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Abstract

WEKA is a popular machine learning workbench with a developintiée of nearly two decades.
This article provides an overview of the factors that we éaadito be important to its success.
Rather than focussing on the software’s functionality, ee@eaw aspects of project management
and historical development decisions that likely had anaichjen the uptake of the project.
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1. Introduction

We present a brief account of the WEKA 3 software, which is distributetbuthe GNU General
Public License, followed by some lessons learned over the period sgaiidevelopment and
maintenance. We also include a brief historical mention of its predecessors.

WEKA contains implementations of algorithms for classification, clustering, asdcaation
rule mining, along with graphical user interfaces and visualization utilitiesdta exploration and
algorithm evaluation. This article shares some background on softwaigndend management
decisions, in the hope that it may prove useful to others involved in thdafeaent of open-source
machine learning software. Hall et al. (2009) give an overview of tiséesy; more comprehensive
sources of information are Witten and Frank’s bdd&ata Mining (2005) and the user manuals
included in the software distributich.Online sources, including the WEKA Wiki pageand the
API, provide the most complete coverage. Maekalistmailing list is a forum for discussion of
WEKA-related queries, with nearly 3000 subscribers.

2. What is WEKA?

WEKA is a machine learning workbench that supports many activities of madsamning practi-
tioners.

1. Available fromht t p: / / www. ¢s. wai kat 0. ac. nz/ m / weka.
2. Available atht t p: / / weka. wi ki spaces. cont .
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2.1 Basic Functionality

Here is a summary of WEKA's main features.

Data preprocessingAs well as a native file format (ARFF), WEKA supports various other
formats (for instance CSV, Matlab ASCII files), and database contiyctivough JDBC.
Data can be filtered by a large number of methods (over 75), ranging &mmving particular
attributes to advanced operations such as principal component analysis.

Classification One of WEKA's drawing cards is the more than 100 classification methods it
contains. Classifiers are divided into “Bayesian” methods (Naive B&agesian nets, etc.),
lazy methods (nearest neighbor and variants), rule-based methatsiqddables, OneR,
RIPPER), tree learners (C4.5, Naive Bayes trees, M5), functisaebi@arners (linear regres-
sion, SVMs, Gaussian processes), and miscellaneous methods. FurtheffitA includes
meta-classifiers like bagging, boosting, stacking; multiple instance class#ietsnterfaces

for classifiers implemented in Groovy and Jython.

Clustering Unsupervised learning is supported by several clustering scheroleslimg EM-
based mixture model&-means, and various hierarchical clustering algorithms. Though not
as many methods are available as for classification, most of the classic atgoatle in-
cluded.

Attribute selectionThe set of attributes used is essential for classification performaiace. V
ious selection criteria and search methods are available.

Data visualization Data can be inspected visually by plotting attribute values against the
class, or against other attribute values. Classifier output can be cainpar&ining data

in order to detect outliers and observe classifier characteristics argiotelsoundaries. For
specific methods there are specialized tools for visualization, such as é@dves for any
method that produces classification trees, a Bayes network viewer witmatitdayout, and

a dendrogram viewer for hierarchical clustering.

WEKA also includes support for association rule mining, comparing classitiata set generation,
facilities for annotated documentation generation for source code, difrilestimation, and data
conversion.

2.2 Graphical User Interfaces

WEKA'’s functionality can be accessed through various graphical imerfaces, principally the
Explorer, and Experimenter interfaces shown in Figure 1, but also tloevkédge Flow interface.
The most popular interface, the Explorer, allows quick exploration of@ladasupports all the main
items mentioned above—data loading and filtering, classification, clusterirngutgtselection and
various forms of visualization—in an interactive fashion.

The Experimenter is a tool for setting up machine learning experiments tHaatvalassifica-
tion and regression methods. It allows easy comparison of performametean tabulate summaries
in ways that are easy to incorporate into publications. Experiments cart bp 8erun in parallel
over different computers in a network so that multiple repetitions of crolidatimn (the default
method of performance analysis) can be distributed over multiple machines.

