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Abstract
The topic of the paper is computer testing of (probabilistic) conditional independence(CI) impli-
cations by an algebraic method of structural imsets. The basic idea is to transform (sets of) CI
statements into certain integral vectors and to verify by a computer the corresponding algebraic re-
lation between the vectors, called theindependence implication. We interpret the previous methods
for computer testing of this implication from the point of view of polyhedral geometry. However,
the main contribution of the paper is a new method, based onlinear programming(LP). The new
method overcomes the limitation of former methods to the number of involved variables. We re-
call/describe the theoretical basis for all four methods involved in our computational experiments,
whose aim was to compare the efficiency of the algorithms. Theexperiments show that the LP
method is clearly the fastest one. As an example of possible application of such algorithms we
show that testing inclusion of Bayesian network structuresor whether a CI statement is encoded in
an acyclic directed graph can be done by the algebraic method.

Keywords: conditional independence inference, linear programming approach

1. Introduction

First, we explain the motivation and mention some previous work. Then we describe the aim and
structure of the paper.

1.1 Motivation

Conditional independence(CI) is a highly important concept in statistics and artificial intelligence.
Properties of probabilistic CI provide theoretical justification for the method of local computation
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(Cowel et al., 1999) which is at the core of probabilistic expert systems (Jensen, 2001), successfully
applied in numerous areas. The importance of CI is given by its interpretationin terms ofrelevance
among symptomsor variables in consideration (Pearl, 1988); that’s why it is crucial in probabilistic
reasoning. Traditional methods for describing (statistical models of) CI structures use graphs whose
nodes correspond to variables in consideration; it leads to populargraphical models(Lauritzen,
1996).

Formal properties of probabilistic CI and the attempts to describe probabilisticCI inferencein
terms of mathematical logic have been traditional research topics since the late 1970’s. Basic prop-
erties of CI, now known as thesemi-graphoid properties, were accentuated in statistics by Dawid
(1979). Pearl (1988) interpreted those properties, formulated in the form of simple implications be-
tween CI statements, as axioms for the relevance relation. Moreover, Pearl proposed to view graphs
as “inference engines” devised for efficient representing and manipulating relevance relationships.
His idea (see Pearl, 1988, page 14) was to use aninput list of CI statementsto construct a graph
and then, by using a special graphical separation criterion, to read from the graph additional CI
statements, implied by the input list through the axioms. The goal of such inference procedures is
to enable one to determine, at any state of knowledge, what information is relevant to the task at
hand and what can be ignored.

Pearl’s intention led him to a conjecture that CI inference for discrete probabilistic distributions
can be characterized by the semi-graphoid properties. The conjecture was refuted in Studený (1989);
actually, it has been shown later that there is no finite system of properties of semi-graphoid type
characterizing (discrete probabilistic) CI inference (Studený, 1992). Thus, the question of computer
testing of CI inference became a topic of research interest.

In Studeńy (2005), the method ofstructural imsetshas been proposed as a non-graphical alge-
braic device for describing probabilistic CI structures; its advantage over graphical approaches is
that it allows one to describe any discrete probabilistic CI structure. The idea is to use, instead of
graphs, certain special integral vectors (of high dimension), calledimsets, as tools for describing
CI structures and implementing the “inference engine” for CI implication. This isbecause the cor-
responding algebraic relation between structural imsets, calledindependence implication, gives a
sufficient condition for (probabilistic) CI inference. The topic of this paper is computer testing of
this implication. The intended use is

• computer testing of implications between CI statements, and

• checking equivalence of structural imsets by an algebraic method.

Another (indirect) source of motivation for this paper is learningBayesian network(BN) struc-
tures by score and search methods (Neapolitan, 2004). The point is thatevery BN structure can be
described uniquely by a simple algebraic representative, called thestandard imset. It was shown in
Studeńy (2005, Chapter 8) that every reasonable scoring function (for learning BN structures) can
be viewed as an affine function of the standard imset. This observation opens the way to the appli-
cation of efficientlinear programming(LP) methods in this area (Studený, Vomlel, and Hemmecke,
2010). Nevertheless, if a graphical model of CI structure is describedby an imset, a natural question
arises: is there any criterion, a counterpart of the graphical separation criterion, which allows one to
read from this algebraic representative all CI statements encoded in it? Thisquestion again leads to
the task of (computer) testing independence implication.
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1.2 Some Former Algorithms

Given structural imsetsu andv (over a set of variablesN), the intuitive meaning of the implication
u⇀ v (≡ u independence impliesv) is that the CI structure induced byu contains the CI structure
induced byv. In Studeńy (2005, § 6.2) two algebraic characterizations of the relationu⇀ v were
given. They established the theoretical basis for the first-generation algorithms for computer testing
of u⇀ v. The limitation of these algorithms is that to implement them fully one needs some addi-
tional information obtainable as the result of computations, which were performed only for|N| ≤ 5
(Studeńy, Bouckaert, and Kǒcka, 2000).

The theoretical aspects of their implementation were analyzed in Studený (2004), while their
practical implementations were described in detail in Bouckaert and Studený (2007). Basically,
there are two algorithms, which can be interpreted as mutually complementary procedures. One of
them, based on so-called “direct” characterization ofu⇀ v (see Studeńy, 2005, § 6.2.1), is suitable
to confirm the implication; that’s why it was called theverification algorithmin Bouckaert and
Studeńy (2007). The other algorithm, based on so-called “skeletal” characterization ofu⇀ v (see
Studeńy, 2005, § 6.2.2), fits to disproving the implication; that’s why it was named thefalsification
algorithm.

The main idea of Bouckaert and Studený (2007) was to combine both algorithms to get a more
effective tool. Owing to the computations from Studený et al. (2000), the implemented versions
of both these algorithms are guaranteed to give a decisive answer to any independence implication
problem for|N| ≤ 5. Nevertheless, the combined version has also been implemented for|N| = 6,
although without a guaranteed response to each implication problem. Recently, the first-generation
algorithms from Bouckaert and Studený (2007) have been applied (in a modified form) in connec-
tion with the lattice-theoretic approach to CI inference (Niepert, van Gucht, and Gyssens, 2008).

1.3 Aim of the Paper

In this paper, we bring a new view on the problem of testing CI inference. First, we interpret
the previous methods from the point of view of polyhedral geometry. Second, this geometric in-
terpretation and thelinear programming approachlead to new methods and, consequently, to the
second-generation algorithms for testing CI inference, which appear to be more efficient than the
first-generation algorithms.

More specifically, the geometric view has recently helped to solve an open problem that was
very closely related to the topic of CI inference (see Studený, 2005, Question 7). It was the question
whether every structural imset is acombinatorial imset, that is, whether it can be written as the
sum of elementary imsets (= imsets corresponding to elementary CI statements). The question has
been answered negatively in Hemmecke et al. (2008), where an example of a structural imset over
5 variables was found that is not combinatorial.

This fact naturally leads to a more advanced question motivated by the topic ofCI inference:
what is the so-calledHilbert basisof the cone generated by standard imsets (cf., Studený, 2005,
Theme 10). A recent achievement is that the Hilbert basis for|N| = 5 has been found as a result
of computations by Bruns et al. (2010). This makes it possible to design two modifications of the
verification algorithm for 5 variables. In fact, the CI inference problem istransformed to testing
whether a given imset is combinatorial, respectively structural.

Another important idea brought by this paper is that every testingu⇀ v task can be re-formulated
as a special LP problem. Note that the LP approach was mentioned as a potential method for testing
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this implication already in Studený (2004, § 5). However, in the present paper, we re-formulate this
implication problem in a different way. The LP approach has the following advantages:

• it allows one to go far beyond the limit of 5 variables,

• the second-generation algorithms are much faster than the first-generationones,

• the re-formulation makes it possible to apply highly effective software packages developed to
solve LP problems.

The goal of this paper is to describe the idea of the new approach, the corresponding algorithms and
the experiments, whose aim was to compare the new algorithms (with the old ones).

Moreover, to give an example of the possible use of the algorithms we provea result related
to learning Bayesian networks. We characterize the inclusion of BN structures in terms of their
algebraic representatives, standard imsets. Given acyclic directed graphsG andH overN, we show
that the BN structure induced byH is contained in the one induced byG iff the differenceuG−uH of
their standard imsets is a combinatorial imset, which happens iff it is a structuralimset. Thus, testing
the inclusion can be transformed to testing combinatorial imsets (or structural ones). A consequence
of this observation is an elegant algebraic procedure for reading CI statements represented in a
standard imsetuG, a kind of counterpart of the graphical separation criterion. Since the standard
imsetuG is quite simple we have reasons to conjecture that our procedure can be implemented with
polynomial complexity with respect to|N|.

1.4 Structure of the Paper

Section 2 is devoted to the terminology for CI inference using structural imsets, while basic concepts
from polyhedral geometry are recalled in Section 3. In Section 4, the methods we are using are
explained and, in Section 5, the experiments we performed are described.In Conclusions we discuss
the perspectives and formulate some open problems. Appendices contain some proofs, a table of
types of the Hilbert basis elements for 5 variables, an illustrative example anda comment on possible
interpretation of the LP method.

2. Concepts Concerning CI Inference

The symbolN will be used to denote a non-empty finite set ofvariablesin consideration. Given
disjoint sets of variablesA,B⊆ N, the juxtapositionABwill denote their union.

2.1 Conditional Independence

Let P be a discrete probability distribution overN specified by its densityp : XN → [0,1], where
XN ≡ ∏i∈N Xi is the joint sample space, a product of non-empty finite individual sample spaces.
GivenA⊆N andx∈XN, letxA denote the respective marginal configuration ofx andpA the marginal
density of p; by conventionp/0(−) = 1. Given pairwise disjointA,B,C ⊆ N, we say thatA is
conditionally independent of B given Cwith respect toP if

∀x∈ XN pA∪B∪C(xA∪B∪C) · pC(xC) = pA∪C(xA∪C) · pB∪C(xB∪C) .
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We writeA⊥⊥ B|C [P] then and call it aCI statementwith respect toP; if P is not material we just
use the symbolA⊥⊥ B|C. TheCI structureinduced byP consists of all CI statements valid with
respect toP.

