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Abstract

Kernel techniques have long been used in SVM to handle ln@sseparable problems by trans-
forming data to a high dimensional space, but training asting large data sets is often time
consuming. In contrast, we can efficiently train and testmlaecger data sets using linear SVM
without kernels. In this work, we apply fast linear-SVM medls to the explicit form of poly-
nomially mapped data and investigate implementation &sdée approach enjoys fast training
and testing, but may sometimes achieve accuracy close tofthaing highly nonlinear kernels.
Empirical experiments show that the proposed method isuligaf certain large-scale data sets.
We successfully apply the proposed method to a natural Eggyprocessing (NLP) application by
improving the testing accuracy under some training/tgstjpeed requirements.

Keywords: decomposition methods, low-degree polynomial mappingeél€unctions, support
vector machines, dependency parsing, natural languagegsing

1. Introduction

Support vector machines (SVMs) (Boser et al., 1992; Cortes andi/&#95) have been popular
for data classification. An SVM often maps data to a high dimensional spacthan employs

kernel techniques. We refer to such an approach as nonlinear SNMifig nonlinear SVM is usu-
ally performed through the use of popular decomposition methods. Hovibese decomposition
approaches require considerable time for large data sets. In additidesthng) procedure is slow
due to the kernel calculation involving support vectors and testing insance

For some applications with data in a rich dimensional space (e.g., documesificii®n),
people have shown that testing accuracy is similar with/without a nonlinearningappdata are not
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mapped, recently some methods have been proposed to efficiently train mgexhdata sets. We
refer to such cases as linear SVM.

Among the recent advances in training large linear SVM, Hsieh et al. j26i68uss decom-
position methods for training linear and nonlinear SVMI i the number of training data, is
the average number of non-zero features per instance, and eaeh &ealuation take®(n) time,
then the cost per decomposition iteration for nonlinear SVKA(ils1). Taking the property of linear
SVM, Hsieh et al.'s approach runs one iteration in o@i§n). If the number of iterations is not
significantly more than that for the nonlinear case, their method is very effi@etraining linear
SVM.

Motivated by the abov®(In) andO(n) difference, in this work, we investigate the performance
of applying linear-SVM methods to low-degree data mappings. By consgithaexplicit form of
the mapping, we directly train a linear SVM. The cost per decomposition iteriatdm), wheren
is the new average number of non-zero elements in the mapped veatct. [H, the new strategy
may be faster than the training using kernels.

Currently, polynomial kernels are less widely used than the RBF (Gajgsiarel, which maps
data to an infinite dimensional space. This might be because under similargrairdriesting cost,
a polynomial kernel may not give higher accuracy. We show for sortee tlze testing accuracy
of using low-degree polynomial mappings is only slightly worse than RBRrhirting/testing via
linear-SVM strategies is much faster. Therefore, our approach takestages of linear methods,
while still preserves a certain degree of nonlinearity. Some early worls @ertz and Griffin,
2005; Jung et al., 2008; Moh and Buhmann, 2008) have employed thisnidieair experiments.
Here we aim at a more detailed study on large-scale scenarios.

An exception where polynomial kernels have been popular is NLP (hdéunguage process-
ing). Some have explored the fast calculation of low-degree polynomiatleto save the testing
time (e.g., Isozaki and Kazawa, 2002; Kudo and Matsumoto, 2003; Goldiner Elhadad, 2008).
However, these works still suffer from the slow training because ofapplying some recently
developed training techniques.

This paper is organized as follows. We introduce SVM in Section 2. In Se8tiwve discuss the
proposed method for efficiently training and testing SVM for low-degrdynmonial data mappings.
A particular emphasis is on the degree-2 polynomial mapping. Section 4npsdbe empirical
studies. We give an NLP application on dependency parsing in Section BcluSmns are in
Section 6.

Notation: we list some notation related to the number of features.

n: number of features (dimensionality of dat&)e R" is theith training instance

n;: number of non-zero feature valuesxf

n: average number of non-zero elementsgjirsee (9)

A: average number of non-zero elements in the mapped vector

fi: number of non-zero elements in the weight veetor

2. Linear and Nonlinear SVM

Assume training instance-label pairs &rgyi), i = 1,...,1, wherex; € R" andy; € {1,—1}. We
consider the following SVM problem with a penalty paraméter O:

.1 |
min éWTW+CziZlmax(l—inT(p(xi),O). 1)
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The functiong(x) maps an instance to a higher dimensional space for handling linearly inbépar
data. We refer to such a setting as nonlinear SVM. For some applica@ppf)s—= x can already
properly separate data; we call such cases linear SVM. Many SVM stadisidew x; + binstead
of w'x; in (1). In general this bias terimdoes not affect the performance much, so here we omit it
for the simplicity.

Due to the high dimensionality af(x) and the possible difficulty of obtaining the explicit form
of @(x), SVM is often solved through the dual problem with the kernel trick:

. 1
min Za' Qa—e'a
a 2
subject to o <C,i=1,....1, 2)

whereQij = yiy;iK (i, Xj) = yiy;@(xi) To(xj) ande=[1,...,1]T. K(xi,X;) is called the kernel func-
tion anda is the dual variable.

The matrixQ in the dual problem (2) is dense and may be too large to be stored in the compute
memory. Currently, decomposition methods (e.g., Joachims, 1998; Keeaihi 2001; Chang and
Lin, 2001) are the major approach to solve (2). However, if linear SVMbisixlered, we can more
easily solve both the primal and the dual problems. Early studies (e.g., BEmgaand Musicant,
1999; Ferris and Munson, 2003) have demonstrated that many traditistraization methods can
be applied. They focus on data with many instances but a small numbertofefea Recently,
an active research topic is to train linear SVM with both large numbers of icessaand features
(e.g., Joachims, 2006; Shalev-Shwartz et al., 2007; Bottou, 2007; etsiéh 2008; Langford et al.,
20009).