2534



WEKA—EXPERIENCES WITH AJAVA OPEN-SOURCE PROJECT

5] Explorer

| Preprocess | crassiy | Cluster | As:

| openrie. |[ openuri. |[ openpE. |[ Generate. | c . [ swe. |

T

te | Select atuibutes | Visualize | [ Setup | Run | Analyse |

Got 2400 results Eile.. || Database.
Filter

| cnoose |none [y | Configure test

Selected attribute Testing with [Paired T-Tester (c.. |+
el pe: Nominal

ation: cpu Auributes: 8 N T -
tances: 209 Sum of weights: 209 Missing: 0 0% Distinct 30 Unique: 4 259 Row Seleat
Auributes [ Label Cotnt Weight

Cotumn | Select

T[advser
A [ wone |[ e || rauem 2 amdant = I
apollo Comparison field [Root_relative_squ... |~
Mame 4|basf. —

SIo significance [0.05 || ||pataser @) function | (2) funct (3) funct (4
& [burraughs S
HETE Sortrls ey [pog <] || srass_carbon
= = e grass_FERT :
Testbase [___seea ||| s mronen 6.8 | 16.10  1a.5
Class: dass (Num) [+] visuatize an | CRILEE eledt grass_sul fur 67,49 | 66,45 5959
Displayed Columns [ Seleat W/ ) O 001

Current refation

R
Insi

¥

o,

2.04 | 38.70 33.54 %
6.16 | 71.54  65.47

Show std. deviations [

Output Format | Select
we

prrerL I

S
=
4l i 1 TEILBE:D oL L OR
e [ Peformtest || sa ¢ '-C 1.0E-5 -L 5.0E- ]
e aw i 25 S
Remove | I Iils [ Is . II ii - Result list o
P 2
e ]| [ Mlealll s [0:1043 - ReoUrelatve squaredemror ~ funl=]

Staws 3 20:10:50 - Root_relative_squared_error - Ranw|
B Lo | g X0 ‘T\ - v T T I

Figure 1: The Explorer and Experimenter interfaces.

The Knowledge Flow interface is a Java Beans application that allows theksaghef data ex-
ploration, processing and visualization as the Explorer (along with somesgxbut in a workflow-
oriented system. The user can define a workflow specifying how datadsdogreprocessed,
evaluated and visualized, which can be repeated multiple times. This makeg tib @gdimize the
workflow by tweaking parameters of algorithms, or to apply it to other datecesuln the Explorer,
on the other hand, the individual steps must be invoked manually, one at.aTim®is a rather
tedious process, and is prone to errors such as omitting preprocet&gng s

WEKA also includes some specialized graphical interfaces, such ases Baywork editor that
focuses on Bayes network learning and inference, an SQL vieweantkmaction with databases,
and an ARFF data file viewer and editor.

All functionality and some more specialized functions can be accessedafroommand line
interface, so WEKA can be used without a windowing system.

2.3 Extending WEKA

One of WEKA's major strengths is that it is easily extended with customized wratessifiers,
clusterers, attribute selection methods, and other components. For instdintteat is needed
to add a new classifier is a class that derives from@ha&ssi fi er class and implements the
bui I dC assi fi er method for learning, and @ assi f yl nst ance method for testing/predicting
the value for a data point. The code fragment in Figure 2 shows a minimal impietioenof a
classifier that returns the mean or mode of the class in the training set (d@lids are used to
store indices of nominal attribute values).

Any new class is picked up by the graphical user interfaces through id&rospection: no
further coding is needed to deploy it from WEKA's graphical user iategt. This makes it easy to
evaluate how new algorithms perform compared to any of the existing ohées) explains WEKA's
popularity among machine learning researchers.

Besides being easy to extend, WEKA includes a wide range of supp@téing functionality
to basic implementations. For instance, a classifier can have various ogédiiadgs by implement-
ing a pre-defined interface for option handling. Each option can bendected using a tool-tip text
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package weka.classifiers.misc;

import weka.classifiers.Classifier;
import weka.coresx;

public class NewClassifier extends Classifielr
double mfMean;

public void buildClassifier(Instances data) throws Ex¢em {

m_fMean = data.meanOrMode(data.classindex ());
}

public double classifylnstance (Instance instance) thsolxception {
return mfMean;
}

Figure 2: Classifier code example.

method, which is picked up by theelp dialogs of the graphical user interfaces. Classes typically
implement methods described in papers, and this provenance metadateceaiuioed in a method
that is used to generate documentation. Some methods only apply to certairokohats, such
as numeric class values or discrete attribute values. A ‘capabilities’ meohatimys classes to
identify what kind of data is acceptable by any method, and the grapheainisrfaces incorporate
this by making methods available only if they are able to process the data at hand

There are many projects that build on top WEKA, about fifty of which aredistethe WEKA
Wiki.

