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Abstract

A common setting for novelty detection assumes that labetedhples from the nominal class
are available, but that labeled examples of novelties asgailable. The standard (inductive) ap-
proach is to declare novelties where the nominal densitpws Wwhich reduces the problem to
density level set estimation. In this paper, we considerstting where an unlabeled and pos-
sibly contaminated sample is also available at learning@ tiM/e argue that novelty detection in
this semi-supervised setting is naturally solved by a gdneduction to a binary classification
problem. In particular, a detector with a desired false th@srate can be achieved through a re-
duction to Neyman-Pearson classification. Unlike the itida@pproach, semi-supervised novelty
detection (SSND) yields detectors that are optimal (etgtissically consistent) regardless of the
distribution on novelties. Therefore, in novelty detestianlabeled data have a substantial impact
on the theoretical properties of the decision rule. We eadidhe practical utility of SSND with an
extensive experimental study.

We also show that SSND provides distribution-free, leagrtimeoretic solutions to two well
known problems in hypothesis testing. First, our resultwiole a general solution to the general
two-sample problem, that is, the problem of determining twbetwo random samples arise from
the same distribution. Second, a specialization of SSNDadés with the standarg-value ap-
proach to multiple testing under the so-called random &ffewodel. Unlike standard rejection
regions based on thresholdpéialues, the general SSND framework allows for adaptaticaribi-
trary alternative distributions in multiple dimensions.

Keywords: semi-supervised learning, novelty detection, Neymandeeeclassification, learning
reduction, two-sample problem, multiple testing

1. Introduction

Several recent works in the machine learning literature have addrésséessue of novelty detec-
tion. The basic task is to build a decision rule that distinguistwesinalfrom novelpatterns. The
learner is given a random sampig. . ., xm € X of nominal patterns, obtained, for example, from a

x. A preliminary version of this work appeared at AISTATS (Scott anchBleard, 2009).
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controlled experiment or an expert. Labeled examples of novelties, leovare not available. The
standard approach has been to estimate a level set of the nominal deobitikdgf et al., 2001,

Steinwart et al., 2005; Scott and Nowak, 2006; Vert and Vert, 2088aRiv and Nisenson, 2007;
Hero, 2007), and to declare test points outside the estimated level set tvdddas. We refer to

this approach amductivenovelty detection.

In this paper we incorporate unlabeled data into novelty detection, and #rgtithis frame-
work offers substantial advantages over the inductive approacparticular, we assume that in
addition to the nominal data, we also have access tméabeledsamplexm, 1, . . ., Xmtn CONSisting
potentially of both nominal and novel data. We assume that gach- m+1,...,m+nis paired
with an unobserved labg| € {0,1} indicating its status as nomingj; < 0) or novel ¢ = 1), and
that (Xm+1,Ym+1), - - - » (Xmtn, Ymin) are realizations of the random p&i,Y) with joint distribution
Pxy. The marginal distribution of an unlabeled pattris the contamination model

X~ Px=(1-mPy+ 1P,

whereR,, y = 0,1, is the conditional distribution ok|Y =y, andtt= Pxy(Y = 1) is the a priori
probability of a novelty. Similarly, we assume,...,xy are realizations oPy. We assume no
knowledge ofPx, Py, Py, or 11, although in Section 6 (where we want to estimate the proportjon
we do impose a natural condition &pthat ensures identifiability af.

We take as our objective to build a decision rule with a small false negativeubiject to a fixed
constrainta on the false positive rate. Our emphasis here is@mi-supervisedovelty detection
(SSND), where the goal is to construct a general detector that coslsifglan arbitrary test point.
This general detector can of course be applied inrdresductivesetting, where the goal is to predict
the labelsym. 1, ..., Ymin associated with the unlabeled data. Our results extend in a natural way to
this setting.

Our basic contribution is to develop a general solution to SSND by a suerpgablem related
to Neyman-Pearson (NP) classification, which is the problem of binargifitagion subject to a
user-specified constraiwt on the false positive rate. In particular, we argue that SSND can be
addressed by applying a NP classification algorithm, treating the nominalrdableled samples
as the two classes. Even though a sample fRyns not available, we argue that our approach
can effectively adapt to any novelty distributi®p, in contrast to the inductive approach which is
only optimal in certain extremely unlikely scenarios. That is, by solving theogate problem, we
obtain a classifief such that, up to a tolerance that shrinks as sample sizes incReases) = 0)
is minimal, whilePy(f(X) =1) < a.

Our learning reduction allows us to import existing statistical performancagtees for Neyman-
Pearson classification (Cannon et al., 2002; Scott and Nowak, 200%hareby deduce generaliza-
tion error bounds, consistency, and rates of convergence foitpaetection. In addition to these
theoretical properties, the reduction to NP classification has practicahtayes, in that it allows
essentially any algorithm for NP classification to be applied to SSND.

SSND is particularly suited to situations where the novelties occupy regioasewine nominal
density is high. If a single novelty lies in a region of high hominal density, it wifpear nominal.
However, if many such novelties are present, the unlabeled data will be conocentrated than
one would expect from just the nominal component, and the presenawelties can be detected.
SSND may also be thought of as semi-supervised classification in the seting kbels from one
class are difficult to obtain (see discussion of LPUE below). We emphtsiteve do not assume
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that novelties are rare, that is, thais very small, as in anomaly detection. However, SSND is
applicable to anomaly detection provideds sufficiently large.

We also discuss estimation afand the special case of= 0, which is not treated in our initial
analysis. We present a hybrid approach that automatically reverts to thetirapproach when
1= 0, while preserving the benefits of the NP reduction wies 0. In addition, we describe
a distribution-free one-sided confidence interval fprconsistent estimation af, and testing for
1= 0, which amounts to a general version of the two-sample problem in statisticalsé/discuss
connections to multiple testing, where we show that SSND generalizes arstapgaoach to mul-
tiple testing, based on thresholdipgvalues, under the common “random effects” model. Whereas
the p-value approach is optimal only under strong assumptions on the alterdistiibution, SSND
can optimally adapt to arbitrary alternatives.

The paper is structured as follows. After reviewing related work in thé setion, we present
the general learning reduction to NP classification in Section 3, and apphethistion in Section
4 to deduce statistical performance guarantees for SSND. Sectionéh{zresir hybrid approach,
while Section 6 applies learning-theoretic principles to inferencetoi€onnections to multiple
testing are developed in Section 7. Experiments are presented in Sectibile8c@nclusions are
discussed in the final section. Shorter proofs are presented in the ntasmgonger proofs appear
in the first appendix.

2. Related Work

Inductive novelty detectioescribed in the introduction, this problem is also known as one-class
classification (Scblkopf et al., 2001) or learning from only positive (or only negativejraples.

The standard approach has been to assume that novelties are outliersspéhtrto the nominal
distribution, and to build a novelty detector by estimating a level set of the nowahémelity (Scott

and Nowak, 2006; Vert and Vert, 2006; El-Yaniv and Nisenson728{&ro, 2007). As we discuss
below, density level set estimation is equivalent to assuming that noveltiagifwemly distributed

on the support oPy. Therefore these methods can perform arbitrarily poorly (Wheis far from
uniform, and still has significant overlap wit®). In Steinwart et al. (2005), inductive novelty
detection is reduced to classification l&f againstP; , whereinP; can be arbitrary. However an
i.i.d. sample fromP; is assumed to be available in addition to the nominal data. In contrast, the
semi-supervised approach optimally adaptBitovhere only an unlabeled contaminated sample is
available besides the nominal data. In addition, we address estimation angl ¢éskia proportion

of novelties.

Classification with unlabeled datdn transductive and semi-supervised classification, labeled
training data{(x;,yi) }{", from bothclasses are given. The setting proposed here is a special case
where training data from only one class are available. In two-class pnsblenlabeled data typ-
ically have at best a slight effect on constants, finite sample boundsiatesl (Rigollet, 2007;
Lafferty and Wasserman, 2008; Ben-David et al., 2008; Singh et &19)2@nd are not needed for
consistency. In contrast, we argue that for novelty detection, unlabekadare essential for these
desirable theoretical properties to hold.

Learning from positive and unlabeled exampl€dassification of an unlabeled sample given
data from one class has been addressed previously, but with cenyaiiffeeences from our work.
This body of work is often termed learning from “positive” and unlabelrdneples (LPUE), al-
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though in our context we tend to think of nominal examples as negative. Teloginaside, a
number of algorithms have been developed, which we now relate to thenpvem.

One class of algorithms proceeds roughly as follows: First, identify utddhmints for which
it seems highly likely thay, = 1. Second, learn a classifier from the known positive examples and
the supposed negative examples. Use it on the unlabeled data to updateuihefgcandidates for
the negative class and repeat until a stable labeling is reached. Sawehalgorithms are reviewed
in Zhang and Lee (2005) and Zhang and Zuo (2008), but they tend heinéstic in nature and
sensitive to the initial choice of negative examples.

A theoretical analysis of LPUE is provided by Denis (1998); Denis e28l0%) from the view-
point of probably approximately correct (PAC) learnable classesA@|Barnability, the objective
is to find specific classes of classifiers such that the optimal classifier icl#s®t can be approx-
imated arbitrarily well, and where the number of samples required is polynoniaé¢imverse of
the error tolerance. While some ideas are common with the present wotkgswdassifying the
nominal sample against the contaminated sample as a proxy for the ultimate gopbird of view
is relatively different and based on statistical learning theory. In pdaticaur input space can be
non-discrete and we assume the distributiBpandP; can overlap, which leads us to use the NP
classification setting and study universal consistency properties.

Several other approaches have been developed which, either exgicithplicitly, rely on a
reduction to a classification problem. Steinberg and Cardell (1992) andl &val. (2009) propose
frameworks based on logistic regression, but both assumetis&nown. Elkan and Noto (2008)
assume a particular sampling scheme whesndn are related in such a way thatan be readily
estimated. Unfortunately, this sampling assumption is not valid in many applicationteest.
All three of these works derive their algorithms by a consideration of gosterobabilities, and
consequently they require thaiis known or can be estimated. In contrast, our approach adopts the
(non-Bayesian) Neyman-Pearson criterion and in no way depends abitfty to know or estimate
U

The idea of reducing LPUE to a binary classification problem has alsotbested by Zhang
and Lee (2005), Liu et al. (2002), Lee and Liu (2003) and Liu et &08. Most notably, Liu et al.
(2002) provide sample complexity bounds for VC classes for the learniaghiat minimizes the
number of false negatives while controlling the proportion of false posititea certain level. Our
approach extends theirs in several respects. First, Liu et al. (20@8)rtbt consider approximation
error or consistency, nor do the bounds established there imply comgiskecontrast, we present a
general reduction that is not specific to any particular learning algorithch¢an be used to deduce
consistency or rates of convergence. Our work also makes seweraibctions not addressed
previously in the LPUE literature, including our results relating to the tasé, to the estimation
of 1, and to multiple testing.

We also note recent work by Smola et al. (2009) describadlatve novelty detectionThis
work is presented as an extension of standard one-class classificatigetting where a reference
measure (indicating regions where novelties are more likely) is known thrmsgmple. In practice,
the authors take this sample to be a contaminated sample consisting of both namdimedval
measurements, so the setting is the same as ours. The emphasis in this work iigypoima
new kernel method, whereas our work features a general learmingtien and learning theoretic
analysis.