3. Using Linear SVM for L ow-degree Polynomial Data M appings

In this section, we discuss the methods and issues in training/testing loweddagae mappings
using linear SVM. We are interested in when the training via linear-SVM tedciesids faster than
nonlinear SVM. We put an emphasis on the degree-2 polynomial mapping.

3.1 Low-degree Polynomial Mappings
A polynomial kernel takes the following form
K(xi,xj) = (¥ xj +1)¢, €©)
wherey andr are parameters arntis the degree. The polynomial kernel is the product between two
vectorsg(x;) and@(x;). For example, il = 2 andr = 1, then
OX) = [1,/2yX1, .., /20, YOG, - YXG, V2YXaXa, -,V 2Yn 1% (4)

The coefficienty’2 in (4) is only used to make(x;)Tg(x;) have a simple form. Without using
kernels, we can consider more flexible mapping vectors. For examgle, If, removingy/2 in (4)
results in a simple mapping vector:

OX) = [L,X1, ..., X0, X2, .. X2, X1X2, . Xn_1%n] - (5)
For the polynomial kernel (3), the dimensionalityqtk) is

(n+d)(n+d—1)---(n+1)

C(n+d,d) = i ,
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which is obtained by counting the number of terms in (3).

3.2 Training by Linear SYM Methods

The training time for SVM depends on the number of data instances and thesnofrieatures.
Due to the high dimensionality a(x), we must judge whether it is better to choose an explicit
mapping or an implicit way by kernels. We explore this issue by investigatingffieesthce between
applying decomposition methods to solve the dual problem of linear and nanf\évi. Though
many optimization methods have been applied to train SVM, we discuss decomposéibods
because of the following reasons. First, they are the major approadomiinear SVM. Second,
efficient decomposition methods for linear SVM have been developedKkisigh et al., 2008).

A decomposition method iteratively updates a small subset of variables. Wgaleothe situa-
tion of updating one variable at a timdf a is the current solution and tlth component is selected
for update, then we minimize the following one-variable problem:

min %(a+da)TQ(a+da)—eT(a+da)

= %Qiidz + (Qu — e);d + constant (6)
subject to a+d<C.

This minimization is easy, but to construct (6), we must calculate

(Qa—e)i= Z',-:lQijGj —1= le:l)’inK(Xiaxj)aj -1 (7)

If each kernel element cos@(n), wheren is the average number of non-zero features, then (7)
needs0(In) operations.
If using the explicit mapping vectors, we can calculg@e — e); by

| |
ijlQijGj —1= inT(p(xi) —1, wherew = zj:lyjaj(p(xj). (8)

If wis available, (8) require®(fi) operations, whera i5 the average number of non-zero elements
in @(xi), Vi. To maintainw, Hsieh et al. (2008) use

W w+ i (al®— o? p(xi),

so the cost is als®(f). Therefore, the above discussion indicates the tradeoff bet@den and
O(fA) cost by implicit and explicit mappings, respectively.

Practical implementations of decomposition methods involve other issues. &opk if us-
ing the kernel trick, we may develop better techniques for selecting theingoviariable at each
iteration. Then the number of iterations is smaller. More details can be founsiéhldt al. (2008,
Section 4). Nevertheless, checki®@g n) andO(fA) can roughly indicate if using an explicit mapping
leads to faster training.

1. If using standard SVM with the bids the dual form contains an equality and at least two variables must Isédeon
ered.
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3.3 Number of Non-zero Features per Instance

From the discussion in Section 3.2, it is important to know the valuéthe input data are dense,
then the number of non-zero elementspiix) is O(n%), whered is the degree of the polynomial
mapping.

If the input data are sparse, the number of non-zero elements is smalléhé@dimensionality.
Assumen; is the number of non-zero elements of ttletraining instance. Then the average number
in x;j Viis

= n1+-|--+n|. ©)

If d =2, the average number of non-zero elementgig), Vi is

2
|Z . ~T 'y 1"2' frTZ—i-ZflIZ::l(ni_ﬁ)Z, (10)

The second termin (10) is the variancen@;‘. ..,n;. Ifthe variance is small, comparing andn? /2
can possibly indicate if one should train a linear or a honlinear SVM. In Sedtiave give more
analysis on real data.

n.+2 n.+1

3.4 Implementation | ssues

Due to the high dimensionality af(x;), some implementation issues must be addressed. To begin,
we discuss various ways to handle the new d&ta),...,@(X|). A vector@(x) now contains terms
like x;Xs, Which can be calculated using We consider three methods:

1. Calculate and storg@x1), ..., ®(X|) as the new input data.

2. Usexy, ...,X as the input data and calculate @lki), ..., @(x;) before training.

3. Usexi, ...,X as the input data and calculapg;) in a training algorithm (e.g., decomposition
method).

These methods have advantages/disadvantages. The first methodd®egime any modification

of linear-SVM solvers, but needs a lar@€lA) disk/memory space to stoggx;), Vi. The second
method also needs extra memory spaces, but avoids the long time for loatirfgoda disk. The

third method does not need extra memory, but requires some modifications détbmposition
implementation. That is, we need to calculgte;) in (8). These three methods are useful under
different circumstances. In Section 4.3, we experimentally show thatatarwlith not too largea,

the third way is the fastest. Althougitx;) Vi can be stored in memory, accessing data from memory
to cache and then CPU may be slower than performing the calculation. HoWaan application

with very largen and very smalh, we demonstrate that the first or the second method may be more
suitable. See the discussion later in this section.

