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Abstract
We study hierarchical clustering schemes under an axiomatic view. We show that within this frame-
work, one can prove a theorem analogous to one of Kleinberg (2002), in which one obtains an
existence and uniqueness theorem instead of a non-existence result. We explore further properties
of this unique scheme: stability and convergence are established. We represent dendrograms as
ultrametric spaces and use tools from metric geometry, namely the Gromov-Hausdorff distance, to
quantify the degree to which perturbations in the input metric space affect the result of hierarchical
methods.
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1. Introduction

Clustering techniques play a very central role in various parts of data analysis. They can give
important clues to the structure of data sets, and therefore suggest results and hypotheses in the
underlying science. Many of the interesting methods of clustering available have been applied to
good effect in dealing with various data sets of interest. However, despitebeing one of the most
commonly used tools for unsupervised exploratory data analysis, and despite its extensive literature,
very little is known about the theoretical foundations of clustering methods. These points have been
recently made prominent by von Luxburg and Ben-David (2005); Ben-David et al. (2006).

The general question of which methods are “best”, or most appropriate for a particular problem,
or how significant a particular clustering is has not been addressed too frequently. This lack of
theoretical guarantees can be attributed to the fact that many methods involveparticular choices to
be made at the outset, for example how many clusters there should be, or the value of a particular
thresholding parameter. In addition, some methods depend on artifacts in the data, such as the
particular order in which the observations are listed.

In Kleinberg (2002), Kleinberg proves a very interesting impossibility result for the problem of
even defining a clustering scheme with some rather mild invariance properties.He also points out
that his results shed light on the trade-offs one has to make in choosing clustering algorithms.

Standard clustering methodstake as input a finite metric spacepX,dq and output a partition
of X. Let P pXq denote the set of all possible partitions of the setX. Kleinberg (2002) discussed
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this situation in an axiomatic way and identified a set of reasonable properties of standard clustering
schemes, namely, scale invariance, richness and consistency. Fix a standard clustering methodf
and a metric spacepX,dq and let f pX,dq � Π P P pXq. Kleinberg identified the following desirable
properties of a clustering scheme:

• Scale Invariance: For all α¡ 0, f pX,α �dq �Π.

• Richness: Fix any finite setX. Then for allΠ P P pXq, there exists dΠ, a metric onX s.t.
f pX,dΠq �Π.

• Consistency: Let Π� tB1, . . . ,Bℓu. Let pd be any metric onX s.t.

1. for all x,x1 P Bα, pdpx,x1q ¤ dpx,x1q and

2. for all x P Bα, x1 P Bα1 , α� α1, pdpx,x1q ¥ dpx,x1q.

Then, f pX, pdq �Π.

He then proved, in the same spirit of Arrow’s impossibility theorem, that no clustering scheme
satisfying these conditions simultaneously can exist.

Theorem 1 (Kleinberg, 2002)There exists no clustering algorithm that satisfies scale invariance,
richness and consistency.

Then, in particular, Kleinberg’s axioms rule out single, average and complete linkage (standard)
clustering. Clusters in any of these three methods can be obtained by first constructing a hierachi-
cal decomposition of space (such as those provided by hierarchical clustering methods) and then
selecting the partition that arises at a given, fixed, threshold.

A natural question is whether Kleinberg’s impossibility results still holds when one admits clus-
tering schemes that do not try to return a fixed partition of a space, but areallowed to return a
hierarchical decomposition.

Furthermore, data sets can exhibit multiscale structure and this can render standard clustering
algorithms inapplicable in certain situations, see Figure 1. This further motivates the use ofHier-
archical clustering methods. Hierarchical methods take as input a finite metric spacepX,dq and
output a hierarchical family of partitions ofX.

Figure 1: Data set with multiscale structure. Any standard clustering algorithmwill fail to capture
the structure of the data.

These hierarchical families of partitions that constitute the output of hierarchical methods re-
ceive the name ofdendrograms. Dendrograms come in two versions:proximity and threshold
dendrograms. These two types of dendrograms differ in whether they retain some proximity infor-
mation about the underlying clusters that they represent or not: proximity dendrograms do retain
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such information whereas threshold dendrograms do not. Practicioners of statistical data analysis
seem to work almost exclusively with proximity dendrograms. For this reasonwe opt to carry out
our analysis under the model that hierarchical methods take as input a finitemetric spaceX and
output a proximity dendrogram overX, see Remark 3.

We remind the reader that we are using the term standard clustering methods torefer to proce-
dures that take a finite metric space as input and output a fixed single partitionof the metric space.

In a similar spirit to Kleinberg’s theorem, we prove in Theorem 18 that in the context of hierar-
chical methods, one obtainsuniquenessinstead of non-existence. We emphasize that our result can
be interpreted as arelaxationof the theorem proved by Kleinberg, in the sense that allowing cluster-
ing schemes that output a nested family of partitions in the form of a proximity dendrogram, instead
of a fixed partition, removes the obstruction to existence. The unique HC method characterized by
our theorem turns out to be single linkage hierarchical clustering.

We stress the fact that our result assumes that outputs of hierarchical methods are proximity
dendrograms, whereas Kleinberg’s Theorem applies to flat/standard clustering, a situation in which
the output contains no proximity information between clusters.

In order to state and prove our results we make use of the well knownequivalent representation
of dendrograms, the output of HC methods, usingultrametrics. This already appears in the book of
Hartigan and others, see Hartigan (1985), Jain and Dubes (1988, §3.2.3) and references therein.

In recent years, the theme of studying the properties of metrics with prescribed generalized
curvature properties has been studied intensively. In particular, the work of Gromov (1987) has
been seminal, and many interesting results have been proved concerning objects other than metric
spaces, such as finitely generated groups, depending on these methods. The curvature conditions
can be formulated in terms of properties of triangles within the metric spaces, and the most extreme
of these properties is that embodied in ultrametric spaces. A second idea of Gromov’s is to make the
collection of all metric spaces into its own metric space, and the resulting metric gives a very useful
and natural way to distinguish between metric spaces (Gromov, 2007). Thismetric is known as the
Gromov-Hausdorff distance and its restriction to the subclass of ultrametric spaces is therefore a
very natural object to study.

1.1 Stability

Stability of some kind is clearly a desirable property of clustering methods and, therefore, a point
of interest is studying whether results obtained by a given clustering algorithm arestableto per-
turbations in the input data. Since input data are modelled as finite metric spaces, and the output
of hierarchical methods can be regarded as finite ultrametric spaces, the Gromov-Hausdorff dis-
tance provides a natural tool for studyingvariability or perturbationof the inputs and outputs of
hierarchical clustering methods.

After observing in §3.6 that average and complete linkage clustering are not stable in the metric
sense alluded to above, we prove in Proposition 26 that single linkage doesenjoy a kind of stability:

Proposition 2 Let pX,dXq andpY,dYq be two finite metric spaces and letpX,uXq andpY,uXq be the
two (finite metric ultrametric spaces) corresponding outputs yielded by single linkage HC. Then,

dGH
�
pX,uXq,pY,uYq

�
¤ dGH

�
pX,dXq,pY,dYq

�
.

Here, dGH stands for the Gromov-Hausdorff distance.
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Figure 2: Convergence of dendrograms. We formalize this concept by equivalently representing
dendrogram as ultrametrics and then computing the Gromov-Hausdorff distance between
the resulting metrics. We prove in Theorem 30 that by taking increasingly manyi.i.d.
samples from a given probability distributionµ on a metric space,then with probability 1
one recovers a multiscale representation of the supprt ofµ.

This result is very important for the convergence theorems which we prove in the later parts of
the paper. These results describe in a very precise way the fact that for compact metric spacesX,
the results of clustering the finite subsets ofX yields a collection of dendrograms which ultimately
converge to the dendrogram forX. In order for this to happen, one needs the metric on the ultramet-
ric spaces as well as the behavior of the clustering construction on the Gromov-Hausdorff distance,
which is what Proposition 2 does. The issue of stability is further explored in§5.

1.2 Probabilistic Convergence

Finally, in Theorem 30 we also prove that for random i.i.d. observationsXn � tx1, . . . ,xnu with
probability distributionµ compactly supported in a metric spacepX,dq, the resultpXn,uXnq of ap-
plying single linkage clustering topXn,dq converges almost surelyin the Gromov-Hausdorff sense
to an ultrametric space that recovers the multiscale structure of thesupportof µ, see Figure 20.
This can be interpreted as a refinement of a previous observation (Hartigan, 1985) that SLHC is
insensitive to the distribution of mass ofµ in its support.

1.3 Organization of the Paper

This paper is organized as follows: §A provides a list of all the notation defined and used throughout
the paper; §2 introduces the terminology and basic concepts that we use in our paper; §3.2 reviews
hierarchical clustering methods in general; §3.3 discusses the representation of dendrograms as ul-
trametric spaces and establishes the equivalence of both repersentations; and §3.5 delves into the
issue of constructing a notion of distance between dendrograms which is based in the equivalence
of dendrograms and ultrametrics; §3.6 comments on issues pertaining to the theoretical properties
of HC methods. In §4 we present our characterization result, Theorem 18, for SL in a spirit similar
to the axiomatic treatment of Kleinberg. We delve into the stability and convergence questions of
SL in §5, where we introduce all the necessary concepts from Metric Geometry. Proposition 26 and
Theorem 28 contain our results for the deterministic case. In §5.3 we provea probabilistic con-
vergence result Theorem 30 that hinges on a general sampling theoremfor measure metric spaces,
Theorem 34. Finally, we conclude the paper with a discussion on future directions.
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For clarity of exposition, we have chosen to move most of the proofs in this paper to an appendix.
The ones which remain in the main text are intended to provide intuition which wouldnot otherwise
be there.

2. Background and Notation

A metric spaceis a pairpX,dq whereX is a set andd : X�X Ñ R
� satisfies

1. For allx,x1 P X, dpx1,xq � dpx,x1q ¥ 0 anddpx,x1q � 0 if and only ifx� x1.

2. For allx,x1,x2 P X, dpx,x2q ¤ dpx,x1q�dpx1,x2q.

A metric spacepX,uq is anultrametric space if and only if for all x,x1,x2 P X,

maxpupx,x1q,upx1,x2qq ¥ upx,x2q. (1)

Ultrametric spaces are therefore metric spaces which satisfy a stronger type of triangle inequal-
ity. It is interesting to observe that this ultrametric triangle inequality (1) implies thatall triangles
areisosceles.1

Notice that by iterating the ultrametric property one obtains that ifx1,x2, . . . ,xk is any set ofk
points inX, then

max
�
upx1,x2q,upx2,x3q, . . . ,upxk�1,xkq

�
¥ upx1,xkq.

For a fixed finite setX, we letUpXq denote the collection of all ultrametrics onX. FornPN let
Xn (resp.Un) denote the collection of all metric spaces (resp. ultra-metric spaces) withn points. Let
X �

�
n¥1Xn denote the collection of all finite metric spaces andU �

�
n¥1Un all finite ultrametric

spaces. ForpX,dq P X let

seppX,dq :�min
x�x1

dpx,x1q and diampX,dq :�max
x,x1

dpx,x1q

be theseparationand thediameterof X, respectively.
We now recall the definition of anequivalence relation. Given a setA, a binary relation is a

subsetS� A�A. One says thata anda1 arerelatedand writesa� a1 wheneverpa,a1q P S. S is
called anequivalence relationif and only if for all a,b,c P A, all the following hold true:

• Reflexivity: a� a.

• Symmetry: ifa� b thenb� a.

• Transitivity: if a� b andb� c thena� c.

The equivalence classof a under�, denotedras, is defined as all thosea1 which are related to
a: ras � ta1 P A, s.t. a1 � au. Finally, thequotient space Az � is the collection of all equivalence
classes:Az �:� tras, a P Au.

We now construct our first example which will be crucial in our presentation.

Example 1 (r-equivalence) Given a finite metric spacepX,dq and r¥ 0 we say that points x,x1 PX
are r-equivalent (denoted x�r x1) if and only if there exists points x0,x1, . . . ,xt P X with x0 � x,
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Figure 3: Illustration of the equivalence relation�r . A finite metric spaceX is specified by the
points in orange which are endowed with the Euclidean distance. This construction can
be understood as allowing the creation of edges joining two points wheneverthe distance
between them does not exceedr. Then, two pointsx and x1 in black are deemedr-
equivalent if one can find a sequence of edges on the resulting graph connectingx to
x1. From left to right and top to bottom we show the resulting graph one obtains for 4
increasing values ofr. The pointsx andx1 are notr-equivalent whenr � r1, r2 or r3, but
they arer4-equivalent.

xt � x1 and dpxi ,xi�1q ¤ r for i � 0, . . . , t � 1. It is easy to see that�r is indeed an equivalence
relation on X.

