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Abstract

We introduce new Perceptron-based algorithms for the emfinltitask binary classification prob-
lem. Under suitable regularity conditions, our algorithane shown to improve on their baselines
by a factor proportional to the number of tasks. We achiegedlimprovements using various types
of regularization that bias our algorithms towards speaifitons of task relatedness. More specif-
ically, similarity among tasks is either measured in terrhthe geometric closeness of the task
reference vectors or as a function of the dimension of thpsinsed subspace. In addition to adapt-
ing to the online setting a mix of known techniques, such asihltitask kernels of Evgenicat al,,

our analysis also introduces a matrix-based multitasknsib@ of thep-norm Perceptron, which
is used to implement spectral co-regularization. Expent:men real-world data sets complement
and support our theoretical findings.

Keywords: mistake bounds, perceptron algorithm, multitask learnépgctral regularization

1. Introduction

In this work we study online supervised learning algorithms that process teuliffta streams at
the same time. More specifically, we consider theltitask classification learning problem where
observed data describe different learning tasks.

Incremental multitask learning systems, which simultaneously process datanfidtiple
streams, are widespread. For instance, in financial applications a tyadifgrm chooses invest-
ments and allocates assets using information coming from multiple market ndga:sfééhen the
learning tasks are unrelated, running different instances of the sameelying algorithm, one for
each task, is a sound and reasonable policy. However, in many circu@stdata sources share
similar traits and are therefore related in some way. Unsurprisingly, this lattatisn is quite com-
mon in real-world applications. In these cases the learning algorithm shewalolé to capitalize on
data relatedness.

In multitask classification an online linear classifier (such as the Perceggoritilam) learns
from examples associated wikh > 1 different binary classification tasks. Our goal is to design
online interacting algorithms that perform better than independent leammersever the tasks are
related. We formalize task relatedness in different ways, and dermaasperformalizations of the
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advantage resulting from such interaction. Our investigation considersaviemts of the online
multitask protocol: (1) at each time step the learner acts on a single advilysarasen task; (2)

all tasks are simultaneously processed at each time step. Each setup afldiffefent approaches

to the multitask problem and caters for different real-world scenarios. ifstance, one of the
advantages of the first approach is that, in most cases, the cost afgunaltitask algorithms has

a mild dependence on the numbe€rof tasks. The multitask classifiers we study here manage to
improve, under certain assumptions, the cumulative regret achieveddiyralbaseline algorithm
through the information acquired and shared across different tasks.

Our analysis builds on ideas that have been developed in the contexisifcablearning where
the starting point is a regularized empirical loss functional or Tikhonoetfanal. In that frame-
work the objective includes a co-regularization term in the form of a sguaorm in some Hilbert
space of functions that favors those solutions (i.e., predictive funcimmthe K tasks) that lie
“close” to each other. In this respect, we study two main strategies. Theapipsoach followed
here is to leari linear functions parameterized by = (uy ,...,ug) € RK9 through the minimiza-
tion of an objective functional involving the sum of a loss term plus the regalion termu’ Au,
whereA is a positive definite matrix enforcing certain relations among tasks. Followiegriou
et al. (2005), th& different learning problems are reduced to a single problem by choasng-
able embedding of the input instances into a common Reproducing KernettrSibgce (RKHS).
This reduction allows us to solve a multitask learning problem by running amgkbased single-
task learning algorithm with a “multitask kernel” that accounts for the coleggation term in the
corresponding objective functional. We build on this reduction to analyg@énformance of the
Perceptron algorithm and some of its variants when run with a multitask kernel.

As described above, we also consider a different learning setuprésatriibpes the whole set of
K learning tasks to be worked on at the same time. Once again we adopt aizegiola approach,
this time by adding a bias towards those solutions that lie on the same low dimersibsphce.
To devise an algorithm for this model, we leverage on the well-establisheq thigmotential-based
online learners. We first define a natural extension ofpm®rm Perceptron algorithm to a certain
class of matrix norms, and then provide a mistake bound analysis for the mukigasing problem
depending on spectral relations among different tasks. Our analysis shfactolK improvement
over the algorithm that runis independent Perceptrons and predicts using their combined margin
(see Section 1.1). The above is possible as long as the the example vésemged at each time
step are unrelated, while the sequences of multitask data are well prediaebof highly related
linear classifiers.

1.1 Main Contributions

The contribution of this paper to the current literature is twofold. First, w&ide theoretical guar-
antees in the form of mistake bounds for various algorithms operating withiortiee multitask
protocol. Second, we present various experiments showing that tlhyssahens perform well on
real problems.

Our theoretical results span across the two previously mentioned settimtige ddversarially
chosen task setting, we extend the ideas introduced by Evgeniou etG8) (2Ghe online learning
setup, and present upper bounds which depend on task relatedessie hand, we show that
whenever the reference vectors associated with different taskelated, we achieve an improve-
ment of a factor up t& over the baseline approach wh&tenline classifiers are run in parallel and
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tasks are processed in isolation. On the other hand, when tasks degedhceir bounds become not
much worse than the one achieved by separately ruriontassifiers. In this context, the notion
of relatedness among tasks follows from the specific choice of a matrirnpéeathat essentially
defines the so-called multitask kernel. We also provide some new insight ooléhgayed by this
kernel when used as a plug-in black-box by the Perceptron or otheg@son-like algorithms.

In the simultaneous task setting, we introduce and analyze a matrix-based mkeltiteission
of the p-norm Perceptron algorithm (Grove et al., 2001; Gentile, 2003) whiclvalics to obtain a
factorK improvement in a different learning setting, where the baseline, which is stiéilgorithm
that maintainK independent classifiers, is supposed to oulpptedictions per trial.

On the experimental side, we give evidence that our multitask algorithms prawsdynificant
advantage over common baselines. In particular, we show that on a tegbrdaation problem,
where each task requires detecting the topic of a newsitem, a large multitéaskrarce increase
is attainable whenever the target topics are related. Additional experimergdsspam data set
confirm the potential advantage of thenorm Perceptron algorithm in a real-world setting.

This work is organized as follows. In Section 2 we introduce notation amddly define the
adversarially chosen tagrotocol. The multitask Perceptron algorithm is presented in Section 3
where we also discuss the role of the multitask feature map and show (Sectioat 4 can be
used to turn online classifiers into multitask classifiers. We detail the matrixilaggeoach to the
simultaneous multitask learning framework in Section 5. Section 6 is devoted toebeetical
analysis of a general potential-based algorithm for this setup. We canttlegaper with a number
of experiments establishing the empirical effectiveness of our algorithetsi¢s 7).

1.2 Related Work

The problem of learning from multiple tasks has been the subject of a nwhizrently published
papers. In Evgeniou et al. (2005) a batch multitask learning problem isedeéis a regularized
optimization problem and the notion of multitask kernel is introduced. Moreifspaty, they con-
sider a regularized functional that encodes multitask relations over tasisshbiasing the solution
of the problem towards functions that lie close to each other. Argyriol ¢2@07, 2008) build
on this formalization to simultaneously learn a multitask classifier and the undedgeajral de-
pendencies among tasks. A similar model but under cluster-based asssriptiovestigated in
Jacob et al. (2009). A different approach is discussed in Ando aadg@ (2005) where a structural
risk minimization method is presented and multitask relations are established byiegforedic-
tive functions for the different tasks to belong to the same hypothesis setpléxity results for
multitask learning under statistical assumptions are also given in Maures)(200

In the context of online learning, multitask problems have been studied innathgr et al.
(2007) within the learning with expert advice model. In this model the fotec&ss access to a
fixed set of experts and is expected to make prediction& fdifferent tasks. Regret bounds are
given under the assumption that the set of best experts fét thsks is small, as a way to formalize
task similarity. Whereas these studies consider a multitask protocol in whichyla sk is acted
upon at each time step (what we call in this paper the adversarially chaseprtdocol), the work
of Lugosi et al. (2009) investigates the problem where an action fdr sk must be chosen at
every step. The relatedness among tasks is captured by imposing resramidhe joint action
chosen at each step.
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Online linear multitask algorithms for the simultaneous task setting have been studiekel
et al. (2007), where the separate learning tasks are collectively déalthnough a common mul-
titask loss. Their approach, however, is fundamentally different frarotie considered here. In
fact, using a common loss function has more the effect of prioritizing certsks @ver the others,
whereas our regularized approach hopes to benefit from the informatiwided by each task to
speed up the learning process for the other ones. Nonetheless, itidficatt to extend our anal-
ysis to consider a more sophisticated notion of multitask loss (see Remark 1&tionS&2), thus
effectively obtaining a shared loss regularized multitask algorithm.

Online matrix approaches to the multitask and the related multiview learning proklenas
considered in various works. Matrix versions of the EG algorithm and timn®W algorithm (re-
lated to specific instances of the quasi-additive algorithms) have beensg@nd analyzed in
Tsuda et al. (2005), Warmuth (2007), and Warmuth and Kuzmin (2006)erVdealing with the
trace norm regularizer, their algorithms could be generalized to our simultameoltitask frame-
work to obtain mistake bounds comparable to ours. However, unlike thgsggave do not have
learning rate tuning issues and, in addition, we directly handle genersfjnare task matrices.

Finally, Agarwal et al. (2008) consider multitask problems in the restrictpdrésetting, where
task relatedness is enforced by a group norm regularization. Thalts@se essentially incompa-
rable to ours.

