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Abstract

Kernel techniques have long been used in SVM to handle linearly inseparable problems by trans-
forming data to a high dimensional space, but training and testing large data sets is often time
consuming. In contrast, we can efficiently train and test much larger data sets using linear SVM
without kernels. In this work, we apply fast linear-SVM methods to the explicit form of poly-
nomially mapped data and investigate implementation issues. The approach enjoys fast training
and testing, but may sometimes achieve accuracy close to that of using highly nonlinear kernels.
Empirical experiments show that the proposed method is useful for certain large-scale data sets.
We successfully apply the proposed method to a natural language processing (NLP) application by
improving the testing accuracy under some training/testing speed requirements.

Keywords: decomposition methods, low-degree polynomial mapping, kernel functions, support
vector machines, dependency parsing, natural language processing

1. Introduction

Support vector machines (SVMs) (Boser et al., 1992; Cortes and Vapnik, 1995) have been popular
for data classification. An SVM often maps data to a high dimensional space and then employs
kernel techniques. We refer to such an approach as nonlinear SVM. Training nonlinear SVM is usu-
ally performed through the use of popular decomposition methods. However, these decomposition
approaches require considerable time for large data sets. In addition, thetesting procedure is slow
due to the kernel calculation involving support vectors and testing instances.

For some applications with data in a rich dimensional space (e.g., document classification),
people have shown that testing accuracy is similar with/without a nonlinear mapping. If data are not
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mapped, recently some methods have been proposed to efficiently train much larger data sets. We
refer to such cases as linear SVM.

Among the recent advances in training large linear SVM, Hsieh et al. (2008) discuss decom-
position methods for training linear and nonlinear SVM. Ifl is the number of training data, ¯n is
the average number of non-zero features per instance, and each kernel evaluation takesO(n̄) time,
then the cost per decomposition iteration for nonlinear SVM isO(ln̄). Taking the property of linear
SVM, Hsieh et al.’s approach runs one iteration in onlyO(n̄). If the number of iterations is not
significantly more than that for the nonlinear case, their method is very efficient for training linear
SVM.

Motivated by the aboveO(ln̄) andO(n̄) difference, in this work, we investigate the performance
of applying linear-SVM methods to low-degree data mappings. By considering the explicit form of
the mapping, we directly train a linear SVM. The cost per decomposition iterationis O(n̂), where ˆn
is the new average number of non-zero elements in the mapped vector. If ˆn < ln̄, the new strategy
may be faster than the training using kernels.

Currently, polynomial kernels are less widely used than the RBF (Gaussian) kernel, which maps
data to an infinite dimensional space. This might be because under similar training and testing cost,
a polynomial kernel may not give higher accuracy. We show for some data, the testing accuracy
of using low-degree polynomial mappings is only slightly worse than RBF, buttraining/testing via
linear-SVM strategies is much faster. Therefore, our approach takes advantages of linear methods,
while still preserves a certain degree of nonlinearity. Some early works (e.g., Gertz and Griffin,
2005; Jung et al., 2008; Moh and Buhmann, 2008) have employed this ideain their experiments.
Here we aim at a more detailed study on large-scale scenarios.

An exception where polynomial kernels have been popular is NLP (natural language process-
ing). Some have explored the fast calculation of low-degree polynomial kernels to save the testing
time (e.g., Isozaki and Kazawa, 2002; Kudo and Matsumoto, 2003; Goldberg and Elhadad, 2008).
However, these works still suffer from the slow training because of notapplying some recently
developed training techniques.

This paper is organized as follows. We introduce SVM in Section 2. In Section 3, we discuss the
proposed method for efficiently training and testing SVM for low-degree polynomial data mappings.
A particular emphasis is on the degree-2 polynomial mapping. Section 4 presents the empirical
studies. We give an NLP application on dependency parsing in Section 5. Conclusions are in
Section 6.

Notation: we list some notation related to the number of features.
n: number of features (dimensionality of data);xi ∈ Rn is theith training instance
ni: number of non-zero feature values ofxi

n̄: average number of non-zero elements inxi; see (9)
n̂: average number of non-zero elements in the mapped vectorφ(xi)

ñ: number of non-zero elements in the weight vectorw

2. Linear and Nonlinear SVM

Assume training instance-label pairs are(xi,yi), i = 1, . . . , l, wherexi ∈ Rn andyi ∈ {1,−1}. We
consider the following SVM problem with a penalty parameterC > 0:

min
w

1
2

wT w+C∑l
i=1max(1− yiwT φ(xi),0). (1)
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The functionφ(x) maps an instance to a higher dimensional space for handling linearly inseparable
data. We refer to such a setting as nonlinear SVM. For some applications,φ(x) = x can already
properly separate data; we call such cases linear SVM. Many SVM studies considerwT xi +b instead
of wT xi in (1). In general this bias termb does not affect the performance much, so here we omit it
for the simplicity.

Due to the high dimensionality ofφ(x) and the possible difficulty of obtaining the explicit form
of φ(x), SVM is often solved through the dual problem with the kernel trick:

min
α

1
2

αT Qα− eT α

subject to 0≤ αi ≤C, i = 1, . . . , l, (2)

whereQi j = yiy jK(xi,x j) = yiy jφ(xi)
T φ(x j) ande = [1, . . . ,1]T . K(xi,x j) is called the kernel func-

tion andα is the dual variable.
The matrixQ in the dual problem (2) is dense and may be too large to be stored in the computer

memory. Currently, decomposition methods (e.g., Joachims, 1998; Keerthi etal., 2001; Chang and
Lin, 2001) are the major approach to solve (2). However, if linear SVM is considered, we can more
easily solve both the primal and the dual problems. Early studies (e.g., Mangasarian and Musicant,
1999; Ferris and Munson, 2003) have demonstrated that many traditionaloptimization methods can
be applied. They focus on data with many instances but a small number of features. Recently,
an active research topic is to train linear SVM with both large numbers of instances and features
(e.g., Joachims, 2006; Shalev-Shwartz et al., 2007; Bottou, 2007; Hsiehet al., 2008; Langford et al.,
2009).

