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Abstract

The topic of the paper is computer testing of (probabiljstiznditional independendgl) impli-
cations by an algebraic method of structural imsets. Théhdea is to transform (sets of) ClI
statements into certain integral vectors and to verify bgraputer the corresponding algebraic re-
lation between the vectors, called fhelependence implicatioWe interpret the previous methods
for computer testing of this implication from the point oéw of polyhedral geometry. However,
the main contribution of the paper is a new method, baselthear programming(LP). The new
method overcomes the limitation of former methods to the lmemof involved variables. We re-
call/describe the theoretical basis for all four methodslved in our computational experiments,
whose aim was to compare the efficiency of the algorithms. &pmeriments show that the LP
method is clearly the fastest one. As an example of possjipécation of such algorithms we
show that testing inclusion of Bayesian network structoreshether a Cl statement is encoded in
an acyclic directed graph can be done by the algebraic method

Keywords: conditional independence inference, linear programmppy@ach

1. Introduction

First, we explain the motivation and mention some previous work. Then weilblesbe aim and
structure of the paper.
1.1 Motivation

Conditional independend€l) is a highly important concept in statistics and artificial intelligence.
Properties of probabilistic Cl provide theoretical justification for the metHddaal computation
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(Cowel et al., 1999) which is at the core of probabilistic expert systeemséh, 2001), successfully
applied in numerous areas. The importance of Cl is given by its interpretatierms ofrelevance
among symptonar variables in consideration (Pearl, 1988); that's why it is crucial ifbabilistic
reasoning. Traditional methods for describing (statistical models of) @itsires use graphs whose
nodes correspond to variables in consideration; it leads to pogtdghical modelqLauritzen,
1996).

Formal properties of probabilistic Cl and the attempts to describe probabiisiiderencein
terms of mathematical logic have been traditional research topics since thTéks. Basic prop-
erties of Cl, now known as th&emi-graphoid propertiesvere accentuated in statistics by Dawid
(1979). Pearl (1988) interpreted those properties, formulated in thedbsimple implications be-
tween Cl statements, as axioms for the relevance relation. MoreoverpRyarsed to view graphs
as “inference engines” devised for efficient representing and miaipg relevance relationships.
His idea (see Pearl, 1988, page 14) was to usmpu list of Cl statement® construct a graph
and then, by using a special graphical separation criterion, to readtfre graph additional ClI
statements, implied by the input list through the axioms. The goal of suchmtfeocedures is
to enable one to determine, at any state of knowledge, what information vamek® the task at
hand and what can be ignored.

Pearl’s intention led him to a conjecture that Cl inference for discretegibstic distributions
can be characterized by the semi-graphoid properties. The conjecsrefuted in Studgn(1989);
actually, it has been shown later that there is no finite system of propeftsesi-graphoid type
characterizing (discrete probabilistic) Cl inference (Styd@892). Thus, the question of computer
testing of Cl inference became a topic of research interest.

In Studery (2005), the method dftructural imsetdas been proposed as a non-graphical alge-
braic device for describing probabilistic CI structures; its advantage grephical approaches is
that it allows one to describe any discrete probabilistic Cl structure. Tleisd® use, instead of
graphs, certain special integral vectors (of high dimension), calteseéts as tools for describing
Cl structures and implementing the “inference engine” for Cl implication. THie@use the cor-
responding algebraic relation between structural imsets, caltgbendence implicatiogives a
sufficient condition for (probabilistic) Cl inference. The topic of this @ajs computer testing of
this implication. The intended use is

e computer testing of implications between CI statements, and
e checking equivalence of structural imsets by an algebraic method.

Another (indirect) source of motivation for this paper is learrBayesian networkBN) struc-
tures by score and search methods (Neapolitan, 2004). The point &/grstBN structure can be
described uniquely by a simple algebraic representative, callestahdard imsetlt was shown in
Studery (2005, Chapter 8) that every reasonable scoring function (fonileguBN structures) can
be viewed as an affine function of the standard imset. This observatios tipee way to the appli-
cation of efficientinear programming LP) methods in this area (Studenfomlel, and Hemmecke,
2010). Nevertheless, if a graphical model of Cl structure is deschipedh imset, a natural question
arises: is there any criterion, a counterpart of the graphical sepatatierion, which allows one to
read from this algebraic representative all Cl statements encoded in itgudsion again leads to
the task of (computer) testing independence implication.
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1.2 Some Former Algorithms

Given structural imsets andv (over a set of variablel), the intuitive meaning of the implication
u— Vv (= uindependence implie§ is that the CI structure induced lycontains the CI structure
induced byv. In Studery (2005, §6.2) two algebraic characterizations of the relation v were
given. They established the theoretical basis for the first-generatiorithtgs for computer testing
of u—v. The limitation of these algorithms is that to implement them fully one needs some addi-
tional information obtainable as the result of computations, which werenpeefbonly for|[N| <5
(Studeny, Bouckaert, and K&ka, 2000).

The theoretical aspects of their implementation were analyzed in Stg604), while their
practical implementations were described in detail in Bouckaert and Sty@607). Basically,
there are two algorithms, which can be interpreted as mutually complementapdpres. One of
them, based on so-called “direct” characterization ef v (see Studeyy 2005, §6.2.1), is suitable
to confirm the implication; that's why it was called tlerification algorithmin Bouckaert and
Studery (2007). The other algorithm, based on so-called “skeletal” charaatenzofu — v (see
Studery, 2005, §6.2.2), fits to disproving the implication; that's why it was namedalséication
algorithm

The main idea of Bouckaert and StuggR007) was to combine both algorithms to get a more
effective tool. Owing to the computations from Stugleet al. (2000), the implemented versions
of both these algorithms are guaranteed to give a decisive answer todapemdence implication
problem for|N| < 5. Nevertheless, the combined version has also been implementgd for6,
although without a guaranteed response to each implication problem. Retemfiyst-generation
algorithms from Bouckaert and Stude(2007) have been applied (in a modified form) in connec-
tion with the lattice-theoretic approach to Cl inference (Niepert, van GuobtGyssens, 2008).

1.3 Aim of the Paper

In this paper, we bring a new view on the problem of testing Cl inferendest, Fve interpret
the previous methods from the point of view of polyhedral geometry. 18kdhis geometric in-
terpretation and thénear programming approackead to new methods and, consequently, to the
second-generation algorithms for testing ClI inference, which appear todoe efficient than the
first-generation algorithms.

More specifically, the geometric view has recently helped to solve an opdrhepr that was
very closely related to the topic of Cl inference (see Stgd2a05, Question 7). It was the question
whether every structural imset iscembinatorial imsetthat is, whether it can be written as the
sum of elementary imsets (= imsets corresponding to elementary Cl statemdmrgjudstion has
been answered negatively in Hemmecke et al. (2008), where an exahgptractural imset over
5 variables was found that is not combinatorial.

This fact naturally leads to a more advanced question motivated by the to@icioference:
what is the so-calledfilbert basisof the cone generated by standard imsets (cf., Styd2o05,
Theme 10). A recent achievement is that the Hilbert basigNoe= 5 has been found as a result
of computations by Bruns et al. (2010). This makes it possible to design twidioztions of the
verification algorithm for 5 variables. In fact, the Cl inference problertraasformed to testing
whether a given imset is combinatorial, respectively structural.

Another importantidea brought by this paper is that every testings task can be re-formulated
as a special LP problem. Note that the LP approach was mentioned as tigbatethod for testing
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this implication already in Studgr(2004, § 5). However, in the present paper, we re-formulate this
implication problem in a different way. The LP approach has the followingathges:

e it allows one to go far beyond the limit of 5 variables,
¢ the second-generation algorithms are much faster than the first-genenati®n

¢ the re-formulation makes it possible to apply highly effective software gges developed to
solve LP problems.

The goal of this paper is to describe the idea of the new approach, tfesponding algorithms and
the experiments, whose aim was to compare the new algorithms (with the old ones)

Moreover, to give an example of the possible use of the algorithms we proesult related
to learning Bayesian networks. We characterize the inclusion of BN stasgctn terms of their
algebraic representatives, standard imsets. Given acyclic direciglis@@andH overN, we show
that the BN structure induced by is contained in the one induced Byiff the differenceus — uy of
their standard imsets is a combinatorial imset, which happens iff it is a struichsetl. Thus, testing
the inclusion can be transformed to testing combinatorial imsets (or struchas). A consequence
of this observation is an elegant algebraic procedure for reading @imstats represented in a
standard imsetig, a kind of counterpart of the graphical separation criterion. Sincettrelard
imsetug is quite simple we have reasons to conjecture that our procedure can beenpdel with
polynomial complexity with respect tiN|.

1.4 Structure of the Paper

Section 2 is devoted to the terminology for Cl inference using structural invekile basic concepts
from polyhedral geometry are recalled in Section 3. In Section 4, the m®thedare using are
explained and, in Section 5, the experiments we performed are desdriligohclusions we discuss
the perspectives and formulate some open problems. Appendices cantarpsoofs, a table of
types of the Hilbert basis elements for 5 variables, an illustrative exampk@mment on possible
interpretation of the LP method.

