
Journal of Machine Learning Research 11 (2010) 687-712 Submitted 6/09; Revised 11/09; Published 2/10

On the Rate of Convergence of the Bagged Nearest Neighbor Estimate

Gérard Biau GERARD.BIAU @UPMC.FR

LSTA & LPMA
Universit́e Pierre et Marie Curie – Paris VI
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Abstract

Bagging is a simple way to combine estimates in order to improve their performance. This method,
suggested by Breiman in 1996, proceeds by resampling from the original data set, constructing a
predictor from each subsample, and decide by combining. By bagging ann-sample, the crude near-
est neighbor regression estimate is turned into a consistent weighted nearest neighbor regression
estimate, which is amenable to statistical analysis. Letting the resampling sizekn grows appropri-
ately withn, it is shown that this estimate may achieve optimal rate of convergence, independently
from the fact that resampling is done with or without replacement. Since the estimate with the
optimal rate of convergence depends on the unknown distribution of the observations, adaptation
results by data-splitting are presented.

Keywords: bagging, resampling, nearest neighbor estimate, rates of convergence

1. Introduction

Ensemble methods are popular machine learning algorithms which train multiple learners and com-
bine their predictions. The success of ensemble algorithms on many benchmark data sets has raised
considerable interest in understanding why such methods succeed and identifying circumstances in
which they can be expected to produce good results. It is now well knownthat the generalization
ability of an ensemble can be significantly better than that of a single predictor,and ensemble learn-
ing has therefore been a hot topic during the past years. For a comprehensive review of the domain,
we refer the reader to Dietterich (2000) and the references therein.
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1.1 Bagging

One of the first and simplest ways to combine predictors in order to improve their performance is
bagging (bootstrapaggregating), suggested by Breiman (1996). This ensemble method proceeds by
generating subsamples from the original data set, constructing a predictorfrom each resample, and
decide by combining. It is one of the most effective computationally intensiveprocedures to improve
on unstable estimates or classifiers, especially for large, high dimensional data set problems where
finding a good model in one step is impossible because of the complexity and scale of the problem.
Bagging has attracted much attention and is frequently applied, although its statistical mechanisms
are not yet fully understood and are still under active investigation. Recent theoretical contributions
to bagging and related methodologies include those of Friedman and Hall (2000), Bühlmann and
Yu (2002), Hall and Samworth (2005), Buja and Stuetzle (2006) and Biauand Devroye (2008).

It turns out that Breiman’s bagging principle has a simple application in the context of nearest
neighbor methods. Nearest neighbor predictors are one of the oldest approaches to regression and
classification (Fix and Hodges, 1951, 1952; Cover and Hart, 1967; Cover, 1968a,b; Gÿorfi, 1978;
Venkatesh et al., 1992; Psaltis et al., 1994). A major attraction of nearest neighbor procedures
is their simplicity. For implementation, they require only a measure of distance in the sample
space, along with samples of training data, hence their popularity as a startingpoint for refinement,
improvement and adaptation to new settings (see for example Devroye et al., 1996, Chap. 19).
Before we formalize the link between bagging and nearest neighbors, some definitions are in order.
Throughout the paper, we suppose that we are given a sampleDn = {(X1,Y1), . . . ,(Xn,Yn)} of
i.i.d. R

d ×R-valued random variables with the same distribution as a generic pair(X,Y) satisfying
EY2 < ∞. The spaceRd is equipped with the standard Euclidean metric. For fixedx ∈ R

d, our
mission is to estimate the regression functionr(x) = E[Y|X = x] using the dataDn. With this
respect, we say that a regression function estimatern(x) is consistent ifE[rn(X)− r(X)]2 → 0 as
n→∞. It is universally consistent if this property is true for all distributions of(X,Y) with EY2 < ∞.

1.2 Bagging and Nearest Neighbors

Recall that the 1-nearest neighbor (1-NN) regression estimate setsrn(x) = Y(1)(x) whereY(1)(x) is
the observation of the feature vectorX(1)(x) whose Euclidean distance tox is minimal among all
X1, . . . ,Xn. Ties are broken in favor of smallest indices. It is clearly not, in general,a consistent
estimate (Devroye et al., 1996, Chap. 5). However, by bagging, one mayturn the 1-NN estimate
into a consistent one, provided that the size of the resamples is sufficiently small.

We proceed as follows, via a randomized basic regression estimaterkn in which 1≤ kn ≤ n is a
parameter. The elementary predictorrkn is the 1-NN rule for a random subsampleSn drawn with (or
without) replacement from{(X1,Y1), . . . ,(Xn,Yn)}, with Card(Sn) = kn. We apply bagging, that is,
we repeat the random sampling an infinite number of times, and take the average of the individual
outcomes. Thus, the bagged regression estimater⋆

n is defined by

r⋆
n(x) = E

⋆ [rkn(x)] ,

whereE
⋆ denotes expectation with respect to the resampling distribution, conditionally onthe data

setDn.
The following result, proved in Biau and Devroye (2008), shows that for an appropriate choice

of kn, the bagged version of the 1-NN regression estimate is universally consistent:

Theorem 1 If kn → ∞ and kn/n→ 0, then r⋆n is universally consistent.
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BAGGED NEARESTNEIGHBOR ESTIMATE

In this theorem, the fact that resampling is done with or without replacement is irrelevant. Thus, by
bagging, one may turn the crude 1-NN procedure into a consistent one, provided that the size of the
resamples is sufficiently small. To understand the statistical forces driving Theorem 1, recall that
if we let V1 ≥V2 ≥ . . . ≥Vn ≥ 0 denote deterministic weights that sum to one, then the regression
estimate

n

∑
i=1

Vi Y(i)(x),

with (X(1)(x),Y(1)(x)), . . . ,(X(n)(x),Y(n)(x)) the reordering of the data such that

‖x−X(1)(x)‖ ≤ . . . ≤ ‖x−X(n)(x)‖

is called a weighted nearest neighbor regression estimate. It is known to beuniversally consistent
providedV1 → 0 and∑i>εnVi → 0 for all ε > 0 asn→ ∞, see Stone (1977) and Devroye (1981) and
Devroye et al. (1996, Problems 11.7, 11.8). The crux to prove Theorem 1 is to observe thatr⋆

n is in
fact a weighted nearest neighbor estimate with

Vi = P(i-th nearest neighbor ofx is the 1-NN in a random selection).

Then, a moment’s thought shows that for the “with replacement” sampling

Vi =

(

1− i−1
n

)kn

−
(

1− i
n

)kn

,

whereas for sampling “without replacement”,Vi is hypergeometric:

Vi =























(

n− i
kn−1

)

(

n
kn

) , i ≤ n−kn +1

0, i > n−kn +1.

The core of the proof of Theorem 1 is then to show that, in both cases, the weightsVi satisfy the
conditionsV1 → 0 and∑i>εnVi → 0 for all ε > 0 asn→ ∞. These weights have been independently
exhibited by Steele (2009), who also shows on practical examples that substantial reductions in
prediction error are possible by bagging the 1-NN estimate. Note also that thisnew expression for
the 1-NN bagged estimate makes any Monte-Carlo approach unnecessaryto evaluate the estimate.
Indeed, up to now, this predictor was implemented by Monte-Carlo, that is, byrepeating the random
samplingT times, and taking the average of the individual outcomes. Formally, ifZt = rkn(x) is the
prediction in thet-th round of bagging, the bagged regression estimate was approximately evaluated
as

r⋆
n(x) ≈ 1

T

T

∑
t=1

Zt ,

whereZ1, . . . ,ZT are the outcomes in the individual rounds. Clearly, writing the 1-NN bagged
estimate as an (exact) weighted nearest neighbor predictor makes such calculations useless.

On the other hand, the fact that the bagged 1-NN estimate reduces to a weighted nearest neighbor
estimate may seem at first sight somehow disappointing. Indeed, we get the ordinary kn-NN rule
back by the choice

Vi =

{

1/kn if i ≤ kn

0 otherwise,
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and, with an appropriate choice of the sequence(kn), this regression estimate is known to have
optimal asymptotic properties (see Györfi et al., 2002, Chap. 6, and the references therein). Thus,
the question is: Why would one care about the bagged nearest neighbor rule then? The answer
is twofold. First, bagging the 1-NN is a very popular technique for regression and classification
in the machine learning community, and most—if not all—empirical studies report practical im-
provements over the traditionalkn-NN method. Secondly (and most importantly), analysing 1-NN
bagging is part of a larger project trying to understand the driving forces behind the random forests
estimates, which were defined in Breiman (2001). In short, random forests are some of the most
successful ensemble methods that exhibit performance on the level of boosting and support vector
machines. These learning procedures typically involve a resampling step, which may be interpreted
as a particular 1-NN bagged procedure based on the so-called “layered nearest neighbor” proximi-
ties (Lin and Jeon, 2006; Biau and Devroye, 2008).

Thus, in the present paper, we go one step further in bagging investigation and study the rate
of convergence ofE [r⋆

n(X)− r(X)]2 to 0 asn→ ∞. We will start our analysis by stating a compre-
hensive theorem on the rate of convergence of general weighted nearest neighbor estimates (Section
2.1). Then, this result will be particularized to 1-NN bagging, by distinguishing the “with replace-
ment” (Section 2.2) and the “without replacement” (Section 2.3) cases. For the sake of clarity,
technical proofs are postponed to Section 3.

Throughout the document, we will be interested in rate of convergence results for the classF
of (1,C,ρ,σ2)-smooth distributions(X,Y) such thatX has compact support with diameter 2ρ, the
regression functionr is Lipschitz with constantC and, for allx ∈ R

d, σ2(x) = V[Y |X = x] ≤ σ2

(the symbolV denotes variance). It is known (see, for example Ibragimov and Khasminskii, 1980,
1981, 1982) that for the classF , the sequence(n−

2
d+2 ) is the optimal minimax rate of convergence.