While we may avoid storing(x;), one memory bottleneck remains. The vecstohas a huge
number ofO(n%) components. If some featuresa(;), Vi are zero, their corresponding elements
in w are useless. Hence we can implement a sparge save the storage. In the following we
analyze the possibility of having a spamséy consideringd = 2 and assuming that features of an
instance have an equal opportunity to be zeros. The probabilityxthatx;)s is zero for allg(x;),

i=1,...lis
I ni(n—1)
M5 ).
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Note that;(n; — 1) /n(n— 1) is the probability thatx; ); (x;)s is non-zero. Then the expected number
of non-zero elements W can be approximated by

Cn+2,2)— n(nz_ d M. (1— nr;E:__ll))> , (11)

wheren(n—1)/2 is the number ok xs terms in (4). This number is usually closeGtn+ 2,2) due
to the product of values in (11). Moreover, this estimate is only accurate if features arpendent.
The assumption may hold for data sets with features from bitmaps or wordefnegs, but is
wrong for data with exclusive features (e.g., binary representatiomofranal feature). For data
with known structures of features, in Section 4.2 we use real examples toatkifiow to more
accurately estimate the numbenat non-zero elements.

In Section 5, we present an example of using a sparséhe dimensionality of the input data
isn=46,155. Ifd = 2, then storingv as a dense vector takes almost 20 GBytes of memory (as-
suming double precision). This problem has a very sma# 13.3,Vi. Many X, xs terms are zero in
all @(x),i =1,...,I, sow is very sparse. However, a naive implementation can be very inefficient.
Assumen’is the number of non-zero elementsvifh where for this example = 1,438 456. Ac-
cessing an element in a sparse vector requires an expéd@iydinear search. We can use a hash
table to storew, but experiments show that the access timeva$ still high. If @(x;), Vi can be
stored in memory, we construct a hash mapping ftos) to j € {1,...,Ai} and re-generate training
data using feature indejx That is, we construct a condensed representatiog(fey, Vi and train a
linear SVM with a densev € R. The training is much more efficient because we can easily access
any element ofv. In prediction, for any testing instangewe use the same hash table to conduct the
inner productv’ @(x). This strategy corresponds to the first/second methods in the above dtiscuss
of handlingg(x;) Vi.

The above technique to condenge;) has been used in recent works on hash kernels (e.g.,
Shi et al., 2009). They differ from us in several aspects. First, tlgidensed representation is an
approximation tap(x;). Second, with an online setting, they may not accurately solve the problem

().

3.5 Relationswith the RBF kernel

RBF kernel (Gaussian kernel) may be the most used kernel in trainingneanSVM. It takes the
following form:

= lxi=xj 12

K(Xi,Xj) =€ 20?2

Keerthi and Lin (2003) show that, &8 — o, SVM with the RBF kernel and the penalty param&er
approaches linear SVM with the penalty param&téi20?). This result implies that with a suitable
parameter selection, the testing accuracy of using the RBF kernel is tafegsod as using the
linear kernel.

For polynomial kernels, Lippert and Rifkin (2006) discuss the relation RBir. They consider
the penalty parametéf/(202))~2C and check the situation @& — . For a positive integed,
the limit of SVM with the RBF kernel approaches SVM with a degdepelynomial mapping of
data. The polynomial mapping is related only to the degred@his result seems to indicate that
RBF is again at least as good as polynomial kernels. However, the poisghmapping for (3) is
more general due to two additional parameteasidr. Thus the situation is unclear if parameter
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Data set n n | #testing
af%a 123 139 32,561 16,281
real-sim 20,958 515 57,848 14,461
news20 1,355,181 455.5 15,997 3,999
ijcnnl 22 13.0 49,990 91,701
MNIST38 752 168.2 11,982 1,984
covtype 54 119 464,810 116,202
webspam 254 85.1 280,000 70,000

Table 1: Summary of the data settsis the number of features, ands the average number of non-
zero features for each data instantés the number of data instances. The last column
shows the number of testing data.

selections have been applied to both kernels. In Section 4, we give a deilgarison between
degree-2 polynomial mappings and RBF.

3.6 Parameter Selection

The polynomial kernel defined in (3) has three parameténg @ndr). Now we intend to use low-
degree mappings sbshould be 2 or 3. Selecting the two remaining parameters is still complicated.
Fortunately, we show in Appendix A thaican be fixed to one, so the number of parameters is the
same as that of the RBF kernel. This result is obtained by proving that agulgl kernel

K(xi,Xj) = (yx x; +r)% with parametersC, y,r) (12)

results in the same model as the polynomial kernel

K(xi,X}) = (yxi Xj + 1)9 with parametery = \F/ andC = r’C. (13)

3.7 Prediction

Assume a degred-polynomial mapping is considered and #SV is the number of support vectors
For any testing dats, the prediction time with/without kernels is

Zi:ai>0aiyiK(Xi’X) = O(#SV-n), (14)
wigx) = O(h), (15)

wheren andriare respectively the average number of non-zero elemextid@(x). If h <#SV-n,
then (15) is more efficient than (14). Several NLP studies (e.g., IsermkKazawa, 2002) have
used (15) for efficient testing.