2. Concepts Concerning CI Inference

The symboIN will be used to denote a non-empty finite setvafiablesin consideration. Given
disjoint sets of variable&, B C N, the juxtapositiorAB will denote their union.

2.1 Conditional Independence

Let P be a discrete probability distribution ovBr specified by its density : Xy — [0,1], where
XN = [Tien Xi is the joint sample space, a product of non-empty finite individual sampleespa
GivenA C N andx € Xy, letxa denote the respective marginal configuratiox ahdpa the marginal
density of p; by conventionpy(—) = 1. Given pairwise disjoinA,B,C C N, we say thatA is
conditionally independent of B givenwdth respect td? if

VXe XN  pauuc(Xausuc) - Pe(Xec) = Pauc(Xauc) - Peuc(XBuc) -
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We writeA LL B|C [P] then and call it &l statementvith respect td®; if P is not material we just
use the symboh 1L B|C. TheCl structureinduced byP consists of all Cl statements valid with
respect td.

Now, letL be a set of Cl statements, callediaput list, andt a Cl statement outside We say
L probabilistically implies tf, for every discrete probability distributio, whenever all statements
in L are valid with respect t® thent is valid with respect td®, too. Classic examples of valid
probabilistic Cl implications are theemi-graphoid propertie@earl, 1988):

Symmetry All B|C = B1LA|C,
Decomposition ALl BD|C — A1LD|C,
Weak union A1l BD|C = ALl B|DC,
Contraction A1l B|IDC & ALlLD|IC = AlLBD|C

A Cl statemeni 1L B|C is calledelementaryf both A andB are singletons and it is calledvial

if either A= 0 or B = 0. Since trivial statements are always valid, it follows from the semi-graphoid
properties that, for any discrete probability distribut®rthe CI structure induced @y is uniquely
determined by the list of elementary Cl statements valid with respdtt to

2.2 Imsets

An imsetoverN is an integer-valued function on the power seNoflenoted byP(N) in the rest of
the papet. It can be viewed as a vector whose components, indexed by subsétsue integers.
An easy example is theero imsetdenoted by 0; another simple example is the ident8ieof a
subsetA C N:

1 if S=A,
%a(S) _{ 0 if SCN, S£A.

An imset associated with a Cl statemént | B|C is then the combination

UaBic) = 0asc+ ¢ — Sac — Ogc.-

The class oklementary imset®ver N), denoted byE(N), consists of imsets associated with ele-
mentary Cl statements (ovhl).

A combinatorial imsets an imsetu that can directly be decomposed into elementary imsets,
that is,
u= z Ky - W for someky € Z .
we E(N)
We denote the class of combinatorial imsets dvdry C(N).

An imsetu overN will be calledstructuralif there existasn € N such that the multiple-uis a
combinatorial imset, that is,

n-u= Z ky-w forsomeneN, ky€Z, .
we E(N)

In other words, a structural imset is an imset which is a combination of elergesrias with non-
negative rational coefficients. The class of structural imsets Nw&ill be denoted byS(N); this

1. The wordimsetis an abbreviation fomteger-valuednultiset
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class of imsets is intended to describe CI structures. Cled@rl){) C C(N) € S(N). One has
C(N) =S(N) for IN| < 4 (Studery, 1991), butS(N) # C(N) for [N| =5 (Hemmecke et al., 2008).

However, one can show (see Stu@leR005, Lemma 6.3) that there exists a smalfest N,
depending ofN|, such thau € S(N) < n,-ue C(N) for every imseu overN. One has, = 1 for
IN| < 4 (StudeR, 1991) and one of the news brought by this paper istthat 2 for [N| =5 (see
Proposition 6 in Appendix B). An open question is what is the exact value fafr every|N| (cf.,
Studery, 2005, Theme 11).

2.3 Independence Implication

Let u,v be structural imsets ové\. We say thati independence impliesand writeu — v if there
existsk € N such thak-u—vis a structural imset:

u—v iff JkeN k-u—veS(N). (1)

Now, givenu € $(N) the corresponding CI structu® (u) consists of all Cl statemen#s L B|C
such thatu — uagicy- The importance of structural imsets follows from the fact that, for every
discrete probability distributioR overN, there exists1 € S(N) such that the ClI structure induced
by P coincides with (u) (use Studeyy, 2005, Theorem 5.2).

An equivalent characterization of independence implication is as followseaRset function
m: P(N) — R is calledsupermodulaiff

m(CUD)+m(CND) >m(C)+m(D) for everyC,D C N.

Such a function can be viewed as a real vector whose components exedraly subsets ™. The
scalar productof mand an imseti overN is then

(mu) = %\‘m(S) -u(s).

The dual definition of independence implication is this (see Std2005, Lemma 6.2): one has
u — v iff, for every supermodular functiom overN,

(muy=0 =— (mv)=0. (2)

The independence implication can be viewed as a sufficient conditiondbapilistic Cl im-
plication. More specifically, given an input listof Cl statements, let us “translate” every statement
sin L into the associated imseg and introduce a combinatorial imsgt= | us. Then one has:

Proposition 1 LetL be an input list of Cl statements ahdnother Cl statement oval. If u. — u
thenL probabilistically implied.

The proof, based on observations from Stydét005), is given in Appendix A. Note that the
above-mentioned condition is a sufficient condition for the probabilistic Cl irapiia, but not a
necessary one. On the other hand, the analysis in the case of folnlesisaggests that it is quite
good approximation of probabilistic implication. Fdf| = 4, one has 22108 (formal) Cl structures
induced by structural imsets, while the actual number of (discrete) pitcbiabCl structures is
18478 éimef:ek, 2007), and there are only about 20 types of probabilistic Cl implicatiet are
not derivable through Proposition 1.
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The reader may be interested in whether there exists a limit for the fastdd). If we assume
that the “input’u is a combinatorial imset and the “output’an elementary one then such a limit
exists. One can show (cf., Studer2005, Lemma 6.4) that the ledste N exists such that

u—v iff Kk.-u—veS(N).

It depends onN|: k. =1 for [N| < 4 andk, = 7 for |[N| = 5 (Studes et al., 2000). It is an open
question what is the exact valueloffor [N| > 6 (cf., Studeg, 2005, Theme 12).

2.4 Bayesian Network Translation

Bayesian networkéPearl, 1988; Neapolitan, 2004) can be interpreted as graphical maid€ls
structures assigned to acyclic directed graphs. More specifically) givexcyclic directed grap@
havingN as the set of its nodes, the corresponding graphical separation critgmighe definition
see Lauritzen, 1996, § 3.2.2) defines the collecti¢@) of Cl restrictions given bys. The corre-
sponding statistical model then consists of probability distributiongpthat areMarkovian with
respect to Gthat is, satisfy those CI restrictions. Given two acyclic directed gr&paadH over

N, we say they arendependence equivaleiit7(G) = I(H); it essentially means they define the
same statistical model.

Given an acyclic directed grapghoverN, thestandard imsetor G, denoted byg, is given by
the formula

Ug = O *50+'Zw{6pae(i) — O(iyupag(i) } (3)
IS

where pg(i) ={j € N; j — i in G} denotes the set gfarentsof a nodei in G. Lemma 7.1
in Studery (2005) says thatig is always a combinatorial imset af (ug) = I(G). Thus, the
graphical separation criterion applied ®can be replaced by an algebraic criterion applied to
ug. Moreover, Corollary 7.1 in Studgn(2005) adds thatic = uy iff G andH are independence
equivalent. That means, the standard imset is a unique representatine exfuivalence class of
graphs.

Note thatug need not be the only combinatorial imset definin@); it is the simplest such
imset, a kind of “standard” representative. Using standard imsets weasily eharacterize the
inclusion for Bayesian networks:

Proposition 2 Let G andH be acyclic directed graphs ovi ThenI(H) C I(G) if and only if
uc — un € C(N), which is also equivalent tag — uy € S(N).

Proof The equivalencé(H) C I(G) < ug—uy € C(N) is proved in (Studepn 2005, Lemma 8.6).
Clearly, ug —uy € C(N) impliesug —uy € S(N). Conversely, ifus —uy € S(N) then, by (1),
Ug — uy and it makes no problem to shaw (uy) € M (ug). This meand (H) C 1(G). [

We have some reasons to conjecture that testing whether a difference efamdard imsets
is a combinatorial imset can be done with polynomial complexitjNjy see Conclusions for the
discussion. Moreover, let us emphasize that as far as we are awaherefis no direct graphical
characterization of independence inclusion; in our view, it is quite difftetgk to describe this in
graphical terms. Note that indirect transformational graphical desarnipfimdependence inclusion
by Chickering (2002) does not provide an algorithm for testing the inatufio a given pair of
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acyclic directed graph& andH. Of course, a different situation is with testing independence
equivalence, in which case a simple graphical characterization andtlgsiare available.

