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Abstract

Bagging is a simple way to combine estimates in order to imgtbeir performance. This method,
suggested by Breiman in 1996, proceeds by resampling frenoriiginal data set, constructing a
predictor from each subsample, and decide by combining.a8gimg am-sample, the crude near-
est neighbor regression estimate is turned into a consigteighted nearest neighbor regression
estimate, which is amenable to statistical analysis. hgtthe resampling size, grows appropri-
ately withn, it is shown that this estimate may achieve optimal rate offemence, independently
from the fact that resampling is done with or without repltaeat. Since the estimate with the
optimal rate of convergence depends on the unknown disitsibof the observations, adaptation
results by data-splitting are presented.

Keywords: bagging, resampling, nearest neighbor estimate, ratesnveegence

1. Introduction

Ensemble methods are popular machine learning algorithms which train multiplereand com-
bine their predictions. The success of ensemble algorithms on many bekatetesets has raised
considerable interest in understanding why such methods succeeceatitidg circumstances in
which they can be expected to produce good results. It is now well kitioatrthe generalization
ability of an ensemble can be significantly better than that of a single predicgbensemble learn-
ing has therefore been a hot topic during the past years. For a coengied review of the domain,
we refer the reader to Dietterich (2000) and the references therein.
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1.1 Bagging

One of the first and simplest ways to combine predictors in order to improueptirdormance is
bagging bootstrapaggegaing), suggested by Breiman (1996). This ensemble method proceeds by
generating subsamples from the original data set, constructing a predictoeach resample, and
decide by combining. Itis one of the most effective computationally intepsaeedures to improve
on unstable estimates or classifiers, especially for large, high dimensataatet problems where
finding a good model in one step is impossible because of the complexity dadéti@e problem.
Bagging has attracted much attention and is frequently applied, although itécathtieechanisms
are not yet fully understood and are still under active investigationefehbeoretical contributions
to bagging and related methodologies include those of Friedman and Hall)(ZEihlmann and
Yu (2002), Hall and Samworth (2005), Buja and Stuetzle (2006) and &idDevroye (2008).

It turns out that Breiman’s bagging principle has a simple application in theexbof nearest
neighbor methods. Nearest neighbor predictors are one of the ofgfgstaahes to regression and
classification (Fix and Hodges, 1951, 1952; Cover and Hart, 196VerC©968a,b; Gyrfi, 1978;
Venkatesh et al., 1992; Psaltis et al., 1994). A major attraction of neagégibor procedures
is their simplicity. For implementation, they require only a measure of distance inathpls
space, along with samples of training data, hence their popularity as a sfaiimdor refinement,
improvement and adaptation to new settings (see for example Devroye €936, Chap. 19).
Before we formalize the link between bagging and nearest neighbong, definitions are in order.
Throughout the paper, we suppose that we are given a sampie {(X1,Y1),...,(Xn,Yn)} of
i.i.d. RY x R-valued random variables with the same distribution as a generi¢)pai satisfying
EY? < 0. The spaceR? is equipped with the standard Euclidean metric. For fixed RY, our
mission is to estimate the regression functigr) = E[Y|X = x] using the dataD,. With this
respect, we say that a regression function estimgte is consistent if€[r,(X) —r(X)]> — 0 as
n— oo, Itis universally consistent if this property is true for all distributiongXfY) with EY? < oo,

1.2 Bagging and Nearest Neighbors

Recall that the 1-nearest neighbor (1-NN) regression estimate,$ejs= Y1)(x) whereYy)(x) is
the observation of the feature vectr;)(x) whose Euclidean distance xois minimal among all
X1,...,Xn. Ties are broken in favor of smallest indices. It is clearly not, in genarafnsistent
estimate (Devroye et al., 1996, Chap. 5). However, by bagging, ongumayhe 1-NN estimate
into a consistent one, provided that the size of the resamples is sufficiarlly s

We proceed as follows, via a randomized basic regression estigyatewvhich 1< k, < nis a
parameter. The elementary prediatgris the 1-NN rule for a random subsamgledrawn with (or
without) replacement fromi(X1,Y1),..., (Xn, Ya)}, with Card $,) = kn. We apply bagging, that is,
we repeat the random sampling an infinite number of times, and take the exadréng individual
outcomes. Thus, the bagged regression estinjasedefined by

ra(x) = E* [re, ()],

wherelE* denotes expectation with respect to the resampling distribution, conditionatheatata
setD,.

