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Abstract
A common setting for novelty detection assumes that labeledexamples from the nominal class

are available, but that labeled examples of novelties are unavailable. The standard (inductive) ap-
proach is to declare novelties where the nominal density is low, which reduces the problem to
density level set estimation. In this paper, we consider thesetting where an unlabeled and pos-
sibly contaminated sample is also available at learning time. We argue that novelty detection in
this semi-supervised setting is naturally solved by a general reduction to a binary classification
problem. In particular, a detector with a desired false positive rate can be achieved through a re-
duction to Neyman-Pearson classification. Unlike the inductive approach, semi-supervised novelty
detection (SSND) yields detectors that are optimal (e.g., statistically consistent) regardless of the
distribution on novelties. Therefore, in novelty detection, unlabeled data have a substantial impact
on the theoretical properties of the decision rule. We validate the practical utility of SSND with an
extensive experimental study.

We also show that SSND provides distribution-free, learning-theoretic solutions to two well
known problems in hypothesis testing. First, our results provide a general solution to the general
two-sample problem, that is, the problem of determining whether two random samples arise from
the same distribution. Second, a specialization of SSND coincides with the standardp-value ap-
proach to multiple testing under the so-called random effects model. Unlike standard rejection
regions based on thresholdedp-values, the general SSND framework allows for adaptation to arbi-
trary alternative distributions in multiple dimensions.

Keywords: semi-supervised learning, novelty detection, Neyman-Pearson classification, learning
reduction, two-sample problem, multiple testing

1. Introduction

Several recent works in the machine learning literature have addressedthe issue of novelty detec-
tion. The basic task is to build a decision rule that distinguishesnominalfrom novelpatterns. The
learner is given a random samplex1, . . . ,xm ∈ X of nominal patterns, obtained, for example, from a
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controlled experiment or an expert. Labeled examples of novelties, however, are not available. The
standard approach has been to estimate a level set of the nominal density (Schölkopf et al., 2001;
Steinwart et al., 2005; Scott and Nowak, 2006; Vert and Vert, 2006; El-Yaniv and Nisenson, 2007;
Hero, 2007), and to declare test points outside the estimated level set to be novelties. We refer to
this approach asinductivenovelty detection.

In this paper we incorporate unlabeled data into novelty detection, and argue that this frame-
work offers substantial advantages over the inductive approach. Inparticular, we assume that in
addition to the nominal data, we also have access to anunlabeledsamplexm+1, . . . ,xm+n consisting
potentially of both nominal and novel data. We assume that eachxi , i = m+1, . . . ,m+n is paired
with an unobserved labelyi ∈ {0,1} indicating its status as nominal (yi = 0) or novel (yi = 1), and
that(xm+1,ym+1), . . . ,(xm+n,ym+n) are realizations of the random pair(X,Y) with joint distribution
PXY. The marginal distribution of an unlabeled patternX is the contamination model

X ∼ PX = (1−π)P0+πP1,

wherePy, y = 0,1, is the conditional distribution ofX|Y = y, andπ = PXY(Y = 1) is the a priori
probability of a novelty. Similarly, we assumex1, . . . ,xm are realizations ofP0. We assume no
knowledge ofPX, P0, P1, or π, although in Section 6 (where we want to estimate the proportionπ)
we do impose a natural condition onP1 that ensures identifiability ofπ .

We take as our objective to build a decision rule with a small false negative ratesubject to a fixed
constraintα on the false positive rate. Our emphasis here is onsemi-supervisednovelty detection
(SSND), where the goal is to construct a general detector that could classify an arbitrary test point.
This general detector can of course be applied in thetransductivesetting, where the goal is to predict
the labelsym+1, . . . ,ym+n associated with the unlabeled data. Our results extend in a natural way to
this setting.

Our basic contribution is to develop a general solution to SSND by a surrogate problem related
to Neyman-Pearson (NP) classification, which is the problem of binary classification subject to a
user-specified constraintα on the false positive rate. In particular, we argue that SSND can be
addressed by applying a NP classification algorithm, treating the nominal and unlabeled samples
as the two classes. Even though a sample fromP1 is not available, we argue that our approach
can effectively adapt to any novelty distributionP1, in contrast to the inductive approach which is
only optimal in certain extremely unlikely scenarios. That is, by solving the surrogate problem, we
obtain a classifierf such that, up to a tolerance that shrinks as sample sizes increase,P1( f (X) = 0)
is minimal, whileP0( f (X) = 1)≤ α.

Our learning reduction allows us to import existing statistical performance guarantees for Neyman-
Pearson classification (Cannon et al., 2002; Scott and Nowak, 2005) and thereby deduce generaliza-
tion error bounds, consistency, and rates of convergence for novelty detection. In addition to these
theoretical properties, the reduction to NP classification has practical advantages, in that it allows
essentially any algorithm for NP classification to be applied to SSND.

SSND is particularly suited to situations where the novelties occupy regions where the nominal
density is high. If a single novelty lies in a region of high nominal density, it will appear nominal.
However, if many such novelties are present, the unlabeled data will be moreconcentrated than
one would expect from just the nominal component, and the presence of novelties can be detected.
SSND may also be thought of as semi-supervised classification in the setting where labels from one
class are difficult to obtain (see discussion of LPUE below). We emphasizethat we do not assume
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that novelties are rare, that is, thatπ is very small, as in anomaly detection. However, SSND is
applicable to anomaly detection providedn is sufficiently large.

We also discuss estimation ofπ and the special case ofπ = 0, which is not treated in our initial
analysis. We present a hybrid approach that automatically reverts to the inductive approach when
π = 0, while preserving the benefits of the NP reduction whenπ > 0. In addition, we describe
a distribution-free one-sided confidence interval forπ, consistent estimation ofπ, and testing for
π = 0, which amounts to a general version of the two-sample problem in statistics. We also discuss
connections to multiple testing, where we show that SSND generalizes a standard approach to mul-
tiple testing, based on thresholdingp-values, under the common “random effects” model. Whereas
thep-value approach is optimal only under strong assumptions on the alternativedistribution, SSND
can optimally adapt to arbitrary alternatives.

The paper is structured as follows. After reviewing related work in the next section, we present
the general learning reduction to NP classification in Section 3, and apply thisreduction in Section
4 to deduce statistical performance guarantees for SSND. Section 5 presents our hybrid approach,
while Section 6 applies learning-theoretic principles to inference onπ. Connections to multiple
testing are developed in Section 7. Experiments are presented in Section 8, while conclusions are
discussed in the final section. Shorter proofs are presented in the main text, and longer proofs appear
in the first appendix.

2. Related Work

Inductive novelty detection: Described in the introduction, this problem is also known as one-class
classification (Scḧolkopf et al., 2001) or learning from only positive (or only negative) examples.
The standard approach has been to assume that novelties are outliers with respect to the nominal
distribution, and to build a novelty detector by estimating a level set of the nominaldensity (Scott
and Nowak, 2006; Vert and Vert, 2006; El-Yaniv and Nisenson, 2007; Hero, 2007). As we discuss
below, density level set estimation is equivalent to assuming that novelties areuniformly distributed
on the support ofP0. Therefore these methods can perform arbitrarily poorly (whenP1 is far from
uniform, and still has significant overlap withP0). In Steinwart et al. (2005), inductive novelty
detection is reduced to classification ofP0 againstP1 , whereinP1 can be arbitrary. However an
i.i.d. sample fromP1 is assumed to be available in addition to the nominal data. In contrast, the
semi-supervised approach optimally adapts toP1, where only an unlabeled contaminated sample is
available besides the nominal data. In addition, we address estimation and testing of the proportion
of novelties.

Classification with unlabeled data: In transductive and semi-supervised classification, labeled
training data{(xi ,yi)}

m
i=1 from bothclasses are given. The setting proposed here is a special case

where training data from only one class are available. In two-class problems, unlabeled data typ-
ically have at best a slight effect on constants, finite sample bounds, andrates (Rigollet, 2007;
Lafferty and Wasserman, 2008; Ben-David et al., 2008; Singh et al., 2009), and are not needed for
consistency. In contrast, we argue that for novelty detection, unlabeleddata are essential for these
desirable theoretical properties to hold.

Learning from positive and unlabeled examples: Classification of an unlabeled sample given
data from one class has been addressed previously, but with certain key differences from our work.
This body of work is often termed learning from “positive” and unlabeled examples (LPUE), al-
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though in our context we tend to think of nominal examples as negative. Terminology aside, a
number of algorithms have been developed, which we now relate to the present work.

One class of algorithms proceeds roughly as follows: First, identify unlabeled points for which
it seems highly likely thatyi = 1. Second, learn a classifier from the known positive examples and
the supposed negative examples. Use it on the unlabeled data to update the group of candidates for
the negative class and repeat until a stable labeling is reached. Severalsuch algorithms are reviewed
in Zhang and Lee (2005) and Zhang and Zuo (2008), but they tend to beheuristic in nature and
sensitive to the initial choice of negative examples.

A theoretical analysis of LPUE is provided by Denis (1998); Denis et al. (2005) from the view-
point of probably approximately correct (PAC) learnable classes. In PAC learnability, the objective
is to find specific classes of classifiers such that the optimal classifier in thatclass can be approx-
imated arbitrarily well, and where the number of samples required is polynomial inthe inverse of
the error tolerance. While some ideas are common with the present work (such as classifying the
nominal sample against the contaminated sample as a proxy for the ultimate goal), our point of view
is relatively different and based on statistical learning theory. In particular, our input space can be
non-discrete and we assume the distributionsP0 andP1 can overlap, which leads us to use the NP
classification setting and study universal consistency properties.

Several other approaches have been developed which, either explicitlyor implicitly, rely on a
reduction to a classification problem. Steinberg and Cardell (1992) and Ward et al. (2009) propose
frameworks based on logistic regression, but both assume thatπ is known. Elkan and Noto (2008)
assume a particular sampling scheme wherem andn are related in such a way thatπ can be readily
estimated. Unfortunately, this sampling assumption is not valid in many applications of interest.
All three of these works derive their algorithms by a consideration of posterior probabilities, and
consequently they require thatπ is known or can be estimated. In contrast, our approach adopts the
(non-Bayesian) Neyman-Pearson criterion and in no way depends on the ability to know or estimate
π.

The idea of reducing LPUE to a binary classification problem has also beentreated by Zhang
and Lee (2005), Liu et al. (2002), Lee and Liu (2003) and Liu et al. (2003). Most notably, Liu et al.
(2002) provide sample complexity bounds for VC classes for the learning rule that minimizes the
number of false negatives while controlling the proportion of false positives at a certain level. Our
approach extends theirs in several respects. First, Liu et al. (2002) does not consider approximation
error or consistency, nor do the bounds established there imply consistency. In contrast, we present a
general reduction that is not specific to any particular learning algorithm, and can be used to deduce
consistency or rates of convergence. Our work also makes several contributions not addressed
previously in the LPUE literature, including our results relating to the caseπ = 0, to the estimation
of π, and to multiple testing.

We also note recent work by Smola et al. (2009) described asrelative novelty detection. This
work is presented as an extension of standard one-class classification toa setting where a reference
measure (indicating regions where novelties are more likely) is known through a sample. In practice,
the authors take this sample to be a contaminated sample consisting of both nominal and novel
measurements, so the setting is the same as ours. The emphasis in this work is primarily on a
new kernel method, whereas our work features a general learning reduction and learning theoretic
analysis.

Multiple testing: The multiple testing problem is also concerned with the simultaneous detection
of many potentially abnormal measurements (viewed as rejected null hypotheses). In Section 7, we
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discuss in detail the relation of our contamination model to therandom effects model, a standard
model in multiple testing. We show how SSND is, in several respects, a generalization of that
model, and includes several different extensions proposed in the recent multiple testing literature.
The SSND model, and the results presented in this paper, are thus relevantto multiple testing as
well, and suggest an interesting point of view to this domain. In particular, through a reduction to
classification, we introduce broad connections to statistical learning theory.

3. The Fundamental Reduction

To begin, we first consider the population version of the problem, where the distributions are known
completely. Recall thatPX = (1−π)P0+πP1 is the distribution of unlabeled test points. Adopting
a hypothesis testing perspective, we argue that the optimal tests forH0 : X ∼ P0 vs. H1 : X ∼ P1 are
identical to the optimal tests forH0 : X ∼ P0 vs. HX : X ∼ PX. The former are the tests we would
like to have, and the latter are tests we can estimate by treating the nominal and unlabeled samples
as labeled training data for a binary classification problem.

