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Abstract

We study hierarchical clustering schemes under an axiomigtiv. We show that within this frame-
work, one can prove a theorem analogous to one of Kleinbeé?§2 in which one obtains an
existence and unigueness theorem instead of a non-exastesult. We explore further properties
of this unique scheme: stability and convergence are ashalol. We represent dendrograms as
ultrametric spaces and use tools from metric geometry, hatine Gromov-Hausdorff distance, to
guantify the degree to which perturbations in the input lneface affect the result of hierarchical
methods.
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1. Introduction

Clustering techniques play a very central role in various parts of datgsia They can give

important clues to the structure of data sets, and therefore suggess wesll hypotheses in the
underlying science. Many of the interesting methods of clustering availabie leen applied to
good effect in dealing with various data sets of interest. However, ddspitg one of the most
commonly used tools for unsupervised exploratory data analysis, apiedésextensive literature,
very little is known about the theoretical foundations of clustering methddssé& points have been
recently made prominent by von Luxburg and Ben-David (2005); BawidDet al. (2006).

The general question of which methods are “best”, or most appropoiaéepfarticular problem,
or how significant a particular clustering is has not been addressedédgoehtly. This lack of
theoretical guarantees can be attributed to the fact that many methods ipadiieeilar choices to
be made at the outset, for example how many clusters there should be, atubef/a particular
thresholding parameter. In addition, some methods depend on artifacts iatthesdch as the
particular order in which the observations are listed.

In Kleinberg (2002), Kleinberg proves a very interesting impossibility ltdeuthe problem of
even defining a clustering scheme with some rather mild invariance propétigesiso points out
that his results shed light on the trade-offs one has to make in choositgrizigsalgorithms.

Standard clustering methodstake as input a finite metric spa¢¥,d) and output a partition
of X. Let P(X) denote the set of all possible partitions of the XetKleinberg (2002) discussed
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this situation in an axiomatic way and identified a set of reasonable propdrsiesdard clustering
schemes, namely, scale invariance, richness and consistency. Fixdardtalustering method
and a metric spacgX,d) and letf (X,d) = M € P(X). Kleinberg identified the following desirable
properties of a clustering scheme:

e Scale Invariance For alla > 0, f(X,a-d) =T1.

¢ Richness Fix any finite setX. Then for allll € P(X), there exists d, a metric onX s.t.
f(X,dn)=1.

e Consistency LetM = {By,...,B,}. Letd be any metric oiX s.t.

1. for allx,X € By, d(x,x') < d(x,X) and

2. forallxe By, X € By, a # ', d(x,X') > d(x,X).

~

Then, f(X,d) =T.

He then proved, in the same spirit of Arrow’s impossibility theorem, that ndexlng scheme
satisfying these conditions simultaneously can exist.

Theorem 1 (Kleinberg, 2002) There exists no clustering algorithm that satisfies scale invariance,
richness and consistency.

Then, in particular, Kleinberg’s axioms rule out single, average and lstenpinkage (standard)
clustering. Clusters in any of these three methods can be obtained byfisstucting a hierachi-
cal decomposition of space (such as those provided by hierarchisi#ichg methods) and then
selecting the partition that arises at a given, fixed, threshold.

A natural question is whether Kleinberg’s impossibility results still holds whenawmits clus-
tering schemes that do not try to return a fixed partition of a space, bullareed to return a
hierarchical decompositian

Furthermore, data sets can exhibit multiscale structure and this can résl@arsl clustering
algorithms inapplicable in certain situations, see Figure 1. This further mditla¢euse oHier-
archical clustering methods. Hierarchical methods take as input a finite metric spacel) and
output a hierarchical family of partitions of.

Figure 1: Data set with multiscale structure. Any standard clustering algovilifail to capture
the structure of the data.

These hierarchical families of partitions that constitute the output of hi@caicmethods re-
ceive the name oflendrograms Dendrograms come in two versionproximity and threshold
dendrograms. These two types of dendrograms differ in whether ttag some proximity infor-
mation about the underlying clusters that they represent or not: proxintigrograms do retain
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such information whereas threshold dendrograms do not. Practiciohstiatistical data analysis
seem to work almost exclusively with proximity dendrograms. For this reasoopt to carry out
our analysis under the model that hierarchical methods take as input anfigitee spaceX and
output a proximity dendrogram ove, see Remark 3.

We remind the reader that we are using the term standard clustering methetkr to proce-
dures that take a finite metric space as input and output a fixed single pasfitiemmetric space.

In a similar spirit to Kleinberg’s theorem, we prove in Theorem 18 that in timéeoo of hierar-
chical methods, one obtaimiquenesistead of non-existence. We emphasize that our result can
be interpreted asmlaxationof the theorem proved by Kleinberg, in the sense that allowing cluster-
ing schemes that output a nested family of partitions in the form of a proximitgrdgram, instead
of a fixed partition, removes the obstruction to existence. The unique HC chelttamacterized by
our theorem turns out to be single linkage hierarchical clustering.

We stress the fact that our result assumes that outputs of hierarchitadaere proximity
dendrograms, whereas Kleinberg's Theorem applies to flat/standatdrohg, a situation in which
the output contains no proximity information between clusters.

In order to state and prove our results we make use of the well kequivalent representation
of dendrograms, the output of HC methods, usiligametrics This already appears in the book of
Hartigan and others, see Hartigan (1985), Jain and Dubes (19883)&2 references therein.

In recent years, the theme of studying the properties of metrics with gredcgeneralized
curvature properties has been studied intensively. In particular, thie efdGromov (1987) has
been seminal, and many interesting results have been proved concdrjgnts @ther than metric
spaces, such as finitely generated groups, depending on these methedsurvature conditions
can be formulated in terms of properties of triangles within the metric spackfh@amost extreme
of these properties is that embodied in ultrametric spaces. A second idearnb®s is to make the
collection of all metric spaces into its own metric space, and the resulting mete givery useful
and natural way to distinguish between metric spaces (Gromov, 2007)mEhii is known as the
Gromov-Hausdorff distance and its restriction to the subclass of ultrampages is therefore a
very natural object to study.

1.1 Stability

Stability of some kind is clearly a desirable property of clustering methods agdftine, a point
of interest is studying whether results obtained by a given clusteringitilgoare stableto per-
turbations in the input data. Since input data are modelled as finite metric spadethe output
of hierarchical methods can be regarded as finite ultrametric spacesydaheGHausdorff dis-
tance provides a natural tool for studyimgriability or perturbationof the inputs and outputs of
hierarchical clustering methods.

After observing in 83.6 that average and complete linkage clustering astatde in the metric
sense alluded to above, we prove in Proposition 26 that single linkagedssa kind of stability:

Proposition 2 Let(X,dx) and(Y,dy) be two finite metric spaces and [e¢, ux) and(Y,ux) be the
two (finite metric ultrametric spaces) corresponding outputs yielded byesiimgage HC. Then,

dg.’l-[(o(’ Ux), (Yv UY)) < dgﬂ-[((xv dX)7 (Y7dY)) :

Here, d;,, stands for the Gromov-Hausdorff distance.
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Figure 2: Convergence of dendrograms. We formalize this conceptliyagently representing
dendrogram as ultrametrics and then computing the Gromov-Hausdorfickdt@tween
the resulting metrics. We prove in Theorem 30 that by taking increasingly Iiiathy
samples from a given probability distributipron a metric space,then with probability 1
one recovers a multiscale representation of the supprt of

This result is very important for the convergence theorems which wesprothe later parts of
the paper. These results describe in a very precise way the fact thatnfipact metric spaces,
the results of clustering the finite subsetsXofields a collection of dendrograms which ultimately
converge to the dendrogram f&r In order for this to happen, one needs the metric on the ultramet-
ric spaces as well as the behavior of the clustering construction on tmed@+bHausdorff distance,
which is what Proposition 2 does. The issue of stability is further explor&8.in

1.2 Probabilistic Convergence

Finally, in Theorem 30 we also prove that for random i.i.d. observatiins {xi,...,X,} with
probability distributionu compactly supported in a metric spaeé d), the result(X,, ux,) of ap-
plying single linkage clustering t@X,,,d) converges almost surelyn the Gromov-Hausdorff sense
to an ultrametric space that recovers the multiscale structure fugportof |, see Figure 20.
This can be interpreted as a refinement of a previous observation @ari§85) that SLHC is
insensitive to the distribution of massoin its support.

1.3 Organization of the Paper

This paper is organized as follows: 8A provides a list of all the notatiomeddfand used throughout
the paper; 82 introduces the terminology and basic concepts that we usegaper; 83.2 reviews
hierarchical clustering methods in general; 83.3 discusses the rejatezenf dendrograms as ul-
trametric spaces and establishes the equivalence of both repersent@ticrg3.5 delves into the
issue of constructing a notion of distance between dendrograms whichad bathe equivalence
of dendrograms and ultrametrics; 83.6 comments on issues pertaining to thetittadroperties
of HC methods. In 84 we present our characterization result, Thed8eforlSL in a spirit similar
to the axiomatic treatment of Kleinberg. We delve into the stability and convesggunestions of
SL in 85, where we introduce all the necessary concepts from Metrim@gg. Proposition 26 and
Theorem 28 contain our results for the deterministic case. In 85.3 we prpvebabilistic con-
vergence result Theorem 30 that hinges on a general sampling thémrereasure metric spaces,
Theorem 34. Finally, we conclude the paper with a discussion on futweetidins.
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For clarity of exposition, we have chosen to move most of the proofs in thirpa an appendix.
The ones which remain in the main text are intended to provide intuition which wotloktherwise
be there.

2. Background and Notation

A metric spaceis a pair(X,d) whereX is a set andl : X x X — R™" satisfies
1. Forallx,x € X, d(X,x) = d(x,X) = 0 andd(x,x") = 0 if and only ifx = X'.
2. Forallx,xX,x" e X, d(x,x") < d(x,x) +d(x',X").
A metric spacé X, u) is anultrametric spaceif and only if for all x, X', x" € X,
max(u(x,X),u(x’,x")) = u(x,x"). (1)

Ultrametric spaces are therefore metric spaces which satisfy a strongeasftiyiangle inequal-
ity. It is interesting to observe that this ultrametric triangle inequality (1) impliesghatiangles
areisosceles

Notice that by iterating the ultrametric property one obtains that,i,, ..., Xk is any set ok
points inX, then

max(u(xz,X2), U(X2,X3), - . ., U(Xk—1, X)) = U(X1, %)

For a fixed finite seX, we let1(X) denote the collection of all ultrametrics & Forne N let
X (resp. Uy) denote the collection of all metric spaces (resp. ultra-metric spacesh pdimts. Let
X = ],=1 Xn denote the collection of all finite metric spaces ane- | |, Uy all finite ultrametric
spaces. FofX,d) € X let

seX,d) := mind(x,X) and dian{X,d) := maxd(x,X)

X#X X,X!

be theseparationand thediameterof X, respectively.

We now recall the definition of aaquivalence relation Given a se#, a binary relationis a
subsetSc A x A. One says that anda’ arerelatedand writesa ~ & whenever(a, @) € S. Sis
called arequivalence relatioif and only if for all a,b, c e A, all the following hold true:

e Reflexivity: a~ a.
e Symmetry: ifa ~ bthenb ~ a.
e Transitivity: if a~ bandb ~ cthena ~ c.