The following result, proved in Biau and Devroye (2008), shows tha&ifoappropriate choice
of ky, the bagged version of the 1-NN regression estimate is universally tamtsis

Theorem 1 If k, — o and k,/n — 0, then 5 is universally consistent.
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BAGGED NEARESTNEIGHBOR ESTIMATE

In this theorem, the fact that resampling is done with or without replacementlisviant. Thus, by
bagging, one may turn the crude 1-NN procedure into a consistent mviggd that the size of the
resamples is sufficiently small. To understand the statistical forces driviegrém 1, recall that

if we letV, >V, > ... >V, > 0 denote deterministic weights that sum to one, then the regression
estimate

n
Vi Y (),
PR
with (X(1)(X),Y(2)(X)), - -, (X(n)(X), Y(n) (X)) the reordering of the data such that
X =X () <o < X=X ()]

is called a weighted nearest neighbor regression estimate. It is knowrutavegsally consistent
providedV; — 0 andy.¢,Vi — O for alle > 0 asn — o, see Stone (1977) and Devroye (1981) and
Devroye et al. (1996, Problems 11.7, 11.8). The crux to prove Thedris to observe that; is in
fact a weighted nearest neighbor estimate with

Vi = P(i-th nearest neighbor ofis the 1-NN in a random selectipn

Then, a moment's thought shows that for the “with replacement” sampling

() ()

whereas for sampling “without replacemeny;’js hypergeometric:

(-3)
k=1 i n_ka1

=)

0, i >n—k,+ 1.

The core of the proof of Theorem 1 is then to show that, in both cases,diyhtsV, satisfy the
conditionsv; — 0 andy;.¢,Vi — O for alle > 0 asn — «. These weights have been independently
exhibited by Steele (2009), who also shows on practical examples thstastibl reductions in
prediction error are possible by bagging the 1-NN estimate. Note also thaethisxpression for
the 1-NN bagged estimate makes any Monte-Carlo approach unnecessaagjuate the estimate.
Indeed, up to now, this predictor was implemented by Monte-Carlo, that iggd®ating the random
samplingT times, and taking the average of the individual outcomes. Formally=fry,(x) is the
prediction in the-th round of bagging, the bagged regression estimate was approximaklgted

as

1T
COEED %S
t=

whereZ,...,Zr are the outcomes in the individual rounds. Clearly, writing the 1-NN bagged
estimate as an (exact) weighted nearest neighbor predictor makes Bughtimns useless.

On the other hand, the fact that the bagged 1-NN estimate reduces to dedaighrest neighbor
estimate may seem at first sight somehow disappointing. Indeed, we getthargk,-NN rule
back by the choice

0 otherwise,

M:{U%iﬂgm
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and, with an appropriate choice of the sequefige, this regression estimate is known to have
optimal asymptotic properties (see @fi et al., 2002, Chap. 6, and the references therein). Thus,
the question is: Why would one care about the bagged nearest neigbdhen? The answer
is twofold. First, bagging the 1-NN is a very popular technique for regipasand classification
in the machine learning community, and most—if not all—empirical studies repactipal im-
provements over the traditionlgl-NN method. Secondly (and most importantly), analysing 1-NN
bagging is part of a larger project trying to understand the drivingefobehind the random forests
estimates, which were defined in Breiman (2001). In short, randomt$oaes some of the most
successful ensemble methods that exhibit performance on the levebstirmpand support vector
machines. These learning procedures typically involve a resampling dtegh may be interpreted
as a particular 1-NN bagged procedure based on the so-called ‘tayeagest neighbor” proximi-
ties (Lin and Jeon, 2006; Biau and Devroye, 2008).

Thus, in the present paper, we go one step further in bagging investigattbstudy the rate
of convergence of [r(X) — r(X)]2 to 0 asn — . We will start our analysis by stating a compre-
hensive theorem on the rate of convergence of general weightegshaaighbor estimates (Section
2.1). Then, this result will be particularized to 1-NN bagging, by distingniskthe “with replace-
ment” (Section 2.2) and the “without replacement” (Section 2.3) cases. Ewsake of clarity,
technical proofs are postponed to Section 3.

Throughout the document, we will be interested in rate of convergescétsdor the clasgr
of (1,C,p,0?)-smooth distributiongX,Y) such thatX has compact support with diametey, 2he
regression functiom is Lipschitz with constan€ and, for allx € RY, 6?(x) = V[Y |X = x] < ¢?
(the symbolV denotes variance). It is known (see, for example Ibragimov and Khakiih980,
1981, 1982) that for the clags, the sequenc(‘:rrd%z) is the optimal minimax rate of convergence.
In particular,

> A

_ 2
fiminfinf sup —nC) OO
n=e I (xY)ef ((pC)da2)dz n~a+

for some positive constantindependent of, p ando?. Here the infimum is taken over all estimates
rn, thatis, over all square integrable measurable functions of the datastikiag result, we prove
in Sections 2.2 and 2.3 that, irrespectively of the resampling typel, foB8 and a suitable choice of
the sequencék,), the estimate}, is of optimum rate for the clasg, that is
* 2
limsup sup E[ra(X) —Zr(X)] — <A
n— (XY)ef ((pC)dg?)d2n~ a2

for some positive\ independent o, p andg?. Since the parametds, of the estimate with

the optimal rate of convergence depends on the unknown distributiQq,¥f), especially on the

smoothness of the regression function, we present in Section 2.4 adéipgiy data-dependent)
choices ok, which preserve the minimax optimality of the estimate.

