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Abstract

To handle problems created by large data sets, we propose a method that uses a decision tree to
decompose a given data space and train SVMs on the decomposedregions. Although there are other
means of decomposing a data space, we show that the decision tree has several merits for large-scale
SVM training. First, it can classify some data points by its own means, thereby reducing the cost
of SVM training for the remaining data points. Second, it is efficient in determining the parameter
values that maximize the validation accuracy, which helps maintain good test accuracy. Third, the
tree decomposition method can derive a generalization error bound for the classifier. For data sets
whose size can be handled by current non-linear, or kernel-based, SVM training techniques, the
proposed method can speed up the training by a factor of thousands, and still achieve comparable
test accuracy.

Keywords: binary tree, generalization errorı̈bound, margin-based theory, pattern classification,
tree decomposition, support vector machine, VC theory

1. Introduction

Support vector machines (SVMs) have proven very effective for solving pattern classification prob-
lems (Cortes and Vapnik, 1995; Vapnik, 1995). Because of the growingtrend to apply them to
various domains of interest, including bioinformatics, computer vision, data mining and knowledge
discovery, the size of training data sets continues to grow at a rapid rate. At the same time, there is
an ongoing effort to speed up the SVM training. One approach, called thenumerical techniquein
this paper, seeks efficient solutions to SVM optimization problems.

Well-known numerical methods for solving dual optimization problems include sequential min-
imal optimization (SMO) (Platt, 1998) and SVMlight (Joachims, 1998). Both methods break a large
problem into a series of small problems in order to reduce the amount of memoryrequired for
computation. SMO, in particular, has proven superior to similar methods, such as the projected
conjugated gradient “chunking” algorithm (Burges, 1998) and Osuna’s algorithm (Osuna et al.,
1997). For solving dual problems, there are now many new and faster methods, including LASVM
(Bordes et al., 2005), maximum-gain working set selection (Glasmachers and Igle, 2006), SVMperf

(Joachims, 2006), LaRank (Bordes et al., 2007), Pegasos (Shalev-Shwartz et al., 2007), bundle
methods (Smola et al., 2007), and LIBLINEAR (Fan et al., 2008).
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A new direction that has attracted increasing interest in recent years uses the stochastic gradient
descent (SGD) technique to solve large-scale SVM problems. The advantage of SGD is that it
implements an online learning process that converges to an optimal solution in one examination of
the training samples. The above-mentioned LASVM, LaRank and Pegasos algorithms apply SGD
to dual optimization problems. There are also algorithms that apply SGD to primal optimization
problems, for example, NORMA (Kivinen et al., 2004) and SGD-QN (Bordes et al., 2009).

In addition to the methods for solving dual or primal problems, a number of approaches for
solving large SVMs have been proposed, including core vector machines(Tsang et al., 2005) and
OCAS (Franc and Sonnenburg, 2008). Readers may refer to a useful paper by Menon (2009) for
more details of the numerical methods.

Another type of approach, calleddata-reductionin this paper, reduces a large training data set
to one or several small data sets. If only one reduced set is obtained, wecall the methodsingle-set
reduction(SSR); and if multiple reduced sets are obtained, we call the methodmultiple-set reduction
(MSR). In the latter case, SVM training is conducted on each of the reduced sets and all the SVMs
are combined into a final classifier.

We review MSR methods first. Perhaps the simplest MSR method is bagging (Breiman, 1996).
It employs a number of down-sampled data sets to train SVMs, which jointly classify a test object
based on majority vote. The boosting method (Schapire, 1990; Schapire and Singer, 2000) trains
SVMs in a sequential manner, and the training of a particular SVM is dependent on the training
and performance of previously trained SVMs. The divide-and-combinestrategy (Rida et al., 1999)
decomposes an input space into possibly overlapping regions, assigns each region a local predic-
tor, and combines the local predictors to derive a global solution to the prediction problem. The
Bayesian committee machine (Tresp, 2000) partitions a large data set into smallerones, and the
SVMs trained on the reduced sets jointly define the posteriori probabilities ofthe classes into which
test objects are categorized. The method proposed by Collobert et al. (2002) divides a set of input
samples into smaller subsets, assigns each subset a local expert, and forms a loop to re-assign sam-
ples to local experts according to how well the experts perform. The cascade SVM method (Graf
et al., 2004) also splits a large data set into smaller sets and extracts supportvectors (SVs) from each
of them. The resulting SVs are combined and filtered in a cascade of SVMs. Afew passes through
the cascade ensures that the optimal solution is found.

On the SSR side of the data-reduction approach, the squashing method (Pavlov et al., 2000) uses
a likelihood-based squashing technique to obtain a reduced data set, and then trains linear SVMs
on that set. The sparse greedy approximation method (Smola and Schölkopf, 2000) constructs a
compressed representation of the design matrix involved in the QP problem; while information
vector machines (Lawrence et al., 2003) use a sparse Gaussian process to select training samples
using criteria based on information-theoretic principles. Clustering-basedSVM (Yu et al., 2003)
applies a hierarchical clustering algorithm to obtain a reduced data set, which is used to train SVMs.
The concept boundary detection (CBD) method (Panda et al., 2006) prepares nearest-neighbor lists
as training samples, and uses a special down-sampling technique to extractthe data points that lie
close to class boundaries. This method can find a single set of near-boundary points for all class
pairs. In contrast, many other methods that use SVMs to analyze training samples have to find
different reduced sets for different class pairs, since SVMs can only work on one class pair at a
time. For more details of data-reduction methods proposed up to 2001, readers may refer to Tresp
(2001).
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Finally, we remark that the numerical and data reduction approaches, instead of competing,
can actually complement each other’s functions. The data reduction approach must train SVMs on
reduced data sets, so having an efficient numerical method to perform thetask would certainly be
useful. The numerical approach, on the other hand, could benefit by using an efficient data reduction
method to reduce its computational burden.

In this paper, we propose a method that decomposes a large data set into a number of smaller
ones and trains SVMs on each of them. This approach can reduce the totaltraining time because
the time complexity of training an SVM is in the order ofn2, wheren is the number of training
samples (Platt, 1998; Joachims, 1998) . If each smaller problem deals withσ samples, then the
complexity of solving all the problems is in the order of(n/σ)×σ2 = nσ, which is much smaller
thann2 if n is significantly higher thanσ. Decomposing a large problem into smaller problems has
the added benefit of reducing the number of SVs in each of the resultant SVMs. Since a test sample
is classified by only one of these SVMs, the decomposition strategy reducesthe time required for
the testing process in which the number of SVs dominates the complexity of the computation. One
additional benefit of the decomposition approach is the ease of using multi-core/parallel/distributed
computing for further speedup, since the SVM problems associated with the decomposed regions
can be parallelized idealistically.

The proposed method can be categorized as an MSR method. However, it differs from other
MSR methods in that it uses adecision treeto obtain multiple reduced data sets, whereas other
methods use non-supervised clustering (Rida et al., 1999), random sampling (Breiman, 1996), or
random partition (Tresp, 2000; Collobert et al., 2002; Graf et al., 2004). We thus call our method a
decision-tree support vector machine(DTSVM) and the resultant classifier a DTSVM classifier.

A decision tree decomposes a data space recursively into smaller regions.In terms of the ways
the regions are formed, a decision tree can be classified into three types: axis-parallel, oblique and
Voronoi types. In the axis-parallel type, the regions are bounded by hyperplanes represented as
xi = c, wherexi is a feature andc is a real number (Breiman et al., 1984; Quinlan, 1986). In the
oblique type, the regions are bounded by hyperplanes represented as∑αixi = c, whereαi are real
numbers (Murthy et al., 1994; Bennett and Blue, 1998; Wu et al., 1999; Bennett et al., 2000). In the
Voronoi type, the regions are formed as Voronoi cells by way of various clustering techniques (for
a survey, see Dattatreya and Kanal, 1985).

In this paper, we take an axis-parallel decision tree as our decomposition scheme because of its
speed in both the training and testing phases. The other two types of decisiontrees can certainly be
used as decomposition schemes, but their computational cost is significantly higher than that of the
axis-parallel type. Without conducting a tradeoff study, it is rather difficult to determine whether
the additional cost would yield a noteworthy benefit; therefore, we have decided not to adopt them
at this stage.

A number of studies have attempted to combine decision trees and SVMs. Some ofthe methods
were designed to improve the classification accuracy (e.g., Bennett and Blue, 1998; Wu et al., 1999;
Bennett et al., 2000; Ramaswamy, 2006; Tibshirani and Hastie, 2007); while others were designed
to speed up the SVM testing process (e.g., Platt et al., 2000; Sahbi and Geman, 2006; Sun et al.,
2007). To the best of our knowledge, using a decision tree to speed up the training of multiclass
SVMs has not been proposed previously.

Using a decision tree as a decomposition scheme can yield following benefits when dealing with
large-scale SVM problems. First, the decision tree may decompose the data space so that certain
decomposed regions become homogeneous; that is, they contain samples ofthe same labels. Then,
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in the testing phase, when a data point flows to a homogeneous region, we simply classify it in
terms of the common label of that region. This alleviates the burden of SVM training, which is
only conducted in heterogeneous regions. In fact, our experiments revealed that, for certain data
sets, more than 90% of the training samples reside in homogeneous regions; thus, the decision tree
method saves an enormous amount of time when training SVMs. Random partition, on the other
hand, cannot produce such an effect, since random pooling of a setof samples can hardly create a
homogeneous data set due to the independent sampling operation.