3. Using Linear SVM for Low-degree Polynomial Data Mappings

In this section, we discuss the methods and issues in training/testing low-degree data mappings
using linear SVM. We are interested in when the training via linear-SVM techniques is faster than
nonlinear SVM. We put an emphasis on the degree-2 polynomial mapping.

3.1 Low-degree Polynomial Mappings

A polynomial kernel takes the following form

K(xi,x j) = (γxT
i x j + r)d, (3)

whereγ andr are parameters andd is the degree. The polynomial kernel is the product between two
vectorsφ(xi) andφ(x j). For example, ifd = 2 andr = 1, then

φ(x) = [1,
√

2γx1, . . . ,
√

2γxn,γx2
1, . . . ,γx2

n,
√

2γx1x2, . . . ,
√

2γxn−1xn]
T . (4)

The coefficient
√

2 in (4) is only used to makeφ(xi)
T φ(x j) have a simple form. Without using

kernels, we can consider more flexible mapping vectors. For example, ifγ = 1, removing
√

2 in (4)
results in a simple mapping vector:

φ(x) = [1,x1, . . . ,xn,x
2
1, . . . ,x

2
n,x1x2, . . . ,xn−1xn]

T . (5)

For the polynomial kernel (3), the dimensionality ofφ(x) is

C(n+d,d) =
(n+d)(n+d−1) · · ·(n+1)

d!
,
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which is obtained by counting the number of terms in (3).

3.2 Training by Linear SVM Methods

The training time for SVM depends on the number of data instances and the number of features.
Due to the high dimensionality ofφ(x), we must judge whether it is better to choose an explicit
mapping or an implicit way by kernels. We explore this issue by investigating the difference between
applying decomposition methods to solve the dual problem of linear and nonlinear SVM. Though
many optimization methods have been applied to train SVM, we discuss decomposition methods
because of the following reasons. First, they are the major approach fornonlinear SVM. Second,
efficient decomposition methods for linear SVM have been developed (e.g.,Hsieh et al., 2008).

A decomposition method iteratively updates a small subset of variables. We consider the situa-
tion of updating one variable at a time.1 If α is the current solution and theith component is selected
for update, then we minimize the following one-variable problem:

min
d

1
2
(α+dei)

T Q(α+dei)− eT (α+dei)

=
1
2

Qiid
2 +(Qα− e)id +constant (6)

subject to 0≤ αi +d ≤C.

This minimization is easy, but to construct (6), we must calculate

(Qα− e)i = ∑l
j=1 Qi jα j−1 = ∑l

j=1 yiy jK(xi,x j)α j−1. (7)

If each kernel element costsO(n̄), where ¯n is the average number of non-zero features, then (7)
needsO(ln̄) operations.

If using the explicit mapping vectors, we can calculate(Qα− e)i by

∑l
j=1 Qi jα j−1 = yiwT φ(xi)−1, wherew = ∑l

j=1 y jα jφ(x j). (8)

If w is available, (8) requiresO(n̂) operations, where ˆn is the average number of non-zero elements
in φ(xi), ∀i. To maintainw, Hsieh et al. (2008) use

w← w+ yi(αnew
i −αold

i )φ(xi),

so the cost is alsoO(n̂). Therefore, the above discussion indicates the tradeoff betweenO(ln̄) and
O(n̂) cost by implicit and explicit mappings, respectively.

Practical implementations of decomposition methods involve other issues. For example, if us-
ing the kernel trick, we may develop better techniques for selecting the working variable at each
iteration. Then the number of iterations is smaller. More details can be found in Hsieh et al. (2008,
Section 4). Nevertheless, checkingO(ln̄) andO(n̂) can roughly indicate if using an explicit mapping
leads to faster training.

1. If using standard SVM with the biasb, the dual form contains an equality and at least two variables must be consid-
ered.
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3.3 Number of Non-zero Features per Instance

From the discussion in Section 3.2, it is important to know the value ˆn. If the input data are dense,
then the number of non-zero elements inφ(x) is O(nd), whered is the degree of the polynomial
mapping.

If the input data are sparse, the number of non-zero elements is smaller thanthe dimensionality.
Assumeni is the number of non-zero elements of theith training instance. Then the average number
in xi ∀i is

n̄ =
n1 + · · ·+nl

l
. (9)

If d = 2, the average number of non-zero elements inφ(xi), ∀i is

n̂ =
1
l ∑l

i=1

(ni +2)(ni +1)

2
≈ 1

l ∑l
i=1

n2
i

2
=

1
2

n̄2 +
1
2l ∑l

i=1(ni− n̄)2. (10)

The second term in (10) is the variance ofn1, . . . ,nl. If the variance is small, comparingln̄ andn̄2/2
can possibly indicate if one should train a linear or a nonlinear SVM. In Section 4, we give more
analysis on real data.

3.4 Implementation Issues

Due to the high dimensionality ofφ(xi), some implementation issues must be addressed. To begin,
we discuss various ways to handle the new dataφ(x1), . . . ,φ(xl). A vectorφ(x) now contains terms
like xrxs, which can be calculated usingx. We consider three methods:

1. Calculate and storeφ(x1), . . . ,φ(xl) as the new input data.

2. Usex1, . . . ,xl as the input data and calculate allφ(x1), . . . ,φ(xl) before training.

3. Usex1, . . . , xl as the input data and calculateφ(xi) in a training algorithm (e.g., decomposition
method).

These methods have advantages/disadvantages. The first method does not require any modification
of linear-SVM solvers, but needs a largeO(ln̂) disk/memory space to storeφ(xi), ∀i. The second
method also needs extra memory spaces, but avoids the long time for loading data from disk. The
third method does not need extra memory, but requires some modifications of the decomposition
implementation. That is, we need to calculateφ(xi) in (8). These three methods are useful under
different circumstances. In Section 4.3, we experimentally show that for data with not too largen,
the third way is the fastest. Althoughφ(xi) ∀i can be stored in memory, accessing data from memory
to cache and then CPU may be slower than performing the calculation. However, for an application
with very largen and very small ¯n, we demonstrate that the first or the second method may be more
suitable. See the discussion later in this section.