To offer some intuition, we first assume thatPy has densityhy, y = 0,1. According to the
Neyman-Pearson Lemma (Lehmann, 1986), the optimal test with size (false positive rate)α for
H0 : X ∼P0 vs. H1 : X ∼P1 is given by thresholding the likelihood ratioh1(x)/h0(x) at an appropriate
value. Similarly, lettinghX = (1−π)h0+πh1 denote the density ofPX, the optimal tests forH0 :
X ∼ P0 vs. HX : X ∼ PX are given by thresholdinghX(x)/h0(x). Now notice

hX(x)
h0(x)

= (1−π)+π
h1(x)
h0(x)

.

Thus, the likelihood ratios are related by a simple monotone transformation, providedπ > 0. Fur-
thermore, the two problems have the same null hypothesis. Therefore, by the theory of uniformly
most powerful tests (Lehmann, 1986), the optimal test of sizeα for one problem is also optimal,
with the same sizeα, for the other problem. In other words, we can discriminateP0 from P1 by
discriminating between the nominal and unlabeled distributions. Note the above argument does not
require knowledge ofπ other thanπ > 0.

The hypothesis testing perspective also sheds light on the inductive approach. In particular,
estimating the nominal level set{x : h0(x)≥ λ} is equivalent to thresholding 1/h0(x) at 1/λ. Thus,
the density level set is an optimal decision rule providedh1 is constant on the support ofh0. This
assumption thatP1 is uniform on the support ofP0 is therefore implicitly adopted by a majority of
works on novelty detection.

We now drop the requirement thatP0 and P1 have densities. Letf : Rd → {0,1} denote a
classifier. Fory= 0,1, let

Ry( f ) := Py( f (X) 6= y)

denote the false positive rate (FPR) and false negative rate (FNR) off , respectively. For greater
generality, suppose we restrict our attention to some fixed set of classifiersF (possibly the set of all
classifiers). The optimal FNR for a classifier of the classF with FPR≤ α, 0≤ α ≤ 1, is

R∗
1,α(F ) := inf

f∈F
R1( f ) (1)

s.t. R0( f )≤ α .
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Similarly, introduce

RX( f ) := PX( f (X) = 0)

= πR1( f )+(1−π)(1−R0( f ))

and let

R∗
X,α(F ) := inf

f∈F
RX( f ) (2)

s.t. R0( f )≤ α.

In this paper we will always assume the following property (involvingF ,P0 andP1) holds:

(A) For anyα ∈ (0,1) , there existsf ∗ ∈ F such thatR0( f ∗) = α andR1( f ∗) = R∗
1,α(F ) .

Remark. This assumption is in particular satisfied if the classF is such that for any f∈ F

with R0( f )< α, we can find another classifier f′ ∈ F with R0( f ′) = α and f′ ≥ f (so that R1( f ′)≤
R1( f )). When P0 is absolutely continuous with respect to Lebesque measure, this propertycan be
easily verified for many common classifier sets, for example linear classifiers, decision trees or
radial basis function classifiers.

Even without any assumptions on the distribution, it is possible to ensure that(A) is satisfied
provided one extends the classF to a larger class containing randomized classifiers obtained by
convex combination of classifiers of the original class. This constructionis standard in the receiver
operating characteristic (ROC) literature. Some basic results on this topic are recalled in Appendix
B in relation to the above assumption.

By the following result, the optimal classifiers for problems (1) and (2) are the same. Further-
more, one direction of this equivalence also holds in an approximate sense.In particular, approx-
imate solutions toX ∼ P0 vs. X ∼ PX translate to approximate solutions forX ∼ P0 vs. X ∼ P1.
The following theorem constitutes our mainlearning reductionin the sense of Beygelzimer et al.
(2005):

Theorem 1 Assume property(A) is satisfied. Consider anyα, 0≤ α ≤ 1 , and assumeπ > 0 . Then
for any f ∈ F the two following statements are equivalent:

(i) RX( f ) = R∗
X,α(F ) and R0( f )≤ α.

(ii) R1( f ) = R∗
1,α(F ) and R0( f ) = α.

More generally, let L1,α( f ,F ) = R1( f )−R∗
1,α(F ) and LX,α( f ,F ) = RX( f )−R∗

X,α(F ) denote
the excess losses (regrets) for the two problems, and assumeπ > 0. If R0( f )≤ α+ ε for ε ≥ 0, then

L1,α( f ,F )≤ π−1(LX,α( f ,F )+(1−π)ε) .

Proof . For any classifierf , we have the relationRX( f ) = (1−π)(1−R0( f ))+πR1( f ) . We start
with proving (ii) ⇒ (i). Considerf ∈ F such thatR1( f ) = R∗

1,α(F ) andR0( f ) = α , but assume
RX( f )> R∗

X(F ) . Let f ′ ∈ F such thatRX( f ′)< RX( f ) andR0( f ′)≤ α . Then sinceπ > 0 ,

R1( f ′) = π−1(RX( f ′)− (1−π)(1−R0( f ′))
)

< π−1(RX( f )− (1−π)(1−α))
= R1( f ) ,
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contradicting minimality ofR1( f ) .
To establish the converse implication, considerf ∈ F such thatRX( f ) = R∗

X,α(F ) andR0( f )≤
α , but assumeR1( f )>R∗

1,α(F ) or R0( f )< α . Let f ′ be such thatR0( f ′) = α andR1( f ′) =R∗
1(F ) ,

whose existence is ensured by assumption(A). Then

RX( f ′) = (1−π)(1−α)+πR1( f ′)

< (1−π)(1−R0( f ))+πR1( f )

= RX( f ),

contradicting minimality ofRX( f ). To prove the final statement, first note that we established
R∗

X,α(F ) = πR∗
1,α(F )+(1−π)(1−α), by the first part of the theorem. By subtraction we have

L1,α( f ,F ) = π−1(LX,α( f ,F )+(1−π)(R0( f )−α))
≤ π−1(LX,α( f ,F )+(1−π)ε).

Theorem 1 suggests that we may estimate the solution to (1) by solving a surrogate binary
classification problem, treatingx1, . . . ,xm as one class andxm+1, . . . ,xm+n as the other.

In the rest of the paper, we explore the consequences of this reductionfrom a theoretical as well
as practical perspective. In the next section, we illustrate on the theoretical side, in the case of an
empirical risk minimization (ERM) type algorithm, how a finite sample bound for NP classification
translates to a finite sample bound for SSND and leads to desirable propertiessuch as consistency.
On the other hand, algorithms we can analyze (such as ERM) often do not have the best performance
on actual data, and may be computationally infeasible (a situation that is not specific to SSND).
Thus in the experimental Section 8 we implement a different method, namely simple but effective
schemes based on kernel density estimates. It is important to observe that Theorem 1 still applies to
these methods since it just compares two objective functions and is agnostic tothe method used.

4. Statistical Performance Guarantees

We now illustrate how Theorem 1 leads to performance guarantees for SSND. We consider the case
of a fixed set of classifiersF having finite VC-dimension (Vapnik, 1998), and the NP classification
algorithm

f̂τ = arg min
f∈F

R̂X( f )

s.t. R̂0( f )≤ α+ τ ,

based on (constrained) empirical risk minimization, where

R̂X( f ) =
1
n

m+n

∑
i=m+1

1{ f (xi) 6=1}, R̂0( f ) =
1
m

m

∑
i=1

1{ f (xi) 6=0}.

This rule was analyzed in Cannon et al. (2002) and Scott and Nowak (2005). Define the precision
of a classifierf for classi asQi( f ) = PXY(Y = i| f (X) = i) (the higher the precision, the better the
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performance). Then we have the following result bounding the difference of the quantitiesRi and
Qi to their optimal values overF :

Theorem 2 Assume x1, . . . ,xm and xm+1, . . . ,xm+n are i.i.d. realizations of P0 and PX, respectively,
and that the two samples are independent of each other. Assumeπ > 0. LetF be a set of classifiers
of VC-dimension V . Assume property(A) is satisfied and denote by f∗ an optimal classifier inF

with respect to the criterion in(1). Fixing δ > 0, defineεk =
√

V logk−logδ
k . There exist absolute

constants c,c′ such that, if we chooseτ = cεn , the following bounds hold with probability1−δ :

R0( f̂τ)−α ≤ c′εn ; (3)

R1( f̂τ)−R1( f ∗) ≤ c′π−1(εn+ εm) ; (4)

Qi( f ∗)−Qi( f̂τ) ≤
c′

P( f ∗(X) = i)
(εn+ εm) , i = 0,1. (5)

The proof is given in Appendix A. The primary technical ingredients in the proof are Theorem
3 of Scott and Nowak (2005) and the learning reduction of Theorem 1 above. The above theorem
shows that the procedure is consistent inside the classF for all criteria considered, that is, these
quantities decrease (resp. increase) asymptotically to their value atf ∗ . This is in contrast to the
statistical learning bounds previously obtained (Liu et al., 2002, Thm. 2), which do not imply
consistency.

Following Scott and Nowak (2005), by extending suitably the argument andthe method in the
spirit of structural risk minimization over a sequence of classesFk having the universal approxima-
tion property, we can conclude that this method is universally consistent (that is, relevant quantities
converge to their value atf ∗ , where f ∗ is the solution of (1) over the set of all possible classi-
fiers). Therefore, although technically simple, the reduction result of Theorem 1 allows us to deduce
stronger results than the existing ones concerning this problem. This can beparalleled with the re-
sult that inductive novelty detection can be reduced to classification against uniform data (Steinwart
et al., 2005), which made the statistical learning study of that problem significantly simpler.

It is interesting to note that the multiplicative constant in front of the rate of convergence of
the precision criteria isPX( f ∗(X) = i)−1 rather thanπ−1 for R1 . In particularPX( f ∗(X) = 0) ≥
(1− π)(1−α) , so that the convergence rate for class 0 precision is not significantly affected as
π → 0 . SimilarlyPX( f ∗(X) = 1)≥ (1−π)α , so the convergence rate for class 1 precision depends
more crucially on the (known)α than onπ .

For completeness, we briefly discuss the optimality ofQi( f ∗) in (5) in the sense of the criterion
Qi itself. Under an additional minor condition, it is possible to show (the details aregiven at the end
of Appendix B) that under the constraintR0( f )≤ α , the best attainable precision for class 0 in the
setF is attained byf = f ∗ . Therefore, in (5) (i = 0), we are really comparing the precision off̂τ
against the best possible class 0 precision given the FPR constraint. On the other hand, it does not
make sense to consider the best attainable class 1 precision under an upper constraint onR0 , since
we can have bothR0 → 0 andQ1 → 1 by only rejecting a vanishingly small proportion of very sure
novelties. But it can easily be seen thatf ∗ realizes the best attainable class 1 precision under the
equalityconstraintR0( f ) = α .

We emphasize that the above result is but one of many possible theorems thatcould be deduced
from the learning reduction; other results from Neyman-Pearson classification could also be applied.
We also remark that, although the previous theorem corresponds to the semi-supervised setting, an
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analogous transductive result is easily obtained by incorporating an additional uniform deviation
bound relating the empirical error rates on the unlabeled data to the true error rates.

5. The Caseπ = 0 and a Hybrid Method

The preceding reduction of SSND to NP classification is only justified whenπ > 0. Aside from
the analysis breaking down, this can be seen as follows. The unlabeled sample is a draw from
PX = (1−π)P0+πP1. Whenπ = 0, the unlabeled sample is a draw fromP0. Therefore it contains
no information aboutP1. Were we to solve the surrogate NP problem, we would be attempting to
classify between two identical distributions, and the best we could do would be random guessing.
This is confirmed in Table 2 (caseπ = 0) where the AUC values for SSND are near one half. Our
goal in this section is to develop a learning reduction, and a parallel result toTheorem 1 in Section
3, but which handles the caseπ = 0 more sensibly.

Whenπ = 0, we have no information aboutP1 in either sample. Therefore, the only way to get
any traction on the problem is to make some assumption aboutP1. The inductive method makes
such an assumption (as noted previously in the paper), namely, thatP1 is uniform on the support of
P0. Since uniformity is the standard assumption without any additional prior knowledge, we aim to
develop a method that performs at least as well as the inductive method whenπ = 0.