4. Experiments

In this section, we experimentally analyze the proposed approach foeed@goolynomial map-
pings. We use two-class data sets, but in Section 5, we consider multi-ohdmsrps from an NLP
application. We briefly discuss extensions to L1-regularized SVM in Sedtin
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Analysis of@(x;) # non-zeros iw

Data set — N - Estimated by
n</2 n In | C(n+2,2) (11) (16) Real
a%a 96.2 118.1 4.52e+0% 7.75e+03 7.75e+03 6.60e+03 5.56e+03
real-sim 1,325.1  2,923.6 2.98e+06 2.20e+08 1.15e+08 3.01e+07
news20 | 103,750.6 327,051.6 7.29e+06 9.18e+11 5.20e+09 3.13e+09
jjcnnl 84.5 105.0 6.50e+0% 2.76e+02 2.76e+02 2.31e+02 2.31le+02
MNIST38 | 14,147.2 14,965.1 2.02e+06 2.84e+05 2.84e+05 1.54e+05
covtype 71.3 90.3 5.55e+06 1.54e+03 1.54e+03 7.54e+02 6.69e+02
webspam 3,623.5 3,836.4 2.38e+0ff 3.26e+04 3.26e+04 9.44e+03
Table 2: Analysis ofp(xi), i = 1,...,] and number of non-zero elementsan

Except programs used in Section 5, all sources for experiments alebdevathttp://www.
csie.ntu.edu.tw/ ~ cjlin/liblinear/exp.html

4.1 Data Setsand I mplementations

We select the following problems fromiBSVM tools? for experiments:a9a, real-sim, news20,
ijcnnl, MNIST, covtype andwebspam. The summary of data sets is in Table 1. Problesassim,
news20, covtype andwebspam have no original test sets, so we use a 80/20 split for training and
testing. MNIST is a 10-class problem; we consider classes 3 and 8 to form a two-classefata
MNIST38. While covtype is originally multi-class, we use a two-class versionl&SVvM tools.

We do not further scale these data sets as some of them have beeonqasspd. Problems
real-sim, news20 andwebspam are document sets and each instance is normalized to unit length.
We use a scaled version efvtype atLIBSVM tools, where each feature is linearly scaled@ol].

The originalMNIST data have all feature values in the ran@e55, but the version we download
is scaled td0, 1] by dividing every value by 255.

We compare implicit mappings (kernel) and explicit mappings of datal®gvM (Chang and
Lin, 2001) and an extension afBLINEAR (Fan et al., 2008), respectively. The two packages use
similar stopping conditions, and we set the same stopping tolerance 0.1irBeperare conducted
on a 2.5G Xeon L5420 machine with 16G RAM usigg: compiler. Our experiments are run on a
single CPU.

4.2 Analysisof @(x) and w

Following the discussion in Section 3.2, we chénlandri'to see if using the explicit mapping of
data may be helpful. Table 2 presents these two values for the degrégadma@l mapping. We
also present?/2 as from (10) it can be a rough estimatenof

From Table 2, except document datal-sim andnews20, n?/2 is close tan” The huge differ-
ence between andlnindicates that using explicit mappings is potentially faster.

Next we investigate the number of non-zero elements.ifiable 2 presents the dimensionality
of w, two estimated numbers of non-zero elements and the actual number. Fatatepghe first
estimation by (11) pessimistically predicts thais fully dense. Two exceptions areal-sim and

2. LIBSVM tools can be found atttp://www.csie.ntu.edu.tw/ ~ cjlin/libsvmtools/datasets/
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N Storing@(x;) Calculatingg(x;)
Data set A/n L2 cache misses Training time (L)LZ cache misses Training time (s)
a%a 8.51 5.62e+07 2. 2.51e+06 1.6
real-sim 56.79 2.60e+09 63. 1.84e+09 59.8
ijcnnl 8.08 3.62e+08 14. 2.32e+07 10.7
MNIST38 | 88.97 9.08e+08 20. 7.90e+06 8.6
covtype 7.56 1.55e+11 6,422. 2.98e+10 5,211.9
Webspam4 45.07 1.30e+11 4,219. 3.20e+09 3,228.1

Table 3: A comparison between storing and calculagitg). The columnn/nindicates the ratio
between the memory consumption for storip(g;) andx;. Time is in seconds.

news20, where (11) is quite accurate. These two sparse document sets seane tmdependent
features (word occurrence) so that the assumption for (11) holdslaf@with known structures, we
demonstrate that a better estimate than (11) can be achieved. The peshleontains 14 groups
of feature$ and each group contains several exclusive binary features (eegn &grious ranges).
Within each groupxxs = 0 if r # s, so an upper bound ef's number of non-zero elements is

C(n+2,2)— z C(#features in each group). (16)
feature groups

We show in Table 2 that (16) is closer to the actual number. The situation ¢ootiver problems
(iicnn1 andcovtype) is similar.

As storingnews20’s non-zerow elements requires more memory than our machine’s capacity,
we do not include this set in subsequent experiments.

4.3 Calculating or Storing @(x;)

In Section 3.4, we discuss three methods to haptg. Table 3 compares the first/second and the
third methods. We sele€tand kernel parameters by a validation procedure and present thedrainin
time of using optimal parameters. For the first/second methods, we count CPHftenall ¢(x;)
have been loaded/generated. For the third, we show CPU time after lodidiigas this method
calculatesp(x;), Vi in the middle of the training procedure.

Table 3 listsn/nto show the ratio between two methods’ memory consumption on stofiqy
andx;, Vi. In the same table we present each method’s number of L2 cache misseaiaimd)
time. The number of L2 cache misses is obtained by the simulatiorcaobégrind in valgrind.®
The method by calculating(x;) is faster in all cases. Moreover, it has a smaller number of L2
cache misses. Data can be more easily located in the cache@ihems not stored. We consider
the method of calculating(x;) for subsequent experiments in this section.