3. Origins

The Machine Learning project at Waikato was launched in 1993 with aesafid grant application
to the New Zealand Foundation for Research, Science, and Techndlbgyunderlying intention
behind the request was not so much to further a specific agenda in méedniniag research as to
create a research culture in a small and obscure computer scienceraaydhat brought different
people together. Machine learning was selected because of priotisgperd its potential appli-
cability to agriculture, New Zealand'’s core industry; the grant was justifieerms of applications
research rather than the development of new learning techniques.

This gave the research team a license to incorporate and reimplement eristingds, and
work soon began on a workbench, written in C, that was intended to grevidmmon interface to
a growing collection of machine learning algorithms. It contained some leaatgugithms writ-
ten mostly in C, data I/O and pre-processing tools, also written in C, andigahpiser interfaces
written in TCL/TK. The number of learning algorithms was limited and they came tldfer-
ent sources; wrapper shell scripts were employed to bind them into timewirark. The acronym
WEKA for “Waikato Environment for Knowledge Analysis” was coineddahe system gradually
became known in the international ML community, along with another machinenedibrary in
C++ from the University of Stanford called MLC++, developed by Kdtehal. (1997)

3. MLC++ is now distributed by Silicon Graphicsta#tt p: / / www. sgi . coml Technol ogy/ i c.
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Because of dependencies on other libraries, mainly related to the griaypdecanterfaces, the
software became increasingly unwieldy and hard to maintain. In 1997 vegr&rbon reimplement-
ing WEKA from scratch in Java into what we now term WEKA 3. One of the axgthEibe Frank,
had earlier decided to adopt Java to implement algorithm prototypes, abiagdo++ because Java
development was rapid and debugging was dramatically simplified. This goskjyerience, the
promise of platform independence through virtual machine technologlytrenfact that, as part
of the research code, classes for reading WEKA's standard ARFfefiteat into appropriate data
structures already existed, led to the decision to re-write WEKA in Java.

Many of the classes in today’s code archive (including, for examp&,tié WEKA implemen-
tation of Quinlan’s C4.5) date from mid-1997. Rapid early development tirasligted by the need
to teach a course on machine learning at the University of Calgary duriadl 4997 sabbatical
visit by Witten, along with several students, including Frank. The Jawsiorewas called JAWS
for “Java Weka system” to avoid confusion with WEKA itself, and after soeteate was changed
to WEKA in March 1999. The first paper written using this system was FeantkWitten (1998),
written in late 1997. By the end of 1998 WEKA included packages for classjfassociation rule
learners, filters, and evaluation, as well as a core package. Sewvettabds that were relatively
advanced for the day, such as bagging, were in place, as well asedthats like instance-based
learning and Naive Bayes. Attribute selection was added soon aftesywartd99.

Work began on the first edition of tH2ata Mining book in 1997, based on earlier notes for
Witten’s courses at the University of Waikato, and a proposal was sulbinbittglorgan Kaufmann
late that year. It finally appeared in 1999 (though for reasons thatarelear to us the official
publication date is 2000). WEKA was seen as an important adjunct to the bodkhe original
title, Practical machine learningwas changed t®ata Mining: Practical machine learning tools
and techniques with Javip reflect this. The term “data mining” was prepended primarily for
marketing reasons. The WEKA software described in that edition was coditimenoriented and
the book makes no mention of a graphical user interface, for which désigan in 1999. By
the time the second edition appeared in 2005 the interactive versions of WHHKAEXplorer,
Experimenter, and Knowledge Flow interface—were mature and well-tesedsof software.

4. How Did WEKA Become Widely Adopted?

The size of the mailing list, the volume of downloads, and the number of acadampérspciting
WEKA-based results show that the software is widely deployed. It is stk machine learn-
ing and data mining community as an educational tool for teaching both appleatnohtechnical
internals of machine learning algorithms, and as a research tool for gavgkind empirically com-
paring new techniques. Itis applied increasingly widely in other acadentds fiend in commercial
settings. We are often asked what is the secret of WEKA's succes$ema we speculate on rea-
sons for the software’s broad uptake. An obvious one is that it is fndeopen-source software.
However, there are several other factors, many of which are edpnsthe above brief historical
review.