Therefore we ask the following question: Can we devise a method which, having no knowledge
of π, shares the properties of the learning reduction of Section 3 whenπ > 0, and the inductive
approach otherwise? Our answer to the question is “yes” under fairly general conditions.

The intuition behind our approach is the following. The inductive approachto novelty detection
performs density level set estimation. Furthermore, as we saw in Section 3, density level sets are
optimal decision regions for testing the nominal distribution against a uniform distribution. There-
fore, level set estimation can be achieved by generating an artificial uniform sample and performing
weighted binary classification against the nominal data (this idea has been developed in more detail
by Steinwart et al., 2005). Our approach is to sprinkle a vanishingly small proportion of uniformly
distributed data among the unlabeled data, and then implement SSND using NP classification on
this modified data. Whenπ = 0, the uniform points will influence the final decision rule to perform
level set estimation. Whenπ > 0, the uniform points will be swamped by the actual novelties, and
the optimal detector will be estimated.

To formalize this approach, let 0< pn < 1 be a sequence tending to zero. Assume thatS is a
compact set which is known to contain the support ofP0 (obtained, e.g., through support estimation
or through a priori information on the problem), and letP2 be the uniform distribution onS. Consider
the following procedure: Letk ∼ binom(n, pn). Draw k independent realizations fromP2, and
redefinexm+1, . . . ,xm+k to be these values. (In practice, the uniform data would simply be appended
to the unlabeled data, so that information is not erased. The present procedure, however, is slightly
simpler to analyze.)

The idea now is to apply the SSND learning reduction from before to this modified unlabeled
data. Toward this end, we introduce the following notations. For simplicity, we do not explicitly
indicate the underlying classF . We refer to any data point that was drawn from eitherP1 or P2

as anoperativenovelty. The proportion of operative novelties in the modified unlabeled sampleis
π̃ := π(1− pn)+ pn. The distribution of operative novelties isP̃1 := π(1−pn)

π̃ P1+
pn
π̃ P2, and the overall

distribution of the modified unlabeled data isP̃X := π̃P̃1+(1− π̃)P0. Let R2,R∗
2,α, R̃1, R̃∗

1,α, R̃X, and
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R̃∗
X,α be defined in terms ofP2, P̃1, andP̃X, respectively, in analogy to the definitions in Section 3.

Also denoteL2,α( f ) = R2( f )−R∗
2,α, L̃1,α( f ) = R̃1( f )− R̃∗

1,α, andL̃X,α = R̃X( f )− R̃∗
X,α.

By applying Theorem 1 to the modified data, we immediately conclude that ifR0( f ) ≤ α+ ε,
then

L̃1,α( f )≤
1
π̃
(L̃X,α( f )+(1− π̃)ε) =

1
π̃
(L̃X,α( f )+(1−π)(1− pn)ε). (6)

By previously cited results on Neyman-Pearson classification, the quantitieson the right-hand side
can be made arbitrarily small asmandn grow. The following result translates this bound to the kind
of guarantee we are seeking.

Theorem 3 Assume(A) holds. Let f be a classifier with R0( f )≤ α+ ε. If π = 0, then

L2,α( f )≤ p−1
n (L̃X,α( f )+(1− pn)ε).

If π > 0, then

L1,α( f )≤
1

π(1− pn)
(L̃X,α( f )+(1−π)(1− pn)ε+ pn).

To interpret the first statement, note thatL2,α( f ) is the inductive regret. The bound implies that
L2,α( f )→ 0 as long as bothε = R0( f )−α andL̃X,α( f ) tend to zerofaster than pn. This suggests
taking pn to be a sequence tending to zero slowly. The second statement is similar to the earlier
result in Theorem 1, but with additional factors ofpn. These factors suggest choosingpn tending to
zero rapidly, in contrast to the first statement, so in practice some balance should be struck.
Proof If π = 0, thenL̃1,α = L2,α and the first statement follows trivially from (6). To prove the

second statement, denoteβn := π(1−pn)
π̃ , and observe that

R̃∗
1,α = inf

R0( f )≤α
R̃1( f )

= inf
R0( f )≤α

[βnR1( f )+(1−βn)R2( f )]

≤ βnR∗
1,α +(1−βn).

Therefore

L̃1,α( f ) = R̃1( f )− R̃∗
1,α

≥ βnR1( f )+(1−βn)R2( f )−βnR∗
1,α − (1−βn)

≥ βn(R1( f )−R∗
1,α)− (1−βn)

= βnL1,α( f )− (1−βn)

and we conclude, still using (6),

L1,α( f ) ≤
1
βn

L̃1,α +
1−βn

βn

≤
1

π(1− pn)
(L̃X,α( f )+(1−π)(1− pn)ε+ pn).
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Like Theorem 1, Theorem 3 is quite general, and has both theoretical andpractical implications.
Theoretically, it could be combined with specific, analyzable algorithms for Neyman-Pearson clas-
sification to yield novelty detectors with performance guarantees, as was illustrated in Section 4. We
do not develop this theoretical direction here. Practically, any algorithm for Neyman-Pearson clas-
sification that generally works well in practice can be applied in the hybrid framework to produce
novelty detectors that perform well for values ofπ that are zero or very near zero. We implement
this idea in the experimental section below.

We also remark that this hybrid procedure could be applied with any prior distribution on nov-
elties besides uniform. In addition, the hybrid approach could also be practically useful whenn is
small, assuming the artificial points are appended to the unlabeled sample.

6. Estimating π and Testing for π = 0

In the previous sections, our main goal was to find a good classifier function for the purpose of
novelty detection. Besides the detector itself, it is often relevant to the user tohave an estimate
or bound on the proportionπ of novelties in the contaminated distributionPX . Estimation ofπ
allows for estimating and optimizing the misclassification rate on the unlabeled data, which is often
of interest in the LPUE literature (see Sec. 2). Estimation ofπ is also useful for estimating the
precision (as defined in Section 4); this topic will be revisited in the next section in the context of
multiple testing.

It may also be useful to test whether there are novelties at all; in other words, since the learnt
detector f̂ is allowed a certain proportion of false positives, it is important to assess whether the
reported novelties are a statistically significant indication of the presence oftrue novelties, or if they
are likely to be all false positives. We focus on these issues in the presentsection.

It should first be noted that without additional assumptions,π is not an identifiable parameter in
our model. To see this, consider the idealized case where we have an infiniteamount of nominal and
contaminated data, so that we have perfect knowledge ofP0 andPX . Assuming the decomposition
PX = (1− π)P0 + πP1 holds, note that any alternate decomposition of the formPX = (1− π −
γ)P0+(π+ γ)P′

1 , with P′
1 = (π+ γ)−1(πP1+ γP0) , andγ ∈ [0,1−π] , is equally valid. Because the

most important feature of the model is that we have no direct knowledge ofP1 , we cannot decide
which representation is the “correct” one; we could not even excludea priori the case whereπ = 1
and P1 = PX (while producing the exact same observed data) . The previous results established
in Theorems 1-3 are valid for whatever underlying representation is assumed to be correct. For
the estimation of the proportion of novelties, however, it makes sense to define π as theminimal
proportion of novelties that can explain the difference betweenP0 andPX . First we introduce the
following definition:

Definition 4 Assume P0 , P1 are probability distributions on the measure space(X ,S) . We call
P1 a proper novelty distributionwith respect to P0 if there exists no decomposition of the form
P1 = (1− γ)Q+ γP0 where Q is some probability distribution and0< γ ≤ 1 .

This defines a proper novelty distributionP1 as one that cannot be confounded withP0; it cannot be
represented as a (nontrivial) mixture ofP0 with another distribution.

The next result establishes a canonical decomposition of the contaminated distribution into a
mixture of nominal data and proper novelties. As a consequence the proportion π∗ of proper nov-
elties, and therefore the proper novelty distributionP1 itself, are well-defined (that is, identifiable)
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given the knowledge of the nominal and contaminated distributions (except for the special case
P0 = PX, where of course the novelty distribution is not defined).

Proposition 5 Assume P0 , PX are probability distributions on the measure space(X ,S). If PX 6=
P0, there is a uniqueπ∗ ∈ (0,1] and P1 such that the decomposition PX = (1−π∗)P0+π∗P1 holds,
and such that P1 is a proper novelty distribution with respect to P0 . If we additionally defineπ∗ = 0
when PX = P0, then in all cases,

π∗ := min{α ∈ [0,1] : ∃Q probability distribution: PX = (1−α)P0+αQ} . (7)

The proof is given in Appendix A. For the rest of this section we assume for simplicity of
notation thatπ andP1 are the proportion and distribution of proper novelties ofPX with respect to
P0 . The results to come are also informative for improper novelty distributions, inthe following
sense: ifP1 is not a proper novelty distribution and the decompositionPX = (1−π)P0+πP1 holds,
then (7) entails thatπ > π∗. It follows that a lower bound onπ∗ (either deterministic or valid with a
certain confidence), as will be derived in the coming sections, is always also a valid lower confidence
bound onπ when non-proper novelties are considered. A lower bound is effectively the best we can
hope forπ if P1 is not assumed to be proper.

6.1 Population Case

We now want to relate the estimation ofπ to quantities previously introduced and problem (1). We
first treat the population case and optimal novelty detection over the set of all possible classifiers.

Theorem 6 For any classifier f , we have the inequality

π ≥ 1−
RX( f )

1−R0( f )
.

Optimizing this bound over a set of classifiersF under the FPR constraint R0( f ) ≤ α yields for
any0≤ α < 1:

π ≥ 1−
R∗

X,α(F )

1−α
. (8)

Furthermore, ifF is the set of all deterministic classifiers,

π = 1− inf
α∈[0,1)

R∗
X,α(F )

1−α
. (9)

Proof . For the first part, just write for any classifierf

1−RX( f ) = PX( f (X) = 1)

= (1−π)P0( f (X) = 1)+πP1( f (X) = 1)

≤ (1−π)R0( f )+π ,

resulting in the first inequality in the theorem. Under the constraintR0( f )≤ α , this inequality then
yields

π ≥ 1−
RX( f )

1−R0( f )
≥ 1−

RX( f )
1−α

;
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optimizing the bound under the constraint yields the second inequality.
We establish in Lemma 13 in Appendix A that for anyε > 0 there exists a classifierfε such that

R0( fε)< 1 andR1( fε)/(1−R0( fε))≤ ε . Putαε = R0( fε) ; we then have

R∗
X,αε(F )≤ RX( fε) = (1−π)(1−αε)+πR1( fε) ,

implying

π ≥ 1− inf
α∈[0,1)

R∗
X,α(F )

1−α
≥ 1−

R∗
X,αε

(F )

1−αε
≥ π

(
1−

R1( fε)

1−R0( fε)

)
≥ π(1− ε) ,

which establishes the last claim of the theorem.

6.2 Distribution-free Lower Confidence Bounds onπ

In the last part of Theorem 6, if we assume that the functionα 7→ R∗
X,α(F )/(1−α) is nonincreasing

(a common regularity assumption; see Appendix B for a discussion of how thiscondition can always
be ensured by considering possibly randomized classifiers), thenα 7→ R∗

X,α(F ) is left differentiable
at α = 1 and (8) is optimized by takingα → 1, that is,

π ≥ 1+
dR∗

X,α(F )

dα

∣∣∣
α=1−

, (10)

while (9) entails that the above inequality is an equality ifF contains all deterministic classifiers.
This suggests obtaining a lower bound onπ by estimating the slope ofR∗

X,α(F ) at its right endpoint.
The following result adopts this approach while accounting for the uncertainty inherent in empirical
performance measures.

Theorem 7 Consider a classifier setF for which we assume a uniform error bound of the following
form is available: for any distribution Q onX , with probability at least1−δ over the draw of an
i.i.d. sample of size n according to Q , we have

∀ f ∈ F

∣∣∣Q( f (X) = 1)− Q̂( f (X) = 1)
∣∣∣≤ εn(F ,δ) , (11)

whereQ̂ denotes the empirical distribution built on the sample.
Then the following quantity is a lower bound onπ with probability at least(1− δ)2 ≥ 1−2δ

(over the draw of the nominal and unlabeled samples) :

π̂−(F ,δ) := 1− inf
f∈F

R̂X( f )+ εn(F ,δ)
(1− R̂0( f )− εm(F ,δ))+

, (12)

where the ratio is formally defined to be1 whenever the denominator is0 .