3. See descriptions in the beginning of each file fratip:/research.microsoft.com/en-us/um/people/
jplatt/adult.zip

4. Forwebspam, as@(x;) Vi require more memory than what our machine has, we use single preflsating-point
numbers to store the data. All other experiments in this work use doullisiore

5. cachegrind can be found atttp://valgrind.org/
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Linear (LIBLINEAR) RBF (LIBSVM)
Data set C Time(s) Accuracy] C y Time(s) Accuracy
a%a 32 5.4 84.98 8 0.03125 98.9 85.03
real-sim 1 0.3 97.51 8 0.5 973.7 97.90
jicnnl 32 1.6 92.21 32 2 26.9 98.69
MNIST38 | 0.03125 0.1 96.82 2 0.03125 37.6 99.70
covtype 0.0625 14 76.35 32 32 54,968.1 96.08
webspam 32 25.5 93.15 8 32 15,571.1 99.20

Table 4: Comparison of linear SVM and nonlinear SVM with RBF kernel. Time seronds.

Degree-2 Polynomial Accuracy diff.

Data set Training time (S) .

C LIBLINEAR LIBSYM Accuracy | Linear RBF
a%a 8 0.03125 1.6 89.8 85.06 0.07 0.02
real-sim | 0.03125 8 59.8 1,220.5 98.00 0.49 0.10
ijcnnl 0.125 32 10.7 64.2 97.84 5.63 —0.85
MNIST38 2 0.3125 8.6 18.4 99.29 247 —-040
covtype 2 8 5,211.9 NA 80.0 3.74 -15.98
webspam 8 8 3,228.1 NA 98.4 529 -076

Table 5: Training time (in seconds) and testing accuracy of using thead@gyelynomial mapping.
The last two columns show the accuracy difference to results using lindaRBF. NA
indicates that programs do not terminate after 300,000 seconds.

4.4 Accuracy and Time of Using Linear, Degree-2 Polynomial, and RBF

We compare training time, testing time, and testing accuracy of using three msppingar,
degree-2 polynomial, and RBF. We U4BLINEAR for linear,LIBSVM for RBF, and both for degree-

2 polynomial. For each data set, we choose param€&tersdy by a five-fold cross validation on

a grid of points. The begC,y) are then used to train the whole training set and obtain the testing
accuracy. To reduce the training timeéBSVM allocates some memory space, called kernel cache,
to store recently used kernel elements. In conttadBLINEAR does not require this space. All it
needs is to store. In this work, we rurLIBSVM using 1 GBytes of kernel cache.

Using linear and RBF mappings, Table 4 presents the training time, testingaagcand the
correspondent parameters. Linear and RBF have similar testing agauraata seta9a andreal-
sim. The setreal-sim contains document data with many features. Linear classifiers have been
observed to perform well on such data with much less training time. For otii@sdts, the testing
accuracy of using linear is clearly inferior to that of using RBF. Ded@elynomial mappings may
be useful for these data. We can possibly improve the accuracy ovar iiigle achieving faster
training time than RBF.

We then explore the performance of the degree-2 polynomial mappingfirshpart of Table
5 shows the training time, testing accuracy, and optimal parametersIluBIOYEAR. As a com-
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Data set | . LIBLINEAR LIBSVM

linear degree-2 degree-2 RBF
a%a 0.00 0.01 19.28 3242
real-sim 0.02 1.13| 107.67 84.52
ijcnnl 0.02 0.07 14.07 20.38
MNIST38 | 0.00 0.12 2.41 5.76
covtype 0.03 0.09 NA 998.68
webspam | 0.05 1.14 NA 846.77

Table 6: Testing time (in seconds) using decomposition methods for linear aridesy SVM.
Parameters in Tables 4 and 5 are used to build SVM models for prediction. SMK:
models are not available due to lengthy training time (see Table 5).

parison, we runLIBSVM with the same parameters and report training fnfable 5 also presents
the testing accuracy difference between degree-2 polynomial and/Rizfarit is observed that for
nearly all problems, the performance of the degree-2 polynomial mappimgampete with RBF,
while for covtype, the performance is only similar to the linear mapping. Apparently, a degree-2
mapping does not give rich enough information to separate dataype.

Regarding the training timeLIBLINEAR with degree-2 polynomial mappings is faster than
LIBSVM with RBF. Therefore, the proposed method may achieve fast training, whekerving
some benefits of nonlinear mappings. Next, we compare the training time betWBeNEAR
andLIBSVM when the same degree-2 polynomial mapping is used. From Tahl8IBNEAR is
much faster thanhlBSVM. Thus for applications needing to use low-degree polynomial kernels, the
training time can be significantly reduced.

We present testing time in Table 6. The explicit mapping approach is muchdasteralculates
onlyw™x orw’ @(x).