Now, letL be a set of CI statements, called aninput list, andt a CI statement outsideL. We say
L probabilistically implies tif, for every discrete probability distributionP, whenever all statements
in L are valid with respect toP then t is valid with respect toP, too. Classic examples of valid
probabilistic CI implications are thesemi-graphoid properties(Pearl, 1988):

Symmetry A⊥⊥ B|C =⇒ B⊥⊥ A|C,
Decomposition A⊥⊥ BD|C =⇒ A⊥⊥ D |C,
Weak union A⊥⊥ BD|C =⇒ A⊥⊥ B|DC,
Contraction A⊥⊥ B|DC & A⊥⊥ D |C =⇒ A⊥⊥ BD|C.

A CI statementA⊥⊥ B|C is calledelementaryif both A andB are singletons and it is calledtrivial
if eitherA= /0 or B= /0. Since trivial statements are always valid, it follows from the semi-graphoid
properties that, for any discrete probability distributionP, the CI structure induced byP is uniquely
determined by the list of elementary CI statements valid with respect toP.

2.2 Imsets

An imsetoverN is an integer-valued function on the power set ofN, denoted byP (N) in the rest of
the paper.1 It can be viewed as a vector whose components, indexed by subsets ofN, are integers.
An easy example is thezero imset, denoted by 0; another simple example is the identifierδA of a
subsetA⊆ N:

δA(S) =

{

1 if S= A,

0 if S⊆ N, S 6= A.

An imset associated with a CI statementA⊥⊥ B|C is then the combination

u〈A,B|C〉 ≡ δABC+δC−δAC−δBC .

The class ofelementary imsets(overN), denoted byE(N), consists of imsets associated with ele-
mentary CI statements (overN).

A combinatorial imsetis an imsetu that can directly be decomposed into elementary imsets,
that is,

u= ∑
w∈E(N)

kw ·w for somekw ∈ Z+ .

We denote the class of combinatorial imsets overN by C (N).

An imsetu overN will be calledstructural if there existsn∈ N such that the multiplen ·u is a
combinatorial imset, that is,

n·u= ∑
w∈E(N)

kw ·w for somen∈ N, kw ∈ Z+ .

In other words, a structural imset is an imset which is a combination of elementary ones with non-
negative rational coefficients. The class of structural imsets overN will be denoted byS(N); this

1. The wordimset is an abbreviation forinteger-valuedmultiset.
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class of imsets is intended to describe CI structures. Clearly,E(N) ⊆ C (N) ⊆ S(N). One has
C (N) = S(N) for |N| ≤ 4 (Studeńy, 1991), butS(N) 6= C (N) for |N|= 5 (Hemmecke et al., 2008).

However, one can show (see Studený, 2005, Lemma 6.3) that there exists a smallestn∗ ∈ N,
depending on|N|, such thatu∈ S(N)⇔ n∗ ·u∈ C (N) for every imsetu overN. One hasn∗ = 1 for
|N| ≤ 4 (Studeńy, 1991) and one of the news brought by this paper is thatn∗ = 2 for |N| = 5 (see
Proposition 6 in Appendix B). An open question is what is the exact value ofn∗ for every|N| (cf.,
Studeńy, 2005, Theme 11).

2.3 Independence Implication

Let u,v be structural imsets overN. We say thatu independence implies vand writeu⇀ v if there
existsk∈ N such thatk ·u−v is a structural imset:

u⇀ v iff ∃k∈ N k ·u−v∈ S(N) . (1)

Now, givenu∈ S(N) the corresponding CI structureM (u) consists of all CI statementsA⊥⊥ B|C
such thatu ⇀ u〈A,B|C〉. The importance of structural imsets follows from the fact that, for every
discrete probability distributionP overN, there existsu∈ S(N) such that the CI structure induced
by P coincides withM (u) (use Studeńy, 2005, Theorem 5.2).

An equivalent characterization of independence implication is as follows. Areal set function
m : P (N)→ R is calledsupermodulariff

m(C∪D)+m(C∩D)≥ m(C)+m(D) for everyC,D ⊆ N.

Such a function can be viewed as a real vector whose components are indexed by subsets ofN. The
scalar productof mand an imsetu overN is then

〈m,u〉 ≡ ∑
S⊆N

m(S) ·u(S) .

The dual definition of independence implication is this (see Studený, 2005, Lemma 6.2): one has
u⇀ v iff, for every supermodular functionm overN,

〈m,u〉= 0 =⇒ 〈m,v〉= 0. (2)

The independence implication can be viewed as a sufficient condition for probabilistic CI im-
plication. More specifically, given an input listL of CI statements, let us “translate” every statement
s in L into the associated imsetus and introduce a combinatorial imsetuL ≡ ∑s∈L us. Then one has:

Proposition 1 Let L be an input list of CI statements andt another CI statement overN. If uL ⇀ ut

thenL probabilistically impliest.

The proof, based on observations from Studený (2005), is given in Appendix A. Note that the
above-mentioned condition is a sufficient condition for the probabilistic CI implication, but not a
necessary one. On the other hand, the analysis in the case of four variables suggests that it is quite
good approximation of probabilistic implication. For|N|= 4, one has 22108 (formal) CI structures
induced by structural imsets, while the actual number of (discrete) probabilistic CI structures is
18478 (̌Siměcek, 2007), and there are only about 20 types of probabilistic CI implications that are
not derivable through Proposition 1.
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The reader may be interested in whether there exists a limit for the factork in (1). If we assume
that the “input”u is a combinatorial imset and the “output”v an elementary one then such a limit
exists. One can show (cf., Studený, 2005, Lemma 6.4) that the leastk∗ ∈ N exists such that

u⇀ v iff k∗ ·u−v∈ S(N) .

It depends on|N|: k∗ = 1 for |N| ≤ 4 andk∗ = 7 for |N| = 5 (Studeńy et al., 2000). It is an open
question what is the exact value ofk∗ for |N| ≥ 6 (cf., Studeńy, 2005, Theme 12).

2.4 Bayesian Network Translation

Bayesian networks(Pearl, 1988; Neapolitan, 2004) can be interpreted as graphical modelsof CI
structures assigned to acyclic directed graphs. More specifically, given an acyclic directed graphG
havingN as the set of its nodes, the corresponding graphical separation criterion (for the definition
see Lauritzen, 1996, § 3.2.2) defines the collectionI (G) of CI restrictions given byG. The corre-
sponding statistical model then consists of probability distributions onXN that areMarkovian with
respect to G, that is, satisfy those CI restrictions. Given two acyclic directed graphsG andH over
N, we say they areindependence equivalentif I (G) = I (H); it essentially means they define the
same statistical model.

Given an acyclic directed graphG overN, thestandard imsetfor G, denoted byuG, is given by
the formula

uG = δN −δ /0 + ∑
i∈N

{δpaG(i)−δ{i}∪paG(i) }, (3)

where paG(i) ≡ { j ∈ N; j → i in G} denotes the set ofparentsof a nodei in G. Lemma 7.1
in Studeńy (2005) says thatuG is always a combinatorial imset andM (uG) = I (G). Thus, the
graphical separation criterion applied toG can be replaced by an algebraic criterion applied to
uG. Moreover, Corollary 7.1 in Studený (2005) adds thatuG = uH iff G andH are independence
equivalent. That means, the standard imset is a unique representative ofthe equivalence class of
graphs.

Note thatuG need not be the only combinatorial imset definingI (G); it is the simplest such
imset, a kind of “standard” representative. Using standard imsets we can easily characterize the
inclusion for Bayesian networks:

Proposition 2 Let G andH be acyclic directed graphs overN. ThenI (H) ⊆ I (G) if and only if
uG−uH ∈ C (N), which is also equivalent touG−uH ∈ S(N).

Proof The equivalenceI (H)⊆ I (G) ⇔ uG−uH ∈ C (N) is proved in (Studeńy, 2005, Lemma 8.6).
Clearly, uG − uH ∈ C (N) implies uG − uH ∈ S(N). Conversely, ifuG − uH ∈ S(N) then, by (1),
uG ⇀ uH and it makes no problem to showM (uH)⊆M (uG). This meansI (H)⊆ I (G).

We have some reasons to conjecture that testing whether a difference of two standard imsets
is a combinatorial imset can be done with polynomial complexity in|N|; see Conclusions for the
discussion. Moreover, let us emphasize that as far as we are aware of, there is no direct graphical
characterization of independence inclusion; in our view, it is quite difficulttask to describe this in
graphical terms. Note that indirect transformational graphical description of independence inclusion
by Chickering (2002) does not provide an algorithm for testing the inclusion for a given pair of
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acyclic directed graphsG and H. Of course, a different situation is with testing independence
equivalence, in which case a simple graphical characterization and algorithms are available.

Proposition 2 has the following consequence, which allows one to replace the graphical separa-
tion criterion by testing whether an imset is combinatorial.

Corollary 3 Given an acyclic directed graphG overN, the classI (G) coincides with the collection
of CI statementsA⊥⊥ B|C such thatuG−u〈A,B|C〉 ∈ C (N), respectivelyuG−u〈A,B|C〉 ∈ S(N).

Proof It is enough to construct, for every CI statementsA ⊥⊥ B|C, an acyclic directed graphH
such thatu〈A,B|C〉 = uH . To this end, consider a total order of nodes inN in whichC is followedA,
B andN \ABC, direct edges of the complete undirected graph overN according to this order and
remove the arrows betweenA andB.