Note that if we definef̂α = arg minf∈F R̂X( f ) under the constraint̂R0( f ) ≤ α , this can be
rewritten

π̂−(F ,δ) = 1− inf
α∈[0,1]

R̂X( f̂α)+ εn(F ,δ)
(1− R̂0( f̂α)− εm(F ,δ))+

.
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There are two balancing forces at play here. From the population version (10) (valid under a mild
regularity assumption), we know that we would like to haveα as close as possible to 1 for estimating
the derivative ofR∗

X,α(F ) atα= 1. This is balanced by the estimation error which makes estimations
close toα = 1 unreliable because of the denominator. Taking the infimum along the curve takes in
a sense the best available bias-estimation tradeoff.
Proof . To simplify notation we denoteεn(F ,δ) simply byεn. As in the proof of the previous result,
write for any classifierf :

PX( f (X) = 1)≤ (1−π)P0( f (X) = 1)+π ,

from which we deduce after applying the uniform bound

1− R̂X( f )− εn = P̂X( f (X) = 1)− εn

≤ (1−π)(R̂0( f )+ εm)+π ,

which can be solved whenever 1− R̂0( f )− εm > 0 .

The following result shows that̂π−(F ,δ) , when suitably applied using a sequence of classifier
setsF1,F2, . . . that have a universal approximation property, yields a strongly universally consistent
estimate of the proportionπ of proper novelties. The proof is given in Appendix A and relies on
Theorem 7 in conjunction with the Borel-Cantelli lemma.

Theorem 8 Consider a sequenceF1,F2, . . . of classifier sets having the following universal ap-
proximation property: for any measurable function f∗ : X → {0,1} , and any distribution Q , we
have

liminf
k→∞

inf
f∈Fk

Q( f (X) 6= f ∗(X)) = 0.

Suppose also that each classFk has finite VC-dimension Vk, so that for eachFk we have a uniform

confidence bound of the form(11) for εn(Fk,δ) = 3
√

Vk log(n+1)−logδ/2
n . Define

π̂−(δ) = sup
k

π̂−
(
Fk,δk−2) .

If δ = (mn)−2, thenπ̂− converges toπ almost surely asmin(m,n)→ ∞.

6.3 There are No Distribution-free Upper Bounds onπ

The lower confidence boundŝπ−(F ,δ) andπ̂−(δ) are distribution-free in the sense that they hold
regardless ofP0,P1 and π. We now argue that distribution-free upper confidence bounds do not
generally exist.

We define adistribution-free upper confidence bound̂π+(δ) to be a function of the observed
data such that, for anyP0, any proper novelty distributionP1, and any novelty proportionπ ≤ 1, we
haveπ̂+(δ)≥ π with probability 1−δ over the draw of the two samples.

We will show that such a universal upper bound does not exist unlessit is trivial. The reason
is that the novel distribution can be arbitrarily hard to distinguish from the nominal distribution.
It is possible to detect with some certainty that there is a non-zero proportionof novelties in the
contaminated data (see Corollary 11 below), but we can never be sure that there are no novelties.
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This situation is similar to the philosophy of significance testing: one can never accept the null
hypothesis, but only have insufficient evidence to reject it.

We will say that the nominal distributionP0 is weakly diffuseif for any γ > 0 there exists a set
A such that 0< P0(A)< γ . We say an upper confidence boundπ̂+(δ) is non-trivial if there exists a
weakly diffuse nominal distributionP0, a proper novelty distributionP1, a novelty proportionπ < 1,
and a constantδ > 0 such that

P(π̂+(δ)< 1)> δ ,

where the probability is over the joint draw of nominal and contaminated samples. This assumption
demands that there is at least a specific setting where the upper boundπ̂+(δ) is significantly different
from the trivial bound 1, meaning that it is bounded away from 1 with largerprobability than its
allowed probability of errorδ .

Theorem 9 There exists no distribution-free, non-trivial upper confidence bound on π .

The proof appears in Appendix A. The non-triviality assumption is quite weak and relatively
intuitive. The only not directly intuitive assumption is thatP0 should be weakly diffuse, which is
satisfied for all distributions having a continuous part. This assumption effectively excludes finite
state spaces, which is an important condition: ifX is finite, it is actually possible to obtain a non-
trivial upper confidence bound onπ.

The following corollary establishes that for any finite sample size, any estimator of π (and
in particular the universally consistent estimator considered in the previoussection) can have an
average error bounded from below by a constant independent of thesample size.

Corollary 10 AssumeX is an infinite set and let m,n be fixed. For any estimator̂π of π, based on
a joint sample of size(m,n), and any fixed real p> 0:

sup
P∈P (m,n)

E
[
|π̂−π|p

]
≥ c(p)> 0,

whereP (m,n) denotes the set of all generating distributions of(m,n)-samples following the SSND
model (that is, of the form P= P⊗m

0 ⊗P⊗n
X for arbitrary P0,PX), and c(p) is a constant independent

of (m,n).

This result essentially precludes the existence of universal convergence rates in the estimation ofπ.
In other words, to achieve some prescribed rate of convergence, someassumptions on the generating
distributions must be made. This parallels the estimation of the Bayes risk in classification (Devroye,
1982).

6.4 Testing forπ = 0

The lower confidence bound onπ can also be used as a test forπ = 0, that is, a test for whether there
are any novelties in the test data:

Corollary 11 LetF be a set of classifiers. If̂π−(F ,δ)> 0, then we may conclude, with confidence
1−δ, that the unlabeled sample contains novelties.
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It is worth noting that testing this hypothesis is equivalent to testing ifP0 and PX are the same
distribution, which is the classical two-sample problem in an arbitrary input space. This problem
has recently generated attention in the machine learning community (Gretton et al.,2007), and the
approach proposed here, using arbitrary classifiers, seems to be new. Our confidence bound could
of course also be used to test the more general hypothesisπ ≤ π0 for a prescribedπ0, 0≤ π0 < 1 .

Note that, by definition of̂π−(F ,δ), testing the hypothesisπ = 0 using the above lower confi-
dence bound forπ is equivalent to searching the classifier spaceF for a classifierf such that the
proportions of predictions of 0 and 1 byf differ on the two samples in a statistically significant
manner. Namely, for a classifierf belonging to a classF for which we have a uniform bound of
the form (11), we have the lower boundPX( f (X) = 1) ≥ P̂X( f (X) = 1)− εn and the upper bound
P0( f (X) = 1) ≤ P̂0( f (X) = 1) + εm (both bounds valid simultaneously with probability at least
1− δ). If the difference of the bounds is positive we conclude that we must have PX 6= P0, hence
π > 0 . This difference is precisely what appears in the numerator ofπ̂−(F ,δ) in (12) . Further-
more, if this numerator is positive then so is the denominator, since it is always larger. In the end,
π̂−(F ,δ)> 0 is equivalent to

sup
f∈F

(
(P̂X( f (X) = 1)− εn)− (P̂0( f (X) = 1)+ εm)

)
> 0.

7. Relationship Between SSND and Multiple Testing

In this section, we show how SSND offers powerful generalizations of the standardp-value ap-
proach to multiple testing under the widely used “random effects” model, as considered for example
by Efron et al. (2001).

7.1 Multiple Testing Under the Random Effects Model

In the multiple testing framework, a finite family(H1, . . . ,HK) of null hypotheses to test is fixed;
from the observation of some dataX , a decisionD(Hi ,X) ∈ {0,1} must be taken for each hypothe-
sis, namely whether (given the data) hypothesisHi is deemed to be false (D(Hi ,X) = 1, hypothesis
rejected) or true (D(Hi ,X) = 0 , hypothesis not rejected). A typical application domain is that of
microarray data analysis, where each null hypothesisHi corresponds to the absence of a difference
in expression levels of genei in a comparison between two experimental situations. A rejected null
hypothesis then indicates such a differential expression for a specific gene, and is called adiscovery
(since differentially expressed genes are those of interest). However, the number of null hypotheses
to test is very large, for exampleK ≃ 4.104 in the gene expression analysis, and the probability of
rejecting by chance a null hypothesis must be strictly controlled.

In the standard setting for multiple testing, it is assumed that a testing statisticZi(X) ∈ R has
been fixed for each null hypothesisHi , and that its marginal distribution is known whenHi is true.
This statistic can then be normalized (by suitable monotone transform) to take the form of a p-
value. A p-value is a functionpi(X) of the data such that, if the corresponding null hypothesis
Hi is true, thenpi(X) has a uniform marginal distribution on[0,1] . In this setting, it is expected
that the rejection decisionsD(Hi ,X) are taken based on the observedp-values(p1(X), . . . , pK(X))
rather than on the raw data. In fact, in most cases it is assumed that the decisions take the form
D(Hi ,X) = 1{pi(X)≤T̂} , whereT̂ is a data-dependent threshold. Further, simplifying distributional
assumptions on the family ofp-values are often posited. A common distribution model called
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random effectsabstracts thep-values from the original dataX and assumes that the veracity of
hypothesisHi is governed by an underlying latent variablehi as follows:

• the variableshi ∈ {0,1} , 1≤ i ≤ K are i.i.d. Bernoulli with parameterπ

• the variablespi are independent, and conditionally to(h1, . . . ,hK) have distribution

pi ∼

{
Uniform[0,1] , if hi = 0

P1 , if hi = 1.

Under the random effects model, thep-values thus follow a mixture distribution(1−π)U [0,1]+
πP1 on the interval[0,1] and can be seen as a contaminated sample, while the variableshi play the
role of the unknown labels. It should now be clear that the above model is infact aspecificationof
the SSND model, with the following additional assumptions:

1. The observation space is the interval[0,1];

2. The nominal distributionP0 is known to be exactly uniform on[0,1] (equivalently, the nominal
distribution is uniform and the nominal sample has infinite size);

3. The class of novelty detectors considered is the set of intervals of the form [0, t], t ∈ [0,1] .

Therefore, the results developed in this paper can apply to the more restricted setting of multiple
testing under the random effects model as well. In particular, the estimatorπ̂−(F ,δ) developed in
Section 6, when specified under the above additional conditions, recovers the methodology of non-
asymptotic estimation of 1−π which was developed by Genovese and Wasserman (2004), Section
3, and our notion of proper novelty distribution recovers their notion ofpurity in that setting (and
has somewhat more generality, since they assumedP1 to have a density).

There are several interesting benefits in considering for the purpose of multiple testing the more
general SSND model developed here. First, it can be unrealistic in practice to assume that the dis-
tribution of the p-values is known exactly under each one of the null hypotheses. Instead, only
assuming the knowledge of a reference sample under controlled experimental conditions as in the
SSND model is often more realistic. This problem was recently motivated by problems in genomics
(Ghosh and Chinnaiyan, 2009) and proteomics (Ghosh, 2009), wherein the latter reference asymp-
totic analysis was also presented.

Secondly, the restriction to decision sets of the form{pi ≤ t} can also be questionable. For
a single test, decision regions of this form are optimal (in the Neyman-Pearson sense) only if the
likelihood ratio of the alternative to the null is decreasing, which amounts to assuming that the
alternative distributionP1 has a decreasing density. This assumption has been criticized in some
recent work. A simple example of a situation where this assumption fails is in the framework ofz
or t-tests, that is, the null distribution of the statistic (before rescaling intop-values) is a standard
Gaussian or a Studentt-distribution, and the correspondingp-value function is the usual one- or
two-sidedp-value. If the alternative distributionP1 is a mixture of Gaussians (resp. of noncentral
t distributions), optimal rejection regions for the original statistic are in general a finite union of
disjoint intervals and do not correspond to level sets of thep-values. In order to counter this type
of problem, Sun and Cai (2007) suggest to estimate from the data the alternate density and the
proportion of true null hypotheses, and use these estimates directly in a plug-in likelihood ratio
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based test. Chi (2007) develops a procedure based on growing rejection intervals around a finite
number of fixed control points in[0,1] . In both cases, an asymptotic theory is developed. Both of
these procedures are more flexible than using only rejection intervals of theform [0, t] and aim at
adaptivity with respect to the alternative distributionP1.