4.1 Portability

Pre-Java versions of WEKA were limited to UNIX operating systems and disivifis were made
available for Linux, Solaris, and SGI. The present popularity of thénsoé owes much to the
existence of Java Virtual Machines for all important platforms, along withfaloe that all code
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necessary to compile and run WEKA is included in the distribution. The laclepéddency on
externally-maintained libraries makes maintenance of the code base much easie

The decision to rewrite WEKA from scratch in Java may seem obvious iniginiidut was a
large step into the unknown at the time. For one thing, portability seemed lesgamigarthe days
when everyone we knew was using Unix! More importantly, in 1997 noean#d forsee that Java
would turn out to be such a suitable platform. Just-in-time compilation was unk(®un’s Java
1.2, which included a just-in-time compiler, was introduced in December 1$8)y-interpreted
execution suffered a substantial performance hit compared to C++déficlencies in early Java
technology still affect the WEKA code today: the original design of thedodata structures was
clean, object-oriented, and elegant, but the performance penaltyéddwyrextensive use of objects
led to a less generic array-based representation, where all data tistareays of doubles. Many
of the design characteristics of WEKA that seem inelegant are due tmptegdecisions based on
the Java technology available at the time.

Later versions of the Java Virtual Machine virtually eliminated the performaagp from C++
through just-in-time compilation and adaptive optimization. Although there stiligisra percep-
tion that execution of Java code is too slow for scientific computing, this isuroéxperience and
does not appear to be shared by the WEKA community.

4.2 Graphical User Interface

Early releases of the WEKA 3 software were command-line driven andatitholude graphical
user interfaces. Although many experienced users still shun them, fiieicabinterfaces undoubt-
edly contributed to the popularity of WEKA. The introduction of the Exploreparticular has
made the software more accessible to users who want to employ machinedearpnactice. It
has allowed many universities (including our own) to offer courses itiegppmachine learning and
data mining, and has certainly contributed to WEKA's popularity for commeagidlindustrial use.
Again, while obvious in hindsight, the development of graphical user exted was a significant
risk, because valuable programming effort had to be diverted from tle jota of implementing
learning algorithms into relatively superficial areas of presentation ancatien.

The WEKA 3 graphical user interface development benefited from tttetliat the core sys-
tem was already up and running, and relatively mature—as evidencea fiysthedition ofData
Mining—before any work began on interactive interfaces. The early WEKxept probably suf-
fered from attempting to develop interactive interfaces (in TCL/TK) at timeesame as the basic
algorithms and data structures were being commissioned, a mistake that uagedawmothe later
system.

4.3 TheData Mining Book

The first stable release of the WEKA 3 software coincided with the publicafidime first edition
of Data Mining by Witten and Frank, which contained a chapter describing it, both integctiv
via the command-line and programmatically via the API and extension of supsgslaThere has
been a symbiotic relationship between the software and the book: usees sfttvare are likely
to consult the book and readers of the book are likely to try out the saftwihe combination
of a book explaining the core algorithms in a corresponding piece of &keare is particularly
suitable for education. It seems likely that the feedback loop betweenddership of the book
and the users of the software has bolstered the size of both populatibesafly existence of a
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companion book, unusual for open source software, is particulallpabbe for machine learning
because the techniques involved are quite simple and easy to explain,fmtigans obvious.

4.4 Extensibility

WEKA can be used both for educational purposes and as a resdatfdrmp. New algorithms
can easily be incorporated and compared to existing ones on a collectiotacdeda. As noted
earlier, only two methods from th@ assi fi er superclass need be implemented to come up with
a classifier that takes advantage of all the infrastructure in WEKA, includidgevaluation, and
so-called “meta” algorithms.

4.5 Documentation

In recent years there has been a dramatic growth in the volume of WElk#fedenline documentation—
notably as part of the WEKA Wiki. This, in conjunction with the information in the mgiliist
archives, provides a wealth of information for all users. The existef@esteadily increasing,
knowledgeable and enthusiastic user community, and the combined knowtezigshare, has
played a significant role in the success of the software.

4.6 Comprehensiveness

Perhaps the foremost reason for the adoption of WEKA 3 by the rdsearomunity has been
the inclusion of faithful reimplementations of classic benchmark methods, in gartithe C4.5

decision tree learner (Quinlan, 1992), but also other algorithms sucre &3IBPER rule learner
(Cohen, 1995). The original implementations of these algorithms were glrgag successful
software projects in themselves. Bringing them together in a common framéastieen a strong
drawing card.