The equivalence classf a under~, denoted[a], is defined as all thosa which are related to
a: [a] = {@ € A s.t.d ~ a}. Finally, thequotient space A~ is the collection of all equivalence
classesA\ ~:= {[a], ac A}.

We now construct our first example which will be crucial in our presentatio

Example 1 (-equivalence) Given a finite metric spade,d) and r > 0 we say that points,x’ € X
are r-equivalent (denoted x~; X) if and only if there exists pointgx,...,% € X with x = X,
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Oe
X X
O\ox’ O\ox’
r=rn, r=rj
X

r=rs r =14

Figure 3: lllustration of the equivalence relatien. A finite metric spaceX is specified by the
points in orange which are endowed with the Euclidean distance. This gotsir can
be understood as allowing the creation of edges joining two points whethevdistance
between them does not exceed Then, two pointsx and X' in black are deemed-
equivalent if one can find a sequence of edges on the resulting goapieatingx to
X'. From left to right and top to bottom we show the resulting graph one obtaing f
increasing values af. The pointsx andx’ are notr-equivalent whem = rq,r, orrz, but
they arers-equivalent.

X =X and dxi,x+1) <rfori=0,...,t—1. Itis easy to see that, is indeed an equivalence
relation on X.

This definition embodies the simple idea of partitioning a finite metric space ititacpanected
components, where the granularity of this partitioning is specified by thenpater r> 0, see Figure
1.

1. Indeed, assume that all sided,c of a triangle in a given ultrametric space are different. Then, without dfss
generalitya> b > c. But then,a > max(a,b) which violates (1). Hence, there must be at least two equal sides in
every triangle in an ultrametric space.
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For a finite setX, and a symmetric functiow/ : X x X — R* let £(W) denote thenaximal
metricon X less than of equal t&/ (Bridson and Haefliger, 1999), that is,

m—1
LIW)(x,X) = min{ZW(xi,xi+1)|x=xo,...,xm=x}

i=0

for x,x' € X.

For a finite seiX, we let C(X) denote the collection of all non-empty subsetsXofBy P (X)
we denote the set of all partitions ¥f For a given partitiol € 2(X) we refer to eaclB € 1 as a
blockof IN. For partitiond 1,1’ € P(X), we say thafl is coarserthan’, or equivalently thafl’ is
arefinemenbf M, if for every block®’ € N’ there exists a blocB € M s.t. B’ < B.

Forke N andr > 0 let S"(r) = R¥ denote thgk — 1) dimensional sphere with radius By
((a)) we will denote a matrix of elements; .

3. Hierarchical Clustering: Formulation

In this section we formaly define hierarchical clustering methods as mapastfigh a dendrogram
to a finite metric space. First, in 83.1 formalize the standard concept ofatgadn; then, in §3.2
we present a formal treatment of HC methods which emphasizes the nesetbfanulation that is
insensitive to arbitrary choices such as the labels given to the points intdneetaFinally, in 83.3
we prove that the collection of all dendrograms over a finite set is in a oneet@@respondence
with the collection of all ultrametrics on this set. We then redefine HC methods as fntap
the collection of finite metric spaces to the collection all finite ultrametric spaces chiange
in perspective permits a natural formulation and study ofdfadility and convergenceassues in
later sections of the paper. In particular, in 83.5, we discuss the cotistrac¢ notions ofdistance
between dendrogranty appealing to the ultrametric representation. These notions are instrumental
for the arguments in 85.

Finally, in 83.6, we disgress on some critiques to the classical HC methodsitliagon with
HC methods is seemingly paradoxical in that SL is the one that seems to enjdesttibeoretical
properties while CL and AL, despite exhibiting some undesirable behazoithe usual choices
of practicioners.

3.1 Dendrograms

A dendrogram over a finite seK is defined to be nested family of partitions, usually represented
graphically as a rooted tree. Dendrograms are meant to representechiesl decompositions

of the underlying seX, such as those that are produced by hierarchical clustering algoridmuahs,
therefore the nested family of partitions provided must satisfy certain conglitié®e formally
describe dendrograms as p&i¥s 0), whereX is a finite set an@® : [0,0) — P (X). The parameter

of 8 usually represents a certain notiorschleand it is reflected in the height of the different levels,
see Figure 3.1. We require thasatisfies:

1. 6(0) = {{x1},...,{Xn}}. This condition means that the initial decomposition of space is the
finest possible: the space itself.

2. There exist$ s.t. 6(t) is thesingle block partitiorfor all t > to. This condition encondes the
fact that for large enough the partition of the space becomes trivial.
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R >

a r bryc e}
Figure 4: A graphical representation of a dendrogram over th&X sef{x;, xz,X3,X4}. Let 6 de-
note the dendrogram. Notice for example tBéa) = {{x1}, {2}, {xs},{xa}}; 6(b) =
{{x1, %2}, {xa}, {xa} }; B(c) = {{x1, %2}, {Xs,%a} }; @ndB(t) = {x1, X2, X3, X4} foOr anyt > rs.

3. If r < sthen®(r) refinesB(s). This condition ensures that the family of partitions provided
by the dendrogram is indeed nested.

4. For allr there existg > 0s.t.8(r) = 0(t) fort € [r,r +€]. (technical condition)

Let D(X) denote the collection of all possible dendrograms over a given finit¥.s&/hen
understood from context, we will omit the first component of a dendragpé 6) € D(X) and refer
to 6 as a dendrogram ovéX.

Remark 3 (About our definition of dendrogram) Our definition coincides with what Jain and
Dubes callproximity dendrograms in Jain and Dubes (1988&3.2). We stress that we view the
parameter t in our definition as part of the information about the hieramhatustering. Jain and
Dubes also discuss a simpler version of dendrograms, which theshoaghold dendrogramehich
retain merely the order in which succesive partitions are created. THeseuese can be viewed as
functions fromN into P (X) satisfying the constraints (1), (2) and (3) above, instead of having the
domain|0,c0).
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It seems that proximity dendrograms are the type of dendrogramsiteahost often employed
by practicioners and statisticians, see for example the dendrogramgalpblyy the statistical soft-
ware R and by Matlab’s statistics toolbokwhereas threshold dendrograms are more popular in
the Machine Learning and Computer Science communities.

Usually, Hierarchical Clustering methods are defined as those maps thethdieite metric
space(X,d) assign a dendrogram ovEr
Using the definitions above we now construct our first example.

Example 2 For each finite metric spaceX,d) let (X,0*) e D(X) be given byo*(r) = X\ ~. In
other words, for each B 0, 6*(r) returns the partition of X into~,-equivalence classes. Recall
(Example 1) that two points x amd are ~; equivalent if and only if one can find a sequence of
points %, Xy, ...,X S.t. the first of them is x and the last one isaxd all the hops are smaller
than r: max dx (xi,X+1) < r. We will see below that this definition coincides with single linkage
hierarchical clustering. See Figure 2 for an illustration of this concept.

X2

X10

11

Figure 5: For the same finite metric spaseof Example 1 and the value = rp, X\ ~,=

{{X1,X0,X3,Xa,X5, X6}, {X7,Xg}, {Xo}, {X10,X11} }, that is, ~r, splits X into four path con-
nected components.

2. Available atht t p: / / ww. r - proj ect . org/ .
3. Available atht t p: / / ww. mat hwor ks. cont product s/ stati stics/.
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In order to build up intuition about our definitions, we prove tht 6*) is indeed a dendro-
gram. Since X is a metric spaceyx X if and only if x= X'. Thus condition (1) above is satisfied.
Clearly, for t > diam(X,d), x ~¢ X' for all x,x’, and thus condition (2) holds. F&<r < s and
let B be a maximal connected componenBdfr) and let xx' € B. Then, by definition 0&*(r),

X ~¢ X'. But it follows from the definition of, that if x ~, X/, then x~¢ X for all s > r. Hence, xx’
are in the same block & (s) and condition (3) holds. Condition (4) holds since cledyis right
continuous, has finitely many discontinuity points, and is piecewise constant.

We now need to discuss a formal description of agglomerative HC methods.

3.2 A General Description of Agglomerative Hierarchical Clustering Mehods

In this section we give a description of agglomerative HC methods that is keuiitalmur theoretical
analyses. Standard algorithmic descriptions of HC methods typically makesthpison that in
the merging process there are only two points at minimal linkage value of tis@chBor example,
the formulation of Lance and Williams (1967) does not specifically explain toodeal with the
case when more than two points are candidates for merging. In practicmolueargue that if at
a certain stage, say, three points are at minimal linkage value of eachtbregne could proceed
to merge them two at a time, according to some predefined rule that depettdsiadices of the
points.

Whereas thidie breakingstrategy seems reasonable from a computational point of view, it
invariably leads to dendrograms that depend on the ordering of the pdihis.is no doubt an
undesirable feature that can be translated into, for example, that this afshe clustering methods
depend on the order in which the data samples were obtained. Single linkaigeeki&npted from
this problem however, because of the fact that at each stagevoniyal distancesre taken into
account. In contrast, complete and average linkage will produce resattsldhnot behave well
under reordering of the points.

The problems arising from ad hoc tie breaking are often not even mentinrabks on clus-
tering. A notable exception is the book Jain and Dubes (1988), especialip® 83.2.6, where the
reader can find a careful exposition of these issues.

Below, we formulate HC methods in a way that is independent of these eatrarfieatures.
In order to do so , we need to have some kindnvfriance in the formulation. More precisely,
let (X,dx) be the input metric space, where we assume Xhat {1,...,n} consists of exactiyn
points. Write(X, 0x) is the output dendrogram of a given HC method applietaly ). Let tbe
a permutation of the indiced, 2, ...,n}, and(Y,dy) be the metric space with pointg,...,n} and
permuted metricdy (i, j) := dx (75, 15) for all i, j € {1,...,n}; further, denote byY, By) the output
dendrogram of the same HC method applied6rdy). Then, we require that for all permutations
11, the result of computing the dendrogram first and then permuting the isghlt sameas the
result of first permuting the input distance matrix and then computing the cdgypgirogram:

Tto O (t) = By(t), forallt > 0. (2)
Formally, the action of a permutatianover a partition (such a8 (t)) above must be understood

in the following sense: iP = {B,,..., B} is a partition of{1,2, ..., n}, thentto P is the partition
with blocks{tto B, 1 <i < r}, where in turrito B; consists of all those indices for j € B;.
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We elaborate on this in the next example. We first recall the usual definitiohtéC, and then
construct a simple metric space consisting of five points where this usualimtion of CL fails to
exhibit invariance to permutations.

3.2.1 THE STANDARD FORMULATION OF COMPLETE LINKAGE HC

We assuméX, ((d))) is a given finite metric space. In this example, we use the formulas for CL
but the structure of the iterative procedure in this example is common to all H@dwe(bain and
Dubes, 1988, Chapter 3). L@tbe the dendrogram to be constructed in this example.

1. SetXp = X andDg = ((d)) and seB(0) to be the partition oK into singletons.

2. Search the matriPg for the smallest non-zero value, that is, fidgl= sefXo), and find
all pairs of points{(xi,,X;,), (Xi,,Xj,) - .-, (X, Xj,)} at distancedy from eachother, that is,
d(Xi4,Xj,) = O foralla =1,2,... k, where one orders the indices $it<i> < ... <.