We wish to emphasize that all the results are obtained by letting the resamplirg giz®vs
with nin such a manner tha — c andk,/n — 0. These results are of interest because the majority
of bagging experiments employ relatively large resample sizes. In fact, mtltehevidencegainst
the performance of bagged nearest neighbor methods is for full sampleesamples (see the
discussion in Breiman, 1996, paragraph 6.4), except the notable @it and Samworth (2005)
and Steele (2009), who also report encouraging numerical results @othext of regression and
classification.
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BAGGED NEARESTNEIGHBOR ESTIMATE

2. Rates of Convergence

As an appetizer, we start our analysis of the 1-NN bagged regresstiomage from a larger point
of view, by offering a general theorem on the rate of convergencgeaghted nearest neighbor
estimates, that is, estimates of the form

n
m(X) =Y ViYu(x)
i; 0
with nonnegative weights satisfying the constra’@f§1Vi =landVy >Vo>...>V,>0.

2.1 Weighted Nearest Neighbor Estimates

Let us first recall various topological definitions that will be used in theepaWe first define the
well-known notion of covering numbers which characterize the massigarfea set (Kolmogorov
and Tihomirov, 1961). As put forward in Kulkarni and Posner (1995¢se quantities play a key
role in the context of nearest neighbor analysis. Bét. £) denote the open Euclidean ball R
centered ax of radiuse.

Definition 2 Let 4 be a subset dRY. Thee-covering number\(g) [= A(g, 4)] is defined as the
smallest number of open balls of radigighat cover the sefl. That is

r
AN (€) = inf {r >1:3dXy,.... % € RY such that2 ¢ Uﬂa(xi,s)} )
i=1
A set4 c RYis bounded if and only if\((g) < o for all € > 0. Note that as a function af A((¢)

iS nonincreasing, piecewise-constant and right-continuous. The fotjosiscrete function, called
the metric covering radius, can be interpreted as a pseudo-inversefohttien A (€):

Definition 3 The metric covering radiug(~1(r) [= A(~(r,A)] is defined as the smallest radius
such that there exist r balls of this radius which cover thesethat is

r
AL(r) =inf {s >0:3xy,...,% € RY such thatq c U iB(xi,s)} .
i=1

We note that\l ~1(r) is a nonincreasing discrete functionrof

Throughout the paper, we will denote pyhe distribution ofX, which will be assumed to be a
bounded random variable. Recall that the supgom of pis defined as the collection of adlwith
U(B(x,€)) > 0 for alle > 0. Lettingp = A"1(1,5(1)), we observe that@is an upper bound on
the diameter of (). We are now in a position to state the main result of this subsection. We let the
symbol|.| denote the integer part function.

Theorem 4 Let ry(x) = 311 Vi) (x) be a weighted nearest neighbor estimate (of)r Suppose
that X is bounded, and sgt= A(~1(1,$(1)). Suppose in addition that, for alandx’ € RY,

0%(x) = V[Y|X = x] < 62

and
[r(x) = r(x)] < Cllx—xl,

for some positive constant® and C. Then
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(i) Ifd =1, |
E [rn(X) = 1(X)]2 < 02 'ZViZ+ 16p2C2_2M 'ﬁ
(i) Ifd =2, |
E[r(X) - r(X)J2 < 05 V8T 5 Ceem ()]
(iii) Ifd >3,

E [rn(X) = r(X)]2 < Ozi_iviz_'_ l8_p22(;2(j i_i\/i HJ 72/d.

Proof Setting
n
Fn(X) = > Vir(Xe(x)),
n i; ir (X
the proof of Theorem 4 will rely on the variance/bias decomposition
E[rn(X) =1 (X)]? = B [rn(X) = F(X)]* +E [Fa(X) = 1 (X)]?. 1

The first term is easily bounded by noting that, fonad R¢,
- n 2
E[ra(X) ~Fa(x))* = E _ZlVi (Yo () = r<X(i)(X)))]
=E 'Zviz(Y(i)()Q_r(X(i)(X)))2]

=K

%1\4202 (Xg) (X))]
< _ivﬁ @)

To analyse the bias term in (1), we will need the following result, which bsuhd convergence
rate of the expectedth nearest neighbor squared distance in terms of the metric coveringfadii
the support of the distributiop of X. Proposition 5 is a generalization of Theorem 1, page 1032
in Kulkarni and Posner (1995), which only reports results for the riteavergence othenearest
neighbor. Therefore, this result is interesting by itself.