2. The Adversarially Chosen Task Protocol: Preliminaries

The adversarially chosen task protocol works as follows. K.éte the number of binary classifi-
cation tasks indexed by, 1. K. Learning takes place in a sequential fashion: At each time step
t=1,2,... the learner receives a task index {1,...,K} and observes an instance vectoe RY
which plays the role of side information for the task indexBased on the pai(rxt,it) it outputs a
binary predictiory; € {—1,1} and then receives the correct lage€ {—1, 1} for task index;. So,
within this scheme, the learner works at each step on a single chosen tasg tHre tasks and
operates under the assumption that instances from different taskexcéoeswof the same dimension.
No assumptions are made on the mechanism generating the seq(aqmyf,)s (xz,yz),... of task
examples. Moreover, similarly to Abernethy et al. (2007), the sequeesloindicedy,io,... is
also generated in an adversarial manner. To simplify notation we introdicoergpound” descrip-
tion for the pair(x, it) and denote by € R the vector

@ £(0,..0x 0..0). (1)

(it—1)dtimes (K—it)dtimes

Within this protocol (studied in Sections 3 and 4) we @ser (xt, it) interchangeably when referring
to a multitask instance. In the following we assume instance vectors are didgarg unit norm,
thatis,||%|| = 1, so that|q | = 1.

We measure the learner’s performance with respect to that of a (contpaiarence predictor
that is allowed to use a different linear classifier, chosen in hindsighg&don one of th& tasks.
To remain consistent with the notation used for multitask instances, we intrélgei¢eompound”
reference task vectar’ = (uf,...,uy ) and define the hinge loss for the compound veutas

t(u) E'max{0,1—yru g} = max{0,1—yru % }.
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It is understood that the compound vectors are of dimensinOur goal is then to compare the
learner’'s mistakes count to the cumulative hinge loss

Z le(u) (2)

suffered by the compound reference task veator his of course amounts to summing over time
stepd the losses incurred by reference task vectpraith respect to instance vectoxs.

In this respect, we aim at designing algorithms that make fewer mistakeKthatependent
learners when the tasks are related, and do not perform much worsthts@ when the tasks are
completely unrelated. For instance, if we use Euclidean distance to measkirelttedness, we
say that theK tasks are related if there exist reference task veatars.,ux € RY having small
pairwise distance#ui —Uj H and achieving a small cumulative hinge loss in the sense of (2). More
general notions of relatedness are investigated in the next sections.

Finally, we find it convenient at this point to introduce some matrix notation. ¥éguto
refer to thed x d identity matrix but drop the subscript whenever it is clear from context.esiv
a matrixM € R™" we denote byM; ; the entry that lies in théth row, j-th column. Moreover,
given two matrice € R™" andN € R™" we denote byM,N] themx (n+r) matrix obtained
by the horizontal concatenation @fandN. The Kronecker or direct product between two matrices
M € R™"MandN € R9*" is the block matrixvM @ N of dimensiormqx nr whose block on rowand
columnj is theq x r matrix M; jN.

3. The Multitask Perceptron Algorithm

We first introduce a simple multitask version of the Perceptron algorithm fgrtstecol described

in the previous section. This algorithm keeps a weight vector for eachataskipdates all weight
vectors at each mistake using the Perceptron rule with different learaiieg. rMore precisely, let
wit be the weight vector associated with taskt timet. If we are forced (by the adversary) to
predict on task;, and our prediction happens to be wrong, we upete 1 through the standard
additive rulew; 1 = Wi t—1 + Nyt % (wheren > 0 is a constant learning rate) but, at the same time,
we perform a “half-update” on the remainiKg- 1 Perceptrons, that is, we sejft; = w;j 1+ %yt Xt

for eachj # i;. This rule is based on the simple observation that, in the presence of relsksd ta
any update step that is good for one Perceptron should also be gabe fathers. Clearly, this rule
keeps the weight vectows;, j = 1,...,K, always close to each other.

The above algorithm is a special case of thaeltitask Perceptron algorithmescribed below.
This more general algorithm updates each weight vesierthrough learning rates defined by a
K x K interaction matrixA. 1t is A that encodes our beliefs about the learning tasks: different
choices of the interaction matrix result in different geometrical assumptiotiseotasks.

The pseudocode for the multitask Perceptron algorithm using a generiadtiber matrixA
is given in Figure 1. At the beginning of each time step, the coungtores the mistakes made
so far plus 1. The weights of thi€ Perceptrons are maintained in a compound veatbr=
(Wig,..., Wk s), with wjs € R for all j. The algorithm predicts; through the sigry; of the i;-

th Perceptron’s margimg ;@ =W, ¢ ,%. Then, if the prediction and the true label disagree, the

compound vector update rulevg = ws_1 + (A® lq) *1([&. Since(A®lq) 1 — A 1gly, the above
update is equivalent to th€ task updates

Wj,s:Wj7s—1+YtAﬁXt i=1....,K.
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Parameters: Positive definitek x K interaction matridA.
Initialization: wp=0¢c RXd s=1.
At eachtima = 1,2,... do the following:

1. Observe task numbere {1,...,K} and the corresponding
instance vectox, € RY : ||| = 1;

. Build the associated multitask instarges RK;
. Predict labey: € {—1,+1} with i = SGN(WJ 1@ );
. Getlabel; € {—1,+1};

g b~ W N

. If % #y; then update:

Ws=Ws 1+ Y (A® Id)flcp[, S+ s+1.

Figure 1: The multitask Perceptron algorithm.

The algorithm is mistake-driven, henag_1 is updated (ang is increased) only whef # y;. In
the following we uséd\; as a shorthand fA® lg.

We now show that the algorithm in Figure 1 has the potential to make fewer nadtadmeK
independent learners when the tasks are related, and does notrperéch worse than that when
the tasks are completely unrelated. The bound dependence on the tésttneds is encoded as a
quadratic form involving the compound reference task veatamd the interaction matri&.

We specify the online multitask problem by the sequefgey: ), (®,,Y2),... € R x {—1,1}
of multitask examples.

Theorem 1 The number of mistakes m made by the multitask Perceptron algorithm ineFigur
run with an interaction matrix A on any finite multitask sequence of exanip{es ), (¢,Y2),... €
RKY % {—1,1} satisfies, for all uz RX9,

m< Y b(u)+ r?axK(A’l)i,i (u"Ag u) +\/_ max (A~1);; (UTAcU) S 4(u)
t&31 =t =1 t&a1

where is the set of mistaken trial indices.

Theorem 1 is readily proven by using the fact that the multitask Percepti@specific instance
of the kernel Perceptron algorithm, for example, Freund and Schd@ie®), using the so-called
linear multitask kernel introduced in Evgeniou et al. (2005) (see also Herbster et0f5)2 This
kernel is defined as follows: for any positive defirite< K interaction matrixA introduce theKd-
dimensional RKHSH = RX? with the inner produc{u,v), = u' Agv. Then define the kernel
feature mapp : RY x {1,...,K} — # such thatp(x,i;) = A;'@. The kernel used by the multitask
Perceptron is thus defined by

K ((Xs.is), (%, 1t)) = (W(Xs,is), WK, it) ), = QAT G - (3)

2906



LINEAR ALGORITHMS FORONLINE MULTITASK CLASSIFICATION

Remark 2 Although the multitask kernel is appealing because it makes the definitioe afuh
titask Perceptron simple and intuitive, one easily sees that the RKHS formaliaot iseces-
sary here since the kernel is actually linear. In fact, by re-defining theufeamapping asp :

RY x {1,...,K} — RXd whereRKY is now endowed with the usual Euclidean product, and by let-
ting Y(x,it) = Aggl/ch(, one gets an equivalent formulation of the multitask Perceptron based on

Aégl/z rather than %1. In the rest of the paper we occasionally adopt this alternative lineareddern
formulation, in particular whenever it makes the definition of the algorithmitaahalysis simpler.

Proof [Theorem 1] We use the following version of the kernel Perceptrombdsee, e.g., Cesa-
Bianchi et al., 2005),

méZ&WHNW%@?NM&M%J+WWy¢@?WW&MﬁJZ&m)

whereh is any function in the RKHS4 induced by the kernel. The proof is readily concluded by
observing that, for the kernel (3) we have

lul,=u"Acu  and  [[W(x,i0)]l5 = @ ASte = (A )i,

since@ singles out thé’s block of matrixAggl. [ |

In the next three subsections we investigate the role of the quadraticfolmu and specialize
Theorem 1 to different interaction matrices.

3.1 Pairwise Distance Interaction Matrix

The first choice oA we consider is the following simple update step (corresponding to the multitask
Perceptron example we made at the beginning of this section).

Zrvex if j =i,

Wj,S = ijsfl + l .
" X otherwise.

As it can be easily verified, this choice is given by

K -1 ... -1
A -1 K ... -1 @)
-1 K
with
2 1 1
1 1 2 1
Al=_—1

K+1
1 2

We have the following result.
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Corollary 3 The number of mistakes m made by the multitask Perceptron algorithm ireAigtun
with the interaction matrix (4) on any finite multitask sequence of exaniple$), (¢,,Y2),... €
RKY x {1, 1} satisfies, for all uz RX9,

2(u’Agu) 2(uTAgu)
Kil '\ K+1

m< S 4(u)+ > (v

where

K
uTAsu= Zl||UiH2+ > fu—u®
i= 1I<i< <K

In other words, running the Perceptron algorithm of Figure 1 with the icteramatrix (4) amounts
to using the Euclidean distance to measure task relatedness. Alternatieebganasay that the
regularization term of the regularized target functional favors tastovea,, ..., ux € RY having
small pairwise distancgfu; — u||.