Another benefit of using the decision tree is the convenience it provides when searching for all
the relevant parameter values to maximize the solution’s validation accuracy, which in turn helps
maintain good test accuracy rates. The goal of the DTSVM method is to attain comparable vali-
dation accuracy while consuming less time than training SVMs on full data sets. To achieve our
objective, we found that it is important to control the sizeσ of the tree-decomposed regions as well
as the SVM-parameter values. For some data sets,σ could be set at 1,500; but for other data sets,
it had to be set at a larger value. Thus, in the DTSVM method,σ is an additional parameter to
the usual SVM-parameters. Other MSR methods do not attempt to search forthe optimal size of
decomposed regions. Such searches are particularly easy under the DTSVM method because a de-
cision tree is constructed in a recursive manner; hence, obtaining a tree with a larger size ofσ does
not require the reconstruction of a decision tree corresponding to that size of σ.

Using a decision tree also reduces the cost of searching for the optimal values of SVM-parameters.
Searching for these values is important, but it takes a tremendous amount oftime, especially when
training non-linear SVMs. To the best of our knowledge, no data-reduction method has attempted
to reduce the cost of this operation. Our strategy involves training SVMs withall combinations
of SVM-parameter values, butonly for decomposed regions with an initialσ-level. The optimal
values of the SVM-parameters obtained at this level are not necessarily the same as those obtained
at higher levels. However, we observe that the best values for a higher level are usually among the
top-ranked values for the initial level. Therefore, when we want to train SVMs for a higherσ-level,
we only train them with the top-ranked values obtained for the initial level. Given then2-complexity
of SVM training, restricting the full search of SVM-parameter values to regions with the initialσ-
level certainly reduces the SVM training time. In fact, our experiments showed that such savings
were possible even when the optimalσ-level was higher than that of the full size data set.

Although the decision tree method may not be the only way to achieve the above benefits for
large-scale SVM problems, its effect can be understood in theory and a generalization error bound
can be derived for the DTSVM classifier. The bound is the sum of two terms: the first term domi-
nates in magnitude and is associated with SVM training; and the second term is associated with tree
training. Our experimental results show that the numerical value of the dominant term is as small
as, or of the same order of magnitude as, its counterpart in the generalization error bound for SVM
training conducted on the whole data set. This finding constitutes indirect evidence of the efficacy
of tree decomposition for large-scale SVM problems.

Finally, we remark that it is possible to have multiple decompositions of the same dataspace
with multiple trees. These trees can be obtained by using a randomized, ratherthan the optimal,
split point at each tree node (Dietterich, 2000). By so doing, we train SVMs on all the decomposed
regions and classify the test data based on a majority vote strategy. We haveactually studied the
effect of such multiple decompositions. In terms of test accuracy, multiple decompositions are
not as effective as searching for the optimalσ-level of decomposed regions in a single decision
tree. In fact, under the latter search scheme, introducing multiple decompositions does not lead to

2938



TREE DECOMPOSITION FORLARGE-SCALE SVM PROBLEMS

any significant improvement. Therefore, to avoid unnecessary complications, we only consider the
decomposition of a data space by a single tree in this paper.

In the experimental study, we divided each data set into training, validation and test compo-
nents. We then used the training component to build DTSVM classifiers, the validation component
to determine the optimal parameters, and the test component to measure the test accuracy. We
adopted two types of SVM training: one-against-one (1A1) (Knerr et al.,1990) and one-against-
others (1AO) (Bottou et al., 1994) . Furthermore, we built non-linear SVMs on the data sets. When
evaluating the DTSVM method, we found it could train DTSVM classifiers that achieved compara-
ble test accuracy rates to those of SVM classifiers. For seven medium-sizedata sets, in which the
largest number of sample was 494K and the largest number of feature was62K, DTSVM achieved
speedup factors between 4 and 3,691 for 1A1 training, and between 29 and 5,775 for 1AO training.
Moreover, DTSVM achieved much higher speedup factors than several data reduction methods and
numerical methods. To demonstrate that DTSVM can train classifiers efficiently for larger data sets,
we applied it to four large-size data sets in which the largest number of samples was 4.9M and the
largest number of features was 16.6M. For all the data sets, DTSVM couldcomplete 1A1 training
and 1AO training within 18.25 hours. Note that the training time included the time required to build
a decision tree, the time to train SVMs on all the leaves, and the time to search for the optimal
parameters.

The remainder of this paper is organized as follows. In Section 2, we describe the DTSVM
method. Section 3 details the experimental results. In Section 4, we provide theoretical results for
the DTSVM method. Section 5 contains some concluding remarks.

2. The DTSVM Method

In this section, we describe the decision tree that we use as the decompositionscheme, and discuss
the training process for the DTSVM method. An implementation of the DTSVM methodis available
at

http://ocrwks11.iis.sinica.edu.tw/dar/Download/WebPages/DTSVM.htm

2.1 The Decision Tree

For the decomposition scheme, we adopt CART (Breiman et al., 1984) or a binary C4.5 scheme
(Quinlan, 1986) that allows two child nodes to grow from each node that is not a leaf. Using a C4.5
scheme that allows multiple child nodes is feasible; however, we do not consider it in this paper,
since a binary C4.5 performs the job rather well for us.

To grow a binary tree, we follow a recursive process, whereby eachtraining sample flowing to a
node is sent to its left-hand or right-hand child node. At a given nodeE, a certain featurefE of the
training samples flowing toE is compared with a certain valuevE so that all samples withfE < vE

are sent to the left-hand child node, and the remaining samples are sent to theright-hand child node.
The values offE andvE are determined as follows. First, thesplit point vf of each featuref is
calculated by

vf = argmax
v

IR( f ,v),

where
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IR( f ,v) = I(S)− |Sf<v|
|S| I(Sf<v)−

|Sf≥v|
|S| I(Sf≥v),

Sis the set of all samples flowing toE; Sf<v consists of the elements ofSwith f < v; Sf≥v =S\Sf<v;
|X| is the size of any data setX; andI(X) is the impurity ofX. The impurity function used in our
experiments is the entropy measure, defined as

I(S) =−∑
y

p(Sy) logp(Sy),

wherep(Sy) is the proportion of S’s samples whose label isy. Then,

fE = argmax
f

IR( f ,vf ),

andvE is taken as the split point offE.
We stop splitting a nodeE when one of the following conditions is satisfied: (i) the number of

samples that flow toE is smaller than aceiling sizeσ; or (ii) when IR( f ,v) = 0 for all f andv at
E. The value ofσ in the first condition is determined in a data-driven fashion, which we describe
in Section 2.2. The second condition occurs mainly in the following cases. (a)All the samples that
flow to E are homogeneous; or (b) a subset of them is homogeneous and the remaining samples,
although carrying different labels, are identical to some members of the homogeneous subset. There
are other possible cases for the second condition, but their occurrence is extremely rare. If we want
to splitE in these cases, we can choose the following split point to minimize the difference between
|Sf<v| and|Sf≥v|, that is,

vf = argmin
v

∣

∣

∣

∣Sf<v
∣

∣−
∣

∣Sf≥v
∣

∣

∣

∣ .

After growing a tree, we train an SVM on each of its leaves, using samples that flow to each
leaf as training data (Figure 1). The values of the SVM parameters are alsodetermined in a data-
driven fashion. A tree and all SVMs associated with its leaves constitute a DTSVM classifier, as
shown in Figure 1. In the training phase, all the SVMs in a DTSVM classifier are trained with
the same parameter values. We explain how the optimal values are obtained in Section 2.2. In the
validation/testing process, we first input a given validation/test objectx to the tree. Ifx reaches a
leaf that contains homogeneous samples, we classifyx as the label of those samples; otherwise, we
classify it with the SVM associated with that leaf.

2.2 The DTSVM Training Process

Given a training and validation component, we build a DTSVM classifier on the training component
and determine its optimal parameter values with the help of the validation component.The param-
eters associated with a DTSVM classifier are: (i)σ, the ceiling size of the decision tree; and (ii) the
SVM parameters. Their optimal values are determined in the following manner.

We begin by training a binary tree with an initial ceiling sizeσ0, and then train SVMs on the
leaves with SVM-parametersθ ∈ Θ, whereΘ is the set of all possible SVM-parameter values whose
effects we want to evaluate. Note that we expressθ in boldface to indicate that it may consist of
more than one parameter. Letv(σ0,θ) be the validation accuracy of the resultant DTSVM classifier.
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Figure 1: The architecture of a DTSVM classifier: a tree and all its leaves (L1 to L6) are produced
and SVMs are trained on the leaves.

Next, we want to construct DTSVM classifiers with larger ceiling sizes, butwe only train their
associated SVMs withk top-rankedθ. To do this, we rankθ in descending order ofv(σ0,θ). Let Θk

be the set that consists ofk top-rankedθ.
More specifically, we implement the following sub-process, denoted asSubProcess(θ), for each

θ ∈ Θk.

1. Sett = 0 and get the binary tree with the ceiling sizeσ0.

2. Increaset by 1 and setσt = 4×σt−1. Modify the tree with ceiling sizeσt−1 to obtain a tree
with ceiling sizeσt . This is done by moving from the root towards the leaves and retaining
each node whose parent’s size is greater thanσt . Then, train SVMs on the leaves with SVM-
parametersθ. Let v(σt ,θ) be the validation accuracy of the resultant DTSVM classifier.

3. If v(σt ,θ)−v(σt−1,θ)≥ 0.5% andσt is less than the size of the training component, proceed
to step 2.

4. Letσ(θ) = σt−1 if v(σt ,θ)−v(σt−1,θ) < 0.5% orσ(θ) = σt if σt is greater than or equal to
the size of the training component.

When we have completedSubProcess(θ) for all θ ∈ Θk, we define

θopt = argmax
θ∈Θk

v(σ(θ),θ) andσopt = σ(θopt).