Finally, the remaining restriction that effective observations (thep-values) belong to the unit
interval was also put into question by Chi (2008), who considered a setting of multidimensional
p-values belonging to[0,1]d . The distribution was still assumed to be uniform under the corre-
sponding null hypothesis, although this seems an even less realistic assumption than in dimension
one. In this framework, the use of a reference “nominal” sample under thenull distribution seems
even more relevant.

The framework developed in the present paper allows to cover at once these different types of
extensions rather naturally by just considering a richer classF of candidate classifiers (or equiva-
lently in this setting, rejection regions), and provides a non-asymptotical analysis of their behavior
using classical learning theoretical tools such as VC inequalities. Furthermore, such non-asymptotic
inequalities can also give rise to adaptive and consistent model selection for the set of classifiers us-
ing the structural risk minimization principle, a topic that was not addressed previously for the
extensions mentioned above.

7.2 SSND with Controlled FDR

One remaining important difference between the SSND setting studied here and that of multiple
testing is that our main optimization problem (1) is under a false positive rate constraintR0( f )≤ α ,
while most recent work on multiple testing generally imposes a constraint on the false discovery
rate (FDR) instead. If we denote

Pos( f ) = P̂X( f (X) = 1) = 1− R̂X( f ) =
1
n

n

∑
i=1

1{ f (xm+i)=1}

the proportion of reported novelties, and

FP( f ) = P̂XY( f (X) = 1,Y = 0) =
1
n

n

∑
i=1

1{ f (xm+i)=1,ym+i=0}

the (unavailable to the user) proportion of false discoveries on the contaminated sample, then the
false discovery proportion (FDP) is defined as FDP( f ) = FP( f )/Pos( f ) (taken to be zero if the
denominator vanishes), and the FDR is defined as FDR( f ) = E[FDP( f )] . Some classical variations
of this quantity are the positive FDR, pFDR( f ) = E[FDP( f )|Pos( f ) > 0] and the marginal FDR,
mFDR( f ) = E[FP( f )]/E[Pos( f )] . Under the mixture contamination model, it can be checked that
pFDR( f ) = mFDR( f ) = PXY(Y = 0| f (X) = 1) (Storey, 2003), hence also equal to one minus the
precision for class 1 (as defined earlier in Section 4). The following result states explicit empirical
bounds on these quantities:

Proposition 12 Consider a classifier setF for which we assume a uniform error bound of the
following form is available: for any distribution Q onX ×{0,1} , with probability at least1− δ
over the draw of an i.i.d. sample of size n according to Q , both

∀ f ∈ F

∣∣∣Q( f (X) = 1)− Q̂( f (X) = 1)
∣∣∣≤ εn(F ,δ) , (13)
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and
∀ f ∈ F

∣∣∣Q( f (X) = 1,Y = 0)− Q̂( f (X) = 1,Y = 0)
∣∣∣≤ εn(F ,δ) , (14)

hold, whereQ̂ denotes the empirical distribution built on the sample.
Then the following inequalities hold with probability at least(1− δ)2 ≥ 1−2δ (over the draw

of the nominal and unlabeled samples) :

∀ f ∈ F mFDR( f ) = PX(Y = 0|X = 1)≤
(R̂0( f )+ εm)(1− π̂−(F ,δ))

(1− R̂X( f )− εn)+
,

and

∀ f ∈ F FDP( f )≤
(R̂0( f )+ εm)(1− π̂−(F ,δ))+ εn

(1− R̂X( f ))
,

whereπ̂−(F ,δ) is defined in(12).

Note that Equations (13) and (14) hold as before withεn(F ,δ) = c
√

V logn−logδ
n whenF has

VC dimensionV . In the interest of simplicity, we use the same boundεn for both uniform error
assumptions. Separate bounds could also be adopted, allowing (13) to be slightly tighter. We also
remark that since FDP is an empirical quantity based on the contaminated sample,the second bound
is in fact atransductivebound rather than semi-supervised.
Proof . The mFDR can be rewritten as mFDR( f ) = P0( f (X) = 1|Y = 0)PXY(Y = 0)/PX( f (X) =
1) = R0( f )(1−π)/(1−RX( f )) . In this expression we can plug in the lower bound forπ of The-
orem 7 and uniform bounds forR0( f ) andRX( f ) coming from assumption (13). The FDP can be
written as FDP( f ) = P̂XY( f (X) = 1,Y = 0)/(1− R̂X( f )) . Using assumption (14), the numerator
can be upper bounded byPXY( f (X) = 1,Y = 0)+ εn = R0( f )(1−π)+ εn , and we can then use the
same reasoning as for the first part.

Similarly to what was proposed in Section 4 under the false positive rate constraint, we can in
this context consider to maximizêRX( f ) over f ∈ F subject to the constraint that the above empir-
ical bound on the mFDR or FDP is less thanα . This can then be suitably extended to a sequence
of classesFk . While a full study of the resulting procedure is out of the scope of the present pa-
per, we want to point out the important difference that the mFDR is necessarily lower bounded by
infx∈X PXY(Y = 0|X = x) which is generally strictly positive. Hence, the required constraint may
not be realizable ifα is smaller than this lower bound, in which case the empirical procedure should
return a failure statement with probability one asn→ ∞.

8. Experiments

Despite previous work on learning with positive and unlabeled examples (LPUE), as discussed
in Section 2, the efficacy of our proposed learning reduction, comparedto the method of induc-
tive novelty detection, has not been empirically demonstrated. In addition, weevaluate our pro-
posed hybrid method. To assess the impact of unlabeled data on novelty detection, we applied
our framework to some data sets which are common benchmarks for binary classification. The
first 13 data sets (M̈uller et al., 2001) are fromhttp://www.fml.tuebingen.mpg.de/Members/
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Data Set dim Ntrain Ntest πbase

banana 2 400 4900 0.45
breast-cancer 9 200 77 0.29
diabetes 8 468 300 0.35
flare-solar 9 666 400 0.55
german 20 700 300 0.30
heart 13 170 100 0.44
ringnorm 20 400 7000 0.50
thyroid 5 140 75 0.30
titanic 3 150 2051 0.32
twonorm 20 400 7000 0.50
waveform 21 400 4600 0.33
image 18 1300 1010 0.57
splice 60 1000 2175 0.48
ionosphere 34 251 100 0.64
mushrooms 112 4124 4000 0.48
sonar 60 108 100 0.47
adult 123 3000 3000 0.24
web 300 3000 3000 0.03

Table 1: Description of data sets.dim is the number of features, andNtrain andNtestare the numbers
of training and test examples.πbaseis the proportion of positive examples (novelties) in the
combined training and test data. Thus, the average (across permutations)nominal sample
sizem is (1−πbase)Ntrain.

raetsch/benchmark and the last five data sets (Chang and Lin, 2001) are fromhttp://www.csie.
ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/ .

Each data set consists of both positive and negative examples. Furthermore, each data set is
replicated 100 times (except for image and splice, which are replicated 20 times), with each copy
corresponding to a different random partitioning into training and test examples. All numerical
results for a data set were obtained by averaging across all partitions. The negative examples from
the training set were taken to form the nominal sample, and the positive trainingexamples were not
used at all in the experiments. The data sets are summarized in Table 1. HereNtrain andNtest are the
sizes1 of the training and test sets, respectively, whileπbaseis the proportion of positive examples in
the combined training and test data. Thus, the average (across permutations) nominal sample size
m is (1−πbase)Ntrain.

We emphasize that in these experiments we do not implement the empirical risk minimization
(ERM) algorithm from Sec. 4. The reduction to Neyman-Pearson classification is general and
can by applied in conjunction with any NP classification algorithm, whether that algorithm has
associated performance guarantees or not. We here elect to apply the reduction using a plug-in
kernel density estimate (KDE) classifier. ERM is computationally infeasible, and the bounds tend

1. The web and adult data sets were subsampled owing to their large size.

2992



SEMI-SUPERVISEDNOVELTY DETECTION

to be too loose in practice to be effective. The KDE plug-in rule can be implemented efficiently, and
there is a natural inductive counterpart for comparison, the thresholded KDE based on the nominal
sample.

8.1 Experimental Setup

We evaluated our methodology in two learning paradigms, comparing five learning methods across
several values ofπ. The two learning paradigms are semi-supervised and transductive. Forsemi-
supervised learning, the test data were divided into two halves. The firsthalf was used as the
contaminated, unlabeled data. The second half was used as an independent sample of contaminated
data, not used in the learning stage, but only for evaluation of classifiersreturned by each method.
In particular, the second half of the test data was used to estimate the area under the ROC (AUC)
of each method. Here, the ROC is the one which viewsP0 as the null distribution andP1 as the
alternative. For transductive learning, the entire test set was treated asthe unlabeled data, and was
also used for evaluating the AUC.

The learning methods are the inductive approach, our proposed learning reduction, and three
versions of the hybrid approach. The three hybrids correspond topn = 1.0, 0.5, and 0.1, in which a
uniform sample of size 100pn% of the unlabeled sample size isappendedto the unlabeled data. We
emphasize that each algorithm was implemented in the same way in the two learning paradigms;
the only differences are the size of the contaminated sample, and how they are evaluated.

We implemented the inductive novelty detector using a thresholded kernel density estimate
(KDE) with Gaussian kernel, and SSND using a plug-in KDE classifier. To alleviate concerns
that our inductive implementation is inadequate, we also tested the one-class support vector ma-
chine (Scḧolkopf et al., 2001) in several experimental settings, and found its performance to be very
similar. Lettingkσ denote a Gaussian kernel with bandwidthσ, the inductive novelty detector at
density levelλ is

f (x) =

{
1 if 1

m ∑m
i=1kσ0(x,xi)> λ

0 otherwise,

and the SSND classifier at density ratioλ is

f (x) =

{
1 if (1

n ∑m+n
i=m+1kσX(x,xi))/(

1
m ∑m

i=1kσ0(x,xi))> λ
0 otherwise.

The hybrid method is implemented similarly. The ROCs of these methods are obtainedby varying
the level/thresholdλ.

For each class, a single kernel bandwidth parameter was employed, and optimized by maximiz-
ing a cross-validation estimate of the AUC. Note that this ROC is different fromthe one used to
evaluate the methods (see above). In particular, it still viewsP0 as the null distribution, but now
the alternative distribution is taken to be the uniform distributionP2 for the inductive detector (see
Section 5; effectively we use a uniform random sample of sizen in place of the unlabeled data),
PX for SSND, and the appropriatẽPX for the hybrid methods (see Section 5). Thus, the test label
information was not used at any stage (prior to validation) by any of the methods.

We also compared the learning methods for several values ofπ. For semi-supervised learning,
we examinedπ = 0.5,π = 0.2,π = 0.1, andπ = 0.0. For transductive learning, we examinedπ =
0.5,π = 0.2, andπ = 0.1. The caseπ = 0.0 cannot be evaluated in the transductive paradigm
because there are no positive examples in the unlabeled data. For each value of π, we discarded
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just enough examples (either negative or positive) so that the desired proportion was achieved in
the contaminated data. Note that the number of positive examples (novelties) in the contaminated
sample could be very small. For the smallest data sets, in the semi-supervised setting and when
π = 0.1, this number is less than 10.

We remark that the AUC is only one possible performance measure to assessour algorithms.
An alternative choice, and one that is more directly connected to our theory, would be to select
several different values ofα, and compare the false negative and false positive rates, for each value
of α, across all different data sets and algorithms. It would be straightforward in our experimental
setup to calibrate the thresholds, using cross-validation for example, to achieve the desired false
positive rate. We have adopted the AUC as a more concise alternative that ina sense averages the
performance for Neyman-Pearson classification across the complete range ofα.

8.2 Statistical Summaries and Methodology

The complete results are summarized in Tables 2 through 5. Tables 2 and 3 show the average
AUC for each data set and experimental setting, for the semi-supervised and transductive paradigms
respectively. The inductive method is labeled Ind. Our learning reductionis labeled SSND or TND
depending on the setting. The hybrid methods are labeled H(pn) in Tables 2-3, and Hybrid(pn) in
Tables 4-5.