Note that when all tasks are equal, thatis whee- - - - = uk, the bound of Corollary 3 becomes
the standard Perceptron mistake bound (see, e.g., Cesa-Bianchi @08)., [& the general case of
distincty; we have

2(u"Agu 2K K 4
A 2 Sl 5w
K+1 K+1.4 K+1l§i<]§K

The sum of squareSK , ||ui||? is the mistake bound one can prove when leart{nigdependent
Perceptrons (under linear separability assumptions). On the othertighly, correlated reference
task vectors (i.e., large inner produetSu;) imply a large negative second term in the right-hand
side of the above expression.

3.2 A More General Interaction Matrix

In this section we slightly generalize the analysis of the previous sectioroaseier an update rule

of the form bk o
(]_Ji_ib)}(ytxt if j =i,
Wjs=Wjs_1

ﬁ yiX% otherwise

whereb is a nonnegative parameter. The corresponding interaction matrix iskywven

a —-b ... —b

1| -b a ... —Db
A=l ®)

—-b ... ... a

with a= K+ b(K —1). It is immediate to see that the previous case (4) is recovered by choosing
b =K. The inverse of (5) is

b+K b ... Db

Al 1 b b+K ... b
- (1+b)K

b cee .. b+K
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When (5) is used in the multitask Perceptron algorithm, Theorem 1 can balgpeztto the fol-
lowing result.

Corollary 4 The number of mistakes m made by the multitask Perceptron algorithm ireFigrun
with the interaction matrix (5) on any finite multitask sequence of exanipleg ), (¢,,Y2),... €
RKA % {—1,1} satisfies, for all uz RX9,

m < teZM&(U) + m (u"Agu) + \/m (uTAzu) teZM&(U)

where ‘
u'Agu= ELHUi |2+ bK VAR[U]
i=

beingVvAR[u] = 1 5K, ||u — 1| the “variance”, of the task vectors, and the centroid2 (uy +
UK ).

It is interesting to investigate how the above bound depends on the tridarametetb. The
optimal value ot (requiring prior knowledge about the distributionwaf .. . ;ux) is

[ 12
b=max{ 0, (K—l)vli”[u]—l

Thusb grows large as the reference task vecigrget close to their centroid (i.e., as ally; get
close to each other). Substituting this choicé giives

(B+K) (") = lual®+--+uel® - ifb=0,
(1+b)K (HUH—F\/K—L/VAR[U]) otherwise.

When the varianceaRr[u] is large (compared to the squared centroid n@tjﬂ?), then the optimal
tuning ofb is zero and the interaction matrix becomes the identity matrix, which amounts to gunnin
K independent Perceptron algorithms. On the other hand, when the optirmg ai is nonzero
we learnK reference vectors, achieving a mistake bound equal to that of learrsmmgke vector
whose length ig/t|| plus/K — 1 times the standard deviatigfivAR [u].

At the other extreme, if the variane@R[u] is zero (namely, when all tasks coincide) then the

optimal b grows unbounded, and the quadratic teﬁﬁl%g%(uTA@u) tends to the average square
norm 2 5K, ||u|[% In this case the multitask algorithm becomes essentially equivalent to an al-
gorithm that, before learning starts, chooses one task at random apd keferring all instance
vectorsx; to that task (somehow implementing the fact that now the information conveyieddny

be disregarded).

3.3 Encoding Prior Knowledge

We could also pick the interaction matrix so as to encode prior knowledge about tasks. For
instance, suppose we know that only certain pairs of tasks are potergilallgd. We represent this
knowledge in a standard way through an undirected gaph(V,E), where two vertices and j
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are connected by an edge if and only if we believe tahkd taskj are related. A natural choice for
Ais thenA=1+L, where theK x K matrix L is the Laplacian oG, defined as
d ifi=j,
Lij=4q —1 if(i,j) €E,
0 otherwise.

Here we denoted bg the degree (number of incoming edges) of nodéwe now follow the proof
of Theorem 1, which holds for any positive definite matkixwe obtain the following result.

Corollary 5 The number of mistakes m made by the multitask Perceptron algorithm ireAigtun
with the interaction matrix #- L on any finite multitask sequence of exampigsy:), (@, Y2), ... €
RKA x {—1,1} satisfies, for all uz RX9,

m< Y 4(u)+ceu’ (| +L)®u—|—\/cGuT(| +L)u S )

temM tem

where

K
WL u= 3 lul®+ 5 Ju = ©)
i= (i,))eE

¥3 ) .
and G = max-1_. x z'le ﬁ Here0 = A1 < A2 < --- < Ak are the eigenvalues of the positive

semidefinite matrix L, and, ydenotes the i-th componérf the eigenvectorjwof L associated with
eigenvalue\;.

Proof Following the proof of Theorem 1, we just need to bound

_1 _1
max A = max (I +L);; .
|:17ﬂK | |:1,K( )I,I

If v,...,vk are the eigenvectors &f then

which concludes the proof. |

Ideally, we would like to haveg = O(%) Clearly enough, ifG is the clique orK vertices we
expect to exactly recover the bound of Theorem 1. In fact, we caly @asify that the eigenvector
v1 associated with the zero eigenvalugis (K=Y/2,...,K~/2). Moreover, it is well known that
all the remaining eigenvalues are equakte-see, for example, Hogben (2006). Therefoge=
%+ (1-%) &1 = & In the case of more general gragswe can bound in terms of the
smallest nonzero eigenvalie,

ol (i 1y 1
=K K)1+As
The value of\», known as the algebraic connectivity®f is 0 only when the graph is disconnected.
A2 is known for certain families of graphs. For instanceGifs a complete bipartite graph (i.e., if

1. Note that the orthonormality of the eigenvectors impigs+---+ Vi ; = 1 for alli.
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tasks can be divided in two disjoint subs&sndT, such that every task ify is related to every task
in T, and for bothi = 1,2 no two tasks il are related), then it is known thas = min{|T1|, |T2|}.

The advantage of using a gra@with significantly fewer edges than the clique is that the sum
of pairwise distances in (6) will contain less thé@ terms. On the other hand, this reduction has
to be contrasted to a larger coefficiawtin front of u' (1 + L)®u. This coefficient, in general, is
related to the total number of edges in the graph (observe that the tracis eikactly twice this
total number). The role of prior knowledge is thus to avoid the insertioh @h edges connecting
tasks that are hardly related, thus preventing the presence of largeneimasumu’ (I + L)®u

4. Turning Perceptron-like Algorithms Into Multitask Class ifiers

We now show how to obtain multitask versions of well-known classifiers bygusia multitask
kernel mapping detailed in Section 3.

4.1 The Multitask p-norm Perceptron Algorithm

We first consider thg-norm Perceptron algorithm of Grove et al. (2001) and Gentile (2088).
before, when the tasks are all equal we want to recover the bound eirthle-task algorithm, and
when the task vectors are different we want the mistake bound to inaeasaling to a function
that penalizes task diversity according to thginorm distance.

The algorithm resembles the Perceptron algorithm and maintains its state in thewapp-
mal weight vectorvs € RK? wheres stores the mistakes made so for (plus one). What sets the
multitask p-norm Perceptroraside from the algorithm of Section 3 is that the prediction at time
t is computed, for an arbitrary positive definite interaction mam>asseN( A (ﬂ) where
the dualweight vectomws_; is a (one-to-one) transformation of the weight ve(w,)fl, specifically
Ws 1 = D% HVs—le), with p > 2. If a mistake occurs at time vs_1 € RX9 is updated using the
multitask Perceptron rulejs = vs 1 +ytA§1(pt . We are now ready to state the mistake bound for
the the multitaskp-norm Perceptron algorithm. In this respect we focus on a specificehoip
andA.

Theorem 6 The number of mistakes m made by the p-norm multitask Perceptron, itturihe
pairwise distance matrix (4) and ¢ 2InmaxK,d}, on any finite multitask sequence of examples
(@1, Y1), (®,Y2),... € RKd x {—1,1} satisfies, for all uz RKY,

m< Z L(u)+H+ [2H z 4 (u)
teM teM

Proof Let vy, be the primal Weight vector after any numbmof mistakes. By Taylor-expanding
% HVSH% aroundvs_; for eachs=1,...,m, and using the fagk w. ;A;'@ < 0 whenever a mistake
occurs at step, we get

where

H

1 I
5 Ivinl[p < 3 D(vsl[Vs-1) (7)
2l =2,
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whereD (vs||vs_1) = 1 (HVSH% - Hstl”f)) —yew. ;A @ is the so-called Bregman divergence, that

is, the error term in the first-order Taylor expansion}tﬁf”fJ around vectows_1, at vectorvs.

Fix anyu € R®9. Using the convex inequality for norms v < [|uf|4[|v|| , whereq = p/(p—1)
is the dual coefficient op (so that]-||, is the dual norm of|-|| ), and the fact that

UAVs=Uu"Acvs 1+yu @ > uTAgvs 141 £ (u),

one then obtains
u'AgVin _ M— Yiear ()

IAsullg = llAsullg

Combining (7) with (8) and solving fan gives

m< 3 A+ Al 23 D). ©)
tem S=

Following the analysis contained in, for example, Cesa-Bianchi and L2086), one can show
that the Bregman term can be bounded as followstsfert,

[Vl o >

(8)

P—1,1,2_P—1 1|
D (vllve-1) < = At = 5 I At

whereAﬁt1 is thei;-th column of A1,

We now focus our analysis on the choipe= 2InmaxXK,d} which gives mistake bounds in
the dual normdjul|; and||x||,,, and on the pairwise distance matrix (4). It is well known that for
p = 2Ind the mistake bound of the single-tapknorm Perceptron is essentially equivalent to the
one of the zero-threshold Winnow algorithm of Littlestone (1989). We remtkat this property is
preserved in the multitask extension. We hﬁx@]ﬁ < el|x||2 and

4e
(K+1)2°

2 122
L —e(n )’

2
it = e
tlp

As for the dual norm|Asul|,, we get

IAsuly < Al = @Hw > (u —uj)Hl> .