Multiple testing The multiple testing problem is also concerned with the simultaneous detection
of many potentially abnormal measurements (viewed as rejected null hypsih&asSection 7, we
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discuss in detail the relation of our contamination model torttr&lom effects modeh standard
model in multiple testing. We show how SSND is, in several respects, a djigagom of that
model, and includes several different extensions proposed in thetnecdtiple testing literature.
The SSND model, and the results presented in this paper, are thus retevanltiple testing as
well, and suggest an interesting point of view to this domain. In particulasugir a reduction to
classification, we introduce broad connections to statistical learning theory

3. The Fundamental Reduction

To begin, we first consider the population version of the problem, wherdigiributions are known
completely. Recall tha®x = (1— )Py + 18, is the distribution of unlabeled test points. Adopting
a hypothesis testing perspective, we argue that the optimal testig fot ~ Pyvs. Hy : X ~ P, are
identical to the optimal tests fdtlg : X ~ Py vs. Hy : X ~ Px. The former are the tests we would
like to have, and the latter are tests we can estimate by treating the nominal apeleshisamples
as labeled training data for a binary classification problem.

To offer some intuition, we first assume tHat has densityhy, y = 0,1. According to the
Neyman-Pearson Lemma (Lehmann, 1986), the optimal test with size (fa#e/@aate)a for
Ho: X ~Pyvs. Hsi: X ~ Py is given by thresholding the likelihood ratig(x) /ho(x) at an appropriate
value. Similarly, lettinghx = (1 — 1)hg 4 Tth; denote the density d¥, the optimal tests foHy :

X ~ Pg vs. Hx : X ~ Px are given by thresholdinigx (x) /ho(x). Now notice

hl(X)
ho(X) '

Thus, the likelihood ratios are related by a simple monotone transformationidedat > 0. Fur-
thermore, the two problems have the same null hypothesis. Thereforeg biyeibry of uniformly
most powerful tests (Lehmann, 1986), the optimal test of gifer one problem is also optimal,
with the same siza, for the other problem. In other words, we can discrimirgtérom Py by
discriminating between the nominal and unlabeled distributions. Note the atmpuaent does not
require knowledge oft other tharrt> 0.

The hypothesis testing perspective also sheds light on the inductiveambpr In particular,
estimating the nominal level s¢x: ho(x) > A} is equivalent to thresholding/ho(x) at 1/A. Thus,
the density level set is an optimal decision rule provitieds constant on the support b§. This
assumption tha®; is uniform on the support d® is therefore implicitly adopted by a majority of
works on novelty detection.

We now drop the requirement thR and P; have densities. Lef : R — {0,1} denote a
classifier. Foy =0, 1, let

=(1-m+Tr

Ry(f) :==R(f(X) #y)

denote the false positive rate (FPR) and false negative rate (FNR)respectively. For greater
generality, suppose we restrict our attention to some fixed set of clasgifigrossibly the set of all
classifiers). The optimal FNR for a classifier of the clgswith FPR< a,0<a <1,is

La(F) = nf Ru(f) (D)
s.t. Ry(f) <a.
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Similarly, introduce

Rx(f) = P(f(X)=0)
= TRy(f)+(1—T)(1—Ro(f))
and let
RealF) 1= jnf Re(f) @)

s.t. Ry(f) <a

In this paper we will always assume the following property (involvihg® andP;) holds:
(A) Foranya € (0,1), there existd* € F such thaRo(f*) = o andRy(f*) =R} ().

Remark. This assumption is in particular satisfied if the clggsis such that for any &£
with Ry(f) < a, we can find another classifief € F with Ry(f’) =a and f > f (sothat R(f’) <
Ri(f)). When R is absolutely continuous with respect to Lebesque measure, this prapertye
easily verified for many common classifier sets, for example linear classifiecision trees or
radial basis function classifiers.

Even without any assumptions on the distribution, it is possible to ensur¢Aha satisfied
provided one extends the clagsto a larger class containing randomized classifiers obtained by
convex combination of classifiers of the original class. This constru@istandard in the receiver
operating characteristic (ROC) literature. Some basic results on this togicearalled in Appendix
B in relation to the above assumption.

By the following result, the optimal classifiers for problems (1) and (2) agestme. Further-
more, one direction of this equivalence also holds in an approximate skengarticular, approx-
imate solutions taX ~ Py vs. X ~ Py translate to approximate solutions f&dr~ Py vs. X ~ Py.
The following theorem constitutes our mdearning reductionin the sense of Beygelzimer et al.
(2005):

Theorem 1 Assume propertfA) is satisfied. Consider arty, 0 < a < 1, and assum& > 0. Then
for any fe F the two following statements are equivalent:

() Rx(f) = Ri o (%) and R(f) < o

(i) Ru(f) =R 4(F) and R(f) =

More generally, let bo(f,F) = Ru(f) —R; 4 (F) and Lx o (f, F) = Rx(f) — R o(F) denote
the excess losses (regrets) for the two problems, and assunte If Ry(f) < o+ for € > 0, then

Lia(f,F) <10 (Lxo(f, F)+(1—me).

Proof . For any classifieff , we have the relatioRx (f) = (1—1)(1— Ro(f)) + 1Ry(f) . We start
with proving (ii) = (i). Considerf € # such thatR;(f )— Riq(F) andRo(f) = a, but assume
Rx(f) > R4 (F). Let f' € F such thaRy (') < Rx(f) andRy(f’) < a. Then sincat> 0,
Ry(f) =1t (Rx (') = (1 - (1~ Ro(f")))
! (Rx(f) — (L-m(1-a))
=Ry(f),
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contradicting minimality oRy (f) .

To establish the converse implication, consiéler # such thaRx (f) =R , ( ) andRp(f) <
o, butassum®,(f) > Ry, (F) orRo(f) < a. Let ' be such thakR(f') = o andRy (') =R{(¥),
whose existence is ensured by assump{fn Then

Rx(f') = (1—-m)(1—o)+TRy(f)
< (1-m(L-Ro(f)) +mRu(f)
= Rx(f),

contradicting minimality ofRx(f). To prove the final statement, first note that we established
Ria(F) =TR] 4 (F)+(1-1m(1-a), by the first part of the theorem. By subtraction we have

Lia(f,F) = 1 lxa(f, F)+(1-m(Ro(f) —a))
< 1 Hxa(f, F)+ (1 -1)e).

Theorem 1 suggests that we may estimate the solution to (1) by solving a atertaigary
classification problem, treating, . ..,xm as one class angn. 1, ..., Xm.n as the other.

In the rest of the paper, we explore the consequences of this redtraiom theoretical as well
as practical perspective. In the next section, we illustrate on the thedrgtie, in the case of an
empirical risk minimization (ERM) type algorithm, how a finite sample bound for NBsifigation
translates to a finite sample bound for SSND and leads to desirable propadieas consistency.
On the other hand, algorithms we can analyze (such as ERM) often davettte best performance
on actual data, and may be computationally infeasible (a situation that is ruiticpe SSND).
Thus in the experimental Section 8 we implement a different method, namely siotpddfdctive
schemes based on kernel density estimates. It is important to observaéoaeim 1 still applies to
these methods since it just compares two objective functions and is agndbgcriethod used.

4. Statistical Performance Guarantees

We now illustrate how Theorem 1 leads to performance guarantees fdd . 38&lconsider the case
of a fixed set of classifierg having finite VC-dimension (Vapnik, 1998), and the NP classification
algorithm

f. = arg minR(f)
feF
st Ry(f) <a+r1,

based on (constrained) empirical risk minimization, where

R lm+n R 1m
Rx(f) L)1), Ro(f) == Lirz0)-
=2 Liteozy m 2, Hfeo70)

| m+1

This rule was analyzed in Cannon et al. (2002) and Scott and Now@k)20Define the precision
of a classifierf for classi asQ;(f) = Pxy(Y =i|f(X) =1i) (the higher the precision, the better the
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performance). Then we have the following result bounding the difteyef the quantitie® and
Qi to their optimal values oveF .

Theorem 2 Assume ¥ ..., Xm and Xn.1, ..., Xmn are i.i.d. realizations of Pand R, respectively,
and that the two samples are independent of each other. Assunte Let ¥ be a set of classifiers
of VC-dimension V . Assume prope(d) is satisfied and denote by &n optimal classifier inf

with respect to the criterion iifl). Fixing & > 0, definegy = w . There exist absolute

constants ¢’ such that, if we choose= cg,,, the following bounds hold with probability— &:

Ro(f)—a < Cen; ©)
Rl(ﬂ)—Rl(f*) < C/Trl(sn‘i‘sm) ; (4)
. ~ c .
Qi(f)—Qi(f) < m(snﬁLsm)a i1=0,1. (5)

The proof is given in Appendix A. The primary technical ingredients in tfeopare Theorem
3 of Scott and Nowak (2005) and the learning reduction of Theorenoteablhe above theorem
shows that the procedure is consistent inside the clader all criteria considered, that is, these
guantities decrease (resp. increase) asymptotically to their valfie. athis is in contrast to the
statistical learning bounds previously obtained (Liu et al., 2002, Thm. BRjchwdo not imply
consistency.

Following Scott and Nowak (2005), by extending suitably the argumentla@chethod in the
spirit of structural risk minimization over a sequence of claggdsaving the universal approxima-
tion property, we can conclude that this method is universally consistattgtirelevant quantities
converge to their value at*, where f* is the solution of (1) over the set of all possible classi-
fiers). Therefore, although technically simple, the reduction result ediigm 1 allows us to deduce
stronger results than the existing ones concerning this problem. This garddkled with the re-
sult that inductive novelty detection can be reduced to classification agaifesrm data (Steinwart
et al., 2005), which made the statistical learning study of that problem sigmifycsimpler.

It is interesting to note that the multiplicative constant in front of the rate of@gence of
the precision criteria i (f*(X) = i)~! rather tharrr ! for Ry . In particularPy (f*(X) = 0) >
(1-m(1—a), so that the convergence rate for class 0 precision is not significafitigted as
t— 0. SimilarlyPx (f*(X) =1) > (1—-ma, so the convergence rate for class 1 precision depends
more crucially on the (knowrg than onrrt.

For completeness, we briefly discuss the optimalit@gff *) in (5) in the sense of the criterion
Q; itself. Under an additional minor condition, it is possible to show (the detailgiaea at the end
of Appendix B) that under the constraiR§(f) < a, the best attainable precision for class 0 in the
set ¥ is attained byf = f*. Therefore, in (5)i(= 0), we are really comparing the precision fof
against the best possible class 0 precision given the FPR constrainte Oth#r hand, it does not
make sense to consider the best attainable class 1 precision under acamgigint orRg, since
we can have botRy — 0 andQ; — 1 by only rejecting a vanishingly small proportion of very sure
novelties. But it can easily be seen tHdtrealizes the best attainable class 1 precision under the
equalityconstraintRy(f) =a .

We emphasize that the above result is but one of many possible theoremastthbbe deduced
from the learning reduction; other results from Neyman-Pearson ctagigifi could also be applied.
We also remark that, although the previous theorem corresponds to thegeemised setting, an
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analogous transductive result is easily obtained by incorporating dticaadi uniform deviation
bound relating the empirical error rates on the unlabeled data to the trueses.