Proposition 2 has the following consequence, which allows one to replaggaphical separa-
tion criterion by testing whether an imset is combinatorial.

Corollary 3 Given an acyclic directed graghoverN, the clasd (G) coincides with the collection
of Cl statement#\ 11 B|C such thatig — uapic) € C(N), respectivelyus — uagic) € S(N).

Proof It is enough to construct, for every Cl statemeAtsl B|C, an acyclic directed grapH
such thatua gic) = Uy To this end, consider a total order of nodedim which C is followed A,
B andN \ ABC, direct edges of the complete undirected graph ®Vveiccording to this order and
remove the arrows betwednandB. |

Of course, as mentioned above, there are elegant graphical separaéda for testing whether
a Cl statement is represented in an acyclic directed graph. There amubts dhat these criteria
can be implemented with polynomial complexity| M| (see Geiger, Verma, and Pearl, 1989) and
that they are also appropriate for human users. However, our metbpdsad in Corollary 3 may
appear to be suitable for computer testing, in particular in the situation wheratresn network
structure is internally represented in a computer by the standard imset, gestdjin Studen
Vomlel, and Hemmecke (2010).

3. Basic Concepts from Polyhedral Geometry

Here we recall some well-known concepts and facts from the theoryrefesgolyhedra. Proofs
can be found in textbooks on linear programming, for example Schrijv&6(19

Vectors are regarded as column vectors. Given two vestorstheir scalar product will be
denoted either byx,y) or, using matrix multiplication notation, byTy, wherexT is the transpose
of x. The inequalityx <y is meant in all components, algrespectivelyl, is a vector all whose
components are zeros, respectively ones.

3.1 Polyhedra, Polyhedral Cones and Farkas’ Lemma

Systems of linear inequalities appear in many areas of mathematica. heeid x n-matrix andb
ad-vector. The set of all solutions IR" to the linear systemx < b is called apolyhedron If the
defining matrixA and the right-hand side vectbrare rational, the polyhedron is said tordagional.
Polyhedra defined via homogeneous inequalifies< 0 are callecpolyhedral cones

A non-trivial fundamental result in polyhedral geometry states thayey@yhedral cone can
equivalently be introduced as tleenical hullcone(V) of finitely many pointsv C R", that is, the
set of all finite conical combinatiorig A; - v; (with A; > O for allt) of elements; € V (see Schrijver,
1986, Corollary 7.1a). If the polyhedral cone&ional then it is the conical hull of finitely many
rational points. A classic algorithmic task is to change betweerirther descriptionrC = cone(V)
and theouter descriptiorC = {x € R"; Ax < 0}, and back. Standard software packages that allow
one to switch between both descriptions are for exampl® 44ti2 team, 2008)cbD (Fukuda,
2008), or ®NVEX (Franz, 2009).

In our studies below, it will be important to decide whether a given polydre8ris empty or
not. Clearly, a certificate fap = {x € R"; Ax < b} # 0is anyv € P. Givenv € R", we can easily

3460



EFFICIENT ALGORITHMS FORCONDITIONAL INDEPENDENCEINFERENCE

check whetheAv < b and thusy € P. However, is there also a simple certificate for the case that
P = 0? Indeed, there is such a certificate (see Schrijver, 1986, Corollaay. 7.1

Lemma 4 (Farkas’ lemma) The systemix < b is solvable iff everys € RY with ATu =0, u>0
satisfieuTh > 0.

Thus, anyu € RY satisfyingATu = 0, u > 0 anduTb < 0 gives a certificate tha? is empty.
Indeed, giverx € P, write 0=0Tx = (ATu)Tx = (UTA)x = uT(Ax) < uTb < O to get a contradiction.

To decide using a computer whethee 0 or not, we can make use of well-developed tools
from the theory of linear programming (see below, Section 3.4).

3.2 Dimension and Faces of a Polyhedron

The dimensiordim(P) of a polyhedrorP C R" is the dimension of itaffine hullaff (P), which is
the set of all finite affine combinatiorig A - v¢ (with A; € R for all t and 5 A; = 1) of elements
Vi € P. By convention, the dimension of the empty seti$. A polyhedron idull-dimensionalif
dim(P) =n.

Givenv € R" anda € R, we call the inequalityv,x) < a valid for a polyhedrorP C R" if it is
satisfied for every € P. If the inequality(v,x) < a is valid for the polyhedrorme, we call the set
F=PnN{xeR" (v,x) =a} afaceof P.

The setd andP are always faces of a polyhedrendefined by the valid inequalitig®,x) < 1
and(0,x) < 0, respectively. Every polyhedranhas only finitely many faces and all of them are
polyhedra, too (see Schrijver, 1986, §8.3). They can be classifigbddiydimension. Faces of
dimension 0 are points iR", calledvertices Faces of dimension 1 are calledges these are
either line-segments, half-lines or lines. Faces of dimensiofiRlim 1 are calledacets

If a polyhedron is full-dimensional then facet-defining inequalities estallisimique (up to
positive scalar factors) inclusion-minimal inequality system defimndor details see Schrijver,
1986, §8.4). Since every (proper) fageof P is the intersection of facets containing it, facets
implicitly determine all faces.

A polyhedronP = {x; Ax < b} is pointedif the only vectory with Ay = 0 is the zero vector
y = 0 (see Schrijver, 1986, §8.2). A non-empty pointed polyhedron has stt dee vertex. A
pointed polyhedral con€ has just one verteg, its edges are half-lines, callesttreme raysNon-
zero representatives of the extreme ray€dhen provide its inclusion-minimal inner description
(Schrijver, 1986, §8.8).

3.3 Hilbert Basis

A lattice point(in R") is an integral vectox € Z", that is, a vector whose components are integers.
If Cis a pointed rational polyhedral cone then each of its extreme rays coataims-zero lattice
point; this lattice point is unique if it imormalized that is, if its components have no common
integer divisor. Then one can show that every lattice poirt iis a linear combination of these
unique representatives (of extreme rays) with non-negative ratiaedficdents (Studepy 1993,
Lemma 10). However, in general, not every lattice point ican be obtained as such a combination
of those representatives with non-negativiegral coefficients. Therefore, the following concept is
important.
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By aHilbert basisof a rational polyhedral cone (see Schrijver, 1986, § 16.4) is meant a finite
setH C C of lattice points such that every lattice point@ris a non-negative integer linear combi-
nation of elements in. A relevant result in polyhedral geometry (Schrijver, 1986, Theotér)
says that every rational polyhedral cone possesses a Hilbert halsescone is in addition pointed,
there is a unique inclusion-minimal Hilbert basis. Clearly, any Hilbert baststads to include the
above mentioned normalized representatives of extreme rays of

Again, it is a challenging algorithmic task to compute the minimal integral Hilbert ldsas
given (pointed) rational polyhedral cone. However, there are astdtware packages that allow to
do so in some simpler cases, for exampte24(4ti2 team, 2008) or NRMALIZ (Bruns, Ichim, and
Soger, 2009).

3.4 LP Problems and the Simplex Method

A linear programmingLP) problem is the task to maximize/minimize a linear functior (c,X),
wherec € R", over a polyhedro® = {x € R"; Ax < b}. A classic tool to deal with this problem is
the simplex methadNevertheless, it is not the aim to describe here the details of this method; they
can be found in textbooks on linear programming; for example Schrijv&6(1®hapter 11).

We just recall its main features to explain the geometric interpretation. The @esion of the
simplex method (see Schrijver, 1986, § 11.1) assumes one has a vertepahied polyhedron)
P as a starting iteration. The basic idea is to move from vertex to vertex alongltfes ®fP
until an optimal vertex is reached or an edge is found on which the lineatidétnis unbounded.
Each particular variant of the simplex method uses a sppiiating operationto choose the next
iteration, which should have a better value of the linear objective functionttreaprevious one.

However, it may be the case that one is not sure whether the polyhedsamon-empty. Then
the simplex method has two phases. In Phase |, one finds at leastomecalled afeasible vertex
solution provided that it exists, or one concludes tRat 0 otherwise. If a feasible solution is
available, Phase Il consists of finding an optimal solution as mentioned .aBastandard trick to
deal with Phase | is to re-formulate it as an auxiliary LP problem, in whichsidsavertex solution
is known.

For example, consider the task to optimize a linear function over a specidigusiyn of the
formQ = {x € R"; Ax =b,x > 0}, whereA € RI*M andb € RY, which task is, in fact, equivalent to
the general case (see Schrijver, 1986, § 7.4). Moreover, onessama without loss of generality
b > 0 here? Then the auxiliary LP problem is as follows:

min{(1,2); (x,z) e R"Y Ax+z=b, x>0, z>0}. (4)

This LP problem has the vect(,b) as a feasible vertex solutidand it has the property that its
optimal value(1,z) is 0 iff (x,z) = (x,0) andx € Q. Thus, testing whether the polyhedr@nis
non-empty can be done in this way.