J#
Substituting into (9) gives the desired result. |

The rightmost factor in the expression féiin the statement of Theorem 6 reveals the way similarity
among tasks is quantified in this case. To gain some intuition, assume the tagis veeie all
sparse (few nonzero coefficients). THens small when the task vectoushave a common pattern
of sparsity; that is, when the nonzero coordinates tend to be the samacfotask vector. In the
extreme case when all task vectors are equal (and not necessarilg)sgdebecomes

2
<KK+1> (8e2Inmax{K,d})( maanXth>2HU1”§ ' (10)

If K <d this bound is equivalent (apart from constant factors) to the mistakedoion the single-
task zero-threshold Winnow algorithm of Littlestone (1989).
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Parameters: Positive definitek x K interaction matridA.
Initialization: S =0, vo=0€e RXd s=1.
Ateach tima = 1,2, ... do the following:

1. Observe task numbere {1,...,K} and the corresponding
instance vectox, € RY : ||| = 1;

2. Build the associated multitask instanges R<d
and compute} = (Ax 14)%q;

3. Predict labey; € {—1,+1} with §; = SGN(WS,T,lzﬂ),
~~T\ -1
wherews_1 = (I +S19 ; +aq ) Vs 1;
4. Getlabely; € {—1,1};

5. If i # y; then update:

VS:VSfl+ytA([J)[7 %: [%*17&3(] ; s«s+1.

Figure 2: The second-order multitask Perceptron algorithm.

Remark 7 Note that for p= 2 our p-norm variant of the multitask Perceptron algorithm does not
reduce to the multitask Perceptron of Figure 1. In order to obtain the latter sgecial case of the
former, we could use the fact that the multitask Perceptron algorithm is deuaivi the standard
2-norm Perceptron run on “multitask instances?, ch—see Remark 2. One then obtains a proper
p-norm generalization of the multitask Perceptron algorithm by running tiedsard p-norm Per-
ceptron on such multitask instances. Unfortunately, this alternative routarapily prevents us
from obtaining a bound as good as the one proven in Theorem 6. Forpdeawhen p is chosen
as in Theorem 6 and all task vectors are equal, then multitask instances fofrth Aél/z(q yield a
bound K times worse than (10), which is obtained with instances of the fgi‘m A

Finally, we should mention that an alternative definition of pheorm Perceptron for a related
problem of predicting a labelled graph has been recently proposed listdeand Lever (2009).

4.2 The Multitask Second-order Perceptron Algorithm

We now turn to the second-order kernel Perceptron algorithm of 8esechi et al. (2005). The
algorithm, described in Figure 2, maintains in its internal state a m&tgiixitialized to the empty
matrix 0) and a multitask Perceptron weight vecto(initialized to the zero vector). Just like in
Figure 1, we use the subscripto denote the current number of mistakes plus one. The algorithm
computes a tentative (inverse) matrix

(1+sas+aa)
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Such a matrix is combined with the current Perceptron vegtarto predict the labey;. If the pre-
diction¥y; and the labey; disagree boths_; andS; 1 get updated (no update takes place otherwise).
In particular, the new matri%; is augmented by padding with the current vecﬁqorSince supports
are shared, the computational cost of an update is not significantly @eithat for learning a
single-task (see Subsection 4.2.1).

Theorem 8 The number of mistakes m made by the multitask Second Order Percajimn
rithm in Figure 2, run with an interaction matrix A on any finite multitask sequafaexamples
(@1,¥1), (@, Y2),... € RKAx {1 1} satisfies, for all uz RK9,

m< Yy Et(u)+$ <uTA®u+ > (u[xt)2> gln(1+)\j)
=1

tem tem

whereM is the sequence of mistaken trial indices and. .., A, are the eigenvalues of the matrix
whose(s,t) entry is X A_} %, with st € M.

Proof From the mistake bound for the kernel second-order PerceptronithigoiCesa-Bianchi
et al., 2005) we have, for dflin #,

m
m< S 4(h)+ <||h!§{+ S h(ca)Z) > In(1-+)
tem tem i=
whereAs, ..., Ay are the eigenvalues of the kernel Gram matrix including only time stegg.in
Making the role ofA explicit in the previous expression yields

2
lull3; =u"Acu

and , ,
(w005 = (W AATR) = (ux)"

Finally, the kernel Gram matrix has elemetRgW(xs,is), W(x. 1)) = @ A @ = xJ AT X, where
s,t € M. This concludes the proof. |

Again, this bound should be compared to the one obtained when ledtnindependent tasks.
As in the Perceptron algorithm, we have the complexity tefmu. In this case, however, the
interaction matrixA also plays a role in the scale of the eigenvalues of the resulting multitask
Gram matrix. Roughly speaking, when the tasks are closé\asthe pairwise distance matrix, we
essentially gain a factayK from the fact thati” Ag uis close taK times the complexity of the single
task (according to the arguments in Section 3). On the other hand, the trieenoultitask Gram
matrix (@ AS @ g cr = X AL X g q 1S @bOUL the same as the trace of the single task matrix,
since theK times larger dimension of the multitask matrix is offset by the factdt Helivered

by AL in [0 As'@] ., When compared to the single task Gram mafsigx ], ., So, ina
sense, the spectral quant'@?“zlln(lJr)\j) is similar to the corresponding quantity for the single
task case. Putting together, unlike the first-order Perceptron, the géon &&hieved by a multitask
second-order perceptron over tendependent tasks bound is aba(k.
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4.2.1 IMPLEMENTING THE MULTITASK SECOND-ORDERPERCEPTRONIN DUAL FORM

It is easy to see that the second-order multitask Perceptron can be rual fodn by maintaining
K classifiers that share the same set of support vectors. This allowSceneimplementation that
does not impose any significant overhead with respect to the corisgmingle-task version.

Specifically, given some interaction mateixthe margin at timd is computed as (see Cesa-
Bianchi et al., 2005, Theorem 3.3)

~ ~~T\ 1<
wig=vi,(1+Sa5,+a@ ) @

—v(1+9s) Sa (12)

wherey; is thes-dimensional vector whose first- 1 components are the labgiswhere the algo-
rithm has made a mistake up to time 1, and the last component is O.
Note that replacing + S| S with | + S ;S 1 in (11) does not change the sign of the predic-

tion. The margin at timé¢ can then be computed by calculating the scalar product betﬁ@éﬁn
andyq (1 + s;[lss,l)*l. Now, each entry of the vect&] @ is of the formA;iijTxt, and thus com-
puting SST(T} requiresO(s) inner products so that, overall, the prediction step requiress scalar
multiplications andD(s) inner products (independent of the number of ta€ks

On the other hand, the update step involves the computation of the yé¢lor Sg%)*l. For
the matrix update we can write

T T
®S1 1+ @
Using standard facts about the inverse of partitioned matrices (see, erg.ahid Johnson, 1985,
Ch. 0), one can see that the inverse of matrix SIS can be computed from the inverse of
| +S] ;Ss1 with O(s) extra inner products (again, independenkdfandO(s?) additional scalar
multiplications.

5. The Simultaneous Multitask Protocol: Preliminaries

The multitask kernel-based regularization approach adopted in the preéoctiens is not the only
way to design algorithms for the multiple tasks scenario. As a different syrateghow aim at mea-
suring tasks relatedness as a function of the dimension of the spacedanthe task reference
vectors. In matrix terms, this may be rephrased by saying that we hopesih spéhe learning pro-
cess, or reduce the number of mistakes, whenever the matrix of redarectors is spectrally sparse.
For reasons that will be clear in a moment, and in order to make the above andligasonable
goal for a multitask algorithm, we now investigate the problemimiultaneouslyproducing multiple
predictions after observing the corresponding (multiple) instance vedtdegherefore extend the
traditional online classification protocol to a fully simultaneous multitask envirommbkere at each
time stept the learner observes exacHyinstance vectorsi; € RY, i =1,... K. The learner then
outputsK predictionsyi s € {—1,+1} and obtains the associated labglsc {—1,+1},i=1,...,K.
We still assume that thié example sequences are adversarially generated anfixhgt= 1. We
call this setting thesimultaneous multitask setting
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Once again the underlying rationale here is that one should be able to intpeoperformance
over the baseline by leveraging the additional information conveyed thnowgtiple instance vec-
tors made available all at once, provided that the tasks to learn share carharanteristics. Theo-
retically, this amounts to postulating the existencK ekctorsuy, . .., Uk such thakeachy; is a good
linear classifier for the corresponding sequef€e,yi 1), (X 2,Vi2),... of examples. As before, the
natural baseline is the algorithm that simultaneouslyundependent Perceptron algorithms, each
one observing its own sequence of examples and acting in a way that imoblite the instances
given as input to and the labels observed by its peers. Of course,wagsnume that this baseline
outputsK predictions per trial. The expected performance of this algorithm is sillgnes the
one of a single Perceptron algorithm. An additional difference that sefsrtitecol and the algo-
rithms discussed here apart from the ones considered in the prevatissseas that the cumulative
count of mistakes is not only over time but also over tasks; that is, at eaclstapenore the one
mistake might occur sind€ > 1 predictions are output.