5. The Casern= 0 and a Hybrid Method

The preceding reduction of SSND to NP classification is only justified wihen0. Aside from

the analysis breaking down, this can be seen as follows. The unlabetgdess a draw from

Px = (1—m)Py+ 1P1. Whentt= 0, the unlabeled sample is a draw frén Therefore it contains

no information abouP;. Were we to solve the surrogate NP problem, we would be attempting to
classify between two identical distributions, and the best we could do weutdrimlom guessing.
This is confirmed in Table 2 (cage= 0) where the AUC values for SSND are near one half. Our
goal in this section is to develop a learning reduction, and a parallel restiftetorem 1 in Section

3, but which handles the case= 0 more sensibly.

Whentt= 0, we have no information aboB in either sample. Therefore, the only way to get
any traction on the problem is to make some assumption @outhe inductive method makes
such an assumption (as noted previously in the paper), namelitlsatiniform on the support of
Po. Since uniformity is the standard assumption without any additional prior keuge, we aim to
develop a method that performs at least as well as the inductive methodri#hén

Therefore we ask the following question: Can we devise a method whieimghao knowledge
of 1, shares the properties of the learning reduction of Section 3 wher®, and the inductive
approach otherwise? Our answer to the question is “yes” under fainigrgkeconditions.

The intuition behind our approach is the following. The inductive appréaciovelty detection
performs density level set estimation. Furthermore, as we saw in Secti@angitydlevel sets are
optimal decision regions for testing the nominal distribution against a uniféstritdition. There-
fore, level set estimation can be achieved by generating an artificiaromgample and performing
weighted binary classification against the nominal data (this idea has besdopl in more detail
by Steinwart et al., 2005). Our approach is to sprinkle a vanishingly smadption of uniformly
distributed data among the unlabeled data, and then implement SSND using &iRcalan on
this modified data. Whert= 0, the uniform points will influence the final decision rule to perform
level set estimation. When > 0, the uniform points will be swamped by the actual novelties, and
the optimal detector will be estimated.

To formalize this approach, let@ p, < 1 be a sequence tending to zero. Assume #iata
compact set which is known to contain the suppompfobtained, e.g., through support estimation
or through a priori information on the problem), and®gbe the uniform distribution 08. Consider
the following procedure: Lek ~ binom(n,py). Draw k independent realizations frof, and
redefinen.1,...,Xmyk to be these values. (In practice, the uniform data would simply be appended
to the unlabeled data, so that information is not erased. The presertiprechowever, is slightly
simpler to analyze.)

The idea now is to apply the SSND learning reduction from before to this mddifiabeled
data. Toward this end, we introduce the following notations. For simplicity, evaa explicitly
indicate the underlying clasg. We refer to any data point that was drawn from eitRgor P,
as anoperativenovelty. The proportion of operative novelties in the modified unlabeled sagple
Ti:=T1(1— pn) + pn- The distribution of operative novelties?s .= 'T(l%np”)PlJr %Pz, and the overall

distribution of the modified unlabeled datafs := 7Py + (1— f)Po. Let Ry, R} o, Ry, I'}Lu, Ry, and
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Ii;;?a be defined in terms d®, Py, andPx, respectively, in analogy to the definitions in Section 3.
Also denotel oo (f) = Ra(f) = Rs 4, Lia(f) =Ru(f) — R 4, andix o = Rx () — Ry -

By applying Theorem 1 to the modified data, we immediately conclude tif ff) < o +¢,
then 1 1

Lia(f) < 2(Exa(f) +(2=T0) = =(Lxa(F) + (1=m)(1— pr)e). (6)

By previously cited results on Neyman-Pearson classification, the quantitibe right-hand side
can be made arbitrarily small asandn grow. The following result translates this bound to the kind
of guarantee we are seeking.

Theorem 3 AssumdA) holds. Let f be a classifier withgRf ) < a +¢. If T=0, then
Loa(f) < ppt(Cxa(f) + (1 pn)e).

If t> 0, then 1
M(Lx,a(f)Jr(l—”)(l— Pn)€+ Pn).

To interpret the first statement, note thaty(f) is the inductive regret. The bound implies that
Loa(f) — 0 as long as both = Ry(f) — a andLy q(f) tend to zerdaster than p. This suggests
taking p, to be a sequence tending to zero slowly. The second statement is similar toltbe ea
result in Theorem 1, but with additional factorsmf. These factors suggest choosimgtending to
zero rapidly, in contrast to the first statement, so in practice some balanaiel e struck.

Proof If =0, thenI:La = Lo and the first statement follows trivially from (6). To prove the

second statement, denddg:= "(1;,1'0”) and observe that

L17Q(f) <

R, = _inf Ry(f)
: Ro(f)<a

— Rogp)fga[Ban(f)+(1—Bn)Rz(f)}
< BnRi,a+(1_B”)'

Therefore

Lia(f) = Ru(f)—Rig

BrRy(f) + (1 —Bn)Re(f) —BnRy g — (1 —Bn)
Bn(Ru(f) —Ryq) — (1= Pn)

= Bn'—l,(x(f)*(lfﬁn)

and we conclude, still using (6),

I—l,cx(f) S ;E1,0+1B8n
1 ~
< m(LX,a(f)+(1—n)(1—pn)5+pn)‘
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Like Theorem 1, Theorem 3 is quite general, and has both theoreticptaciical implications.
Theoretically, it could be combined with specific, analyzable algorithms fgméa-Pearson clas-
sification to yield novelty detectors with performance guarantees, as wdsatkgin Section 4. We
do not develop this theoretical direction here. Practically, any algoritmiNéyman-Pearson clas-
sification that generally works well in practice can be applied in the hybaichéwork to produce
novelty detectors that perform well for valuestothat are zero or very near zero. We implement
this idea in the experimental section below.

We also remark that this hybrid procedure could be applied with any pritvitdison on nov-
elties besides uniform. In addition, the hybrid approach could also béqaihc useful whem is
small, assuming the artificial points are appended to the unlabeled sample.

6. Estimating rtand Testing for m=0

In the previous sections, our main goal was to find a good classifier funfciiothe purpose of
novelty detection. Besides the detector itself, it is often relevant to the usevan estimate
or bound on the proportiom of novelties in the contaminated distributiéy . Estimation ofrt
allows for estimating and optimizing the misclassification rate on the unlabeled dath, i& often
of interest in the LPUE literature (see Sec. 2). Estimatiomdd also useful for estimating the
precision (as defined in Section 4); this topic will be revisited in the next settithe context of
multiple testing.

It may also be useful to test whether there are novelties at all; in othersysirtte the learnt
detectorf is allowed a certain proportion of false positives, it is important to assesthehthe
reported novelties are a statistically significant indication of the presenngeafiovelties, or if they
are likely to be all false positives. We focus on these issues in the preeseitn.

It should first be noted that without additional assumptiaris,not an identifiable parameter in
our model. To see this, consider the idealized case where we have an anfioiteit of nominal and
contaminated data, so that we have perfect knowleddrs ahdPy . Assuming the decomposition
P« = (1—-mPy+ 1P, holds, note that any alternate decomposition of the f&ym= (1 — 11—
Y)Po+ (14 y)P; , with P} = (T1+y) (1P, + yPs) , andy € [0,1— 11, is equally valid. Because the
most important feature of the model is that we have no direct knowled®e,afle cannot decide
which representation is the “correct” one; we could not even exduaigori the case whera=1
and P, = Px (while producing the exact same observed data). The previous restdtdighed
in Theorems 1-3 are valid for whatever underlying representation isresbto be correct. For
the estimation of the proportion of novelties, however, it makes sense tedeéisa theminimal
proportion of novelties that can explain the difference betw@eandPy . First we introduce the
following definition:

Definition 4 Assume {, P, are probability distributions on the measure space S). We call
P, a proper novelty distributiorwith respect to R if there exists no decomposition of the form
P1 = (1-y)Q+ yPo where Q is some probability distribution ac y < 1.

This defines a proper novelty distributi® as one that cannot be confounded vigghit cannot be
represented as a (nhontrivial) mixtureRfwith another distribution.

The next result establishes a canonical decomposition of the contaminstigioution into a
mixture of nominal data and proper novelties. As a consequence therfioopw of proper nov-
elties, and therefore the proper novelty distributi®yritself, are well-defined (that is, identifiable)
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given the knowledge of the nominal and contaminated distributions (exoephé special case
Py = Px, where of course the novelty distribution is not defined).

Proposition 5 Assume @, P are probability distributions on the measure spdce &). If Px #
Po, there is a uniquet’ € (0,1] and R such that the decompositios P- (1 — 1t)Py + 1Py holds,
and such that Pis a proper novelty distribution with respect tg Af we additionally definet = 0
when R = Py, then in all cases,

T :=min{a € [0,1] : 3Q probability distribution: R = (1—-a)Py+0aQ} . (7)

The proof is given in Appendix A. For the rest of this section we assumeifoplicity of
notation thattandP; are the proportion and distribution of proper noveltiespfwith respect to
Po. The results to come are also informative for improper novelty distributiontheiriollowing
sense: ifP; is not a proper novelty distribution and the decomposifin= (1 — )Py + 1 holds,
then (7) entails thatr > 1t*. It follows that a lower bound ort* (either deterministic or valid with a
certain confidence), as will be derived in the coming sections, is alvsysaaalid lower confidence
bound onrtwhen non-proper novelties are considered. A lower bound is efédgtilie best we can
hope formtif Py is not assumed to be proper.

6.1 Population Case

We now want to relate the estimation®to quantities previously introduced and problem (1). We
first treat the population case and optimal novelty detection over the skpofkaible classifiers.

Theorem 6 For any classifier f, we have the inequality

Rx(f)
> l_?RO(f)'

Optimizing this bound over a set of classifigfsunder the FPR constraintdRf) < a yields for
any0O<a <1

Ri.alF)
>1- 2 .
m=leT, ®)
Furthermore, if ¥ is the set of all deterministic classifiers,
o Req(F)
m=1- inf ’ ) 9
aco,l) 1—a )

Proof . For the first part, just write for any classifiér

1-R(f) = P(f(X)=1)
— (1—TRy(f
< (1-mRy(f)+,

resulting in the first inequality in the theorem. Under the constigjff) < a, this inequality then
yields
Re(f) 1 Rx(f).

T TR 1-a’
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optimizing the bound under the constraint yields the second inequality.
We establish in Lemma 13 in Appendix A that for any 0 there exists a classifidg such that
Ro(fe) <1 andRy(fe)/(1—Ro(fe)) < €. Putae = Ry(fe); we then have

R o (F) < Rx(fe) = (1-)(1—ae) + TRy (Fe),

implying
R;F(a<}') Rsk(a (f) Rl(fs)
>1-— J >1- =" - > 1—-—— | >1ml-—
n= acfo) l—a — 1-ag _T[( l—RO(f£)> >T(l-¢),
which establishes the last claim of the theorem. [ |

6.2 Distribution-free Lower Confidence Bounds onm

In the last part of Theorem 6, if we assume that the funatien Ry ,(¥)/(1—a) is nonincreasing
(a common regularity assumption; see Appendix B for a discussion of hoaathéfition can always
be ensured by considering possibly randomized classifiers)ptherRy , () is left differentiable
ata =1 and (8) is optimized by taking — 1, that is,

dR ()

> 1 ,
= da a=1-

(10)
while (9) entails that the above inequality is an equalityiftontains all deterministic classifiers.
This suggests obtaining a lower boundmby estimating the slope & () atits right endpoint.
The following result adopts this approach while accounting for the uringriaherent in empirical
performance measures.