While we may avoid storingφ(xi), one memory bottleneck remains. The vectorw has a huge
number ofO(nd) components. If some features ofφ(xi), ∀i are zero, their corresponding elements
in w are useless. Hence we can implement a sparsew to save the storage. In the following we
analyze the possibility of having a sparsew by consideringd = 2 and assuming that features of an
instance have an equal opportunity to be zeros. The probability that(xi)r(xi)s is zero for allφ(xi),
i = 1, . . . , l is

∏l
i=1

(

1− ni(ni−1)

n(n−1)

)

.
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Note thatni(ni−1)/n(n−1) is the probability that(xi)r(xi)s is non-zero. Then the expected number
of non-zero elements inw can be approximated by

C(n+2,2)− n(n−1)

2 ∏l
i=1

(

1− ni(ni−1)

n(n−1)

)

, (11)

wheren(n−1)/2 is the number ofxrxs terms in (4). This number is usually close toC(n+2,2) due
to the product ofl values in (11). Moreover, this estimate is only accurate if features are independent.
The assumption may hold for data sets with features from bitmaps or word frequencies, but is
wrong for data with exclusive features (e.g., binary representation of anominal feature). For data
with known structures of features, in Section 4.2 we use real examples to illustrate how to more
accurately estimate the number ofw’s non-zero elements.

In Section 5, we present an example of using a sparsew. The dimensionality of the input data
is n = 46,155. If d = 2, then storingw as a dense vector takes almost 20 GBytes of memory (as-
suming double precision). This problem has a very smallni ≈ 13.3,∀i. Manyxrxs terms are zero in
all φ(xi), i = 1, . . . , l, sow is very sparse. However, a naive implementation can be very inefficient.
Assume ˜n is the number of non-zero elements inw, where for this example ˜n = 1,438,456. Ac-
cessing an element in a sparse vector requires an expensiveO(ñ) linear search. We can use a hash
table to storew, but experiments show that the access time ofw is still high. If φ(xi), ∀i can be
stored in memory, we construct a hash mapping from(r,s) to j ∈ {1, . . . , ñ} and re-generate training
data using feature indexj. That is, we construct a condensed representation forφ(xi), ∀i and train a
linear SVM with a densew ∈ Rñ. The training is much more efficient because we can easily access
any element ofw. In prediction, for any testing instancex, we use the same hash table to conduct the
inner productwT φ(x). This strategy corresponds to the first/second methods in the above discussion
of handlingφ(xi) ∀i.

The above technique to condenseφ(xi) has been used in recent works on hash kernels (e.g.,
Shi et al., 2009). They differ from us in several aspects. First, their condensed representation is an
approximation toφ(xi). Second, with an online setting, they may not accurately solve the problem
(1).

3.5 Relations with the RBF kernel

RBF kernel (Gaussian kernel) may be the most used kernel in training nonlinear SVM. It takes the
following form:

K(xi,x j) = e
−‖xi−x j‖2

2σ2 .

Keerthi and Lin (2003) show that, asσ2→∞, SVM with the RBF kernel and the penalty parameterC
approaches linear SVM with the penalty parameterC/(2σ2). This result implies that with a suitable
parameter selection, the testing accuracy of using the RBF kernel is at least as good as using the
linear kernel.

For polynomial kernels, Lippert and Rifkin (2006) discuss the relation withRBF. They consider
the penalty parameter(1/(2σ2))−2dC and check the situation asσ2→ ∞. For a positive integerd,
the limit of SVM with the RBF kernel approaches SVM with a degree-d polynomial mapping of
data. The polynomial mapping is related only to the degreed. This result seems to indicate that
RBF is again at least as good as polynomial kernels. However, the polynomial mapping for (3) is
more general due to two additional parametersγ andr. Thus the situation is unclear if parameter

1476



TRAINING AND TESTING LOW-DEGREEPOLYNOMIAL DATA MAPPINGS VIA L INEAR SVM

Data set n n̄ l # testing
a9a 123 13.9 32,561 16,281
real-sim 20,958 51.5 57,848 14,461
news20 1,355,181 455.5 15,997 3,999
ijcnn1 22 13.0 49,990 91,701
MNIST38 752 168.2 11,982 1,984
covtype 54 11.9 464,810 116,202
webspam 254 85.1 280,000 70,000

Table 1: Summary of the data sets.n is the number of features, and ¯n is the average number of non-
zero features for each data instance.l is the number of data instances. The last column
shows the number of testing data.

selections have been applied to both kernels. In Section 4, we give a detailed comparison between
degree-2 polynomial mappings and RBF.

3.6 Parameter Selection

The polynomial kernel defined in (3) has three parameters (d, γ, andr). Now we intend to use low-
degree mappings sod should be 2 or 3. Selecting the two remaining parameters is still complicated.
Fortunately, we show in Appendix A thatr can be fixed to one, so the number of parameters is the
same as that of the RBF kernel. This result is obtained by proving that a polynomial kernel

K̄(xi,x j) = (γ̄xT
i x j + r)d with parameters(C̄, γ̄,r) (12)

results in the same model as the polynomial kernel

K(xi,x j) = (γxT
i x j +1)d with parametersγ =

γ̄
r

andC = rdC̄. (13)

3.7 Prediction

Assume a degree-d polynomial mapping is considered and #SV is the number of support vectors.
For any testing datax, the prediction time with/without kernels is

∑i:αi>0 αiyiK(xi,x) ⇒ O(#SV· n̄), (14)

wT φ(x) ⇒ O(n̂), (15)

wheren̄ andn̂ are respectively the average number of non-zero elements inx andφ(x). If n̂≤ #SV· n̄,
then (15) is more efficient than (14). Several NLP studies (e.g., Isozaki and Kazawa, 2002) have
used (15) for efficient testing.