4. Methods

In this section, we describe a few methods that can be used to test Chirderdhe task is as
follows. An input listL of elementaryCl statements and another elementary Cl staternenér

2. Indeed, if tha-th component ob is negative, one can replace thth row of A and thei-th component ob with
their multiples by—1.
3. Actually, (0,b) is a vertex of the region, defined by valid inequalityx) > 0.
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N are given and the goal is to decide whetber—~ u; (cf., Proposition 1). We are going to give a
computational comparison of these methods|fgr= 5 in Section 5.1 to see which of them is the
fastest.

4.1 Method 1: using Skeletal Characterization

This is the first ever implemented method for testing independence implicatione($tet al.,
2000, §7.4). The motivation source for this method was the dual definitijpof (@dependence
implication in terms of supermodular functions (see Section 2.3). The pointtignh@), written
in contrapositive form &%

(mv)>0 = (mu)>0,

one can limit oneself té-standardized supermodular functions 2(N) — R, that is, to those that
satisfym(S) = 0 if |§ < 1. This is a pointed rational polyhedral cone. The class of normalized
integral representatives of its extreme rays was called-8ieletorin Studery (2005) and denoted
by K;(N).

Theskeletal characterizationf the implicationu — v, for u,v € §(N), is as follows:

vme K;(N) (mv)>0 = (mu)>0 (5)

(see Studen 2005, Lemma 6.2). Théskeleton was computed f¢iK| = 5 (Studesy et al., 2000):
it consists of 117978 imsets, which break into 1319 permutational types.

Thus, the corresponding algorithm consists in checking whether edhk ofiplications in (5)
is valid or not. To disprove the implication — v it is enough to find at least oma € %5(N)
violating (5); to confirm it one has to check that all of them are valid. Byedrd) the elements of
the /-skeleton such that those € X 7(N) which are more likely to cause violation are tried earlier
one can speed up the disproval (but not the confirmation). This siegessort elements ok (N)
on the basis of zeros xm,w) ; w e E(N)} (for details see Bouckaert and StugieR007, § 3.1).

Example 1 To illustrate the method consider a trivial example with=N{a, b, c}: take the input
L={allbl|c,allc|0}andt: all b|0. We already know by semi-graphoid properties that
L probabilistically implies t (see Section 2.1). However, the aim of this example get this
conclusion through Proposition 1 (see Section 2.3) using the skeletadesization. We have

UL = Ugaple) + Uiaco) = Oabc—Obc—Ba+8p and Y = Uspjo) = Oab—8a—Op+0p.

In the case of 3 variables, thieskeleton has 5 elements, listed in rows of Table 1. The columns in
the table correspond to structural imsetsand y , the items are corresponding scalar products.
The condition (5) evidently holds forvu; and u=u,. Thus, 4 — u;.

The interpretation of the method from the point of view of polyhedral gegnistas follows.
The independence implication can equivalently be defined in terms of (inolo§jdacets of the
coneR (N) =cone(‘E(N)), the cone spanned by elementary imsets.H,etenote the face ak (N)
generated by € S(N) C R (N), that is, the least face & (N) containingu (= the intersection of
all faces of® (N) containingu). Then, foru,v € $(N), one hawuu — v iff the face R, containsv,
which meanskF, C F, (see Studej 2005, Remark 6.2).

4. Note thatm,u) > 0 for anym supermodular and € $(N) (see Studej 2005, Proposition 5.1).
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U = Oap — 8a — Op +p | UL = Oapc— Opc — Oa + Op
m = 6abc 0 1
My = dapc+ Bab 1 1
Mg = dapc+ Oac 0 1
My = dapc+ Opc 0 0
Mg = 2 dapc+ Oab + Oac + Onc 1 1

Table 1: Scalar products with elements&if(N) for N = {a, b, c}.

The method is based on the computation of all facets of the &giN. These facets correspond
to the extreme rays of the (dual) conefe$tandardized supermodular functions. Thus, basically,
one is checking whether every facet containi@lso containg,. The problem with this approach
is that it can hardly be extended beyond five variables because comfheasgfacets seems to be
computationally infeasible fdiN| > 6.

4.2 Method 2: Racing Algorithms

The idea of the paper (Bouckaert and Stud&®07) was to combine two algorithms for testing the
independence implicatiom— v. One of them, called theerification algorithm was based on (1)
and appeared to be suitable to confirm the implication provided it holds. Howiewmay spend a
long time before it gives a response if the implication does not hold. The atherithm, called
thefalsification algorithmand based on (2), was designed to disprove the implication if it does not
hold. However, it is not able to confiron— v provided it holds.

The combined procedure starts with two threads, the verification one afagHieation one.
Once one thread finds its proof, it stops the other and returns its outcdmegeagproach makes it
possible to go beyond 5 variables, but may not give a decisive resgionmeasonable time) to some
complex implication problems. On the other hand, empirical evidence fromkaeuicand Studen
(2007) suggests that this method is, on average, faster than the metbhdbetbm Section 4.1.

4.2.1 VERIFICATION: DECOMPOSING INTOELEMENTARY IMSETS

Consider a combinatorial imsete C(N), an elementary imsetc £(N) and the task to decide
whethemu — v. Thatis, by (1), testing wheth&ru— vis a structural imset for somec N. Observe
that (1) is equivalent to

dleN l-u—ve (C(N). (6)

Indeed,C(N) C S(N) gives (6}=(1). Now, (1) implies that- (k- u—v) is a combinatorial imset
for somek,n € N (see Section 2.2). A;&1—1)-ve C(N), it gives(n-k)-u—ve C(N). Moreover,
it follows from concluding remarks in Sections 2.2 and 2.3 thak, is an upper limit forl in (6).
In general, we do not know what is the least such upper limit féven in caséN| = 5, we only
know it is a number between 7 (see Stuglebal., 2000) and 14 2-7 = n, - k,.

The characterization (6) allows one to transform testing independence a@timgido the task
to decide whether a given candidate imget | - u— v is combinatorial. A combinatorial imset
may have many decompositions= y e () kw- W, ky € Z into elementary imsets. However, the
numbery e £(ny kw Of summands, called theegreeof y, is the same for any such decomposition
(see Studen 2005, §4.2.2). Because there is a simple formula for the degree ofridelate imset
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y, the search space, the tree of potential decompositions, is known. Hais spuld be big, but it
can be limited by introducing additional sanity checks, which allow one to ¢gbatfie blind alleys
in the tree. Moreover, the search can be guided by suitable heuristiadhiarzhn speed up the
resulting algorithm (for details see Bouckaert and Stgd2a07, § 3.2).

The decomposition itself is quite fast, but what can slow down the whole guoeés the factor
| from (6), depending on a particular pairv. The point is that the degree of a candidate imset
y =1-u—v grows (linearly) withl; consequently, the size of the corresponding tree of possible
decompositions grows exponentially withTypically, if u — v holds then one often finds a decom-
position ofy with | = 1. However, forjN| = 5, there are a few cases when the decomposition of
exists for 1< | <7 and not fol — 1 (for examples see Studget al., 2000, §4.3). In these cases
and also whemn — v does not hold one has to search through a huge space, which makeshbd me
infeasible for efficient disproving implications.

Example 2 Consider N= {a,b,c,d}, the input list
L={allbjc,allc|d,alld|b,bllclad}, (7)

and another Cl statementta LL c|b. We are going to show u— u; by the decomposition method.
Actually, we show that (6) holds with4 1. More specifically, we have

U = Waplc) T Wacld) T Uadlb) + Uib,clad)
= Oabcd+ Babc— Oab — Oac — Opc — Obd — Ocd + O + Oc + Od ,

and, as U= Oapc— Oap — Opc + Op, We know that
y=1-UL— U = Oabcd— Oac — Opd — Ocd + Oc + Oq -

The task is to test whether y is a combinatorial imset. If this is the case therdghsedf y must be
3, which means we search for a decomposition into elementary imsets withr3agwds. Clearly,
at least one summand v has to satisfghcd) > 0. There are 6 elementary imsets ofetb,c,d}
with this property and two of them are excluded by sanity checks. For@gafar V = u¢ gjay and

y =y—-Vonehas-1=yqncrY(T) <0, which isimpossible for a combinatorial imset in place
of y. However, if we subtradt = U, pjcq) then

Y=Y —V=08acd+ Obcd — Oac — Obd — 2 Ocd + O + Od

is a good direction. Again, at least one of two summands v in the seadgueunposition of must
satisfy (acd) > 0 and the choice ¥ u, g/ leads to the final decomposition

Y = Waplcd) + Uadlc) T Uib,cld) -
Thus, the implicationu— u; has been confirmed by the decomposition method.