Of course, as mentioned above, there are elegant graphical separation criteria for testing whether
a CI statement is represented in an acyclic directed graph. There are no doubts that these criteria
can be implemented with polynomial complexity in|N| (see Geiger, Verma, and Pearl, 1989) and
that they are also appropriate for human users. However, our method proposed in Corollary 3 may
appear to be suitable for computer testing, in particular in the situation when the Bayesian network
structure is internally represented in a computer by the standard imset, as suggested in Studeńy,
Vomlel, and Hemmecke (2010).

3. Basic Concepts from Polyhedral Geometry

Here we recall some well-known concepts and facts from the theory of convex polyhedra. Proofs
can be found in textbooks on linear programming, for example Schrijver (1986).

Vectors are regarded as column vectors. Given two vectorsx,y, their scalar product will be
denoted either by〈x,y〉 or, using matrix multiplication notation, byx⊺y, wherex⊺ is the transpose
of x. The inequalityx ≤ y is meant in all components, and0, respectively1, is a vector all whose
components are zeros, respectively ones.

3.1 Polyhedra, Polyhedral Cones and Farkas’ Lemma

Systems of linear inequalities appear in many areas of mathematics. LetA be ad×n-matrix andb
a d-vector. The set of all solutions inRn to the linear systemAx ≤ b is called apolyhedron. If the
defining matrixA and the right-hand side vectorb are rational, the polyhedron is said to berational.
Polyhedra defined via homogeneous inequalitiesAx ≤ 0 are calledpolyhedral cones.

A non-trivial fundamental result in polyhedral geometry states that every polyhedral coneC can
equivalently be introduced as theconical hullcone(V) of finitely many pointsV ⊆ R

n, that is, the
set of all finite conical combinations∑t λt ·vt (with λt ≥ 0 for all t) of elementsvt ∈ V (see Schrijver,
1986, Corollary 7.1a). If the polyhedral cone isrational then it is the conical hull of finitely many
rational points. A classic algorithmic task is to change between theinner descriptionC = cone(V)
and theouter descriptionC = {x ∈ R

n; Ax ≤ 0}, and back. Standard software packages that allow
one to switch between both descriptions are for example 4TI2 (4ti2 team, 2008),CDD (Fukuda,
2008), or CONVEX (Franz, 2009).

In our studies below, it will be important to decide whether a given polyhedron P is empty or
not. Clearly, a certificate forP = {x ∈ R

n; Ax ≤ b} 6= /0 is anyv ∈ P. Givenv ∈ R
n, we can easily
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check whetherAv ≤ b and thus,v ∈ P. However, is there also a simple certificate for the case that
P = /0? Indeed, there is such a certificate (see Schrijver, 1986, Corollary 7.1e):

Lemma 4 (Farkas’ lemma) The systemAx ≤ b is solvable iff everyu ∈ R
d with A⊺u = 0, u ≥ 0

satisfiesu⊺b ≥ 0.

Thus, anyu ∈ R
d satisfyingA⊺u = 0, u ≥ 0 andu⊺b < 0 gives a certificate thatP is empty.

Indeed, givenx∈ P, write 0= 0⊺x= (A⊺u)⊺x= (u⊺A)x= u⊺(Ax)≤ u⊺b< 0 to get a contradiction.
To decide using a computer whetherP 6= /0 or not, we can make use of well-developed tools

from the theory of linear programming (see below, Section 3.4).

3.2 Dimension and Faces of a Polyhedron

Thedimensiondim(P) of a polyhedronP ⊆ R
n is the dimension of itsaffine hullaff(P), which is

the set of all finite affine combinations∑t λt · vt (with λt ∈ R for all t and∑t λt = 1) of elements
vt ∈ P. By convention, the dimension of the empty set is−1. A polyhedron isfull-dimensionalif
dim(P) = n.

Givenv ∈ R
n andα ∈ R, we call the inequality〈v,x〉 ≤ α valid for a polyhedronP ⊆ R

n if it is
satisfied for everyx ∈ P. If the inequality〈v,x〉 ≤ α is valid for the polyhedronP, we call the set
F = P∩{x ∈ R

n; 〈v,x〉= α} a faceof P.
The sets/0 andP are always faces of a polyhedronP, defined by the valid inequalities〈0,x〉 ≤ 1

and〈0,x〉 ≤ 0, respectively. Every polyhedronP has only finitely many faces and all of them are
polyhedra, too (see Schrijver, 1986, § 8.3). They can be classified bytheir dimension. Faces of
dimension 0 are points inRn, calledvertices. Faces of dimension 1 are callededges: these are
either line-segments, half-lines or lines. Faces of dimension dim(P)−1 are calledfacets.

If a polyhedron is full-dimensional then facet-defining inequalities establisha unique (up to
positive scalar factors) inclusion-minimal inequality system definingP (for details see Schrijver,
1986, § 8.4). Since every (proper) faceF of P is the intersection of facets containing it, facets
implicitly determine all faces.

A polyhedronP = {x; Ax ≤ b} is pointedif the only vectory with Ay = 0 is the zero vector
y = 0 (see Schrijver, 1986, § 8.2). A non-empty pointed polyhedron has at least one vertex. A
pointed polyhedral coneC has just one vertex0, its edges are half-lines, calledextreme rays. Non-
zero representatives of the extreme rays ofC then provide its inclusion-minimal inner description
(Schrijver, 1986, § 8.8).

3.3 Hilbert Basis

A lattice point(in R
n) is an integral vectorx ∈ Z

n, that is, a vector whose components are integers.
If C is a pointed rational polyhedral cone then each of its extreme rays containsa non-zero lattice
point; this lattice point is unique if it isnormalized, that is, if its components have no common
integer divisor. Then one can show that every lattice point inC is a linear combination of these
unique representatives (of extreme rays) with non-negative rational coefficients (Studeńy, 1993,
Lemma 10). However, in general, not every lattice point inC can be obtained as such a combination
of those representatives with non-negativeintegralcoefficients. Therefore, the following concept is
important.
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By aHilbert basisof a rational polyhedral coneC (see Schrijver, 1986, § 16.4) is meant a finite
setH ⊆ C of lattice points such that every lattice point inC is a non-negative integer linear combi-
nation of elements inH. A relevant result in polyhedral geometry (Schrijver, 1986, Theorem16.4)
says that every rational polyhedral cone possesses a Hilbert basis.If the cone is in addition pointed,
there is a unique inclusion-minimal Hilbert basis. Clearly, any Hilbert basis ofC has to include the
above mentioned normalized representatives of extreme rays ofC.

Again, it is a challenging algorithmic task to compute the minimal integral Hilbert basisof a
given (pointed) rational polyhedral cone. However, there are a fewsoftware packages that allow to
do so in some simpler cases, for example 4TI2 (4ti2 team, 2008) or NORMALIZ (Bruns, Ichim, and
Söger, 2009).

3.4 LP Problems and the Simplex Method

A linear programming(LP) problem is the task to maximize/minimize a linear functionx 7→ 〈c,x〉,
wherec∈ R

n, over a polyhedronP = {x ∈ R
n; Ax ≤ b}. A classic tool to deal with this problem is

thesimplex method. Nevertheless, it is not the aim to describe here the details of this method; they
can be found in textbooks on linear programming; for example Schrijver (1986, Chapter 11).

We just recall its main features to explain the geometric interpretation. The plain version of the
simplex method (see Schrijver, 1986, § 11.1) assumes one has a vertex of (a pointed polyhedron)
P as a starting iteration. The basic idea is to move from vertex to vertex along the edges ofP
until an optimal vertex is reached or an edge is found on which the linear function is unbounded.
Each particular variant of the simplex method uses a specialpivoting operationto choose the next
iteration, which should have a better value of the linear objective function than the previous one.

However, it may be the case that one is not sure whether the polyhedronP is non-empty. Then
the simplex method has two phases. In Phase I, one finds at least onex ∈ P, called afeasible vertex
solution, provided that it exists, or one concludes thatP = /0 otherwise. If a feasible solution is
available, Phase II consists of finding an optimal solution as mentioned above. A standard trick to
deal with Phase I is to re-formulate it as an auxiliary LP problem, in which a feasible vertex solution
is known.

For example, consider the task to optimize a linear function over a special polyhedron of the
form Q = {x ∈R

n; Ax = b,x≥ 0}, whereA ∈R
d×n andb ∈R

d, which task is, in fact, equivalent to
the general case (see Schrijver, 1986, § 7.4). Moreover, one can assume without loss of generality
b ≥ 0 here.2 Then the auxiliary LP problem is as follows:

min{〈1,z〉; (x,z) ∈ R
n+d, Ax+z= b, x ≥ 0, z≥ 0}. (4)

This LP problem has the vector(0,b) as a feasible vertex solution3 and it has the property that its
optimal value〈1,z〉 is 0 iff (x,z) = (x,0) andx ∈ Q. Thus, testing whether the polyhedronQ is
non-empty can be done in this way.

4. Methods

In this section, we describe a few methods that can be used to test CI inference. The task is as
follows. An input listL of elementaryCI statements and another elementary CI statementt over

2. Indeed, if thei-th component ofb is negative, one can replace thei-th row of A and thei-th component ofb with
their multiples by−1.

3. Actually,(0,b) is a vertex of the region, defined by valid inequality〈1,x〉 ≥ 0.
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N are given and the goal is to decide whetheruL ⇀ ut (cf., Proposition 1). We are going to give a
computational comparison of these methods for|N| = 5 in Section 5.1 to see which of them is the
fastest.

4.1 Method 1: using Skeletal Characterization

This is the first ever implemented method for testing independence implication (Studeńy et al.,
2000, § 7.4). The motivation source for this method was the dual definition (2) of independence
implication in terms of supermodular functions (see Section 2.3). The point is that, in (2), written
in contrapositive form as4

〈m,v〉> 0 =⇒ 〈m,u〉> 0,

one can limit oneself toℓ-standardized supermodular functionsm : P (N)→ R, that is, to those that
satisfym(S) = 0 if |S| ≤ 1. This is a pointed rational polyhedral cone. The class of normalized
integral representatives of its extreme rays was called theℓ-skeletonin Studeńy (2005) and denoted
byK ⋄

ℓ(N).