This definition embodies the simple idea of partitioning a finite metric space into path connected
components, where the granularity of this partitioning is specified by the parameter r¥ 0, see Figure
1.

1. Indeed, assume that all sidesa,b,c of a triangle in a given ultrametric space are different. Then, without lossof
generalitya¡ b¡ c. But then,a¡ maxpa,bq which violates (1). Hence, there must be at least two equal sides in
every triangle in an ultrametric space.
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For a finite setX, and a symmetric functionW : X�X Ñ R
� let LpWq denote themaximal

metriconX less than of equal toW (Bridson and Haefliger, 1999), that is,

LpWqpx,x1q �min

#
m�1̧

i�0

Wpxi ,xi�1q
��x� x0, . . . ,xm� x

+
for x,x1 P X.

For a finite setX, we letC pXq denote the collection of all non-empty subsets ofX. By P pXq
we denote the set of all partitions ofX. For a given partitionΠ P P pXq we refer to eachB P Π as a
blockof Π. For partitionsΠ,Π1 P P pXq, we say thatΠ is coarserthanΠ1, or equivalently thatΠ1 is
a refinementof Π, if for every blockB 1 PΠ1 there exists a blockB PΠ s.t.B 1 � B.

For k P N andr ¡ 0 let Sk�1prq � R
k denote thepk�1q dimensional sphere with radiusr. By

ppaqq we will denote a matrix of elementsai j .

3. Hierarchical Clustering: Formulation

In this section we formaly define hierarchical clustering methods as maps thatassign a dendrogram
to a finite metric space. First, in §3.1 formalize the standard concept of dendrogram; then, in §3.2
we present a formal treatment of HC methods which emphasizes the need fora formulation that is
insensitive to arbitrary choices such as the labels given to the points in the data set. Finally, in §3.3
we prove that the collection of all dendrograms over a finite set is in a one to one correspondence
with the collection of all ultrametrics on this set. We then redefine HC methods as maps from
the collection of finite metric spaces to the collection all finite ultrametric spaces. This change
in perspective permits a natural formulation and study of thestability andconvergenceissues in
later sections of the paper. In particular, in §3.5, we discuss the construction of notions ofdistance
between dendrogramsby appealing to the ultrametric representation. These notions are instrumental
for the arguments in §5.

Finally, in §3.6, we disgress on some critiques to the classical HC methods. Thesituation with
HC methods is seemingly paradoxical in that SL is the one that seems to enjoys thebest theoretical
properties while CL and AL, despite exhibiting some undesirable behaviour,are the usual choices
of practicioners.

3.1 Dendrograms

A dendrogram over a finite setX is defined to be nested family of partitions, usually represented
graphically as a rooted tree. Dendrograms are meant to represent a hierarchical decompositions
of the underlying setX, such as those that are produced by hierarchical clustering algorithms,and
therefore the nested family of partitions provided must satisfy certain conditions. We formally
describe dendrograms as pairspX,θq, whereX is a finite set andθ : r0,8qÑ P pXq. The parameter
of θ usually represents a certain notion ofscaleand it is reflected in the height of the different levels,
see Figure 3.1. We require thatθ satisfies:

1. θp0q � ttx1u, . . . ,txnuu. This condition means that the initial decomposition of space is the
finest possible: the space itself.

2. There existst0 s.t. θptq is thesingle block partitionfor all t ¥ t0. This condition encondes the
fact that for large enought, the partition of the space becomes trivial.
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Figure 4: A graphical representation of a dendrogram over the setX � tx1,x2,x3,x4u. Let θ de-

note the dendrogram. Notice for example thatθpaq �
 
tx1u,tx2u,tx3u,tx4u

(
; θpbq � 

tx1,x2u,tx3u,tx4u
(
; θpcq �

 
tx1,x2u,tx3,x4u

(
; andθptq �

 
x1,x2,x3,x4

(
for anyt ¥ r3.

3. If r ¤ s thenθprq refinesθpsq. This condition ensures that the family of partitions provided
by the dendrogram is indeed nested.

4. For allr there existsε¡ 0 s.t.θprq � θptq for t P rr, r� εs. (technical condition)

Let DpXq denote the collection of all possible dendrograms over a given finite setX. When
understood from context, we will omit the first component of a dendrogram pX,θq PDpXq and refer
to θ as a dendrogram overX.

Remark 3 (About our definition of dendrogram) Our definition coincides with what Jain and
Dubes callproximity dendrograms in Jain and Dubes (1988,§3.2). We stress that we view the
parameter t in our definition as part of the information about the hierarchical clustering. Jain and
Dubes also discuss a simpler version of dendrograms, which they callthreshold dendrograms, which
retain merely the order in which succesive partitions are created. These of course can be viewed as
functions fromN into P pXq satisfying the constraints (1), (2) and (3) above, instead of having the
domainr0,8q.
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It seems that proximity dendrograms are the type of dendrograms thatare most often employed
by practicioners and statisticians, see for example the dendrograms provided by the statistical soft-
ware R2 and by Matlab’s statistics toolbox,3 whereas threshold dendrograms are more popular in
the Machine Learning and Computer Science communities.

Usually, Hierarchical Clustering methods are defined as those maps that to each finite metric
spacepX,dq assign a dendrogram overX.

Using the definitions above we now construct our first example.

Example 2 For each finite metric spacepX,dq let pX,θ�q P DpXq be given byθ�prq � Xz �r . In
other words, for each r¥ 0, θ�prq returns the partition of X into�r -equivalence classes. Recall
(Example 1) that two points x amd x1 are�r equivalent if and only if one can find a sequence of
points x0,x1, . . . ,xk s.t. the first of them is x and the last one is x1 and all the hops are smaller
than r: maxi dXpxi ,xi�1q ¤ r. We will see below that this definition coincides with single linkage
hierarchical clustering. See Figure 2 for an illustration of this concept.

x 1

x 2

x 3

x 5

x 4

x 6

x 7

x 8

x 9

x 10

x 11

Figure 5: For the same finite metric spaceX of Example 1 and the valuer � r2, Xz �r2� 
tx1,x2,x3,x4,x5,x6u,tx7,x8u,tx9u,tx10,x11u

(
, that is,�r2 splits X into four path con-

nected components.

2. Available athttp://www.r-project.org/.
3. Available athttp://www.mathworks.com/products/statistics/.

1433



CARLSSON AND M ÉMOLI

In order to build up intuition about our definitions, we prove thatpX,θ�q is indeed a dendro-
gram. Since X is a metric space, x�0 x1 if and only if x� x1. Thus condition (1) above is satisfied.
Clearly, for t¥ diampX,dq, x�t x1 for all x,x1, and thus condition (2) holds. Fix0¤ r ¤ s and
let B be a maximal connected component ofθ�prq and let x,x1 P B. Then, by definition ofθ�prq,
x�r x1. But it follows from the definition of�r that if x�r x1, then x�s x1 for all s¥ r. Hence, x,x1

are in the same block ofθ�psq and condition (3) holds. Condition (4) holds since clearlyθ� is right
continuous, has finitely many discontinuity points, and is piecewise constant.

We now need to discuss a formal description of agglomerative HC methods.

3.2 A General Description of Agglomerative Hierarchical Clustering Methods

In this section we give a description of agglomerative HC methods that is suitable for our theoretical
analyses. Standard algorithmic descriptions of HC methods typically make the assumption that in
the merging process there are only two points at minimal linkage value of eachother. For example,
the formulation of Lance and Williams (1967) does not specifically explain howto deal with the
case when more than two points are candidates for merging. In practice onecould argue that if at
a certain stage, say, three points are at minimal linkage value of eachother,then one could proceed
to merge them two at a time, according to some predefined rule that depends onthe indices of the
points.

Whereas thistie breakingstrategy seems reasonable from a computational point of view, it
invariably leads to dendrograms that depend on the ordering of the points.This is no doubt an
undesirable feature that can be translated into, for example, that the results of the clustering methods
depend on the order in which the data samples were obtained. Single linkage HCis exempted from
this problem however, because of the fact that at each stage onlyminimal distancesare taken into
account. In contrast, complete and average linkage will produce results that do not behave well
under reordering of the points.

The problems arising from ad hoc tie breaking are often not even mentionedin books on clus-
tering. A notable exception is the book Jain and Dubes (1988), especially Section §3.2.6, where the
reader can find a careful exposition of these issues.

Below, we formulate HC methods in a way that is independent of these extraneous features.
In order to do so , we need to have some kind ofinvariance in the formulation. More precisely,
let pX,dXq be the input metric space, where we assume thatX � t1, . . . ,nu consists of exactlyn
points. WritepX,θXq is the output dendrogram of a given HC method applied topX,dXq. Let π be
a permutation of the indicest1,2, . . . ,nu, andpY,dYq be the metric space with pointst1, . . . ,nu and
permuted metric:dYpi, jq :� dXpπi ,π jq for all i, j P t1, . . . ,nu; further, denote bypY,θYq the output
dendrogram of the same HC method applied onpY,dYq. Then, we require that for all permutations
π, the result of computing the dendrogram first and then permuting the resultis the sameas the
result of first permuting the input distance matrix and then computing the outputdendrogram:

π�θXptq � θYptq, for all t ¥ 0. (2)

Formally, the action of a permutationπ over a partition (such asθXptq) above must be understood
in the following sense: ifP� tB1, . . . ,Bru is a partition oft1,2, . . . ,nu, thenπ �P is the partition
with blockstπ�Bi , 1¤ i ¤ ru, where in turnπ�Bi consists of all those indicesπ j for j P Bi .
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We elaborate on this in the next example. We first recall the usual definition of CLHC, and then
construct a simple metric space consisting of five points where this usual formulation of CL fails to
exhibit invariance to permutations.

3.2.1 THE STANDARD FORMULATION OF COMPLETE L INKAGE HC

We assumepX,ppdqqq is a given finite metric space. In this example, we use the formulas for CL
but the structure of the iterative procedure in this example is common to all HC methods (Jain and
Dubes, 1988, Chapter 3). Letθ be the dendrogram to be constructed in this example.

1. SetX0 � X andD0 � ppdqq and setθp0q to be the partition ofX into singletons.

2. Search the matrixD0 for the smallest non-zero value, that is, findδ0 � seppX0q, and find
all pairs of points

 
pxi1,x j1q,pxi2,x j2q . . . ,pxik,x jkqu at distanceδ0 from eachother, that is,

dpxiα ,x jαq � δ0 for all α� 1,2, . . . ,k, where one orders the indices s.t.i1   i2   . . .  ik.

3. Merge the first pair of elementsin that list,pxi1,x j1q, into a single group. The procedure now
removespxi1,x j1q from the initial set of points and adds a pointc to represent the cluster
formed by both: defineX1�

�
X0ztxi1,x j1u

�
Ytcu. Define the dissimilarity matrixD1 onX1�

X1 byD1pa,bq�D0pa,bq for all a,b� candD1pa,cq�D1pc,aq�max
�
D0pxi1,aq,D0px j1,aq

�
(this step is the only one that depends on the choice corresponding to CL).Finally, set

θpδq � txi1,x j1uY
¤

i�i1, j1

txiu.

4. The construction of the dendrogramθ is completed by repeating the previous steps until all
points have been merged into a single cluster.

Example 3 (about the standard formulation of complete linkage)The crux of the problem lies
in step 3 of the procedure outlined above. The choice to merge just the first pair of points in the list
causes the procedure to not behave well under relabeling of the points inthe sense of (2).

An explicit example is the following: consider the metric space
�
t1,2,3,4,5u,ppdqq

�
with five

points and distance matrix

ppdqq �

������1 2 3 4 5

1 0 1 2 5 5
2 1 0 3 6 6
3 2 3 0 3 7
4 5 6 3 0 4
5 6 7 4 6 0.

�ÆÆÆÆ

This metric space arises from considering the graph metric on the graph depicted in Figure 6.

Under CLHC (as defined in§3.2.1), and under the action of all possible permutations of the labels
of its 5 points, this metric space produces 3 differentnon-equivalent dendrograms, see Figure 7.
This is an undesirable feature, as discussed at length in Jain and Dubes (1988, Chapter 3).