Theorem 7 Consider a classifier set for which we assume a uniform error bound of the following
form is available: for any distribution Q o', with probability at leastL — & over the draw of an
i.i.d. sample of size n according to Q, we have

vieF |Q(f(X)=1)—-Q(f(X)=1)| <e&n(¥,9), (11)

where@ denotes the empirical distribution built on the sample.
Then the following quantity is a lower bound orwith probability at least1 — )2 > 1 — 25
(over the draw of the nominal and unlabeled samples) :

(.5 =1 it Re(D+en(FD)
27 (1 Ro(f) — &m(F,9)) s

where the ratio is formally defined to Bevhenever the denominator@s

(12)

Note that if we definef, = arg mirk . » Rx(f) under the constrain®(f) < a, this can be
rewritten

~ o~

T (F,8)=1— inf x(fa) +&n(¥,2)

f
acl01] (1 Ro(fo) — &m(F,8))4
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There are two balancing forces at play here. From the population ngfB®) (valid under a mild
regularity assumption), we know that we would like to henas close as possible to 1 for estimating
the derivative oRy () ata = 1. This is balanced by the estimation error which makes estimations
close toa = 1 unreliable because of the denominator. Taking the infimum along the cle®ita

a sense the best available bias-estimation tradeoff.

Proof . To simplify notation we denotg,( ¥ ,d) simply bye,. As in the proof of the previous result,
write for any classifieff:

P(f(X)=1) < (1—mPy(f(X)=1) 4T,
from which we deduce after applying the uniform bound

1-Rx(f)—&n =
<

=D

(f(X)=1)—¢n
—1)(Ro(f) +&m) + T,

which can be solved whenever1Ry(f) —&m > 0. [

The following result shows that (F,d) , when suitably applied using a sequence of classifier
setsf, P, ... that have a universal approximation property, yields a strongly wsalgrconsistent
estimate of the proportior of proper novelties. The proof is given in Appendix A and relies on
Theorem 7 in conjunction with the Borel-Cantelli lemma.

Theorem 8 Consider a sequencgi, %», ... of classifier sets having the following universal ap-
proximation property: for any measurable functiof :fX — {0,1}, and any distribution Q, we
have
liminf inf Q(f(X) # f*(X))=0.
k—o0 feF
Suppose also that each clagg has finite VC-dimension/so that for eachfx we have a uniform

confidence bound of the for¢hl) for €,( #«,8) = 3 w . Define
T (8) = supit (F, 8k ?) .
k
If = (mn)~2, thenTr" converges tatalmost surely agnin(m,n) — oo,

6.3 There are No Distribution-free Upper Bounds onrt

The lower confidence bounds (¥ ,8) andTt () are distribution-free in the sense that they hold
regardless oPy, P andtt. We now argue that distribution-free upper confidence bounds do not
generally exist.

We define aistribution-free upper confidence bounti™ () to be a function of the observed
data such that, for ari, any proper novelty distributioB;, and any novelty proportiorni< 1, we
haveTt" (8) > Ttwith probability 1— & over the draw of the two samples.

We will show that such a universal upper bound does not exist uitlesgivial. The reason
is that the novel distribution can be arbitrarily hard to distinguish from the nalndiistribution.

It is possible to detect with some certainty that there is a non-zero propaftinavelties in the
contaminated data (see Corollary 11 below), but we can never be stitbéhaare no novelties.
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This situation is similar to the philosophy of significance testing: one can neeepathe null
hypothesis, but only have insufficient evidence to reject it.

We will say that the nominal distributioR, is weakly diffuseéf for any y > 0 there exists a set
Asuch that 0< Py(A) < y. We say an upper confidence boumd(d) is non-trivial if there exists a
weakly diffuse nominal distributioRy, a proper novelty distributioRy, a novelty proportionm< 1,
and a constard > 0 such that

P(Tt (d) < 1) > 5,

where the probability is over the joint draw of nominal and contaminated sanifiiesassumption
demands that there is at least a specific setting where the uppertro(d)ds significantly different
from the trivial bound 1, meaning that it is bounded away from 1 with lapgebability than its
allowed probability of errod.

Theorem 9 There exists no distribution-free, non-trivial upper confidence bourml.o

The proof appears in Appendix A. The non-triviality assumption is quitekvesal relatively
intuitive. The only not directly intuitive assumption is that should be weakly diffuse, which is
satisfied for all distributions having a continuous part. This assumptiontiefity excludes finite
state spaces, which is an important conditionX ifs finite, it is actually possible to obtain a non-
trivial upper confidence bound an

The following corollary establishes that for any finite sample size, any estiréata (and
in particular the universally consistent estimator considered in the preseni®n) can have an
average error bounded from below by a constant independent séthple size.

Corollary 10 Assumex is an infinite set and let pm be fixed. For any estimatat of 11, based on
a joint sample of sizém,n), and any fixed real p- O:

sup E[[ft-1i"] = c(p) >0,

Pe®P(mn)

where?(m,n) denotes the set of all generating distributiongwf n)-samples following the SSND
model (that is, of the form P Py'™ @ Py for arbitrary Py, Px), and ¢ p) is a constant independent
of (m,n).

This result essentially precludes the existence of universal comegates in the estimation of

In other words, to achieve some prescribed rate of convergence assm@ptions on the generating
distributions must be made. This parallels the estimation of the Bayes risk in datisifi(Devroye,
1982).

6.4 Testing formt=0

The lower confidence bound arcan also be used as a testfor 0, that is, a test for whether there
are any novelties in the test data:

Corollary 11 Let ¥ be a set of classifiers. T~ (F,8) > 0, then we may conclude, with confidence
1-9, that the unlabeled sample contains novelties.
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It is worth noting that testing this hypothesis is equivalent to testirg, iind Px are the same
distribution, which is the classical two-sample problem in an arbitrary inpatespThis problem
has recently generated attention in the machine learning community (Gretton2€0al), and the
approach proposed here, using arbitrary classifiers, seems to b&unewonfidence bound could
of course also be used to test the more general hypothesig, for a prescribed, 0<1H < 1.

Note that, by definition oft (F,d), testing the hypothesis = 0 using the above lower confi-
dence bound fortis equivalent to searching the classifier spécéor a classifierf such that the
proportions of predictions of 0 and 1 Hydiffer on the two samples in a statistically significant
manner. Namely, for a classifiérbelonging to a clasg for which we have a uniform bound of
the form (11), we have the lower bouf (f(X) = 1) > Px(f(X) = 1) — ¢, and the upper bound
Po(f(X) = 1) < Py(f(X) = 1) +&m (both bounds valid simultaneously with probability at least
1-9). If the difference of the bounds is positive we conclude that we must Ba+# Py, hence
> 0. This difference is precisely what appears in the numeratar ¢fF ,d) in (12). Further-
more, if this numerator is positive then so is the denominator, since it is alwayes.ldn the end,
T (F,d) > 0is equivalent to

sup( (B((X) = 1) ~ &) — (Ro(f(X) = 1) +&m) ) > 0.
feF

7. Relationship Between SSND and Multiple Testing

In this section, we show how SSND offers powerful generalizations efstandardp-value ap-
proach to multiple testing under the widely used “random effects” model,resd=red for example
by Efron et al. (2001).

7.1 Multiple Testing Under the Random Effects Model

In the multiple testing framework, a finite famifjHs, ..., Hk) of null hypotheses to test is fixed;
from the observation of some daXg a decisiorD(H;, X) € {0,1} must be taken for each hypothe-
sis, namely whether (given the data) hypothé$iss deemed to be fals®(H;, X) = 1, hypothesis
rejected) or trued(H;,X) = 0, hypothesis not rejected). A typical application domain is that of
microarray data analysis, where each null hypothdsisorresponds to the absence of a difference
in expression levels of genén a comparison between two experimental situations. A rejected null
hypothesis then indicates such a differential expression for a speeife; gnd is called discovery
(since differentially expressed genes are those of interest). Hovtbearumber of null hypotheses
to test is very large, for example ~ 4.10* in the gene expression analysis, and the probability of
rejecting by chance a null hypothesis must be strictly controlled.

In the standard setting for multiple testing, it is assumed that a testing statisticc R has
been fixed for each null hypothedik, and that its marginal distribution is known whelnis true.
This statistic can then be normalized (by suitable monotone transform) to takertheof a p-
value A p-value is a functionp;(X) of the data such that, if the corresponding null hypothesis
H;i is true, thenp;(X) has a uniform marginal distribution df,1] . In this setting, it is expected
that the rejection decisiori3(H;, X) are taken based on the obseneudalues(pi(X),..., pk(X))
rather than on the raw data. In fact, in most cases it is assumed that themetike the form
D(H;,X) = 1{pi(x)gf} , whereT is a data-dependent threshold. Further, simplifying distributional
assumptions on the family gf-values are often posited. A common distribution model called
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random effectabstracts thep-values from the original dat® and assumes that the veracity of
hypothesid; is governed by an underlying latent variableas follows:

e the variablesy € {0,1}, 1 <i <K arei.i.d. Bernoulli with parametet

e the variableg; are independent, and conditionally(tm, ... ,hg) have distribution

_ Uniform[0,1], ifh =0
ST it hy = 1.

Under the random effects model, thevalues thus follow a mixture distributidd —m)U [0, 1] +
TP, on the intervalO, 1] and can be seen as a contaminated sample, while the varpipley the
role of the unknown labels. It should now be clear that the above modefastimspecificatiorof
the SSND model, with the following additional assumptions:

1. The observation space is the inter\@ll];

2. The nominal distributioR is known to be exactly uniform 0@, 1] (equivalently, the nominal
distribution is uniform and the nominal sample has infinite size);

3. The class of novelty detectors considered is the set of intervals aftimgd, t],t  [0,1].

Therefore, the results developed in this paper can apply to the moretegbg@tting of multiple
testing under the random effects model as well. In particular, the estimater,d) developed in
Section 6, when specified under the above additional conditions, mscinemethodology of non-
asymptotic estimation of X rtwhich was developed by Genovese and Wasserman (2004), Section
3, and our notion of proper novelty distribution recovers their notiopuwfty in that setting (and
has somewhat more generality, since they assuppéal have a density).

There are several interesting benefits in considering for the purposeltiple testing the more
general SSND model developed here. First, it can be unrealistic in raotassume that the dis-
tribution of the p-values is known exactly under each one of the null hypotheses. thsiedy
assuming the knowledge of a reference sample under controlled exp&irenditions as in the
SSND model is often more realistic. This problem was recently motivated lyepns in genomics
(Ghosh and Chinnaiyan, 2009) and proteomics (Ghosh, 2009), whtre latter reference asymp-
totic analysis was also presented.