45 L1-regularized SVM with Linear and Degree-2 Polynomial M appings

Recently, L1-regularized SVM has gained attention because it cangg@dsparse model (see, for
example, the survey by Yuan et al., 2009, and references therein)lAegularized SVM solves

. |
min IW[1+CY_ max1l—yw'@(x),0)?, (17)

where|| - || denotes the 1-norm. As discussed in Section 3.4, after a degree-2 midymoapping
the number of features may be very large. A spavseduces the memory consumption. In this
section, we conduct a preliminary investigation on training degree-2 polaionappings via (17).
Due to the non-differentiable terffw||1, optimization techniques for (17) are different from
those for L2-regularized SVM. If we pre-compugé;), Vi (i.e., methods 1 and 2 in Section 3.4 for
handlingg(x;)), then any optimization technique for (17) can be directly applied. Recalbwtion
4.3 shows that method 3 (calculatipgx;) in the training algorithm) is faster if is not large. We
show an interesting example where this method significantly increases themaimperations. In

6. LIBSVM solves SVM with biad, but LIBLINEAR solves (1). As the difference is minor, we ruBSVM with the
same parameters farBLINEAR. Moreover, the testing accuracy ldBSVM is almost the same a$BLINEAR.
7. We consider L2-loss in (17) by following Yuan et al. (2009).
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Linear Degree-2 polynomial

Data set Time Sparsity Accuracy Time (S):@(xi) is Sparsity Accuracj L2 SVM

(s) (%) (%) | stored calculated (%) (%) Sparsity
a%a 0.73 83.74 85.0 3.94 19.33 10.43 85.1 71.74
real-sim 1.06 25.16 97.04 524.54 2,288.27 0.01 97.43 26.17
ijcnnl 0.86 100.00 91.7 9.17 18.09 83.70 97.5 83.70
MNIST38 | 0.86 55.85 96.93 38.11 81.10 0.23 99.5 54.23
covtype 60.07 98.15 75.66 70.13 2,196.08 39.22 79.73 43.44
webspam | 47.08  38.98 92.55 772.92 1,296.40 12.60 98.32 28.96

Table 7: L1-regularized SVM: a comparison between linear and déypdynomial mappings.
Time is in seconds. Sparsity is the percentage of non-zero elememnts$-or the degree-2
polynomial mapping, we show the training time of both calculating and staiirg

Yuan et al. (2009), a primal decomposition (coordinate descent) methodsglered the fastest for
solving (17). It updates one elementwfat a time. Ifw is the current solution and th¢h element
is selected, the following one-variable problem is minimized:

mdin |wj +d| +Cz::1 max(1—yw o(x;) —yid(p(Xi)j,O)z.

Assumeg(x); involvesxxs. To obtain allg(x;);, Vi, we must go through non-zero elements of
therth and thesth features of the original data. This operation c@3tk), wherel is the average
number of non-zero elements per featurexgfvi. However, the expected number of non-zero
elements ofp(x;);, Vi is only

(/)21 =121,

If data are sparsé,z/l is much smaller thah. Therefore, the cost by using methods 1 and 2 to
pre-computep(x;), Vi is less than method 3. This is mainly because the primal coordinate descent
approach accesses data in a feature-based way. The sparsespatttevo features are needed.
In contrast, decomposition methods used earlier for solving the dual pnatfid_2-regularized
SVM is instance-based. To obtaixs, one needs only the sparse pattern of an instanc&ome
optimization approaches discussed in Yuan et al. (2009) for (17) aengesbased. An interesting
future study would be to investigate their performances.

We extend a primal decomposition implementation for (17)IBLINEAR to handle degree-2
polynomial mappings. We use default settings (e.g., stopping tolerant48LMNEAR. Table 7
compares linear and degree-2 polynomial mappings by showing training wimesparsity, and
testing accuracy. For the training time of using degree-2 polynomials, vgemireesults by storing
and calculatingp(x;). Clearly, calculatingy(x;) is much slower, a result consistent with our analysis.
The training time foreal-sim is much longer than that in Table 5 (L2-regularized SVM). This result
is due to the huge number of variables in solving the primal problem (17yeTdre some tricks to
improve the training speed for this problem though we do not get into detaitsarsity, we also
show the result using L2-regularized SVM as a comparfsaf-regularized SVM gives excellent

8. The sparsity of L2-regularized SVM is in fact the column of “real” thars of non-zero elements in Table 2 divided
by the dimensionalitf(n+2,2).
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Figure 1: A dependency graph with arc labels and part-of-speeclidiagsentence.

sparsity for some problems. For exampiNIST38 hasn = 752 features. By solving (17) with
linear mapping, 420 features remain. If using a degree-2 polynomial n@ppadimensionality is
C(n+2,2) = 283 881. Solving an L2-regularized SVM givesawith 153,564 non-zero elements,
but using L1 regularizatiow has only a very small number of 650 non-zero elements. Finally, for
testing accuracy, results are similar to (or slightly lower than) those in TakBes 4

Due to the nice sparsity results, L1 regularization for low-degree polynamapgbings may be
a promising future direction.

5. An NLP Application: Data-driven Dependency Parsing

In this section we study a real-world natural language processing (fdsRpn dependency parsing.
Given a sentence, a dependency graph represents each word aydtatstic modifiers through
labeled directed edges. Figure 1 shows an example. Data-drivenddggrparsing is a common
method to construct dependency graphs. Different from grammadipassing, it learns to produce
the dependency graph solely by using the training data. Data-drivemdepcy parsing has become
popular because it is chosen as the shared tas®Bt L-x° andCONLL2007.1° More information
about dependency parsing can be found in, for example, McDondltliamne (2007).

Dependency parsing appears in many online NLP applications. In sseB tssting (parsing)
speed is very important. We will see that this requirement for testing speeelsnoak approach
very useful for this application.

5.1 A Multi-class Problem

We study a transition-based parsing method proposed by Nivre (Z0B8)arsing algorithm builds
a labeled dependency graph in one left-to-right pass over the input vgiiéick to store partially
processed tokens. At each step, we need to decide which transitiorfaonpeAs in Nivre et al.
(2007), we use the following transitions:

e SHIFT: Pushes the next input token to the top of the stack and advances to thiepex
token.

e REDUCE: Pops the top element from the stack.