We now re-define general HC methods in a way that they satisfy (2).
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Figure 6: A finite metric space that under permutations leads to different outputs of the usual CL
HC algorithm, see text for details. The metric is defined by the graph distance on the
weighted graph shown.

3.2.2 THE PERMUTATION INVARIANT FORMULATION

Here we consider the family of Agglomerative Hierarchical clustering techniques (Jain and Dubes,
1988, Chapter 3). We define these by the recursive procedure described next. The main difference
with §3.2.1 lies that in Step 3 we will allow for more than just two points into the same cluster and
also, it could happen, for example, that four pointsA,B,C,D merge into two different clusterstA,Bu
andtC,Du at the same time.

Let the finite metric spacepX,dq be given whereX � tx1, . . . ,xnu and letL denote a family of
linkage functionsonX:

L :� tℓ : C pXq�C pXq Ñ R
�
u

with the property all thatℓ P L are bounded non-negative functions. These functions assign a non-
negative value to each pair of non-empty subsets ofX, and provide a certain measure ofdistance
between two clusters. LetB,B 1 P C pXq, then, some possible standard choices forℓ are:

• Single linkage: ℓSLpB,B 1q �minxPB minx1PB 1 dpx,x1q;

• Complete linkage: ℓCLpB,B 1q �maxxPB maxx1PB 1 dpx,x1q; and

• Average linkage: ℓAL pB,B 1q �

°
xPB

°
x1PB1 dpx,x1q

#B�#B 1 .

• Hausdorff linkage: ℓHLpB,B 1q � dH pB,B 1q.4

The permutation invariant formulation is as follows:

4. The Hausdorff distance is defined in Definition 21.
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1. Fix ℓ P L. For eachR¡ 0 consider the equivalence relation�ℓ,R on blocks of a partition
Π P P pXq, given byB �ℓ,RB

1 if and only if there is a sequence of blocksB �B1, . . . ,Bs�B 1

in Π with ℓpBk,Bk�1q ¤ R for k� 1, . . . ,s�1.

2. Consider the sequencesR1,R2, . . . P r0,8q andΘ1,Θ2, . . . P P pXq given byΘ1 :� tx1, . . . ,xnu,
and recursively fori ¥ 1 by Θi�1 �Θi{ �ℓ,Ri where

Ri :�mintℓpB,B 1
q; B,B 1

PΘi , B � B 1
u.

Note that this process necessarily ends in finitely many steps. This construction reflects the
fact that at stepi one agglomerates those clusters at distance¤Ri from eachother (as measured
by the linkage functionℓ). More than two clusters could be merged at any given step.

3. Finally, we defineθℓ : r0,8qÑ P pXq by r ÞÑ θℓprq :�Θiprq whereiprq :�maxti|Ri ¤ ru.

Remark 4 (About our definition of HC methods) Note that, unlike the usual definition of ag-
glomerative hierarchical clustering§3.2.1 (Jain and Dubes, 1988,§3.2), at each step of the in-
ductive definition we allow for more than two clusters to be merged. Of course, the standard for-
mulation can be recovered if one assumes that at each step i of the algorithm, there existonly two
blocksB andB 1 in Θi s.t. Ri � ℓpB,B 1q. Then, at each step, only two blocks will be merged.

Example 4 Note for example that for the five point metric space in Example 3, the result of applying
CL (according to the permutation invariant formulation) is the dendrogram inFigure 8 (a). It also

follows, for example, that when applied to the metric space L3 :�

�
ta,b,cu,

�
0 1 2
1 0 1
2 1 0

	

, which can

be represented by three points on a line:
a b c

1 1
, SL, AL and CL all yield the same

dendrogram, which is shown in Figure 8 (b).

5

1

2

3

4

1 3 7

c

b

a

1

(a)

(b)

Figure 8: (a) shows the result of applying the permutation invariant formulation of CL to the five
point metric space of Example 3 (see also Figure 6). (b) shows the dendrogram that one
obtains as output of (the permutation invariant formulation of) SL, AL and CLapplied to
the metric spaceL3.
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Proposition 5 We have the following properties of the construction above:

• For i � 1,2, . . ., Θi�1 is coarser thanΘi and

• Ri�1 ¥ Ri .

• θℓ is a dendrogram over X.

Proof The only non trivial claim is thatRi�1 ¥ Ri , which can be proved by induction oni.

Remark 6 From this point forward, all references to SL, AL, and CL clustering will beto the
permutation invariant formulation, in which more than two clusters can be merged at a given step.

The following result is clear, and we omit its proof.

Proposition 7 The above construction of hierarchical clustering algorithms (including SL, AL, and
CL) yields algorithms which are permutation invariant.

A simplification for SL HC.In the particular case of SL, there is an alternative formulation that uses
the equivalence relation introduced in Example 1 and its associated dendrogram (Example 2). The
proof of the following Proposition is deferred to the appendix.

Proposition 8 Let pX,dq be a finite metric space andθSL be the dendrogram over X obtained by
the single linkage agglomerative procedure described above, and letθ� be the dendrogram over X
constructed in Example 2. Then,θSLprq � θ�prq for all r ¥ 0.

3.3 Dendrograms as Ultrametric Spaces

The representation of dendrograms as ultrametrics is well known and it appears in the book by
Jardine and Sibson (1971), it has already been used in the work of Hartigan (1985), and is touched
upon in the classical reference of Jain and Dubes (1988, §3.2.3).

We now present the main ideas regarding this change in perspective whichwe will adopt for
all subsequent considerations. The formulation of the output of hierarchical clustering algorithms
as ultrametric spaces is powerful when one is proving stability results, as well as results about the
approximation of the dendrograms of metric spaces by their finite subspaces. This is so because
of the fact that once a dendrogram is regarded as a metric space, the Gromov-Hausdorff metric
provides a very natural notion of distance on the output, in which the right kind of stability results
are easily formulated. We state these theorems in §5.

The main result in this section is that dendrograms and ultrametrics areequivalent.

Theorem 9 Given a finite set X, there is a bijectionΨ :DpXqÑUpXq between the collectionDpXq
of all dendrograms over X and the collectionUpXq of all ultrametrics over X such that for any
dendrogramθ PDpXq the ultrametricΨpθq over X generates the same hierarchical decomposition
asθ, that is,

p�q for each r¥ 0, x,x1 P B P θprq ðñ Ψpθqpx,x1q ¤ r.

Furthermore, this bijection is given by

Ψpθqpx,x1q �mintr ¥ 0|x,x1belong to the same block ofθprqu.
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In order to establish the above theorem, we first construct certain natural mappings fromDpXq
toUpXq and fromUpXq toDpXq, and we then prove they are inverses of eachother and satisfy (�).

3.3.1 FROM DENDROGRAMS TOULTRAMETRICS

Let X be a finite set andθ : r0,8q Ñ P pXq a dendrogram overX. Consider the symmetric map
uθ : X�X Ñ R

� given by

px,x1q ÞÑmintr ¥ 0|x,x1belong to the same block ofθprqu. (3)

See Figure 9 for an illustration of this definition. Note that condition (4) in the definition of
dendrograms guarantees thatuθ is well defined. It is easy to see thatuθ defines an ultrametric onX:

Lemma 10 Let X be a finite set andpX,θq P DpXq. Then uθ : X�X Ñ R
� defined in (3) is an

ultrametric.

x 1

x 2

x 3

x 4

r 1 r 2 r 3

uθ

x 1 x 2 x 3 x 4

x 1 0 r 1 r 3 r 3

x 2 r 1 0 r 3 r 3

x 3 r 3 r 3 0 r 2

x 4 r 3 r 3 r 2 0

Figure 9: A graphical representation of a dendrogramθ overX � tx1,x2,x3,x3u and the ultrametric
uθ. Notice for example, that according to (3),uθpx1,x2q � r1 sincer1 is the first value
of the (scale) parameter for whichx1 andx2 are merged into the same cluster. Similarly,
sincex1 andx3 are merged into the same cluster for the first time when the parameter
equalsr3, thenuθpx1,x3q � r3.

3.3.2 FROM ULTRAMETRICS TO DENDROGRAMS

Conversely, given an ultrametricu : X�X Ñ R
�, its associated dendrogram

θu : r0,8qÑ P pXq

can be obtained as follows: for eachr ¥ 0 let θuprq be the collection of equivalence classes of
X under the relationx � x1 if and only if upx,x1q ¤ r. That this defines an equivalence rela-
tion follows immediately from the fact thatu is an ultrametric. Indeed, assume thatx � x1 and
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x1 � x2 for somer ¥ 0. Then,upx,x1q ¤ r and upx1,x2q ¤ r. Now, by the ultrametric property,
max

�
upx,x1q,upx1,x2q

�
¥ upx,x2q and henceupx,x2q ¤ r as well. We conclude thatx � x2 thus

establishing the transitivity of�.

Example 5 Consider the ultrametric u on X� tx1,x2, . . . ,x6u given by

ppuqq �

��������
x1 x2 x3 x4 x5 x6

x1 0 2 2 5 6 6
x2 2 0 2 5 6 6
x3 2 2 0 5 6 6
x4 5 5 5 0 6 6
x5 6 6 6 6 0 4
x6 6 6 6 6 4 0.

�ÆÆÆÆÆÆ

Then, for exampleθup0q�

 
tx1u,tx2u,tx3u,tx4u,tx5u,tx6u

(
, θup3q�

 
tx1,x2,x3u,tx4u,tx5u,tx6u

(
,

θup4.5q �
 
tx1,x2,x3u,tx4u,tx5,x6u

(
, θup5.5q �

 
tx1,x2,x3,x4u,tx5,x6u

(
and

θup7q �
 
x1,x2,x3,x4,x5,x6

(
. A graphical representation of the dendrogramθu is given in Figure

10.

x 1

x 2

x 3

x 4

x 55

x 6

2 4 5 6

Figure 10: A graphical representation of the dendrogramθu of Example 5, see the text for details.

3.3.3 THE CONCLUSION OF THEPROOF OFTHEOREM 9.

It is easy to check that (1) given any dendrogramθ on X, θuθ � θ and (2) given any ultrametricu on
X, uθu � u. Now, letΨ :DpXqÑUpXq be defined byθ ÞÑΨpθq :� uθ. By construction we see that
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Ψ : DpXq ÑUpXq is a bijection and thatΨ�1 is given byu ÞÑ θu. From (3) we see thatΨ satisfies
p�q. Hence, we obtain Theorem 9.

From now, whenever given a dendrogramθX over a setX, we will be using the notation
ΨpθXq for the ultrametric associated toX given by Theorem 9. In a similar manner, given an
ultrametricu onX, Ψ�1puq will denote the dendrogram overX given by Theorem 9.

3.4 Reformulation of Hierarchical Clustering using Ultrametrics

In the sequel, appealing to Theorem 9 which states theequivalence between ultrametrics and
dendrograms, we represent dendrograms asultrametricspaces. Then, any hierarchical clustering
method can be regarded as a map from finite metric spaces into finite ultrametric spaces. This
motivates the following definition:

Definition 11 A hierarchical clustering methodis defined to be a map

T : X ÑU s.t. Xn Q pX,dq ÞÑ pX,uq PUn, n P N.

Example 6 For a given finite metric spacepX,dq consider the HC methodTSL given byTSLpX,dq�
pX,ΨpθSLqq, whereθSL is the single linkage dendrogram over X defined in§3.2. Similarly, we define
TCL andTAL .

Example 7 (maximal sub-dominant ultrametric) There is a canonical construction: LetT� :
X ÑU be given bypX,dq ÞÑ pX,u�q where

u�px,x1q :�min

"
max

i�0,...,k�1
dpxi ,xi�1q, s.t. x� x0, . . . ,xk � x1

*
. (4)

We remark that the minimum above is taken over kPN and all k�1-tuples of points x0,x1, . . . ,xk in
X s.t. x0 � x and xk � x1. Notice that for all x,x1 P X, u�px,x1q ¤ dpx,x1q.

This construction is sometimes known as themaximal sub-dominant ultrametric and it has the
property that if u¤ d is any other ultrametric on X, then u¤ u�. The Lemma below proves that
this canonical construction is equivalent to the ultrametric induced by the equivalence relation in
Example 1.

Lemma 12 For pX,dq P X write T�pX,dq � pX,u�q and let pX,θ�q P DpXq be the dendrogram
arising from the construction in Example 2. Then, u� �Ψpθ�q.

Remark 13 Notice that another way of stating the Lemma above is that x�r x1 if and only if
u�px,x1q ¤ r.

It turns out that T� yieldsexactlysingle linkage clusteringas defined in §3.2.