We then output the DTSVM classifier with the SVM-parameterθopt and the ceiling sizeσopt.

2941



CHANG, GUO, L IN AND LU

Figure 2: The test accuracy rates obtained by DTSVM on the seven data sets whenσ0 = 1,500 and
k = 1, 3, 5, 7 and 9.

Note that, in eachSubProcess(θ), we setσt as quadruple the size (rather than double the size)
of σt−1 for two reasons. First, quadrupling the size produces more significant differences between
v(σt ,θ) andv(σt−1,θ), especially whent is small. This means that if aSubProcessterminates at a
smallt, there is less risk of a low validation accuracy rate. Second, quadruplingthe size enables the
training process to progress at a faster pace. This means that if aSubProcessterminates at a larget,
it moves more rapidly towards that end of the process.

The initial ceiling sizeσ0 (=1,500) and the numberk (=5) of the top-ranked parameters are set
heuristically. To observe how these settings impact the test accuracy, we first fix σ0 at 1,500 and
vary k from 1 to 9 at a step size of 2; we then plot the test accuracy rates obtainedby DTSVM on
the seven data sets whose details are shown in Table 1. Figure 2 shows thatany value ofk is good
for all the data sets except “Letter”, whilek = 5 or 7 is particularly good for “Letter”. Moreover,
setting the right value ofk improves the test accuracy of “Letter” significantly. Next, we fixk at 5
and varyσ0 from 500 to 3,000 with a step size of 500. As shown in Figure 3, varying the value of
σ0 doesnot affect the test accuracy of any data set significantly.

3. Experimental Results

In this section, we describe the data sets used in the experiments and the methods that we compared.
We then present and discuss the experimental results.
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Figure 3: The test accuracy rates obtained by DTSVM on the seven data sets whenk = 5, andσ0 =
500, 1,000, 1,500, 2,000, 2,500 and 3,000.

3.1 The Data Sets

In the experiments, we divided the data sets into two groups. The first group was used to evaluate
the efficiency of DTSVM and some alternative methods in terms of speeding upSVM training. The
second group was used to verify that the DTSVM method could handle much larger data sets, for
which most of the alternative methods required an excessive amount of time tocomplete the training
process. The first group comprised seven medium-size data sets, ranging from 10K to 494K in size,
as shown in Table 1. Most of the data sets have less than 50 features, butthe “News20” has 62,060
features. The second group comprised four large-size data sets, ranging from 240K to 4,898K in
size, as shown in the Table 2. The “Webspam” data set is not very large in terms of the number of
samples (240K), but the number of features is more than 16M; thus, we consider it a large-size data
set. All the data sets were obtained from UPI repository (Newman et al., 1998), with the following
two exceptions: “PPI”, which was used in a protein-protein interaction study (Tseng et al., 2010),
and “Webspam”, which was obtained from

http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html

Note that the actual “Poker” data set in the repository contains 1 million samples; however, we only
used its training component in our experiments.

We randomly divided each data set into six parts of approximately equal size, and used four
parts as the training component, one part as the validation component, and theremaining part as the
test component. The DTSVM classifiers were trained on the training and validation components,
as described in Section 2.2. On completion of the training process, we appliedthe output DTSVM
classifier to the corresponding test data set to obtain the test accuracy rate. All the data sets, divided
into training, validation and test components, are available on the following website.
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Data set No. of Labels No. of Samples No. of Features
Pen Hand Written (PHW) 10 10,992 16

Letter 26 20,000 16
Shuttle 7 58,000 9
Poker 10 25,010 10

Census Income (CI) 2 45,222 14
News20 20 19,927 62,060

KDD CUP 10% (KDD-10%) 5 494,021 41

Table 1: The medium-size data sets used in our experiments.

Data set No. of Labels No. of Samples No. of Features
Forest 7 581,012 54
PPI 2 1,249,814 14

KDD-full 5 4,898,431 41
Webspam 2 240,000 16,609,143

Table 2: The large-size data sets used in our experiments.

http://ocrwks11.iis.sinica.edu.tw/dar/Download/DataSets/DTSVM/datasets.htm

In each data set, we normalized all the feature values to a real number between 0 and 1. We did
this by transforming each valuev of featuref into (v− fmin)/( fmax− fmin), where fmax and fmin are
the maximum and minimum values off respectively.

We only studied non-linear SVMs in our experiments. Moreover, we used the RBF kernel
function to measure the similarity between vectors. As a result, we had two SVM parameters: the
penalty factorC, whose values were taken fromΦ = {10a : a= −1,0, . . . ,5}; and theγ parameter
in the RBF function, whose values were taken fromΨ = {10b : b=−4,−3, . . . ,4}. Thus, the set of
all SVM parameter values wasΘ = Φ×Ψ, which comprised 63 pairs of values for(C,γ).

SVM training is implemented under the 1A1 and 1AO approaches. When the 1A1approach is
used, there aren(n−1)/2 classifiers, wheren is the number of labels. Each classifier assigns one
of two possible labels to a given validation/test sample. We use all the classifiers to classify a given
validation/test samplex, based on a majority vote. Note that a more efficient technique (Platt et al.,
2000) that only requiresn classifiers can be used in the validation/testing procedure. However, we
adopt Knerr et al.’s (1990) technique, which requiresn(n− 1)/2 classifiers, because we are only
interested in the relative, rather than the absolute, performance of the methods compared in our
experiments. When the 1AO approach is used, there aren decision functions, each of which is
associated with a label. We assignx the label associated with the decision function that yields the
highest functional value.

3.2 Methods Compared

The following methods are compared in our experiments.
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CART.CART (Breiman et al., 1984) is similar to the decomposition scheme used in DTSVM,
but it differs in terms of the stop and classification criteria. In the training phase, CART stops
splitting a node whenIR( f ,v) = 0 for all featuresf and their valuesv. In the testing phase, it
classifies a test samplex by the label shared by the majority of samples residing at the leaf to which
x flows. Although CART is not designed for speeding up SVMs, it serves here as a benchmark for
DTSVM. If CART performs as well as DTSVM in every respect, then thereis no need for DTSVM,
since CART runs much faster than DTSVM in both the training and testing phases.

RDSVM.RDSVM (randomized SVM) is an alternative to DTSVM that differs from DTSVM in
the way it decomposes a data space. In the training phase, when a sizeσ is given, DTSVM randomly
assigns a training sample to one ofd subsets, whered is the smallest integer that is greater than or
equal ton/σ andn is the number of training samples. RDSVM uses the same procedure as DTSVM
to search for the optimal parameters. In the testing phase, RDSVM randomly assigns a test sample
to a subset and classifies it according to the SVM associated with that subset.

Bagging. When implementing bagging (Breiman, 1996), we created a number of SVMs for
eachθ ∈ Θ. Each SVM was trained on 1,500 training samples chosen at random. For each θ, the
training was conducted sequentially. We stopped at the firstm so that the validation accuracy rate
of mSVMs did not exceed that ofm−1 SVMs by more than 0.5%.

CBD.The training process of CBD (Panda et al., 2006) comprises two steps: finding a reduced
set, and training an SVM on that set for eachθ ∈ Θ. The first part involves finding thek-nearest
neighbors of each training sample and deriving the reduced data set via adown-sampling technique.
Following Panda et al. (2006), we setk at 100. When searching for the 100 nearest neighbors of
each training samplex, we keep the current list of 100 nearest neighbors ofx. For another training
samplez, letd(x,z) be the distance betweenx andz. We need to compare this distance withd(x,w),
wherew is on the current list and has the largest distance withx. Since the squared distance is the
sum of the squared feature differences, we can speed up the comparison by computing the partial
sum ofd2(x,z). When this partial sum exceedsd2(x,w), we stop the comparison and excludez
from the current list ofx.

LIBSVM.LIBSVM (Fan et al., 2005) is now the most widely used software for trainingand
testing SVMs. We take it as the baseline in our experiments; thus, the speedupfactor is 1 by
assumption. If a compared method is faster in training than LIBSVM, it has a speedup factor above
1.

LASVM.LASVM (Bordes et al., 2005) is a method that solves a dual optimization problem by
way of a stochastic gradient descent method that converges to an optimal solution in one examina-
tion of the training samples.

LIBLINEAR. LIBLINEAR (Fan et al., 2008) is a fast version of training and testinglinear
SVMs. Its training speed is comparable to, or even faster than, that of Pegasos (Shalev-Shwartz
et al., 2007) and SVMperf (Joachims, 2006). Since LIBLINEAR isnot a method for speeding up
non-linear SVMs, we only include it in our experiments for large-size data sets, for which bagging,
CBD, LIBSVM and LASVM take too long to complete the training process. Whenwe train linear
SVMs, the values of the penalty factorC are taken fromΦ = {10a : a=−1,0, . . . ,5}, which com-
prises 7 real numbers. Furthermore, we require the discriminant functionof the classifier to include
a bias term.

Among the above methods, DTSVM, RTSVM, bagging and CBD are data reduction methods,
while LIBSVM, LASVM and LIBLIEAR are numerical methods.
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3.3 Results on Medium-Size Data Sets

The results of applying seven methods, CART, DTSVM, RDSVM, bagging,CBD, LIBSVM and
LASVM, to the seven medium-size data sets are shown in Figures 4-8 for 1A1training, and in
Figures 9-13 for 1AO training. In all SVM training sessions, except forLASVM, we used the
LIBSVM software (Fan et al., 2005). We adopted all default options of the software, except the
parameter values, which we specified in Section 3.1.

