound forgfw, w, [Az].
Let G(Xan) be the family of functions ofj restricted to the domaifix : (X,y) € Xon}; and for
e G(Xon), let

B2 (Xen) = C (72, ®04),v1/2) -+ x € (.90 ) w/2)

whered(X3)) = {D(X) : (X,y) € Xon, TI(X) =i}. Forg= (gs,...,g.) € B/2(Xzn), letg™(x) = gi(x)

for x € d(X z(n)) for1<i<L. Then, forme G(Xon) andf = (f1,..., fn) € F1 x--- x F., there exists
g=(91,...,00) € B\’,T/Z(XZn) such that for anyx,y) € X, if T(x) =1, then

[fi(®(X)) = ai(P(X))| < vi/2
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For suchf™andg™, mg(f™,W;) > yimplies thatmg(g"™,W;) > y/2; anderr(f",W,) > €/2 implies that
erry2(9™,We) > €/2, whereerr, »(g",We) is the proportion ofx,y) in W for which g;(x) < yi/2 if
1(x) = i. Therefore, the probability of the evefyy cannot exceed that of the following evekt

e Ay there existie G(Xon) andg € B\T/‘

/Z(in) such thatng(g™,Wy) > y/2 anderry»(g",W,) >
/2.

To bound the probability oA, let us first consider any fixeé, 1, andg, and consider an event,
denoted a$\u(Xan, T, g), over the random division ofy, intoW; andWs, such thatng(g™,Wy) > y/2
anderr,/»(g",Wo) > £/2. Note that for the everty(Xon, 71, 9) to occur, there are at mosti2 (¢/2)n
elements oKy, which can be separated [ff with marginy/2, and these elements must contain all
then elements of\. This implies that

(Zni(rf/Z)n) N\ (&/2)n __ ~—¢€n/2

Next, let us fix anyX, and consider an event, denotedaéXz,), over the random division ofyn
intoW; andWa, such that the every(Xon, Tt g) occurs for somete G(Xzn) andg € B\T/‘/Z(XZn). By
a simple union bound, we have

PUIAOGIS Y S 2G| - B -2 2
h, i€ G (Xan) GEBY 5 (Xan)

Since|Xon| = 2n, we havelG(Xon)| < V(G,2n). Moreover,

B0 = [ [o(Xnw/2)]
1<i<L
< [ N(AEXDv/2)
1<i<L
<[] N(%.E2ny/2)
1<i<L

whereE = {®(x) : (X,y) € supdD)}. Therefore, we have

WF\XIZ [A4(Xon)] <V(G,2n)- <1<i|1|_ N(fiaEaan/Z)) p—en/2

Note that by randomizing the selectionXy,, the expected value of @rw, [As(Xon)] is just the
probability of A4, over the random selection &%, and its random division intdy andWs, from a
simple probability fact As a result, we have

Xon A A= G [WE\XIZ [AA(XZ”)]}
< V(g,2n)-< N(ﬁ,E,Zn,w/Z)) L2
1<i<L

1. Suppos&\ is an event over a joint distributiofX,W). Let A(X) denote the everA conditioned onX = X. Then,
Prix wyex.w) [Al = 3z Pixex [X = Z] - Pivew [A(Z)] = Exex [Piwew [ACX)]].
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Finally, by combining all the bounds derived so far, we obtain
PriA]] <2 Pr <2:V(G,2n)- N(%,E,2n,yi/2) | -278"/?
Xo [ 1] > Xon W W [A4] >~ (gv ) <1<irl|_ (:}.I? ) 7y|/ >> )

which is at mosd if

s:i<logV(g,2n)+ IogN(fi,E,Zn,yi/Z)+Iog(2/6)>.

1<i<L

This proves the lemma.

Appendix B. Proof of Lemma 9
We begin by describing the spaldeand the mapping, : H — H. Consider the inner product space

IH)={f € R(H): f(x) # 0 for a finite number ok € H},
where the inner product df andgin I(H) is defined agf,g) = 5, f(2)g(2). Let
H=Hx I(H).

Define the functiort, : H — H by
() = (zp-5y),
whered, is the function defined by

1 ifz=7,
0 otherwise.

&) - {
Then, the first item of the lemma holds, since fory) € supd D), ||P(X)|| < p; thus,

ITp(@(x)) 12 = [|P(X)[| + [|PBepo | < 20°.

Next, we prove the existence bf= (f1,...,f.). SinceI(H) is an inner product space, each
of its elements defines a linear function 6(H). Hence, for(f,g) € L(H) x I(H), the function
(f,g) : H — R, defined by

(f,9)(zh) =f(2)+ (g,

for (z,h) € H, is a linear function. Now, for ¥ i < L, we can defind; : H — R by
fi=(fi,g/p),
whereg; € I(H) is defined by N
gzzFWWV%mm

Sincefi € L(H,Bi), there existsvi € H with [[wi[| < Bj such thatfi(z) = (wi,2). It follows that for
2eH,

~

fi(2) = (W, 2),
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wherew; = (w;, gi/p), and

n
2 = flwa |2+ 5 [&i512/0% < B+ 11E 112/P%.
=1

Therefore f; L(H,ﬁi), whereB; = \/B?+1I&;]/2/p?, and the second item of the lemma holds.
Furthermore, for anyx; Vi j) € x.ﬁ”, we have

yii- (@) = Wiy~ fi(@i))+¥ij- (&ij-Yij)
Vi fi(®(xij)) +&ij
> Vi

by the definition of; j. Thus, the third item of the lemma also holds.
Finally, for 1<i <L and for any(x,y) ¢ X,, we have

N

fi(Tp(P(x))) = fi(P(X)) + Y &.j-¥i.j - Box) (P(X) = fi(P(X)).
=1
Thus, the fourth item of the lemma holds as well. This concludes the proofrofrize9.
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