Proposition 5 Suppose thaX is bounded. Then

i [n/i]
EIX 000 ~XIP < 2 Y [0 sw))

=1

For any bounded set4 in the Euclidean d-space, the covering radius satisfies
AN Y(r, 4) < A1, 4)r /9 (see Kolmogorov and Tihomirov, 1961). Hence the following corol-
lary:
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Corollary 6 Suppose thaX is bounded, and s@t= A_"1(1,5(u)). Then

(i) Ifd =1,
Bl () -] < 2,
(i) Ifd =2,
E[X ) (X) = X2 < S‘ji [1+1n (T”)] .
(iii) Ifd >3,

802[n/i] 3

E[|X iy (X) = X][* < 1-2/d

Thus, to prove Theorem 4, it suffices to note from (1) and (2) that
n
E[rn(X) -1 (X)) < 0 leiZ“E [Fa(X) —r(X))%.
i=
Next,

n 2
E[fa(x) —r(x))* =E _ZlVi (r(Xm(X))—f(X))]

n 2
<E _;Vi \f(x(i)(x))—f(x)’]

n 2
AR
ZV ElX 5 () —x||2]

(by Jensen’s inequality)

<C?E

<C?

Therefore, integrating with respect to the distributiorkofwe obtain

BIFX) ~r() < G| 3 I (00— XI2 .

and the conclusion follows by applying Corollary 6. |

Theorem 4 offers a general result, which can be made more precm@egrto the weights defini-
tion. Taking for example

0 otherwise,

Vi:{l/kn if i < ky

we get the ordinark,-NN rule back. Here,
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and

n |2/
il
n\ —2/d
(i)
for some positivé,. Therefore, in this context, according to Theorem 4,dor 3, there exists a
sequencek,) with k, O natz such that

d~2 WZZ
() 002 <A ()T

for some positive constamt independent op, C anda?. This is exactly Theorem 6.2, page 93
of Gyorfi et al. (2002), which states that the standard nearest neighbor &sisnaf optimum
rate for the clasF of (1,C,p,0?)-smooth distributiongX,Y) such thatX has compact support
with covering radiug, the regression functionis Lipschitz with constan€ and, for allx € RY,
0?(x) = V[Y| X = x] < a2 (note however that the ordinaky-NN predictor isnotoptimal for higher
smoothness, see Problem 6.2 ind@&yet al., 2002).

The adaptation of Theorem 4 to the 1-NN bagged regression estimatemesslsareful atten-
tion. This will be the topic of the next two Sections.

2.2 Bagging with Replacement

This bagging-type is sometimes called moon-bagging, standimg &t of n bootstrapaggregaing.
As seen in the introduction, in this case, the weighted nearest neighbessam estimate takes the
form

where

From now on[ (t) will denote the Gamma function, that is,
[ (t) :/ X~ledx, t>0.
0

In order to make full use of Theorem 4, we first need a careful cbatrihe terms !, Vi2. This is
done in the next proposition.
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Proposition 7 Fori=1,...,n, let

()

Then

The message of Proposition 7 is that, when resampling is done with replacéimeerdriance term
of the bagged NN estimate is(k)/n). Let us now turn to the bias term analysis.

Proposition 8 Fori=1,...,n, let

Then

(i) Ifd=1, kn

2o
(i) Ifd =2, | kn
i“ Vi [1+n (7)) < kzn <1+i> [1+In(ky +1)].
(iii) 1fd >3, kn
i.mz/dgnlﬂ(d <1+i> =
where

d-2 d+2
ad_2r<(j)r< : ).
The take-home message here is thatgdfor 3, the squared bias is(@?z/d). Finally, putting all the
pieces together, we obtain

Theorem 9 Suppose thaX is bounded, and set = A'~1(1,5(l)). Suppose in addition that, for
all x andx’ € RY,
0?(x) =V[Y|X =x] < ¢?

and
Ir() —r(x)] < Clx—x,

for some positive constant® and C. Then

(i) Ifd =1,

N ,  20%, 1\ % 32p2C2 1\ %
E[rs(X) =r(X)]* < - <1+n> + K <1+n).
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(i) Ifd =2,
2 2kn
Bl -0 < 2 (141 )
202 Kn
+16inc <1+r11> [1+In(ky+1)].
(i) 1fd >3,
2 2kn
Bl -0 < 20 (14 1)
8p2C2 | 1 e
+1—2/d nkn+ad<1+n> kn ]7
where

d-2 d+2
=2 r .
o < d ) < d )
By balancing the terms in Theorem 9, we are led to the following corollary:

Corollary 10 Under the assumptions of Theorem 9,

(i) Ifd =1, there exists a sequeng@e,) such that k — o, k,/n— 0, and

N pCo
E [r(X) —r(X)]? S/\Wv

for some positive constaitindependent op, C ando?.