Corollary 14 One has thatTSL� T�.
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Equivalently, for any finite metric spaceX, the single linkage dendrogramθSL on X agrees with
Ψ�1pu�q.
Proof The proof follows easily from Proposition 8 and Lemma 12.

We emphasize that, as it follows from Corollary 14,T� produces ultrametric outputs which
are exactly those corresponding to SLHC. We will use this fact strongly in the sequel.

3.4.1 INTERPRETATION OF THEULTRAMETRIC

For a HC methodT andpX,dq P X , let TpX,dq � pX,uq. The intuition that arises from (3) is that
for two pointsx,x1 P X, upx,x1q measures the minimaleffort methodT makes in order to joinx to x1

into the same cluster.
We note in particular that a desirable property of a HC algorithm should be that upon shrinking

some of the distances in the input metric space, the corresponding “efforts” also decrease. This
property is exactly verified byT�. Indeed, letX be a finite set andd1 andd2 two metrics onX s.t.
d1 ¥ d2. Write T�pX,d1q � pX,u�1q andT�pX,d2q � pX,u�2q. Then, it follows immediately from
Equation (4) thatu�1 ¥ u�2 (compare with Kleinberg’sconsistencyproperty, pp 1425).

Observe that CL and AL HCfail to satisfy this property. An example is provided in Figure 19.
We see in Theorem 18 that a condition of this type, together with two more natural normalizing

conditions,completely characterizes SLHC.

3.5 Comparing results of Hierarchical Clustering Methods

One of the goals of this paper is to study the stability of clustering methods to perturbations in the
input metric space. In order to do so one needs to define certain suitable notions of distance between
dendrograms. We choose to do this by appealing to the ultrametric representation of dendrograms,
which provides a natural way of defining a distance between hierarchical clusterings. We now delve
into the construction.

Consider first the simple case of two different dendrogramspX,αq and pX,βq over the same
fixed finite setX. In this case, as a tentative measure of dissimilarity between the dendrogramswe
look at the maximal difference between the associated ultrametrics given by Theorem 9:uα �Ψpαq
anduβ �Ψpβq: maxx,x1PX |uαpx,x1q�uβpx,x

1q|. There is a natural interpretation of the condition that
maxx,x1PX |uαpx,x1q�uβpx,x

1q| ¤ ε: if we look at the graphical representation of the dendrogramsα
andβ, then the transition horizontal lines in Figure 11 have to occur withinε of eachother.5 This is
easy to see by recalling that by (3),

uαpx,x
1
q �mintr ¥ 0|x,x1belong to the same block ofαprqu

and
uβpx,x

1
q �mintr ¥ 0|x,x1belong to the same block ofβprqu.

For the example in Figure 11, we then obtain that maxi |r i � r 1i | ¤ ε, which is not surprising since
r2 � uαpx1,x2q, r 12 � uβpx1,x2q, etc.

5. These lines represent values of the scale parameter for which thereis a merging of blocks of the partitions encoded
by the dendrograms.
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x 1x 2x 3x 4

r 1

r 2

r 3

r 1

r 2

r 3

α β

Figure 11: Two different dendrogramspX,αq and pX,βq over the same underlying setX �

tx1,x2,x3,x4u. The condition that}uα � uβ}L8pX�Xq ¤ ε is equivalent to the horizon-
tal dotted lines corresponding tor i andr 1i (i � 1,2,3) being withinε of eachother.

Now, in a slightly more general situation we may be faced with the task of comparing two dif-
ferent dendrogramsα andβ without knowing (or caring about) the exact labels of the points. In this
case, a natural solution is to look at the minimum of the maximum difference of the corresponding
ultrametrics under all possible permutations, namely:

min
πPPn

max
x,x1PX

|uαpx,x
1q�uβpπpxq,πpx1qq|, (5)

wheren is the cardinality ofX andPn is the collection of all permutations ofn elements.
The most general case arises when we do not know whether the dendrograms come from the

same underlying set or not. This situation may arise, for example, when comparing the results of
clustering two different samples, of possibly different sizes, coming from the same data set. One
may want to be able to compare two such clusterings as a way to ascertain whether the sample size
is sufficient for capturing the structure of the underlying data set.

Assume then that we are givenpX1,αq andpX2,βq, two different dendrograms, defined possibly
over twodifferent sets X1 andX2 of different cardinality. This potential difference in cardinality in
the two sets forces us to consider transformations other than mere permutations. A natural solution,
which can be interpreted as arelaxationof the permutation based distance (5) discussed above, is
to consider mapsf : X1 Ñ X2 andg : X2 Ñ X1 and look at theirdistortions:
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disp f q :� max
x,x1PX1

|uαpx,x
1
q�uβp f pxq, f px1qq|,

dispgq :� max
x,x1PX2

|uαpgpxq,gpx
1
qq�uβpx,xq|.

The next natural step would be to optimize over the choice off andg, for example by minimizing
the maximum of the two distortions:

min
f ,g

max
�
disp f q,dispgqq.

This construction is depicted in Figure 12. Roughly speaking, this idea leadsto the Gromov-
Hausdorff distance. The difference lies in the fact that in standard definition of the Gromov-
Hausdorff distance, one also considers a term that measures the degree to which f andg are inverses
of eachother. Being more precise, given the mapsf andg, this term, called thejoint distortionof f
andg is given by

disp f ,gq :� max
xPX,yPY

|uαpx,gpyqq�uβpy, f pxqq|.

One defines the Gromov-Hausdorff distance betweenpX1,uαq andpX2,uβq by

dGH
�
X1,X2

�
:�

1
2

min
f ,g

max
�
disp f q,dispgq,disp f ,gq

�
.6 (6)

We now see exactly how the inclusion of the new term enforcesf andg to be approximate
inverses of eachother. Assume that for someε ¡ 0 dGH

�
X1,X2

�
  ε, then, in particular, there

exist mapsf andg such that|uαpx,gpyqq� uβpy, f pxqq| ¤ 2ε for all x P X1 andy P X2. Choosing
y� f pxq, in particular, we obtain thatuαpx,gp f pxqqq ¤ 2ε for all x P X1. Similarly one obtains that
uβpy, f pgpyqqq ¤ 2ε for all y P X2. These two inequalities measure the degree to whichf � g and
g� f differ from the identities, and thus, measure the degree to whichf andg fail to be inverses of
eachother. This is a useful feature when one considersconvergence issuessuch as we do in §5.

3.5.1 INTERPRETATION OF THEGROMOV-HAUSDORFFDISTANCE IN TERMS OF

DENDROGRAMS

Assume thatdGH
�
pX1,uαq,pX2,uβq

�
¤

η
2 for someη ¥ 0. Then there exist mapsf : X Ñ Y and

g : Y Ñ X such that the following conditions hold (see Figure 13):

• If x,x1 fall in the same block ofαptq then f pxq, f px1q belong to the same block ofβpt 1q for all
t 1 ¥ t�η.

• If y,y1 fall in the same block ofβptq thengpyq,gpy1q belong to the same block ofαpt 1q for all
t 1 ¥ t�η.

For the next section we do not need to make use of the full generality in theseconsiderations:
there we only compare dendrograms defined over the same underlying set.A more detailed use and
additional material about the Gromov-Hausdorff ideas is given in §5.

We finish this section with a precise result regarding the stability of dendrograms arising from
SLHC.
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r 1 r 2

x 1

x 2

x 3

x 4

r 3

y1

y2

y3

r 1r 2

X, α Y, β

Figure 12: In this example, two different dendrograms,pX,αq andpY,βq, are given. The (straight)
arrows pointing from left to right show a mapf : X Ñ Y, and the (curved) arrows
pointing from right to left show the mapg : Y Ñ X. With simple explicit computa-
tions one sees that these choices of mapsf andg incur distortions disp f q � disp f ,gq �
max

�
r3, |r1� r 11|, |r2� r 12|

�
and dispgq � max

�
|r1� r 11|, |r2� r 12|

�
, respectively. Hence,

we see thatdGH
�
pX,Ψpαq,pY,Ψpβqq

�
¤ 1

2 max
�
r3, |r1� r 11|, |r2� r 12|

�
.

The following Lemma deals with the situation when we have a fixed finite setP and two different
metrics onP and then we compute the result of applyingT� each of these metrics. This lemma is a
particular case of our main stability result, Proposition 26 in §5. In the interestof clarity, we prove
it here to provide some intuition about the techniques.

Lemma 15 Let P be a fixed finite set and let d1,d2 be two metrics on P. WriteT�pP,diq � pP,uiq,
i � 1,2. Then,

max
p,qPP

|u1pp,qq�u2pp,qq| ¤ max
p,qPP

|d1pp,qq�d2pp,qq|.

Proof Let η � maxp,qPP |d1pp,qq � d2pp,qq|. Let p0, . . . , pk P P be s.t. p0 � p, pk � q and
maxi d1ppi , pi�1q � u1pp,qq. Then, by definition ofu2 (which is the minimum over all chains of
the maximal hop measured with metricd2) and the fact thatd2 ¤ d1�η:

u2pp,qq ¤max
i

d2ppi , pi�1q ¤max
i
pη�d1ppi , pi�1qq � η�u1pp,qq.

Similarly, u1pp,qq ¤ η� u2pp,qq, and hence|u1pp,qq � u2pp,qq| ¤ η. The claim follows since
p,q P P are arbitrary.

6. The factor12 is of course inmaterial but kept here for coherence with the standard definition.
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r 1r 2

x 1

x 2

x 3

x 4

r 3

y1

y2

y3

r 1r 2

X, α

Y, β

Figure 13: These are the same dendrograms as in Figure 12. Letr1�
5
3, r2� 1, r3�

1
3, r 11�

11
6 and

r 12 �
4
3. For the mapsf andg s.t. f px1q � f px2q � y1, f px3q � y2, f px4q � y3, gpy1q �

x1, gpy2q � x3 andgpy3q � x4, using the formulas computed in Figure 12 we see that
disp f q � dispgq � disp f ,gq � 1

3 and hencedGH
�
pX,Ψpαqq,pY,Ψpβqq

�
¤ 1

6. Now notice
for instance thatx3 andx4 fall in the same block ofαpr2q � αp1q and thaty2 � f px3q

andy3 � f px4q fall in the same block ofβpt 1q for all t 1 ¥ r2�2� 1
6 � 1� 1

3 �
4
3 � r 12.

3.6 Some Remarks about Hierarchical Clustering Methods

Practitioners of clustering often prefer AL and CL to SL because it is perceived that the former two
methods tend to produce clusters which are more coherent conceptually, and which are in a non-
technical sense viewed as more compact. In fact, SL exhibits the so calledchaining effectwhich
makes it more likely to produce clusterings which separate items which conceptually should be
together. We view these observations as evidence for the idea that good clustering schemes need to
take some notion of density into account, rather than straightforward geometric information alone.
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One can loosely argue that given the actual definition of the linkage functions used by AL and
CL, these two methods do enjoy some sort of sensitivity to density. Unfortunately, AL and CL are
unstable, and in particular,discontinuousin a very precise sense (see Remark 16 below), whereas
SL enjoys all the nice theoretical properties that the other two methods lack.

In this section we review this seemingly paradoxical situation.
For eachn P N let Ln be a metric space withn pointsP� tp1, . . . , pnu and metricdLnppi , p jq �

|i � j|, i, j P t1, . . . ,nu. Similarly, let ∆n be the metric space with the same underlying set and
metric d∆nppi , p jq � 1, i, j P t1, . . . ,nu, i � j. Clearly, the metric spaceLn is isometric to points
equally spaced on a line in Euclidean space whereas (s.t. two adjacent points are at distance 1 from
eachother)∆n is isometric to thepn�1q-unit-simplex as a subset ofR

n�1.
Clearly, the outputs of Single Linkage HC applied to bothLn and∆n coincide for alln P N:

T
�pP,dLnq � T

�pP,d∆nq �
�
P,ppγqq

�
(7)

whereγi j � 0 if i � j andγi j � 1 if i � j, for all n P N, see Figure 14.

11 1 1

x
1

x
2

x
n

1

x
1

x
2

x
n

L
n

∆2 ∆
3

∆4

∆
n

Figure 14: The metric spacesLn and∆n both haven points. Single linkage HC applied to either of
them yields the dendrogram in the center.