9. CONLL-X can be found aftttp:/nextens.uvt.nl/ ~conll/
10. CONLL2007 can be found alttp://nextens.uvt.nl/depparse-wiki/SharedTaskWebsi te .
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input(1).tag stack.tag stack.leftmost-child.label
input(2).tag stack(l).tag stack.rightmost-child.label
input(3).tag stack.label input.leftmost-child.label
input.word stack.word

input(1).word stack.head.word

Table 8: Feature types used by the dependency parser.

e LEFT-ARC(r): Adds an arc with label from the next input token to the token on top of the
stack and pops the top element off the stack.

e RIGHT-ARC(r): Adds an arc with labet from the top token on the stack to the next input
token. Then pushes the current input token to the stack and advartbesiext input token.

The parser decides the next transition by extracting features from thentparse state. The parse
state consists of the stack, the remaining input tokens, and the partially tpehdency graph. We
use the standard method for converting symbolic features into numeritatdedy binarization.
For each feature typE (see Table 8), that has valwean the current state, we generate a feature
predicate F = v. These feature predicates are used as binary features in the clagsifiethis
expansion of feature types to binary feature predicates that leads tadgkeenlamber of features
in the classifiers. Especially the lexicalized (i.e., word-based) featuresrafe large numbers of
sparse features.

Thus the core of the parser is a multi-class classification problem, which mafsds to tran-
sitions. Nivre et al. (2006) useBSVM with a degree-2 polynomial kernel to train the multi-class
classification problems, and get good resultS@NLL-X.

In this experiment, we use data from the English Penn Treebank (Marais £€993). The
treebank is converted to dependency format using PennZMaitd the data is split into sections
02-21 for training and section 23 for testing. During training we consawznonical transition
sequence from the dependency graph of each sentence in the trainug,cadopting an arc-eager
approach for disambiguation. For each transition, we extract the featufable 8 from the current
parse state, and use this for training the classifiers.

When parsing a sentence, the classifiers are used for predicting theamsition, based on the
features extracted from the current parse state. When all the inpuistblere been processed the
dependency graph is extracted from the transition sequence.

In order to reduce training time the data is split into multiple sets. For example, #tarég
takes two values andb, we can divide the training data infx | Xx; = a} and{x | x; = b}, and
get two modeldvi2 andMP. Then in the prediction phase, we decide to Mgeor M? according
to x; of the testing instance. Yamada and Matsumoto (2003) mention that applying tthiedne
reduces the training time without a significant loss in accuracy. We dividé&rdiréng data into
125 smaller training sets according to the part-of-speech tag of the turpen token. Also, the
label for RIGHT-ARC and LEFT-ARC transitions is predicted separatedynfthe transition. The
number of classes ranges from 2 to 12. Table 9 lists the statistics of thet lamgiéisclass problem
among 125.

11. Seehttp:/lw3.msi.vxu.se/ ~ nivre/research/Penn2Malt.html
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n| n| || #nz
46,155| 13.3 | 294,582 3,913,845

Table 9: Summary of the dependency parsing data set. We show statistieslafgést problem
among the 125 sets divided from the training data. The column #nmn)(indicates the
total number of non-zero feature values in the training set.

5.2 Implementations

We consider the degree-2 polynomial mapping in (5). Since the origingi have 0/1 feature
values, we use (5) instead of (4) to preserve this propérty. our implementation, by extending
LIBLINEAR, 0/1 values are still stored as double-precision numbers. Howevdgrém data sets,
we can save memory by storing only non-zero indices. Due to using (S9ntligparameter i€.

The dimensionality of using the degree-2 polynomial mapping is huge. Wesdisdun Sec-
tion 3.4 that 20 GBytes memory is needed to store a denséssume the “one-against-the rest”
approach is applied for multi-class classification. We need A48 classes) vectors af in the
prediction (parsing) stage as training data are separated into 125 seisusdpowe do not have
enough memory for them. As the data are very sparse, the actual nunmmer-péro elements mw
is merely 1,438,456 (considering the largest of the 125 training sets). Gadg thon-zero features
in @(x) andw are needed in training/testing, so the memory issue is solved. In the practiéad imp
mentation, we construct a hash table to collect non-zero featurgofi = 1,...,1 as a new set
for training!® In prediction, we use the same hash map to calcwidig(x). This implementation
corresponds to the first/second methods discussed in Section 3.4. Sedataidiein the end of
Section 3.4.

Other settings (e.g., stopping tolerance argiSVM’'s kernel cache) are the same as those in
Section 4.LIBSVM uses the “one-against-one” approach for training multi-class problemnik wh
LIBLINEAR uses “one-against-the rest” We use a dependency parsing systeoogle, which
callsLIBSVM/LIBLINEAR for training/testing. Parts of this experiment were performed when some
authors worked at Google.

As the whole parsing system is quite complex, we have not conducted a t¢erpplameter
optimization. Instead, we have roughly tuned each parameter to prodadeegults.

5.3 Experiments

We compare two approaches. The first uses kernels, while the secesdat.
e LIBSVM: RBF and degree-2 polynomial kernels.

e LIBLINEAR: linear mapping (i.e., the original input data) and the degree-2 polynomial map
ping via (5).