Theskeletal characterizationof the implicationu⇀ v, for u,v∈ S(N), is as follows:

∀m∈K ⋄
ℓ(N) 〈m,v〉> 0 =⇒ 〈m,u〉> 0 (5)

(see Studeńy, 2005, Lemma 6.2). Theℓ-skeleton was computed for|N|= 5 (Studeńy et al., 2000):
it consists of 117978 imsets, which break into 1319 permutational types.

Thus, the corresponding algorithm consists in checking whether each ofthe implications in (5)
is valid or not. To disprove the implicationu ⇀ v it is enough to find at least onem∈ K ⋄

ℓ(N)
violating (5); to confirm it one has to check that all of them are valid. By ordering the elements of
theℓ-skeleton such that thosem∈ K ⋄

ℓ(N) which are more likely to cause violation are tried earlier
one can speed up the disproval (but not the confirmation). This suggested to sort elements ofK ⋄

ℓ(N)
on the basis of zeros in{〈m,w〉 ; w∈ E(N)} (for details see Bouckaert and Studený, 2007, § 3.1).

Example 1 To illustrate the method consider a trivial example with N= {a,b,c}: take the input
L = {a ⊥⊥ b|c, a ⊥⊥ c| /0} and t : a ⊥⊥ b| /0. We already know by semi-graphoid properties that
L probabilistically implies t (see Section 2.1). However, the aim of this exampleis to get this
conclusion through Proposition 1 (see Section 2.3) using the skeletal characterization. We have

uL = u〈a,b|c〉+u〈a,c| /0〉 = δabc−δbc−δa+δ /0 and ut = u〈a,b| /0〉 = δab−δa−δb+δ /0 .

In the case of 3 variables, theℓ-skeleton has 5 elements, listed in rows of Table 1. The columns in
the table correspond to structural imsets ut and uL, the items are corresponding scalar products.
The condition (5) evidently holds for v= ut and u= uL. Thus, uL ⇀ ut .

The interpretation of the method from the point of view of polyhedral geometry is as follows.
The independence implication can equivalently be defined in terms of (inclusion of) facets of the
coneR (N)≡ cone(E(N)), the cone spanned by elementary imsets. LetFu denote the face ofR (N)
generated byu∈ S(N) ⊆ R (N), that is, the least face ofR (N) containingu (≡ the intersection of
all faces ofR (N) containingu). Then, foru,v ∈ S(N), one hasu ⇀ v iff the faceFu containsv,
which means,Fv ⊆ Fu (see Studeńy, 2005, Remark 6.2).

4. Note that〈m,u〉 ≥ 0 for anym supermodular andu∈ S(N) (see Studeńy, 2005, Proposition 5.1).
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ut = δab−δa−δb+δ /0 uL = δabc−δbc−δa+δ /0
m1 = δabc 0 1
m2 = δabc+δab 1 1
m3 = δabc+δac 0 1
m4 = δabc+δbc 0 0
m5 = 2·δabc+δab+δac+δbc 1 1

Table 1: Scalar products with elements ofK ⋄
ℓ(N) for N = {a,b,c}.

The method is based on the computation of all facets of the coneR (N). These facets correspond
to the extreme rays of the (dual) cone ofℓ-standardized supermodular functions. Thus, basically,
one is checking whether every facet containingFu also containsFv. The problem with this approach
is that it can hardly be extended beyond five variables because computingthese facets seems to be
computationally infeasible for|N| ≥ 6.

4.2 Method 2: Racing Algorithms

The idea of the paper (Bouckaert and Studený, 2007) was to combine two algorithms for testing the
independence implicationu⇀ v. One of them, called theverification algorithm, was based on (1)
and appeared to be suitable to confirm the implication provided it holds. However, it may spend a
long time before it gives a response if the implication does not hold. The otheralgorithm, called
the falsification algorithmand based on (2), was designed to disprove the implication if it does not
hold. However, it is not able to confirmu⇀ v provided it holds.

The combined procedure starts with two threads, the verification one and thefalsification one.
Once one thread finds its proof, it stops the other and returns its outcome. This approach makes it
possible to go beyond 5 variables, but may not give a decisive response (in reasonable time) to some
complex implication problems. On the other hand, empirical evidence from Bouckaert and Studeńy
(2007) suggests that this method is, on average, faster than the method described in Section 4.1.

4.2.1 VERIFICATION: DECOMPOSING INTOELEMENTARY IMSETS

Consider a combinatorial imsetu ∈ C (N), an elementary imsetv ∈ E(N) and the task to decide
whetheru⇀ v. That is, by (1), testing whetherk·u−v is a structural imset for somek∈N. Observe
that (1) is equivalent to

∃ l ∈ N l ·u−v∈ C (N) . (6)

Indeed,C (N) ⊆ S(N) gives (6)⇒(1). Now, (1) implies thatn · (k ·u− v) is a combinatorial imset
for somek,n∈ N (see Section 2.2). As(n−1) ·v∈ C (N), it gives(n ·k) ·u−v∈ C (N). Moreover,
it follows from concluding remarks in Sections 2.2 and 2.3 thatn∗ ·k∗ is an upper limit forl in (6).
In general, we do not know what is the least such upper limit forl . Even in case|N| = 5, we only
know it is a number between 7 (see Studený et al., 2000) and 14= 2·7= n∗ ·k∗.

The characterization (6) allows one to transform testing independence implication to the task
to decide whether a given candidate imsety = l ·u− v is combinatorial. A combinatorial imsety
may have many decompositionsy= ∑w∈E(N) kw ·w, kw ∈ Z+ into elementary imsets. However, the
number∑w∈E(N) kw of summands, called thedegreeof y, is the same for any such decomposition
(see Studeńy, 2005, § 4.2.2). Because there is a simple formula for the degree of the candidate imset
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y, the search space, the tree of potential decompositions, is known. This space could be big, but it
can be limited by introducing additional sanity checks, which allow one to cut off some blind alleys
in the tree. Moreover, the search can be guided by suitable heuristics andthis can speed up the
resulting algorithm (for details see Bouckaert and Studený, 2007, § 3.2).

The decomposition itself is quite fast, but what can slow down the whole procedure is the factor
l from (6), depending on a particular pairu,v. The point is that the degree of a candidate imset
y = l · u− v grows (linearly) withl ; consequently, the size of the corresponding tree of possible
decompositions grows exponentially withl . Typically, if u⇀ v holds then one often finds a decom-
position ofy with l = 1. However, for|N| = 5, there are a few cases when the decomposition ofy
exists for 1< l ≤ 7 and not forl −1 (for examples see Studený et al., 2000, § 4.3). In these cases
and also whenu⇀ v does not hold one has to search through a huge space, which makes the method
infeasible for efficient disproving implications.

Example 2 Consider N= {a,b,c,d}, the input list

L = {a⊥⊥ b|c, a⊥⊥ c|d , a⊥⊥ d |b, b⊥⊥ c|ad} , (7)

and another CI statement t: a⊥⊥ c|b. We are going to show uL ⇀ ut by the decomposition method.
Actually, we show that (6) holds with l= 1. More specifically, we have

uL = u〈a,b|c〉+u〈a,c|d〉+u〈a,d|b〉+u〈b,c|ad〉

= δabcd+δabc−δab−δac−δbc−δbd−δcd+δb+δc+δd ,

and, as ut = δabc−δab−δbc+δb, we know that

y≡ 1·uL −ut = δabcd−δac−δbd−δcd+δc+δd .

The task is to test whether y is a combinatorial imset. If this is the case then the degree of y must be
3, which means we search for a decomposition into elementary imsets with 3 summands. Clearly,
at least one summand v has to satisfy v(abcd) > 0. There are 6 elementary imsets over{a,b,c,d}
with this property and two of them are excluded by sanity checks. For example, for v′ = u〈c,d|ab〉 and
y′ = y−v′ one has−1= ∑{c,d}⊆T y′(T)< 0, which is impossible for a combinatorial imset in place
of y′. However, if we subtract̃v= u〈a,b|cd〉 then

ỹ= y− ṽ= δacd+δbcd−δac−δbd−2·δcd+δc+δd

is a good direction. Again, at least one of two summands v in the searcheddecomposition of̃y must
satisfy v(acd)> 0 and the choice v= u〈a,d|c〉 leads to the final decomposition

y= u〈a,b|cd〉+u〈a,d|c〉+u〈b,c|d〉 .

Thus, the implication uL ⇀ ut has been confirmed by the decomposition method.

To explain the geometric interpretation (of the method) note that the coneR (N) = cone(E(N))
is slightly special. The lattice points in this cone are just structural imsets.5 Moreover, there exists

5. As mentioned in Section 3.3, lattice points inR (N) are just non-negative rational combinations of elementary imsets
E(N), that is, structural imsets (see Section 2.2).
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a hyperplane inRP (N) which intersects all extreme rays ofR (N) just in its normalized integral
representativesE(N) and these are the only lattice points in the intersection of this hyperplane with
R (N). In particular, every structural imset belongs to one of parallel hyperplanes (to this basic one)
and its “degree” says how far it is from the origin (= zero imset). Now, the condition (1) means that
at least one multiple ofu (by k ∈ N) has the property that it remains a lattice point within the cone
R (N) even ifv is subtracted. The condition (6) is a minor modification of (1): it requires a multiple
of u minusv is a sum of elementary imsets (with possible repetition). The algorithm, therefore,
looks for the decomposition and the degree (of the candidate imsety) serves as the measure of its
complexity.