In the next section we show that simultaneous multitask learning algorithms cdestmed
in such a way that the cumulative number of mistakes is, in certain relevaeg, gasvably better
than theK independent Perceptron algorithm. The cases where our algorithmsfoutpthe latter
are exactly those when the overall information provided by the diffeneainple sequences are
related, that is, when the reference vectors associated with diffeslst &ae “similar”, while the
instance vectors received during each time step are unrelated (andvédra more informative).
These notions of similarity and unrelatedness among reference and angeators will be formally
defined later on.

5.1 Notation and Definitions

We denote by(M,N) = TR(MTN), for M,N € R9*K the Frobenious matrix inner product. Let
r =min{d,K} and define the functioa : R9*K — R" such that(M) = (g1(M),...,0,(M)), where
01(M) > --- > o;(M) > 0 are the singular values of a mathke RY*K |n the following, we simply
write g; instead ofo; (M) whenever the matrix argument is clear from the context.

Following Horn and Johnson (1991) we say that a funcfialR" — R is a symmetric gauge
function if it is an absolute norm ofR" and is invariant under permutation of the components of
its argument. We consider matrix norms of the fdfrif : R¥*K — R such that-|| = f o ¢ where
f is symmetric gauge function. A matrix norm is said unitarily (orthogonally, indsatte we
only consider matrices with real entries) invariantf|ldAV|| = ||A|| for any matrixA and for any
unitary (orthogonal) matriced andV for which UAV is defined. It is well known that a matrix
norm is unitarily invariant if and only if it is a symmetric gauge function of the slagvalues of

its argument.

One important class of unitarily invariant norms is given by the Schaiteorms,||U ||Sp def
|o(U) ||, where the right-hand expression involves a vector norm. Note that trat8e 2-norm is
the Frobenius norm, while fgy= 1 the Schattep-norm becomes the trace nofd ||, = [|lo(U)l4,
which is a good proxy for the rank &f, ||o(U)||,.

Let M be a matrix of sized x K. We denote byvec(M) the vector of sizekd obtained by
stacking the columns dfl one underneath the other. Important relationships can be established
among the Kronecker product, thec operator and the trace operator. In particular, we have

VEC(MNO) = (O' @ M)VEC(N) (12)

2916



LINEAR ALGORITHMS FORONLINE MULTITASK CLASSIFICATION

for anyM,N, O for whichMNOis defined, and
VEC(M)"VEC(N) = TR(M'N) (13)

for any M,N of the same order. We denote By the K? x K2 commutation matrix such that
Tc2VEC(M) = VEC(M ). We recall thaflk also satisfie3x2(M ®@N) = (M@ N) Tz for anyM,N €
RdXK.

We rely on the notation introduced by Magnus and Neudecker (1999Yiwed=mlculus rules
for functions defined over matrices. Given a differentiable funckoriR™P — R"*9, we define
the Jacobian of atM as the matriXdF (M) € R"4<mP

OVEC(F(M))
OF() = oveEc(M)T
It is easy to see that (14) generalizes the well-known definition of Jatddiarector valued func-

tions of vector variables. The following rules, which hold for any matifixx R<*X, can be seen as
extensions of standard vector derivation formulas

(14)

OTR(MP) = pveEC(MP )T p=12... (15)
OM™ = (Ixe+T2)(lk@MT) . (16)

6. The Potential-based Simultaneous Multitask Classifier

As discussed in Section 5, a reasonable way to quantify the similarity amargmeé vectors, as
well as the unrelatedness among example vectors, is to arrange suais i@ctonatrices, and then
deal with special properties of these matrices. In order to focus on theept we lay out vectors
as columns ofl x K matrices and extend the dual nhorm analysis of Subsection 4.1 to matrices. The
idea is to design a classifier which is able to perform much better that ithdependent Perceptron
baseline discussed in Section 5 whenever the set of reference vgctdr§ (arranged into a x K
reference matrixJ), have some matrix-specific, for exampd@ectral properties.

Our potential-based matrix algorithm for classification shown in Figure 3rgénes the classi-
cal potential-based algorithms operating on vectors to simultaneous multitdd&meowith matrix
examples. This family of potential-based algorithms has been introduced iretimnlg literature
by Kivinen and Warmuth (2001) and Grove et al. (2001), and by Nerskioand Yudin (1978)
and Beck and Teboulle (2003) in the context of nonsmooth optimization. Igbetam maintains
ad x K matrix W. Initially, Wy is the zero matrix. Is— 1 updates have been made in the first
t — 1 time steps, then thi¢ predictions at time aresGN(W;'s_;xit), i = 1,...,K, where the vector
Wis 1 € RYis thei-th column of the thel x K matrix Ws andx;; € RY is the instance vector asso-
ciated with thda-th task at timeé. An update is performed if at least one mistake occurs. When the
sth update occurs at timethenW; is computed as

1
Ws = Dé HV5H2

where, in turn, the columns of thex K matrix Vs are updated using the Perceptron rilgs =
Vis-1+YitXit Ly, 4y} Which, as in the basic Perceptron algorithm, is mistake driven. In other

2. Here and throughout this sectidlyg .y} denotes the indicator function which is 1 if the label associated with the
i-th task is wrongly predicted at tinteand 0 otherwise.
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Parameters: Unitarily invariant normy-||.
Initialization: Vo = [Voo,...,Vk 0] = 0,Wo = [Woyp,...,Wk 0] = D% HVOHZ, s=1.
Ateach tima = 1,2, ... do the following:

1. Get multitask instance vectaxs, ..., Xkt € RY;

2. Predict labelgis € {—1,+1} with it = SGN(W/s_1%i1),  i=1,...,K;
3. Get labelsi € {—1,1}, i=1...,K;
4. If yit # it for somei then update:
Vis = Vis—1+YitXitLig 2y i=1...,K
We = 07 Ve
S<s+1.

Figure 3: The potential-based matrix algorithm for the simultaneous multitask setting

words, thei-th column inVs_1 is updated if and only if the label associated with itk task was
wrongly predicted. We say thats is the dual matrix weight associated with the primal matrix
weightVs. So far we left the mapping fronds to W; partially unspecified since we did not say
anything other than it is the gradient of some unitarily invariant (squareuth.n

6.1 Analysis of Potential-based Matrix Classifiers

We now develop a general analysis of potential-based matrix algorithmsifioul{aneous) multi-
task classification. Then, in Section 6.2 we specialize it to Schattesrms. The analysis proceeds
along the lines of the standard proof for potential-based algorithms. @&&ianing to the details,

we introduce a few shorthands. Lt = 1g,y,}, and1; be theK-dimensional vector whoseth
component idlij;. Also, g denotes thé-th vector of the standard basis fRK. Finally, we define

the matrixM; = ZiK:1 LitYitxit6' whosei-th column is the example vectgr;x; if the labely; ; was
wrongly predicted at time or the null vector otherwise. Itis easy to see that, by using this notation,
the update of the primal weight matikcan be written a¥s = Vs_1 + M.

Let M be the set of trial indices where at least one mistake occurred ovér theks, and set
m=|M|. We start by Taonr-expandinJZgHVst aroundvs_; for eachs=1,...,mand obtain

1 2 m
Py ”Vm” < D (Vs”Vs—l) (17)
2 Moll= 2,
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whereD (Vs||Vs_1) = & ([[Vs]|® — [IVs-1]|*) — (Ws_1, M) is the matrix Bregman divergence associated
with 03 ||-|I>. The upper bound in (17) follows from

K
(Ws_1, M) = TROW, 1 M) = Zi]li,t YitWe_1Xit <0
i=

the last inequality holding becaude; is 1 if only if a mistake in the prediction for thieth task
occurs at time.

Fix anyd x K comparison matrixJ and denote by-||, the matrix dual norm. By the convex
inequality for matrix norms we havé/p|| [|U ], > (Vim,U), where||U ||, = f*(a(U)) and f* is the
Legendre dual of functiofi—see Lewis (1995, Theorem 2.4). Frah, Vs) = (U, Vs_1) + (U, My).
we obtain .

HVmH > <U7Vm> > zteM H]ltul ztEMgt (U)
U1l V1.

where ‘ ‘
) d:efi;]li,t [1—yisu %] L= i; Tig ()

and||1;||; counts the number of mistaken tasks at tim8olving forp = S .4/ || 1t||; gives

eM

ps 'y e}<u>+uuu*\/2 > DOV ). (18)
t S=

Equation (18) is our general starting point for analyzing potential-bawsgdx multitask algorithms.
In particular, the analysis reduces to bounding from above the Bregmaridethe specific matrix
norm under consideration.

6.2 Specialization to Schatterp-norms

In this section we focus on Schatt@morms, therefore measuring similarity (or dissimilarity) in
terms of spectral properties. This amounts to saying that a set of reéeventors are similar if they
span a low dimensional subspace. Along the same lines, we say that &sekxafple vectors are
dissimilar if their spanned subspace has dimension cloke Tdhe rank of a matrix whose columns
are either the reference vectors or the example vectors exactly prakidésformation. Here we
use certain functions of the singular values of a matrix as proxies for iks tais easy to see that
this leads to a kind of regularization that is precisely enforced throughsthefuunitarily-invariant
norms. In fact, unitarily-invariant matrix norms control the distribution of timgjslar values otJ,
thus acting as spectral co-regularizers for the reference vectees—es example, Argyriou et al.
(2008) for recent developments on this subject. In different termselging only on the singular
values (or on the magnitudes of principal components), unitarily invariammb® are a natural way
to determine and measure the most informative directions for a given settofrs.