Secondly, the restriction to decision sets of the fdmn <t} can also be questionable. For
a single test, decision regions of this form are optimal (in the Neyman-Reaesse) only if the
likelihood ratio of the alternative to the null is decreasing, which amounts tarasg that the
alternative distributiorP; has a decreasing density. This assumption has been criticized in some
recent work. A simple example of a situation where this assumption fails is indaheefvork ofz
or t-tests, that is, the null distribution of the statistic (before rescaling ptalues) is a standard
Gaussian or a Studendistribution, and the correspondingvalue function is the usual one- or
two-sidedp-value. If the alternative distributioR; is a mixture of Gaussians (resp. of noncentral
t distributions), optimal rejection regions for the original statistic are in gémefaite union of
disjoint intervals and do not correspond to level sets ofgha@lues. In order to counter this type
of problem, Sun and Cai (2007) suggest to estimate from the data the tdteerssity and the
proportion of true null hypotheses, and use these estimates directly in anplikglihood ratio
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based test. Chi (2007) develops a procedure based on growingjaoejetervals around a finite
number of fixed control points if0,1] . In both cases, an asymptotic theory is developed. Both of
these procedures are more flexible than using only rejection intervals &rthg0,t] and aim at
adaptivity with respect to the alternative distributien

Finally, the remaining restriction that effective observations (thalues) belong to the unit
interval was also put into question by Chi (2008), who considered a geaitimultidimensional
p-values belonging td0,1]9. The distribution was still assumed to be uniform under the corre-
sponding null hypothesis, although this seems an even less realistic assuthatian dimension
one. In this framework, the use of a reference “nominal” sample undetuthédistribution seems
even more relevant.

The framework developed in the present paper allows to cover at oese tlifferent types of
extensions rather naturally by just considering a richer cfasd candidate classifiers (or equiva-
lently in this setting, rejection regions), and provides a non-asymptotichissmaf their behavior
using classical learning theoretical tools such as VC inequalities. Furthersuch non-asymptotic
inequalities can also give rise to adaptive and consistent model seleatitie feet of classifiers us-
ing the structural risk minimization principle, a topic that was not addressadagusly for the
extensions mentioned above.

7.2 SSND with Controlled FDR

One remaining important difference between the SSND setting studied hetthatrof multiple
testing is that our main optimization problem (1) is under a false positive ragtreontRy(f) < a,
while most recent work on multiple testing generally imposes a constraint omlde discovery
rate (FDR) instead. If we denote

Pos(1) = Fx(f(X) = 1) = 1 Rx(f) =

n
s mei)=1
i;ux )=1}

the proportion of reported novelties, and
_ 120
FP(f) =Pxy(f(X)=1Y=0)= H_Zl{f(xm+i):la)’m+i:0}
1=

the (unavailable to the user) proportion of false discoveries on the corgwdisample, then the
false discovery proportion (FDP) is defined as FDP= FP(f)/Pogf) (taken to be zero if the
denominator vanishes), and the FDR is defined as(#DR E[FDP(f)]. Some classical variations

of this quantity are the positive FDR, pFDR = E[FDP(f)|Pog f) > 0] and the marginal FDR,
mFDR(f) = E[FP(f)]/E[Pog f)]. Under the mixture contamination model, it can be checked that
pPFDR(f) = mFDR(f) = Pxy(Y = 0|f(X) = 1) (Storey, 2003), hence also equal to one minus the
precision for class 1 (as defined earlier in Section 4). The followindtretaies explicit empirical
bounds on these quantities:

Proposition 12 Consider a classifier sef for which we assume a uniform error bound of the
following form is available: for any distribution Q o& x {0,1}, with probability at leastl — 6
over the draw of an i.i.d. sample of size n according to Q, both

~

vieF 1Q(f(X)=1)—Q(f(X) =1)| <&n(¥,9), (13)

2990



SEMI-SUPERVISEDNOVELTY DETECTION

and
VieF |QUF(X)=1Y=0)-Q(f(X)=1Y=0)| <en(¥.5), (14)

hold, whereQ denotes the empirical distribution built on the sample.
Then the following inequalities hold with probability at legst— 8)2 > 1 — 25 (over the draw
of the nominal and unlabeled samples) :

(Ro(f) +&m) (1~ T (%,3))
(1—Rx(f) —&n)+

Vfe F mFDR(f) =P(Y =0X=1) <

i

and R
(Ro(f) +&m)(1-TU (F,9)) +&n

Ve F FDP(f) < R

Y

whereTt (F,9) is defined in(12).

Note that Equations (13) and (14) hold as before wittfF,8) = C\/\M when F has
VC dimensionV . In the interest of simplicity, we use the same bowepdor both uniform error
assumptions. Separate bounds could also be adopted, allowing (13)lighibly §ghter. We also
remark that since FDP is an empirical quantity based on the contaminated sém@glecond bound
is in fact atransductivebound rather than semi-supervised.

Proof . The mFDR can be rewritten as mFDR = Py(f(X) = 1|Y = 0)Pxy(Y = 0)/Px(f(X) =

1) =Ro(f)(1—1m)/(1—Rx(f)). Inthis expression we can plug in the lower boundriasf The-
orem 7 and uniform bounds fé(f) andRx(f) coming from assumption (13). The FDP can be
written as FDRf) = Pey(f(X) = 1Y = 0)/(1— Rx(f)). Using assumption (14), the numerator
can be upper bounded By (f(X) =1,Y = 0) + &, = Ro(f)(1—11) + €5, and we can then use the
same reasoning as for the first part. |

Similarly to what was proposed in Section 4 under the false positive ratéraimmswe can in
this context consider to maximiZ& (f) over f € 7 subject to the constraint that the above empir-
ical bound on the mFDR or FDP is less than This can then be suitably extended to a sequence
of classes?. While a full study of the resulting procedure is out of the scope of thegortepa-
per, we want to point out the important difference that the mFDR is nedgdsaver bounded by
infye x Pxy(Y = O]X = x) which is generally strictly positive. Hence, the required constraint may
not be realizable ifi is smaller than this lower bound, in which case the empirical procedure should
return a failure statement with probability oneras .

8. Experiments

Despite previous work on learning with positive and unlabeled exampledE),Pas discussed
in Section 2, the efficacy of our proposed learning reduction, comparéte method of induc-
tive novelty detection, has not been empirically demonstrated. In additiomvalaate our pro-
posed hybrid method. To assess the impact of unlabeled data on novelifiateteve applied
our framework to some data sets which are common benchmarks for binasjficition. The
first 13 data sets (Mler et al., 2001) are frorhttp://www.fml.tuebingen.mpg.de/Members/
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Data Set dim  Nrain  Nest Thase

banana 2 400 4900 0.45
breast-cancef 9 200 77 0.29
diabetes 8 468 300 0.35
flare-solar 9 666 400 0.55
german 20 700 300 0.30
heart 13 170 100 0.44
ringnorm 20 400 7000 0.50
thyroid 5 140 75 0.30
titanic 3 150 2051 0.32
twonorm 20 400 7000 0.50
waveform 21 400 4600 0.33
image 18 1300 1010 0.57
splice 60 1000 2175 0.48
ionosphere 34 251 100 0.64
mushrooms | 112 4124 4000 0.48
sonar 60 108 100 0.47
adult 123 3000 3000 0.24
web 300 3000 3000 0.03

Table 1: Description of data sedimis the number of features, ahlsin andNestare the numbers
of training and test exampleB,aseiS the proportion of positive examples (novelties) in the
combined training and test data. Thus, the average (across permutatamgpl sample
sizemis (1 — Thasd Nirain-

raetsch/benchmark  and the last five data sets (Chang and Lin, 2001) are fittgiwww.csie.
ntu.edu.tw/  ~cjlin/libsvmtools/datasets/

Each data set consists of both positive and negative examples. Furtbeeaoh data set is
replicated 100 times (except for image and splice, which are replicated 20 tiwitseach copy
corresponding to a different random partitioning into training and tesinples. All numerical
results for a data set were obtained by averaging across all partitibesa€gative examples from
the training set were taken to form the nominal sample, and the positive traxémgples were not
used at all in the experiments. The data sets are summarized in Table NgdgBndNes;are the
sizes of the training and test sets, respectively, winilgseis the proportion of positive examples in
the combined training and test data. Thus, the average (across perng)tabamnal sample size
mis (1 — Thase Nirain.

We emphasize that in these experiments we do not implement the empirical risk mtiomiza
(ERM) algorithm from Sec. 4. The reduction to Neyman-Pearson classificis general and
can by applied in conjunction with any NP classification algorithm, whether {gatitom has
associated performance guarantees or not. We here elect to apphdtiotior using a plug-in
kernel density estimate (KDE) classifier. ERM is computationally infeasiblke tta& bounds tend

1. The web and adult data sets were subsampled owing to their large size.
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to be too loose in practice to be effective. The KDE plug-in rule can be implerdefficiently, and
there is a natural inductive counterpart for comparison, the thresh&lB& based on the nominal
sample.

8.1 Experimental Setup

We evaluated our methodology in two learning paradigms, comparing fivarigamethods across
several values oft. The two learning paradigms are semi-supervised and transductiveeiror
supervised learning, the test data were divided into two halves. Théhéillstvas used as the
contaminated, unlabeled data. The second half was used as an indepsamdple of contaminated
data, not used in the learning stage, but only for evaluation of classifenned by each method.
In particular, the second half of the test data was used to estimate the deyathm ROC (AUC)
of each method. Here, the ROC is the one which vi€yas the null distribution ané; as the
alternative. For transductive learning, the entire test set was treatbd anlabeled data, and was
also used for evaluating the AUC.

The learning methods are the inductive approach, our proposed lgaedaction, and three
versions of the hybrid approach. The three hybrids correspopg#01.0, 0.5, and 01, in which a
uniform sample of size 10§% of the unlabeled sample sizedppendedo the unlabeled data. We
emphasize that each algorithm was implemented in the same way in the two leamadgypes;
the only differences are the size of the contaminated sample, and how ¢heyaduated.

We implemented the inductive novelty detector using a thresholded kernsitydestimate
(KDE) with Gaussian kernel, and SSND using a plug-in KDE classifier. IllBviate concerns
that our inductive implementation is inadequate, we also tested the one-ghgestseector ma-
chine (Scllkopf et al., 2001) in several experimental settings, and found its ypeaiace to be very
similar. Lettingks; denote a Gaussian kernel with bandwidththe inductive novelty detector at
density level\ is

f(x):{ 1 if 5 5 Ko (%, %) > A
0 otherwise

and the SSND classifier at density rakids

f(x)_{ 1 if (33 1 Koy (%)) / (35 31 Koo (%, X)) > A
1 0 otherwise

The hybrid method is implemented similarly. The ROCs of these methods are ohbginadying
the level/threshold.

For each class, a single kernel bandwidth parameter was employedytandzed by maximiz-
ing a cross-validation estimate of the AUC. Note that this ROC is different fte@one used to
evaluate the methods (see above). In particular, it still viByvas the null distribution, but now
the alternative distribution is taken to be the uniform distributffior the inductive detector (see
Section 5; effectively we use a uniform random sample of mise place of the unlabeled data),
P« for SSND, and the appropriaf& for the hybrid methods (see Section 5). Thus, the test label
information was not used at any stage (prior to validation) by any of the mgtho

We also compared the learning methods for several valugs B6r semi-supervised learning,
we examinedti= 0.5,1=0.2,1= 0.1, andrt= 0.0. For transductive learning, we examiree-
0.5,t= 0.2, andit= 0.1. The caseat= 0.0 cannot be evaluated in the transductive paradigm
because there are no positive examples in the unlabeled data. For aazlofva we discarded
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just enough examples (either negative or positive) so that the deswpdrfion was achieved in
the contaminated data. Note that the number of positive examples (novelties)dorttaminated
sample could be very small. For the smallest data sets, in the semi-supentiseyl &ed when
1= 0.1, this number is less than 10.