4.2.2 FALSIFICATION : RANDOMLY GENERATING SUPERMODULAR FUNCTIONS

Falsification is based on the characterization (2). To disprove the implicationu⇀ v it is enough to
find a supermodular functionm : P (N)→ R such that〈m,u〉= 0 and〈m,v〉> 0. Actually, one can
limit oneself toℓ-standardized integer-valued supermodular functions, that is,supermodular imsets.
These imsets have a special form which allows one to generate them randomly. The idea is

• to randomly generate a collection of subsets ofN,

• to assign them randomly selected positive integer values
(and the zero values to remaining sets), and

• to modify the resulting function to make it a supermodular imset.

The details of this procedure can be found in Bouckaert and Studený (2007, § 3.3). The procedure
allows one to disprove (= falsify) the implicationu⇀ v even for|N| ≥ 6, but it is clearly not able to
confirm it provided it holds. Therefore, it has to be combined with a verification procedure.

Example 3 Consider N= {a,b,c,d} and the same input list (7) as in Example 2, but a different CI
statement t: b⊥⊥ c|a to be derived. If our random procedure generates the supermodular imset

m = 2·δabcd+δabc+δabd+δacd+2·δbcd+δbc+δbd+δcd ,

then one can observe that〈m,uL〉 = 0 while 〈m,u〈b,c|a〉〉 = 1. In particular, by (2), the respective
implication is not valid:¬(uL ⇀ u〈b,c|a〉).

The geometric interpretation of the algorithm is similar to the interpretation of the method from
Section 4.1. Supermodular functions correspond to faces of the coneR (N). Thus, the procedure
consists in random generating faces ofR (N) and the aim to find a face ofR (N) which containsu
but notv.

4.3 Method 3: Decomposition via Hilbert Basis

An alternative to testing whether an imset is combinatorial is testing whether it is structural. Since
structural imsets coincide with the lattice points in the coneR (N)≡ cone(E(N)), each of them can
be written as a sum (with possible repetition) of the elements of the Hilbert basisH (N) of the cone
R (N) (see Section 3.3). For|N| ≤ 4 one hasH (N) = E(N) (Studeńy, 1991); however, the results
from Hemmecke et al. (2008) imply that the set of elementary imsets does not constitute a Hilbert
basis ofR (N) for |N| ≥ 5.
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Computation of the Hilbert basis is a very hard task. Recently, the Hilbert basis of R (N) for
|N|= 5 has been obtained as a result of sophisticated computations (Bruns et al.,2010). In Appendix
B we provide a list of its representatives. Altogether, the obtained Hilbert basis ofR (N) has 1300
elements, falling into 35 (permutation equivalence) types.

Thus, having the Hilbert basis ofR (N) at hand, one can test the independence implication
u ⇀ v for u,v ∈ S(N) through (1): the task is to find out whether there exists a decomposition of
y ≡ k · u− v into Hilbert basis elements for somek ∈ N. This is analogous to the decomposition
approach from Section 4.2.1, where the set of elementary imsetsE(N) was used instead ofH (N).

Thus, the interpretation of this new method is the same, the difference is that wehave now a
wider class of leaves of the (potential) decomposition tree. On the other hand, the advantage of
the Hilbert basis decomposition for|N|= 5 should be that, in some complex cases, a much simpler
decomposition ofy may exist that involves also the elements ofH (N)\E(N) (simpler = with a less
number of summands). We are also sure that the upper limit for the constantk is only k∗ = 7. In
particular, the depth of the tree of potential decompositions should be smaller,while the tree itself
is expected to be wider.

4.4 Method 4: Linear Programming

The basic idea is to re-formulate (the definition of) independence implication in terms of the (pointed
rational polyhedral) coneR (N) ≡ cone(E(N)) spanned by elementary imsets. More specifically,
givenu,v∈ S(N), the condition (1) can be expressed in this way:

u⇀ v iff ∃k∈ [0,∞) k ·u−v∈ R (N) . (8)

Indeed, sinceS(N)⊆R (N) the implication (1)⇒(8) is evident. Conversely, provided (8) holds with
k, it holds with anyk′ ≥ k becauseR (N) is a cone and(k′−k) ·u∈ R (N). Therefore, there exists
k′ ∈ N with k′ ·u−v∈ R (N). As k′ ·u−v is an imset, it belongs toS(N), and (1) holds.

The geometric interpretation of the condition (8) is clear. It means that the ray(= half-line) with
the origin in−v and the direction given byu intersects the coneR (N). The point is that testing
whether this happens can be viewed as an LP problem:

Lemma 5 Givenu,v∈ S(N) one hasu⇀ v iff the system of equalities

∑
w∈E(N)

λw ·w(S)−k ·u(S) =−v(S) for anyS⊆ N , (9)

has a non-negative solution inλw, w∈ E(N) andk.

Proof The coneR (N) consists of conic combinations of representatives of its extreme rays, that
is, of elementary imsets. Thus, (8) can be re-written as the requirement forthe existence ofk ≥ 0
andλw ≥ 0 with k·u−v= ∑w∈E(N) λw ·w. This imset equality, specified for anyS⊆N, yields (9).

Non-negative solutions to (9) form a polyhedron of the typeQ = {x; Ax = b, x ≥ 0}, A ∈ R
d×n,

b ∈ R
d. Indeed, the rows ofA correspond to subsets ofN, while the columns to elementary imsets

and the factork. Thus,d = |P (N)| = 2|N| andn= |E(N)|+1=
(

|N|
2

)

·2|N|−2+1. As explained in
Section 3.4, testing whetherQ is non-empty is equivalent to solving the auxiliary LP problem (4) in
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(n+d)-dimensional space. An illustrative example of the application of this LP method inthe case
|N|= 3 is given in Appendix C.

The advantage of this approach is that it is not limited to a particular number of variables as the
previous ones. To get an impression of the implication problem complexity at hand, let us have a
look at Table 2. Clearly, these (comparably small) linear programs should besolvable quickly in
practice. We give computational evidence to this claim in Section 5.2. Another comment is that
this LP method can be interpreted as a kind of decomposition procedure (analogous to the one from
Section 4.2.1); see Appendix D for an explanation.

|N| 3 4 5 6 7 8 9 10
n+d 15 41 113 305 801 2049 5121 12545

Table 2: The dimensions of LP problems to be solved in order to decideu⇀ v.

Let us finally note that there are alternative ways to re-formulate testing ofu ⇀ v as an LP
problem. For example, consider the cone ofℓ-standardized supermodular functions. We know the
outer description of this (pointed) cone:

K ℓ(N) = {m∈ R
P (N); m(S) = 0 for |S| ≤ 1, 〈m,w〉 ≥ 0 for w∈ E(N)} .

Since, in (2), one can limit oneself toℓ-standardized supermodular functions,u⇀ v is equivalent to
the requirement

sup{〈m,v〉 ; m∈K ℓ(N), 〈m,u〉= 0} = 0. (10)

This is an LP problem with a feasible region.6 Thus, Phase II of the simplex method can be applied
to solve it. Note that (10), mentioned in Studený (2004, § 5), can be viewed, after appropriate
modifications, as the dual LP problem to (9) in the sense of the LP theory; however, we omit the
details in this paper.

5. Experiments

In this section, we describe the results of our computational experiments. Weperformed two sepa-
rate bunches of experiments. One of them was done in New Zealand and theaim was to compare
various methods in case|N|= 5 (see Section 5.1).

As the result was that the LP method performs best in case|N| = 5, the aim of the other group
of experiments (see Section 5.2), done in Germany, was to test the LP approach in case|N| > 5.
These latter experiments were based on the commercial optimization software CPLEX (IBM Ilog
team, 2009).

5.1 Comparison for Five Variables

Empirical evaluation of the methods can give insight in the practical behaviorof the various meth-
ods. First, we considered the case of five variables, so that we can compare the new methods with
techniques based on skeletal representations (see Section 4.1). The experimental set up from Bouck-
aert and Studeńy (2007) was used for the five-variable tests. In short, a thousand random input lists

6. Indeed,m≡ 0 is a feasible solution to (10).
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containing 3, up to 11 elementary CI statements were generated and, for each elementary CI state-
ment outside the input list, it was verified whether it was implicated or not. So, thethousand 3-input
cases result in verification of a thousand times the total number of elementary CI statements (80 for
5 variables) minus the 3 statements already given in the input list, that is, 1000× (80−3) = 77000
inference problems. Table 3 lists the numbers of inference problems in its lastcolumn.

The algorithms considered were:

• Skeletal algorithm and sorted skeletal algorithm (see Section 4.1).

• Racing algorithms (see Section 4.2). There are situations where both the verification and the
falsification algorithm perform poor, resulting in unacceptable running times. These outliers
distort the typical behavior of the algorithm, so we put a cap on total calculation time and re-
port the number of problems where a solution is not found within this deadline as the number
of unresolved cases in Table 3.

• Hilbert basis(HB) decomposition algorithm (see Section 4.3). Initial experimentation showed
that the HB approach is very good at verifying the implication. However, when a CI state-
ment is not implied, it takes a long time to traverse the search space. So, the average time
for the HB approach is expected to be very poor. Again, we capped the allowed time for the
algorithm to run and when no solution was found within that time the problem was as marked
unresolved.

• The observation that the HB algorithm performs well for implication but poor on falsification
immediately gives rise to another algorithm where the HB decomposition algorithm and fal-
sification algorithm are raced against each other. This algorithm is called theHilbert racer.
Like the racer algorithm, this algorithm was time constrained.

• Now we have two algorithms that appear to perform well for verification, it isnatural to
combine them with the falsifier and thus get a three horse race. This algorithmis called the
triple racer, and it is time constrained as well.

• The last algorithm under consideration is the LP method described in Section 4.4.