3. Merge the first pair of elemenits that list, (x;,,X;, ), into a single group. The procedure now
removes(x;,,Xj,) from the initial set of points and adds a pomto represent the cluster
formed by both: defin&; = (Xo\{Xi,j,}) u {c}. Define the dissimilarity matri©; onX; x
X1 by D1(a,b) = Do(a, b) for alla,b # candD1(a, c) = D1(c,a) = max(Do(X;, , &), Do(X;,, a))
(this step is the only one that depends on the choice corresponding t&iGally, set

9(5):{Xi1,Xj1}u U {x}.

i#i1,)1

4. The construction of the dendrogrdhis completed by repeating the previous steps until all
points have been merged into a single cluster.

Example 3 (about the standard formulation of complete linkage)The crux of the problem lies
in step 3 of the procedure outlined above. The choice to merge just thediref points in the list
causes the procedure to not behave well under relabeling of the poitite Bense of (2).

An explicit example is the following: consider the metric spék 2,3,4,5},((d))) with five
points and distance matrix

AN RO PR

oOWoORr N
AWOWN W
ocoowo u b
O NN Ul O

5\6 7

This metric space arises from considering the graph metric on the grapictdd in Figure 6.
Under CLHC (as defined iB83.2.1), and under the action of all possible permutations of the labels
of its 5 points, this metric space produces 3 diffeneon-equivalent dendrograms, see Figure 7.
This is an undesirable feature, as discussed at length in Jain and DuB88,(Chapter 3).

We now re-define general HC methods in a way that they satisfy (2).
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Figure 6: A finite metric space that under permutations leads to differentitsubp the usual CL
HC algorithm, see text for details. The metric is defined by the graph distantaeo
weighted graph shown.

3.2.2 THE PERMUTATION INVARIANT FORMULATION

Here we consider the family of Agglomerative Hierarchical clustering teglas (Jain and Dubes,
1988, Chapter 3). We define these by the recursive procedurgloisboext. The main difference
with 83.2.1 lies that in Step 3 we will allow for more than just two points into the saméeclaad
also, it could happen, for example, that four poitB,C, D merge into two different clustefg\, B}
and{C,D} at the same time.

Let the finite metric spacéX,d) be given whereX = {x,...,X,} and letL denote a family of
linkage function®n X:

L:={(:C(X)x C(X) > R"}

with the property all that € L are bounded non-negative functions. These functions assign a non-
negative value to each pair of non-empty subsetX,odind provide a certain measuredi$tance
between two clusters. L&, B’ € C(X), then, some possible standard choiced fare:

e Single linkage (S-(B, B") = ming Minyeg d(X,X);
o Complete linkage/C- (B, B') = maxes maxecs d(x,x); and
o Average linkage/A- (B, B') — Zxen e d0X)

e Hausdorff linkage (M (B, B') = d, (B, B').4

The permutation invariant formulation is as follows:

4., The Hausdorff distance is defined in Definition 21.
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1. Fix /e L. For eachR > 0 consider the equivalence relatienp g on blocks of a partition
MeP(X), given byB ~,r B if and only if there is a sequence of blocks= By,..., Bs= B’
in M with ¢(By, Bey1) < Rfork=1,...,s—1.

2. Consider the sequend@g Ry, ... € [0,0) and®1,0;,...€ P(X) given by®; := {X1,...,Xn},
and recursively for > 1 by ©; ;1 = ©;/ ~r Where

R :=min{{(B,B);, B,B €O, B+ B}.

Note that this process necessarily ends in finitely many steps. This cdimirteflects the
fact that at stepone agglomerates those clusters at distanBefrom eachother (as measured
by the linkage functiof). More than two clusters could be merged at any given step.

3. Finally, we defin@’ : [0,0) — P(X) by r — 6/(r) := () wherei(r) := maxXi|R < r}.

Remark 4 (About our definition of HC methods) Note that, unlike the usual definition of ag-
glomerative hierarchical clustering3.2.1 (Jain and Dubes, 19883.2), at each step of the in-
ductive definition we allow for more than two clusters to be merged. Of cotlmsestandard for-
mulation can be recovered if one assumes that at each step i of thethfgpthere exisonly two
blocksB and B’ in ©; s.t. R = ¢(B,B’). Then, at each step, only two blocks will be merged.

Example 4 Note for example that for the five point metric space in Example 3, the résydptying
CL (according to the permutation invariant formulation) is the dendrograrRigure 8 (a). It also

follows, for example, that when applied to the metric spag:etL({a, b,c}, (g ci> g) ) which can

1 1
be represented by three points on a Iir. . . , SL, AL and CL all yield the same

dendrogram, which is shown in Figure 8 (b).

5
4
3

ol

A 4

A 4

Figure 8: (a) shows the result of applying the permutation invariant fotronlaf CL to the five
point metric space of Example 3 (see also Figure 6). (b) shows the dgadrdhat one
obtains as output of (the permutation invariant formulation of) SL, AL anch@hlied to
the metric spaces.
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Proposition 5 We have the following properties of the construction above:
e FOri=1,2,..., 0, is coarser thar®; and
e Ri1=>R.
e 08is a dendrogram over X.

Proof The only non trivial claim is thalR,, 1 > R;, which can be proved by induction @n |

Remark 6 From this point forward, all references to SL, AL, and CL clustering willtbehe
permutation invariant formulation, in which more than two clusters can begetkat a given step.

The following result is clear, and we omit its proof.

Proposition 7 The above construction of hierarchical clustering algorithms (includibg/&., and
CL) yields algorithms which are permutation invariant.

A simplification for SL HCIn the particular case of SL, there is an alternative formulation that uses
the equivalence relation introduced in Example 1 and its associated desmr{fgxample 2). The
proof of the following Proposition is deferred to the appendix.

Proposition 8 Let (X,d) be a finite metric space ar@F- be the dendrogram over X obtained by
the single linkage agglomerative procedure described above, afd le¢ the dendrogram over X
constructed in Example 2. Thedt(r) = 8*(r) for allr > 0.

3.3 Dendrograms as Ultrametric Spaces

The representation of dendrograms as ultrametrics is well known and éaeppn the book by
Jardine and Sibson (1971), it has already been used in the work tigata(1985), and is touched
upon in the classical reference of Jain and Dubes (1988, §3.2.3).

We now present the main ideas regarding this change in perspective waiekll adopt for
all subsequent considerations. The formulation of the output of hidcalcclustering algorithms
as ultrametric spaces is powerful when one is proving stability results, laaswesults about the
approximation of the dendrograms of metric spaces by their finite subsp@hbesis so because
of the fact that once a dendrogram is regarded as a metric space, aheHausdorff metric
provides a very natural notion of distance on the output, in which the righdtdf stability results
are easily formulated. We state these theorems in §5.

The main result in this section is that dendrograms and ultrametriesjarealent

Theorem 9 Given afinite set X, there is a bijectiti: D(X) — U(X) between the collectiof(X)
of all dendrograms over X and the collectia@a(X) of all ultrametrics over X such that for any
dendrogranm® € D(X) the ultrametric(8) over X generates the same hierarchical decomposition
aso, that is,

(x) foreachr=0,xX e Beb(r) < WO)(x,X)<r.

Furthermore, this bijection is given by

W(8)(x,X') = min{r > 0| x, X belong to the same block 6fr)}.
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In order to establish the above theorem, we first construct certain hatappings fromD(X)
to U(X) and fromU(X) to D(X), and we then prove they are inverses of eachother and satjsfy (
3.3.1 FROM DENDROGRAMS TOULTRAMETRICS

Let X be a finite set an@ : [0,00) — P(X) a dendrogram oveX. Consider the symmetric map
Ug: X x X — R™ given by

(x,X) — min{r > 0|x, X belong to the same block 6fr)}. (3)

See Figure 9 for an illustration of this definition. Note that condition (4) in tHenifien of
dendrograms guarantees thais well defined. It is easy to see thatdefines an ultrametric oX:

Lemma 10 Let X be a finite set an¢X,0) € D(X). Then @ : X x X — R* defined in (3) is an
ultrametric.

X1
X —— | X1 X2 X3 X4
X1 0 I rs rs
] ((ue)) _ X2 r O rs rs
X3 X3 rs rs 0 ro
Xg rs rs r; 0

X4

I r rs

A\ 4

Figure 9: A graphical representation of a dendrogBamwerX = {x1,X2, X3,X3} and the ultrametric
ug. Notice for example, that according to (3(x1,%2) = r1 sincery is the first value
of the (scale) parameter for which andx, are merged into the same cluster. Similarly,
sincex; andxz are merged into the same cluster for the first time when the parameter
equals s, thenug(Xq,X3) = r3.

3.3.2 FROM ULTRAMETRICS TO DENDROGRAMS
Conversely, given an ultrametnic: X x X — R, its associated dendrogram
8Y:[0,0) — P(X)

can be obtained as follows: for eact O let 8(r) be the collection of equivalence classes of
X under the relatiorx ~ X' if and only if u(x,x') <r. That this defines an equivalence rela-
tion follows immediately from the fact that is an ultrametric. Indeed, assume that x' and

1440



CHARACTERIZATION, STABILITY AND CONVERGENCE OFHIERARCHICAL CLUSTERING METHODS

X' ~ X" for somer > 0. Then,u(x,x) <r andu(x,x”) <r. Now, by the ultrametric property,
max(u(x,x),u(x,x")) = u(x,x") and henceu(x,x”) <r as well. We conclude that ~ x” thus
establishing the transitivity of.

Example 5 Consider the ultrametric u on X% {x1,X2,...,Xs} given by

X1 X2 X3 X4 X5 Xg

xx /0 2 2 5 6 6
%2 0 2 5 6 6

x| 2 2 0 5 6 6
W=%l5 5 5 0 6 6
xs| 6 6 6 6 0 4

xs\6 6 6 6 4 0

Thena for exampleu(o) = {{Xl}v {X2}7 {X3}7 {)(4}7 {XS}a {XG}}1 eu(‘?’) = {{X17X27 X3}7 {X4}7 {X5}7 {X6}}!
8Y(45) = {{x1, X2 X}, {Xs},{Xs,%6}}, 8U(5.5) = {{xi,X,x3, %}, {xs%}}  and
84(7) = {xl,xz,x3,x4,x5,x6}. A graphical representation of the dendrogr&tis given in Figure
10.

X1
X2
X3
X4
I
X5
X6
i —i —
2 4 5 6

Figure 10: A graphical representation of the dendrog@drof Example 5, see the text for details.

3.3.3 THE CONCLUSION OF THEPROOF OFTHEOREM 9.

It is easy to check that (1) given any dendrogaon X, 8“6 = 6 and (2) given any ultrametricon
X, ugu = u. Now, letW : D(X) — U(X) be defined by — W(0) := ug. By construction we see that
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W : D(X) — U(X) is a bijection and tha¥ 1 is given byu — 8Y. From (3) we see tha¥ satisfies
(). Hence, we obtain Theorem 9.

From now, whenever given a dendrogréa over a sefX, we will be using the notation
WY (Bx) for the ultrametric associated ¥ given by Theorem 9. In a similar manner, given an
ultrametricu on X, W~1(u) will denote the dendrogram ovirgiven by Theorem 9.