Figure 4 and Figure 9 show the training times of the seven methods. The trainingtime of each
method comprises the time required to obtain reduced data sets if it is a data reduction method, the
time to train all SVMs and the time to search for optimal parameters; however, the timerequired
to input or output data isnot included. The computation for all the medium-size data sets was
performed on an Intel Xeon CPU 3.2 GHz with a 2GB RAM, while that for all thelarge-size data
sets was performed on a Quad-Core Intel Xeon X5365 3.0GHz CPU and 32GB RAM.

Figure 5 and Figure 10 show thespeedup factorsof all the methods except LIBSVM, where the
speedup factor of a methodM is computed as LIBSVM’s training time divided byM ’s training
time.

Figure 6 and Figure 11 show the test accuracy rates of the four compared methods. Note that
the DTSVM test accuracy is that of the DTSVM classifier with the ceiling sizeσopt and SVM-
parametersθopt. When classifying a test sample with SVMs, the most time-consuming part is
computing a decision function, whose complexity can be measured in terms of how many SVs are
encountered in the classification. Therefore, we use the “number of encountered support vectors”
(NESV) as a measure of the time-complexity of the test process. NESV is defined as the number
of SVs contained in the decision function used to classify a test sample. Whena DTSVM or an
RDSVM classifier is used, the NESV is associated with the leaf that the test sample flows to. Thus,
in the two cases, NESV is theaveragenumber of SVs encountered by a test sample.

Figure 7 and Figure 12 list the NESVs of the four methods; while Figure 8 andFigure 13 show
theNESV ratiosof all the methods except LIBSVM and CART, where the NESV ratio of a method
M is computed as LIBSVM’s NESV divided byM ’s NESV.

We now summarize the results shown in Figures 4 to 13.

1. There is no doubt that CART was extremely fast in training, but its test accuracy was poor,
except on the “Shuttle” and “KDD-10%” data sets, where its accuracy matched the best of all
the other methods.

2. In terms of training time, DTSVM outperformed all the other methods, exceptCART; and
in terms of test accuracy and NESV, DSTVM outperformed or performed comparably to all
the other methods. It also achieved very large speedup factors and NESV ratios on “Shuttle”,
“Poker”, “CI” and “KDD-10%”.

3. RDSVM, being an alternative approach to DTSVM, achieved comparable test accuracy to
DTSVM. However, it performed worse in terms of training time on “Shuttle”, “Poker” and
“KDD-10%”. It also performed worse in terms of NESV on “Shuttle”, “Poker”, “CI” and
“KDD-10%”.

4. CBD achieved speedup factors above 1 and NESV ratios above 1 on most data sets; however,
its scores were overall not as high as those of DTSVM. In addition CBD lagged behind
DTSVM in terms of test accuracy on “Letter” and “News20”.
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Figure 4: Training times of the seven compared methods, expressed inseconds. Training type =
1A1. CART, DTSVM and RDSVM outperformed the other methods.

Figure 5: Speedup factors of all the methods except LIBSVM. Training type = 1A1. CART,
DTSVM and RDSVM outperformed the other methods.
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Figure 6: Test accuracy rates of all the methods. Training type = 1A1. CART performed poorly on
several data sets; while CBD and Bagging lagged behind DTSVM on some data sets.

Figure 7: The NESVs of all the methods except CART. Training type = 1A1.DTSVM outper-
formed all the other methods.
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Figure 8: The NESV ratios of all the methods except CART and LISBSM. Training type = 1A1.
DTSVM outperformed all the other methods.

Figure 9: Training times of all the methods, expressed inseconds. Training type = 1AO. CART,
DTSVM and RDSVM outperformed the other methods.
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Figure 10: Speedup factors of all the methods except LIBSVM. Trainingtype = 1AO. CART,
DTSVM and RDSVM outperformed the other methods.

Figure 11: Test accuracy rates of all the methods. Training type = 1AO. CART performed poorly
on several data sets; while CBD and Bagging lagged behind DTSVM on somedata sets.
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Figure 12: The NESVs of all the methods except CART. Training type = 1AO. DTSVM outper-
formed all the other methods.

Figure 13: The NESV ratios of all the methods except CART and LIBSVM. Training type = 1AO.
DTSVM outperformed all the other methods.
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PHW Letter Shuttle Poker CI News20 KDD-10%
1A1 DTSVM 7,694 183,450 181 88,935 8,975 207,290 1,638

LIBSVM 8,073 183,450 1,134 140,990 10,451 210,560 2,287
1AO DTSVM 1,775 16,200 195 42,775 8,975 39,122 1,580

LIBSVM 1,210 16,201 266 39,024 10,451 42,628 1,566

Table 3: The total number of SVs produced by DTSVM and LIBSVM on medium-size data sets.
The two methods produced about the same numbers of SVs, even though DTSVM has
much smaller NESVs than LIBSVM.

5. Bagging achieved speedup factors below 1 and NESV ratios below 1 onseveral data sets. It
also lagged behind DTSVM in terms of test accuracy on “Letter” and “News20”.

6. LASVM, being an alternative numerical method to LIBSVM, achieved speedup factors slightly
above 1 on most data sets, but its scores were much lower than those of DTSVM. LASVM
also achieved NESV ratios above 1 on most data sets, although they were generally not as
high as those of DTSVM. An unexpected result occurred in the 1AO training on “KDD-
10%”, where LASVM obtained very high NESVs compared to LIBSVM, resulting in a low
NESV ratio (0.1). We double checked the process to confirm that the above result was correct.

Finally, we provide some additional information about DTSVM. In Table 3, weshow thetotal
number of support vectors(TNSV) produced by DTSVM and LIBSVM on all medium-size data
sets. TNSV expresses the space-complexity of a training process, whereas NESV expresses the
time-complexity of a test process. For DTSVM, the NESV is smaller than the TNSVin most cases,
because a test sample usually encounters only some, rather than all, SVs. For LIBSVM, NESV is
always the same as TNSV. Note that DTSVM achieved much smaller NESVs on many data sets,
but it produced about the same TNSV on all the data sets.

Table 4 shows the DTSVM testing times, as well as the LIBSVM and CART testing times for
comparison. As expected from the NESV results, DTSVM’s testing time is shorter than that of
LIBSVM on all the data sets. We further divide DTSVM’s testing time into the time spent on the
decision-tree component (DTC) and that spent on local SVMs (lSVMs).In Table 4, the times are
separated by a semi-colon. Clearly, the DTC testing time takes an extremely small proportion of
DTSVM’s testing time. In fact, it is so small that it cannot be measured accurately by the timing
mechanism. CART’s testing time, on the other hand, is higher than that of the DTCbecause CART-
trees usually grow to deeper levels than DTC-trees.

3.4 Results on Large-Size Data Sets

The results of applying four methods, CART, DTSVM, RDSVM and LIBLINEAR, to the four large-
size data sets are shown in Figures 14-16 for 1A1 training, and in Figures17-19 for 1AO training.
Once again, we used the LIBSVM software for all SVM training sessions of DTSVM and RDSVM.

We summarize the results on large-size data sets as follows.

1. Even though DTSVM was not as fast as CART and LIBLINEAR in training, it achieved
consistently high test accuracy rates on all the four data sets. It outperformed LIBLINEAR
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PHW Letter Shuttle Poker CI News20 KDD-10%
CART 0.063 0.125 0.360 0.157 0.204 0.093 2.187

DTSVM 0.047 3.844 0.000 0.406 0.219 38.141 0.063
1A1 0; 0.047 0; 3.844 0; 0.000 0; 0.406 0; 0.219 0; 38.141 0; 0.063

LIBSVM 0.265 4.078 0.187 7.406 8.453 39.062 7.344
DTSVM 0.062 7.344 0.000 1.125 0.219 126 0.063

1AO 0; 0.062 0; 7.344 0; 0.000 0; 1.125 0; 0.219 0; 126 0; 0.063
LIBSVM 0.328 7.328 0.250 17.313 8.453 138.000 19.875

Table 4: The testing time required by CART, DTSVM and LIBSVM on medium-sizedata sets. The
time required by DTSVM is lower than that required by LIBSVM. The DTC testing time
takes a very small proportion of DTSVM’s testing time. CART’s testing time is higher
than that of DTC.

Figure 14: Training times of the four methods, expressed inseconds. Training type = 1A1. CART
and LIBLINEAR outperformed the other methods.

and RDSVM on “Forest” and “PPI”, and surpassed CART on “PPI” bya significant margin.
Moreover, DTSVM achieved much lower NESVs than RDSVM on all the data sets.

2. Recall that RDSVM achieved equally good test accuracy rates on all the medium-size data
sets. However, on the large-size data sets, it achieved much lower accuracy rates on “Forest”
and “PPI”, and it yielded much higher NESVs on all the data sets. The results show that
RDSVM is not a good substitute for DTSVM in solving large-scale SVM problems.

3. The results also show that, despite their efficiency in training, CART and LIBLINEAR are
not good substitutes for DTSVM in solving large-scale problems. LIBLINEAR achieved the
best test accuracy rate on “Webspam”, presumably because a linear model fits this data set
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Figure 15: Test Accuracy of the four methods. Training type = 1A1. DTSVM outperformed, or
performed comparably to, the other methods. CART performed rather well compared to
LIBLINEAR.

Figure 16: The NESVs of DTSVM and RDSVM. Training type = 1A1. DTSVMachieved much
lower NESVs than RDSVM.

rather well. However, to verify this assumption, we need to compare the test accuracy rates of
linear and non-linear models. DTSVM offers us an opportunity to make sucha comparison.

We also show the total number of SVs produced by DTSVM in Table 5, while thetesting times
required by DTSVM and CART are shown in Table 6. DTSVM’s testing time is further divided into
the amount of time required by the DTC and that required by lSVMs. Once again, it is clear that
DTC’s testing time only takes a very small proportion of DTSVM’s testing time. CART’s testing
time is higher than that of DTC because CART-trees usually grow to deeper levels than DTC-trees.
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Figure 17: Training times of the four methods, expressed inseconds. Training type = 1AO. CART
and LIBLINEAR outperformed the other methods.