To explain the geometric interpretation (of the method) note that the €ghNg = cone(‘E(N))
is slightly special. The lattice points in this cone are just structural in¥sktereover, there exists

5. As mentioned in Section 3.3, lattice pointsRri{N) are just non-negative rational combinations of elementary imsets
E(N), that is, structural imsets (see Section 2.2).
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a hyperplane irR?”(N) which intersects all extreme rays &f(N) just in its normalized integral
representative® (N) and these are the only lattice points in the intersection of this hyperplane with
R.(N). In particular, every structural imset belongs to one of parallel hyaees (to this basic one)
and its “degree” says how far it is from the origin (= zero imset). Now, thalition (1) means that

at least one multiple afi (by k € N) has the property that it remains a lattice point within the cone
R (N) even ifvis subtracted. The condition (6) is a minor modification of (1): it requires a nheiltip

of u minusv is a sum of elementary imsets (with possible repetition). The algorithm, therefore
looks for the decomposition and the degree (of the candidate ihsetves as the measure of its
complexity.

4.2.2 FALSIFICATION: RANDOMLY GENERATING SUPERMODULAR FUNCTIONS

Falsification is based on the characterization (2). To disprove the implicatiew it is enough to
find a supermodular functiom: (N) — R such thatm,u) = 0 and(m,v) > 0. Actually, one can
limit oneself to/-standardized integer-valued supermodular functions, thediermodular imsets
These imsets have a special form which allows one to generate them randbmnigea is

e to randomly generate a collection of subsetdlof

¢ to assign them randomly selected positive integer values
(and the zero values to remaining sets), and

¢ to modify the resulting function to make it a supermodular imset.

The details of this procedure can be found in Bouckaert and Sju@®07, § 3.3). The procedure
allows one to disprove (= falsify) the implicatian— v even for|N| > 6, but it is clearly not able to
confirm it provided it holds. Therefore, it has to be combined with a vetifio procedure.

Example 3 Consider N= {a,b,c,d} and the same input list (7) as in Example 2, but a different ClI
statementt b LL c|a to be derived. If our random procedure generates the supermoihotzt

M = 2 dapcd+ Oabc+ Oabd + Oacd + 2 Obed + Obc + Obd + Ocd

then one can observe than,u. ) = 0 while (m,uy, ¢ja) = 1. In particular, by (2), the respective
implication is not valid:—~(u. — Uy, ¢ja))-

The geometric interpretation of the algorithm is similar to the interpretation of the ché&thm
Section 4.1. Supermodular functions correspond to faces of the®¢9N¢. Thus, the procedure
consists in random generating facesffN) and the aim to find a face & (N) which containau
but notv.

4.3 Method 3: Decomposition via Hilbert Basis

An alternative to testing whether an imset is combinatorial is testing whether itcdwtal. Since
structural imsets coincide with the lattice points in the c& (&) = cone(‘£(N)), each of them can
be written as a sum (with possible repetition) of the elements of the Hilbert &3 of the cone
R .(N) (see Section 3.3). FON| < 4 one has#(N) = E(N) (Studery, 1991); however, the results
from Hemmecke et al. (2008) imply that the set of elementary imsets doesmgittate a Hilbert
basis of® (N) for |[N| > 5.
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Computation of the Hilbert basis is a very hard task. Recently, the Hilbeid b&® (N) for
IN| =5 has been obtained as a result of sophisticated computations (Brun2@1t8@)., In Appendix
B we provide a list of its representatives. Altogether, the obtained Hillzesisof R (N) has 1300
elements, falling into 35 (permutation equivalence) types.

Thus, having the Hilbert basis & (N) at hand, one can test the independence implication
u—vfor uve S(N) through (1): the task is to find out whether there exists a decomposition of
y = k-u—v into Hilbert basis elements for sonkec N. This is analogous to the decomposition
approach from Section 4.2.1, where the set of elementary iri&t$ was used instead o (N).

Thus, the interpretation of this new method is the same, the difference is tHzdweenow a
wider class of leaves of the (potential) decomposition tree. On the other trenddvantage of
the Hilbert basis decomposition fiX| = 5 should be that, in some complex cases, a much simpler
decomposition of may exist that involves also the elements’6fN) \ Z(N) (simpler = with a less
number of summands). We are also sure that the upper limit for the cokstonly k, = 7. In
particular, the depth of the tree of potential decompositions should be smdiitz the tree itself
is expected to be wider.

4.4 Method 4: Linear Programming

The basic idea is to re-formulate (the definition of) independence implicatiomis t&f the (pointed
rational polyhedral) con& (N) = cone(E(N)) spanned by elementary imsets. More specifically,
givenu,v € S(N), the condition (1) can be expressed in this way:

u—v iff Jke[0,0) k-u—veR(N). (8)

Indeed, sincg(N) C R (N) the implication (13-(8) is evident. Conversely, provided (8) holds with
k, it holds with anyk’ > k because® (N) is a cone andk’' — k) -u € ® (N). Therefore, there exists
K e Nwithk-u—ve R (N). Ask'-u—vis an imset, it belongs t§(N), and (1) holds.

The geometric interpretation of the condition (8) is clear. It means that thiefagif-line) with
the origin in—v and the direction given by intersects the con® (N). The point is that testing
whether this happens can be viewed as an LP problem:

Lemma 5 Givenu,v € S(N) one hasi — v iff the system of equalities

Aw-W(S) —k-u(S) = —Vv(9 foranySC N, 9)
weE(N)

has a non-negative solutioniy, w € E(N) andk.

Proof The cone® (N) consists of conic combinations of representatives of its extreme rays, that
is, of elementary imsets. Thus, (8) can be re-written as the requiremethiefexistence ok > 0
andAy > 0 withk-u—v =3¢ n)Aw-W. This imset equality, specified for a8C N, yields (9).H

Non-negative solutions to (9) form a polyhedron of the tqpe {x; Ax =b, x >0}, A € R4,
b € RY. Indeed, the rows oh correspond to subsets Nf while the columns to elementary imsets
and the factok. Thus,d = |P(N)| = 2N andn = |£(N)|+ 1= (§) - 2N-2 1+ 1. As explained in
Section 3.4, testing whetheéris non-empty is equivalent to solving the auxiliary LP problem (4) in
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(n+d)-dimensional space. An illustrative example of the application of this LP methibe icase
IN| = 3 is given in Appendix C.

The advantage of this approach is that it is not limited to a particular numbariables as the
previous ones. To get an impression of the implication problem complexityrat, et us have a
look at Table 2. Clearly, these (comparably small) linear programs shouwddlzable quickly in
practice. We give computational evidence to this claim in Section 5.2. Anotirement is that
this LP method can be interpreted as a kind of decomposition procedutegangsto the one from
Section 4.2.1); see Appendix D for an explanation.

N[ 3 4 5 6 7 8 9 10
ntd |15 41 113 305 801 2049 5121 12545

Table 2: The dimensions of LP problems to be solved in order to decide.

Let us finally note that there are alternative ways to re-formulate testing-efv as an LP
problem. For example, consider the cong-atandardized supermodular functions. We know the
outer description of this (pointed) cone:

Ko(N) = {me R*N); m(S)=0for |5 <1, (mw)>0forwe E(N)}.

Since, in (2), one can limit oneself festandardized supermodular functions;* v is equivalent to
the requirement
sup{(mv); me K¢(N), (mu) =0} = 0. (10)

This is an LP problem with a feasible regib.hus, Phase Il of the simplex method can be applied
to solve it. Note that (10), mentioned in Stugef2004, §5), can be viewed, after appropriate
modifications, as the dual LP problem to (9) in the sense of the LP theomeves, we omit the
details in this paper.

5. Experiments

In this section, we describe the results of our computational experimentpelé@med two sepa-
rate bunches of experiments. One of them was done in New Zealand aaithtieas to compare
various methods in caghl| = 5 (see Section 5.1).

As the result was that the LP method performs best in fdse- 5, the aim of the other group
of experiments (see Section 5.2), done in Germany, was to test the LPaapprocaséN| > 5.
These latter experiments were based on the commercial optimization softwaEeEXJBM llog
team, 2009).

5.1 Comparison for Five Variables

Empirical evaluation of the methods can give insight in the practical behakiibe various meth-
ods. First, we considered the case of five variables, so that we caraoetig new methods with
techniques based on skeletal representations (see Section 4.1) p€henextal set up from Bouck-
aert and Studen(2007) was used for the five-variable tests. In short, a thousaddmamput lists

6. Indeedm= 0 is a feasible solution to (10).

3468



EFFICIENT ALGORITHMS FORCONDITIONAL INDEPENDENCEINFERENCE

containing 3, up to 11 elementary Cl statements were generated and, liceleaentary Cl state-
ment outside the input list, it was verified whether it was implicated or not. Sththesand 3-input
cases result in verification of a thousand times the total number of elementstat€@nents (80 for
5 variables) minus the 3 statements already given in the input list, that is X1@&ID- 3) = 77000
inference problems. Table 3 lists the numbers of inference problems in itolastn.

The algorithms considered were:

e Skeletal algorithm and sorted skeletal algorithm (see Section 4.1).

e Racing algorithms (see Section 4.2). There are situations where both tfeatien and the
falsification algorithm perform poor, resulting in unacceptable running tifhbese outliers
distort the typical behavior of the algorithm, so we put a cap on total calcolttiee and re-
port the number of problems where a solution is not found within this deaditteeanumber
of unresolved cases in Table 3.