We remark that the AUC is only one possible performance measure to assesgorithms.
An alternative choice, and one that is more directly connected to our theonld be to select
several different values af, and compare the false negative and false positive rates, for eaeh valu
of a, across all different data sets and algorithms. It would be straightfdrimaour experimental
setup to calibrate the thresholds, using cross-validation for example, ivadhe desired false
positive rate. We have adopted the AUC as a more concise alternative thaeirse averages the
performance for Neyman-Pearson classification across the complgteatm

8.2 Statistical Summaries and Methodology

The complete results are summarized in Tables 2 through 5. Tables 2 andv3rshaverage
AUC for each data set and experimental setting, for the semi-supervidgtbasductive paradigms
respectively. The inductive method is labeled Ind. Our learning redutiladbeled SSND or TND
depending on the setting. The hybrid methods are label@d)ht{ Tables 2-3, and Hybrigy,) in
Tables 4-5.

We followed the methodology of Desar (2006) for comparing algorithms across multiple data
sets. For each data set and each experimental setting, the algorithmamlezé t (best) through
5 (worst) based on AUC. The Friedman test was used to determine, tolegperimental setting,
whether there was a significant difference in the average ranks ofiéhalfjorithms across the data
sets. The average ranks apdralues are reported in Tables 4 and 5. The results indicate that there
is a significant difference among the algorithms at the 0.1 significance tavell 5ettings, with the
exception of the transductive setting whres- 0.1.

When the Friedman test resulted in significant differences, we thenrpexfoa post-hoc Ne-
menyi test to assess when there was a significant difference betweédduatlalgorithms. For a
five algorithm experiment on 18 data sets, with a significance levellote critical difference for
the Nemenyi test is 1.30. That is, when the average ranks of two algoritiff@sky more than
1.30, their performance is deemed to be significantly different.

8.3 Analysis of Results

From the results presented in Tables 2-5, we draw the following conchkision

1. The average ranks in Tables 4-5 conform to our expectations in reapgats. SSND/TND
outrank the inductive approach wher= 0.5, and inductive outranks SSND wher= 0.0.
At the intermediate values= 0.1 and 02, hybrid methods achieve the best ranking.

2. The average ranks also reveal that the performance of the hybttiddsevary according to
the value ofrt As Ttincreases, the best performing hybrid has a correspondingly smaller
amount of auxiliary uniform data appended to the unlabeled sample. This@$orms to
our expectations.
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data set nm=0.5 mn=0.2

Ind. SSND H(1.0) H(0.5) H(0.1) Ind. SSND H(1.0) H(0.5) H(0.1)
banana 0.924 0.939 0.931 0.933 0.9360.924 0.915 0.924 0.923 0.921
breast-cancer 0.654 0.643 0.675 0.669 0.66f 0.654 0.557 0.657 0.648 0.621
diabetes 0.744 0.782 0.770 0.772 0.7760.744 0.684 0.724 0.727 0.717
flare-solar 0.674 0.661 0.664 0.660 0.6620.674 0.629 0.641 0.643 0.642
german 0.628 0.703 0.693 0.696 0.7040.628 0.582 0.633 0.632 0.636
heart 0.793 0.854 0.845 0.853 0.8510.793 0.690 0.805 0.789 0.745
ringnorm 0.999 0.997 0.996 0.996 0.9960.999 0.992 0.990 0.991 0.983
thyroid 0985 0.966 0.964 0.967 0.9550.985 0.889 0.929 0.940 0.943
titanic 0.628 0.643 0.636 0.644 0.6430.628 0.612 0.636 0.634 0.628
twonorm 0.915 0.993 0.989 0.989 0.9900.915 0.940 0.961 0.958 0.953
waveform 0.761 0.958 0.952 0.945 0.9560.761 0.839 0.848 0.896 0.901
image 0.818 0.939 0.929 0.935 0.9390.818 0.892 0.874 0.879 0.875
splice 0.415 0.935 0.905 0.921 0.9320.415 0.702 0.613 0.764 0.785

ionosphere | 0.256 0.926 0.839 0.921 0.9220.256 0.695 0.475 0.607 0.704
mushrooms | 0.945 1.000 1.000 1.000 1.0000.945 0.999 0.999 0.999 0.999

sonar 0.688 0.752 0.757 0.764 0.7640.688 0595 0.682 0.683 0.646
adult 0.605 0.872 0.872 0.864 0.8350.605 0.705 0.720 0.829 0.720
web 0.462 0.778 0.749 0.697 0.7880.462 0.616 0.631 0.585 0.674
data set m=0.1 m=0.0
Ind. SSND H(1.0) H(0.5) H(0.1) Ind. SSND H(1.0) H(0.5) H(0.1)

banana 0.924 0.891 0.922 0.919 0.9180.924 0.540 0.919 0.905 0.785
breast-cancer 0.654 0.515 0.643 0.633 0.5750.654 0556 0.640 0.628 0.568
diabetes 0.744 0.605 0.699 0.700 0.6920.744 0.494 0.689 0.669 0.657
flare-solar 0.674 0,571 0624 0.629 0.6260.674 0.471 0.613 0.603 0.611
german 0.628 0.548 0.623 0.624 0.6020.628 0.522 0.595 0.608 0.592
heart 0.793 0.593 0.778 0.776 0.6880.793 0.506 0.759 0.750 0.620
ringnorm 0.999 0.984 0.981 0.986 0.9910.999 0.478 0.958 0.978 0.985
thyroid 0985 0.786 0.884 0.906 0.8950.985 0.590 0.852 0.869 0.795
titanic 0.628 0.591 0.632 0.634 0.6210.628 0.443 0.630 0.628 0.572
twonorm 0.915 0.931 0.945 0.934 0.9280.915 0.480 0.894 0.879 0.860
waveform 0.761 0.801 0.815 0.822 0.8060.761 0.487 0.736 0.727 0.705
image 0.818 0.769 0.824 0.836 0.8510.818 0.431 0.634 0.696 0.780
splice 0.415 0.630 0.518 0.584 0.6250.415 0.523 0.447 0.493 0.493

ionosphere | 0.256 0.618 0.438 0.488 0.5750.256 0.520 0.392 0431 0.486
mushrooms | 0.945 0.995 0.992 0.998 0.9960.945 0566 0972 0.980 0.982

sonar 0.688 0.556 0.658 0.652 0.6150.688 0.510 0.628 0.643 0.587
adult 0.605 0.627 0.659 0.666 0.6260.605 0.505 0.558 0.556 0.572
web 0.462 0554 0584 0.544 0.6110.462 0557 0553 0523 0.564

Table 2: AUC values for five novelty detection algorithms in the semi-supehgistting. ‘H’ indi-
cates a hybrid method.
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data set m=0.5 m=0.2
Ind. TND H(1.0) H(0.5) H(0.1)| Ind. TND H(1.0) H(0.5) H(0.1)

banana 0.924 0938 0.931 0.932 0.9350.924 0.915 0.923 0.923 0.919
breast-cancer 0.663 0.673 0.662 0.662 0.6700.663 0.615 0.649 0.659 0.630
diabetes 0.742 0.784 0.776 0.779 0.7880.742 0.708 0.728 0.725 0.727
flare-solar 0.673 0.686 0.683 0.684 0.6840.673 0.661 0.658 0.662 0.666
german 0.633 0.739 0.709 0.711 0.7140.633 0.617 0.632 0.637 0.636
heart 0.796 0.869 0.856 0.856 0.8640.796 0.716 0.811 0.794 0.788
ringnorm 0.999 0.997 0.996 0.996 0.9960.999 0.993 0.989 0.991 0.983
thyroid 0.984 0976 0.978 0.979 0.9740.984 0.957 0.962 0.955 0.962
titanic 0.629 0.667 0.646 0.658 0.6610.629 0.642 0.641 0.658 0.645
twonorm 0.915 0.993 0.990 0.990 0.9900.915 0.940 0.961 0.961 0.956
waveform 0.771 0.960 0.953 0.947 0957 0.771 0.847 0.850 0.900 0.905
image 0.845 0.955 0.949 0.949 0.9580.845 0.897 0.889 0.891 0.901
splice 0.416 0.941 0.913 0.930 0.9390.416 0.716 0.623 0.769 0.820

ionosphere | 0.254 0.953 0.844 0.931 0.9520.254 0.714 0.413 0.633 0.746
mushrooms | 0.945 1.000 1.000 1.000 1.0000.945 0.999 0.999 0.999 0.999

sonar 0.683 0.757 0.767 0.778 0.781 0.683 0.615 0.678 0.683 0.662
adult 0.606 0.875 0.873 0.865 0.8350.606 0.687 0.736 0.847 0.739
web 0.464 0.810 0.758 0.727 0.7880.464 0.644 0.639 0.590 0.667
data set m=0.1
Ind. TND H(1.0) H(0.5) H(0.1)
banana 0.924 0.896 0.921 0.920 0.910
breast-cancer 0.663 0.564 0.687 0.642 0.598
diabetes 0.742 0.658 0.720 0.709  0.698
flare-solar 0.673 0.615 0.655 0.643 0.659
german 0.633 0.556 0.615 0.616 0.61b
heart 0.796 0.626 0.792 0.784 0.729
ringnorm 0.999 0.985 0.973 0.986 0.992
thyroid 0.984 0.910 0.970 0.955 0.932
titanic 0.629 0.603 0.643 0.642 0.626
twonorm 0.915 0.933 0.943 0.937 0.928
waveform 0.771 0.813 0.821 0.823 0.808
image 0.845 0.888 0.870 0.871 0.880
splice 0.416 0.630 0.554 0553 0.640
ionosphere | 0.254 0.589 0.349 0.443 0.552
mushrooms | 0.945 0.996 0.994 0.997 0.997
sonar 0.683 0.514 0.646 0.655 0.592
adult 0.606 0.658 0.681 0.684 0.629
web 0.464 0567 0.573 0.538 0.604

Table 3: AUC values for five novelty detection algorithms in the transducétteng. ‘H’ indicates
a hybrid method.
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T \Inductive SSND Hybrid(1.0) Hybrid(0.5) Hybrid(O.]Dp-vaIue

0.0 1.89 4.39 2.72 2.89 3.11 0.000
0.1 2.83 4.00 2.83 2.28 3.06 0.023
0.2 3.28 3.83 2.61 2.56 2.72 0.071
0.5 4.28 1.94 3.44 3.00 2.33 0.000

Table 4: The comparison of average ranks of the five algorithms in the sgengsed setting,
by the Friedman test. The critical difference of the post-hoc Nemenyi tdsBGsat a
significance level of (1.

T | Inductive TND Hybrid(1.0) Hybrid(0.5) Hybrid(0.1) p-value

0.1 2.94 3.78 2.56 2.67 3.06 0.157
0.2 3.17 3.78 3.06 2.50 2.50 0.085
0.5 4.44 1.44 3.56 3.17 2.39 0.000

Table 5: The comparison of average ranks of the five algorithms in thedtretinge setting, by the
Friedman test. The critical difference of the post-hoc Nemenyi tesB@sdt a significance
level of 0.1.

3. All tables indicate that the proposed methodology performs better in thetretive setting
than the semi-supervised setting. A likely reason is that, in our experimentpl &D sees
twice as much unlabeled data as SSND.

4. Whenrt= 0.0 in the semi-supervised experiments, SSND typically has an AUC around 0.5,
which corresponds to random guessing. This makes sense, beciausssientially trying to
classify between two realizations of the nominal distribution. From Tablesd2ame see
that the hybrid methods clearly improve upon SSND witen0.0.