Figure 18: Test Accuracy of the four methods. Training type = 1AO. DTSVM outperformed, or
performed as well as, the other methods.

3.5 Further Discussion

To gain insight into why DTSVM is so effective, we show in Table 7 theσopt derived by DTSVM
on medium-size data sets, along with the proportion of training samples that flow tohomogeneous
leaves. Note that a single table suffices to show all the results because 1A1training and 1AO training
employ the same decision trees and DTSVM yields the sameσopt value for both approaches.

First, we observe that DTSVM required a low ceiling size of 1,500 on all the data sets, except
“Letter” and “News20.” This explains why DTSVM generally achieved good speedup factors and
NESV ratios. Furthermore, the proportion of training samples that flowed to homogeneous leaves
under DTSVM was very high in “Shuttle” and “KDD-10%”. Since no SVM classifier is involved
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Figure 19: The NESVs of DTSVM and RDSVM. Training type = 1AO. DTSVMachieved much
lower NESVs than RDSVM.

Forest PPI KDD-full Webspam
DTSVM 1A1 140,008 594,687 2,752 8,116

1AO 114,958 594,687 2,781 8,116

Table 5: The total number of SVs produced by DTSVM on large-size data sets.

Forest PPI KDD-full Webspam
CART 0.109 0.563 0.281 151.860

1A1 2.485 38.453 1.094 127.000
DTSVM 0.047; 2.438 0.235; 38.218 0.25; 0.844 75; 52.000

1AO 3.859 38.453 1.485 127.000
0.047; 3.812 0.235; 38.218 0.25; 1.235 75; 52.000

Table 6: The testing time required by CART and DTSVM on large-size data sets. DTC’s testing
time only takes a very small proportion of DTSVM’s testing time. CART’s testing time is
higher than that of DTC.

PHW Letter Shuttle Poker CI News20 KDD-10%
σopt 1,500 24,000 1,500 1,500 1,500 24,000 1,500

Proportion 0% 0% 98.42% 0% 15.76% 0% 97.35%

Table 7: Theσopt obtained by DTSVM on the medium-size data sets and the proportion of training
samples that flow to homogeneous leaves.
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PHW Letter Shuttle Poker CI News20 KDD-10%
1A1 DTSVM 1,500 24,000 1,500 1,500 1,500 24,000 1,500

RDSVM 1,500 24,000 1,500 24,000 6,000 24,000 1,500
1AO DTSVM 1,500 24,000 1,500 1,500 1,500 24,000 1,500

RDSVM 1,500 24,000 1,500 24,000 24,000 24,000 1,500

Table 8: Theσopt values derived by DTSVM and RDSVM on the medium-size data sets.

Data Set Training Mode 1,500 6,000 24,000
Letter 1A1 633 45 90

1AO 2,730 178 373
News20 1A1 1,631 665 757

1AO 7,056 2,952 3,365

Table 9: The DTSVM training times required for different ceiling sizes.

Data Set Training Mode 1,500 6,000 24,000
Letter 1A1 95.35% 96.61% 97.60%

1AO 95.71% 96.91% 97.66%
News20 1A1 67.02% 76.92% 83.22%

1AO 70.82% 79.06% 84.34%

Table 10: The DTSVM test accuracy rates that correspond to different ceiling sizes.

in any homogeneous leaves, DTSVM achieved very high speedup factors and NESV ratios on these
two data sets. The same fact also explains why DTSVM achieved such low NESVs, which even fell
below 1 on “Shuttle”. Note that this phenomenon occurs because decision trees group neighboring
samples into the same leaf. RDSVM, on the other hand, does not produce thesame effect because
the probability that all samples will carry the same label in the same randomly decomposed region
is extremely small.

The lack of homogeneous leaves is not the only reason for RDSVM’s poor performance in
training. Table 8 shows theσopt values derived by DTSVM and RDSVM. The results explain why
RDSVM achieved much smaller speedup factors and NESV ratios on “CI” and “Poker”.

Next, we examine the DTSVM results for the “Letter” and “News20” data setsin which the
optimal sizes Theσopt exceeded the size of the training component. Thus, the output DTSVM
classifier was trained on the full training component. Even so, DTSVM still achieved speedup
factors above 1 because it only trained lSVMs for all the parameter valueson leaves with a ceiling
size of 1,500, which took much less time than training them on the full training component. The
amount of time spent on higher ceiling sizes did not increase at a faster rate, because DTSVM only
trained a small number of lSVMs. Moreover, the lSVMs were trained with top-ranked parameters,
which tended to require less time than those trained with bottom-ranked parameters.
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Forest PPI KDD-full Webspam
σopt 1,500 1,500 1,500 1,500

Proportion 5.55% 1.64% 42.05% 80.63%

Table 11: Theσopt values obtained by DTSVM on the large-size data sets and the proportion of
training samples that flowed to homogeneous leaves.

Forest PPI KDD-full Webspam
1A1 DTSVM 1,500 1,500 1,500 1,500

RDSVM 96,000 1,500 1,500 96,000
1AO DTSVM 1,500 1,500 1,500 1,500

RDSVM 1,536,000 1,500 1,500 96,000

Table 12: Theσopt values obtained by DTSVM and RDSVM on the large-size data sets.

Table 9 shows the training times required for different ceiling sizes. We observe that DTSVM
spent most of its time on the leaves with the lowest ceiling size. In addition, Table 10 shows the test
accuracy rates corresponding to different ceiling sizes, assuming thatthe training was terminated at
those sizes. The results demonstrate the benefit of searching for theσopt because, if we terminated
the training at ceiling size 1,500 or 6,000, we would obtain significantly lower test accuracy rates.

Thus far, we have only discussed the DTSVM results for medium-size data sets. For complete-
ness, Table 11 shows theσopt values obtained by DTSVM on the large-size data sets, along with the
proportion of training samples that flowed to homogeneous leaves. In Table12, we show theσopt

values obtained by DTSVM and RDSVM. The results explain why RDSVM required much longer
training times and more NESVs for “Forest”, “PPI” and “Webspam”.

Since DTSVM’sσopt = 1,500 for all four data sets, we do not have any tables for the large-size
data sets correspond to Tables 9 and 10 for the medium-size data sets.

4. Generalization Error Bounds for the DTSVM Classifier

To provide a generalization error bound of DTSVM, we start with the following framework. LetRd

be the d-dimensional Euclidean space. We assume that a set of training examplesXn =
{(x1,y1), . . . ,(xn,yn)} is given, where(xk,yk)∈Rd×{−1,1} for k= 1, . . . ,n. The DTSVM method
produces a classifierh(x,π, f), in which π is a binary tree comprised ofL leaves,f = ( f1, . . . , fL),
and fi is related to the lSVM trained on leafi of π for i = 1, . . . ,L. The binary treeπ produces a
partition function that maps an input inRd to {1, . . . ,L}, and letπ(x) be the leaf thatx flows to.
On the other hand, the lSVM trained on leavei, i = 1, . . . ,L is expressed asfi ◦Φ, whereΦ maps
an input inRd to a Hilbert spaceH, and fi is a linear function fromH to R. Note that for a linear
functiong : H → R, there exists somew∈ H such that

g(z) = 〈w,z〉

for all z∈ H, and we define‖g‖= 〈w,w〉1/2 .
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Note that if π(x) = i, thenh(x,π, f) = sign( fi(Φ(x)). Let us define the functionfπ : Rd →
{−1,1} by

f π(x) = fπ(x)(Φ(x)).

It follows thath(x,π, f) = sign(fπ(x)).
Sometimes,Φ is only defined implicitly. That is, instead of specifying the functional form of

Φ, only the inner product ofΦ(u) andΦ(v) is specified as

〈Φ(u),Φ(v)〉= k(u,v),

whereu,v ∈ Rd , andk(·, ·) is a kernel function. In the remainder of this section, we assume that
the functionΦ is given and fixed.

Next, we define several notations used in this section.N is the set of natural numbers;R+ is
the set of positive real numbers;PL(Rd) is the class of all functions fromRd to {1, . . . ,L}; R (H)
is the class of all functions fromH to R; andL(H) is the class of alllinear functions fromH to R.
Moreover, ifT is a set, we defineTL = {(t1, . . . , tL) : ti ∈ T for i = 1, . . . ,L}; that is,TL comprises
all theL-tuples ofT ’s elements.

To provide a bound for the generalization error ofh(x,π, f), we need the standard notions of
shatter coefficients, margins and covering numbers, which are defined below. Further details can be
found in Vapnik (1995) and Cristianini and Shawe-Taylor (2000). First, we define the notion of the
shatter coefficient, which we use to measure the complexity of the partition functions corresponding
to binary decision trees. Informally, thenth shatter coefficient of a classG ⊆PL(Rd) is the maximum
number of ways in whichn points can be partitioned intoL parts by functions inG . Formally, we
have the following definition.

Definition 1 LetG ⊆ PL(Rd). For any n∈ N, the nth shatter coefficient ofG is

V(G ,n) = max
S⊆Rd,|S|=n

|{πS : π ∈ G}|,

whereπS is the function obtained by restrictingπ to the domain S.

Next, we extend the standard notion of the margin to a collection of margins, onefor each part
of a partition, in the following way.

Definition 2 Let f = ( f1, . . . , fL)∈ (R (H))L, π∈ PL(Rd), Xn ⊆Rd×{−1,1}, andγ= (γ1, . . . ,γL)∈
(R+)L. We say thatfπ has marginγ on Xn, or mg(fπ,Xn)≥ γ, if

y· fπ(x)≡ y· fi(Φ(x))≥ γi

for any i∈ {1, . . . ,L} and any(x,y) ∈ Xn with π(x) = i.