(ii) If d =2, there exists a sequenge,) such that K — o, k,/n — 0, and

Inn
E[ra(X) = (X)) < (A+0(1)) pCoy | =,
for some positive constantindependent op, C ando?.
(iii ) Ifd > 3, there exists a sequende,) with k, O na‘z such that

eoret) o

(0 - 00 < A ()

for some positive constaitindependent op, C ando?.

Two important remarks are in order.

1. First, we note that, fod > 3 and a suitable choice &f, the bagged 1-NN estimate achieves
both the minimaxn~2/(4+2) rate and the optimal order of magnitufl@C)90?)%/(9+2) in the
constant, for the clas$ of (1,C, p,a?)-smooth distribution$X,Y) such thaiX has compact
support with covering radiyg, the regression functionis Lipschitz with constant and, for
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all x € RY, 0%(x) = VY| X = x] < 6. Seconds, the bound is valid for finite sample sizes, so
that we are in fact able to approach the minimax lower bound not only asyngitphat even
for finite sample sizes. On the other hand, the estimate with the optimal rate @rgence
depends on the unknown distribution €,Y), and especially on the covering radipsind
the smoothness of the regression function measured by the co@sténis to correct this
situation that we present adaptation results in Section 2.4.

2. Ford = 1, the obtained rate is not optimal, whereas it is optimal up to a log termh fo.
This low-dimensional phenomenon is also known to hold for the traditigpBlN regression
estimate, which does not achieve the optimal rates in dimensions 1 and 2 ¢béenizr 6.1
and 6.7 in Gyrfi et al., 2002, Chap. 3).

2.3 Bagging Without Replacement

We briefly analyse in this subsection the rate of convergence of the thdglygN regression es-
timate, assuming this time that, at each step,kthebservations are distinctly chosen at random
within the sample seD,. This alternative aggregation scheme is called subagging(imample
aggegatng) in Buhlmann and Yu (2002). We know that, in this case, the weighted neargkboe
regression estimate takes the form

n
rmx) =Y Vi (x),
where

R L
(k)
0, i>n—ky+1.

Due to the fact that there is no repetition in the sampling process, the anaiysistii to be simpler.
To prove Theorem 13 below, we start again by a control of the vari@moey ", V2.

Proposition 11 Fori=1,...,n, let

Vi — % i <n—k,+1
(o)
0, i>n—ky,+ 1.

Then
1

d Kn
VS A e

Thus, as for bagging with replacement, the variance term of the withola#cespent bagged 1-

NN estimate is @k,/n). The bias term may be treated by resorting to Theorem 4, via complex

calculations due to the complicate form of the bagging weights. However, & sionpler route
may be followed. Recall that

0 = 5 Mir (X ().
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and observe that
() =B [r(X{y ()]

Wherexa) (x) is the nearest neighbor afin a random subsampl&, drawn without replacement
from {(X1,Y1),...,(Xn,Yn)} with Card $,) = k., andE* denotes expectation with respect to the
resampling distribution, conditionally on the data g&t This is the basic ingredient for the proof
of the next proposition.

Proposition 12 Suppose thaX is bounded, and sgt = A(~1(1,5(1)). Suppose in addition that,
for all x andx’ € RY,
[r(x) —r ()] < Clx—xl,

for some positive constant C. Then

(i) Ifd =1,
22
E[F5(X) - r(x))2 < 1¥°C
Kn
(i) Ifd =2,
22
BIF(¢) — (0 < 2= (1+Inkg)
(iii) 1fd >3,
- 8p%C? . >
B[00 —r(X) < oy

Thus, ford > 3, E[F%(X) —r(X)]? = O(kﬁz/d). Combining Proposition 11 and Proposition 12 leads
to the desired theorem:

Theorem 13 Suppose thaX is bounded, and sgt= A'"1(1,.5(y)). Suppose in addition that, for
all x andx’ € RY,
02(x) = V[Y|X = x] < 62

and
r(x) —r(x)| <Cllx =X,

for some positive constant® and C. Then

(i) Ifd =1,
« Kn o? 16p%C?
B[00 1) < e
(i) Ifd =2,
* kn o2 8p2C2
E[rn(x)—r(X)]zéﬁ(1_kn/n+1/n)2+ o (LtInko).
(iii) 1fd >3,
kn 0? 8p’C? 2

N (1_k/nri/mz " 1—2/dk; ‘
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BAGGED NEARESTNEIGHBOR ESTIMATE

By balancing the variance and bias terms, we obtain the following usefollaor:
Corollary 14 Under the assumptions of Theorem 13,
(i) Ifd =1, there exists a sequeng@e&,) such that kK — o, k,/n— 0, and

pCo

E[rh(X) —r(X)]> < (A+0(1)) Nk

for some positive constaitindependent op, C anda?.