4. Experiments

In this section, we experimentally analyze the proposed approach for degree-2 polynomial map-
pings. We use two-class data sets, but in Section 5, we consider multi-class problems from an NLP
application. We briefly discuss extensions to L1-regularized SVM in Section4.5.
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Data set
Analysis ofφ(xi) # non-zeros inw

n̄2/2 n̂ ln̄ C(n+2,2)
Estimated by

Real
(11) (16)

a9a 96.2 118.1 4.52e+05 7.75e+03 7.75e+03 6.60e+03 5.56e+03
real-sim 1,325.1 2,923.6 2.98e+06 2.20e+08 1.15e+08 3.01e+07
news20 103,750.6 327,051.6 7.29e+06 9.18e+11 5.20e+09 3.13e+09
ijcnn1 84.5 105.0 6.50e+05 2.76e+02 2.76e+02 2.31e+02 2.31e+02
MNIST38 14,147.2 14,965.1 2.02e+06 2.84e+05 2.84e+05 1.54e+05
covtype 71.3 90.3 5.55e+06 1.54e+03 1.54e+03 7.54e+02 6.69e+02
webspam 3,623.5 3,836.4 2.38e+07 3.26e+04 3.26e+04 9.44e+03

Table 2: Analysis ofφ(xi), i = 1, . . . , l and number of non-zero elements inw.

Except programs used in Section 5, all sources for experiments are available athttp://www.
csie.ntu.edu.tw/ ˜ cjlin/liblinear/exp.html .

4.1 Data Sets and Implementations

We select the following problems fromLIBSVM tools2 for experiments:a9a, real-sim, news20,
ijcnn1, MNIST, covtype andwebspam. The summary of data sets is in Table 1. Problemsreal-sim,
news20, covtype andwebspam have no original test sets, so we use a 80/20 split for training and
testing. MNIST is a 10-class problem; we consider classes 3 and 8 to form a two-class dataset
MNIST38. While covtype is originally multi-class, we use a two-class version atLIBSVM tools.

We do not further scale these data sets as some of them have been pre-processed. Problems
real-sim, news20 andwebspam are document sets and each instance is normalized to unit length.
We use a scaled version ofcovtype at LIBSVM tools, where each feature is linearly scaled to[0,1].
The originalMNIST data have all feature values in the range[0,255], but the version we download
is scaled to[0,1] by dividing every value by 255.

We compare implicit mappings (kernel) and explicit mappings of data byLIBSVM (Chang and
Lin, 2001) and an extension ofLIBLINEAR (Fan et al., 2008), respectively. The two packages use
similar stopping conditions, and we set the same stopping tolerance 0.1. Experiments are conducted
on a 2.5G Xeon L5420 machine with 16G RAM usinggcc compiler. Our experiments are run on a
single CPU.

4.2 Analysis of φ(x) and w

Following the discussion in Section 3.2, we checkln̄ andn̂ to see if using the explicit mapping of
data may be helpful. Table 2 presents these two values for the degree-2 polynomial mapping. We
also present ¯n2/2 as from (10) it can be a rough estimate of ˆn.

From Table 2, except document datareal-sim andnews20, n̄2/2 is close to ˆn. The huge differ-
ence between ˆn andln̄ indicates that using explicit mappings is potentially faster.

Next we investigate the number of non-zero elements inw. Table 2 presents the dimensionality
of w, two estimated numbers of non-zero elements and the actual number. For mostdata, the first
estimation by (11) pessimistically predicts thatw is fully dense. Two exceptions arereal-sim and

2. LIBSVM tools can be found athttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/ .
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Data set n̂/n̄
Storingφ(xi) Calculatingφ(xi)

L2 cache misses Training time (s)L2 cache misses Training time (s)
a9a 8.51 5.62e+07 2.2 2.51e+06 1.6
real-sim 56.79 2.60e+09 63.3 1.84e+09 59.8
ijcnn1 8.08 3.62e+08 14.0 2.32e+07 10.7
MNIST38 88.97 9.08e+08 20.4 7.90e+06 8.6
covtype 7.56 1.55e+11 6,422.4 2.98e+10 5,211.9
webspam4 45.07 1.30e+11 4,219.3 3.20e+09 3,228.1

Table 3: A comparison between storing and calculatingφ(xi). The column ˆn/n̄ indicates the ratio
between the memory consumption for storingφ(xi) andxi. Time is in seconds.

news20, where (11) is quite accurate. These two sparse document sets seem to have independent
features (word occurrence) so that the assumption for (11) holds. For data with known structures, we
demonstrate that a better estimate than (11) can be achieved. The problema9a contains 14 groups
of features3 and each group contains several exclusive binary features (e.g., age in various ranges).
Within each group,xrxs = 0 if r 6= s, so an upper bound ofw’s number of non-zero elements is

C(n+2,2)− ∑
feature groups

C(#features in each group,2). (16)

We show in Table 2 that (16) is closer to the actual number. The situation for two other problems
(ijcnn1 andcovtype) is similar.

As storingnews20’s non-zerow elements requires more memory than our machine’s capacity,
we do not include this set in subsequent experiments.

4.3 Calculating or Storing φ(xi)

In Section 3.4, we discuss three methods to handleφ(xi). Table 3 compares the first/second and the
third methods. We selectC and kernel parameters by a validation procedure and present the training
time of using optimal parameters. For the first/second methods, we count CPU timeafter allφ(xi)
have been loaded/generated. For the third, we show CPU time after loading all xi, as this method
calculatesφ(xi), ∀i in the middle of the training procedure.