In addition, we adopt the following notion of a covering number proposed by Alon et al. (1997).
We use it to measure the complexity of the classifiers corresponding to lSVMs.Informally, a cover-
ing of a classF ⊆ R (H) of functions with respect to a setD of n inputs is a collection of functions
in R (H) such that any functionf ∈ F is covered by some functiong in the collection, in the sense
that their values are within some distanceη on all the inputs inD. The goal is to find the small-
est such collection for any setD of n inputs in some domainE. Formally, we define the covering
number as follows.
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Definition 3 Let η ∈ R+ and F ⊆ R (H). For a subset D⊆ H, let C (F ,D,η) be the smallest
collection of functions from D toR such that, for each f∈ F , we have g∈ C (F ,D,η) with | f (z)−
g(z)| ≤ η for each z∈ D. For E ⊆ H and n∈ N, we define the covering number ofF with respect
to E, n andη as

N(F ,E,n,η) = max
D⊆E,|D|=n

|C (F ,D,η)|.

4.1 Hard Margin Bounds

We have a setXn of n training examples drawn independently and at random according to the
distributionD. Moreover, we have a learned classifiersign(fπ), with π ∈ PL(Rd) andf ∈ (R (H))L,
which classifies all the training examples correctly with a large margin. Our objective is to bound the
generalization errorof the classifiersign(fπ), which is defined as the probability thatsign(fπ(x)) 6=
y, with (x,y) sampled according toD. The following lemma gives such a bound, which generalizes
a known result for SVMs (cf. Cristianini and Shawe-Taylor, 2000).

Lemma 4 LetG ⊆ PL(Rd), γ = (γ1, . . . ,γL) ∈ (R+)L, andF = F1× ·· ·×FL, whereFi ⊆ R (H)
for 1≤ i ≤ L. In addition, letD be a probability distribution onRd ×{−1,1}, and let n be a large
enough integer. Suppose a set of n samples Xn are drawn independently and at random according
to D, and consider any classifier sign(fπ), with π ∈ G and f ∈ F , such that mg(fπ,Xn) ≥ γ. Then,
with probability1−δ, the generalization error of mg(fπ) will be at most

2
n

[

L

∑
i=1

logN(Fi ,E,2n,γi/2)+ logV(G ,2n)+ log(2/δ)

]

,

where E= {Φ(x) : (x,y) ∈ supp(D)} and supp(D) is the support ofD.

We provide the proof in Appendix A, as it is rather lengthy and closely follows the standard
approach and that of Cristianini and Shawe-Taylor (2000). The idea isto show that the functions
fπ, with π ∈ G andf ∈ F , can be “well covered” by a small number of functions, so that a union
bound can be applied to provide an upper bound on the probability that ourclassifier has a large
generalization error.

Before proceeding further, we explain the meaning of Lemma 4. Suppose for someG and
F = F1×·· ·×FL, we can build a classifiersign(fπ) with π ∈ G andf ∈ F that has a large margin
and zero training error. Then, Lemma 4 gives us an upper bound on the generalization error of
sign(fπ) in terms of the complexity ofG andFi , where we measure the complexity ofG by its
shatter coefficientV(G ,2n) and the complexity of eachFi by its covering numberN(Fi ,E,2n,γi/2).
To obtain a small generalization error, we need to have aG with a smallV(G ,2n) and anFi with
a smallN(Fi ,E,2n,γi/2). However, this does not suggest that we can simply choose anyG andFi

with smallV(G ,2n) andN(Fi ,E,2n,γi/2) for any classification task. This is because we may not
be able to build a classifier fromG andFi to classify every training example correctly with a large
margin. For example, if we do not chooseG properly (say, by using a random partition), the training
examples in some parts of the partition may not be separated by SVMs with a largemargin. Our
main contribution is the discovery that decision trees are good partition functions when combined
with SVMs, since they allow a large margin and only require a short training time for lSVMs.

Lemma 4 states a general result for anyG and anyFi for 1≤ i ≤ L. We now consider our choice
of G andFi , which correspond to decision trees and SVMs respectively. Forβ ∈ R+, we define
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L(H,β) as the class of all linear functionsf ∈ L(H) with ‖ f‖ ≤ β. A bound can be obtained for the
covering number ofL(H,β) with respect toE, n andη, provided thatE is a bounded subset ofH
(see, for example, Bartlett and Shawe-Taylor, 1998). This shows that,although there is an infinite
number of functions inL(H,β), they can be covered by a small number of functions inR (H) with
respect to any set ofn points inE. As a result, the complexity of the classL(H,β) is low when
measured by its covering number.

Lemma 5 Letα,β,η ∈ R+ and let n∈ N. Consider any E⊆ H with ‖z‖ ≤ ρ for every z∈ E. Then,
there is a constant c such that

logN(L(H,β),E,n,η)≤ c
ρ2β2

η2 log2n.

We also defineBL(Rd) as the class of partition functions associated with binary trees containing
L leaves that partition the spaceRd into L axis-aligned parts, as described in Section 2. Clearly,
BL(Rd)⊆ PL(Rd). The following lemma provides a bound on thenth shatter coefficient ofBL(Rd).

Lemma 6 Let d,n,L ∈ N. Then

V(BL(Rd),n)≤ L log(dnL2).

Proof Consider anyn-element subsetS⊆ Rd. We need to cutS into L parts. Initially, there is only
one part inS. We perform the cut operation iteratively in the following way. Each time, we choose
one part from at mostL−1 existing parts ofSand cut it into two parts. To do this, we pick one of
thed dimensions and at most one of then−1 cutting hyperplanes on that dimension. Thus, there
are at most(L−1)d(n−1)≤ dnL ways to perform one cut operation. To obtainL parts, we repeat
the cut operationL-1 times; hence, the number of possible partitions is at most(dnL)L−1 ≤ (dnL)L.
Finally, there areL! ways to order theL parts of each partition, yielding the following result:

V(BL(Rd),n)≤ (dnL)L · (L!)≤ (dnL2)L.

From the above three lemmas, we immediately derive the following theorem.

Theorem 7 Letρ ∈ R+, βi ∈ R+ for 1≤ i ≤ L, γ = (γ1, . . . ,γL) ∈ (R+)L, andF = L(H,β1)×·· ·×
L(H,βL). In addition, letD be a probability distribution onRd ×{−1,1} such that‖Φ(x)‖ ≤ ρ
for every(x,y) ∈ supp(D), and let n be a large enough integer. Suppose a set Xn of n samples
are drawn independently and at random according toD, and consider any classifier sign(fπ), with
π ∈ BL(Rd) and f ∈ F , such that mg(fπ,Xn) ≥ γ. Then, with probability1− δ, the generalization
error of sign(fπ) will be at most

c
n

(

L

∑
i=1

ρ2β2
i

γ2
i

log2n+L log(dnL2)+ log(1/δ)

)

,

for some constant c.
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From Theorem 7, we conclude that if a classifier partitions the training data set into a small
number of parts (i.e.,L is sufficiently small), and it classifies each training sample with a large
margin (i.e.,γi is large for eachi), then the classifier is likely to have a small generalization error.
However, this theorem does not indicate how to find a good value forL because, in general, it is
hard to know howL affects the margins and the generalization error bound. Instead of being led by
any analytical result, the DTSVM learning algorithm takes a data driven approach to find a goodL.

Note that the bound in Theorem 7 has a similar form to the generalization errorbound of the
perceptron decision trees proposed by Bennett et al. (2000). The maindifference is that in their
bound,γi is the margin at theith internal node and the sum is over all the internal nodes. We remark
that it is hard to tell which one of these two bounds is better because, in general, we do not know
their actual values for different learning tasks.

4.2 Soft Margin Bounds

Note that Theorem 7 works in the case where the training dataXn can be separated with a mar-
gin vector γ. If the data is non-separable or noisy, we need to consider the notion of asoft
margin (Cristianini and Shawe-Taylor, 2000). Suppose we haveπ ∈ PL(Rd), which partitions

Xn into L parts: X1
n , . . . ,X

(L)
n , whereX(i)

n ≡ {(x,y) ∈ Xn : π(x) = i}, and let us denoteX(i)
n =

{(xi,1,yi,1), . . . ,(xi,ni ,yi,ni )} for someni ∈ N, for 1 ≤ i ≤ L. In addition, suppose we havef =
( f1, . . . , fL) ∈ L(H,β1)× ·· · ×L(H,βL), whereβi ∈ R+ for 1 ≤ i ≤ L. Then, we can define the
margin slack vector offi as follows.

Definition 8 Let γ = (γ1, . . . ,γL) ∈ (R+)L. For 1≤ i ≤ L and1≤ j ≤ ni , let

ξi, j = max(0,γi −yi, j · fi(Φ(xi, j))).

The definition reflects how far the elements ofX(i)
n are from having a marginγi . Therefore, for

1≤ i ≤ L, we call the vectorξi = (ξi,1, . . . ,ξi,ni ) the margin slack vector offi with respect toπ and
γi overXn.

To find a bound for the generalization error ofsign(fπ) in the case of such a soft margin, we
follow the approach of Shawe-Taylor and Cristianini (1999, 2002), which works for the case of
L = 1. The idea is to map points ofH to a higher dimensional spaceĤ so that, for eachi, the image
of X(i)

n can be separated by some functionf̂i with the desired margin. Theorem 7 can then be applied.
To find eachf̂i , we present the following lemma, which is a simple extension of Shawe-Taylor &
Cristianini’s approach. For completeness, we provide the proof in Appendix B.