By appealing to the Euclidean realizations ofLn and ∆n, one can defineperturbedversions
of these two metric spaces. Indeed, fixε ¡ 0 and letta1, . . . ,anu � r0,ε{2s and tb1, . . . ,bnu �

Sn�1pε{2q. DefineLε
n to be the metric space with underlying setP and metricdLε

n
ppi , p jq � |i� j�
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ai �a j |. Similarly, define∆ε
n to be the metric space with underlying setP and metricd∆ε

n
ppi , p jq �

}si �sj �bi �b j}.
Notice that by construction,

max
i, j

|dLnppi , p jq�dLε
n
ppi , p jq| ¤ ε (8)

and
max

i, j
|d∆nppi , p jq�d∆ε

N
ppi , p jq| ¤ ε. (9)

We thus say that the spacespP,dLε
n
q and pP,d∆ε

n
q are perturbed versions ofpP,dLnq and pP,d∆nq,

respectively.

Remark 16 (About a critique to SL) Single linkage is generally regarded as a poor choice in
practical applications. The reason for this is the so calledchainingeffect observed experimentally,
which is central to the criticism to SL made in Lance and Williams (1967) (see also the discussion
in Wishart, 1969, pp. 296). The following two observations are important:

(O1) It is generally argued that sincepP,dLε
n
q corresponds to points on the vicinity of a line, whereas

pP,d∆ε
n
q corresponds to points in the close vicinity of apn�1q-simplex, then the cluster formed

by points on the latter metric space is morecompactor denserthan the one formed by the
former, and thus more meaningful.

(O2) The outputs of SL to the spacespP,dLε
n
q andpP,d∆ε

n
q are very similar and this similarity is of

order ε.

Indeed, if we writeT�pP,dLε
n
q � pP,uLε

n
q and T�pP,d∆ε

n
q � pP,u∆ε

n
q, then, by the triangle in-

equality for the L8 norm,

}uLε
n
�u∆ε

n
}L8pP�Pq ¤ }uLε

n
�uL0

n
}L8pP�Pq (10)

� }uL0
n
�u∆0

n
}L8pP�Pq

� }u∆0
n
�u∆ε

n
}L8pP�Pq.

As we pointed out in (7) at the beginning of Section§3.6,

uL0
n
� uLn � ppγqq � u∆n � u∆0

n
,

thus, (10) simplifies into:

}uLε
n
�u∆ε

n
}L8pP�Pq ¤ }uLε

n
�uL0

n
}L8pP�Pq (11)

� }u∆ε
n
�u∆0

n
}L8pP�Pq

(and by Lemma 15:)

¤ }dLε
n
�dL0

n
}L8pP�Pq

� }d∆ε
n
�d∆0

n
}L8pP�Pq.

Hence, by (11) and the construction of dLε
n

and d∆ε
n

(Equations (8) and (9)), we conclude that

}uLε
n
�u∆ε

n
}L8pP�Pq ¤ 2ε.

This means that for any small perturbations of Ln and∆n, the output of SL to these perturba-
tions are at a small distance from eachother, as we claimed.
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When put together, observations(O1) and (O2) suggest that SL is unable to pick denser as-
sociations of data, such as cliques, over sparser ones, such as linearstructures. This feature is
undesirable in practical applications where often times one would like to regard clusters as modes
of an underlying distribution (Wishart, 1969; Hartigan, 1981).

It is then the case that in practical applications, CL and especially AL are preferred over SL.
These two methods have the property that they indeed somehow favor the association of compact
subsets of points. For CL this can be explained easily using the concept ofmaximal clique(maxi-
mally connected sub-graphs of a given graph) (Jain and Dubes, 1988, Section 3.2.1). Let dk be the
diameter of the cluster created in step k of CL clustering and define a graphGpkq as the graph that
links all data points with a distance of at most dk. Then the clusters after step k are the maximal
cliques of Gpkq. This observation reinforces the perception that CL yields clusters that are dense as
measured by the presence of cliques. The sensitivity of AL to density has been discussed by Hartigan
in Hartigan (1985, Section 3) and is basically due to the averaging performed in the definition of
its linkage function.

A more principled way of taking density into account, that does not dependon ad hoc construc-
tions which destroy the stability property, would be to explicitly build the density intothe method.
In Carlsson and Ḿemoli (2009) we studymultiparameter clustering methods, which are similar to
HC methods but wetrackconnected components in a multiparameter landscape. We also study the
classification and stability properties of multiparameter clustering methods.

Remark 17 (Instability of CL and AL) It turns out that CL and AL, despite not exhibiting the
undesirable feature of the chaining effect, and despite being regarded asmore sensitive to density,
are unstable in a precise sense. Consider for example CL and let n� 3. In the construction of
pP,dε

Lq above let a1 � a2 � 0 and a3 � ε, then

ppdLqq �

�� p1 p2 p3

p1 0 1 2
p2 1 0 1
p3 2 1 0

�
 and ppdε
Lqq �

�� p1 p2 p3

p1 0 1 2� ε
p2 1 0 1� ε
p3 2� ε 1� ε 0

�
.

WriteTCLpP,dLq � pP,uLq andTCLpP,dε
Lq � pP,uε

Lq. Clearly,

ppuLqq �

�� p1 p2 p3

p1 0 1 1
p2 1 0 1
p3 1 1 0

�
 and ppuε
Lqq �

�� p1 p2 p3

p1 0 1 2� ε
p2 1 0 2� ε
p3 2� ε 2� ε 0

�
.

Notice that despitemaxi, j |dLppi , p jq�dε
Lppi , p jq| � ε, maxi, j |uLppi , p jq�uε

Lppi , p jq| � 1�ε¡ 1
for all ε ¡ 0. We thus conclude that CL is not stable under small perturbations of the metric. Note
that in particular, it follows that CL isnot continuous. The same construction can be adapted for
AL. See Figure 15.

4. A Characterization Theorem for SL Hierarchical Clustering

In this section we obtain acharacterization of SL hierarchical clustering in terms of some simple
axioms. The main axiom, (II) below, says that the clustering scheme has a prescribed behavior
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Figure 15: Complete Linkage is not stable to small perturbations in the metric. On the left we show
two metric spaces that are metrically very similar. To the right of each of them weshow
their CL dendrogram outputs. Regardless ofε ¡ 0, the two outputs are always very
dissimilar. We make the notion ofsimilarity between dendrogram precise in §5 by in-
terpreting dendrograms as ultrametric spaces and by computing the Gromov-Hausdorff
distance between these ultrametric spaces.

under distance non-increasing maps of metric space. The behavior is thatthe map of metric spaces
should induce a map of clusters, that is, that if two points in the domain space belong to the same
cluster, then so do their images in the clustering of the image metric space. This notion, referred
to asfunctoriality in the mathematics literature, appears to us to be a very natural one, and it is
closely related to Kleinberg’s consistency property (cf. pp. 1425) forordinary clustering methods;
see Remark 19 for an interpretation of our axioms.

Theorem 18 LetT be a hierarchical clustering method s.t.

(I) T
�
tp,qu,

�
0 δ
δ 0

��
�
�
tp,qu,

�
0 δ
δ 0

��
for all δ¡ 0.

(II) Whenever X,Y P X and φ : X Ñ Y are such that dXpx,x1q ¥ dYpφpxq,φpx1qq for all x,x1 P X,
then

uXpx,x
1
q ¥ uYpφpxq,φpx1qq

also holds for all x,x1 P X, whereTpX,dXq � pX,uXq andTpY,dYq � pY,uYq. prop

(III) For all pX,dq P X ,
upx,x1q ¥ seppX,dq for all x� x1 P X

whereTpX,dq � pX,uq.

ThenT� T�, that is,T is exactly single linkage hierarchical clustering.
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Remark 19 (Interpretation of the conditions) Let pX,dq P X and write TpX,dq � pX,uq. The
intuition is that upx,x1q measures theeffort methodT makes in order to join x to x1 into the same
cluster.

Condition (I) is clear, the two-point metric space contains only one degreeof freedom which has
to determine unambiguously the behavior of any clustering methodT. In terms of dendrograms, this

means that the two point metric space

�
tA,Bu,

�
0 δ
δ 0

�

must be mapped to the dendrogram where

A and B are merged at parameter valueδ, see Figure 16.

Condition (II) is crucial and roughly says that whenever one shrinks some distances (even to
zero) to obtain a new (pseudo) metric space, then the corresponding efforts in this new space have
to be smaller than the efforts in the original metric space. This is consistent withthe notion that
reducing the distance between two points (without increasing all other distances) makes them more
likely to belong to the same cluster.

LetθX �Ψ�1puXq andθY �Ψ�1puYq be the dendrograms associated to uX and uY. In terms of
dendrograms, this means that if two points x,x1 P X are in the same block ofθXptq for some t¡ 0,
thenφpxq andφpx1q must bein the same block ofθYptq. see Figure 17.

Condition (III) expresses the fact that in order to join two points x,x1 PX, any clustering method
T has to make an effort of at least the separation seppX,dq of the metric space. In terms of dendro-
grams, this means thatθXptq has to equal the partition of X into singletons for all0¤ t   seppX,dq.
See Figure 18.

y1

y2

T

y1 y2

δ

δ

Figure 16: Interpretation of Condition I : For allδ¡ 0 the two point metric space on the left must
be mapped byT into the dendrogram on the right.

Remark 20 It is interesting to point out why complete linkage and average linkage hierarchical
clustering, as defined in§3.2.2, fail to satisfy the conditions in Theorem 18. It is easy to see that
conditions (I) and (III) are always satisfied by CL and AL.

Consider the metric spaces X� tA,B,Cu with metric given by the edge lengthst4,3,5u and
Y� pA1,B1,C1q with metric given by the edge lengthst4,3,2u, as given in Figure 19. Obviously, the
mapφ from X to Y withφpAq � A1, φpBq � B1 andφpCq �C1 is s.t.

dYpφpxq,φpx1qq ¤ dXpx,x
1
q for all x,x1 P tA,B,Cu.
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x 1

x 2

x 3

x 4

y1

y2

y3

Ψ− 1 (uX )

Ψ− 1 (uY )

Figure 17: Interpretation of Condition II : Assume thatφ : XÑY is a distance non-increasing map
such thatφpx1q � φpx2q � y1, φpx3q � y2 andφpx4q � y3. Then, Condition (II) requires
that if x,x1 P X are merged into the same cluster ofΨ�1puXq at parameter valuet, then
φpxq andφpx1qmust merge into the same cluster ofΨ�1puYq for some parameter value¤
t. In the Figure, this translates into the condition that vertical dotted lines corresponding
to mergings of pairs of points inX should happen at parameter values greater than or
equal than the parameter values for which correponding points inY (via φ) are merged
into the same cluster. For example,φpx1q,φpx2qmerge into the same cluster at parameter
value 0. The condition is clearly verified for this pair since by definition ofφ, φpx1q �

φpx2q � y1. Take nowx3 andx4: clearly the vertical line that shows the parameter value
for which they merge is to the right of the vertical line showing the parameter value for
whichy2 � φpx3q andy3 � φpx4q merge.

It is easy to check that

ppuXqq �

��A B C

A 0 5 3
B 5 0 5
C 3 5 0

�
 and ppuYqq �

��A1 B1 C1

A1 0 2 4
B1 2 0 4
C1 4 4 0

�
.

Note that for example3� uXpA,Cq   uYpφpAq,φpCqq � uYpA1,C1q � 4 thus violating property
(II). The same construction yields a counter-example for average linkage.
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x 1
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x 3

x 4

x 55

x 6

sep(X, d)

Figure 18: Interpretation of Condition III : The vertical line at parameter valuet � seppX,dqmust
intersect the horizontal lines of the dendrogram before any two points are merged.

5. Metric Stability and Convergence ofT�

The Proposition and Theorem below assert the metric stability and consistency/convergence of the
methodT� (i.e., of SLHC, by virtue of Proposition 14. We use the notion of Gromov-Hausdorff
distance between metric spaces (Burago et al., 2001). This notion of distance permits regarding the
collection of all compact metric spaces as a metric space in itself.

This seemingly abstract construction is in fact very useful. Finite metric spaces are by now
ubiquitous in virtually all areas of data analysis, and the idea of assigning a metric to the collection
of all of them is in fact quite an old one. For Euclidean metric spaces, for example, the idea of
constructing a metric was used by Kendall et al. (1999) and Bookstein et al. (1985) in constructing
a statistical shape theory, motivated by the ideas about form of biological organisms developed by
D’Arcy Thompson.
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Figure 19: An example that shows why complete linkage fails to satisfy condition(2) of Theorem
18.