3.4 Reformulation of Hierarchical Clustering using Ultrametrics

In the sequel, appealing to Theorem 9 which statesethidvalence between ultrametrics and
dendrograms, we represent dendrogramswdgametric spaces. Then, any hierarchical clustering
method can be regarded as a map from finite metric spaces into finite ultrameitiesspThis
motivates the following definition:

Definition 11 A hierarchical clustering methad defined to be a map
T X—>U st X,3(X,d)— (X,u)€ Uy, neN.

Example 6 For a given finite metric spaggX, d) consider the HC metho&St given byTSt(X, d) =
(X,¥(854)), wheredSt is the single linkage dendrogram over X define83r2. Similarly, we define
TCLand3A-.

Example 7 (maximal sub-dominant ultrametric) There is a canonical construction: L& :
X — U be given by(X,d) — (X,u*) where

u*(x,X) = min{ max_ld(xi,xi+1), S.t.X=Xg,..., X = x’} . 4)

i=0,....k

We remark that the minimum above is taken ovefkand all k+ 1-tuples of points g X, ..., X in
X s.t. % = x and % = X. Notice that for all xx' € X, u*(x,x') < d(x,x).

This construction is sometimes known asrtieximal sub-dominant ultrametric and it has the
property that if u< d is any other ultrametric on X, then« u*. The Lemma below proves that
this canonical construction is equivalent to the ultrametric induced by thévalguce relation in
Example 1.

Lemma 12 For (X,d) € X write T*(X,d) = (X,u*) and let(X,08*) € D(X) be the dendrogram
arising from the construction in Example 2. Thefi,¥(6%).

Remark 13 Notice that another way of stating the Lemma above is that X' if and only if
u*(x,X') <r.

It turns out that T yieldsexactly single linkage clusterings defined in 83.2.

Corollary 14 One has thagSt = T*,
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Equivalently, for any finite metric spac¢, the single linkage dendrogra@¥- on X agrees with
WL ().
Proof The proof follows easily from Proposition 8 and Lemma 12. |

-

We emphasize that, as it follows from Corollary 4, produces ultrametric outputs whic
are exactly those corresponding to SLHC. We will use this fact stronglyeise¢iquel.

3.4.1 INTERPRETATION OF THEULTRAMETRIC

For a HC method& and(X,d) € X, let T(X,d) = (X,u). The intuition that arises from (3) is that
for two pointsx, X’ € X, u(x,x’) measures the minimaffort method¥ makes in order to join to X’
into the same cluster.

We note in particular that a desirable property of a HC algorithm should beplea shrinking
some of the distances in the input metric space, the corresponding “etitstsdecrease. This
property is exactly verified bg*. Indeed, leX be a finite set and; andd, two metrics onX s.t.
di > dp. Write T*(X,d;) = (X,uj) andT*(X,d2) = (X,u3). Then, it follows immediately from
Equation (4) that; > uj (compare with Kleinberg'sonsistencyroperty, pp 1425).

Observe that CL and AL H@ail to satisfy this propertyAn example is provided in Figure 19.

We see in Theorem 18 that a condition of this type, together with two more hatrraalizing
conditions,completely characterizes SLHC

3.5 Comparing results of Hierarchical Clustering Methods

One of the goals of this paper is to study the stability of clustering methods to lpegtiuns in the
input metric space. In order to do so one needs to define certain suitaiolesaf distance between
dendrograms. We choose to do this by appealing to the ultrametric reptémenfadendrograms,
which provides a natural way of defining a distance between hieratchisterings. We now delve
into the construction.

Consider first the simple case of two different dendrogré¥st) and (X,[3) over the same
fixed finite setX. In this case, as a tentative measure of dissimilarity between the dendrogeams
look at the maximal difference between the associated ultrametrics givelmdmydm 9uy = W(a)
andug = W(B): max yex |Ua(X,X) —ug(x,x)|. There is a natural interpretation of the condition that
maxxvex |Ua (X, X') —Ug(x,X')| < €: if we look at the graphical representation of the dendrograms
andp, then the transition horizontal lines in Figure 11 have to occur withiheachothe?. This is
easy to see by recalling that by (3),

Ua (X, X) = min{r > 0| x,X belong to the same block of(r)}

and
ug(x,X') = min{r > 0| x,x belong to the same block @{r)}.

For the example in Figure 11, we then obtain that ffrax r{| < €, which is not surprising since
r2 = Ug(X1,X2), 5 = Ug(X1,X2), €tc.

5. These lines represent values of the scale parameter for whichigteereerging of blocks of the partitions encoded
by the dendrograms.
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X4 X3 X2 X1

Figure 11: Two different dendrograms,a) and (X,) over the same underlying set =
{X1,%2,%3,X4}. The condition thafluy — gL (xxx) < € is equivalent to the horizon-
tal dotted lines corresponding tpandr; (i = 1,2,3) being withine of eachother.

Now, in a slightly more general situation we may be faced with the task of congpiavindif-
ferent dendrograms andp without knowing (or caring about) the exact labels of the points. In this
case, a natural solution is to look at the minimum of the maximum difference obthesponding
ultrametrics under all possible permutations, namely:

min max |ug (X, X') — ug(T(x), (X)), (5)

TP, x,x'eX

wheren is the cardinality oiX andP, is the collection of all permutations afelements.

The most general case arises when we do not know whether the deamtiocome from the
same underlying set or not. This situation may arise, for example, when cioigplae results of
clustering two different samples, of possibly different sizes, comingp fitee same data set. One
may want to be able to compare two such clusterings as a way to ascertaiemtheteample size
is sufficient for capturing the structure of the underlying data set.

Assume then that we are givéX;,a) and(Xy, B), two different dendrograms, defined possibly
over twodifferent sets XandX; of different cardinality. This potential difference in cardinality in
the two sets forces us to consider transformations other than mere pernmaitatisatural solution,
which can be interpreted ag@laxationof the permutation based distance (5) discussed above, is
to consider map$ : X3 — X, andg: Xo — X; and look at theidistortions
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dis(f) := max |ux(x,X) — ug(f(x), f(X))],

XX eXy

dis(g) := max |ua(g(x),g(x)) — ug(x,X)].

X, X' eXo

The next natural step would be to optimize over the choicé andg, for example by minimizing
the maximum of the two distortions:

rrflignmax(dis(f),dis(g)).

This construction is depicted in Figure 12. Roughly speaking, this idea teatie Gromov-
Hausdorff distance. The difference lies in the fact that in standarditiefi of the Gromov-
Hausdorff distance, one also considers a term that measures the ttegttachf andg are inverses
of eachother. Being more precise, given the mhpadg, this term, called th@int distortionof f
andg s given by

dis(f,g) := ng%luu(x,g(y)) —ug(y, f(x))]-

One defines the Gromov-Hausdorff distance betwe&rnuy) and(Xz, ug) by

dgﬂ(Xl,Xz) = ;rrf17ignmax(dis(f),dis(g),dis(f,g)).6 (6)
We now see exactly how the inclusion of the new term enforfcesd g to be approximate
inverses of eachother. Assume that for scame 0 dg}[(xl,xz) < g, then, in particular, there
exist mapsf andg such thatjuy(x,9(y)) — ug(y, f(x))| < 2¢ for all xe X; andy € Xo. Choosing
y = f(x), in particular, we obtain thaiy (x,g(f(x))) < 2¢ for all xe X;. Similarly one obtains that
ug(y; T(g(y))) < 2¢ for all y e Xo. These two inequalities measure the degree to wihicly and
go f differ from the identities, and thus, measure the degree to whindg fail to be inverses of
eachother. This is a useful feature when one consi@rgergence issuesich as we do in 85.

3.5.1 INTERPRETATION OF THEGROMOV-HAUSDORFFDISTANCE IN TERMS OF
DENDROGRAMS

Assume thatlg,/ ((X1,Ua), (X2,Ug)) < 7 for somen > 0. Then there exist maps: X — Y and
g:Y — X such that the following conditions hold (see Figure 13):

e If x,X fall in the same block oéi(t) thenf(x), f(x') belong to the same block @{t’) for all
t'>t+n.

e If y,y fall in the same block of(t) theng(y),g(y) belong to the same block of(t") for all
t'>t+n.

For the next section we do not need to make use of the full generality in toes&erations:
there we only compare dendrograms defined over the same underlyiigrsete detailed use and
additional material about the Gromov-Hausdorff ideas is given in 85.

We finish this section with a precise result regarding the stability of denanogyarising from
SLHC.
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"
l_ Y1
X2
| ]
X3 Y2
X4 Y3
I I rs ré I’q
(X, a) (Y, B)

Figure 12: In this example, two different dendrograif}6,a) and(Y,3), are given. The (straight)
arrows pointing from left to right show a map: X — Y, and the (curved) arrows
pointing from right to left show the mag:Y — X. With simple explicit computa-
tions one sees that these choices of mhpadg incur distortions disf) = dis(f,g) =
max(rs,|r1 —ryl,[r2 —r5|) and digg) = max(|ry —ry|,|r2 —r5|), respectively. Hence,
we see thatl ;. (X, W(a), (Y, W(B))) < max(rs, |r1—ry|,|ra—r5|).

The following Lemma deals with the situation when we have a fixed finite aatl two different
metrics onP and then we compute the result of applyifieach of these metrics. This lemma is a
particular case of our main stability result, Proposition 26 in 85. In the intefesarity, we prove
it here to provide some intuition about the techniques.

Lemma 15 Let P be a fixed finite set and lef,d, be two metrics on P. Writg*(P,di) = (P, u;),
i =12 Then,

max|ui(p,q) — Uz(p,q)| < max|di(p,q) — d2(p,qg)|-

p,geP p,geP

Proof Letn = maxyqep|di(p,q) —d2(p,q)|. Let po,....,px € P be s.t. po=p, p« = g and
max di(pi, pi+1) = u1(p,d). Then, by definition ofu, (which is the minimum over all chains of

the maximal hop measured with metdg) and the fact that, < d; +n:

u2(p,q) < miaxdz(pi, Pit1) < miaX(n +di(pi, Pir1)) = N +uL(p,q).

Similarly, u1(p,q) < n + uz(p,q), and hencgui(p,q) — uz(p,q)| < n. The claim follows since
p,q e P are arbitrary. |

6. The factor% is of course inmaterial but kept here for coherence with the standirten.
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X1 (X, (])

X2

X3

X4

VA

Y2

Y3

(Y, B)

Figure 13: These are the same dendrograms as in Figure 18, &€}, r, = 1,r3 = 3,r; = X and
ry, = 3. For the mapsf andg s.t. f(xy) = f(x2) = y1, f(X3) = Y2, f(Xa) = y3, g(y1) =
X1, 9(Y2) = x3 andg(ys) = X4, using the formulas computed in Figure 12 we see that
dis(f) = dis(g) = dis(f,g) = § and hencel,, (X, ¥(a)),(Y,¥(B))) < §. Now notice
for instance thakz andx, fall in the same block obi(ry) = a(1) and thaty, = f(x3)
andys = f(x4) fall in the same block oB(t’) forallt’ > r,+2 2 =1+ 1 =% =r).

3.6 Some Remarks about Hierarchical Clustering Methods

Practitioners of clustering often prefer AL and CL to SL because it isgdezd that the former two
methods tend to produce clusters which are more coherent conceptuadliyhich are in a non-
technical sense viewed as more compact. In fact, SL exhibits the so chl@ung effectwhich
makes it more likely to produce clusterings which separate items which coatlgpghould be
together. We view these observations as evidence for the idea thatlgstetiog schemes need to
take some notion of density into account, rather than straightforward geomébrmation alone.
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One can loosely argue that given the actual definition of the linkage funsctised by AL and
CL, these two methods do enjoy some sort of sensitivity to density. UnfaglynAL and CL are
unstable and in particulardiscontinuousin a very precise sense (see Remark 16 below), whereas
SL enjoys all the nice theoretical properties that the other two methods lack.