For these reasons we now specialize the potential-based matrix classifgguo¢ 3 to the
Schatten p-norm and sefV|| = ||V||32p = [lo(V)][2p. whereV is a generial x K matrix, andpis a
positiveinteger(thus 2o is an even number 2). Note that, in general,

1
IVIZ, = TR((VTV)P)YP.
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We are now ready to state our main result of this section. The proof, aldhgswrounding
comments, can be found in the appendix.

Theorem 9 The overall number of mistakes pu made by 2penorm matrix multitask Perceptron
(with p positive integer) run on finite sequences of examplesyit), (Xi.2,,Yi2), - € RK x
{—1,+1},fori=1,... K, satisfies, for all Uc R9*K,

2
< S 4 U)+(2p-1) (Ms, Uls,,) +M52puuwsm¢zp )y 4
tem tem

where M
t

Ms,, = max 2

ten ||11t||1

and||U ||82 is the Schatte@g-norm of U, with2q = 2p
Remark 10 In order to verify that in certain cases the bound of Theorem 9 providggraficant
improvement over the K independent Perceptron baseline, we fodhs tinearly separable case;
that is, when the sequences 1,yi 1), (X 2,Yi2),... are such that there exists a matrix PRI*K
whose columns;wachieve a margin of at leadton each example:iyuiTxm >1forallt=1,2,...
and foralli=1,...,K. In this case the bound of Theorem 9 reduces to

p< @p-1) (Mg, U], ) - 19)

It is easy to see that for g g = 1 the 2p-norm matrix multitask Perceptron decomposes into K
independent Perceptrons, which is our baseline. On the other handadynio the vector case,

a trace norm/spectral norm bound can be established when the pamnamédeproperly chosen.
Note first that for basic properties of normi® ||, < [[U|ls, and M|, <r/P M|l  , with r=
min{d,K}. It now suffices to set# [Inr] in order to rewrite (19) as

W< (2Inr + De(Ms, U]l )

where U is now penalized with the trace norm angdi$/measured with the spectral noiv| . If

the columns of U span a subspace of dimenstoK, and the matrices of mistaken examples M
tend to have K nonzero singular values of roughly the same magnitudel|thg, ~ [|U |5, while

Mgm ~ M§2/K. Hence this choice of p may lead to a factor K improvement over the kaeimdved

by the independent Perceptron baseline. See also Remark 11 belmahbiioin Theorem 9 (and in
the above argument) what matters the most is the quantification in terms gppe¢lcral properties

of U via [Ulls,,- The fact that p has to be a positive integer is not a big limitation here, since

2q= 2p 1 can be made arbitrarily close to 1 anyway.

Remark 11 The bound of Theorem 9 is not in closed form, since the téiirj5 occur in both the
left-hand side (via p) and in the right-hand side (W, ). These terms play an essential role to
assess the potential advantage of #penorm matrix multitask Perceptron. In order to illustrate the
influence of|1¢||; on the bound, let us consider the two extreme cdsgs = 1 for allt € M, and
|1t]|; = K for allt € M. In the former case, the right-hand side of (19) becoli2gs-1) ||U ||qu
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(sinceMg,, = 1), which isalwaysworse than the baseline case=pq = 1. In the latter case, the
bound becomes

maxa [Mi]Z, ) U2
s KS”) =

which, according to the discussion in the previous remark, opens upgwhility for the factor K

improvement. This is precisely the reason why the spectral regularizatioot advantageous in
the adversarially chosen task framework described in Section 2. Sind¢€ itteance-label pairs
are the information obtained for each task at any given time step, it appeasonable that a
multitask approach has a chance to improve when such information is ahtinas is the case
when|| 1¢||; = K, and, at the same time, the tasks to be learned are sufficiently similagxéonple,

in the extreme case when the K tasks do actually coincide, it is as if we hadtoaeagle task,

but received K independent pieces of information per time step, ratheijilsaone.

Remark 12 The2p-norm matrix multitask Perceptron algorithm updates the primal vectarass
ated with a given task whenever an example for that task is wrongly pred®petifically, at time t
the mistake-driven update rule for the i-th task vector is defineg@s vis—1+ Vit Xit Ligi ity It

is now straightforward to generalize the above update mechanism to thedslwess framework of
Dekel et al. (2007), where the sharing is performed via a norm appli¢degaector of task losses.
Let 4:(W) be the vector whose entries are the hinge losses incurred by the K cobfrivisand
pick any vector nornf-||. The goal is to bound the cumulative shared 1§g§¢4(W)||. To do so,
introduce an additional parameter € 0 and write the update as y=Vis 1+ Yit Xt Tit, where
the vectorty = [Tay,...,Tky] " is such thatry = argmax. ;| <cT' 4(Ws-1) and ||-|| . is the dual of
I-]|. Since each entry af is dependent on all the K hinge losses suffered by2fir@orm matrix
multitask Perceptron algorithm at time t, the update now acts so as to favtaiweasks over the
others according to the shared loss induced|by. By adapting our proof to the analysis given in
Dekel et al. (2007), it is not hard to show that

2

Hsz ™2
W) < S |4 R
5 5 z

where, in analogy with our previous definitions,

| K
Ms,, = max >  and M= ZTi,t VitXit €
» i=

Observe thaMs,, depends on C through, thus preventing an easy optimization over C. More-
over, since the upper bound depends on dual Schaftemorms, the discussions in Remark 10 and
Remark 11 still apply, with the caveat that in order to hdWg ~ M2, /K it must bety; ~ - - ~ Tk .

6.2.1 IMPLEMENTATION IN DUAL FORM

As for the algorithms in previous sections, the-2orm matrix multitask Perceptron algorithm can
also be implemented in dual variables. Settfig= [X1t,...,Xk ], it suffices to observe that the
predictionsy; s = SGN( 51X t) of the 2p-norm matrix Perceptron reduces to computing the sign
of the diagonal entries of the matrf¥, S_le,l)p 1VT 1X¢—recall the expression fdiG calculated

in the proof of Theorem 9. Since matrik is updated additively, it is clear that both" ;Vs 1
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andV," ;% do depend on instance vectogs only through inner products. This allows us to turn
our Z2p-norm matrix multitask Perceptron into a kernel-based algorithm, and repeaintlysis
given here using a standard RKHS formalism—see Warmuth (2009) for @ georeral treatment
of kernelizable matrix learning algorithms.

7. Experiments

We evaluated our multitask algorithms on several real-world data sets. Séraewnore interested
in the multitask kernel for sequential learning problems rather than the naftthe underlying
classifiers, we restricted the experiments for the adversarially chodemtadel to the multitask
Perceptron algorithm of Section 3. In particular, we compare the perfagnahthe multitask
Perceptron algorithm with parameter> O to that of the same algorithm run with= 0, which is
our multitask baseline. Recall from Subsection 3.2 that0 amounts to running an independent
standard Perceptron on each task. We also evaluatedptmerin matrix multitask Perceptron
algorithm under a similar experimental setting, reporting the achieved peafme for different
values of the parametgr. Finally, we provide experimental evidence of the effectiveness of the
2p-norm matrix multitask Perceptron algorithm when applied to a learning probkechwequires
the simultaneous processing of a significant number of tasks.

In our initial experiments, we empirically evaluated the multitask kernel usindlection of
data sets derived from the first 1600 newswire stories in the Reuters Corpus Volume 1 (RCV1, for
details see NIST, 2004). Since RCV1 is a hierarchical multiclass and multilakeekdt, we could
not use it right away. In fact, in order to evaluate the performance maltitask algorithms in the
presence of increasing levels of correlation among target tasks, wedl&éom RCV1 a collection
of data sets where each example is associated with one task among a setedingd tasks. We
generated eight multitask data sets (D1 through D8) in such a way that tadiferant data sets
have different levels of correlation, from almost uncorrelated (D1 ptametely overlapped (D8).
The number of tasks in each of the eight data sets was set to four.

Roughly speaking, we hand-crafted tasks by clustering categoriegtieoriginal data set. We
started from non intersecting sets of categories, which represerdlatatt tasks, and from there we
progressively enlarged the intersection areas, thus obtaining tasks géticloser and closer. The
whole process involved several steps. We first defined tasks ad §883/4 categories (RCV1is a
multilabel data set where labels are sets of hierarchically organized catgdn order to obtain
the four tasks in D1, we first chose four subsets of categories fronmitied set of all categories
in the RCV1 taxonomy in such a way that each subset is both made up ofchiegdly related
categories and contains at least 15% of positive examples. More pyeeseh of the four tasks in
D1 is made up of second-level and third-level categories from one dbtitenain RCV1 sub-trees
(CORPORATHINDUSTRIAL, ECONOMICS GOVERNMENT/SOCIAL, MARKETS). Since categories
in different tasks belong tdifferent sub-trees in the RCV1 taxonomy, and each task is composed
by categories from theamesub-tree, the resulting four tasks in D1 describe very different but
consistent topics. Tasks in D2-D8 are generated as follows. First, tasls d&ept the same in all
the eight data sets. As for the other three tasks, we progressively adtegories from the first
task and dropped some from their own set of categories. We repeatqutdbiss seven times.
During the first three times (corresponding to data sets D2, D3, and Ddugmented task two to
four with topics from task one; during the last four times (correspondirdpta sets D5-D8) we
progressively dropped their own initial categories. The whole prdselhsstrated in Figure 4. As a
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Figure 4: A sample of the task generation process given a taxonomy dté8ories with three
main sub-hierarchies. Tasks are marked as T1, T2 and T3. (a) @fated tasks are
initially defined as sets of categories from different sub-hierarchiesn@ c) Partially
overlapped tasks are obtained by first augmenting T2 and T3 with the addiftaate-
gories from T1 (category c6 first, then categories c4 and c5), they(dhrinking both
T2 and T3 with the removal of their initial nodes (these are categories c8%k8)d The
shrinking step is repeated until T1, T2 and T3 do coincide.

result of the above construction, as we go from D1 to D8, tasks two,,tAnefour get both closer
to each other and to task one. The last set of four tasks (correspdodiata set D8) is made up of
four occurrences of the first task, that is, tasks are completely opexdisip D8.