Input Hilbert Hilbert triple
size capped racer racer racer Total
3 5127 (6.7%) 0 (0%) 0 (0%) 0 (0%) 77000
4 10098 (13.3%) 0 (0%) 0 (0%) 0 (0%) 76000
5 12793 (17.1%) 0 (0%) 6 (0.01%) 9 (0.01%) 75000
6 15139 (20.5%) 11 (0.01%) 28 (0.04%) 30 (0.04%) 74000
7 16475 (22.6%) 38 (0.05%) 110 (0.15%) 88 (0.12%) 73000
8 18042 (25.1%) 85 (0.12%) 238 (0.33%) 215 (0.30%) 72000
9 18308 (25.8%) 181 (0.25%) 377 (0.53%) 306 (0.43%) 71000
10 17738 (25.3%) 211 (0.30%) 489 (0.70%) 386 (0.55%) 70000
11 16798 (24.3%) 230 (0.33%) 495 (0.72%) 349 (0.51%) 69000

Table 3: Numbers of inference problems that were not resolved due to time-outs.

All algorithms were implemented in Java, run under Sun Java 1.6.012 in server mode on a
Intel dual Core 3.00GHz CPU with 2GB memory, though memory is not an issue for any of the
algorithms.
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5.1.1 RESULTS AND DISCUSSION

Table 3 shows the number of unresolved cases when time was capped at 1 second per problem.
Only the algorithms that did not resolve all problems are shown there. The numbers in brackets are
percentages, the last column the total number of problems for a particular input size.

Given the total number of problems (around 70 thousand per input size) this restricted calcu-
lation took around 20 hours per input size. Clearly, the HB decomposition method when capped
leaves a large proportion of implication problems unresolved, up to a quarterfor the larger input
sizes.

Combining the HB algorithm with the falsification algorithm reduces the number of unresolved
problems to less than a third of a percent. Comparing the Hilbert racer with the original racer al-
gorithm shows that more problems are resolved in the time available, so the HB decomposition
algorithm appears to perform better at resolving problems. Finally, the tripleracer, which combines
both algorithms, performs in between the two algorithms in terms of number of unresolved prob-
lems. At first sight, one would expect the triple racer to perform at least as good as the Hilbert racer,
however, since the test was run on a dual core processor instead of amachine with at least three
cores, the various algorithms were too busy battling for processor access and lost time to make the
deadline.

User time
skeletal Hilbert triple

Input size skeletal sorted Hilbert racer racer racer LP
3 286 351 5955 132 14 163 29
4 680 648 10320 207 23 318 31
5 1476 1122 12868 414 107 667 32
6 2748 1713 15225 707 1418 1050 32
7 5385 2652 16584 1690 5601 1915 32
8 8583 3625 18171 2884 12145 3159 32
9 12086 4771 18476 6099 24274 4602 32
10 16180 6439 18089 19238 28227 11919 31
11 19530 8225 17507 20962 32452 17145 31

Elapsed time
skeletal Hilbert triple

Input size skeletal sorted Hilbert racer racer racer LP
3 288 353 12745 90 28 152 31
4 681 650 16471 162 38 277 32
5 1477 1124 18636 313 105 562 33
6 2749 1714 20606 516 876 855 33
7 5385 2652 21665 1016 3120 1548 34
8 8582 3625 22977 1889 6864 2522 34
9 12085 4771 23156 4610 13509 3693 33
10 16177 6439 22749 17080 16350 10509 33
11 19528 8224 22118 18255 18221 15250 32

Table 4: Total computer times for the experiments in seconds.

Table 4 shows total computer time to resolve all problems for a given input size. This is a
rough indication of the average computation time per implication problem, given that the number of
problems per input size changes slightly (less than 10%) from the smallest 3-input problems to the
largest 11-input problems. The user time is time the processor spent on the problem, while elapsed
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time is actual clock time. Since the racing algorithms are multi-threaded, having multiplejobs run
in parallel, elapsed time can be less than user time. For the single threaded algorithms, user time is
approximately equal to elapsed time.

Comparing the unsorted and sorted skeleton approaches, it shows that ordering the skeletons
can result in considerable time savings.

The HB decomposition algorithm is outperformed, clearly due to its bad performance in falsifi-
cations. There is a relatively large gap between user and elapsed time for the HB algorithm, which
is due to the way the time-out is implemented. This causes the central processingunit to be idle for
some of the time in some cases. Note the high correlation between user time and number of unre-
solved problems in Table 3. This indicates that the HB decomposition algorithm finds a resolution
for a large number of problems very quickly, but performs very poor ona large number of others.

The racer algorithm performs very well on the smaller input sizes, but looses out on the larger
ones. The Hilbert racer performs even better on the smaller problems, butagain looses out on the
larger input sizes. The triple racer is the best performer on the larger problems. However, taking in
account the number of unresolved problems, the Hilbert racer is winning out, so it is to be expected
that a slightly longer time-out period will bring the performance of the triple racer on the same level
as the Hilbert racer.

The most remarkable result is the performance of the LP algorithm. Unlike all the other algo-
rithms, it does not suffer from performance degradation with increasinginput sizes. Furthermore,
the calculation times are just a fraction of the times for the other algorithms. Considering that this is
a straightforward Java implementation of the algorithm where only limited effort went in optimizing
the code, its performance compared to the other algorithms is overwhelmingly better.

5.2 Experiments for Higher Number of Variables

To perform the experiments for|N|> 5, the only chance is to use the LP method presented in Section
4.4. The experiments were analogously defined as in Section 5.1. IfL is an input list of elementary
CI statements, then one single experiment comprises the testing of|E(N)| many independence
implicationsuL ⇀ u for all u∈ E(N).7 For |N|= 4,5,6 we have considered input listsL containing
3 up to 11 different elementary CI statements overN and performed 1000 such experiments for
each combination of|N| and |L|. Thus, we made 9000 experiments in total for|N| = 4,5,6. For
|N|= 7,8,9,10 we only considered 1000 experiments withL containing 3 elementary CI statements.

The number of LP problems to be tested within a single experiment and the dimension of these
problems depends on the number|E(N)| =

(

|N|
2

)

·2|N|−2 of elementary imsets and on the number
2|N| of subsets ofN (compare with Table 2 in Section 4.4). The running times are averaged over all
9000 experiments for|N| = 4,5,6 and over all 1000 experiments for|N| = 7,8,9,10, respectively.
The running times include the set up of the LP method and the actual LP computation. The tests are
done using the commercial optimization software CPLEX 9.100 (IBM Ilog team, 2009) on a Sun
Fire V890 Ultra Sparc IV processor.

Table 5 illustrates the growth of the running times of the computations for|N|= 4 up to|N|= 10.
Therein, we relate the running times with the growth of|N| and the amount|E(N)| of LP problems
to be tested for each experiment.

7. Contrary to Section 5.1, we involved “unnecessary” testinguL ⇀ ut for t ∈ L in the experiments.
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|N| 4 5 6 7 8 9 10
LPs/experiment 24 80 240 672 1792 4608 11520
time/experiment 4 ms 18 ms 115 ms 658 ms 5037 ms 150.38s 3862.10s

Table 5: The growth of computation times for|N|= 4 to |N|= 10.

5.2.1 RESULTS AND DISCUSSION

Table 5 illustrates a natural increase in the time needed for one experiment as|N| increases. This
is clear as both more LP problems have to be solved and they are of higher dimensions. For small
values of|N| the increase in time occurs mainly because of the LP set up, not because ofthe com-
putation itself. For higher|N| this proportion changes. But in spite of that, even for|N|= 7 all 1000
experiments together could be done within minutes. For|N| = 10 it took more than one month to
perform all 1000 experiments; however, it took only about an hour foreach single experiment. More
specifically, on average, only about one third of a second was enoughto testuL ⇀ ut for |N|= 10.

Just looking at the increase of the dimensions of the LP problems, it is reasonable to assume that
one can test independence implication for up to|N|= 15 by directly plugging the corresponding LP
problem into CPLEX. However, testing all|E(N)| inference problems for one experiment would be
too expensive. Recall that one experiment already required about one hour of computation time for
|N|= 10. To go even beyond|N|= 15 for testinguL ⇀ ut , one can still exploit the known structure
of the matrixA of the LP problem and employ column generation techniques in order to solve these
much bigger LP problems to optimality. Of course, this approach has to be coded and tested for
bigger|N| to determine its efficiency.

6. Conclusions

Our computational experiments confirmed that the LP approach both overcomes the barriers of
previous methods set by the number of variables in consideration and, moreover, it is also much
faster. The new method also has the perspective to go even beyond the present limits, provided
special LP techniques are used.

For small CI inference problems, involving a limited number of variables, one can enter data
manually through web interfaces (based on LP method) available at

http://www.cs.waikato.ac.nz/ ˜ remco/ci/.

For bigger inference problems, in which the input is expected in the form ofa file, one can use
efficient commercial LP software instead.

We showed that the potential application of computer testing of CI inference isin the area
of Bayesian networks (see Section 2.4). More specifically, by Proposition 2 (and Corollary 3),
testing independence inclusion (and reading CI restrictions from an acyclic directed graph) can be
transformed to the task whether a difference of two standard imsets is a combinatorial imset. Since,
by (3), every standard imset has at most 2· |N| non-zero values, and, also, its degree is at most
|N|−1, we have good reasons to believe that the decomposition algorithm from Section 4.2.1 can be
implemented with polynomial complexity in this special case. Actually, a relevant result (Studeńy
and Vomlel, 2011, Lemma 3) implies that if the difference of two standard imsets is acombinatorial
imset then it is a plain sum of elementary imsets (= a combination with coefficients+1). Thus, we
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dare to conjecture that testing whether a difference of two standard imsets isa combinatorial imset
can be done with polynomial complexity in|N| using the procedure from Section 4.2.1.