¢ Hilbert basis(HB) decomposition algorithm (see Section 4.3). Initial experimentation stiowe
that the HB approach is very good at verifying the implication. Howevegmé CI state-
ment is not implied, it takes a long time to traverse the search space. So, thgetiene
for the HB approach is expected to be very poor. Again, we cappedIdveed time for the
algorithm to run and when no solution was found within that time the problem svameked
unresolved.

e The observation that the HB algorithm performs well for implication but podiadsification
immediately gives rise to another algorithm where the HB decomposition algoriidrfak
sification algorithm are raced against each other. This algorithm is calladilibert racer.
Like the racer algorithm, this algorithm was time constrained.

e Now we have two algorithms that appear to perform well for verification, natural to
combine them with the falsifier and thus get a three horse race. This algosittatied the
triple racer, and it is time constrained as well.

e The last algorithm under consideration is the LP method described in Section 4

Input Hilbert Hilbert triple

size capped racer racer racer Total
3 5127 (6.7%)| O (0%) 0 (0%) 0 (0%) | 77000
4 10098 (13.3%)| O (0%) 0 (0%) 0 (0%) | 76000
5 12793 (17.1%)| O (09%0) 6 (0.01%)| 9 (0.01%)| 75000
6 15139 (20.5%)| 11 (0.01%)| 28 (0.04%)| 30 (0.04%)| 74000
7 16475 (22.6%)| 38 (0.05%)| 110 (0.15%)| 88 (0.12%)| 73000
8 18042 (25.1%)| 85 (0.12%)| 238 (0.33%)| 215 (0.30%)| 72000
9 18308 (25.8%)| 181 (0.25%)| 377 (0.53%)| 306 (0.43%)| 71000
10 | 17738 (25.3%) 211 (0.30%)| 489 (0.70%)| 386 (0.55%)| 70000
11 | 16798 (24.3%)| 230 (0.33%)| 495 (0.72%)| 349 (0.51%)| 69000

Table 3: Numbers of inference problems that were not resolved due tatitse-

All algorithms were implemented in Java, run under Sun Java 1.B. server mode on a
Intel dual Core 3.00GHz CPU with 2GB memory, though memory is not an issuanly of the
algorithms.
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5.1.1 RESULTS ANDDISCUSSION

Table 3 shows the number of unresolved cases when time was cappeé@aint ger problem.
Only the algorithms that did not resolve all problems are shown there. Thbers in brackets are
percentages, the last column the total number of problems for a particulersizp.

Given the total number of problems (around 70 thousand per input sizefesfiricted calcu-
lation took around 20 hours per input size. Clearly, the HB decompositionoshethen capped
leaves a large proportion of implication problems unresolved, up to a gdartdre larger input
sizes.

Combining the HB algorithm with the falsification algorithm reduces the numbenmefsolved
problems to less than a third of a percent. Comparing the Hilbert racer withritfiead racer al-
gorithm shows that more problems are resolved in the time available, so the ¢dBgesition
algorithm appears to perform better at resolving problems. Finally, the teipé¥, which combines
both algorithms, performs in between the two algorithms in terms of number ofalaesl prob-
lems. At first sight, one would expect the triple racer to perform at leagbad as the Hilbert racer,
however, since the test was run on a dual core processor insteachadtane with at least three
cores, the various algorithms were too busy battling for processorsaanddost time to make the
deadline.

User time
skeletal Hilbert  triple

Input size | skeletal sorted Hilbert racer racer racer LP
3 286 351 5955 132 14 163 29
4 680 648 10320 207 23 318 3L
5 1476 1122 12868 414 107 667 32
6 2748 1713 15225 707 1418 1050 32
7 5385 2652 16584 1690 5601 1915 32
8 8583 3625 18171 2884 12145 3159 32
9 12086 4771 18476 6099 24274 4602 32
10 16180 6439 18089 19238 28227 11919 B1
11 19530 8225 17507 20962 32452 17145 3B1

Elapsed time
skeletal Hilbert  triple

Input size | skeletal sorted Hilbert racer racer racer LP
3 288 353 12745 90 28 152 31
4 681 650 16471 162 38 277 3P
5 1477 1124 18636 313 105 562 33
6 2749 1714 20606 516 876 855 33
7 5385 2652 21665 1016 3120 1548 34
8 8582 3625 22977 1889 6864 2522 34
9 12085 4771 23156 4610 13509 3693 B3
10 16177 6439 22749 17080 16350 10509 B3
11 19528 8224 22118 18255 18221 15250 B2

Table 4: Total computer times for the experiments in seconds.

Table 4 shows total computer time to resolve all problems for a given input Jikés is a
rough indication of the average computation time per implication problem, givethhaumber of
problems per input size changes slightly (less than 10%) from the smaliggtiBproblems to the
largest 11-input problems. The user time is time the processor spent orotilem, while elapsed
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time is actual clock time. Since the racing algorithms are multi-threaded, having migdtysleun
in parallel, elapsed time can be less than user time. For the single threadethalgouser time is
approximately equal to elapsed time.

Comparing the unsorted and sorted skeleton approaches, it showsdbang the skeletons
can result in considerable time savings.

The HB decomposition algorithm is outperformed, clearly due to its bad peafoce in falsifi-
cations. There is a relatively large gap between user and elapsed time féBthlgorithm, which
is due to the way the time-out is implemented. This causes the central procassitgybe idle for
some of the time in some cases. Note the high correlation between user time aret finntre-
solved problems in Table 3. This indicates that the HB decomposition algoritlisi dinesolution
for a large number of problems very quickly, but performs very poaa targe number of others.

The racer algorithm performs very well on the smaller input sizes, bueost on the larger
ones. The Hilbert racer performs even better on the smaller problemagaim looses out on the
larger input sizes. The triple racer is the best performer on the largblgms. However, taking in
account the number of unresolved problems, the Hilbert racer is winningoit is to be expected
that a slightly longer time-out period will bring the performance of the tripleran the same level
as the Hilbert racer.

The most remarkable result is the performance of the LP algorithm. Unlikeeatittrer algo-
rithms, it does not suffer from performance degradation with incredsimgt sizes. Furthermore,
the calculation times are just a fraction of the times for the other algorithms. @vimgjdhat this is
a straightforward Java implementation of the algorithm where only limited efientw optimizing
the code, its performance compared to the other algorithms is overwhelmiritgy. be

5.2 Experiments for Higher Number of Variables

To perform the experiments f@X | > 5, the only chance is to use the LP method presented in Section
4.4. The experiments were analogously defined as in Section 3.1s Hn input list of elementary
Cl statements, then one single experiment comprises the testif®(Nf)| many independence
implicationsu_ — ufor all u€ E(N).” For N| = 4,5,6 we have considered input lidtscontaining
3 up to 11 different elementary CI statements oMeand performed 1000 such experiments for
each combination ofN| and|L|. Thus, we made 9000 experiments in total fidf = 4,5,6. For
IN| =7,8,9,10 we only considered 1000 experiments wittontaining 3 elementary Cl statements.
The number of LP problems to be tested within a single experiment and the dimensiese
problems depends on the numbe&rN)| = (";”) - 2INI=2 of elementary imsets and on the number
2Nl of subsets oN (compare with Table 2 in Section 4.4). The running times are averagedlbver a
9000 experiments foiN| = 4,5,6 and over all 1000 experiments fiM| = 7,8,9, 10, respectively.
The running times include the set up of the LP method and the actual LP compuitietests are
done using the commercial optimization software CPLEX 9.100 (IBM llog te@©9Pon a Sun
Fire V890 Ultra Sparc IV processor.
Table 5 illustrates the growth of the running times of the computatioridlfor 4 up to|N| = 10.
Therein, we relate the running times with the growthidfand the amount£(N)| of LP problems
to be tested for each experiment.

7. Contrary to Section 5.1, we involved “unnecessary” testing* u; for t € L in the experiments.
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IN| 4 5 6 7 8 9 10
LPs/experiment| 24 80 240 672 1792 4608 11520
time/experiment| 4ms | 18 ms| 115ms| 658 ms| 5037 ms| 150.38s| 3862.10s

Table 5: The growth of computation times fd¢| = 4 to [N| = 10.

5.2.1 RESULTS ANDDISCUSSION

Table 5 illustrates a natural increase in the time needed for one experim@jtinsreases. This
is clear as both more LP problems have to be solved and they are of higheisaingenFor small
values of|N| the increase in time occurs mainly because of the LP set up, not becatigecoin-
putation itself. For highelN| this proportion changes. But in spite of that, even|ftfr= 7 all 1000
experiments together could be done within minutes. |[Nor= 10 it took more than one month to
perform all 1000 experiments; however, it took only about an howdoh single experiment. More
specifically, on average, only about one third of a second was ertoughtu. — u; for [N| = 10.