Once the eight sets of four tasks have been chosen, we generatisddaliee corresponding
multitask examples as follows. We went through the whole RCV1 data set éwiavgs example
are sorted in chronological order), and gathered examples fourdsyvitere the first example is
associated with the first task, the second with the second task, and so niltitask example,
defined as a set of four (instance, binary label) pairs, was thenedebiy replacing, for each of
the four RCV1 examples, the original RCV1 categories with if the intersection between the
associated task and the categories was empty (i.e., if the example did not beelang of the
RCV1 categories which are part of that task)l otherwise. Since we used 1600 multilabel
and multiclass examples, this process ended up with eight multitask data sef8Qff #@ultitask)
examples each.
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Subsequences D1 D2 D3 D4 D5 D6 D7 D8
1-10000 0.159 0.198 0.215 0.212 0.208 0.203 0.195 0.175
10,001-20000 0.116 0.158 0.167 0.170 0.167 0.164 0.152 0.134
20,001-30000 0.104 0.141 0.158 0.155 0.150 0.147 0.138 0.122
30,001-40000 0.085 0.118 0.125 0.125 0.119 0.113 0.105 0.091

Subsequences D1 D2 D3 D4 D5 D6 D7 D8
1-10000 0.395 0.482 0.508 0.499 0.489 0.492 0.461 0.410
10,001-20000 0.297 0.394 0.428 0.427 0.410 0.394 0.371 0.322
20,001-30000 0.274 0.374 0.399 0.389 0.375 0.368 0.332 0.291
30,001-40000 0.231 0.323 0.339 0.337 0.323 0.315 0.287 0.249

Table 1: Online training error rates made by the basdlire0 on consecutive sequences of mul-
titask examples after a single pass on the data sets D1-D8. The iasthosen either
randomly (top) or adversarially (bottom).

We note that the tasks considered here are not linearly separablesarasult of the above
construction, different tasks in each data set may have differeneee@f nonseparability. This
explains why the baseline error rates for data sets D1-D8 are diffessrg—Fables 1 and 2.

Figure 5 shows the fraction of wrongly predicted examples during the otritieing of the
multitask Perceptron algorithm with interaction matrix (5), when the tagk chosen either ran-
domly?® (left) or in an adversarial manner (right). The latter means ihat selected so as the
resulting signed margin is smallest over the four tasks. This implies that in thedss each task
is invoked on average 1@00 times. Nothing can be said in hindsight about the task choices for the
adversarial criterion, since this choice is heavily dependent on the dréimavior of the classifiers
and the noise in the tasks at hand. In both cases we show to what extémtutred cumulative
training error for different values of parameteexceeds the one achieved by the multitask baseline
b = 0, depicted here as a straight horizontal line (a negative value mearibd¢hadiosen value of
b achieves an error lower thdm= 0). Recall thab = 0 amounts to running four independent Per-
ceptron algorithms, whilb = 4 corresponds to running the multitask Perceptron algorithm with the
interaction matrix (4). The actual fractions of training error mistakes aeliby the baseline= 0
are reported in Table 1. In order to illustrate how the generalization capabditieur algorithms
progress over time, four pairs of plots are reported, each one shdwongtop to bottom, the frac-
tion of mistakes occurred in the example subsequencesDA010001-20000, 20001-3Q000,
and 30001-4Q000, respectively.

Figure 5 confirms that multitask algorithms get more and more competitive as &iskioger
(since tasks are uncorrelated in D1 and totally overlapped in D8). Urisimgly, this advantage is
higher as we increase the valuetofin fact, Figure 5 clearly shows that the delta errors fimem 0
decrease faster, when going from D1 to D8, as we increa$his amounts to saying that the more
we bias our algorithm towards a possible correlation the more we benefiaincactual correlation
among tasks. Moreover, it is worth observing that the (rather cortsar)ahoiceb = 1 obtains an

3. In this case the results are averaged over 3 runs. The obsestdtd regere within a @02 interval of the plotted
values in all 3 runs.
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Figure 5: Online behavior of the multitask Perceptron algorithm. We reporéxtent to which
during a single pass over the entire data set the fraction of training mistaldss boya
the multitask Perceptron algorithm (with= 1,4, 8, 16) exceeds the one achieved by the
baselind = 0, represented here as an horizontal line. On the x-axis are the multitask da
sets whose tasks have different levels of correlations, from low (Dhigio (D8). Task
indices are randomly chosen in the left plots and adversarially selectedrigti@nes.
The pair of plots on top reports the online training behavior on the firGAM(multitask)
examples, the second from top refers to the secondDexamples, and so on.
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Subsequences D1 D2 D3 D4 D5 D6 D7 D8
1-10000 0.154 0.198 0.207 0.206 0.202 0.196 0.185 0.166
10,001-20000 0.104 0.141 0.159 0.157 0.152 0.149 0.135 0.120
20,001-30000 0.095 0.126 0.139 0.138 0.131 0.127 0.115 0.099
30,001-40000 0.085 0.125 0.132 0.135 0.132 0.124 0.117 0.101

Table 2: Fractions of training errors made by the basgigel on consecutive sequences of mul-
titask examples after a single pass on the data sets D1-D8.

Parameters Training Error Test Error StdDev

P=1 190% 134% 17%
p=2 167% 109% 13%
P=3 164% 106% 16%
P=4 166% 97% 15%
P=5 17.1% 102% 19%

Table 3: Training errors recorded after a single pass over the sptrsefa along with the cor-
responding test errors. The values are averaged over 40 repetfi@ans0-fold cross-
validation scheme. The standard deviation for the test error is report@dentpeses. The
standard deviation for the training error is negligible and is therefore omitted.

overall better performance than the multitask basddig€0, with a higher cumulative error only on
the first data set.

We then evaluated thepgznorm matrix multitask Perceptron algorithm on the same data set. In
this case, we dropped the task choice mechanism since the algorithm isedegigeceive all the
four instance vectors and to output four predicted labels at each time\&eefimited our exper-
iments to the first 2000 multitask examples. This allows us to make the results achieved by the
2p-norm matrix multitask Perceptron algorithm somehow comparable (i.t.o. total mohbmary
labels received) with the ones achieved by the multitask Perceptron algoitthen the random task
selection model (the four plots on the left in Figure 5). In Figure 6 we tdper(differential) frac-
tions of online training mistakes made by the algorithm on the subsequenc¢g8Q,-2501-5000,
5,001-7500 and 7501-1Q000, of multitask examples. The actual fractions of online training error
mistakes achieved by the baselime- 1 are showed in Table 2. As expected, the more the tasks get
closer to each other the less is the number of wrongly predicted labels oyttt Pp-norm matrix
multitask Perceptron algorithm and the larger is the gap from the baselinartlaytar, it can be
observed that even in D1 the performance of then@rm matrix multitask Perceptron algorithm is
no worse than the one achieved by the baseline. In fact, while our cotisirtiends to guarantee
that tasks get closer as we move from D1 to D8 (recall how the tasks fanedien terms of subsets
of RCV1 categories), we do not really know in advance how dissimilar tlks fasD1 are, and the
performance of the @norm matrix multitask Perceptron algorithm reveals that they are indeed not
so dissimilar.