4.7 Support

“Given sufficient funding, anyone could have done that!” is a refdien heard from sceptics.
We were lucky to receive an initial research grant &pplied machine learning research from a
New Zealand funding agency that approved of our aspirations to inagstige application of this
technology in agricultural domains. Yet it is hard to reconcile the practieatino win academic
credit for research publications with the production of usable softvgarticularly when there is a
constantly growing pressure to commercialize. We continued to apply foreeive, follow-on
funding from the same source, but—particularly as time went on—this compadléd channel
much of our research in the direction of target applications rather thao feggarch in machine
learning.

5. Maintaining the Project

A software project can only become and remain successful if it is contlisteaintained to a high
standard. It has been our experience that this requires a groupmépeho are continually involved
in the management and development of the software for an extended giiiad, spanning several
years. The core development team of WEKA has always been small@seiait: having a small
team helps maintain code quality and overall coherence.
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Development of the software would not have been possible without fadawupport from the
New Zealand government in the form of successive research gnatite Boundation for Research,
Science and Technology, which have been awarded over a signifiesod of time—from 1993
to 2007. Over the years, work on the project has been done by a coupbademic staff, who
were involved in the longer term and fitted it in with their teaching and reseduties, and a
succession of one (or one and a half) full-time equivalent reseangrgmmers. A fair amount
of work was undertaken by students on casual contracts or as phgio$tudies. The community
also contributed many algorithm implementations that are included in the WEKA distiib along
with some patches for the basic framework.

The project has always had a policy of maintaining close control of weedtne part of the
software. Only a handful of developers have ever had write accehbg tource code repository.
The drawback of this policy is reduced functionality; the advantages areouag code quality,
ease of maintenance, and greater coherence for both developerchndex. When new algorithm
implementations were considered for inclusion, we generally insisted orkinbaaublication de-
scribing the new method. In a few cases we have rejected submitted ceditegeiblication, when
our experiments revealed that the method did not appear to improve on abaiwady present in
WEKA.

The research contract that sponsored WEKA development requinee sieasure of commer-
cialization, and a few commercial licenses to parts of the WEKA code basediaynthe University
of Waikato have been sold. It eventually became clear that the succe$sesearch contracts had
a finite life span, and support by a commercial organization was negdedarep WEKA healthy.
Since 2007, Pentaho Corporation, a company that provides opecedausiness intelligence soft-
ware and support, has contributed substantially to the maintenance of WigKikithg one of the
chief developers and providing online help. As part of the requiremetamercialize the soft-
ware, it has been necessary to maintain a branch in the source codaagpthat only contains
code owned by the University of Waikato, an onerous but necesseey ¢f project maintenance.

6. Concluding Remarks

Obviously, in almost two decades of project development, many mistakesmagte—but most
were quickly corrected. One, mentioned above, regards the premasignf interactive inter-
faces, where WEKA 3 benefited from a strategic error made in the earlgA\Mitoject. Below
are two instances of how adoption might have been strengthened hadibet freen managed
differently.

One of the most challenging aspects of managing open source softwategiaent is to decide
what to include in the software. Although careful control of contributioas substantial benefits, it
limits community involvement (Bacon, 2009). A package-based architectuoh @s that adopted
by the R Development Team, 2009) provides a better platform for more prieled ownership and
development. Under such a scheme, packages maintained by their develapde loaded into
the system on demand, opening it up to greater diversity and flexibility. @ntedevelopment in
WEKA is the inclusion of package management, so that packages can easitidbd to a given
installation* The project would probably have benefited by moving in this direction earlier

We have learned that mailing lists for open source software are easier ttamairthe users
are researchers rather than teachers. WEKA's widespread roleidgatémzh has led to a repetitive

4. Currently in the development version only.
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and distracting deluge of basic questions. Requests from students ralhewgorld for assistance
with their assignments and projects present a significant (and growiolglepn; moreover, students
often depart from proper mailing-list etiquette. It would have been betteletttify the clientele
for WEKA as a teaching tool, and offer a one-stop-shop for softwgmeymentation and help that
is distinct from the support infrastructure used by researchers.

All'in all, WEKA has been a resounding success which we believe has sigmilfy advanced
the application of machine learning techniques in today’s world. One of thesatisfying aspects
of participating in the project is that the software has been incorporatedaintbspawned, many
other open-source projects.
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