Just looking at the increase of the dimensions of the LP problems, it ista&sisdo assume that
one can test independence implication for ufNp= 15 by directly plugging the corresponding LP
problem into CPLEX. However, testing &E(N)| inference problems for one experiment would be
too expensive. Recall that one experiment already required abeutaur of computation time for
IN| = 10. To go even beyon@N| = 15 for testingu. — w;, one can still exploit the known structure
of the matrixA of the LP problem and employ column generation techniques in order to selse th
much bigger LP problems to optimality. Of course, this approach has to be evdktested for
bigger|N| to determine its efficiency.

6. Conclusions

Our computational experiments confirmed that the LP approach both ovescthe barriers of
previous methods set by the number of variables in consideration andpveaqré is also much
faster. The new method also has the perspective to go even beyondcesiemtplimits, provided
special LP techniques are used.

For small ClI inference problems, involving a limited number of variables, @ameenter data
manually through web interfaces (based on LP method) available at

http://www.cs.waikato.ac.nz/ ~ remco/ci/.

For bigger inference problems, in which the input is expected in the formnfdé, one can use
efficient commercial LP software instead.

We showed that the potential application of computer testing of ClI inferentetls®e area
of Bayesian networks (see Section 2.4). More specifically, by Proposttitand Corollary 3),
testing independence inclusion (and reading CI restrictions from ati@ditrected graph) can be
transformed to the task whether a difference of two standard imsets is a @oridhimset. Since,
by (3), every standard imset has at mos{2| non-zero values, and, also, its degree is at most
IN|—1, we have good reasons to believe that the decomposition algorithm frctiors4.2.1 can be
implemented with polynomial complexity in this special case. Actually, a relevanttréStudeg
and Vomlel, 2011, Lemma 3) implies that if the difference of two standard imsetoisibinatorial
imset then it is a plain sum of elementary imsets (= a combination with coefficieljtsThus, we
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dare to conjecture that testing whether a difference of two standard imset®imsbinatorial imset
can be done with polynomial complexity jN| using the procedure from Section 4.2.1.

After finishing this paper, we learned about a conference paper tpeNi€2009), which also
comes with the idea of application of the LP approach to probabilistic Cl infetefhe reader
may be interested in what is the relation of both approaches. The LP prablsiepert (2009,
Proposition 4.9) is, in fact, equivalent to our task (9) with fixed fakter 1, if one uses a suitable
one-to-one linear transformation to involved imsats andw. This transformation has a nice
property that the transformed LP probl@m = 6, X >0 has 0-1 matrixA andb > 0. However, since
the transformation is linear and one-to-one, it is essentially the same LP proBler approach is
more general because it allows one to consider the multiplicative flagtdrin (9), which results in
a wider class of derivable Cl implications (cf., Section 4.2.1). We hope thatitforithms presented
in our paper will find their application, perhaps in the research on stald&a@ments (Niepert, van
Gucht, and Gyssens, 2010).

The results presented in the paper lead to further open theoretical pobldie most difficult
one is probably to find out what is the exact value of the constafiom Section 2.2 fofN| > 5,
as it seems to be related to finding the Hilbert baid\), which is a hard task. Another group of
open questions concerns the verification of the implicatien v for u € C(N) andv € E(N). We
would like to know the minimal bounds for the factors in (1), (6) and (8)hBps computing these
bounds can be formulated as a mixed (integer) LP problem. Finally, thegenegal questions of
complexity, like whether it is NP hard to decide Cl implications with respect to thet isipe.
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Appendix A. Proof of Proposition 1

Recall thatl is an input list of Cl statements ovBrandt another Cl statement ovétl. The basic
tool for our arguments is theultiinformation function m: P(N) — R ascribed to any discrete
probability distributionP over N (for technical details see Studer2005, §2.3.4). Corollary 2.2

in Studery (2005) says thatnp is always a supermodular function and, for every Cl statement
s=A_1ll B|CoverN, one has

(mp,us) =0 iff A_LLB|CIP]. (11)

Now, assumingi. — U, the equivalent characterization (2) of the independence implication implies
that, for every discrete probability distributiéhoverN,

whenever(mp,u ) =0 then (mp,u)=0. (12)

AssumingP is a distribution such that evesjn L is valid with respect t&, one hagmp, us) = 0 by
(11), and, hence, by the linearity of the scalar produth, u ) = Y| (Mp,us) = 0. This implies,
by (12),(mp,u) = 0, which means, by (11), thais a valid Cl statement with respectfo
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Appendix B. Hilbert Basis for Five Variables

As said in Section 4.3, the Hilbert bast§(N) for |[N| = 5 falls into 35 types. Nevertheless, there

is a further symmetry within it. Consider a bijectiveflectionmap1 : 2(N) — ?(N), given by

1(A) =N\ Afor AC N. Observe that elementary imsets are closed under (the composition with)
reflection. Thus, the con® (N) and its Hilbert basig/(N) are closed under the reflection, too. In
particular, some of 35 permutation equivalence classes are reflectiotisens. If the reflection is
taken into consideration, the number of resulting equivalence clasgé&Nn is lower, namely 21.
Their representatives are given in Table 6.

0 002 21100100102 0012323¢P
{a} 0000001101011-11100-111
{b} 000001110110001100-1-120
{c 0000110011111 011101-1¢0
{d} 0002001101101-11120-1-10
{et 00200-111011-11-111-1-2=2-2-=
{ab} 001-10-1-1-1-120-100-2-1-1-10-1-1
{ac} 001-1-1100-1-10-1-10-1-1-1-1-1-1-1
{a,d} 0011-1-12-20-10-111-1-1-110-1-1
{ae} 001021102100-210-11212°%2
{b,ct 0000-1-200-1-1-1-10-1-1-1-11-10-1
{b,d} 00-11200021-11010-1-1-100-L
{b,e} 001-1-102-20-1-1101-1-111111
{c,d} 00-11-1-100-1-1-1-1-21-1-1-2-1-10-1
{c,e} 001-1-1000-1-1-1011-1-101111
{d,e} 011101-1-1-12-11-10-2-101111
{ab,c} 001100-1-111-11-11102011°1
{a,b,d} 000-1-1111-10-102-21010111
{ab,e} 0001-1-101-101-11-1120-1-1-1-
{ac,d} 000020111111 0-11210111L
{a,c,e} 00-11-1-22-1-1-1-110-200-1-10-1-1
{a,d,e} 002-1-1001-10-1-10010-1-2-1-1-1
{b,c,d} 001-1-11-1-1-1-1101-1011011F%¢
{b,c,e} 00-112111111-12-111-1-20-1-L
{b,d,e} 0-1-10-1-111-101-1-1-111-1-1-1-1-1
{c.d,e} 11 0-10-1-1-1111-10-1111-10-1-1
fabcdl | 00-100-100000-111-1-1-20-2-2-
fabcel | 0002011000001 1-1-101-1090
{abde} | 001 010-12100111-2-101100
facde |[-1 010011000000 1-1-101-100
{becde |[-1100000000-2111-1-202-1114
fabcde | 1012 1112112100332032?7P

Table 6: The 21 columns correspond to representatives of equieadtasses of{ (N).

The consequence of finding (N) for [N| =5 in Bruns et al. (2010) is as follows:

Proposition 6 For [N| = 5, the least facton, € N such that, for any imset over N, it holds
ue S(N) & n.-ue C(N),isn, =2.

Proof Using a computer, we checked that every elemeatH (N) for [N| = 5 has the property
that 2- v is a combinatorial imset. Now, givame S(N), consider its Hilbert basis decomposition
U= Yyean K-V, kv € Zy and write 2u =y 4\ Ky - (2- V), where each summand 2is known

to be a combinatorial imset. In particular,c C(N). |
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Appendix C. Example of the Application of the LP Method

The aim of this text is to illustrate the LP method from Section 4.4 by an examples$ueng that
the reader is familiar with the details of the tableau form of the simplex methodf¢sesxample,
Schrijver, 1986, § 11.2). Consider the same situation as in Example 1:

N={ahb,c}, L={allb|c,allc|0}, andt:a Ll b|0,
which leads to the task to verify/disproue— v for
U=U_ = Oapc—Oc—0a+0d and V= U = Oap—0a— O+ p.

By Lemma 5, this is equivalent to solving the system of equations (9). In tlsis, dameans
searching for a non-negative solutiar> 0 of Ax = b, whereA is 8 x 7-matrix andb a column

8-vector specified as follows:

A A ab|c A aclb A b.cla) A a,b|0 A a,cl0 A b.c|0 k b
0 0 0 0 +1 +1 +1 -1 -1
a 0 0 +1 -1 -1 0 +1 +1
b 0 +1 0 -1 0 -1 0 +1
c +1 0 0 0 -1 -1 0 0
ab 0 -1 -1 +1 0 0 0 -1
ac -1 0 -1 0 +1 0 0 0
bc -1 -1 0 0 0 +1 +1 0
abc +1 +1 +1 0 0 0 -1 0

Here, the first 6 columns @& are elementary imsets, the 7-th column+s, while b encodes-v.