5.1 The Gromov-Hausdorff Distance and Examples

Definition 21 Let pZ,dZq be a compact metric space. The Hausdorff distance between any two
compact subsets A,B of Z is defined by

dZ
H

�
A,B

�
:�max

�
max
aPA

min
bPB

dZpa,bq,max
bPB

min
aPA

dZpa,bq



.

Remark 22 Let Z � tz1, . . . ,znu � Z. Then, dZ
H

�
Z,Z

�
¤ δ for someδ ¥ 0 if and only if Z��n

i�1Bpzi ,δq. In other words, dZ
H

�
Z,Z

�
describes the minimalδ s.t.Z is aδ-net for Z and therefore

measures how wellZ covers Z.

The Gromov-Hausdorff distancedGH
�
X,Y

�
between compact metric spacespX,dXq andpY,dYq

was orignally defined to be the infimalε ¡ 0 s.t. there exists a metricd on X
�

Y with d|X�X
� dX

andd|Y�Y
� dY for which the Hausdorff distance betweenX andY (as subsets ofpX

�
Y,dq) is less

thanε (Gromov, 1987). There is, however, an alternative expression for the GH distance that is
better suited for our purposes which we now recall.

Definition 23 (Correspondence)For sets A and B, a subset R� A�B is a correspondence(be-
tween A and B) if and and only if

• � a P A, there exists bP B s.t.pa,bq P R

• � b P B, there exists aP X s.t.pa,bq P R

LetR pA,Bq denote the set of all possible correspondences between A and B.
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We now give several examples to illustrate this definition.

Example 8 Let A� ta1,a2u and B� tb1,b2,b3u. In this case, R1� tpa1,b1q,pa2,b2q,pa1,b3qu is a
correspondence but R2 � tpa1,b1q,pa2,b2qu is not.

Example 9 Let A and B be finite s.t.#A� #B� n. In this case, ifπ is any permutation matrix of
size n, thentpai ,bπi q, i � 1, . . . ,nu P R pA,Bq.

Example 10 Let φ : X ÑY andψ : Y Ñ X be given maps. Then, one can construct a correspon-
dence out of these maps, call it Rpφ,ψq given by 

px,φpxqq, x P X
(¤ 

pψpyq,yq, y PY
(
.

For metric spacespX,dXq andpY,dYq. Let ΓX,Y : X�Y
�

X�Y Ñ R
� be given by

px,y,x1,y1q ÞÑ |dXpx,x
1q�dYpy,y

1q|.

Then, by (Burago et al., 2001, Theorem 7.3.25) theGromov-Hausdorff distancebetweenX andY
is equal to

dGH
�
X,Y

�
:�

1
2

inf
RPR pX,Yq

sup
px,yq,px1,y1qPR

ΓX,Ypx,y,x
1,y1q. (12)

It can be seen (it is an easy computation) that in (12) one can restrict the infimum to those
correspondences that arise from mapsφ andψ such as those constructed in Example 10. Then, one
recovers expression (6) which we gave in §3.5, namely, that actually

dGH
�
X,Y

�
:�

1
2

inf
φ,ψ

max
�
dispφq,dispψq,dispφ,ψq

�
. (13)

Remark 24 Expression (13) defines adistance on the set of (isometry classes of) finite metric
spaces (Burago et al., 2001, Theorem 7.3.30). From now on letG denote the collection of all
(isometry classes of) compact metric spaces. We say thattpXn,dXnqunPN � G Gromov-Hausdorff
converges to XP G if and only if dGH

�
Xn,X

�
Ñ 0 as nÒ 8.

Example 11 Fix pX,dXq P G . Consider the sequencetpX, 1
n � dXqunPN � G . Then, Xn Gromov-

Hausdorff converges to the metric space consisting of a single point.

Remark 25 (Gromov-Hausdorff distance and Hausdorff distance)LetpX,dXq be a compact met-
ric space. Then, if X1 � X is compact and we endow X1 with the metric dX1 equal to the restriction
of dX, then

dGH
�
pX,dXq,pX

1,dX1q
�
¤ dX

H

�
X1,X

�
.

This is easy to see by defining the correspondence R between X and X1 given by

R� tpx1,x1q, x1 P X1uYtpx,x1q, x PVpx1q, x1 P X1u,

where Vpx1q :�txPX, dXpx,x1q ¤ dXpx,zq, zPX1ztx1uu. Indeed, since then, for allpx1,x11q,px2,x12q P
R,

1
2
|dXpx1,x2q�dXpx

1
1,x

1
2q| ¤

1
2

�
dXpx1,x

1
1q�dXpx2,x

1
2q
�
¤max

xPX
min
x1PX1

dXpx,x
1q � dX

H

�
X,X1�.
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Example 12 Consider a finite set M and d,d1 : M�M Ñ R
� two metrics on M. Then, the GH

distance betweenpM,dq andpM,d1q is bounded above by the L8 norm of the difference between d
and d1:

dGH
�
pM,dq,pM,d1q

�
¤

1
2
}d�d1}L8pM�Mq.

To prove this it is enough to consider the correspondence RP R pM,Mq given by R� tpm,mq, mP

Mu.
Notice that as an application, for the metric spacespP,dLε

n
q andpP,d∆ε

n
q discussed in§3.6, one

has that
dGH

�
pP,dLnq,pP,dLε

n
q
�
¤

ε
2

and

dGH
�
pP,d∆nq,pP,d∆ε

n
q
�
¤

ε
2
.

5.2 Stability and Convergence Results

Our first result states that SL HC is stable in the Gromov-Hausdorff senseand it is a generalization
of Lemma 15.

Proposition 26 For any two finite metric spacespX,dXq andpY,dYq

dGH
�
pX,dXq,pY,dYq

�
¥ dGH

�
T
�
pX,dXq,T

�
pY,dYq

�
.

Remark 27 This Proposition generalizes Lemma 15. Notice for example that in case X and Y are
finite, they need not have the same number of points. This feature is important in order to be able
to make sense of situations such as the one depicted in Figure 2 in pp. 1428,where one is trying to
capture the connectivity (i.e., clustering) properties of an underlying ’continuous’ space by taking
finitely (but increasingly) many samples from this space and applying someform of HC to this finite
set. Theorem 28 below deals with exactly this situation. See Figure 20.

Let pZ,dZq be a compact metric space. Given a finite index setA and a (finite) collection of
disjoint compact subsets ofZ, tU pαquαPA, letWA : A�AÑ R

� be given by

pα,α1
q ÞÑ min

zPUpαq

z1PUpα1q

dZpz,z
1
q.

A metric spacepA,dAq arises from this construction, wheredA � LpWAq. We say thatpA,dAq is
the metric space with underlying setA arising from tU pαquαPA. Notice that seppA,dAq equals the
minimal separation between any two setsU pαq andU pα1q (α� α1). More precisely,

seppA,dAq � min
α,α1PA,
α�α1

min
zPUpαq

z1PUpα1q

dZpz,z
1
q.

We now state a metric stability and convergence result, see Figure 20. The proof of this result
is deferred to §B.

Theorem 28 AssumepZ,dZq is a compact metric space. Let X and X1 be any two finite subsets of
Z and let dX � dZ|X�X

and dX1 � dZ|X1�X1 . WriteT�pX,dXq � pX,uXq andT�pX1,dX1q � pX1,uX1q.
Then,
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Figure 20: Illustration of Theorem 28.Top: A spaceZ composed of 3 disjoint path connected
parts,Zp1q,Zp2q andZp3q. The black dots are the points in the finite sampleX. In the
figure, wi j �Wpi, jq, 1¤ i � j ¤ 3. Bottom Left: The dendrogram representation of
pX,uXq. Bottom RightThe dendrogram representation ofpZ,uZq. Note thatdZpz1,z2q �

w13�w23, dZpz1,z3q � w13 anddZpz2,z3q � w23. As r Ñ 0, pX,uXq Ñ pZ,uZq in the
Gromov-Hausdorff sense, see text for details.

1. (Finite Stability) dGH
�
pX,uXq,pX1,uX1q

�
¤ dZ

H

�
X,Z

�
�dZ

H

�
X1,Z

�
.

2. (Approximation bound) Assume in addition that Z�
�

αPAZpαq where A is a finite index set
and Zpαq are compact, disjoint and path-connected sets. LetpA,dAq be the finite metric space
with underlying set A arising fromtZpαquαPA. LetT�pA,dAq � pA,uAq. Then, if dZ

H

�
X,Z

�
 

seppA,dAq{2,

dGH
�
pX,uXq,pA,uAq

�
¤ dZ

H

�
X,Z

�
.

3. (Convergence) Under the hypotheses of (2), lettXnunPN be a sequence of finite subsets of Z
s.t. dZ

H

�
Xn,Z

�
Ñ 0 as nÑ8, and dXn be the metric on Xn given by the restriction of dZ to

Xn�Xn. Then, one has that

dGH
�
T
�
pXn,dXnq,pA,uAq

�
Ñ 0 as nÑ8.

Remark 29 (Interpretation of the statement) Assertion (1) guarantees that if X,X1 are both dense
samples of Z, then the result of applyingT� to both sets are very close in the Gromov-Hausdorff
sense.

Assertions (2) and (3) identify the limiting behavior of the constructionT�pXn,dXnq as Xn be-
comes denser and denser in X, see Figure 20.
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5.3 A Probabilistic Convergence Result

In this section, we prove a precise result which describes how the dendrograms attached to compact
metric spaces by single linkage clustering can be obtained as the limits of the dendrograms attached
to finite subsets of the metric space. The result is by necessity probabilistic in nature. This kind of
result is of great importance, since we are often interested in infinite metric spaces but typically do
not have access to more than finitely many random samples from the metric space.

Theorem 30 and Corollary 32 below proves that for random i.i.d. observationsXn� tx1, . . . ,xnu

with probability distributionµ compactly supported in a metric spacepX,dq, the resultpXn,uXnq

of applying single linkage clustering topXn,dq converges almost surely in the Gromov-Hausdorff
sense to an ultrametric space that recovers the multiscale structure of thesupportof µ, see Figure
20. This is a refinement of a previous observation of Hartigan (1985) that SLHC is insensitive to
the distribution of mass ofµ in its support.

The proof of this theorem relies on Theorem 34, a probabilistic covering theorem of independent
interest. In order to state and prove our theorems we make use of the formalism of metric measure
spaces.

A triple pX,dX,µXq, wherepX,dXq is a metric space andµX is a Borel probability measure on
X with compact support will be called anmm-space(short for measure metric space). The support
supprµXs of a measureµX on X is the minimal closed setA (w.r.t. inclusion) s.t.µXpXzAq � 0.

Measure metric spaces are considered in the work of Gromov and are useful in different contexts,
see (Gromov, 2007, Chapter 31

2). For a mm-spaceX let fX : R
�Ñ R

� be defined by

r ÞÑ min
xPsupprXs

µXpBXpx, rqq.

Note also that by constructionfXp�q in non-decreasing andfXprq ¡ 0 for all r ¡ 0. Let alsoFX :

N�R
�ÑR

� be defined bypn,δq ÞÑ e�n fXpδ{4q
fXpδ{4q . Note that for fixedδ0¡ 0, (1)FXp�,δ0q is decreasing

in its argument, and (2)
°

nPN
FXpn,δ0q   8.

Theorem 30 Let pZ,dZ,µZq be a mm-space and write supprµZs �
�

αPAU pαq for a finite index set
A andU� tU pαquαPA a collection of disjoint, compact, path-connected subsets of Z. LetpA,dAq be
the metric space arising fromU and letδA :� seppA,dAq{2.

For each nP N, let Zn � tz1,z2, . . . ,znu be a collection of n independent random variables
(defined on some probability spaceΩ with values in Z) with distribution µZ, and let dZn be the
restriction of dZ to Zn�Zn. Then, forζ¥ 0 and nP N,

PµZ

�
dGH

�
T
�
pZn,dZnq,T

�
pA,dAq

�
¡ ζ



¤ FZ

�
n,minpζ,δA{2q

�
.

Corollary 31 Under the hypotheses of Theorem 30, for any pre-specified probabilitylevel pP p0,1q
and toleranceζ¥ 0, if

n¥
ln 1

1�p� ln fXpδ{4q
fXpδ{4q

,

thenPµZ

�
dGH

�
T�pZn,dZnq,T

�pA,dAq
�
¤ ζ



¥ p, whereδ :�minpζ,δA{2q.
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Corollary 32 Under the hypotheses of Theorem 30,T�pZn,dZnq
n
ÝÑ T�pA,dAq in the Gromov-

Hausdorff sense µZ-almost surely.