We followed the methodology of Dem̌sar (2006) for comparing algorithms across multiple data
sets. For each data set and each experimental setting, the algorithms were ranked 1 (best) through
5 (worst) based on AUC. The Friedman test was used to determine, for each experimental setting,
whether there was a significant difference in the average ranks of the five algorithms across the data
sets. The average ranks andp-values are reported in Tables 4 and 5. The results indicate that there
is a significant difference among the algorithms at the 0.1 significance level for all settings, with the
exception of the transductive setting whenπ = 0.1.

When the Friedman test resulted in significant differences, we then performed a post-hoc Ne-
menyi test to assess when there was a significant difference between individual algorithms. For a
five algorithm experiment on 18 data sets, with a significance level of 0.1, the critical difference for
the Nemenyi test is 1.30. That is, when the average ranks of two algorithms differ by more than
1.30, their performance is deemed to be significantly different.

8.3 Analysis of Results

From the results presented in Tables 2-5, we draw the following conclusions.

1. The average ranks in Tables 4-5 conform to our expectations in many respects. SSND/TND
outrank the inductive approach whenπ = 0.5, and inductive outranks SSND whenπ = 0.0.
At the intermediate valuesπ = 0.1 and 0.2, hybrid methods achieve the best ranking.

2. The average ranks also reveal that the performance of the hybrid methods vary according to
the value ofπ. As π increases, the best performing hybrid has a correspondingly smaller
amount of auxiliary uniform data appended to the unlabeled sample. This alsoconforms to
our expectations.
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data set π = 0.5 π = 0.2
Ind. SSND H(1.0) H(0.5) H(0.1) Ind. SSND H(1.0) H(0.5) H(0.1)

banana 0.924 0.939 0.931 0.933 0.936 0.924 0.915 0.924 0.923 0.921
breast-cancer 0.654 0.643 0.675 0.669 0.667 0.654 0.557 0.657 0.648 0.621
diabetes 0.744 0.782 0.770 0.772 0.776 0.744 0.684 0.724 0.727 0.717
flare-solar 0.674 0.661 0.664 0.660 0.662 0.674 0.629 0.641 0.643 0.642
german 0.628 0.703 0.693 0.696 0.704 0.628 0.582 0.633 0.632 0.636
heart 0.793 0.854 0.845 0.853 0.851 0.793 0.690 0.805 0.789 0.745
ringnorm 0.999 0.997 0.996 0.996 0.996 0.999 0.992 0.990 0.991 0.983
thyroid 0.985 0.966 0.964 0.967 0.955 0.985 0.889 0.929 0.940 0.943
titanic 0.628 0.643 0.636 0.644 0.643 0.628 0.612 0.636 0.634 0.628
twonorm 0.915 0.993 0.989 0.989 0.990 0.915 0.940 0.961 0.958 0.953
waveform 0.761 0.958 0.952 0.945 0.956 0.761 0.839 0.848 0.896 0.901
image 0.818 0.939 0.929 0.935 0.939 0.818 0.892 0.874 0.879 0.875
splice 0.415 0.935 0.905 0.921 0.932 0.415 0.702 0.613 0.764 0.785
ionosphere 0.256 0.926 0.839 0.921 0.922 0.256 0.695 0.475 0.607 0.704
mushrooms 0.945 1.000 1.000 1.000 1.000 0.945 0.999 0.999 0.999 0.999
sonar 0.688 0.752 0.757 0.764 0.764 0.688 0.595 0.682 0.683 0.646
adult 0.605 0.872 0.872 0.864 0.835 0.605 0.705 0.720 0.829 0.720
web 0.462 0.778 0.749 0.697 0.788 0.462 0.616 0.631 0.585 0.674

data set π = 0.1 π = 0.0
Ind. SSND H(1.0) H(0.5) H(0.1) Ind. SSND H(1.0) H(0.5) H(0.1)

banana 0.924 0.891 0.922 0.919 0.913 0.924 0.540 0.919 0.905 0.785
breast-cancer 0.654 0.515 0.643 0.633 0.575 0.654 0.556 0.640 0.628 0.568
diabetes 0.744 0.605 0.699 0.700 0.692 0.744 0.494 0.689 0.669 0.657
flare-solar 0.674 0.571 0.624 0.629 0.626 0.674 0.471 0.613 0.603 0.611
german 0.628 0.548 0.623 0.624 0.602 0.628 0.522 0.595 0.608 0.592
heart 0.793 0.593 0.778 0.776 0.688 0.793 0.506 0.759 0.750 0.620
ringnorm 0.999 0.984 0.981 0.986 0.991 0.999 0.478 0.958 0.978 0.985
thyroid 0.985 0.786 0.884 0.906 0.895 0.985 0.590 0.852 0.869 0.795
titanic 0.628 0.591 0.632 0.634 0.621 0.628 0.443 0.630 0.628 0.572
twonorm 0.915 0.931 0.945 0.934 0.923 0.915 0.480 0.894 0.879 0.860
waveform 0.761 0.801 0.815 0.822 0.806 0.761 0.487 0.736 0.727 0.705
image 0.818 0.769 0.824 0.836 0.851 0.818 0.431 0.634 0.696 0.780
splice 0.415 0.630 0.518 0.584 0.625 0.415 0.523 0.447 0.493 0.493
ionosphere 0.256 0.618 0.438 0.488 0.575 0.256 0.520 0.392 0.431 0.486
mushrooms 0.945 0.995 0.992 0.998 0.996 0.945 0.566 0.972 0.980 0.982
sonar 0.688 0.556 0.658 0.652 0.615 0.688 0.510 0.628 0.643 0.587
adult 0.605 0.627 0.659 0.666 0.626 0.605 0.505 0.558 0.556 0.572
web 0.462 0.554 0.584 0.544 0.611 0.462 0.557 0.553 0.523 0.564

Table 2: AUC values for five novelty detection algorithms in the semi-supervised setting. ‘H’ indi-
cates a hybrid method.
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data set π = 0.5 π = 0.2
Ind. TND H(1.0) H(0.5) H(0.1) Ind. TND H(1.0) H(0.5) H(0.1)

banana 0.924 0.938 0.931 0.932 0.935 0.924 0.915 0.923 0.923 0.919
breast-cancer 0.663 0.673 0.662 0.662 0.670 0.663 0.615 0.649 0.659 0.630
diabetes 0.742 0.784 0.776 0.779 0.788 0.742 0.708 0.728 0.725 0.727
flare-solar 0.673 0.686 0.683 0.684 0.684 0.673 0.661 0.658 0.662 0.666
german 0.633 0.739 0.709 0.711 0.714 0.633 0.617 0.632 0.637 0.636
heart 0.796 0.869 0.856 0.856 0.864 0.796 0.716 0.811 0.794 0.788
ringnorm 0.999 0.997 0.996 0.996 0.996 0.999 0.993 0.989 0.991 0.983
thyroid 0.984 0.976 0.978 0.979 0.974 0.984 0.957 0.962 0.955 0.962
titanic 0.629 0.667 0.646 0.658 0.661 0.629 0.642 0.641 0.658 0.645
twonorm 0.915 0.993 0.990 0.990 0.990 0.915 0.940 0.961 0.961 0.956
waveform 0.771 0.960 0.953 0.947 0.957 0.771 0.847 0.850 0.900 0.905
image 0.845 0.955 0.949 0.949 0.953 0.845 0.897 0.889 0.891 0.901
splice 0.416 0.941 0.913 0.930 0.939 0.416 0.716 0.623 0.769 0.820
ionosphere 0.254 0.953 0.844 0.931 0.952 0.254 0.714 0.413 0.633 0.746
mushrooms 0.945 1.000 1.000 1.000 1.000 0.945 0.999 0.999 0.999 0.999
sonar 0.683 0.757 0.767 0.778 0.781 0.683 0.615 0.678 0.683 0.662
adult 0.606 0.875 0.873 0.865 0.835 0.606 0.687 0.736 0.847 0.739
web 0.464 0.810 0.758 0.727 0.788 0.464 0.644 0.639 0.590 0.667

data set π = 0.1
Ind. TND H(1.0) H(0.5) H(0.1)

banana 0.924 0.896 0.921 0.920 0.910
breast-cancer 0.663 0.564 0.687 0.642 0.598
diabetes 0.742 0.658 0.720 0.709 0.693
flare-solar 0.673 0.615 0.655 0.643 0.659
german 0.633 0.556 0.615 0.616 0.615
heart 0.796 0.626 0.792 0.784 0.729
ringnorm 0.999 0.985 0.973 0.986 0.992
thyroid 0.984 0.910 0.970 0.955 0.932
titanic 0.629 0.603 0.643 0.642 0.626
twonorm 0.915 0.933 0.943 0.937 0.923
waveform 0.771 0.813 0.821 0.823 0.808
image 0.845 0.888 0.870 0.871 0.880
splice 0.416 0.630 0.554 0.553 0.640
ionosphere 0.254 0.589 0.349 0.443 0.552
mushrooms 0.945 0.996 0.994 0.997 0.997
sonar 0.683 0.514 0.646 0.655 0.592
adult 0.606 0.658 0.681 0.684 0.629
web 0.464 0.567 0.573 0.538 0.604

Table 3: AUC values for five novelty detection algorithms in the transductive setting. ‘H’ indicates
a hybrid method.
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π Inductive SSND Hybrid(1.0) Hybrid(0.5) Hybrid(0.1)p-value
0.0 1.89 4.39 2.72 2.89 3.11 0.000
0.1 2.83 4.00 2.83 2.28 3.06 0.023
0.2 3.28 3.83 2.61 2.56 2.72 0.071
0.5 4.28 1.94 3.44 3.00 2.33 0.000

Table 4: The comparison of average ranks of the five algorithms in the semi-supervised setting,
by the Friedman test. The critical difference of the post-hoc Nemenyi test is1.30 at a
significance level of 0.1.

π Inductive TND Hybrid(1.0) Hybrid(0.5) Hybrid(0.1) p-value
0.1 2.94 3.78 2.56 2.67 3.06 0.157
0.2 3.17 3.78 3.06 2.50 2.50 0.085
0.5 4.44 1.44 3.56 3.17 2.39 0.000

Table 5: The comparison of average ranks of the five algorithms in the transductive setting, by the
Friedman test. The critical difference of the post-hoc Nemenyi test is 1.30 at a significance
level of 0.1.

3. All tables indicate that the proposed methodology performs better in the transductive setting
than the semi-supervised setting. A likely reason is that, in our experimental setup, TND sees
twice as much unlabeled data as SSND.

4. Whenπ = 0.0 in the semi-supervised experiments, SSND typically has an AUC around 0.5,
which corresponds to random guessing. This makes sense, because itis essentially trying to
classify between two realizations of the nominal distribution. From Tables 2 and 4 we see
that the hybrid methods clearly improve upon SSND whenπ = 0.0.

5. For some data sets (splice, ionosphere, web), the inductive method does worse than random
guessing, but our methods do not. In each case, our methods yield dramaticincreases in AUC.

6. The benefits of unlabeled data increase with dimension. In particular, SSND and TND tend
to perform much better relative to the inductive approach on data sets of dimension at least
18. This is especially evident in the second half of the data sets, which evenshow significant
gains forπ = 0.1. This trend suggests that as dimension increases, the assumption implicit
in the inductive approach (that novelties are uniform where they overlapthe support of the
nominal distribution) breaks down.

Figure 1 depicts a sampling of results comparing the inductive and semi-supervised methods,
and highlights the impact of dimension. The top graph shows ROCs for a two-dimensional data set
where the two classes are fairly well separated, meaning the novelties lie in thetails of the nominal
class, andπ = 0.5. Not surprisingly, the inductive method is close to the semi-supervised method.
The middle graph represents the 60-dimensional splice data set, where the inductive method does
worse than random guessing, yet SSND does quite well. The bottom graphin Figure 1 shows the
results for the 21-dimensional waveform data forπ = 0.1. Here the assumptions of the inductive
approach are also evidently violated to some degree.
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Figure 1: Illustrative results from the semi-supervised setting. Top: In the2-dimensional banana
data, the two classes are well separated, and the inductive approach fares well. Middle: In
the 60-dimensional splice data, the inductive approach does worse than random guessing.
Bottom: In the 21-dimensional waveform data, unlabeled data still offer gains whenπ is
small (here 0.1).
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9. Conclusions

We have shown that semi-supervised novelty detection reduces to Neyman-Pearson classification.
This allows us to leverage known performance guarantees for NP classification algorithms, and to
import practical algorithms. We have applied techniques from statistical learning theory, such as
uniform deviation inequalities, to establish distribution free performance guarantees for SSND, as
well as a distribution free lower bound and universally consistent estimatorfor π, and test forπ = 0.
Our approach optimally adapts to the unknown novelty distribution, unlike inductive approaches,
which operate as if novelties are uniformly distributed. We also introduced a hybrid method that has
the properties of SSND whenπ > 0, and effectively reverts to the inductive method whenπ = 0.