Moreover, the columns @k are named by the respective (searched) non-negative coefficidries,
the rows are named by corresponding subsetd.ofo get the standard cake> 0 we modify it
by multiplying by (—1) the rows ofA and components df correspondind@ andab. The modified

system isA’x = b’, where one has:

A" T Nable Mach) Mbca)  Mabe) Madey Apde, K b’
0 0 0 0 - — — +1 +1
a 0 0 +1 -1 -1 0 +1 +1
b 0 +1 0 -1 0 -1 0 +1
c +1 0 0 0 -1 -1 0 0
ab 0 +1 +1 -1 0 0 0 +1
ac -1 0 -1 0 +1 0 0 0
bc -1 -1 0 0 0 +1 +1 0
abc +1 +1 +1 0 0 0 -1 0

We are going to solve the auxiliary LP problem (4) (see Section 3.4), to vphigiose we create
a tableau with additional identity submatrix and cost vector.

A ablc A aclb )‘(b,c\a )‘(a,b\tb) A a0 A b,cl0) k 0 a b C ab ac bc abg
cost 0 0 0 0 0 0 o|l+1 +1 +1 +1 +1 +1 +1 +1] O
0 0 0 0 -1 -1 -1 +1|+1 O 0 0 0 0 0 0| +1
a 0 0 +1 -1 -1 0 +1| 0 +1 O 0 0 0 0 0| +1
b 0 +1 0 -1 0 -1 0 0 0O +1 0 0 0 0 0| +1
c +1 0 0 0 -1 -1 0 0 0 0O +1 O 0 0 0 0
ab 0 +1 +1 -1 0 0 o o0 0 0 0 +1 O 0 0| +1
ac -1 0 -1 0 +1 0 0 0 0 0 0 0O +1 O 0 0
bc -1 -1 0 0 0 +1 +1| 0 0 0 0 0 0O +1 O 0
abc +1 +1 +1 0 0 0 -1] 0 0 0 0 0 0 0O +1| 0
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The next step is to “recompute” the cost vector to get zeros above thiydarbmatrix. In our
case it means subtracting the sum of 8 rows that correspond to sets &qmethious version of the
cost vector. In the additional row, bullets indicate the current basis &cbinesponding (starting)
vertex is given by the coefficients indicated.

A ablc A aclb A b,cla) )\(a,b\O) A aclo A b,c|0 k 0 a b C ab ac bc abg
cost 0 —2 —2 +4 +2 +2 -2| 0 0 0 0 0 0 0 0| -4
0 0 0 0 -1 -1 -1 +1|+1 O 0 0 0 0 0 0| +1
a 0 0 +1 -1 -1 0 +1] 0 +1 O 0 0 0 0 0] +1
b 0 +1 0 -1 0 -1 0 0 0o +1 O 0 0 0 0| +1
c +1 0 0 0 -1 -1 0] O 0 0 +1 O 0 0 0] 0
ab 0 +1 +1 -1 0 0 (O 0 0 o +1 O 0 0| +1
ac -1 0 -1 0 +1 0 0| 0 0 0 0 0o +1 O 0 0
bc -1 -1 0 0 0 +1 +1] 0 0 0 0 0 0 +1 O 0
abc +1 +1 +1 0 0 0 -1/ 0 0 0 0 0 0 0O +1] 0
° . . . . . . .
vert 1 1 1 0 1 0 0 0

Now, the proper algorithm can start. The strategy for the choice of thwipi/position from
Schrijver (1986, §11.2) leads to pivoting @tcx A ¢p)-cell, which results in the following
tableau:

A ablc A aclb A b.cla) )\(a.b\(f) A aclo A b.c|o k 0 a b C ab ac bc abd
cost| +2 0 0 +4 +2 +2 41 0 0 0 0 0 0 0 +2| -4
0 0 0 0 -1 -1 -1 +1(+1 O 0 0 0 0 0 0| +1
a 0 0 +1 -1 -1 0 +1| 0 +1 O 0 0 0 0 0| +1
b -1 0 -1 -1 0 -1 +1| 0 0O +1 O 0 0 0 -1|+1
c +1 0 0 0 -1 -1 0 0 0 0O +1 O 0 0 0 0
ab -1 0 0 -1 0 0 +1| 0 0 0 0 +1 O 0 -1]+1
ac -1 0 -1 0 +1 0 0 0 0 0 0 0 +1 O 0 0
bc 0 0 +1 0 0 +1 0 0 0 0 0 0 0O +1 +1] 0
abc +1 +1 +1 0 0 0 -1] 0 0 0 0 0 0 0 +1] 0
. . . . . . . .
vert 0 1 1 1 0 1 0 0

The vertex and the value of the cost function in it remain unchanged, pisettex is expresses
using another basis. The same procedure now leads to the choice ofrapistiiting cell: the
column corresponds toand the row td.

A ablc A aclb A b.cla) A a,b]0) A aclo A b.c|0 k 0 a b C ab ac bc abd
cost| +2 0 0 0 —2 —2 0|+4 O 0 0 0 0 0 +2] 0
0 0 0 0 -1 -1 -1 +1|+1 O 0 0 0 0 0 0| +1
a 0 0 +1 0 0 +1 0|-1 +1 O 0 0 0 0 0| 0
b -1 0 -1 0 +1 0 0O|-1 0 +1 O 0 0 0O -1|0
c +1 0 0 0 -1 -1 0 0 0 0O +1 0 0 0 o| 0
ab -1 0 0 0 +1 +1 0|-1 O 0 0O +1 O 0 -1] 0
ac -1 0 -1 0 +1 0 0 0 0 0 0 0 +1 O 0 0
bc 0 0 +1 0 0 +1 0 0 0 0 0 0 0O +1 +1] 0
abc +1 +1 +1 -1 -1 -1 0| +1 O 0 0 0 0 0 +1]+1
. [ [ . . . . .
vert 1 1 0 0 0 0 0 0

Now, we observe the decrease in the value of the cost function: thespomding vertex is
given byk =1, A5 by = 1 and remaining coefficients vanishing. The value of the cost function is
already 0, a further terminating iteration (= pivotinglos A 5 ¢j9)-cell) does not change the vertex
and, hence, the value of the cost function in it. Thus, we have suoigdsiund a non-negative
solution to (9). In particular, we confirmeg — u; by the LP method.
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Appendix D. Decomposition Interpretation of the LP Method

In spite of the different formulations, the procedure from Section 4.2dltlae LP approach from
Section 4.4 have common points. Givea C(N) andv € £(N), both methods try to find a decom-
position ofk-u—vinto elementary imsets. A formal difference is thaind the searched coefficients
are integers in Section 4.2.1 but reals in Section 4.4. We try now to explaindlegsgrio the reader
familiar with the details of the simplex method.

To see the analogy let us assume tkas$ a fixed natural number, as in Section 4.2.1. For
example, lek be the upper limit for the factdrin (6). This ensures th&t-u—v e C(N) iff u—v.
Putb(S) = k- u(S) — v(S) for SC N and search for a non-negative solutiorhipn w € E(N) to the
system

Aw-W(S) =b(S) foranySC N.
weE(N)

The set of such solutions is a polyhed@r= {x € R"; Ax = b, x > 0}, with A € R%*" andb < RY.
Here, the rows ofA correspond to subsets bf (d = |P(N)|), the columns to elementary imsets
(n=|E(N)|) andb hasb(S), SC N as components. The only difference from the situation in
Section 4.4 is that we have one column less.

As mentioned in Section 3.4, (andA) can be modified so that it has non-negative integers as
components and entries A remain in{—1,0,1}. The simplex method takd®,b) = (xo,2p) as
its starting iteration and generates a sequéRrgey), . .., (Xm, Zm), m> 0 of points in the feasible
region of (4). The final iteratiofXm, zm) then minimizes the functiofx, z) — (1,z) over that region.

As explained in Section 3.4) # 0 iff zy,=0.

Now, the move from(0,b) = (Xo,20) to (X1,21) means the following. One finds € £(N),
corresponding to a (column) componeqt and a se8 C N, corresponding to a componeny,
such that(S) — Ay - w(S) = 0 with Ay, > 0. The components af; are thenb(S) — Ay, - w(S) for
SC N. Sinceb = zg has integral components,, € Z". In other words, the first step of the simplex
method, the move frorm, to z;, means subtracting a non-negative integral multiple of an elementary
imsetw from b = zy so that the result remains a non-negative vector.

Although further steps already cannot be interpreted as elementary uhseiction, the follow-
ing still holds. IfQ # 0, the simplex method finds iteratively the decompositioh fto elementary
imsets with non-negative coefficients. Moreover, in every iteration, ehé=sa component ) is
“vanished”. This is analogous to the procedure from Section 4.2.1, tleeatite is that the heuristic
for finding the next se8 to be “vanished” is given by the pivoting operation.
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