5. For some data sets (splice, ionosphere, web), the inductive methsdvdose than random
guessing, but our methods do not. In each case, our methods yield drantiaases in AUC.

6. The benefits of unlabeled data increase with dimension. In particuli) $8d TND tend
to perform much better relative to the inductive approach on data sets ofisiioneat least
18. This is especially evident in the second half of the data sets, whiclsbeansignificant
gains fort= 0.1. This trend suggests that as dimension increases, the assumption implicit
in the inductive approach (that novelties are uniform where they ovéragupport of the
nominal distribution) breaks down.

Figure 1 depicts a sampling of results comparing the inductive and semiviageemethods,
and highlights the impact of dimension. The top graph shows ROCs for aimendional data set
where the two classes are fairly well separated, meaning the novelties lietailghef the nominal
class, andt= 0.5. Not surprisingly, the inductive method is close to the semi-supervised thetho
The middle graph represents the 60-dimensional splice data set, whereul&via method does
worse than random guessing, yet SSND does quite well. The bottom gr&igure 1 shows the
results for the 21-dimensional waveform data foe 0.1. Here the assumptions of the inductive
approach are also evidently violated to some degree.
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Figure 1: lllustrative results from the semi-supervised setting. Top: Ir2#lenensional banana
data, the two classes are well separated, and the inductive approestvédl. Middle: In
the 60-dimensional splice data, the inductive approach does worseatidon guessing.
Bottom: In the 21-dimensional waveform data, unlabeled data still offesgalienttis
small (here Q).
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9. Conclusions

We have shown that semi-supervised novelty detection reduces to NéSmaasen classification.
This allows us to leverage known performance guarantees for NP ctassifi algorithms, and to
import practical algorithms. We have applied techniques from statisticalihgatineory, such as
uniform deviation inequalities, to establish distribution free performanceagtees for SSND, as
well as a distribution free lower bound and universally consistent estirfator and test fort= 0.
Our approach optimally adapts to the unknown novelty distribution, unlike tivduapproaches,
which operate as if novelties are uniformly distributed. We also introducgbrgdmethod that has
the properties of SSND whem>> 0, and effectively reverts to the inductive method wiea 0.

Our analysis strongly suggests that in novelty detection, unlike traditionahbahassification,
unlabeled data are essential for attaining optimal performance in terms dbtightls, consistency,
and rates of convergence. In an extensive experimental study,und fbat the advantages of our
approach are most pronounced for high dimensional data. Our anafydisxperiments confirm
some challenges that seem to be intrinsic to the SSND problem. In particulid, iS&ore difficult
for smallerrt. Furthermore, estimating the novelty proportimean become arbitrarily difficult as
the nominal and novel distributions become increasingly similar.

Our methodology also provides general solutions to two well-studied prohblemgothesis
testing. First, our lower bound amtranslates immediately to a test far= 0, which amounts to
a distribution-free solution to the two-sample problem. Second, we also slkdBHEND provides
a powerful generalization of standard multiple testing. Important problem&ifore work will
include developing practical methodologies for these problems based treovetical framework.
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Appendix A. Proofs

The remaining proofs are now presented.

A.1 Proof of Theorem 2

For the first two claims of the theorem, we directly apply Theorem 3 of ScdtiNenwak (2005) to
the problem of NP classification & versusPx , and obtain that for a suitable choice of constants
c,c we have with probability at least-15:

~

Ro(fr) —a < c&n; Rx(fr) — Rx(f*) < Cem.

From this, we deduce (3)-(4) by application of Theorem 1.
For the second claim, by application of Bayes' rule we have for any classifi

(1-m(1—Ro(f)) (1-m(1—Ro(f))

Qo(f) = P (f(X)=0) - TR (f)+ (1—m)(1—Ry(f))
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and

ML-Ri(f) _ m1-Ry(f)
A(fX)=1)  (I—TRe(T) + M1 —Ru(1))’
a(1-x)

Observe that for, b > 0 the function{(x,y) = Byra(l-x) is decreasing iy € R, for x € (—o0, 1],
and decreasing ik € [0,1+ by/a) fory € R,. Hence, using (3)-(4) and the fact ti{ f) € [0,1]
we derive a lower bound 0Qo( f;) as follows:

Qu(f) =

(1-m)(1-Ro(F))
() = R )+ (-1 R(T)
- (1-m(1—a—Cep)
T (Ru(f*)+ ' l(en+em)) + (1—m)(1—Ro(f*) —Cep)
B (1-m(1—a—Cep)
~ Px(f*(X) = 0) +¢/(em+ TEn)
S (1-m(1l—0a) c’(l—Tt)s
~ R(f*(X)=0)+C(em+TEn) Px(f*(X) =
(1-m(l-a)-c(l-men (1-m(1- )(8m+ﬂ5n)
P (f*(X) =0) Py (f*(X) = 0)?
x C'(&n+€m)
> Qo f )_—R((f*(X):O)'

>

The first inequality comes from the monotonicity propertieg©y) (applied first with respect to
y, thenx). The second is elementary. In the third inequality we used the fact thatribedng: 6 —
9(3) = g2 is convex forA, B, 3 positive and has derivativeA/B? in zero, so thag(3) > § — 8% ,
withA=(1-m)(1—a),B=P(f*(X) =0),0 = (em+TEy) - In the last inequality we used (with
the same definition foh, B) thatg = Qo(f*) < 1

The treatment fo@); is similar. Suppose first that

C'(&n+&m) < Px(f*(X) =1). (15)
We then have

> (1 — Ry(f fr))
(L—TOR(fr) +T(1—Ry(fr))
(1 - Ry(f*) — 't (en+&m))
(1 (0 +c'en) +T(1— Ry (f*) — 't 1(en+€m))
M1 -Ry(f*))—Cc(en+Em)
" B (X) = 1) — ¢'(TBn + £m)

. ¢ (en+€m)
> Qu(f*) — P(f*(X) =1) —Cc'(en+&m)’

where we used again the monotonicity propertie€©fy). Note that assumption (15) ensures
that all denominators in the above chain of inequalities are positive, whigdygisred for these
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inequalities to hold. Now, sino@l(ﬂ) > 0andQq(f*) <1, the above implies

R L c'(en+&m)
Qu(fr) > Qu(f*) —min (1’ P (f*(X) =1) —C’(En+€m)>
o 2¢(entem) .
=D R0 =1

in the last inequality we used the fact that iflin/(1 —x)) < 2x for x € [0,1) (with x = ¢'(en +
em)/Px(f*(X) =1)). If (15) is not satisfied, then the last display still trivially holds since its RHS
is nonpositive. This establishes (5) foe 1.

A.2 Proof of Proposition 5
Let 1t be defined as

1 :=inf{a € [0,1] : 3Q probability distribution:Px = (1—a)Py+ aQ} .

We want to establish that* satisfies the claims of the theorem (and in particular that the above
infimum is a minimum). In the casé = P, obviously we havat" = 0 and this is a minimum.

We now assume for the remainder of the proof Bt Px. Consider the Lebesgue decomposition
P = P2 + P¢ with P < Py (that is, P is absolutely continuous with respectRg) andPy L PQ

(that is,Pg andPy are mutually singular). Lef = dP}/dR, anda be the essential infimum df

wrt. Py. We claim thatt* = 1 — a. Observe first that

a < Exp[f(X)] = P2(X) < B(xX) = 1.

In particular,a = 1 must imply that the above inequalities are equalities, hencesshat [f] = a.
The latter can only be valid if = a= 1 Py-a.s., implying thaP, = P¢, and furtherPy = Px, which
we excluded before. Therefore it holds that 1. Certainly we then have the valid decomposition

P =aR+ (1—a)P, P = ((l—a)fl((f—a)Po-FP)%)),

so thatt* < 1-—a.

By definition of singular measures there exists a measurablB setch thatPy(D) = 1 and
P¢ (D) = 0. Fixe > 0; by definition of the essential infimum there exists a measurabf@ seth
thatPy(C) > 0 andf < a+¢& Pp-a.s. orC. PutA=CnND. ThenPy(A) = Py(C) > 0. Furthermore

PL(A) _ Exer [(1-a) *(f —a)Lixeny]
Po(A) Po(A)

Existence of a decomposition of the fofn= (1—y)Q+ yPo implies that for any measurable get
Pi(A) > yPo(A) . Hence the above implies that O for any such decomposition, that B, must be

a proper novelty distribution wr®, . It also implies that for ang > 0 there exists a measurable set
A with Py(A) > 0 andPx (A)/Po(A) < a+ €. Hence for any decompositid?k = (1—a)Py+aQ,

it must hold that1— a) < a, so thatit" > 1—a. We thus established* = 1 — a and the existence
of the decomposition. Concerning the unicity, the decomposition establisbgd eplies that for
anya > 1, Px = (1—a)Py+aQ holds withQ = (1— )P+ TPy . Note that for any fixed,
existence of a decompositid® = (1 — a)Py+ aQ uniquely determine® . Hence fora > 1t* the
corresponding is not a proper novelty distribution, and the only valid decompositidiahto Py
and a proper novelty distribution is the one established previously.

<g/(l-a).
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A.3 Lemma Used in Proof of Theorem 6

For the proof of Theorem 6 we made use of the following auxiliary result:

Lemma 13 Assume Pis a proper novelty distribution wrt. )2 Then for anye > 0 there exists a
(deterministic) classifier f such thapR) <1 and

_Ruf) <ke.

1-Ro(f)
Proof . SinceP; is a proper novelty distribution wrt, reiterating the reasoning in the proof of
Proposition 5 shows that there exists a measurabla séth Py(A) > 0 andP;(A)/Py(A) < €. Put
a =1-Po(A) < 1. Consider the classifii(X) = 1iycas) - ThenRo(f) = Po(f = 1) = a, while

0<Ri(f)=Pi(f=0)=Pi(A) <g(l—0). (16)

This leads to the desired conclusion.
[ |

A.4 Proof of Theorem 8

By application of Lemma 13, for ang/> 0 there exists a classifidi* such thagfggf(*f)*) <e.Then
we have as in the proof of Theorem 6:

Rx(f*) Ri(f*)
l—m _"<1_1—Rdf*)) >m(l—¢).

Fix y > 0 and defind® = %(Po+ P1) . Using the assumption of universal approximation, piskich
that there exists; € F with P(f;:(X) # f*(X)) <y. SinceP > 3Py andP > 1Py this implies also
Po(fg(X) # £*(X)) < 2yas well asPx (i (X) # £*(X)) < 2y.

From now we only work in the clas$ and so we omit the parameters in the notatips:
& (F«,0k~2) . By the union bound, the uniform control of the form (11) is valid simultarsgpfor
all %, with probability 1— ¢d (with ¢ = 12/6). Hence with probability - ¢d = 1— ¢(mn)~2, we
have

~

Ro(fx) < Ro(fy) +&m < Ro(f*) +2y+&m,
and also R
Rx(fg) < Rx(fg)+en < Rx(f)+2y+en.

From this we deduce that with probability-1c(mn)=2:
Rx (%) 4+ 2y+ 2,
1-Ro(f*)—2y—2ey’

Sincegy, €m go to zero as mifm,n) goes to infinity we deduce that a.s. (using the Borel-Cantelli
lemma, and the fact that the error probabilities are summable(ove) € N?)