Our analysis strongly suggests that in novelty detection, unlike traditional binary classification,
unlabeled data are essential for attaining optimal performance in terms of tightbounds, consistency,
and rates of convergence. In an extensive experimental study, we found that the advantages of our
approach are most pronounced for high dimensional data. Our analysisand experiments confirm
some challenges that seem to be intrinsic to the SSND problem. In particular, SSND is more difficult
for smallerπ. Furthermore, estimating the novelty proportionπ can become arbitrarily difficult as
the nominal and novel distributions become increasingly similar.

Our methodology also provides general solutions to two well-studied problemsin hypothesis
testing. First, our lower bound onπ translates immediately to a test forπ = 0, which amounts to
a distribution-free solution to the two-sample problem. Second, we also show that SSND provides
a powerful generalization of standard multiple testing. Important problems for future work will
include developing practical methodologies for these problems based on our theoretical framework.
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Appendix A. Proofs

The remaining proofs are now presented.

A.1 Proof of Theorem 2

For the first two claims of the theorem, we directly apply Theorem 3 of Scott and Nowak (2005) to
the problem of NP classification ofP0 versusPX , and obtain that for a suitable choice of constants
c,c′ we have with probability at least 1−δ :

R0( f̂τ)−α ≤ c′εn ; RX( f̂τ)−RX( f ∗)≤ c′εm.

From this, we deduce (3)-(4) by application of Theorem 1.
For the second claim, by application of Bayes’ rule we have for any classifier f :

Q0( f ) =
(1−π)(1−R0( f ))

PX( f (X) = 0)
=

(1−π)(1−R0( f ))
πR1( f )+(1−π)(1−R0( f ))
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and

Q1( f ) =
π(1−R1( f ))
PX( f (X) = 1)

=
π(1−R1( f ))

(1−π)R0( f )+π(1−R1( f ))
.

Observe that fora,b > 0 the functionζ(x,y) = a(1−x)
by+a(1−x) is decreasing iny ∈ R+ for x ∈ (−∞,1],

and decreasing inx∈ [0,1+by/a) for y∈ R+. Hence, using (3)-(4) and the fact thatRi( f ) ∈ [0,1] ,
we derive a lower bound onQ0( f̂τ) as follows:

Q0( f̂τ) =
(1−π)(1−R0( f̂τ))

πR1( f̂τ)+(1−π)(1−R0( f̂τ))

≥
(1−π)(1−α−c′εn)

π(R1( f ∗)+c′π−1(εn+ εm))+(1−π)(1−R0( f ∗)−c′εn)

=
(1−π)(1−α−c′εn)

PX( f ∗(X) = 0)+c′(εm+πεn)

≥
(1−π)(1−α)

PX( f ∗(X) = 0)+c′(εm+πεn)
−

c′(1−π)εn

PX( f ∗(X) = 0)

≥
(1−π)(1−α)−c′(1−π)εn

PX( f ∗(X) = 0)
−

(1−π)(1−α)c′(εm+πεn)

PX( f ∗(X) = 0)2

≥ Q0( f ∗)−
c′(εn+ εm)

PX( f ∗(X) = 0)
.

The first inequality comes from the monotonicity properties ofζ(x,y) (applied first with respect to
y, thenx). The second is elementary. In the third inequality we used the fact that the functiong : δ 7→
g(δ) = A

B+δ is convex forA,B,δ positive and has derivative−A/B2 in zero, so thatg(δ)≥ A
B −δ A

B2 ,
with A= (1−π)(1−α),B= PX( f ∗(X) = 0),δ = c′(εm+πεn) . In the last inequality we used (with
the same definition forA,B) that A

B = Q0( f ∗)≤ 1 .
The treatment forQ1 is similar. Suppose first that

c′(εn+ εm)< PX( f ∗(X) = 1). (15)

We then have

Q1( f̂τ) =
π(1−R1( f̂τ))

(1−π)R0( f̂τ)+π(1−R1( f̂τ))

≥
π(1−R1( f ∗)−c′π−1(εn+ εm))

(1−π)(α+c′εn)+π(1−R1( f ∗)−c′π−1(εn+ εm))

=
π(1−R1( f ∗))−c′(εn+ εm)

PX( f ∗(X) = 1)−c′(πεn+ εm)

≥ Q1( f ∗)−
c′(εn+ εm)

PX( f ∗(X) = 1)−c′(εn+ εm)
,

where we used again the monotonicity properties ofζ(x,y). Note that assumption (15) ensures
that all denominators in the above chain of inequalities are positive, which is required for these
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inequalities to hold. Now, sinceQ1( f̂τ)≥ 0 andQ1( f ∗)≤ 1, the above implies

Q1( f̂τ)≥ Q1( f ∗)−min

(
1,

c′(εn+ εm)

PX( f ∗(X) = 1)−c′(εn+ εm)

)

≥ Q1( f ∗)−
2c′(εn+ εm)

PX( f ∗(X) = 1)
;

in the last inequality we used the fact that min(1,x/(1− x)) ≤ 2x for x ∈ [0,1) (with x = c′(εn+
εm)/PX( f ∗(X) = 1)) . If (15) is not satisfied, then the last display still trivially holds since its RHS
is nonpositive. This establishes (5) fori = 1 .

A.2 Proof of Proposition 5

Let π∗ be defined as

π∗ := inf {α ∈ [0,1] : ∃Q probability distribution:PX = (1−α)P0+αQ} .

We want to establish thatπ∗ satisfies the claims of the theorem (and in particular that the above
infimum is a minimum). In the caseP0 = PX, obviously we haveπ∗ = 0 and this is a minimum.
We now assume for the remainder of the proof thatP0 6= PX. Consider the Lebesgue decomposition
PX = P0

X +P⊥
X with P0

X ≪ P0 (that is,P0
X is absolutely continuous with respect toP0) andP⊥

X ⊥ P0
X

(that is,P⊥
X andP0 are mutually singular) . Letf = dP0

X/dP0 anda be the essential infimum off
wrt. P0. We claim thatπ∗ = 1−a. Observe first that

a≤ EX∼P0[ f (X)] = P0
X(X )≤ PX(X ) = 1.

In particular,a= 1 must imply that the above inequalities are equalities, hence thatEX∼P0[ f ] = a.
The latter can only be valid iff = a= 1 P0-a.s., implying thatP0 = P0

X, and furtherP0 = PX, which
we excluded before. Therefore it holds thata< 1. Certainly we then have the valid decomposition

PX = aP0+(1−a)P1 , P1 :=
(
(1−a)−1

(
( f −a)P0+P⊥

X

))
,

so thatπ∗ ≤ 1−a .
By definition of singular measures there exists a measurable setD such thatP0(D) = 1 and

P⊥
X (D) = 0 . Fix ε > 0 ; by definition of the essential infimum there exists a measurable setC such

thatP0(C)> 0 and f ≤ a+ ε P0-a.s. onC . PutA=C∩D . ThenP0(A) = P0(C)> 0 . Furthermore

P1(A)
P0(A)

=
EX∼P0

[
(1−a)−1( f −a)1{X∈A}

]

P0(A)
≤ ε/(1−a) .

Existence of a decomposition of the formP1 = (1−γ)Q+γP0 implies that for any measurable setA ,
P1(A)≥ γP0(A) . Hence the above implies thatγ = 0 for any such decomposition, that is,P1 must be
a proper novelty distribution wrt.P0 . It also implies that for anyε > 0 there exists a measurable set
A with P0(A) > 0 andPX(A)/P0(A) ≤ a+ ε . Hence for any decompositionPX = (1−α)P0+αQ,
it must hold that(1−α)≤ a, so thatπ∗ ≥ 1−a . We thus establishedπ∗ = 1−a and the existence
of the decomposition. Concerning the unicity, the decomposition established above implies that for
any α ≥ π∗ , PX = (1−α)P0+αQ holds withQ = (1− π∗

α )P0+
π∗

α P1 . Note that for any fixedα ,
existence of a decompositionPX = (1−α)P0+αQ uniquely determinesQ . Hence forα > π∗ the
correspondingQ is not a proper novelty distribution, and the only valid decomposition ofPX into P0

and a proper novelty distribution is the one established previously.
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A.3 Lemma Used in Proof of Theorem 6

For the proof of Theorem 6 we made use of the following auxiliary result:

Lemma 13 Assume P1 is a proper novelty distribution wrt. P0 . Then for anyε > 0 there exists a
(deterministic) classifier f such that R0( f )< 1 and

R1( f )
1−R0( f )

≤ ε .

Proof . SinceP1 is a proper novelty distribution wrt.P0, reiterating the reasoning in the proof of
Proposition 5 shows that there exists a measurable setA with P0(A)> 0 andP1(A)/P0(A)≤ ε . Put
α = 1−P0(A)< 1 . Consider the classifierf (x) = 1{x∈Ac} . ThenR0( f ) = P0( f = 1) = α , while

0≤ R1( f ) = P1( f = 0) = P1(A)≤ ε(1−α) . (16)

This leads to the desired conclusion.

A.4 Proof of Theorem 8

By application of Lemma 13, for anyε > 0 there exists a classifierf ∗ such that R1( f ∗)
1−R0( f ∗) ≤ ε . Then

we have as in the proof of Theorem 6:

1−
RX( f ∗)

1−R0( f ∗)
= π

(
1−

R1( f ∗)
1−R0( f ∗)

)
≥ π(1− ε) .

Fix γ > 0 and definẽP= 1
2(P0+P1) . Using the assumption of universal approximation, pickk such

that there existsf ∗k ∈ Fk with P̃( f ∗k (X) 6= f ∗(X))≤ γ . SinceP̃≥ 1
2P0 andP̃≥ 1

2P1 this implies also
P0( f ∗k (X) 6= f ∗(X))≤ 2γ as well asPX( f ∗k (X) 6= f ∗(X))≤ 2γ .

From now we only work in the classFk and so we omit the parameters in the notationεi ≡
εi(Fk,δk−2) . By the union bound, the uniform control of the form (11) is valid simultaneously for
all Fk , with probability 1−cδ (with c= π2/6). Hence with probability 1−cδ = 1−c(mn)−2 , we
have

R̂0( f ∗k )≤ R0( f ∗k )+ εm ≤ R0( f ∗)+2γ+ εm,

and also
R̂X( f ∗k )≤ RX( f ∗k )+ εn ≤ RX( f ∗)+2γ+ εn .

From this we deduce that with probability 1−c(mn)−2 :

π̂−(δ)≥ π̂−(Fk,(mn)−2k−2)≥ 1−
RX( f ∗)+2γ+2εn

1−R0( f ∗)−2γ−2εm
.

Sinceεn,εm go to zero as min(m,n) goes to infinity we deduce that a.s. (using the Borel-Cantelli
lemma, and the fact that the error probabilities are summable over(m,n) ∈ N

2)

liminf
min(m,n)→∞

π̂−(δ)≥ 1−
RX( f ∗)+2γ

1−R0( f ∗)−2γ
≥ π(1− ε)

1−R0( f ∗)
1−R0( f ∗)−2γ

−
4γ

1−R0( f ∗)−2γ
.

Taking the limit of the above asγ → 0 (for fixedε and f ∗), then asε → 0 , leads to the conclusion.
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A.5 Proof of Theorem 9

The principle of the argument is relatively standard and can be sketched as follows. Assume there
exists a non-trivial upper confidence boundπ̂+(δ) on the proportion of anomalies. From the non-
triviality assumption, there exists a generating distributionP and a set of samplesB such that
π̂+(δ) < 1 for all samples inB while P(B) > δ. We will construct below an alternate generat-
ing distributionP̃ and set of samples̃B ⊂B which are very close toP andB, in particular satisfying
P̃(B̃)> δ; however the proportion of anomalies forP̃ is 1, contradicting the universality of̂π+ since
π̂+(δ)< 1 for all samples iñB.