Lemma 9 Suppose that‖Φ(x)‖ ≤ ρ for any (x,y) ∈ supp(D). Then, there exists a spacêH, a
mappingτρ : H → Ĥ, and a sequencêf = ( f̂1, . . . , f̂L) of L functions such that the following four
facts hold.

1. For any(x,y) ∈ supp(D), ‖τρ(Φ(x))‖ ≤
√

2ρ.

2. For 1≤ i ≤ L, f̂i ∈ L(Ĥ, β̂i) with β̂i ≤
√

β2
i +‖ξi‖2/ρ2.

3. For 1≤ i ≤ L, any(xi, j ,yi, j) ∈ X(i)
n will be classified correctly with a margin

yi, j · f̂i(τρ(Φ(xi, j)))≥ γi .
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4. For 1≤ i ≤ L and for any(x,y) /∈ Xn, f̂i(τρ(Φ(x))) = fi(Φ(x)).

According to this lemma, we define

Ψ = τρ ◦Φ, and

f̂π(x) = f̂π(x)(Ψ(x)).

Then, we know that̂fπ has a margin(γ1, . . . ,γL) onXn. Moreover, for(x,y) ∈ supp(D), we have

‖Ψ(x)‖ ≤ ‖τρ(Φ(x))‖ ≤
√

2ρ.

Now we can apply Theorem 7, with the spaceH replaced byĤ and the mappingΦ replaced byΨ,
to obtain a bound on the generalization error ofsign(f̂π), but with the quantityρ2β2/γ2 replaced by

2ρ2(β2
i +‖ξi‖2/ρ2)

γ2
i

=
2(ρ2β2

i +‖ξi‖2)

γ2
i

.

Finally, to bound the generalization error ofsign(fπ), by Lemma 9, we know that for any(x,y) /∈
Xn, sign(fπ(x)) = sign(f̂π(x)); therefore,sign(fπ) andsign(f̂π) have the same generalization error
for inputs that do not fall withinXn. However, it is possible that the elements ofXn misclassified by
sign(fπ) take a nontrivial measure in D, which results insign(fπ) having a larger generalization error
overD thansign(f̂π). As suggested by Shawe-Taylor and Cristianini (2002), this can be handled
by modifyingsign(fπ) on the misclassified elements inXn. We call this new function theXn-filtered
version ofsign(fπ). Then, we have the following theorem.

Theorem 10 Letρ∈R+, βi ∈R+ for 1≤ i ≤ L, γ= (γ1, . . . ,γL)∈ (R+)L, andF =L(H,β1)×·· ·×
L(H,βL). In addition, letD be a probability distribution onRd ×{−1,1} such that‖Φ(x)‖ ≤ ρ
for every(x,y) ∈ supp(D), and let n be a large enough integer. Suppose a set of n samples, Xn,
are drawn independently and at random according toD; and consider anyπ ∈ B(Rd) and f =
( f1, . . . , fL) ∈ F , such that for i≤ i ≤ L, fi has a margin slack vectorξi with respect toπ andγi over
Xn. Then, with probability1− δ, the generalization error of the Xn-filtered version of sign(fπ) will
be at most

c
n

(

L

∑
i=1

(

ρ2β2
i +‖ξi‖2

γ2
i

)

log2n+L log(dnL2)+ log(1/δ)

)

,

for some constant c.

Theorem 10 shows that if we can build a classifier with a smallL and a small‖ξi‖ for every
i, then the first two terms inside the parentheses of the bound will be small, and the classifier is
likely to have a small generalization error. As with Theorem 7, this does not suggest a way to
choose the numberL. Instead, the learning algorithm in Section 2 finds a goodL in a data-driven
manner. To facilitate a better understanding of the bound, we provide numerical values for the two
terms derived by DTSVM classifiers. We also compare the numerical valueswith related quantities
derived by global SVM (gSVM) classifiers, that is, SVM classifiers builton the full training data
set.
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Data Set 1A1 1AO
T1 T2 T1 T2

PHW 1,699 55 5,769 55
Shuttle 1,152,495 110 2,756,183 110

CI 202,354 481 202,354 481
Poker 12,253 139 48,893 139

KDD-10% 1,297,678 287 64,238 287

Table 13: The values of two leading termsT1 andT2 that appear in the generalization error bound
for DTSVM classifiers. Training types = 1A1 and 1AO.

4.3 A Numerical Investigation

Note that in Theorem 10,βi andγi are interdependent quantities for 1≤ i ≤ L, so we can fix one
of them and try to optimize the other. In the formulation of the SVM optimization problem, the
objective is to minimizeβi under the constraint thatγi = 1 for 1≤ i ≤ L. Under this convention, the
bound in Theorem 10 becomes

c
n

(

L

∑
i=1

(

ρ2β2
i +‖ξi‖2) log2n+L log(dnL2)+ log(1/δ)

)

. (1)

Recall that a DTSVM classifier is associated with a tree withL leaves and each leaf is associated
with an lSVM. If the tree has only one leaf (i.e.,L = 1), then the DTSVM classifier will be reduced
to a gSVM classifier, which has the following generalization error bound

c
n

((

ρ2β2+‖ξ‖2) log2n+ log(1/δ)
)

(2)

(cf. Cristianini and Shawe-Taylor, 2000).
Let us compare the terms that appear in parentheses in (1) and (2). The second termL log(dnL2)

in (1) is the shatter coefficient of the partition functionπ associated with a binary tree. We claim that
the value of (1) achieved by DTSVM is dominated by the first term, which is the sum ofL quantities
associated withL leaves of a binary tree, as opposed to the single quantity in (2). Moreover, the
first term in (1) achieved by DTSVM is comparable to the corresponding quantity in (2) achieved
by gSVM. The following results confirm the above two claims.

To validate the first claim, we compare the two leading terms in parentheses in (1). The first
term isT1 = ∑L

i=1(ρ2β2
i +‖ξi‖2) log2n and the second term isT2 = L log(dnL2). The results, shown

in Table 13, confirm the claim thatT1 far exceedsT2 and (1) is dominated byT1. Note that we
computeT1 under the following assumptions. (i) When the data set contains more than two labels,
T1 is taken as the average of the quantities over all classifiers. (ii) The value of ρ is always 1 when
RBF kernels are involved. (iii) The value of‖ξi‖2 is obtained from the solution to the quadratic
programming optimization problem. Further details can be found in Cristianini andShawe-Taylor
(2000), Section 6.1.2.

To validate the second claim, we compareR= ∑L
i=1(ρ2β2

i +‖ξi‖2) andS= ρ2β2+‖ξ‖2, which
are derived, respectively, from the first terms in the generalization error bounds for DTSVM and

2964



TREE DECOMPOSITION FORLARGE-SCALE SVM PROBLEMS

Data Set 1A1 1AO
S R R/L S R R/L

PHW 74 133 17 326 450 56
Shuttle 114,786 75,630 5,402 593,967 180,990 12,928

CI 16,422 13,599 257 16,422 13,599 257
Poker 370 874 49 2,328 3,486 194

KDD-10% 100,227 70,796 2,212 5,089 3,505 110

Table 14: The values ofS andR, which appear in the generalization error bound for gSVM and
DTSVM classifiers respectively, and the values ofR/L. Training types = 1A1 and 1AO.

gSVM classifiers (i.e., in (1) and (2)) with the common factor log2n removed from them. To ensure
a meaningful comparison betweenRandS, both classifiers have to take the same(C,γ) values, which
we specify as the optimal values for gSVM. As a result, we had to train new DTSVM classifiers for
some data sets, using the same decomposition schemes (i.e., the same binary treesand same ceiling
sizes) as the old classifiers, but different(C,γ) values.

Table 14 shows the values ofS, R and R/L, derived from five data sets. The “Letter” and
“News20” data sets are not included in the table because the DTSVM classifier using the designated
values of(C,γ) would be the same as the gSVM on those data sets. It is clear that the values ofR
are as small as (less than 150), or of the same order of magnitude as, thoseof the correspondingS.
In fact, S can be viewed as the slack-to-margin ratio andR as the sum of such ratios. The results
show that each lSVM generates smaller slack-to-margin ratios than the corresponding gSVM, while
the sum of lSVM ratios is comparable to the corresponding gSVM ratio. This explains why the test
accuracy rates of DTSVM classifiers are comparable to those of gSVM classifiers.

5. Conclusion

We have proposed a method that uses a binary tree to decompose a given data space and trains an
lSVM on each of the decomposed regions. The resultant DTSVM classifiercan be constructed in a
much shorter time than the gSVM classifier, and still achieve comparable accuracy rates to the latter.
We also provide a generalization error bound for the DTSVM classifier. Using some data sets to
compute the theoretical bounds for gSVM and DTSVM classifiers, we find that DTSVM classifiers
generate comparable error bounds to those generated by gSVM classifiers. This finding explains
why DTSVM classifiers can achieve more or less the same accuracy rates as gSVM classifiers.

Appendix A. Proof of Lemma 4

Let G ⊆ PL(Rd), γ = (γ1, . . . ,γL) ∈ (R+)L, andFi ⊆ R (H) for i = 1, . . . ,L. The samples inXn are
drawn independently and at random according to the distributionD.

Our goal is to find an upper bound for the probability of the following event.
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• A1: there existπ ∈ G and f = ( f1, . . . , fL) ∈ F1 × ·· · × FL such thatmg(fπ,Xn) ≥ γ and
err(fπ,D)> ε, whereerr(fπ,D) is the probability thatsign(fπ(x)) 6= y with (x,y) being sam-
pled according toD.

Note thaterr(fπ,D) is the generalization error ofsign(fπ(x)). We relate eventA1 to another
eventA2 in which an additional set ofn independent samples,X̂n, are drawn at random according to
D and the empirical error ofsign(fπ(x)) overX̂n is considered.