12. In fact, if using (4), we can still use some ways so #f2tis not stored. However, the implementation is more
complicated.
13. For a fair comparison, the reported training time includes time for thigpprcessing stage.
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LIBSVM LIBLINEAR
RBF Poly@d=2)| Linear Poly: Eq. (5)
C=05 C=05|C=05 C=0.05
Parameters | 1/(20°%) =0.18 y=0.18
r=0.3
Training time 3h34m53s 3h21m51s 3m36s 3m43s
Parsing speed 0.7x Ix| 1652x 103x
UAS 89.92 91.67, 89.11 91.71
LAS 88.55 90.60, 88.07 90.71

Table 10: Accuracy, training time, and parsing speed (relative®8VM with polynomial kernel)
for the dependency parsing.

Table 10 lists parameters for various kernels, training/testing time, and testingpay. Train-
ing and testing are done using gold standard part-of-speech tagsnlgmbo-punctuation tokens
are used for scoring. The accuracy of dependency parsing is reddsutwo evaluation metrics:

1. Labeled attachment score (LAS): the percentage of tokens withctdependency head and
dependency label.

2. Unlabeled attachment score (UAS): the percentage of tokens witccdependency head.

For LIBSVM the polynomial kernel gives better accuracy than the RBF kernel, ¢ensisith
previous observations, that polynomial mappings are important for gafisirdo and Matsumoto,
2000; McDonald and Pereira, 2006; Yamada and Matsumoto, 2003; Ggldbd Elhadad, 2008).
Moreover,LIBSVM using degree-2 polynomial kernel produces better results in terms ofLIA&S
thanLIBLINEAR using just a linear mapping of features. However, parsing usiBg§vM™ is slow
compared td_IBLINEAR. We can speed up parsing by a factor of 1,652 with only a 2.5% drop
in accuracy. With a degree-2 polynomial mapping (5), we achieve UAS/tgs8Its similar to
LIBSVM, while still maintaining high parsing speed, 103 times faster thagVvM.

From Table 10, trainin@gIBLINEAR is a lot faster thamIBSVM. This large reduction in train-
ing time allows us to easily conduct experiments and improve the settings. Someritiagec
that the comparison on training time is not fairlaBSVM uses “one-against-one” for multi-class
classification, whileLIBLINEAR uses “one-against-the rest.” It is known (e.g., Hsu and Lin, 2002)
that for nonlinear SVMLIBSVM with “one-against-one” is faster than “one-against-the rest.” Thus
even if we modifyLIBSVM to perform “one-against-the rest,” its training is still much slower than
LIBLINEAR.

5.4 Related Work

Earlier works have improved the testing speed of SVM with low-degree patjal kernels. Most
of them target natural language processing (NLP) applications.Ksazd Kazawa (2002) propose
an approach similar to obtaining by the expression in (8f A direct implementation of their

14. They do not really formwv, but their result by expanding the degree-2 polynomial kernel leadsreething very
similar.
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method requires a memory space as large as the dimensionality mft we cannot afford such
a space for our application. Kudo and Matsumoto (2003) consider thessipn ofw in (8) and
propose an approximate prediction scheme using only a sub-veatorTdfeir method is useful for
data with 0/1 features. Goldberg and Elhadad (2008) propose spasgalihg calculation of low-
degree polynomial kernels by separating features to rare and commanGuidberg and Elhadad’s
approach is motivated by some observations of NLP data. It avoids the memudriem, but the
effectiveness on general data is not clear yet.

The above existing works focus on improving testing speed. They dtdfarthe slow training
of using traditional SVM solvers. For example, Kudo and Matsumoto (26@)tion that “the
experiments ... have actually taken long training time,” so they must selebsataising properties
of dependency parsing. Our approach considers linear SVM on ilypti@pped data, applies state
of the art training techniques, and can simultaneously achieve fast trainthggsting.

6. Discussions and Conclusions

Past research has shown that SVM using linear and highly nonlineaimgapyf data has the fol-
lowing properties:

Linear Highly nonlinear
Fast training/testing Slow training/testing via kernels
Low accuracy High accuracy

Many have attempted to develop techniques in the between. Most start feonottinear side.
They propose methods to manipulate the kernels (e.g., Lee and MangagafianKeerthi et al.,
2006). In contrast, ours is from the linear side. The strategy is simpleeqdres only minor
modifications of existing packages for linear SVM.

This work focuses on the degree-2 polynomial mapping. An interestingefstudy is the effi-
cient implementation for degree-3 mappings. Considering other mappinticiusito expand data
vectors could be investigated as well. As kernels are not used, we mighalgeater flexibility to
design the mapping function.

Table 2 shows that storing may require a huge amount of memaory. For online training, some
(e.g., Langford et al., 2009) have designed feature hashing teckniguwentrol the memory use
of w. Recently, feature hashing has been popular for projecting a high doneh$eature vector
to a lower dimensional one (e.g., Weinberger et al., 2009; Shi et al., 26@)certain sequence
data, one can considefgram (i.e.n consecutive features) instead of general polynomial mappings.
Then not only the number of features becomes smaller, but also contrafbngparsity is easier.
Existing experiments on document data can be found in, for example, Ifrah €£008) and Shi
et al. (2009).

We successfully apply the proposed procedure to an NLP applicatioras Itértain require-
ments on the training and testing speed, but we also hope to achieve bettgr aestinacy. The
proposed procedure is very useful for applications of this type.
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Appendix A. Connection Between (12) and (13)

We prove the result by showing that the dual optimization problems of usRigpfid (13) are the
same. Since

— d
(Y xj +r)¢ =rd (inij +1> ,

we have B ~
Qij = ViyjK(xi,xj) = Q.
The dual optimization problem of usir@can be written as
min 1 }(rdo_()TQ(rdcY) —e'rda
a rd\2

subjectto  O<ria; <riC, i=1...,I.

Usinga = rda andC = rdC, this problem becomes the dual problem when u§)ng
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