Table 3 lists ˆn/n̄ to show the ratio between two methods’ memory consumption on storingφ(xi)
andxi, ∀i. In the same table we present each method’s number of L2 cache misses andtraining
time. The number of L2 cache misses is obtained by the simulation toolcachegrind in valgrind.5

The method by calculatingφ(xi) is faster in all cases. Moreover, it has a smaller number of L2
cache misses. Data can be more easily located in the cache whenφ(xi) is not stored. We consider
the method of calculatingφ(xi) for subsequent experiments in this section.

3. See descriptions in the beginning of each file fromhttp://research.microsoft.com/en-us/um/people/
jplatt/adult.zip .

4. Forwebspam, asφ(xi) ∀i require more memory than what our machine has, we use single precision floating-point
numbers to store the data. All other experiments in this work use double precision.

5. cachegrind can be found athttp://valgrind.org/ .

1479



CHANG, HSIEH, CHANG, RINGGAARD AND L IN

Linear (LIBLINEAR) RBF (LIBSVM)
Data set C Time (s) Accuracy C γ Time (s) Accuracy
a9a 32 5.4 84.98 8 0.03125 98.9 85.03
real-sim 1 0.3 97.51 8 0.5 973.7 97.90
ijcnn1 32 1.6 92.21 32 2 26.9 98.69
MNIST38 0.03125 0.1 96.82 2 0.03125 37.6 99.70
covtype 0.0625 1.4 76.35 32 32 54,968.1 96.08
webspam 32 25.5 93.15 8 32 15,571.1 99.20

Table 4: Comparison of linear SVM and nonlinear SVM with RBF kernel. Time is inseconds.

Data set
Degree-2 Polynomial Accuracy diff.

C γ Training time (s)
Accuracy Linear RBF

LIBLINEAR LIBSVM
a9a 8 0.03125 1.6 89.8 85.06 0.07 0.02
real-sim 0.03125 8 59.8 1,220.5 98.00 0.49 0.10
ijcnn1 0.125 32 10.7 64.2 97.84 5.63 −0.85
MNIST38 2 0.3125 8.6 18.4 99.29 2.47 −0.40
covtype 2 8 5,211.9 NA 80.09 3.74 −15.98
webspam 8 8 3,228.1 NA 98.44 5.29 −0.76

Table 5: Training time (in seconds) and testing accuracy of using the degree-2 polynomial mapping.
The last two columns show the accuracy difference to results using linear and RBF. NA
indicates that programs do not terminate after 300,000 seconds.

4.4 Accuracy and Time of Using Linear, Degree-2 Polynomial, and RBF

We compare training time, testing time, and testing accuracy of using three mappings: linear,
degree-2 polynomial, and RBF. We useLIBLINEAR for linear,LIBSVM for RBF, and both for degree-
2 polynomial. For each data set, we choose parametersC andγ by a five-fold cross validation on
a grid of points. The best(C,γ) are then used to train the whole training set and obtain the testing
accuracy. To reduce the training time,LIBSVM allocates some memory space, called kernel cache,
to store recently used kernel elements. In contrast,LIBLINEAR does not require this space. All it
needs is to storew. In this work, we runLIBSVM using 1 GBytes of kernel cache.

Using linear and RBF mappings, Table 4 presents the training time, testing accuracy, and the
correspondent parameters. Linear and RBF have similar testing accuracy on data setsa9a andreal-
sim. The setreal-sim contains document data with many features. Linear classifiers have been
observed to perform well on such data with much less training time. For other data sets, the testing
accuracy of using linear is clearly inferior to that of using RBF. Degree-2 polynomial mappings may
be useful for these data. We can possibly improve the accuracy over linear while achieving faster
training time than RBF.

We then explore the performance of the degree-2 polynomial mapping. Thefirst part of Table
5 shows the training time, testing accuracy, and optimal parameters usingLIBLINEAR. As a com-
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Data set
LIBLINEAR LIBSVM

linear degree-2 degree-2 RBF
a9a 0.00 0.01 19.28 32.42
real-sim 0.02 1.13 107.67 84.52
ijcnn1 0.02 0.07 14.07 20.38
MNIST38 0.00 0.12 2.41 5.76
covtype 0.03 0.09 NA 998.68
webspam 0.05 1.14 NA 846.77

Table 6: Testing time (in seconds) using decomposition methods for linear and nonlinear SVM.
Parameters in Tables 4 and 5 are used to build SVM models for prediction. NA:SVM
models are not available due to lengthy training time (see Table 5).

parison, we runLIBSVM with the same parameters and report training time.6 Table 5 also presents
the testing accuracy difference between degree-2 polynomial and linear/RBF. It is observed that for
nearly all problems, the performance of the degree-2 polynomial mapping can compete with RBF,
while for covtype, the performance is only similar to the linear mapping. Apparently, a degree-2
mapping does not give rich enough information to separate data incovtype.

Regarding the training time,LIBLINEAR with degree-2 polynomial mappings is faster than
LIBSVM with RBF. Therefore, the proposed method may achieve fast training, whilepreserving
some benefits of nonlinear mappings. Next, we compare the training time betweenLIBLINEAR
andLIBSVM when the same degree-2 polynomial mapping is used. From Table 5,LIBLINEAR is
much faster thanLIBSVM. Thus for applications needing to use low-degree polynomial kernels, the
training time can be significantly reduced.

We present testing time in Table 6. The explicit mapping approach is much fasteras it calculates
only wT x or wT φ(x).

4.5 L1-regularized SVM with Linear and Degree-2 Polynomial Mappings

Recently, L1-regularized SVM has gained attention because it can produce a sparse model (see, for
example, the survey by Yuan et al., 2009, and references therein). AnL1-regularized SVM7 solves

min
w

‖w‖1 +C∑l
i=1max(1− yiwT φ(xi),0)2, (17)

where‖ · ‖1 denotes the 1-norm. As discussed in Section 3.4, after a degree-2 polynomial mapping
the number of features may be very large. A sparsew reduces the memory consumption. In this
section, we conduct a preliminary investigation on training degree-2 polynomial mappings via (17).