As a further assessment, we evaluated the empirical performance pfrtben matrix mul-
titask algorithm on the ECML/PKDD 2006 Discovery Challenge spam datafeetétails, see
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Figure 6: Online behavior of theg2norm matrix multitask Perceptron algorithm. Again, we report
the extent to which during a single pass over the entire data set the fractinimgr
mistakes made by thg@Znorm matrix multitask Perceptron algorithm (with= 2, 3,4,5)
exceeds the one achieved by the basefire 1, represented here as an horizontal line.
On the x-axis are the multitask data sets whose tasks have different legelsalations,
from low (D1) to high (D8). The top plot reports the online training behawiothe first
2,500 (multitask) examples, the second from top refers to the secdtid 2xamples,
and so on.
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ECML/PKDD, 2006). The data set includes 15 sub-data sets, eachoot&ning 400 spam/ham
emails for 15 different users. Email messages are encoded by a stdnradpof-words vector rep-
resentation. Naturally enough, we associated each user with a diffas&nfThe experiments were
run using a 10-fold cross-validation scheme. Each run consists of ke siaging epoch followed
by a test phase. Since these data are not ordered chronologicallysasihieCV1, we repeated
the 10-fold cross-validation process 40 times, preceding each repetittoimadependent shuffles
of the 15 data sets. Table 3 shows that then®rm matrix multitask algorithm exploits underlying
latent relations and manages to achieve a significant decrease in bothirihgyteand test errors.
In particular, the best performance is achieved wpas set to 4, which results in a test error of
9.7%, an improvement of more than 25% relative to the basglir€l, or nearly a % decrease
in absolute terms. Whereas these are average values, the advantag2pefitihm matrix multitask
algorithm is still significant even when the standard deviation is factored iare®er, in most
runs, the deviation from the average tended to be the on the same sidéf@r-bd andp > 1. In
other words, if on a given fold thp-norm matrix multitask Perceptron algorithm wiph> 1 made
a larger number of mistakes than its average, the same held true for the dagédistress that the
theoretical improvement of a factét (in this caseK = 15), is within reach only if the tasks are
linearly separable and overlapped. In practice we should and coukkpett these conditions to
be generally met to their full extent. In particular, while we cannot state haetly the different
spam classification tasks are spectrally related (since the task are tiattigally generated), it is
apparent that such relations do actually hold to a certain extent. In factnsjdering the specifics
of the learning problem, it is intuitively reasonable that the target spam/hamindisant functions,
though changing from user to user, still share a significant numbemafnom traits.

8. Conclusions and Open Problems

We have studied the problem of sequential multitask learning using two diffapgproaches to
formalize the notion of task relatedness: via the Euclidean distance betveevetdors, or via a
unitarily invariant norm applied to the matrix of task vectors. These two aupies naturally cor-
respond to two different online multitask protocols: one where a single tasitdsted at each time
step, and one where the learner operates simultaneously on all tasks éineastep. We believe
that both these protocols have their own merits, each one having its apagsible practical appli-
cations. Moreover, while the Schatt@morm regularization assumption does not make sense in the
adversarially chosen task protocol, it is not difficult to adapt the multitaskekdased algorithm
of Section 3 to the fully simultaneous protocol and derive a mistake boundsiaiythe lines of
the one given in Section 6.

In our worst-case sequential prediction scenario, the best we canftiopt.o. prediction per-
formance is a factoK improvement over the baseline runnikgindependent classification algo-
rithms, this is what we essentially achieved in our analysis. We have complahmamttheoretical
findings with experiments on real-world data sets showing that our algorittereffacient and can
effectively take advantage of latent task relatedness.

We conclude by mentioning a few directions along which our results couldtbaded.

1. In Section 3.2 it might be interesting to devise methods for dynamically adapgrgpa-
rameter as new data are revealed.
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2. In Section 3.3 we have shown a simple adaptation to the case when theoftapks (i.e.,
interaction matrixA) is known ahead of time. Is it possible to achieve meaningful bounds
when the graph is hidden, and can only be progressively inferredghrihe choices df?

3. Our multitask regularization techniques rely on the fact that differekstased to be em-
bedded, either naturally or through some sensible preprocessing, iarttezlsdlimensional
space. It would be interesting to devise a multitask algorithm that does noteénspeh a
constraint.

4. Finally, we believe it would also be interesting to prdeever bounds on the number of
mistakes as a function of task relatedness.
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Appendix A.

The following trace inequality, which can be seen as a kind of Holder'suialig applied to non-
square matrices, is our main technical tool in the proof of Theorem 9.

Lemma 13 Let A, B be positive semidefinite matrices, of sizedland Kx K respectively, with
the same nonzero eigenvalues. Let X be an arbitrary real matrix ofisizK. Then, for any pair
on nonnegative exponentgl> 0, we have

TR(XTAIXBY) < (TR(XTX)p)l/p(TR A(|+g)q)1/q
wherel/p+1/g=1,p> 1.

Proof We first consider the cade< g. By the Cauchy-Schwartz and Holder’s inequalities applied
to traces (Magnus and Neudecker, 1999, Chapter 11) we have

TR(XTA'XBY) = TR(B(O/2X TA'XBE)/2) (20)
< TR(XTAZXBY ) Y2 7R(XTXBIH)
< TR(XTAZX B 2T, (X TX) 2T, (B9 2
where we used the shorthafidZ) = (TRZ")Y/". In the case wheh> g we can simply swap the
matricesX " Al andX BY and reduce to the previous case.

We now recursively apply the above argument to the left-hand side 9f (R@calling that
Tq(A) = Tq(B) andTp(X " X) = To(XXT), aftern steps we obtain

TR(XTAI XBg) < (TR(XTAI’X Bg’))l/zn-l-p (XTX)Zin:l(l/z)iTq(BgH ) Yita(1/2)
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for some pair of exponent§ ¢’ > 0 such that’ + ¢’ = I +g. Since for any such paif,g’, we have
TR(XTA'XAY) < o0, we can take the limit as — «. Recalling thats* ;(1/2)' = 1 completes the
proof. |

We are now ready to prove Theorem 9.
Proof [Theorem 9] We set

1 1 1
G(V) =5 VI, = TRV TV)P) ™.

SinceG(V) is twice! continuously differentiable, by the mean-value theorem we can write
1
D (Vs|[Vs-1) = E(vecl\/lt)THG(E)vec(l\/lt) (21)

whereHg denotes the Hessian matrix of (matrix) functi@hand ¢ is some matrix on the line
connectingvs_; to Vs. We start by computing the first derivative,

OG(V) = %DTR((VTV)p)l/p: lem((vTV)p)l/p1DTR((VTV)I°) . (22)
Then, by applying the chain rule f6(TR(V "V)P) and using (15) and (16) we obtain
OTR((VTV)P) = pvec((VTV)P D) (ke + Tiz) Ik @V 1)
= pvec((V V)P (IkeVvT)
+ D(TKzVEC((VTV)p_l))T(lK oV
(sinceV 'V andTy. are symmetric)
— 2p((Ik®V)VEC(VTV)P )T
— 2pvec(V(VV)P YT (23)
the last equation following from (12). We now substitute (23) back into §22i) obtain
OG(V) = ¢(V)vec(D)"

where we set for brevitPp = VBP~1 andc(V) = TR(BP)Y/P~1 with B =V V. Taking the second
derivativeHg = 0°G gives

He(V) =vVvEC(D)Oc(V)+c(V)OD .
Recalling the definition of(V) and using (15) it is easy to see thatc (D) [c(V) is theKd x Kd

matrix
(1- p)TR(BP)YP?vEC(D) vEC(D) . (24)

Sincep > 1 this matrix is negative semidefinite, and we can disregard it when boundimgthe
above the quadratic form (21). Thus we continue by considering onlgdbend ternt(V) O (D)
of the Hessian matrix. We have

0D = (B '@lg) + (Ik®V)OBP !

4. In factG is C* everywhere but (possibly) in zero, sim:e((VTV)p) is just a polynomial function of the entries of
V. Moreovertr((V "V)P)=0if and only ifV is the zero matrix.
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where
1 (p—Z (o P2 e) ( T)
O(BP™) = B @B " | (ke +Tk2) (Ik @V " ).
2
Putting together

(21 < C(;/) vec(My) " (BP @ 1q) VEC(My)
+C(2V)vec(|v|t)T(|K @V)Z x

% (g2 + Tye2) (|K ®VT) vEC(M,) (25)

where we used the shorthaBid- 5 P2 B’ © BP~2-‘. We now bound the two terms in the right-hand
side of (25). Using again (12) combined with (13) we can write
Vv V 1
0(2) VEC(My) " (BP 2 ® 1q) VEC(M,) = C(z) TR(M, X%BP~ 1) < 5 TR((M{ M;)P) P

independent df . The majorization follows from Holder’s inequality applied to the positive sefnide
inite matricesM,' My andBP~1 (Magnus and Neudecker, 1999, Chapter 11). Moreover, it is easy to
see that the symmetric matricEendT,. commute, thereby sharing the same eigenspace, in fact

p—2 . . p—2

Ty2Z = /z Te2(B'®@BP#71) = /Z (BP* @B )Tke =2 Tz -
=) /=0

Hence X (Ik2 + Tx2) < 2%, and we can bound from above the second term in (25) by
p—2
c(V)VEC(My) ; B @ AP 1 fvEC(My) (26)
/=0

where we seA =VV'. Again, (12) and (13) allow us to rewrite this quadratic form as the sum of

traces
p—2

C(V); TR(M," AP~1-/Mm;BY) .
=0

SinceA andB have the same nonzero eigenvalues, we can apply Lemma 13 to each tepuot and
together as in (25). After simplifying we get

(21) < 2 (20~ TR((M MOP)P= 7 (20— 1) M3,

Substituting back into (18), and recalling thiat||, = ||U Hszq in the case of Schatten norms, yields

LS S G, \/<2p—1> S I,

tem tem
2
< Y 22U+ Ul | 2p 1)max”Mt”52p
B teZMt i tear || Lelly
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Solving the inequality fop, and overapproximating viga+b < /a+ v/b we now obtain

2
S S 4 (U)+(2p-1) (M, U], ) +Ms, U, \/<2p—1> G
tem tem

thereby concluding the proof. |

The core of the above analysis is an upper bound on the secondtemtienf the Taylor expansion
of the Schattermp-norm around/s_1. Our proof of this bound is based on a direct matrix analysis.
A more general bound has independently been derived in Juditsky emé&vski (2009, Proposi-
tion 3.1) and used in Kakade et al. (2009), where the unitarily invariamhsi@f our analysis are
replaced by general convex functions.
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