Let P0,P1,δ,π be given by the non-triviality assumption andP :=P⊗m
0 ⊗P⊗n

X denote correspond-
ingly the joint distribution of nominal and contaminated data. Fix someγ > 0 and a setD such that
0< P0(D)< γ (such a set always exists by the assumption thatP0 is weakly diffuse). PutA= Dc ,
so that 1− γ < P0(A) < 1 . Consider the distributionP0 conditional to belonging toA, given by
1x∈A
P0(A)

P0. Since it has its support strictly included in the support ofP0 , it is a proper novelty distribu-
tion with respect toP0. Therefore, sinceP1 is also a proper novelty distribution with respect toP0,
so isP̃1 := (1−π) 1x∈A

P0(A)
P0+πP1.

Now consider the novelty detection problem with nominal distributionP0, novelty distribution
P̃1, and novelty proportioñπ = 1, so thatP̃X = (1− π̃)P0+ π̃P̃1 = P̃1. Finally, define the modified
joint distribution on nominal and contaminated dataP̃= P⊗m

0 ⊗ P̃⊗n
X .

By the non-triviality assumption, there exists a setB of (m,n) samples such that̂π+(δ) < 1 on
the setB andP(B) = δ0 > δ . DenoteA = Xm×An . By assumption,P(A)≥ (1−γ)n ; furthermore
from the construction of̃P it can be verified straightforwardly that for any setC ⊂A , P̃(C )≥P(C ) .
Define nowB̃ = B ∩A ; we have

P̃(B̃)≥ P(B̃)≥ δ0− (1− (1− γ)n).

Hence forγ small enough, we havẽP(B̃) > δ which contradicts the fact that̂π+(δ) is a 1− δ
confidence upper bound, since onB̃ we havêπ+(δ)< 1= π̃ .

A.6 Proof of Corollary 10

Put
γ := sup

P∈P (m,n)
E
[
|π̂−π|p

]
.

By Markov’s inequality, it means that for any generating distributionP,

P

(
π > π̂+

( γ
δ

) 1
p

)
≤ δ.

Hencêπ+(δ) = π̂+
( γ

δ
) 1

p is a distribution-free upper confidence bound onπ .
By theorem (9), this bound must be trivial. We investigate the consequences of this fact. Let us

consider any generating distributionP∈ P (m,n) for which π = 0, and the nominal distributionP0

is weakly diffuse (it is possible to find such aP0 sinceX is infinite). Assumeδ < 1
2 and fix some

δ0 ∈ (δ,1−δ). Markov’s inequality again implies that for this distribution,

P

(
π̂ ≥

(
γ
δ0

) 1
p

)
≤ δ0,
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so that

P

(
π̂+(δ)≥ 2

( γ
δ

) 1
p

)
≤ δ0 ≤ 1−δ.

Choosingδ0 = 1/2, δ = 1/3, the above implies that̂π+(δ) would be non-trivial ifγ < 2−p/3. Thus
we must conclude thatγ ≥ c(p) := 2−p/3.

Appendix B. Randomized classifiers and ROCs

In this appendix we review some properties of ROCs that are relevant to our setting. These should
be considered well-known (see for example the paper of Fawcett, 2006,and references therein, for
an overview of ROC analysis over sets of classifiers). For the sake of completeness, we give here
statements and short proofs that are tailored to correspond precisely to the context considered in the
main body of the paper.

Let F be a fixed set of classifiers, and recall the Neyman-Pearson classification optimization
problem (1), restated here for convenience:

R∗
1,α(F ) := inf

f∈F
R1( f ) (1)

s.t. R0( f )≤ α .

We call optimal ROC ofP1 versusP0 for setF the functionα ∈ [0,1] 7→ 1−R∗
1,α(F ) ∈ [0,1] .

For reference, first consider a very “regular” case whereF is the set of all possible deterministic
classifiers, and one assumes that both class probabilitiesP0,P1 have densitiesh0,h1 with respect to
some reference measure, such that the likelihood ratioF(x) = h1(x)

h0(x)
is continuous with infF = 0 and

supF =+∞ . Then the optimal solutionsf ∗α of (1) are indicators of sets of the form

Cλ =

{
x∈ X :

h1(x)
h0(x)

≥ λ
}
,

with λ(α) such thatP0(Cλ) = α . In this caseR∗
1,α(F ) = P1(Cλ(α)) and it can be shown that the ROC

is continuous, nondecreasing and concave between the points(0,0) and(1,1) . In particular in this
case it holds thatR0( f ∗α) = α .

When some of the above assumptions are not satisfied, for example if we consider an arbi-
trary subsetF of classifiers (which is of course necessary for adequate estimation error control),
or the probability distributionsP0 andP1 have atoms (which is the case in practice for empirical
distributions), some of these properties may fail to hold. While it is clear that theoptimal ROC is
always a nondecreasing function, it might fail to be concave, and the optimal solution might have
R0( f ∗α)< α . This is for example obviously the case ifF is a finite set of classifiers, in which case
the ROC is a step function andR0( f ) can only take finitely many values.

We are interested in the following regularity properties depending onF ,P0 andP1:

(A’) For anyα∈ (0,1) , there exists a sequencefn∈F such thatR0( fn)=α andR1( fn)→R∗
1,α(F ) .

(B) The functionα 7→ R∗
1,α(F )/(1−α) is nondecreasing on[0,1] .

Note that for simplicity of exposition, in the main body of the paper we simplified property(A’)
into (A) , where the sequencefn is replaced by its limit, assumed to belong to the considered set of
classifiers. Our results still hold under(A’) with straightforward modifications of the proofs.
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Condition (B) states that the slope of the line joining the point of the optimal ROC atα and
the point(1,1) is nonincreasing inα ; this assumption is weaker than concavity of the ROC. It is
relevant for the discussion in the final paragraph below, related to our result on precision.

To ensure regularity properties of the ROC, a standard device is to extendthe classF and con-
siderrandomizedclassifiers, whose output is not a deterministic function, but a Bernoulli variable
with probability depending on the pointx . Formally this amounts to allowing a classifierf to take
real values in the interval[0,1] ; now for a givenx the final decisionD( f ,x) is a Bernoulli vari-
able (independent of everything else) taking value 1 with probabilityf (x) and 0 with probability
1− f (x) . In this setting the error probabilities become fory= 0,1 :

Ry( f ) := Py(D( f ,X) 6= y) = Ey[| f (X)−y|] ,

whereEy is a shortcut forEX∼Py. Although the functionf itself remains strictly speaking determin-
istic, in view of the above interpretation we will call with some abusef a deterministic classifier if
it takes values in{0,1} and randomized classifier if takes values in[0,1].

We consider two types of extensions of a (usually deterministic) classF , the first one is the
convex hull ofF , or full randomization,

F =

{
g

∣∣∣∣g=
N

∑
i=1

λi fi ;N ∈ N , fi ∈ F ,λi ≥ 0 for 1≤ i ≤ N ,
N

∑
i=1

λi = 1

}
.

The second is given by

F + = {g|g= λ f +(1−λ) , f ∈ F ,λ ∈ [0,1]} ,

where the randomization is limited to convex interpolation between one classifier of the base class
and the constant classifier equal to 1.

The following standard lemma summarizes the properties of the optimal ROC curvefor these
extended classes:

Lemma 14 Let F be a set of deterministic classifiers containing the constant classifier equal to
zero, and let P0,P1 be arbitrary distributions onX . Then assumptions(A’) and (B) are met when
considering optimization problem(1) over eitherF or F + . The optimal ROC for the setF is
concave.

Proof . The fact that the constant zero classifier belongs toF ensures that the infimum in (1) (over
either of the classesF , F + or F ) is not taken over an empty set and exists. The definition of
an infimum ensures that there exists a sequencegn of elements ofF + such thatR0(gn) ≤ α and
R1(gn)ց R∗

1,α(F
+) . Then puttingλn = (1−α)/(1−R0(gn)) , the sequencefn = λngn+(1−λn)

belongs toF +, and is such that

R0( fn) = E0[ fn] =
(1−α)

(1−R0(gn))
R0(gn)+

(
1−

(1−α)
(1−R0(gn))

)
= α

while
R∗

1,α(F
+)≤ R1( fn) = 1−E1[ fn] = λnR1(gn)≤ R1(gn)ց R∗

1,α(F
+),

and thus ensures(A’) . The same reasoning applies toF .
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For property(B), consider a sequence( fn) from property(A’) , a numberβ ∈ [α,1] andhn =
(1− ζ) fn+ ζ whereζ = (1−β)/(1−α) ∈ [0,1] . Thenhn ∈ F + , R0(hn) = β andR1(hn) = (1−
ζ)R1( fn)+ζ . Lettingn grow to infinity we obtainR∗

1,β(F
+)≤ (1−ζ)R∗

1,α(F
+)+ζ which in turn

implies(B) .
In the case ofF , similarly consider sequencesfn,1, fn,2 like above forα = α1, resp. α = α2

with α2 ≥ α1; for any β ∈ [α1,α2] , write β = λα1 + (1− λ)α2 ; correspondingly the sequence
λ fn,1+(1−λ) fn,2 belongs toF and ensures thatR∗

1,β(F ) ≤ λR∗
1,α1

(F )+ (1−λ)R∗
1,α2

(F ) that is,

the optimal ROC forF is concave.

Concerning estimation error control for the extended classes, a uniformcontrol of the error on
the base class is sufficient, since it carries over to the extended classes by convex combination. To
be more specific, let us consider for example the estimation ofR0( f ) uniformly over f ∈ F . The
empirical counterpart ofR0( f ) is given by

R̂0( f ) := P̂0(D( f ,X) 6= 0) = Ê0[ f (X)] ,

whereÊ0 denotes the empirical expectation on the nominal sample. By definition ofF , f can be
written f = ∑N

i=1 λi fi with ∑N
i=1 λi = 1 andλi ≥ 0, fi ∈F for 1≤ i ≤N, and thus the estimation error

is controlled as follows:

∣∣∣R0( f )− R̂0( f )
∣∣∣=
∣∣∣E0[ f (X)]− Ê0[ f (X)]

∣∣∣≤
N

∑
i=1

|λi |
∣∣∣P0( fi(X) = 1)− P̂0( fi(X) = 1)

∣∣∣

≤ sup
f∈F

∣∣∣P0( f (X) = 1)− P̂0( f (X) = 1)
∣∣∣ ,

Therefore, if an error control of the form (11) holds over the base classF (for example if it is a
VC-class), then the same type of bound holds for quantities of interest over the extended classes
F + andF .

For practical purposes, it might be significantly more difficult to find the solution of the (empir-
ical version of) (1) for randomized classes and in particular for the fullyrandomized extensionF .
An advantage of the more limited form of randomization is that optimization problem (1) overF +

can be rewritten equivalently as an optimization problem over the original class, namely as

inf
h∈F

R1(h)
1−R0(h)

s.t. R0(h)≤ α . (17)

To see why, assume for simplicity of exposition that(A) rather than(A’) is satisfied. Then the
optimization problem (1) overF + is attained for some randomized classifierf ∗ ; by constructionf ∗

is of the form f ∗ = λh∗+(1−λ) for someλ ∈ [0,1] andh∗ ∈ F . By property(A) we can assume
R0( f ∗) = α , which entailsλ = (1−α)/(1−R0(h∗)) andR1( f ∗) = (1−α)R1(h∗)/(1−R0(h∗)) ,
hence the equivalence with (17) (with the above relation betweenf ∗ andh∗) .

Finally, in general we can interpret the optimization problem (17) as a maximization of the class
0 precision,

Q0( f ) = PXY(Y = 0| f (X) = 0) =
(1−π)(1−R0( f ))

(1−π)(1−R0( f ))+πR1( f )
=

(1−π)
(1−π)+π R1( f )

1−R0( f )

,
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under the constraintR0( f )≤ α , since the above display shows thatQ0( f ) is a decreasing function
of the ratioR1( f )/(1−R0( f )) . In general if properties(A) and(B) are satisfied for the considered
class, then it is easy to see that the solutions to (1) and (17) coincide, so that the same classifierf ∗

achieves the minimum FNR and class 0 precision under the constraint on the FPR.
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