In this section we review this seemingly paradoxical situation.

For eactn e N let L, be a metric space with pointsP = {py,..., pn} and metricd,, (pi, pj) =
li—jl|, i,je€{1,...,n}. Similarly, letA, be the metric space with the same underlying set and
metricda, (pi, pj) = 1,1,j € {1,...,n}, i # j. Clearly, the metric spack, is isometric to points
equally spaced on a line in Euclidean space whereas (s.t. two adjacetsta@iat distance 1 from
eachother)}\, is isometric to thén — 1)-unit-simplex as a subset "2,

Clearly, the outputs of Single Linkage HC applied to bbtrandA,, coincide for alln e N:

THRdL,) = T*(Pda,) = (P.((Y) (7)

wherey;; = 0ifi = jandy;; = 1ifi # j, forall ne N, see Figure 14.

01010
X
n

@)

An o—O0 (&3
A, A,

Figure 14: The metric spacég andA, both haven points. Single linkage HC applied to either of
them yields the dendrogram in the center.

A,

By appealing to the Euclidean realizationslgf and A,, one can defingerturbedversions
of these two metric spaces. Indeed, §ix- O and let{a,...,an} = [0,€/2] and {by,...,by} <
S"1(¢/2). DefineL§ to be the metric space with underlying $eand metricd.c (pi, pj) =i — j +
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a; — a;j|. Similarly, defineA}, to be the metric space with underlying $eand metricda: (pi, pj) =
|s —sj +bi —bj].
Notice that by construction,

n??xldLn(pi,pj)—dLg(pi,pj)l <E€ (8)

and
n??-x|dAn(piapj)_dAﬁ,(piaij <& 9)

We thus say that the spacé8d.:) and (P,dxs) are perturbed versions ¢P,d.,) and (P,da,),
respectively.

Remark 16 (About a critique to SL) Single linkage is generally regarded as a poor choice in
practical applications. The reason for this is the so caltdginingeffect observed experimentally,
which is central to the criticism to SL made in Lance and Williams (1967) (seetfasdiscussion

in Wishart, 1969, pp. 296). The following two observations are important:

(O1) Itis generally argued that sindd d.:) corresponds to points on the vicinity of a line, whereas
(P.dag ) corresponds to points in the close vicinity afre— 1)-simplex, then the cluster formed
by points on the latter metric space is ma@mpactor denserthan the one formed by the
former, and thus more meaningful.

(O2) The outputs of SL to the spadéd,s) and (P,dxs) are very similar and this similarity is of
ordere.

Indeed, if we writeT*(P,di:) = (P,us) and T*(P,dxs) = (P,ua:), then, by the triangle in-
equality for the I norm,
lus — UngfLopxpy < [ULg — UiellLepxp) (10)
+ [ue — UpollLopxpy
+ Upg — Ung Lo (pxp)-
As we pointed out in (7) at the beginning of Sec&8rb,
U = U, = ((Y)) = Ua, = Upg,
thus, (10) simplifies into:
Juig —UnglLepxpy < ULg — UigfLe (pxpy (11)
+  uag — Ung L= (PP
(and by Lemma 15:)
< dig —diollLepxp)
+  [dag — dagllL=(pxp)-

Hence, by (11) and the construction ¢f @nd dy; (Equations (8) and (9)), we conclude that
luLg — Ung |Le (PP < 26

This means that for any small perturbations gfdndA,, the output of SL to these perturba-
tions are at a small distance from eachother, as we claimed.
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When put together, observatio(®1) and (O2) suggest that SL is unable to pick denser as-
sociations of data, such as cliques, over sparser ones, such as ktre&tures. This feature is
undesirable in practical applications where often times one would like to deglaisters as modes
of an underlying distribution (Wishart, 1969; Hartigan, 1981).

It is then the case that in practical applications, CL and especially AL aedepred over SL.
These two methods have the property that they indeed somehow favestuoiation of compact
subsets of points. For CL this can be explained easily using the concepiximal clique(maxi-
mally connected sub-graphs of a given graph) (Jain and Dubes,, 388ion 3.2.1). Letybe the
diameter of the cluster created in step k of CL clustering and define a @sélphas the graph that
links all data points with a distance of at most drhen the clusters after step k are the maximal
cliques of Gk). This observation reinforces the perception that CL yields clusters teademse as
measured by the presence of cliques. The sensitivity of AL to densitgdradiscussed by Hartigan
in Hartigan (1985, Section 3) and is basically due to the averaging perfdriméhe definition of
its linkage function.

A more principled way of taking density into account, that does not depead hoc construc-
tions which destroy the stability property, would be to explicitly build the densitytieanethod.

In Carlsson and Mmoli (2009) we studsnultiparameter clustering methods, which are similar to
HC methods but weack connected components in a multiparameter landscape. We also study the
classification and stability properties of multiparameter clustering methods.

Remark 17 (Instability of CL and AL) It turns out that CL and AL, despite not exhibiting the
undesirable feature of the chaining effect, and despite being regardethessensitive to density,
are unstable in a precise sense. Consider for example CL and let 3 In the construction of
(P,df) above leta = ap = 0and & = &, then

P1 P2 Ps P1 97) P3
pp/0 1 2 p1 0 1 2+¢
(d)=p2l 2 0 1| and ((df)= p2| 1 0 1+¢|.
ps\2 1 O ps \2+¢ 14+4¢ O
Write (P dL) = (P,u ) andTH(P,df) = (P,uf). Clearly,
P1 P2 P3 P1 P2 P3
pp/0 1 1 pP1 0 1 2+¢€
(uw)y=p2 2 0 1| and (W)= p2| 1 0 2+¢g|.
ps\1 1 O ps \2+¢ 24+4¢ O
Notice that despitenax j [d.(pi, pj) — df (pi, Pj)| =& max j [uL(pi, pj) — U; (pi, pj)| =1+€>1
for all € > 0. We thus conclude that CL is not stable under small perturbations of thécmdote

that in particular, it follows that CL isot continuous. The same construction can be adapted for
AL. See Figure 15.

4. A Characterization Theorem for SL Hierarchical Clustering

In this section we obtain eharacterization of SL hierarchical clustering in terms of some simple
axioms. The main axiom, (lI) below, says that the clustering scheme haseripezl behavior
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11 )
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Py P, Py Py
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Figure 15: Complete Linkage is not stable to small perturbations in the metric.eQeftlive show
two metric spaces that are metrically very similar. To the right of each of theshaws
their CL dendrogram outputs. Regardlessof 0, the two outputs are always very
dissimilar. We make the notion similarity between dendrogram precise in 85 by in-
terpreting dendrograms as ultrametric spaces and by computing the Groangddiff
distance between these ultrametric spaces.

under distance non-increasing maps of metric space. The behaviorikahmaap of metric spaces
should induce a map of clusters, that is, that if two points in the domain sptugglte the same
cluster, then so do their images in the clustering of the image metric space. Tibis, meferred

to asfunctoriality in the mathematics literature, appears to us to be a very natural one, and it is
closely related to Kleinberg'’s consistency property (cf. pp. 1425dfdinary clustering methods;

see Remark 19 for an interpretation of our axioms.

Theorem 18 Let T be a hierarchical clustering method s.t.

() T({p.a} (§5)) = ({p.a}. (35)) forall 3> 0.

() Whenever XY € X and@: X — Y are such that g(x,x) = dv(@(x), (X)) for all x,x € X,
then

Ux (val) = Uy((p(X),(p(X/))
also holds for all xx' € X, whereZ (X, dx) = (X,ux) andZ(Y,dy) = (Y,uy). prop

() Forall (X,d) e X,
u(x,x') > segX,d) for all x # X' € X

whereX(X,d) = (X, u).

ThenT = ¥, that is,¥ is exactly single linkage hierarchical clustering.
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Remark 19 (Interpretation of the conditions) Let (X,d) € X and write ¥(X,d) = (X,u). The
intuition is that ux,x") measures theffort methodX makes in order to join x to’xnto the same
cluster.

Condition (1) is clear, the two-point metric space contains only one degfrileedom which has
to determine unambiguously the behavior of any clustering methanlterms of dendrograms, this

means that the two point metric spaéQA, B}, (g 8)) must be mapped to the dendrogram where

A and B are merged at parameter valdiesee Figure 16.

Condition (ll) is crucial and roughly says that whenever one shrirkaes distances (even to
zero) to obtain a new (pseudo) metric space, then the correspondortseh this new space have
to be smaller than the efforts in the original metric space. This is consistentiwgthotion that
reducing the distance between two points (without increasing all other distdmakes them more
likely to belong to the same cluster.

LetBx = W~1(ux) andBy = W~1(uy) be the dendrograms associated fpand . In terms of
dendrograms, this means that if two pointg’x X are in the same block & (t) for some t> 0,
theng(x) and@(x’) must bein the same block dy (t). see Figure 17.

Condition (1) expresses the fact that in order to join two pointe ¥ X, any clustering method
% has to make an effort of at least the separation(¥ed) of the metric space. In terms of dendro-
grams, this means th& (t) has to equal the partition of X into singletons for @k t < segX,d).
See Figure 18.

-0 Z>y1:|_

Y2

VA Y2 ' >
0

Figure 16: Interpretation of Condition | : For alld > 0 the two point metric space on the left must
be mapped b§ into the dendrogram on the right.

Remark 20 It is interesting to point out why complete linkage and average linkage iuieical
clustering, as defined i83.2.2, fail to satisfy the conditions in Theorem 18. It is easy to see that
conditions (I) and (lIl) are always satisfied by CL and AL.

Consider the metric spaces X {A,B,C} with metric given by the edge lengtf4, 3,5} and
Y = (A',B/,C’) with metric given by the edge lengtf 3,2}, as given in Figure 19. Obviously, the
map@from X toY withp(A) = A, ¢(B) = B and@(C) =C' is s.t.

dy (@(X), (X)) < dx(x,X) forall x,x € {A B,C}.
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X1 Y- T(uy )

X2

X3

Xa

Y

Y2

Y3

Y- T(uy)

Figure 17: Interpretation of Condition Il : Assume thap: X — Y is a distance non-increasing map
such thatp(xq) = @(x2) = y1, ®(x3) = y2 and@(x4) = y3. Then, Condition (ll) requires
that if x, X' € X are merged into the same clusterf(uy) at parameter valug then
@(x) and@(x’) must merge into the same clustetéf(uy) for some parameter value
t. In the Figure, this translates into the condition that vertical dotted linesspmneling
to mergings of pairs of points iK should happen at parameter values greater than or
equal than the parameter values for which correponding points(ua ¢) are merged
into the same cluster. For exampd®x: ), ®(x2) merge into the same cluster at parameter
value 0. The condition is clearly verified for this pair since by definitiomp,of(x;) =
@(X2) = y1. Take nowxs andxa: clearly the vertical line that shows the parameter value
for which they merge is to the right of the vertical line showing the parametee Var
whichy, = @(x3) andys; = @(x4) merge.