• A2: there existπ ∈ G and f = ( f1, . . . , fL) ∈ F1 × ·· · × FL such thatmg(fπ,Xn) ≥ γ and
err(fπ, X̂n)> ε/2, whereerr(fπ, X̂n) = |{(x,y) ∈ X̂n : sign(fπ(x)) 6= y}|/n.

Following a standard argument (Vapnik, 1995), one can relate the probability of A1 with that of
A2. More precisely, we have

Pr
Xn,X̂n

[A2]≥ Pr
Xn,X̂n

[A2∧A1] = Pr
Xn
[A1] · Pr

Xn,X̂n

[A2|A1] ,

and by Chebyshev’s inequality, one can show that

Pr
Xn,X̂n

[A2|A1] = 1− Pr
Xn,X̂n

[¬A2|A1]≥ 1−1/(nε2)≥ 1/2,

for a large enoughn. Consequently, we have

Pr
Xn
[A1]≤

(

1/ Pr
Xn,X̂n

[A2|A1]

)

· Pr
Xn,X̂n

[A2]≤ 2· Pr
Xn,X̂n

[A2] .

To find a bound for PrXn,X̂n
[A2], let us consider the following event,A3, where a set of 2n samples,

X2n, are drawn independently and at random according toD, andX2n is further divided randomly
into two disjoint parts of equal size:W1 andW2.

• A3: there existπ ∈ G and f = ( f1, . . . , fL) ∈ F1 × ·· · × FL such thatmg(fπ,W1) ≥ γ and
err(fπ,W2)> ε/2.

We observe that the distribution of(Xn, X̂n) is identical to that of(W1,W2) over randomX2n;
consequently we have

Pr
X2n,W1,W2

[A3] = Pr
Xn,X̂n

[A2].

The next step is to find a bound for PrX2n,W1,W2[A3].
Let G(X2n) be the family of functions ofG restricted to the domain{x : (x,y) ∈ X2n}; and for

π ∈ G(X2n), let

Bπ
γ/2(X2n) = C

(

F1,Φ(X(1)
2n ),γ1/2

)

×·· ·×C
(

FL,Φ(X(L)
2n ),γL/2

)

,

whereΦ(X(i)
2n ) = {Φ(x) : (x,y) ∈ X2n,π(x) = i}. Forg= (g1, . . . ,gL) ∈ Bπ

γ/2(X2n), let gπ(x) = gi(x)

for x ∈ Φ(X(i)
2n ) for 1≤ i ≤ L. Then, forπ ∈G(X2n) andf = ( f1, . . . , fn) ∈ F1×·· ·×FL, there exists

g= (g1, . . . ,gL) ∈ Bπ
γ/2(X2n) such that for any(x,y) ∈ Xn, if π(x) = i, then

| fi(Φ(x))−gi(Φ(x))| ≤ γi/2.
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For suchfπ andgπ, mg(fπ,W1)≥ γ implies thatmg(gπ,W1)≥ γ/2; anderr(fπ,W2)≥ ε/2 implies that
errγ/2(gπ,W2)≥ ε/2, whereerrγ/2(gπ,W2) is the proportion of(x,y) in W2 for whichgi(x)< γi/2 if
π(x) = i. Therefore, the probability of the eventA3 cannot exceed that of the following eventA4.

• A4: there existπ ∈G(X2n) andg∈Bπ
γ/2(X2n) such thatmg(gπ,W1)≥ γ/2 anderrγ/2(gπ,W2)≥

ε/2.

To bound the probability ofA4, let us first consider any fixedX2n, π, andg, and consider an event,
denoted asA4(X2n,π,g), over the random division ofX2n intoW1 andW2, such thatmg(gπ,W1)≥ γ/2
anderrγ/2(gπ,W2)≥ ε/2. Note that for the eventA4(X2n,π,g) to occur, there are at most 2n−(ε/2)n
elements ofX2n which can be separated bygπ with marginγ/2, and these elements must contain all
then elements ofW1. This implies that

Pr
W1,W2

[A4(X2n,π,g)]≤
(2n−(ε/2)n

n

)

(2n
n

) ≤
( n

2n

)(ε/2)n
= 2−εn/2.

Next, let us fix anyX2n and consider an event, denoted asA4(X2n), over the random division ofX2n

intoW1 andW2, such that the eventA4(X2n,π,g) occurs for someπ ∈ G(X2n) andg∈ Bπ
γ/2(X2n). By

a simple union bound, we have

Pr
W1,W2

[A4(X2n)]≤ ∑
π∈G(X2n)

∑
g∈Bπ

γ/2(X2n)

2−εn/2 = |G(X2n)| · |Bπ
γ/2(X2n)| ·2−εn/2.

Since|X2n|= 2n, we have|G(X2n)| ≤V(G ,2n). Moreover,
∣

∣

∣
Bπ

γ/2(X2n)
∣

∣

∣
= ∏

1≤i≤L

∣

∣

∣
C
(

Fi ,X
(i)
2n ,γi/2

)∣

∣

∣

≤ ∏
1≤i≤L

N
(

Fi ,E, |X(i)
2n |,γi/2

)

≤ ∏
1≤i≤L

N(Fi ,E,2n,γi/2),

whereE = {Φ(x) : (x,y) ∈ supp(D)}. Therefore, we have

Pr
W1,W2

[A4(X2n)]≤V(G ,2n) ·
(

∏
1≤i≤L

N(Fi ,E,2n,γi/2)

)

·2−εn/2.

Note that by randomizing the selection ofX2n, the expected value of PrW1,W2[A4(X2n)] is just the
probability ofA4, over the random selection ofX2n and its random division intoW1 andW2, from a
simple probability fact.1 As a result, we have

Pr
X2n,W1,W2

[A4] = E
X2n

[

Pr
W1,W2

[A4(X2n)]

]

≤ V(G ,2n) ·
(

∏
1≤i≤L

N(Fi ,E,2n,γi/2)

)

·2−εn/2.

1. SupposeA is an event over a joint distribution(X,W). Let A(X) denote the eventA conditioned onX = X. Then,
Pr(X,W)∈(X,W)[A] = ∑Z PrX∈X [X = Z] ·PrW∈W [A(Z)] = EX∈X [PrW∈W [A(X)]].
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Finally, by combining all the bounds derived so far, we obtain

Pr
Xn
[A1]≤ 2· Pr

X2n,W1,W2
[A4]≤ 2·V(G ,2n) ·

(

∏
1≤i≤L

N(Fi ,E,2n,γi/2)

)

·2−εn/2,

which is at mostd if

ε =
2
n

(

logV(G ,2n)+ ∑
1≤i≤L

logN(Fi ,E,2n,γi/2)+ log(2/δ)

)

.

This proves the lemma.

Appendix B. Proof of Lemma 9

We begin by describing the spaceĤ and the mappingτρ : H → Ĥ. Consider the inner product space

I (H) = { f ∈ R (H) : f (x) 6= 0 for a finite number ofx ∈ H},
where the inner product off andg in I (H) is defined as〈 f ,g〉= ∑z f (z)g(z). Let

Ĥ = H× I (H).

Define the functionτρ : H → Ĥ by
τρ(z) = (z,ρ ·δz),

whereδz is the function defined by

δz(z
′) =

{

1 if z= z′,
0 otherwise.

Then, the first item of the lemma holds, since for(x,y) ∈ supp(D), ‖Φ(x)‖ ≤ ρ; thus,

‖τρ(Φ(x))‖2 = ‖Φ(x)‖2+‖ρδΦ(x)‖2 ≤ 2ρ2.

Next, we prove the existence off̂ = ( f̂1, . . . , f̂L). SinceI (H) is an inner product space, each
of its elements defines a linear function onI (H). Hence, for( f ,g) ∈ L(H)× I (H), the function
( f ,g) : Ĥ → R, defined by

( f ,g)(z,h) = f (z)+ 〈g,h〉 ,
for (z,h) ∈ Ĥ, is a linear function. Now, for 1≤ i ≤ L, we can definêfi : Ĥ → R by

f̂i = ( fi ,gi/ρ),

wheregi ∈ I (H) is defined by

gi =
ni

∑
j=1

ξi, j ·yi, j ·δΦ(xi, j ).

Since fi ∈ L(H,βi), there existswi ∈ H with ‖wi‖ ≤ βi such thatfi(z) = 〈wi ,z〉. It follows that for
ẑ∈ Ĥ,

f̂i(ẑ) = 〈ŵi , ẑ〉 ,
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whereŵi = (wi ,gi/ρ), and

‖ŵi‖2 = ‖wi‖2+
ni

∑
j=1

|ξi, j |2/ρ2 ≤ β2
i +‖ξi‖2/ρ2.

Therefore,f̂i ∈ L(Ĥ, β̂i), whereβ̂i =
√

β2
i +‖ξi‖2/ρ2, and the second item of the lemma holds.

Furthermore, for any(xi, j ,yi, j) ∈ X(i)
n , we have

yi, j · f̂i(τρ(Φ(xi, j))) = yi, j · fi(Φ(xi, j))+yi, j · (ξi, j ·yi, j)

= yi, j · fi(Φ(xi, j))+ξi, j

≥ γi ,

by the definition ofξi, j . Thus, the third item of the lemma also holds.
Finally, for 1≤ i ≤ L and for any(x,y) /∈ Xn, we have

f̂i(τρ(Φ(x))) = fi(Φ(x))+
ni

∑
j=1

ξi, j ·yi, j ·δΦ(xi, j )(Φ(x)) = fi(Φ(x)).

Thus, the fourth item of the lemma holds as well. This concludes the proof of Lemma 9.
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