After finishing this paper, we learned about a conference paper by Niepert (2009), which also
comes with the idea of application of the LP approach to probabilistic CI inference. The reader
may be interested in what is the relation of both approaches. The LP problemin Niepert (2009,
Proposition 4.9) is, in fact, equivalent to our task (9) with fixed factork = 1, if one uses a suitable
one-to-one linear transformation to involved imsetsu,v and w. This transformation has a nice
property that the transformed LP problemÃx = b̃, x≥ 0 has 0-1 matrix̃A andb̃≥ 0. However, since
the transformation is linear and one-to-one, it is essentially the same LP problem. Our approach is
more general because it allows one to consider the multiplicative factork≥ 0 in (9), which results in
a wider class of derivable CI implications (cf., Section 4.2.1). We hope that the algorithms presented
in our paper will find their application, perhaps in the research on stable CIstatements (Niepert, van
Gucht, and Gyssens, 2010).

The results presented in the paper lead to further open theoretical problems. The most difficult
one is probably to find out what is the exact value of the constantn∗ from Section 2.2 for|N| > 5,
as it seems to be related to finding the Hilbert basisH (N), which is a hard task. Another group of
open questions concerns the verification of the implicationu⇀ v for u∈ C (N) andv∈ E(N). We
would like to know the minimal bounds for the factors in (1), (6) and (8). Perhaps computing these
bounds can be formulated as a mixed (integer) LP problem. Finally, there aregeneral questions of
complexity, like whether it is NP hard to decide CI implications with respect to the input size.
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Appendix A. Proof of Proposition 1

Recall thatL is an input list of CI statements overN andt another CI statement overN. The basic
tool for our arguments is themultiinformation function mP : P (N) → R ascribed to any discrete
probability distributionP over N (for technical details see Studený, 2005, § 2.3.4). Corollary 2.2
in Studeńy (2005) says thatmP is always a supermodular function and, for every CI statement
s≡ A⊥⊥ B|C overN, one has

〈mP,us〉= 0 iff A⊥⊥ B|C [P] . (11)

Now, assuminguL ⇀ ut , the equivalent characterization (2) of the independence implication implies
that, for every discrete probability distributionP overN,

whenever〈mP,uL〉= 0 then 〈mP,ut〉= 0. (12)

AssumingP is a distribution such that everys in L is valid with respect toP, one has〈mP,us〉= 0 by
(11), and, hence, by the linearity of the scalar product,〈mP,uL〉 = ∑s∈L〈mP,us〉 = 0. This implies,
by (12),〈mP,ut〉= 0, which means, by (11), thatt is a valid CI statement with respect toP.
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Appendix B. Hilbert Basis for Five Variables

As said in Section 4.3, the Hilbert basisH (N) for |N| = 5 falls into 35 types. Nevertheless, there
is a further symmetry within it. Consider a bijectivereflectionmap ι : P (N) → P (N), given by
ι(A) = N \A for A ⊆ N. Observe that elementary imsets are closed under (the composition with)
reflection. Thus, the coneR (N) and its Hilbert basisH (N) are closed under the reflection, too. In
particular, some of 35 permutation equivalence classes are reflections ofothers. If the reflection is
taken into consideration, the number of resulting equivalence classes inH (N) is lower, namely 21.
Their representatives are given in Table 6.

/0 0 0 2 2 1 1 0 0 1 0 0 1 0 2 0 0 1 2 3 3 2
{a} 0 0 0 0 0 0 1 1 0 1 0 1 1 -1 1 1 0 0 -1 1 1
{b} 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 -1 -1 0
{c} 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 -1 0
{d} 0 0 0 -2 0 0 1 1 0 1 1 0 1 -1 1 1 2 0 -1 -1 0
{e} 0 0 -2 0 0 -1 1 1 0 1 1 -1 1 -1 1 1 -1 -2 -2 -2 -2
{a,b} 0 0 -1 -1 0 -1 -1 -1 -1 -2 0 -1 0 0 -2 -1 -1 -1 0 -1 -1
{a,c} 0 0 -1 -1 -1 1 0 0 -1 -1 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1
{a,d} 0 0 1 1 -1 -1 -2 -2 0 -1 0 -1 1 1 -1 -1 -1 1 0 -1 -1
{a,e} 0 0 1 0 2 1 1 0 2 1 0 0 -2 1 0 -1 1 2 1 2 2
{b,c} 0 0 0 0 -1 -2 0 0 -1 -1 -1 -1 0 -1 -1 -1 -1 1 -1 0 -1
{b,d} 0 0 -1 1 2 0 0 0 2 1 -1 1 0 1 0 -1 -1 -1 0 0 -1
{b,e} 0 0 1 -1 -1 0 -2 -2 0 -1 -1 1 0 1 -1 -1 1 1 1 1 1
{c,d} 0 0 -1 1 -1 -1 0 0 -1 -1 -1 -1 -2 1 -1 -1 -2 -1 -1 0 -1
{c,e} 0 0 1 -1 -1 0 0 0 -1 -1 -1 0 1 1 -1 -1 0 1 1 1 1
{d,e} 0 1 1 1 0 1 -1 -1 -1 -2 -1 1 -1 0 -2 -1 0 1 1 1 1
{a,b,c} 0 0 1 1 0 0 -1 -1 1 1 -1 1 -1 1 1 0 2 0 1 1 1
{a,b,d} 0 0 0 -1 -1 1 1 1 -1 0 -1 0 -2 -2 1 0 1 0 1 1 1
{a,b,e} 0 0 0 1 -1 -1 0 1 -1 0 1 -1 1 -1 1 2 0 -1 -1 -1 -1
{a,c,d} 0 0 0 0 2 0 1 1 1 1 1 1 0 -1 1 2 1 0 1 1 1
{a,c,e} 0 0 -1 1 -1 -2 -2 -1 -1 -1 -1 1 0 -2 0 0 -1 -1 0 -1 -1
{a,d,e} 0 0 -2 -1 -1 0 0 1 -1 0 -1 -1 0 0 1 0 -1 -2 -1 -1 -1
{b,c,d} 0 0 1 -1 -1 1 -1 -1 -1 -1 1 0 1 -1 0 1 1 0 1 1 2
{b,c,e} 0 0 -1 1 2 1 1 1 1 1 1 -1 -2 -1 1 1 -1 -2 0 -1 -1
{b,d,e} 0 -1 -1 0 -1 -1 1 1 -1 0 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1
{c,d,e} 1 -1 0 -1 0 -1 -1 -1 1 1 1 -1 0 -1 1 1 1 -1 0 -1 -1
{a,b,c,d} 0 0 -1 0 0 -1 0 0 0 0 0 -1 1 1 -1 -1 -2 0 -2 -2 -2
{a,b,c,e} 0 0 0 -2 0 1 1 0 0 0 0 0 1 1 -1 -1 0 1 -1 0 0
{a,b,d,e} 0 0 1 0 1 0 -1 -2 1 0 0 1 1 1 -2 -1 0 1 1 0 0
{a,c,d,e} -1 0 1 0 0 1 1 0 0 0 0 0 0 1 -1 -1 0 1 -1 0 0
{b,c,d,e} -1 1 0 0 0 0 0 0 0 0 -2 1 1 1 -1 -2 0 2 -1 1 1
{a,b,c,d,e} 1 0 1 2 1 1 1 2 1 1 2 1 0 0 3 3 2 0 3 2 2

Table 6: The 21 columns correspond to representatives of equivalence classes ofH (N).

The consequence of findingH (N) for |N|= 5 in Bruns et al. (2010) is as follows:

Proposition 6 For |N| = 5, the least factorn∗ ∈ N such that, for any imsetu over N, it holds
u∈ S(N) ⇔ n∗ ·u∈ C (N), is n∗ = 2.

Proof Using a computer, we checked that every elementv ∈ H (N) for |N| = 5 has the property
that 2· v is a combinatorial imset. Now, givenu∈ S(N), consider its Hilbert basis decomposition
u= ∑v∈H (N) kv ·v, kv ∈ Z+ and write 2·u= ∑v∈H (N) kv · (2·v), where each summand 2·v is known
to be a combinatorial imset. In particular, 2·u∈ C (N).
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Appendix C. Example of the Application of the LP Method

The aim of this text is to illustrate the LP method from Section 4.4 by an example. We assume that
the reader is familiar with the details of the tableau form of the simplex method (see,for example,
Schrijver, 1986, § 11.2). Consider the same situation as in Example 1:

N = {a,b,c}, L = {a⊥⊥ b|c, a⊥⊥ c| /0}, and t : a⊥⊥ b| /0 ,

which leads to the task to verify/disproveu⇀ v for

u= uL = δabc−δbc−δa+δ /0 and v= ut = δab−δa−δb+δ /0 .

By Lemma 5, this is equivalent to solving the system of equations (9). In this case, it means
searching for a non-negative solutionx ≥ 0 of Ax = b, whereA is 8× 7-matrix andb a column
8-vector specified as follows:

A λ〈a,b|c〉 λ〈a,c|b〉 λ〈b,c|a〉 λ〈a,b| /0〉 λ〈a,c| /0〉 λ〈b,c| /0〉 k b
/0 0 0 0 +1 +1 +1 −1 −1
a 0 0 +1 −1 −1 0 +1 +1
b 0 +1 0 −1 0 −1 0 +1
c +1 0 0 0 −1 −1 0 0
ab 0 −1 −1 +1 0 0 0 −1
ac −1 0 −1 0 +1 0 0 0
bc −1 −1 0 0 0 +1 +1 0
abc +1 +1 +1 0 0 0 −1 0

Here, the first 6 columns ofA are elementary imsets, the 7-th column is−u, while b encodes−v.
Moreover, the columns ofA are named by the respective (searched) non-negative coefficients,while
the rows are named by corresponding subsets ofN. To get the standard caseb ≥ 0 we modify it
by multiplying by(−1) the rows ofA and components ofb corresponding/0 andab. The modified
system isA′x = b′, where one has:

A′ λ〈a,b|c〉 λ〈a,c|b〉 λ〈b,c|a〉 λ〈a,b| /0〉 λ〈a,c| /0〉 λ〈b,c| /0〉 k b′

/0 0 0 0 −1 −1 −1 +1 +1
a 0 0 +1 −1 −1 0 +1 +1
b 0 +1 0 −1 0 −1 0 +1
c +1 0 0 0 −1 −1 0 0
ab 0 +1 +1 −1 0 0 0 +1
ac −1 0 −1 0 +1 0 0 0
bc −1 −1 0 0 0 +1 +1 0
abc +1 +1 +1 0 0 0 −1 0

We are going to solve the auxiliary LP problem (4) (see Section 3.4), to whichpurpose we create
a tableau with additional identity submatrix and cost vector.