(ii) If d =2, there exists a sequende,) such that K — o, k,/n — 0, and

Inn
B[ 100 < (A-+o(1)pooy [ ™7,
for some positive constantindependent op, C ando?.

(iii) If d > 3, there exists a sequende,) with k, O n#%z such that

_2_

dg2\ d+2
E[rh(X) —r(X)]* < (A+0(1)) <(pcr)]°>

Y

for some positive constantindependent op, C anda?.

As in bagging with replacement, Corollary 14 expresses the fact thad foB, the without re-
placement bagged 1-NN estimate asymptotically achieves both the minimda%™2 rate of con-
vergence and the optimal order of magniti@eC)%0?)%/(9+2) in the constant, for the clagg of
(1,C,p,0?)-smooth distributiongX,Y).

2.4 Adaptation

In the previous subsections, the paraméteof the estimate with the optimal rate of convergence
for the classF depends on the unknown distribution(®f,Y), especially on the smoothness of the
regression function measured by the Lipschitz congtanin this subsection, we present a data-
dependent way of choosing the resampling &jzand show that, for bounded the estimate with
parameter chosen in such an adaptive way achieves the optimal ratevefgmmce (irrespectively
of the resampling type). To this aim, we split the sample= {(X1,Y1),...,(Xn, Yn)} in two parts
of size|n/2] andn— |n/2], respectively (assuming> 2). The first half is denoted b®, (learning
set) and is used to construct the bagged 1-NN estimiag (x, DLy = i inyj2) (% D) (for the sake
of clarity, we make the dependence of the estimate ll%g(E)l’pliCit). The second half of the sample,
denoted byD} (testing set), is used to chodsey pickingk, € K = {1,...,|n/2]} to minimize the
empirical risk

l n

. 2
n—[n/2| i:Ln/ZZJ—H (Yi " kln2) (Xi)> '

Define the estimate

I’;(X) - rEn,Ln/ZJ (X7 Q)ﬁ))
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and note that;; depends on the entire dafa,. If |Y| <L < c almost surely, a straightforward
adaptation of Theorem 7.1 in @¥fi et al. (2002) shows that, for ady> 0,

E[r4(X) 10O < (L+8) I BIr 72 (<) 1)+ 20

for some positive consta depending only orh, d andd. Immediately from Corollary 10 and
Corollary 14 we can conclude:

Theorem 15 Suppose thaly| < L almost surely, and letirbe the bagged 1-NN estimate witkek
K = {1,...,|n/2]} chosen by data-splitting, irrespectively of the resampling type. Then
(Inn)(@+2)/(2)n-1/2 < 1C together with d> 3 implies, for n> 2,

2
C d\ d+2
B0 —r0) < (n+o(w) (P25 )
for some positive constat which depends only on L and d.

Thus, the expected error of the estimate obtained via data-splitting is botmdedbove up to a
constant by the corresponding minimax lower bound for the ¢fasd regression functions, with
the optimal dependence @andp.

3. Proofs

Proofs of the main results are gathered in this section.

3.1 Proof of Proposition 5

All the covering and metric numbers we use in this proof are pertaining to thedea sets(u).
Therefore, to lighten notation a bit, we s&i(€) = A((g, S (W) and A 1(r) = ALL(r, S(W)).
Let X’ be a random variable distributed as and independeXt ahd let, fore > 0,

Fx(e) =P (X = X'|| < ]X)

be the conditional cumulative distribution function of the Euclidean distanwedesmX andX’. Set
finally
Dy (X) = [[ Xy (X) = X[

Clearly,
P(D@00>5):E@%Dmm)>vaxﬂ

5 () tmvan s | ®

=K
J

Take By, ..., By e/2) & VE/2-covering ofS(u), and define am\((y/g/2)-partition of S() as fol-
lows. Foreaclf =1,..., N (/¢€/2), let

(-1
?=3-]J3.
j=1
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Then?, C ‘B, and
N(vE/2) N(VE/2)

U By = U Py,
-1

=1
with 2N Py, = 0. Also,

Thus, lettingp, = W(%,), we may write

Fx (VeE) >P(34=1,...,N(Ve/2) : X € 7 andX’ € 7 |X)
N(VE/2)
/z Iixer)lixen) X]
N(VE/2)