Due to the non-differentiable term‖w‖1, optimization techniques for (17) are different from
those for L2-regularized SVM. If we pre-computeφ(xi), ∀i (i.e., methods 1 and 2 in Section 3.4 for
handlingφ(xi)), then any optimization technique for (17) can be directly applied. Recall that Section
4.3 shows that method 3 (calculatingφ(xi) in the training algorithm) is faster ifn is not large. We
show an interesting example where this method significantly increases the number of operations. In

6. LIBSVM solves SVM with biasb, but LIBLINEAR solves (1). As the difference is minor, we runLIBSVM with the
same parameters forLIBLINEAR. Moreover, the testing accuracy ofLIBSVM is almost the same asLIBLINEAR.

7. We consider L2-loss in (17) by following Yuan et al. (2009).
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Linear Degree-2 polynomial

Data set
Time Sparsity Accuracy Time (s):φ(xi) is Sparsity Accuracy L2 SVM

(s) (%) (%) stored calculated (%) (%) Sparsity
a9a 0.73 83.74 85.00 3.94 19.33 10.43 85.10 71.74
real-sim 1.06 25.16 97.04 524.54 2,288.27 0.01 97.43 26.17
ijcnn1 0.86 100.00 91.79 9.17 18.09 83.70 97.59 83.70
MNIST38 0.86 55.85 96.93 38.11 81.10 0.23 99.50 54.23
covtype 60.07 98.15 75.66 70.13 2,196.08 39.22 79.73 43.44
webspam 47.08 38.98 92.55 772.92 1,296.40 12.60 98.32 28.96

Table 7: L1-regularized SVM: a comparison between linear and degree-2 polynomial mappings.
Time is in seconds. Sparsity is the percentage of non-zero elements inw. For the degree-2
polynomial mapping, we show the training time of both calculating and storingφ(x).

Yuan et al. (2009), a primal decomposition (coordinate descent) method is considered the fastest for
solving (17). It updates one element ofw at a time. Ifw is the current solution and thejth element
is selected, the following one-variable problem is minimized:

min
d

|w j +d|+C∑l
i=1max

(

1− yiwT φ(xi)− yidφ(xi) j,0
)2

.

Assumeφ(x) j involvesxrxs. To obtain allφ(xi) j, ∀i, we must go through non-zero elements of
the rth and thesth features of the original data. This operation costsO(l̄), wherel̄ is the average
number of non-zero elements per feature ofxi, ∀i. However, the expected number of non-zero
elements ofφ(xi) j, ∀i is only

(

l̄/l
)2 · l = l

2
/l.

If data are sparse,l
2
/l is much smaller than̄l. Therefore, the cost by using methods 1 and 2 to

pre-computeφ(xi), ∀i is less than method 3. This is mainly because the primal coordinate descent
approach accesses data in a feature-based way. The sparse patterns of two features are needed.
In contrast, decomposition methods used earlier for solving the dual problem of L2-regularized
SVM is instance-based. To obtainxrxs, one needs only the sparse pattern of an instancex. Some
optimization approaches discussed in Yuan et al. (2009) for (17) are instance-based. An interesting
future study would be to investigate their performances.

We extend a primal decomposition implementation for (17) inLIBLINEAR to handle degree-2
polynomial mappings. We use default settings (e.g., stopping tolerance) inLIBLINEAR. Table 7
compares linear and degree-2 polynomial mappings by showing training time,w’s sparsity, and
testing accuracy. For the training time of using degree-2 polynomials, we present results by storing
and calculatingφ(xi). Clearly, calculatingφ(xi) is much slower, a result consistent with our analysis.
The training time forreal-sim is much longer than that in Table 5 (L2-regularized SVM). This result
is due to the huge number of variables in solving the primal problem (17). There are some tricks to
improve the training speed for this problem though we do not get into details. For sparsity, we also
show the result using L2-regularized SVM as a comparison.8 L1-regularized SVM gives excellent

8. The sparsity of L2-regularized SVM is in fact the column of “real” numbers of non-zero elements in Table 2 divided
by the dimensionalityC(n+2,2).
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nsubj ROOT det dobj prep det pobj p

John hit the ball with a bat .

NNP VBD DT NN IN DT NN .

Figure 1: A dependency graph with arc labels and part-of-speech tagsfor a sentence.

sparsity for some problems. For example,MNIST38 hasn = 752 features. By solving (17) with
linear mapping, 420 features remain. If using a degree-2 polynomial mapping, the dimensionality is
C(n+2,2) = 283,881. Solving an L2-regularized SVM gives aw with 153,564 non-zero elements,
but using L1 regularizationw has only a very small number of 650 non-zero elements. Finally, for
testing accuracy, results are similar to (or slightly lower than) those in Tables 4-5.

Due to the nice sparsity results, L1 regularization for low-degree polynomialmappings may be
a promising future direction.

5. An NLP Application: Data-driven Dependency Parsing

In this section we study a real-world natural language processing (NLP)task on dependency parsing.
Given a sentence, a dependency graph represents each word and itssyntactic modifiers through
labeled directed edges. Figure 1 shows an example. Data-driven dependency parsing is a common
method to construct dependency graphs. Different from grammar-based parsing, it learns to produce
the dependency graph solely by using the training data. Data-driven dependency parsing has become
popular because it is chosen as the shared task atCONLL-X9 andCONLL2007.10 More information
about dependency parsing can be found in, for example, McDonald and Nivre (2007).

Dependency parsing appears in many online NLP applications. In such cases testing (parsing)
speed is very important. We will see that this requirement for testing speed makes our approach
very useful for this application.