Proof [Proof of Corollary 32] The proof follows immediately from the expressionfor FX and the
Borel-Cantelli Lemma.

Remark 33 Note that the convergence theorem above implies that in the limit,T�pXn,dXnq only
retains information about the support of the probability measure but not about the way the mass is
distributed inside the support, compare to Hartigan (1985).

Example 13 (Z� R
d) Let ρ : R

d ÑR
� be a density function with compact, support Z and µ be its

associated probability measure. ThenpRd,} � },µq satisfies the assumptions in the theorem. If one
makes additional smoothness assumptions onρ, in this particular case one can relate FZpn,ζq to
geometrical properties of the boundary of supprρs.

Example 14 (Z is a Riemannian manifold) In more generality, Z could be a Riemannian manifold
and µ a probability measure absolutely continuous w.r.t. to the Riemannian areameasure on Z.

6. Discussion

We have obtained novel characterization, stability and convergence theorems for SL HC. Our theo-
rems contemplate both the deterministic and the stochastic case. Our characterization theorem can
be interpreted as a relaxation of Kleinberg’s impossibility result for standard clustering methods
in that by allowing the output of clustering methods to be hierarchical, one obtains existence and
uniqueness.

Our stability results seem to be novel and complement classical observationsthat CL and AL
are discontinuous as maps from finite metric spaces into dendrograms.

Our convergence results also seem to be novel and they refine a previous observation by Hartigan
about the information retained about an underlying density by SL clusteringof an i.i.d. collection
of samples from that density. Our setting for the stochastic convergence results is quite general in
that we do not assume the underlying space to be a smooth manifold and we do not assume the
underlying probability measure to have a density with respect to any reference measure.

We understand that SL HC is not sensitive to variations in the density (see also Hartigan, 1981).
In our future work we will be looking at ways of further relaxing the notions of clustering that can
cope with the problem of detecting “dense” clusters, in the same spirit as Wishart (1969); Stuetzle
(2003). A follow up paper (Carlsson and Mémoli, 2009) presents a systematic treatment of this with
a more general framework.

Some recent works have also addressed the characterization of clustering schemes in the hierar-
chical case. The authors of the present paper reported a characterization for proximity dendrograms
(Carlsson and Ḿemoli, 2008) using the language of category theory. Zadeh and Ben-David (2009)
gave a characterization for threshold dendrograms.7 More classical is the work of Jardine and Sibson
(1971) who also ultimately view HC methods as maps form finite metric spaces to finiteultrametric
spaces.

7. Recall that the difference between these two types of dendrograms isthat proximity dendrograms retain the linkage
value at which mergings take place whereas threshold dendrograms only record the order, see Remark 3.
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It is interesting to consider the situation when one requires the mapφ in our characterization
theorem (Theorem 18) to be 1 to 1 on points. In this case, a much wider classof hierarchical
schmemes becomes possible including for example a certain version ofclique clustering. The
restriction on the nature ofφ would be called restriction offunctoriality by a mathematician. The
classification question of clustering methods that arises becomes mathematically interesting and we
are currently exploring it (Carlsson and Mémoli, Stanford, 2009; Carlsson and Mémoli, 2008).
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Appendix A. Notation

Symbol Meaning

R Real numbers.
R

d d-dimensional Euclidean space.
N Natural numbers.
ppaqq A square symmetric matrix with elementsai j which are usually distances.
pX,dq Metric spaceX with metricd, page 1429.
pX,uq Ultrametric spaceX with ultrametricu, page 1429.
X , Xn Collection of all finite (resp.n point) metric spaces, page 1429.
U, Un Collection of all finite (resp.n point) ultrametric spaces, page 1429.
C pXq Collection of all non-empty subsets of the setX, page 1429.
UpXq Collection of all ultrametrics over the finite setX, page 1429.
P pXq Collection of all partitions of the finite setX, page 1429.
Π,B,A A partition of a finite set and blocks of that partition, respectively, page 1429.
�, ras, Az � An equivalence relation, the equivalence class of a point and the quotient space,

page 1429.
�r An equivalence relation with a parameterr ¥ 0, page 1429.
Sk�1prq Sphere of radiusr and dimensionk�1 embedded inRk, page 1429.
LpWq Maximal metric¤W, page 1429.
θ : r0,8qÑ P pXq A dendrogram over the finite setX, 1431.
DpXq Collection of all dendrograms over the finite setX, page 1431.
θ� Dendrogram over the finite setX arising from�r , 1433.
ℓSL, ℓCL, ℓAL Linkage functions, page 1434.
θSL,θAL ,θCL Dendrograms arising from linkage functions, 1434.
T A hierarchical clustering method seen as a mapT : X ÑU, page 1442.
T� A HC method arising from the maximal sub-dominant ultrametric, page 1442.
uθ An ultrametric obtained from the dendrogramθ, page 1440.
θu A dendrogram obtained from the ultrametricu, page 1441.
Ψ A bijective map betweenDpXq andUpXq, page 1439.
∆n Metric space isometric to ann point unit simplex, page 1447.
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Ln Metric space isometric ton points on a line, page 1447.
dZ
H

Hausdorff distance between subsets of the metric spaceZ, page 1455.
TSL,TCL,TCL Standard linkage based HC methods seen as maps fromX toU, page 1442.
disp f q, disp f ,gq Distortion of a mapf and joint distortion of a pair of mapsf andg, page 1445.
dGH Gromov-Hausdorff distance between metric spaces, pages 1445, 1456.
seppXq Separation of the metric spaceX, page 1429.
diampXq Diameter of the metric spaceX, page 1429.
Pn All the n! permutations of elements of the sett1, . . . ,nu.
ΓX,Y A function used to measure metric distortion, page 1456.
pX,d,µq An mm-space,pX,dq a compact metric space,µ a Borel probability measure,

page 1459.
supprµs Support of the probability measureµ, page 1459.
Pµ Probability with respect to the lawµ.

Appendix B. Proofs

Proof [Proof of Proposition 8] The claim follows from the following claim, which we prove by
induction oni:

Claim: For all i ¥ 2, x,x1 P X are s.t. there existsB PΘi with x,x1 P B if and only if x�Ri�1 x1.

Proof [Proof of the Claim] Fori � 2 the claim is clearly true. Fixi ¡ 2.

Assume thatx,x1 P X andB P Θi�1 are such thatx,x1 P B. If x,x1 belong to the same block
of Θi there is nothing to prove. So, assume thatx P A andx1 P A 1 with A � A 1 andA ,A 1 P Θi .
Then, it must be that there exist blocksA � A1,A2, . . . ,As � A 1 of Θi s.t. ℓSLpAt ,At�1q ¤ Ri for
t � 1, . . . ,s�1. Pickx1,y1 P A1, x2,y2 P A2, . . . , xs,ys P As s.t. x1 � x andys� x1 anddpyt ,xt�1q �

ℓSLpAt ,At�1q ¤ Ri for t � 1, . . . ,s�1, see the Figure 21.

A1

A2

A3

x2

y1

x1

y2

x3
y3

As

As 1

ys

xs

xs 1 ys 1

Figure 21: Construction used in the proof of Proposition 8.

Notice that by the inductive hypothesis we havext �Ri�1 yt for t � 1, . . . ,s. It follows thatx�r x1

for r �maxpRi ,Ri�1q. By Proposition 5,r � Ri and hencex�Ri x1.

Assume now thatx�Ri x1. If x,x1 belong to the same block ofΘi there’s nothing to prove since
Θi�1 is coarser thanΘi and hencex,x1 will also belong to the same block ofΘi�1. Assume then
that x P B andx1 P B 1 for B,B 1 P Θi with B � B 1. Let x� x1,x2, . . . ,xs � x1 be points inX with
dpxt ,xt�1q ¤ Ri for t � 1, . . . ,s�1. Also, for t � 1, . . . ,s�1 letBt be the block ofΘi to whichxt
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belongs. But then, by construction

Ri ¥ dpxt ,xt�1q ¥ min
zPBt ,z1PBt�1

dpz,z1q � ℓSLpBt ,Bt�1q for t � 1, . . . ,s�1,

and henceB1 �ℓSL,Ri
Bs. In particular,B1YBs� A for someA P Θi�1 and thusx,x1 belong to the

same block inΘi�1.

Proof [Proof of Lemma 10] Obviouslyuθ is non-negative. Pickx,x1,x2 P X and letr1, r2 ¥ 0 be
s.t. x,x1 belong to the same block ofθpr1q andx1,x2 belong to the same block ofθpr2q. These
numbers clearly exist by condition (2) in the definition of dendrograms. Then, there exist a block
B of θ

�
maxpr1, r2q

�
s.t. x,x2 P B and henceuθpx,x2q ¤ maxpr1, r2q. The conclusion follows since

r1 ¥ uθpx,x1q andr2 ¥ uθpx1,x2q are arbitrary.
Now, letx,x1 P X be such thatuθpx,x1q � 0. Thenx,x1 are in the same block ofθp0q. Condition

(1) in the definition of dendrograms implies thatx� x1.

Proof [Proof of Lemma 12] Pickx,x1 P X and letr :� uθ�px,x1q. Then, according to (3), there
existx0,x1, . . . ,xt P X with x0 � x, xt � x1 and maxi dpxi ,xi�1q ¤ r. From (4) we conclude that then
u�px,x1q ¤ r as well. Assume now thatu�px,x1q ¤ r and letx0,x1, . . . ,xt P X be s.t.x0 � x, xt � x1

and maxi dpxi ,xi�1q ¤ r. Then,x�r x1 and hence again by recalling (3),uθ�px,x1q ¤ r. This finishes
the proof.

Proof [Proof of Theorem 18] PickpX,dq P X . Write TpX,dq � pX,uq andT�pX,dq � pX,u�q.
(A) We prove thatu�px,x1q ¥ upx,x1q for all x,x1 P X. Pick x,x1 P X and letδ :� u�px,x1q. Let
x� x0, . . . ,xn � x1 be s.t.

max
i

dpxi ,xi�1q � u�px,x1q � δ.

Consider the two point metric spacepZ,eq :� ptp,qu,
�

0 δ
δ 0

�
q. Fix i P t0, . . . ,n�1u. Consider

φ : tp,qu Ñ X given by p ÞÑ xi andq ÞÑ xi�1. By condition (I) we haveTpZδq � Zδ. Note that
δ� epp,qq ¥ dpφppq,φpqqq � dpxi ,xi�1q and hence by condition (II),

δ¥ upxi ,xi�1q.

Then, sincei was arbitrary, we obtainδ ¥maxi upxi ,xi�1q. Now, sinceu is an ultrametric onX,
we know that maxi upxi ,ui�1q ¥ upx,x1q and henceδ¥ upx,x1q.
(B) We prove thatu�px,x1q ¤ upx,x1q for all x,x1 PX. Fix r ¡ 0. LetpXr ,drq be the metric space with
underlying setXr given by the equivalence classes ofX under the relationx�r x1. Let φr : X Ñ Xr

be given byx ÞÑ rxsr whererxsr denotes the equivalence class ofx under�r . Let d̃r : Xr �Xr ÑR
�

be given by

d̃rpz,z
1
q � min

x P φ�1
r pzq

x1 P φ�1
r pz1q

dpx,x1q
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and letdr � Lpd̃rq. Note that, by our construction,φr is such that for allx,x1 P X,

dpx,x1q ¥ drpφrpxq,φrpx
1
qq.

Indeed, assume the contrary. Then for somex,x1 P X one has thatdpx,x1q   drpφrpxq,φrpx1qq. But,
from the definition of dr it follows that dpx,x1q   drpφrpxq,φrpx1qq ¤ d̃rpφrpxq,φrpx1qq �
mintdpx,x1q, s.t. x�r x;x1 �r x1u. This is a contradiction sincex�r x andx1 �r x1.

Write TpXr ,drq � pXr ,urq. Then, by condition (III),

upx,x1q ¥ urpφrpxq,φrpx
1
qq (14)

for all x,x1 P X. Note that
seppXr ,drq ¡ r. (15)

Indeed, for otherwise, there would be two pointsx,x1 P X with rxsr � rx1sr and r ¥ dpx,x1q ¥
u�px,x1q. But this gives a contradiction by Remark 13.
Claim: u�px,x1q ¡ r implies thaturpφrpxq,φrpx1qq ¡ r.
Assuming the claim, letx,x1 P X be s.t.u�px,x1q ¡ r, then by Equation (14),

upx,x1q ¥ urpφrpxq,φrpx
1
qq ¡ r.