It is easy to check that

A B C A B C
A/0 5 3 N/0 2 4
(ux)=B[5 0 5)and (w)=8B|2 0 4
c\3 5 0 c\4 4 o0

Note that for exampl8 = ux (A,C) < uy(@(A),®(C)) = uy(A',C’) = 4 thus violating property
(IN. The same construction yields a counter-example for averagediaka
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i >
sep(X, d)

Figure 18: Interpretation of Condition lll : The vertical line at parameter valtie- seg X, d) must
intersect the horizontal lines of the dendrogram before any two poiatmarged.

5. Metric Stability and Convergence of%*

The Proposition and Theorem below assert the metric stability and congistemeergence of the
method¥* (i.e., of SLHC, by virtue of Proposition 14. We use the notion of Gromov4ddauff
distance between metric spaces (Burago et al., 2001). This notion ofaigtarmits regarding the
collection of all compact metric spaces as a metric space in itself.

This seemingly abstract construction is in fact very useful. Finite metricespae by now
ubiquitous in virtually all areas of data analysis, and the idea of assigningri noethe collection
of all of them is in fact quite an old one. For Euclidean metric spaces, fample, the idea of
constructing a metric was used by Kendall et al. (1999) and Booksteln(éB&5) in constructing
a statistical shape theorynotivated by the ideas about form of biological organisms developed by
D’Arcy Thompson.
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B
A — X
C$
012345
C!
A’ — Y
B ——
012345
C. 3 A
Figure 19: An example that shows why complete linkage fails to satisfy condRjoof Theorem

18.

5.1 The Gromov-Hausdorff Distance and Examples

Definition 21 Let (Z,dz) be a compact metric space. The Hausdorff distance between any two
compact subsets,B of Z is defined by

z . , :
dZ, (A, B) 1= max (TE%X@Q dz(a,b), Te%xrglei\dz(a, b)) :

Remark 22 Let Z = {z,...,z} < Z. Then, ¢,(Z,Z) < & for somed > 0 if and only if Zc
UiL1B(z,9). In other words, d,(Z,Z) describes the minimadis.t. Z is ad-net for Z and therefore
measures how well covers Z.

The Gromov-Hausdorff distanck:,(X,Y) between compact metric spag&s dx) and(Y, dy)
was orignally defined to be the infimat> 0 s.t. there exists a metricon X[ |Y with dj, = dx
andd,,,, = dy for which the Hausdorff distance betweXrandY (as subsets ofX| |Y,d)) is less
thane (Gromov, 1987). There is, however, an alternative expression &GiH distance that is
better suited for our purposes which we now recall.

Definition 23 (Correspondence)For sets A and B, a subsetdRA x B is acorrespondencébe-
tween A and B) if and and only if

e VaeA, thereexistsbBs.t.(a,b)eR
e Vbe B, there exists & X s.t.(a,b) e R

Let R (A, B) denote the set of all possible correspondences between A and B.
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We now give several examples to illustrate this definition.

Example 8 Let A= {ay, a2} and B= {b1,by,bs}. In this case, R= {(a1,b1), (az,b2), (a1,bs)} isa
correspondence butR= {(as,b1), (az, 2)} is not.

Example 9 Let A and B be finite s.t#A = #B = n. In this case, ifitis any permutation matrix of
size n, thed(a,by),i=1,...,n} € R (A B).

Example 10 Let@: X — Y andy : Y — X be given maps. Then, one can construct a correspon-
dence out of these maps, call it¢y) given by

{(x009), xe X} J{(wy).y), yeY}.
For metric spacegX,dx) and(Y,dy). Letlxy : X xY X X xY — R* be given by

(X,y,X,,y,) = |dX(X?X,)7dY(y7y,)|

Then, by (Burago et al., 2001, Theorem 7.3.25)@memov-Hausdorff distancebetweenX andY
is equal to
1
desr (XYY == inf su Cxy (XY, X,Y). 12
g 0Y) 2RAXN) (o) )R 3y 42

It can be seen (it is an easy computation) that in (12) one can restrictfthriin to those
correspondences that arise from meg@sdy such as those constructed in Example 10. Then, one
recovers expression (6) which we gave in 83.5, namely, that actually

dgar(X,Y) = ;!pnu]j max (dis(¢), dis(y), dis(@, ). (13)

Remark 24 Expression (13) defines distance on the set of (isometry classes of) finite metric
spaces (Burago et al., 2001, Theorem 7.3.30). From now oy ldenote the collection of all
(isometry classes of) compact metric spaces. We say{ {Xatdx,) }ney = G Gromov-Hausdorff
converges to % G if and only if d; 5/ (X1, X) — Oas nt 0.

Example 11 Fix (X,dx) € G. Consider the sequendgX, - dx)}ney = G. Then, X Gromov-
Hausdorff converges to the metric space consisting of a single point.

Remark 25 (Gromov-Hausdorff distance and Hausdorff distance)Let (X, dx) be a compact met-
ric space. Then, if Xc X is compact and we endow Xith the metric ¢ equal to the restriction
of dy, then

dg}[((xa dX)7 (XladX/)) < d_)7-<[ (X/7X)
This is easy to see by defining the correspondence R between X giveiXby

R={(X,X),X e X'} U{(xX),xeV(X),X €X'},

where [X) := {xe X, dx(x,X') < dx(X,2), ze X'\{X'}}. Indeed, since then, for alky,X;), (X2,X;) €
R,

1 1 .
Sl (4, %2) — d (X, %)| < > (dx (x1,X;) + dx (X2,%)) < maxmindx (x,X) = d- (X, X').

XeX x'eX’
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Example 12 Consider a finite set M and,d’ : M x M — R* two metrics on M. Then, the GH
distance betwee(M,d) and (M, d’) is bounded above by thé“Lnorm of the difference between d
and d:

1
dgzr (M, d), (M, d)) < S[d—d'[ Lo msem)-

To prove this it is enough to consider the correspondeneefEM, M) given by R= {(m,m), me
M}.
Notice that as an application, for the metric spa¢gd.:) and (P,da:) discussed irg3.6, one
has that ¢
dgar (P.dL,), (Pdis)) < > and

dgs((P.da,), (P.dag)) <

NI m

5.2 Stability and Convergence Results

Ouir first result states that SL HC is stable in the Gromov-Hausdorff sertéd is a generalization
of Lemma 15.

Proposition 26 For any two finite metric spaceéX, dx) and(Y,dy)

Remark 27 This Proposition generalizes Lemma 15. Notice for example that in casel X amne

finite, they need not have the same number of points. This feature is imipior@der to be able
to make sense of situations such as the one depicted in Figure 2 in pp.vi4@®, one is trying to
capture the connectivity (i.e., clustering) properties of an underlyingtlnaous’ space by taking
finitely (but increasingly) many samples from this space and applying Bmmeof HC to this finite
set. Theorem 28 below deals with exactly this situation. See Figure 20.

Let (Z,dz) be a compact metric space. Given a finite indexAsand a (finite) collection of
disjoint compact subsets & {U (@ }4ea, letWa : Ax A— R* be given by

(a,d’) — min dz(z,7).
zeU (@)
Zeu @)
A metric spacgA,da) arises from this construction, whedg = £(Wa). We say that'A,da) is
the metric space with underlying s&tarising from {U(®},.a. Notice that sefA, da) equals the
minimal separation between any two s&t§) andU (®) (a = a’). More precisely,
sedA,da) = min  min dz(z Z).
a,0’eA, zey (@)
a#a’ Zey@)
We now state a metric stability and convergence result, see Figure 20. ddfeopthis result
is deferred to 8B.

Theorem 28 AssumeZ,dz) is a compact metric space. Let X andbé any two finite subsets of
Z and let & = dz,,, and d¢ = dz|,, . Write T*(X,dx) = (X,ux) and T*(X',dx:) = (X, ux’).
Then,
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w,
Wi3< Waz< Wizt W< W)

X A=f{aj,ay a3}

e ——
M3 W3

Figure 20: lllustration of Theorem 28Top A spaceZ composed of 3 disjoint path connected
parts,Z(), 72 andZ(®. The black dots are the points in the finite samleln the
figure,wij = W(i,j), 1<i # j < 3. Bottom Left The dendrogram representation of
(X, ux). Bottom RighfThe dendrogram representation(d@f uz). Note thatdz(z,z) =
Wi3 + W3, dz(2z1,23) = Wiz anddz(zz,73) = Wez. Asr — 0, (X,ux) — (Z,uz) in the
Gromov-Hausdorff sense, see text for details.

1. (Finite Stability) ¢;,, ((X,ux), (X', ux/)) < d%,(X,Z) +dz(X’,Z).

2. (Approximation bound) Assume in addition that=2{_|aeAZ(“) where A is a finite index set
and Z% are compact, disjoint and path-connected sets.(Retly) be the finite metric space
with underlying set A arising froriz(®)}qea. LetT*(A,da) = (A,Ua). Then, if & (X,Z) <
sefdA,da)/2,

dg}[((x, UX), (A7 UA)) < dﬁ[(X,Z)

3. (Convergence) Under the hypotheses of (2){¥@tncn be a sequence of finite subsets of Z
s.t. d]Z{(Xn,Z) — 0 as n— o, and &, be the metric on Xgiven by the restriction of dto
Xn X Xn. Then, one has that

dgar (T (%, dx,), (A,ua)) — 0as n— oo

Remark 29 (Interpretation of the statement) Assertion (1) guarantees that if X’ are both dense
samples of Z, then the result of applyi®{ to both sets are very close in the Gromov-Hausdorff

sense.
Assertions (2) and (3) identify the limiting behavior of the construcB80X,,dx,) as X, be-

comes denser and denser in X, see Figure 20.
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5.3 A Probabilistic Convergence Result

In this section, we prove a precise result which describes how the aignadgns attached to compact
metric spaces by single linkage clustering can be obtained as the limits of thegeamds attached
to finite subsets of the metric space. The result is by necessity probabilistturen This kind of
result is of great importance, since we are often interested in infinite me&@sout typically do
not have access to more than finitely many random samples from the metrc spac

Theorem 30 and Corollary 32 below proves that for random i.i.d. obensX, = {X1,...,Xn}
with probability distributionp compactly supported in a metric spage,d), the result(X,, ux, )
of applying single linkage clustering {&n,d) converges almost surely in the Gromov-Hausdorff
sense to an ultrametric space that recovers the multiscale structuresefpibertof |, see Figure
20. This is a refinement of a previous observation of Hartigan (1985ShidC is insensitive to
the distribution of mass qf in its support.

The proof of this theorem relies on Theorem 34, a probabilistic coveramy&m of independent
interest. In order to state and prove our theorems we make use of the fonnhisetric measure
spaces

A triple (X,dx,Hx), where(X,dx) is a metric space angk is a Borel probability measure on
X with compact support will be called anm-space(short for measure metric space). The support
supppx] of a measurgix on X is the minimal closed sek (w.r.t. inclusion) s.t.px (X\A) = 0.
Measure metric spaces are considered in the work of Gromov and doé insdifferent contexts,
see (Gromov, 2007, Chapte%}% For a mm-spacX let fx : R — R™ be defined by

— [ B .
r xeSrl]}brE[X] Hx (Bx (%,1))

Note also that by constructiofk(-) in non-decreasing anék(r) > O for allr > 0. Let alsoF :

NxR* —R* be defined byn, 5) — %6%”. Note that for fixedo > 0, (1) Fx(+,do) is decreasing

in its argument, and (2), . Fx(n, o) < 0.