5.1 A Multi-class Problem

We study a transition-based parsing method proposed by Nivre (2003).The parsing algorithm builds
a labeled dependency graph in one left-to-right pass over the input with astack to store partially
processed tokens. At each step, we need to decide which transition to perform. As in Nivre et al.
(2007), we use the following transitions:

• SHIFT: Pushes the next input token to the top of the stack and advances to the next input
token.

• REDUCE: Pops the top element from the stack.

9. CONLL-X can be found athttp://nextens.uvt.nl/ ˜ conll/ .
10. CONLL2007 can be found athttp://nextens.uvt.nl/depparse-wiki/SharedTaskWebsi te .
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input(1).tag stack.tag stack.leftmost-child.label
input(2).tag stack(1).tag stack.rightmost-child.label
input(3).tag stack.label input.leftmost-child.label
input.word stack.word
input(1).word stack.head.word

Table 8: Feature types used by the dependency parser.

• LEFT-ARC(r): Adds an arc with labelr from the next input token to the token on top of the
stack and pops the top element off the stack.

• RIGHT-ARC(r): Adds an arc with labelr from the top token on the stack to the next input
token. Then pushes the current input token to the stack and advances tothe next input token.

The parser decides the next transition by extracting features from the current parse state. The parse
state consists of the stack, the remaining input tokens, and the partially built dependency graph. We
use the standard method for converting symbolic features into numerical features by binarization.
For each feature typeF (see Table 8), that has valuev in the current state, we generate a feature
predicate,F = v. These feature predicates are used as binary features in the classifier. It is this
expansion of feature types to binary feature predicates that leads to the large number of features
in the classifiers. Especially the lexicalized (i.e., word-based) features generate large numbers of
sparse features.

Thus the core of the parser is a multi-class classification problem, which maps features to tran-
sitions. Nivre et al. (2006) useLIBSVM with a degree-2 polynomial kernel to train the multi-class
classification problems, and get good results atCONLL-X.

In this experiment, we use data from the English Penn Treebank (Marcus et al., 1993). The
treebank is converted to dependency format using Penn2Malt,11 and the data is split into sections
02–21 for training and section 23 for testing. During training we constructa canonical transition
sequence from the dependency graph of each sentence in the training corpus, adopting an arc-eager
approach for disambiguation. For each transition, we extract the features in Table 8 from the current
parse state, and use this for training the classifiers.

When parsing a sentence, the classifiers are used for predicting the next transition, based on the
features extracted from the current parse state. When all the input tokens have been processed the
dependency graph is extracted from the transition sequence.

In order to reduce training time the data is split into multiple sets. For example, if a feature j
takes two valuesa andb, we can divide the training data into{x | x j = a} and{x | x j = b}, and
get two modelsMa andMb. Then in the prediction phase, we decide to useMa or Mb according
to x j of the testing instance. Yamada and Matsumoto (2003) mention that applying this method
reduces the training time without a significant loss in accuracy. We divide thetraining data into
125 smaller training sets according to the part-of-speech tag of the current input token. Also, the
label for RIGHT-ARC and LEFT-ARC transitions is predicted separately from the transition. The
number of classes ranges from 2 to 12. Table 9 lists the statistics of the largest multi-class problem
among 125.

11. Seehttp://w3.msi.vxu.se/ ˜ nivre/research/Penn2Malt.html
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n n̄ l #nz
46,155 13.3 294,582 3,913,845

Table 9: Summary of the dependency parsing data set. We show statistics of the largest problem
among the 125 sets divided from the training data. The column #nz (= ln̄) indicates the
total number of non-zero feature values in the training set.

5.2 Implementations

We consider the degree-2 polynomial mapping in (5). Since the originalxi,∀i have 0/1 feature
values, we use (5) instead of (4) to preserve this property.12 In our implementation, by extending
LIBLINEAR, 0/1 values are still stored as double-precision numbers. However, forlarge data sets,
we can save memory by storing only non-zero indices. Due to using (5), theonly parameter isC.

The dimensionality of using the degree-2 polynomial mapping is huge. We discussed in Sec-
tion 3.4 that 20 GBytes memory is needed to store a densew. Assume the “one-against-the rest”
approach is applied for multi-class classification. We need 125× (# classes) vectors ofw in the
prediction (parsing) stage as training data are separated into 125 sets. Obviously we do not have
enough memory for them. As the data are very sparse, the actual number ofnon-zero elements inw
is merely 1,438,456 (considering the largest of the 125 training sets). Only these non-zero features
in φ(x) andw are needed in training/testing, so the memory issue is solved. In the practical imple-
mentation, we construct a hash table to collect non-zero features ofφ(xi), i = 1, . . . , l as a new set
for training.13 In prediction, we use the same hash map to calculatewT φ(x). This implementation
corresponds to the first/second methods discussed in Section 3.4. See moredetails in the end of
Section 3.4.

Other settings (e.g., stopping tolerance andLIBSVM’s kernel cache) are the same as those in
Section 4.LIBSVM uses the “one-against-one” approach for training multi-class problems, while
LIBLINEAR uses “one-against-the rest.” We use a dependency parsing system atGoogle, which
callsLIBSVM/LIBLINEAR for training/testing. Parts of this experiment were performed when some
authors worked at Google.

As the whole parsing system is quite complex, we have not conducted a complete parameter
optimization. Instead, we have roughly tuned each parameter to produce good results.

5.3 Experiments

We compare two approaches. The first uses kernels, while the second does not.

• LIBSVM: RBF and degree-2 polynomial kernels.

• LIBLINEAR: linear mapping (i.e., the original input data) and the degree-2 polynomial map-
ping via (5).

12. In fact, if using (4), we can still use some ways so that
√

2 is not stored. However, the implementation is more
complicated.