; Pelixen)-

As a by-product, we remark that, for alt> 0, Fx (\/§) > 0 almost surely. Moreover

E[ 1 . 1 ] . N(vE/2) . ]
- < — - ,
AV TSR 2, plxen
leading to
1 \/E)
E < . 4
[Fx (\/5)] _N< 2 @

Consequently, combining inequalities (3), (4) and technical Lemma 16, taéob
' 1+1 -
2 (§) (A v

Fx (1¢€)]

P(Dﬁ)(x) > s)

Thus, sincé?(D?, (X) > €) = 0 for e > 4[AC"*(1)]?, we obtain

:/ P(Df(X) > €)de

4Nt
_/ X) > €)de
ANL(2))?
<a[x (L”J)F o VR 20

701



Biau, CEROU AND GUYADER

SinceA((ve) = j for ATH(j) < Ve < A(j - 1), we get

E[DZ)(x)] <42 1(_?_)_2+L: [[ Ln/f)] A EcE
cafe (T[S
—4 .Nj 1(_2_)
4ot [ () o]

< [9\[*1(1)]2+4ﬁi [9\[*1 (FJ)FJFH ,Zz [9\6’1(])}2,

where the last statement follows from the inequality

EIGAREE

In conclusion, we are led to

o0 <35 2

as desired.

3.2 Proof of Corollary 6

For any bounded set4 in the Euclidean d-space, the covering radius satisfies
N(r, 2) < A1, 4)r /4 (see Kolmogorov and Tihomirov, 1961). Consequently, using Propo-
sition 5, we obtain

(i) Ford =1,
E[|X i) (X) = X]|? < Z j?
[n/i]
< pT [1+/ x2dx]
1
< 16p2i‘
= n
(i) Ford=2,
8p j Ln/1
E[[Xiy(X) = X1 < Z i

< pT [1+ /1 " xldx]
()]
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(iii ) Ford >3,

2: [n/i]
8pIZJ§
Ln/i]
§8p|/ x‘gdx
n Jo
_ 8p?(n/i) ¢
S o1-2/d

E[|Xi)(X) — X|[* <

In the last statement, we used the inequality< 1/|n/i|.

3.3 Proof of Proposition 7

An easy calculation shows that

n ) n i—1 Kn i ka2
eg[5) e)
i; I i; n n
n—1 i\ kn i\ kn
GO CHINCES)
& n n n
Let the mapf : R — R be defined byf (x) = (1—x)%. Then, by the mean value theorem,

o< () () () )
NEERCDAS

In addition, let the mag : R — R be defined by(x) = (1—x)%*~. Observing that

/Olg(x)dx: —

sz<2kn[1“<') [faw ]
L)

Invoking again the mean value theorem, we may write, fox allji/n, (i+1)/n],

0<a(;)-aw<-7d (1)
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Therefore,

=}

g Lo(0)]
5] /ool )-5(-3)

Putting all the pieces together, we finally obtain

(-0

Clearly,

This concludes the proof of the proposition.

3.4 Proof of Proposition 8
We distinguish between the casks 1,d =2 andd > 3.

(i) If d=1, fori =1,...,n, by definition of thev’s,

Thus

Forallj=1,... k,, we use the inequality

10 i kn—] 1 .
21 (1—) §2/ x(1—x)*~Idx,
n4n n 0

which is clearly true forj = kn, without the factor 2 in front of the integral. For<ky, itis
illustrated in Figure 1, where we have plotted the functi¢gr) = x(1— x)*~1. The factor 2
is necessary becau$ds not monotonic on0, 1].

Consequently,
ZlVl <ZZ< )nl 1/ x(1—x)*=Idx,
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- = (f(2) + f(etl)) < . f@)de
) o+1 —1
; o 1

n

0
Figure 1: lllustration of} Zl— <
ngn

kn—j 1 )
1— ) < 2/ X(1—x)*~Jdx.
n 0
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Recalling the general formula

r(p)r(a)

1
xP1(1—x)9tdx = . p,q>0, 5
/0 (1—x) Flprq .~ MO 5)

we obtain

(kn 1 1
i/t (k= j+1)(kn— [ +2)

_zkn < Kn ) 1 1

T2\ Tk -+ 2)

)5 T

|/ (J+ Dk —j+1)

Observing finally thatj + 1)(kn— j +1) >k, forall j =0,...,ky— 1, we conclude

P2kt 1\
Vi — —14+-) .
Sasi 5 (=i (43)
(i) Ford =2, areasoning similar to the one reported in staterfigretbove can be followed, to
show that