λ〈a,b|c〉 λ〈a,c|b〉 λ〈b,c|a〉 λ〈a,b| /0〉 λ〈a,c| /0〉 λ〈b,c| /0〉 k /0 a b c ab ac bc abc
cost 0 0 0 0 0 0 0 +1 +1 +1 +1 +1 +1 +1 +1 0

/0 0 0 0 −1 −1 −1 +1 +1 0 0 0 0 0 0 0 +1
a 0 0 +1 −1 −1 0 +1 0 +1 0 0 0 0 0 0 +1
b 0 +1 0 −1 0 −1 0 0 0 +1 0 0 0 0 0 +1
c +1 0 0 0 −1 −1 0 0 0 0 +1 0 0 0 0 0
ab 0 +1 +1 −1 0 0 0 0 0 0 0 +1 0 0 0 +1
ac −1 0 −1 0 +1 0 0 0 0 0 0 0 +1 0 0 0
bc −1 −1 0 0 0 +1 +1 0 0 0 0 0 0 +1 0 0
abc +1 +1 +1 0 0 0 −1 0 0 0 0 0 0 0 +1 0
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The next step is to “recompute” the cost vector to get zeros above the identity submatrix. In our
case it means subtracting the sum of 8 rows that correspond to sets from the previous version of the
cost vector. In the additional row, bullets indicate the current basis and the corresponding (starting)
vertex is given by the coefficients indicated.

λ〈a,b|c〉 λ〈a,c|b〉 λ〈b,c|a〉 λ〈a,b| /0〉 λ〈a,c| /0〉 λ〈b,c| /0〉 k /0 a b c ab ac bc abc
cost 0 −2 −2 +4 +2 +2 −2 0 0 0 0 0 0 0 0 −4

/0 0 0 0 −1 −1 −1 +1 +1 0 0 0 0 0 0 0 +1
a 0 0 +1 −1 −1 0 +1 0 +1 0 0 0 0 0 0 +1
b 0 +1 0 −1 0 −1 0 0 0 +1 0 0 0 0 0 +1
c +1 0 0 0 −1 −1 0 0 0 0 +1 0 0 0 0 0
ab 0 +1 +1 −1 0 0 0 0 0 0 0 +1 0 0 0 +1
ac −1 0 −1 0 +1 0 0 0 0 0 0 0 +1 0 0 0
bc −1 −1 0 0 0 +1 +1 0 0 0 0 0 0 +1 0 0
abc +1 +1 +1 0 0 0 −1 0 0 0 0 0 0 0 +1 0

• • • • • • • •
vert 1 1 1 0 1 0 0 0

Now, the proper algorithm can start. The strategy for the choice of the pivoting position from
Schrijver (1986, § 11.2) leads to pivoting onabc× λ〈a,c|b〉-cell, which results in the following
tableau:

λ〈a,b|c〉 λ〈a,c|b〉 λ〈b,c|a〉 λ〈a,b| /0〉 λ〈a,c| /0〉 λ〈b,c| /0〉 k /0 a b c ab ac bc abc
cost +2 0 0 +4 +2 +2 −4 0 0 0 0 0 0 0 +2 −4

/0 0 0 0 −1 −1 −1 +1 +1 0 0 0 0 0 0 0 +1
a 0 0 +1 −1 −1 0 +1 0 +1 0 0 0 0 0 0 +1
b −1 0 −1 −1 0 −1 +1 0 0 +1 0 0 0 0 −1 +1
c +1 0 0 0 −1 −1 0 0 0 0 +1 0 0 0 0 0
ab −1 0 0 −1 0 0 +1 0 0 0 0 +1 0 0 −1 +1
ac −1 0 −1 0 +1 0 0 0 0 0 0 0 +1 0 0 0
bc 0 0 +1 0 0 +1 0 0 0 0 0 0 0 +1 +1 0
abc +1 +1 +1 0 0 0 −1 0 0 0 0 0 0 0 +1 0

• • • • • • • •
vert 0 1 1 1 0 1 0 0

The vertex and the value of the cost function in it remain unchanged, just the vertex is expresses
using another basis. The same procedure now leads to the choice of another pivoting cell: the
column corresponds tok and the row to/0.

λ〈a,b|c〉 λ〈a,c|b〉 λ〈b,c|a〉 λ〈a,b| /0〉 λ〈a,c| /0〉 λ〈b,c| /0〉 k /0 a b c ab ac bc abc
cost +2 0 0 0 −2 −2 0 +4 0 0 0 0 0 0 +2 0

/0 0 0 0 −1 −1 −1 +1 +1 0 0 0 0 0 0 0 +1
a 0 0 +1 0 0 +1 0 −1 +1 0 0 0 0 0 0 0
b −1 0 −1 0 +1 0 0 −1 0 +1 0 0 0 0 −1 0
c +1 0 0 0 −1 −1 0 0 0 0 +1 0 0 0 0 0
ab −1 0 0 0 +1 +1 0 −1 0 0 0 +1 0 0 −1 0
ac −1 0 −1 0 +1 0 0 0 0 0 0 0 +1 0 0 0
bc 0 0 +1 0 0 +1 0 0 0 0 0 0 0 +1 +1 0
abc +1 +1 +1 −1 −1 −1 0 +1 0 0 0 0 0 0 +1 +1

• • • • • • • •
vert 1 1 0 0 0 0 0 0

Now, we observe the decrease in the value of the cost function: the corresponding vertex is
given byk = 1, λ〈a,c|b〉 = 1 and remaining coefficients vanishing. The value of the cost function is
already 0, a further terminating iteration (= pivoting onb×λ〈a,c| /0〉-cell) does not change the vertex
and, hence, the value of the cost function in it. Thus, we have successfully found a non-negative
solution to (9). In particular, we confirmeduL ⇀ ut by the LP method.
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Appendix D. Decomposition Interpretation of the LP Method

In spite of the different formulations, the procedure from Section 4.2.1 and the LP approach from
Section 4.4 have common points. Givenu∈ C (N) andv∈E(N), both methods try to find a decom-
position ofk·u−v into elementary imsets. A formal difference is thatk and the searched coefficients
are integers in Section 4.2.1 but reals in Section 4.4. We try now to explain the analogy to the reader
familiar with the details of the simplex method.

To see the analogy let us assume thatk is a fixed natural number, as in Section 4.2.1. For
example, letk be the upper limit for the factorl in (6). This ensures thatk ·u−v∈ C (N) iff u⇀ v.
Putb(S) = k ·u(S)−v(S) for S⊆ N and search for a non-negative solution inλw, w∈ E(N) to the
system

∑
w∈E(N)

λw ·w(S) = b(S) for anyS⊆ N.

The set of such solutions is a polyhedronQ̂ = {x ∈R
n; Ax = b, x ≥ 0}, with A ∈R

d×n andb ∈R
d.

Here, the rows ofA correspond to subsets ofN (d = |P (N)|), the columns to elementary imsets
(n = |E(N)|) and b hasb(S), S⊆ N as components. The only difference from the situation in
Section 4.4 is that we have one column less.

As mentioned in Section 3.4,b (andA) can be modified so that it has non-negative integers as
components and entries inA remain in{−1,0,1}. The simplex method takes(0,b) ≡ (x0,z0) as
its starting iteration and generates a sequence(x0,z0), . . . ,(xm,zm), m≥ 0 of points in the feasible
region of (4). The final iteration(xm,zm) then minimizes the function(x,z) 7→ 〈1,z〉 over that region.
As explained in Section 3.4,̂Q 6= /0 iff zm = 0.

Now, the move from(0,b) ≡ (x0,z0) to (x1,z1) means the following. One findsw ∈ E(N),
corresponding to a (column) componentxw, and a setS′ ⊆ N, corresponding to a componentzS′ ,
such thatb(S′)−λw ·w(S′) = 0 with λw ≥ 0. The components ofz1 are thenb(S)−λw ·w(S) for
S⊆ N. Sinceb = z0 has integral components,λw ∈ Z

+. In other words, the first step of the simplex
method, the move fromz0 to z1, means subtracting a non-negative integral multiple of an elementary
imsetw from b = z0 so that the result remains a non-negative vector.

Although further steps already cannot be interpreted as elementary imset subtraction, the follow-
ing still holds. IfQ̂ 6= /0, the simplex method finds iteratively the decomposition ofb into elementary
imsets with non-negative coefficients. Moreover, in every iteration, one set (= a component ofz) is
“vanished”. This is analogous to the procedure from Section 4.2.1, the difference is that the heuristic
for finding the next setS′ to be “vanished” is given by the pivoting operation.
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five variables. Research report n. 1977, Institute of Information Theory and Automation, Prague,
January 2000.
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Milan Studeńy and Jǐrı́ Vomlel. On open questions in the geometric approach to structural learning
Bayesian nets. Accepted inInternational Journal of Approximate Reasoning, to appear in 2011.

4ti2 team. 4TI2, a software package for algebraic, geometric and combinatorial problems on linear
spaces. Available electronicly atwww.4ti2.de , 2008.

3479