13. For a fair comparison, the reported training time includes time for this pre-processing stage.
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LIBSVM LIBLINEAR
RBF Poly (d = 2) Linear Poly: Eq. (5)

Parameters
C = 0.5 C = 0.5 C = 0.5 C = 0.05

1/(2σ2) = 0.18 γ = 0.18
r = 0.3

Training time 3h34m53s 3h21m51s 3m36s 3m43s
Parsing speed 0.7x 1x 1652x 103x
UAS 89.92 91.67 89.11 91.71
LAS 88.55 90.60 88.07 90.71

Table 10: Accuracy, training time, and parsing speed (relative toLIBSVM with polynomial kernel)
for the dependency parsing.

Table 10 lists parameters for various kernels, training/testing time, and testing accuracy. Train-
ing and testing are done using gold standard part-of-speech tags, and only non-punctuation tokens
are used for scoring. The accuracy of dependency parsing is measured by two evaluation metrics:

1. Labeled attachment score (LAS): the percentage of tokens with correct dependency head and
dependency label.

2. Unlabeled attachment score (UAS): the percentage of tokens with correct dependency head.

For LIBSVM the polynomial kernel gives better accuracy than the RBF kernel, consistent with
previous observations, that polynomial mappings are important for parsing (Kudo and Matsumoto,
2000; McDonald and Pereira, 2006; Yamada and Matsumoto, 2003; Goldberg and Elhadad, 2008).
Moreover,LIBSVM using degree-2 polynomial kernel produces better results in terms of UAS/LAS
thanLIBLINEAR using just a linear mapping of features. However, parsing usingLIBSVM is slow
compared toLIBLINEAR. We can speed up parsing by a factor of 1,652 with only a 2.5% drop
in accuracy. With a degree-2 polynomial mapping (5), we achieve UAS/LASresults similar to
LIBSVM, while still maintaining high parsing speed, 103 times faster thanLIBSVM.

From Table 10, trainingLIBLINEAR is a lot faster thanLIBSVM. This large reduction in train-
ing time allows us to easily conduct experiments and improve the settings. Some may criticize
that the comparison on training time is not fair asLIBSVM uses “one-against-one” for multi-class
classification, whileLIBLINEAR uses “one-against-the rest.” It is known (e.g., Hsu and Lin, 2002)
that for nonlinear SVM,LIBSVM with “one-against-one” is faster than “one-against-the rest.” Thus
even if we modifyLIBSVM to perform “one-against-the rest,” its training is still much slower than
LIBLINEAR.

5.4 Related Work

Earlier works have improved the testing speed of SVM with low-degree polynomial kernels. Most
of them target natural language processing (NLP) applications. Isozaki and Kazawa (2002) propose
an approach similar to obtainingw by the expression in (8).14 A direct implementation of their

14. They do not really formw, but their result by expanding the degree-2 polynomial kernel leads tosomething very
similar.
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method requires a memory space as large as the dimensionality ofw, but we cannot afford such
a space for our application. Kudo and Matsumoto (2003) consider the expression ofw in (8) and
propose an approximate prediction scheme using only a sub-vector ofw. Their method is useful for
data with 0/1 features. Goldberg and Elhadad (2008) propose speedingup the calculation of low-
degree polynomial kernels by separating features to rare and common ones. Goldberg and Elhadad’s
approach is motivated by some observations of NLP data. It avoids the memory problem, but the
effectiveness on general data is not clear yet.

The above existing works focus on improving testing speed. They sufferfrom the slow training
of using traditional SVM solvers. For example, Kudo and Matsumoto (2000)mention that “the
experiments . . . have actually taken long training time,” so they must select a subset using properties
of dependency parsing. Our approach considers linear SVM on explicitly mapped data, applies state
of the art training techniques, and can simultaneously achieve fast trainingand testing.

6. Discussions and Conclusions

Past research has shown that SVM using linear and highly nonlinear mappings of data has the fol-
lowing properties:

Linear Highly nonlinear
Fast training/testing Slow training/testing via kernels
Low accuracy High accuracy

Many have attempted to develop techniques in the between. Most start from the nonlinear side.
They propose methods to manipulate the kernels (e.g., Lee and Mangasarian, 2001; Keerthi et al.,
2006). In contrast, ours is from the linear side. The strategy is simple and requires only minor
modifications of existing packages for linear SVM.

This work focuses on the degree-2 polynomial mapping. An interesting future study is the effi-
cient implementation for degree-3 mappings. Considering other mapping functions to expand data
vectors could be investigated as well. As kernels are not used, we might have a greater flexibility to
design the mapping function.

Table 2 shows that storingw may require a huge amount of memory. For online training, some
(e.g., Langford et al., 2009) have designed feature hashing techniques to control the memory use
of w. Recently, feature hashing has been popular for projecting a high dimensional feature vector
to a lower dimensional one (e.g., Weinberger et al., 2009; Shi et al., 2009). For certain sequence
data, one can considern-gram (i.e.,n consecutive features) instead of general polynomial mappings.
Then not only the number of features becomes smaller, but also controllingw’s sparsity is easier.
Existing experiments on document data can be found in, for example, Ifrim et al. (2008) and Shi
et al. (2009).

We successfully apply the proposed procedure to an NLP application. It has certain require-
ments on the training and testing speed, but we also hope to achieve better testing accuracy. The
proposed procedure is very useful for applications of this type.
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Appendix A. Connection Between (12) and (13)

We prove the result by showing that the dual optimization problems of using (12) and (13) are the
same. Since

(γ̄xT
i x j + r)d = rd

(

γ̄
r

xT
i x j +1

)d

,

we have
Q̄i j = yiy jK̄(xi,x j) = rdQi j.

The dual optimization problem of usinḡQ can be written as

min
ᾱ

1
rd

(

1
2
(rdᾱ)T Q(rdᾱ)− eT rdᾱ

)

subject to 0≤ rdᾱi ≤ rdC̄, i = 1. . . , l.

Usingα = rdᾱ andC = rdC̄, this problem becomes the dual problem when usingQ.
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