Sul[uen(7) gz[kln )
B Lme] o

Denoting byH, then-th harmonic number, that is,
1 1
Hh=1+-+...+=
n + > +...+ n’

we have, for alin> 0 (see for example Gradshteyn and Ryzhik, 2007, Formula (4.253.1)),

1
—/ X(1—x)"Inxdx =
0

I
N
™7
N\
&)

Hm+2 - l
(m+1)(m+2)
Thus we may write

Kn .
— (kjn>m.11/olx(lx)k”‘llnxdx

9 (kn> 1 Hi—j2—1
2 i)t i+ D=+
k"1<kn> 1 Hgjn-1

i/ (j+1)ke—j+1)
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Forallj=0,...,ky— 1, we have(j +1)(ky— j +1) > kn, as well as

1 1
Hi i1 — 1= ot
T2 ko= j+1

kn—j+1 gx
§/1 X
=In(kn—j+1)
<In(ka+1).

Therefore,
3 <k”>1/1x(1—x)k“‘jlnxdx

;1 j/ni=tJo
In(ka + 1) ""‘1<kn> 1

T &\

T

n
Combining inequalities (6) and (7) leads to the desired result.

ni

(7)

(iii) Ford >3, wenotethatforail=1,...,n—1,

L ELAL

o B[ 5 ()] G

We obtain
s |2 (D (-0) | ()
e D HES P CONNOY

Applying formula (5) again, together with the identity

(pe55) (5N (-3)
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we obtain

+Gdz < )njll —1j+1)kji<l_d2€>

(with og = 2I'((d —2)/d) T ((d+2)/d)

1 kol 2
kn+ dzlj _J+1Injlﬂ<l_d€>

1 1 /[ ky \ 1k 2

e T ,an-l(j—1>jﬂ (o)

11 1 ki-l 2
Zm( >i+1 Dl (1_df>'

Thus, by technical Lemma 17,

1 ot k) kn
Snﬁnkn‘f‘adJ;(j)j

kn

1 1 _2
< T +0ag(1+= q.
< et d<+n> Kn

This concludes the proof of Proposition 8.

aln

3.5 Proof of Proposition 11
We have, foii =1,....,n—k,+1,

This yields
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Observing finally that

we conclude that

=l
=

2
n
kn <

i;Y%E@m—ixn—m+nz—ﬁkl—mm+1mﬁ‘

3.6 Proof of Proposition 12
Recall that

X) = i_il\/i r(X

a0 =B [r(Xy(09)]

wherele) (x) is the nearest neighbor afin a random subsampl&, drawn without replacement

from {(X1,Y1),...,(Xn,Yn)} with Card.$,) = kn, andE* denotes expectation with respect to the
resampling distribution, conditionally on the data gt Consequently, by Jensen’s inequality,

and observe that

B 100 -0 = 2[5 [r (x300) 1 7] -rc 0]
e[|

) oo
<E|E [ (DI%”

=E _r <Xf1) (x)) — r(x)}2
< C2E|Xj (x) /|2

Since Card$,) = ks, we conclude by applying Corollary 6, with= 1 and replacing by k.

3.7 Two Technical Lemmas
Lemma 16 For j =0,...,n—1, let the mapp, ;(p) be defined by

B (D) = ('J‘) o(1-p™l, 0<p<l

Then, foralli=1,...,n,
i—1

Su i < —.
o§p§le: ¢n,J(p) — n+1
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Proof Each map},; is nonnegative, continuously increasing on the intef@alj + 1)/(n+ 1)]
and decreasing of{j +1)/(n+1),1]. Consequently, the supremum of the continuous function
zlj_:]bq)n’j (p) is achieved at some poipt. of the intervall1/(n+1),i/(n+1)]. Thatis,

i—1 i-1
5.5 0n9= S 0

1
Z)()p*l p)"
n
<3, (Jra-er
== *Sil
|
Lemma 17 Foreach d> 3,eachk>1,and j=0,...,k,— 1, we have

J+1J_|< ) <ia

Proof First, since < 1—x < e *forall x € [0,1],
kn—j—1 2 2kn*j*11
1-— )< —-= -,
IRCIRECPE)

Thus, using #1/2+...+1/p>In(p+1), we deduce

M (-2)<tnt

To conclude, we use the fact that, fo= 0,. ..k, — 1,

1

m(kn—j)fa <kn 9.

To see this, note that the inequality may be written under the equivalent form

aln

(1k‘n) §1+j:1+kn-kjn.

The result can easily be deduced from a comparison between thedmaps-> (1 — x)‘z/d and
P : x— 1+ksyxon the interval0,1— 1/kp]. Just note thap (0) = P(0), p(1—1/ky) = K < k=
W(1—1/kn) sinced > 3, and¢ is convex whiley is affine. [ |
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