That is, we have obtained that for anyr ¡ 0,

tpx,x1qs.t.u�px,x1q ¡ ru � tpx,x1qs.t.upx,x1q ¡ ru,

which implies thatu�px,x1q ¤ upx,x1q for all x,x1 P X.
Proof of the claim.Let x,x1 P X be s.t.u�px,x1q ¡ r. Then,rxsr � rx1sr . By definition ofφr , also,
φrpxq � φrpx1q and hence, by condition (III) and Equation (15):

urpφrpxq,φrpx
1
qq ¥ seppXr ,drq ¡ r.

Proof [Proof of Proposition 26] WriteT�pX,dXq � pX,uXq and T�pY,dYq � pY,uYq. Let η �

dGH
�
pX,dXq,pY,dYq

�
and R P R pX,Yq s.t. |dXpx,x1q � dYpy,y1q| ¤ 2η for all px,yq,px1,y1q P R.

Fix px,yq andpx1,y1q PR. Let x0, . . . ,xm P X be s.t.x0� x, xm� x1 anddXpxi ,xi�1q ¤ uXpx,x1q for all
i � 0, . . . ,m�1. Lety� y0,y1, . . . ,ym�1,ym� y1 PY be s.t.pxi ,yiq PR for all i � 0, . . . ,m(this is pos-
sible by definition ofR). Then,dYpyi ,yi�1q ¤ dXpxi ,xi�1q�η¤ uXpx,x1q�η for all i � 0, . . . ,m�1
and henceuYpy,y1q ¤ uXpx,x1q�2η. By exchanging the roles ofX andY one obtains the inequality
uXpx,x1q ¤ uYpy,y1q�2η. This means|uXpx,x1q�uYpy,y1q| ¤ 2η. Sincepx,yq,px1,y1q P R are arbi-
trary, and upon recalling the expression of the Gromov-Hausdorff distance given by (12) we obtain
the desired conclusion.

Proof [Proof of Theorem 28] By Proposition 26 and the triangle inequality for theGromov-Hausdorff
distance,

dGH
�
X,Z

�
�dGH

�
X1,Z

�
¥ dGH

�
pX,uXqq,pX

1,uX1qq
�
.

Now, (1) follows from Remark 25.
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We now prove the second claim. Letδ ¡ 0 be s.t. minα�βWApα,βq ¥ δ. For eachzP Z let αpzq
denote the index of the path connected component ofZ s.t. zP Zpαpzqq. Sincer :� dZ

H

�
X,Z

�
  δ

2, it

is clear that #
�
ZpαqXX

�
¥ 1 for all α P A. It follows thatR� tpx,αpxqq|xP Xu belongs toR pX,Aq.

We prove below that for allx,x1 P X,

uApαpxq,αpx1qq
(I)
¤ uXpx,x

1q
(II)
¤ uApαpxq,αpx1qq�2r.

By putting (I) and (II) together we will havedGH
�
pX,uXq,pA,uAq

�
¤ r.

Let’s prove (I). It follows immediately from the definition ofdA andWA that for ally,y1 P X,

WApαpyq,αpy1qq ¤ dXpy,y
1
q.

From the definition ofdA it also follows thatWApα,α1q ¥ dApα,α1q for all α,α1 P A. Then, in
order to prove (I) pickx0, . . . ,xm in X with x0� x, xm� x1 and maxi dXpxi ,xi�1q¤ uXpx,x1q. Consider
the points inA given by

αpxq � αpx0q,αpx1q, . . . ,αpxmq � αpx1q.

Then,
dApαpxiq,αpxi�1qq ¤WApαpxiq,αpxi�1qq ¤ dXpxi ,xi�1q ¤ uXpx,x

1
q

for i � 0, . . . ,m� 1 by the observations above. Then, maxi dApαpxiq,αpxi�1qq ¤ dXpx,x1q and by
recalling the definition ofuApαpxq,αpx1qq we obtain (I).

We now prove (II). Assume first thatαpxq � αpx1q � α. Fix ε0¡ 0 small. Letγ : r0,1sÑ Zpαq be
a continuous path s.t.γp0q � x andγp1q � x1. Letz1, . . . ,zm be points on imagepγq s.t.z0� x, zm� x1

anddXpzi ,zi�1q ¤ ε0, i � 0, . . . ,m�1. By hypothesis, one can findx� x0,x1, . . . ,xm�1,xm� x1 s.t.
dZpxi ,ziq ¤ r. Thus,

max
i

dXpxi ,xi�1q ¤ ε0�2r

and henceuXpx,x1q ¤ ε0�2r. Let ε0 Ñ 0 to obtain the desired result.
Now if α�αpxq�αpx1q� β, letα0,α1, . . . ,αl PAbe s.t.α0�αpxq, αl �αpx1q anddApα j ,α j�1q¤

uApα,βq for j � 0, . . . , l �1.
By definition ofdA, for eachj � 0, . . . , l �1 one can find achain

Cj �

!
αp0q

j , . . . ,αpr jq
j

)
s.t. αp0q

j � α j , αpr jq
j � α j�1

and
r j�1̧

i�0

WA

�
αpiq

j ,αpi�1q
j

	
� dApα j ,α j�1q ¤ uApα,βq.

SinceWA takes non-negative values, then, for fixedj P t0, . . . , l �1u, it follows that

WApα
piq
j ,αpi�1q

j q ¤ uApα,βq for all i � 0, . . . , r j �1.

Consider the chainC� tpα0, . . . ,pαsu in A joining α to β given by the concatenation of all the
Cj . By eliminating repeated consecutive elements inC, if necessary, one can assume thatpαi � pαi�1.
By constructionWAppαi ,pαi�1q ¤ uApα,βq for i P t0, . . . ,s�1u, andpα0 � α, pαs � β. We will now
lift C into a chain inZ joining x to x1. Note that by compactness, for allν,µ P A, ν � µ there exist
zν

ν,µ P Zpνq andzµ
ν,µ P Zpµq s.t.WApν,µq � dZpzν

ν,µ,z
µ
ν,µq.
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Z µ

Z ν

zµµ, ν

zνµ, νWA µ, ν

Consider the chainG in Z given by

G�

!
x,zpα0pα0,pα1

,zpα1pα0,pα1
, . . . ,zpαspαs�1,pαs

,x1
)

.

For each pointg PG� Z pick a pointxpgq P X s.t. dZpg,xpgqq ¤ r. Note that this is possible by
definition ofr and also, thatxpgq P Zpαpgqq sincer   δ{2.

Let G1 � tx0,x1, . . . ,xtu be the resulting path inX. Notice that ifαpxkq � αpxk�1q then

dXpxk,xk�1q ¤ 2r�WApαpxkq,αpxk�1qq (16)

by the triangle inequality. Also, by construction, fork P t0, . . . , t�1u,

WApαpxkq,αpxk�1qq ¤ uApα,βq. (17)

Now, we claim that
uXpx,x

1
q ¤max

k
WApαpxkq,αpxk�1qq�2r. (18)

This claim will follow from (16) and the simple observation that

uXpx,x
1q ¤max

k
uXpxk,xk�1q ¤max

k
dXpxk,xk�1q

which in turn follows from the fact thatuX is the ultrametric onX defined by (4), see remarks in
Example 7. Ifαpxkq � αpxk�1q we already proved thatuXpxk,xk�1q ¤ 2r. If on the other hand
αpxkq � αpxk�1q then (18) holds. Hence, we have that without restriction, for allx,x1 P X,

uXpx,x
1q ¤max

k
WApαpxkq,αpxk�1qq�2r.

and hence the claim. Combine this fact with (17) to conclude the proof of (II). Claim (3) follows
immediately from (2).

B.1 The Proof of Theorem 30

We will make use of the following general covering theorem in the proof of Theorem 30.

Theorem 34 Let pX,d,µq be an mm-space andXn � tx1,x2, . . . ,xnu a collection of n independent
random variables (defined on some probability spaceΩ, and with values in X) and identically
distributed with distribution µ. Then, for anyδ¡ 0,

Pµ
�
dX
H

�
Xn,supprµXs

�
¡ δ

�
¤ FXpn,δq.
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Proof Consider first a fixed pointx P supprµXs andh¡ 0. Then, sincex1, . . . ,xn are i.i.d., for alli,
Pµpxi P BXpx,hqq � µpBXpx,hqq. We then have:

Pµ

�#
x R

n¤
i�1

BXpxi ,hq

+�
� Pµ

�
n£

i�1

tx R BXpxi ,hqu

�
� Pµ

�
n£

i�1

txi R BXpx,hqu

�
�

n¹
i�1

Pµptxi R BXpx,hquq (by independence)

� p1�µXpBXpx,hqqq
n

¤ p1� fXphqqq
n
. (19)

We now obtain a similar bound for the probability that a ball of radiusδ{2 aroundx is within δ
of a point inXn. Notice that the following inclusion of events holds:#

BXpx,δ{2q �
n¤

i�1

BXpxi ,δq

+
�

#
x P

n¤
i�1

BXpxi ,δ{2q

+
. (20)

Indeed, assume that the eventtx P
�n

i�1BXpxi ,δ{2qu holds. Then,x P BXpxi ,δ{2q for somei P
t1, . . . ,nu. Pick anyx1 PBXpx,δ{2q, then by the triangle inequality,dXpx1,xiq¤dXpx1,xq�dXpx,xiq 

δ{2� δ{2� δ, thusx1 P BXpxi ,δq. Sincex1 is an arbitrary point inBXpx,δ{2q we are done. Now,
from (20) and (19) (forh� δ{2) above, we find

Pµ

�#
BXpx,δ{2q �

n¤
i�1

BXpxi ,δq

+�
¤ p1� fXpδ{2qqn. (21)

Now, consider a maximalδ{4-packing of supprµXs by balls with centerstp1, . . . , pNu. Then,
clearly, supprµXs �

�N
j�1BXpp j ,δ{2q. Such a packing always exists since supprµXs is assumed to

be compact (Burago et al., 2001). Notice thatN, the cardinality of the packing, can be bounded by
1{ fXpδ{4q. Indeed, sinceBXppα,δ{4qXBXppβ,δ{4q �H for α� β, we have

1� µXpsupprµXsq � µX

�
N¤

j�1

BXpp j ,δ{2q

�
¥ µX

�
N¤

j�1

BXpp j ,δ{4q

�
�

Ņ

j�1

µXpBXpp j ,δ{4qq

¥ N � fXpδ{4q
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and the claim follows. Now, we finish the proof by first noting that sinceXn � supprµXs, the
following inclusion of events holds:

tdX
H

�
Xn,supprµXs

�
¡ δu �

#
X �

n¤
i�1

BXpxi ,δq

+
and hence, using the union bound, then (21) and the bound onN, we find:

Pµ
�
dX
H

�
Xn,supprµXs

�
¡ δ

�
¤ Pµ

�
X �

n¤
i�1

BXpxi ,δq

�
� Pµ

�
N¤

j�1

#
BXpp j ,δ{2q �

n¤
i�1

BXpxi ,δq

+�
¤ N � max

j�1,...,N
Pµ

�
BXpp j ,δ{2q �

n¤
i�1

BXpxi ,δq

�
¤

1
fXpδ{4q

� p1� fXpδ{2qqn

¤
1

fXpδ{4q
� p1� fXpδ{4qqn (since fXp�q is non-decreasing)

¤
1

fXpδ{4q
e�n fXpδ{4q (by the inequalityp1� tq ¤ e�t , �t P R)

� FXpn,δq

thus concluding the proof.

Proof [Proof of Theorem 30] For eachnPN, introduce the random variablesrn :�dZ
H

�
Zn,supprµZs

�
andgn :� dGH

�
T�pZn,dZnq,T

�pA,dAq
�
. Fix ζ1 � δA{2. Note that by Theorem 28 (2) oncern ¤ ζ

for someζ¤ ζ1 we know thatgn ¤ rn a.s. Hence, we have

Ppgn ¡ ζq ¤ Pprn ¡ ζq ¤ FXpn,ζq, (22)

where the last inequality follows from Lemma 34.
Meanwhile, ifζ ¥ ζ1 is arbitrary, thenPpgn ¡ ζq ¤ Ppgn ¡ ζ1q. By (22) (for ζ � ζ1) we find

Ppgn ¡ ζq ¤ Pprn ¡ ζ1q ¤ FXpn,ζ1q for all ζ¥ ζ1. Thus, we have found that

Ppgn ¡ ζq ¤
"

FXpn,ζ1q for ζ¥ ζ1.
FXpn,ζq for ζ¤ ζ1.

The conclusion now follows.
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