Theorem 30 Let (Z,dz, |iz) be a mm-space and write sufpp] = [ J,aU @ for a finite index set
A andU = {U®}.a a collection of disjoint, compact, path-connected subsets of Z(A.dh) be
the metric space arising frotd and letd := seA,da)/2.

For each ne N, let Z, = {z1,2,...,2,} be a collection of n independent random variables
(defined on some probability spa€ewith values in Z) with distribution 24 and let @,, be the
restriction of ¢ to Zn x Zn. Then, for( > 0 and ne N,

P, <dgﬂ(z* (Zn,0z,), T* (A, d)) > z) < B (n,min(,56/2)).

Corollary 31 Under the hypotheses of Theorem 30, for any pre-specified probaéilélpe (0,1)
and tolerance, > 0, if
In 135 —In x(3/4)

fx(5/4) 7

n=

thenPy, (dgﬂ(z*(Zn,dZn)’z*(A, da)) < Z) > p, whered := min({,0a/2).
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Corollary 32 Under the hypotheses of Theorem 3,(Zn,dz,) — $*(A,da) in the Gromov-
Hausdorff sensez4almost surely.

Proof [Proof of Corollary 32] The proof follows immediately from the expressionFx and the
Borel-Cantelli Lemma. |

Remark 33 Note that the convergence theorem above implies that in the (s, dx,) only
retains information about the support of the probability measure but hotiathe way the mass is
distributed inside the support, compare to Hartigan (1985).

Example 13 ¢ < RY) Letp:RY — R+ be a density function with compact, support Z and p be its
associated probability measure. TheRY, |- |, ) satisfies the assumptions in the theorem. If one
makes additional smoothness assumptiong,on this particular case one can relate fh,{) to
geometrical properties of the boundary of siipp

Example 14 ¢ is a Riemannian manifold) In more generality, Z could be a Riemannian manifold
and p a probability measure absolutely continuous w.r.t. to the Riemanniamasaaure on Z.

6. Discussion

We have obtained novel characterization, stability and convergenaethedor SL HC. Our theo-
rems contemplate both the deterministic and the stochastic case. Our chaatotetirrorem can
be interpreted as a relaxation of Kleinberg’s impossibility result for stahdistering methods
in that by allowing the output of clustering methods to be hierarchical, onénshgaistence and
uniqueness.

Our stability results seem to be novel and complement classical observitatrGL and AL
are discontinuous as maps from finite metric spaces into dendrograms.

Our convergence results also seem to be novel and they refine aysrebigervation by Hartigan
about the information retained about an underlying density by SL clustefiag i.i.d. collection
of samples from that density. Our setting for the stochastic convergesals is quite general in
that we do not assume the underlying space to be a smooth manifold and vet assome the
underlying probability measure to have a density with respect to any neferaeasure.

We understand that SL HC is not sensitive to variations in the density (seeafigan, 1981).
In our future work we will be looking at ways of further relaxing the nofi@f clustering that can
cope with the problem of detecting “dense” clusters, in the same spirit aaW/({d969); Stuetzle
(2003). A follow up paper (Carlsson andévholi, 2009) presents a systematic treatment of this with
a more general framework.

Some recent works have also addressed the characterization ofinystdremes in the hierar-
chical case. The authors of the present paper reported a chenatiberfor proximity dendrograms
(Carlsson and Emoli, 2008) using the language of category theory. Zadeh and Beia-[Z809)
gave a characterization for threshold dendrogramre classical is the work of Jardine and Sibson
(1971) who also ultimately view HC methods as maps form finite metric spaces taiinétmetric
spaces.

7. Recall that the difference between these two types of dendrogrdtret jsroximity dendrograms retain the linkage
value at which mergings take place whereas threshold dendrogrdynzoord the order, see Remark 3.
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It is interesting to consider the situation when one requires the @riapur characterization
theorem (Theorem 18) to be 1 to 1 on points. In this case, a much widerdfldssrarchical
schmemes becomes possible including for example a certain versidigoé clustering The
restriction on the nature @ would be called restriction dunctoriality by a mathematician. The
classification question of clustering methods that arises becomes mathematteadigting and we
are currently exploring it (Carlsson andéiholi, Stanford, 2009; Carlsson anceioli, 2008).

Acknowledgments

We would like to acknowledge support for this project from DARPA gtdR0011-05-1-0007 and
ONR grant N0O0014-09-1-0783.

Appendix A. Notation

Symbol

R
Rd

DRRRRG Z
axea™

aRs

gSL eCL eAL
eSL eAL eCL
T
%
Us
gu
()
An

Meaning

Real numbers.

d-dimensional Euclidean space.

Natural numbers.

A square symmetric matrix with elemergig which are usually distances.
Metric spaceX with metricd, page 1429.

Ultrametric spac& with ultrametricu, page 1429.

Collection of all finite (respn point) metric spaces, page 1429.

Collection of all finite (respn point) ultrametric spaces, page 1429.
Collection of all non-empty subsets of the ¥etpage 1429.

Collection of all ultrametrics over the finite 9§t page 1429.

Collection of all partitions of the finite set, page 1429.

A partition of a finite set and blocks of that partition, respectively, pag914
An equivalence relation, the equivalence class of a point and the qusgiace,
page 1429.

An equivalence relation with a parametee 0, page 1429.

Sphere of radius and dimensiotk — 1 embedded iiR¥, page 1429.

Maximal metric< W, page 1429.

A dendrogram over the finite st 1431.

Collection of all dendrograms over the finite 3gtpage 1431.

Dendrogram over the finite s@tarising from~,, 1433.

Linkage functions, page 1434.

Dendrograms arising from linkage functions, 1434.

A hierarchical clustering method seen as a iapX — U, page 1442.

A HC method arising from the maximal sub-dominant ultrametric, page 1442.
An ultrametric obtained from the dendrogr&ypage 1440.

A dendrogram obtained from the ultrametucpage 1441.

A bijective map betweeD(X) and U(X), page 1439.

Metric space isometric to ampoint unit simplex, page 1447.
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Metric space isometric to points on a line, page 1447.

Hausdorff distance between subsets of the metric spapage 1455.
Standard linkage based HC methods seen as mapsiramt!/, page 1442.
Distortion of a mapf and joint distortion of a pair of mapsandg, page 1445.
Gromov-Hausdorff distance between metric spaces, pages 1445, 1456
Separation of the metric spaie page 1429.

Diameter of the metric spacé page 1429.

All the n! permutations of elements of the 4ét ..., n}.

A function used to measure metric distortion, page 1456.

An mm-space(X,d) a compact metric spacga Borel probability measure,
page 14509.

Support of the probability measupepage 1459.

Probability with respect to the law

Appendix B. Proofs

Proof [Proof of Proposition 8] The claim follows from the following claim, which weope by

induction oni:

Claim: For alli > 2,x,x' € X are s.t. there exist8 € ©; with x,X' € Bifand only ifx ~gr_, X.
Proof [Proof of the Claim] Foii = 2 the claim is clearly true. Fik> 2.

Assume thai, X' € X and B € ©;, 1 are such thak,x' € B. If x,X' belong to the same block
of ©; there is nothing to prove. So, assume that4 andx € 4’ with 4 # 2’ and 4, 4’ € ©,.
Then, it must be that there exist blocks= 41, 4, ..., 4s = 4’ of ©; s.t. /5-( &, 4 ,1) <R for

t=1,...,5— 1. PickXy,y1 € A1, X2,¥2 € Ao, ..

.y Xs,Ys € As S.t.x1 = xandys = X' andd(yt, % +1) =

S (4, A1) <R fort=1,...,s—1, see the Figure 21.

Y1z,

T

Z3
Y3 1’s1ys1

Figure 21: Construction used in the proof of Proposition 8.

Notice that by the inductive hypothesis we hawe g_, y: fort =1,... s. It follows thatx ~ X’
forr = maxR,R_1). By Proposition 5r = R and hencex ~g X.

Assume now thax ~gr X. If x,X' belong to the same block &; there’s nothing to prove since
O, is coarser thai®; and hence, X will also belong to the same block &, ;. Assume then
thatx e B andx € B’ for B, B’ € ©; with B # B'. Letx = Xg,%p,...,%X = X be points inX with
d(%,%+1) <R fort=1,...,s—1. Also, fort =1,...,s— 1 let B be the block 0f®; to whichx;
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belongs. But then, by construction

R >d(X,%;1) = min d(zZ)=/%%,B,) fort=1,....s—1,

zeB,7€B11

and henceB; ~s. g Bs. In particular,B; U Bs < A4 for someA € ©;;; and thusx, X' belong to the
same block ir®;, 1. |

Proof [Proof of Lemma 10] Obviouslyyg is non-negative. Pick,x',x” € X and letr;,r, > 0 be
s.t. x,X' belong to the same block &r;) andx’,x” belong to the same block ®r;). These
numbers clearly exist by condition (2) in the definition of dendrogramsnTtieere exist a block
B of 6(max(ri,r2)) s.t. x,x" € B and hencelg(x,x") < maxri,rz). The conclusion follows since
ri = ug(x,X') andry > ug(X',x") are arbitrary.

Now, letx, X’ € X be such thatig(x,X’) = 0. Thenx,x are in the same block &(0). Condition
(1) in the definition of dendrograms implies that X'. |

Proof [Proof of Lemma 12] Pickk, X' € X and letr := ug«(x,X'). Then, according to (3), there
existxg, X1, ..., % € X with X = x, % = X and maxd(x,%+1) < r. From (4) we conclude that then
u*(x,X') <r as well. Assume now that*(x,x') <r and letxg, x1,...,% € X be s.t.xg = X, % = X
and maxd(x;,X+1) <r. Thenxx ~ X and hence again by recalling (8 (x,X') <r. This finishes
the proof. |

Proof [Proof of Theorem 18] PickX,d) € X. Write T(X,d) = (X,u) and¥*(X,d) = (X,u*).
(A) We prove that*(x,x') = u(x,x’) for all x,x' € X. Pickx,x' € X and letd := u*(x,X). Let
X=Xo,...,%Xn = X be s.t.

miaxd(xi,xi+1) =u*(x,X) =d.

Consider the two point metric spa¢g, e) := ({p,q},(23)). Fixie {0,...,n—1}. Consider
¢@: {p,q} — X given by p— x andg— x+1. By condition (I) we havet(Zs) = Zs. Note that
o0=-¢e(p,q) =d(e(p),pq)) = d(x,%+1) and hence by condition (l1),

o = U(Xi,XH.]_)-

Then, since was arbitrary, we obtaid > max u(x;, Xi+1). Now, sinceu is an ultrametric orX,
we know that mapu(x;, Ui+1) = u(x,X') and henc® > u(x,x’).
(B) We prove that* (x,x') < u(x,X) for all x,x' € X. Fixr > 0. Let(X,d,) be the metric space with
underlying se; given by the equivalence classesofinder the relatiox ~; X'. Letq : X — X
be given byx — [x]; where[X], denotes the equivalence clasxafnder~,. Letd, : X x X — Rt
be given by

d(zZ)= min  dxXx)
xe @ (2)
X eq(Z)
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and letd, = £(d;). Note that, by our constructio, is such that for alk, X' € X,

d(x,x) = dr (@ (%), & (X))-

Indeed, assume the contrary. Then for soqmeée X one has thatl(x,x') < d (@ (x),(X)). But,
from the definition of d, it follows that d(x,X) < d (¢ (X), @ (X)) < dr (@ (X),@ (X))
min{d(X,X), s.t. X ~; ;X' ~; X'}. This is a contradiction since~, x andx' ~ x..