R R (") +2y 1-Ry(f") 4y
e &2 T Ryt —ay 2 T O Ry Sy T I Re(F) 2y

Taking the limit of the above ag— 0 (for fixede and f*), then a€ — 0, leads to the conclusion.

T (8) > Tt (F (M) 2k 2)>1-
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A.5 Proof of Theorem 9

The principle of the argument is relatively standard and can be sketshfetlaws. Assume there
exists a non-trivial upper confidence bourt(d) on the proportion of anomalies. From the non-
triviality assumption, there exists a generating distributiband a set of sample® such that
Tt (d) < 1 for all samples inB while P(B) > 8. We will construct below an alternate generat-
ing ¢ distributionP and set of sampIeE C B which are very close tB and‘B, in particular satisfying
P(B) > &, however the proportion of anomalies fis 1, contradicting the universality @ since
7t (8) < 1 for all samples irB.

LetPy, P1,, tbe given by the non-triviality assumption aRd= Py'™ @ P;" denote correspond-
ingly the joint distribution of nominal and contaminated data. Fix sgn¥e) and a seb such that
0 < Py(D) <y (such a set always exists by the assumptionhas weakly diffuse). PUuA = D¢,
so that 1- y < Py(A) < 1. Consider the distributioRy conditional to belonging t@\, given by
F};(EA*) Po. Since it has its support strictly included in the suppoiegfit is a proper novelty distribu-
tion with respect td%. Therefore, sinc®; is also a proper novelty distribution with respechy
S0 isPy ;= (1—T) F}OX(E/Q) Py + TiP.

Now consider the novelty detection problem with nominal distribuignnovelty distribution
P1, and novelty proportiomt = 1, so that’x = (1— TPy + TP, = P;. Finally, define the modified
joint distribution on nominal and contaminated dBte: Py™ @ P".

By the non-triviality assumption, there exists a $eof (m,n) samples such that"(8) < 1 on
the setB andP(B) = & > &. Denote = X™ x A". By assumptionP(A4) > (1-y)"; furthermore
from the construction d® it can be verified straightforwardly that for any 2t 4, P(C) > P(C).
Define nowB = BN 4; ; we have

P(B) > P(B) > 8 — (1— (1—y)").

Hence fory small enough, we havl?( ) > & which contradicts the fact that* () is a 1— &
confidence upper bound, since Brwe havert™ (d) < 1=Tt.

A.6 Proof of Corollary 10

Put

y:= sup E[ft—m"].
Pe®P(mn)

By Markov’s inequality, it means that for any generating distributon

P>+ (1)*) <3
N*) <s

HenceTt" () = Ti+ (\8’)71’ is a distribution-free upper confidence boundran

By theorem (9), this bound must be trivial. We investigate the consegsiendeis fact. Let us
consider any generating distributiéhe 2(m, n) for which t= 0, and the nominal distributioRy
is weakly diffuse (it is possible to find suchPa sinceX is infinite). Assumed < % and fix some
O € (8,1— d). Markov’s inequality again implies that for this distribution,

P (ﬁz <g0>'1°> < &,
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so that .
it Yye _
P<Tr (6)22(6) >§60§1 5.

Choosingdy = 1/2,d = 1/3, the above implies that" (d) would be non-trivial ify < 27P/3. Thus
we must conclude that> c(p) :=2P/3.

Appendix B. Randomized classifiers and ROCs

In this appendix we review some properties of ROCs that are relevant setiing. These should
be considered well-known (see for example the paper of Fawcett, a@@Ggeferences therein, for
an overview of ROC analysis over sets of classifiers). For the sakenapleteness, we give here
statements and short proofs that are tailored to correspond precisetydoritext considered in the
main body of the paper.

Let ¥ be a fixed set of classifiers, and recall the Neyman-Pearson classifiogtimization
problem (1), restated here for convenience:

Ria(7) = Inf Ri(f) (1)
s.t. Ro(f) <a.

We call optimal ROC of; versush, for set# the functiona € [0,1] — 1—Rj ,(¥) € [0,1] .

For reference, first consider a very “regular” case whEiis the set of all possible deterministic
classifiers, and one assumes that both class probabHitj€s have densitiesg, h; with respect to
some reference measure, such that the likelihood Fetxp = E;—Eig is continuous with inF =0 and
SupF = +oo. Then the optimal solutiong; of (1) are indicators of sets of the form

C)\:{XEXZ 2;23 2)\},

with A(a) such thaPo(Cy) = a.. In this caseR] ,(F) = P1(Cy()) and it can be shown that the ROC
is continuous, nondecreasing and concave between the pojoisand(1,1) . In particular in this
case it holds thaRy(fg) = a.

When some of the above assumptions are not satisfied, for example if w&l@oan arbi-
trary subsetf of classifiers (which is of course necessary for adequate estimatiancamtrol),
or the probability distribution®, andP; have atoms (which is the case in practice for empirical
distributions), some of these properties may fail to hold. While it is clear thadpgtimal ROC is
always a nondecreasing function, it might fail to be concave, and ttimalpsolution might have
Ro(fy) < a. This is for example obviously the casefifis a finite set of classifiers, in which case
the ROC is a step function arfip( f) can only take finitely many values.

We are interested in the following regularity properties depending d&, andP:

(A) Foranya € (0,1), there exists a sequentgc F such thaR(fn) =a andRy(fn) — Ry 4(F).
(B) The functiona — R} ,(¥)/(1— ) is nondecreasing 00, 1] .

Note that for simplicity of exposition, in the main body of the paper we simplifie gty (A")
into (A) , where the sequendg is replaced by its limit, assumed to belong to the considered set of
classifiers. Our results still hold und@) with straightforward modifications of the proofs.
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Condition (B) states that the slope of the line joining the point of the optimal RO anhd
the point(1,1) is nonincreasing im ; this assumption is weaker than concavity of the ROC. It is
relevant for the discussion in the final paragraph below, related toesuttron precision.

To ensure regularity properties of the ROC, a standard device is to gkienthssF and con-
siderrandomizectlassifiers, whose output is not a deterministic function, but a Bernoulahia
with probability depending on the poirt Formally this amounts to allowing a classifieto take
real values in the intervdD, 1] ; now for a givenx the final decisiorD( f,x) is a Bernoulli vari-
able (independent of everything else) taking value 1 with probabiliiyy and O with probability
1— f(x). In this setting the error probabilities becomeyor 0,1 :

Ry(f) :==R/(D(f,X) #y) = By[[f(X) —yl],

wherek, is a shortcut foEx..p,. Although the functiorf itself remains strictly speaking determin-
istic, in view of the above interpretation we will call with some abdisedeterministic classifier if
it takes values if{0, 1} and randomized classifier if takes valuesar].

We consider two types of extensions of a (usually deterministic) clasthe first one is the
convex hull of ¥, or full randomization

N N
T:{g‘g:ZAifi;NeN,fiGT,)\izoforlgigN,zl)\izl}.
i= i=

The second is given by
Fr={dlg=Af+(1-A),f € F A€ [0,1]},

where the randomization is limited to convex interpolation between one class$iftex base class
and the constant classifier equal to 1.

The following standard lemma summarizes the properties of the optimal ROC fonrtheese
extended classes:

Lemma 14 Let ¥ be a set of deterministic classifiers containing the constant classifierl égua
zero, and let B, Py be arbitrary distributions onX . Then assumption@) and(B) are met when
considering optimization problerfl) over either# or . The optimal ROC for the sef is
concave.

Proof . The fact that the constant zero classifier belongs tensures that the infimum in (1) (over
either of the classeg, F* or ) is not taken over an empty set and exists. The definition of
an infimum ensures that there exists a sequenas elements off © such thatRy(g,) < a and

Ri(gn) \«Rj4(F 7). Then putting\n = (1—a)/(1— Ro(n)) , the sequencé, = Angn + (1 —An)
belongs toF *, and is such that

Ro(fn) = Eo[fn] = (:L(_l};.f;n))Ro(gn) + (1_ (;|_(_1|;.8n))> —a

while
Ria(F7) < Ru(fn) = 1—Eq[fn] = AaRu(gn) < Ru(Gn) W Ria(F ),

and thus ensurg#\) . The same reasoning appliesfo.
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For property(B), consider a sequencd,) from property(A’), a numbe € [a,1] andh, =
(1-¢)fn+C whereC = (1-B)/(1—a) €[0,1]. Thenhy € F*, Ry(hn) =P andRy(h,) = (1—
QRu(fn) + C. Lettingn grow to infinity we obtairRiB(Tﬂ < (1-0R] 4(F 7))+ which in turn
implies(B) .

In the case ofF , similarly consider sequencds, f 2 like above fora = oy, resp. a = a>
with a2 > ajy; for any B € [ag,05], write B = Adag + (1 — A)az; correspondingly the sequence
M1+ (1—A)fn2 belongs toF and ensures tha; o(F) < ARjq, (F) + (1 MR o, (F) that s,
the optimal ROC forf is concave. [ |

Concerning estimation error control for the extended classes, a unifaminol of the error on
the base class is sufficient, since it carries over to the extended clgssesvex combination. To
be more specific, let us consider for example the estimatid®,off) uniformly over f € #. The
empirical counterpart dR( f) is given by

~

Ro(f) := Po(D(f,X) # 0) = Eo[f (X)],

whereEy denotes the empirical expectation on the nominal sample. By definitiof, df can be
written f = SN, A fi with TN\ = 1 and\; > 0, fi € # for 1 <i <N, and thus the estimation error
is controlled as follows:

Ro( ) — Ro( )| = |Eol f(X)] — Eo[ f(X)]| < _iw Rol(fi(X) = 1) = Ro(fi(X) = 1)

< sup|Po(f(X) = 1) — Ro(f(X) = 1)
fef

Therefore, if an error control of the form (11) holds over the bdasscF (for example if it is a
VC-class), then the same type of bound holds for quantities of interestlwwextended classes
Ftand¥.

For practical purposes, it might be significantly more difficult to find thetsmhuof the (empir-
ical version of) (1) for randomized classes and in particular for the falhydomized extensioff .
An advantage of the more limited form of randomization is that optimization prokigmver F
can be rewritten equivalently as an optimization problem over the origina,alasely as

, Ry (h)
1= Ro()

To see why, assume for simplicity of exposition tl{A) rather than(A") is satisfied. Then the
optimization problem (1) ove# * is attained for some randomized classifiér by constructionf *
is of the formf* = Ah* 4 (1—A) for someA € [0,1] andh* € F . By property(A) we can assume
Ro(f*) = a, which entailsA = (1—a)/(1— Ro(h*)) andRy(f*) = (1 —a)Re(h*)/(1— Ro(h*)),
hence the equivalence with (17) (with the above relation betwWéemdh*) .

Finally, in general we can interpret the optimization problem (17) as a maximzaitibe class
0 precision,

s.t. Ry(h) <a. (17)

o o A-ma-R(f) a-m
Qolf) =Per(Y =0T(X) =0) = A= =R i)+ 1Re () (1-m+ TRy
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under the constrair®y(f) < a, since the above display shows tig( f) is a decreasing function
of the ratioRy(f)/(1—Ro(f)) . In general if propertieA) and(B) are satisfied for the considered
class, then it is easy to see that the solutions to (1) and (17) coincide tsbdlsame classifiefr*
achieves the minimum FNR and class 0 precision under the constraint onkhe FP
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