Write T(X;,d;) = (Xr,ur). Then, by condition (l11),

u(x x) = Ur (@ (x), @ (X)) (14)

for all x,x' € X. Note that
sefX,d;) >r. (15)

Indeed, for otherwise, there would be two poimtx’ € X with [x]; # [X]; andr > d(x,xX) >
u*(x,x’). But this gives a contradiction by Remark 13.

Claim: u*(x,X') > r implies thatu (@ (X), @ (X)) >r.

Assuming the claim, let,x’ € X be s.t.u*(x,X') > r, then by Equation (14),

U(X,X’) 2 Ur ((Pr (X)a(Pr(X,)) >r
That is, we have obtained that for any- 0,
{(%,X)s.tu*(x,X) >r} = {(x,X)s.tu(x,x') >r},

which implies thau™* (x,X') < u(x,x) for all x,x" € X.
Proof of the claim.Let x,X' € X be s.t.u*(x,X') > r. Then,[x]; # [X];. By definition of ¢, also,
@ (X) # @ (X) and hence, by condition (lll) and Equation (15):

Ur (@ (X), @ (X)) = sefX;,dy) >r.
|

Proof [Proof of Proposition 26] WriteT*(X,dx) = (X,ux) and £*(Y,dy) = (Y,uy). Letn =
dgar (X, dx),(Y,dv)) andRe R(X,Y) s.t. [dx(x,X) —dy(y,y)| < 2n for all (x,y),(X,y) € R
Fix (x,y) and(X,y) € R. Letxg,...,Xxm€e X be s.t.xg = X, xm = X anddx (x;, % +1) < ux (x,X) for all
i=0,...,m—1. Lety=VYo,y1,.--,Ym-1,Ym =Y €Y be s.t.(x,yi) e Rforalli = 0,...,m(this is pos-
sible by definition oRR). Then,dy (yi,Yi+1) < dx(X,X+1) +N <ux(x,X)+nforalli=0,... m—1
and hencew (y,y') < ux(x,X) 4+ 2n. By exchanging the roles o andY one obtains the inequality
ux (X, X) < uy(y,Y) + 2n. This meansux (x,X') —uy(y,y')| < 2n. Since(x,y), (X,y’) € Rare arbi-
trary, and upon recalling the expression of the Gromov-Hausdorffraistgiven by (12) we obtain
the desired conclusion. |

Proof [Proof of Theorem 28] By Proposition 26 and the triangle inequality foGh@mov-Hausdorff
distance,
dg s (X, Z) +dgar (X', Z) = dgar (X, ux)), (X, uxr))).

Now, (1) follows from Remark 25.
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We now prove the second claim. L&t- 0 be s.t. mig_.gWa(a,) > 8. For eaclze Z leta(2)
denote the index of the path connected compone#tf. ze Z(@®). Sincer :=dZ,.(X,Z) < 3, it

is clear that #Z(%) ~ X) > 1 for alla € A. It follows thatR = {(x,a(x))|x€ X} belongs taR (X, A).
We prove below that for ait, X’ € X,

ua(a(x),a(x)) 2 ux (x,X) (2 ua(a(x),a(x)) + 2r.

By putting (1) and (11) together we will havdg}[((x,ux), (Ajup)) <T.
Let’s prove (1). It follows immediately from the definition oy andWj that for ally,y’ € X,

Wa(a(y),a(y)) < dx(yy).

From the definition ofla it also follows thatWa(a,a’) > da(a,a’) for all a,a’ € A. Then, in
order to prove (I) pickko, . . . , Xm in X with Xg = X, Xm = X’ and maxdyx (X, X+1) < ux(x,X'). Consider
the points inA given by

a(x) = a(Xo),a(X1),-..,a(Xm) = a(x).

Then,
da(o(Xi),a(Xi+1)) < Wa(a(xi),a(Xi+1)) < dx (X, Xi+1) < ux(%,X)

fori =0,...,m—1 by the observations above. Then, néo(x),a(xi+1)) < dx(x,X) and by
recalling the definition ofia(a(x),a(X')) we obtain (1).
We now prove (I1). Assume first that(x) = a(x) = a. Fix gy > 0 small. Lety: [0,1] — Z(®) be
a continuous path sy(0) = xandy(1) =X Letz,...,zy be points on imag®) s.t. zp = X, Zn =X
anddx(z,z+1) < €, i =0,...,m— 1. By hypothesis, one can find= X, X1, ..., Xm_1,Xm = X S.t.
dz(Xi,z) <r. Thus,
miaxdx(xi Xip1) < €+ 2r

and henceix (x,X') < €9+ 2r. Letgg — 0 to obtain the desired result.
Now if o =a(x) # a(X') =B, letog,ay,...,0 € Abe s.t.ag=a(x), aj =a(X) andda(aj,aj1) <
ua(a,pB) for j=0,...,1 — 1.
By definition ofda, for eachj =0,...,1 — 1 one can find &hain
Cj= {0(1(0),...,0(](”)} s.t.afo) = aj, ag”) =aj;1
and
ri—1 L
> Wa (oo ™) = da(a,aj41) < ua(a,B).
i=0

SinceW, takes non-negative values, then, for fixed {0, ...,| — 1}, it follows that

Wa(a” o) < ua(a,p) foralli=0,....r;—1.
Consider the chai€ = {0y, ...,0s} in A joining a to B given by the concatenation of all the
C;j. By eliminating repeated consecutive element,iif necessary, one can assume tiag 0 1.
By constructionWa (i, 8i;1) < ua(a,B) forie {0,...,s—1}, anddp = a, ds = B. We will now
lift C into a chain inZ joining x to X'. Note that by compactness, for allue A, v # p there exist
2,2V andz e ZW st Wa(v, 1) = dz(2) . 2 ).
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Consider the chaif®s in Z given by
G- {x Lo L A x}.

? T0o,81° To,017 " " Ths—1,08”

For each poing € G c Z pick a pointx(g) € X s.t.dz(g,x(g)) < r. Note that this is possible by
definition ofr and also, thax(g) € Z(*(9) sincer < /2.
LetG' = {xo,X1,...,%} be the resulting path iK. Notice that ifa(xx) # o (x;1) then

Ax (X, Xie+1) < 2 +Wa(a (%), @ (%+1)) (16)
by the triangle inequality. Also, by construction, foe {O,...,t — 1},
WA((X (Xk)v G(Xk+1)> < UA(av B) (17)

Now, we claim that
U (%, X) < MAWA (0 (), &1 (K1) + 2. (18)

This claim will follow from (16) and the simple observation that

U (% X') < maxux (X Y1) < maxdx (X Xe-1)

which in turn follows from the fact thatk is the ultrametric orX defined by (4), see remarks in
Example 7. Ifa(xk) = a(xk+1) we already proved thaitx (X, X+1) < 2r. If on the other hand
a(x«) # o(x+1) then (18) holds. Hence, we have that without restriction, foxalle X,

ux (%, X) < mlflx\NA(a(xk),a(ka)) +2r.

and hence the claim. Combine this fact with (17) to conclude the proof ofJlym (3) follows
immediately from (2).
[ |

B.1 The Proof of Theorem 30

We will make use of the following general covering theorem in the proofredrem 30.

Theorem 34 Let (X, d, ) be an mm-space and, = {x1,X2,...,X,} a collection of n independent
random variables (defined on some probability sp&eand with values in X) and identically
distributed with distribution y. Then, for a’dy> 0,

P (o (Xn, supplix]) > 3) < Fx(n,d).
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Proof Consider first a fixed pointe suppux] andh > 0. Then, sincey, ..., x, are i.i.d., for alli,
Pu(Xi € Bx(x,h)) = u(Bx(x,h)). We then have:

Pu ({Xe/é Ln_JBx(xi,h)}) = Py (ﬁ {x¢ Bx(xi,h)}>
i=1 i=1

- P( {Xu¢Bx(Xh)}>

1

ﬁPu({xi ¢ Bx(x,h)}) (by independence)

i=1

= (1—px(Bx(x,h)))"
< (1-fx()" 49

We now obtain a similar bound for the probability that a ball of radit®&aroundx is within &
of a point inX,. Notice that the following inclusion of events holds:

{Bx X,0/2) LnJ }Q{XGOBX(xi,é/Z)}. (20)

i=1

Indeed, assume that the evente | J ,Bx(x;,8/2)} holds. Thenx e Bx(x;,8/2) for somei e
{1,...,n}. Pickanyx € Bx(x,0/2), then by the triangle inequalitgiy (X', x;) < dx (X', X) +dx (X, %) <
0/2+9/2 =, thusX € Bx(x,d). Sincex' is an arbitrary point irBx(x,8/2) we are done. Now,
from (20) and (19) (foh = &/2) above, we find

Py ({Bx<x,6/2> ¢ Ume,a)}) < (1—fx(3/2))" (21)

i=1

Now, consider a maximad/4-packing of supfux| by balls with centergp,...,pn}. Then,
clearly, supppx] = U’j\':l Bx(pj,d/2). Such a packing always exists since s{id is assumed to
be compact (Burago et al., 2001). Notice thathe cardinality of the packing, can be bounded by
1/fx(8/4). Indeed, sinc®x (pa,d/4) N Bx(pg,8/4) = & for a # B, we have

1= px(supplpx]) = ( p175/2)

( pJ76/4>

= ZUX(BX(pj76/4))

j=1
> N-fx(3/4)

\Y

0 Cz 0 Cz
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and the claim follows. Now, we finish the proof by first noting that siige= supp{jix], the
following inclusion of events holds:

{d3 (Xn, supplbx]) > 8} = {X ¢ BX(Xivé)}
i=1

and hence, using the union bound, then (21) and the bouhd e find:

Py (d% (Xn,supplpx]) >8) < Py <x ¢ U Bx(xi,t')))

i=1

- <CJ{BX p;,5/2) $UBX X8 })

i=1

< N- max Pu<Bx(pJ,6/2 $UBX X, >
i=1,., i—
< I 1K)
S 1x(3/4) X
1
< ————(1— fx(8/4))" (sincefx(-) is non-decreasin
< —— e "4 (pythe inequalitfl—t) <et, VteR
5 (5/4) (by quality(1—t) )
= Fx(n,é)
thus concluding the proof. |

Proof [Proof of Theorem 30] For eacte N, introduce the random variablggs.= d§{ (Zn, supp[uz])
andgn := dgg/ (T*(Zn,dz,), T*(A,da)). Fix {’ = 3a/2. Note that by Theorem 28 (2) oneg < ¢
for somel < {’ we know thaig, < r a.s. Hence, we have

P(gh > ) <P(rn > ) < F(n,J), (22)

where the last inequality follows from Lemma 34.
Meanwhile, if{ > ¢’ is arbitrary, therP(g, > {) < P(g, > {’). By (22) (for{ = ') we find
P(gh> Q) <P(rh>) <Fx(n,{)forall{ > . Thus, we have found that

F(n,¢') forl>T.
P(9">Z)<{ F(ng) for{ <.

The conclusion now follows. [ |
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