In particular,

liminf
n→∞

inf
rn

sup
(X,Y)∈F

E[rn(X)− r(X)]2

((ρC)dσ2)
2

d+2 n−
2

d+2

≥ ∆

for some positive constant∆ independent ofC, ρ andσ2. Here the infimum is taken over all estimates
rn, that is, over all square integrable measurable functions of the data. As astriking result, we prove
in Sections 2.2 and 2.3 that, irrespectively of the resampling type, ford ≥ 3 and a suitable choice of
the sequence(kn), the estimater⋆

n is of optimum rate for the classF , that is

limsup
n→∞

sup
(X,Y)∈F

E[r⋆
n(X)− r(X)]2

((ρC)dσ2)
2

d+2 n−
2

d+2

≤ Λ

for some positiveΛ independent ofC, ρ and σ2. Since the parameterkn of the estimate with
the optimal rate of convergence depends on the unknown distribution of(X,Y), especially on the
smoothness of the regression function, we present in Section 2.4 adaptive (i.e., data-dependent)
choices ofkn which preserve the minimax optimality of the estimate.

We wish to emphasize that all the results are obtained by letting the resampling sizekn grows
with n in such a manner thatkn →∞ andkn/n→ 0. These results are of interest because the majority
of bagging experiments employ relatively large resample sizes. In fact, much of the evidenceagainst
the performance of bagged nearest neighbor methods is for full sample size resamples (see the
discussion in Breiman, 1996, paragraph 6.4), except the notable resultsof Hall and Samworth (2005)
and Steele (2009), who also report encouraging numerical results in thecontext of regression and
classification.
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2. Rates of Convergence

As an appetizer, we start our analysis of the 1-NN bagged regression estimate from a larger point
of view, by offering a general theorem on the rate of convergence ofweighted nearest neighbor
estimates, that is, estimates of the form

rn(x) =
n

∑
i=1

Vi Y(i)(x)

with nonnegative weights satisfying the constraints∑n
i=1Vi = 1 andV1 ≥V2 ≥ . . . ≥Vn ≥ 0.

2.1 Weighted Nearest Neighbor Estimates

Let us first recall various topological definitions that will be used in the paper. We first define the
well-known notion of covering numbers which characterize the massiveness of a set (Kolmogorov
and Tihomirov, 1961). As put forward in Kulkarni and Posner (1995), these quantities play a key
role in the context of nearest neighbor analysis. LetB(x,ε) denote the open Euclidean ball inRd

centered atx of radiusε.

Definition 2 LetA be a subset ofRd. Theε-covering numberN (ε) [= N (ε,A)] is defined as the
smallest number of open balls of radiusε that cover the setA . That is

N (ε) = inf

{

r ≥ 1 :∃x1, . . . ,xr ∈ R
d such thatA ⊂

r
[

i=1

B(xi ,ε)

}

.

A setA ⊂ R
d is bounded if and only ifN (ε) < ∞ for all ε > 0. Note that as a function ofε, N (ε)

is nonincreasing, piecewise-constant and right-continuous. The following discrete function, called
the metric covering radius, can be interpreted as a pseudo-inverse of thefunctionN (ε):

Definition 3 The metric covering radiusN −1(r) [= N −1(r,A)] is defined as the smallest radius
such that there exist r balls of this radius which cover the setA . That is

N −1(r) = inf

{

ε > 0 :∃x1, . . . ,xr ∈ R
d such thatA ⊂

r
[

i=1

B(xi ,ε)

}

.

We note thatN −1(r) is a nonincreasing discrete function ofr.
Throughout the paper, we will denote byµ the distribution ofX, which will be assumed to be a

bounded random variable. Recall that the supportS(µ) of µ is defined as the collection of allx with
µ(B(x,ε)) > 0 for all ε > 0. Lettingρ = N −1(1,S(µ)), we observe that 2ρ is an upper bound on
the diameter ofS(µ). We are now in a position to state the main result of this subsection. We let the
symbol⌊.⌋ denote the integer part function.

Theorem 4 Let rn(x) = ∑n
i=1Vi Y(i)(x) be a weighted nearest neighbor estimate of r(x). Suppose

thatX is bounded, and setρ =N −1(1,S(µ)). Suppose in addition that, for allx andx′ ∈ R
d,

σ2(x) = V[Y |X = x] ≤ σ2

and
∣

∣r(x)− r(x′)
∣

∣≤C‖x−x′‖,
for some positive constantsσ2 and C. Then
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(i) If d = 1,

E [rn(X)− r(X)]2 ≤ σ2
n

∑
i=1

V2
i +16ρ2C2

n

∑
i=1

Vi
i
n
.

(ii) If d = 2,

E [rn(X)− r(X)]2 ≤ σ2
n

∑
i=1

V2
i +8ρ2C2

n

∑
i=1

Vi
i
n

[

1+ ln
(n

i

)]

.

(iii ) If d ≥ 3,

E [rn(X)− r(X)]2 ≤ σ2
n

∑
i=1

V2
i +

8ρ2C2

1−2/d

n

∑
i=1

Vi

⌊n
i

⌋−2/d
.

Proof Setting

r̃n(x) =
n

∑
i=1

Vi r(X(i)(x)),

the proof of Theorem 4 will rely on the variance/bias decomposition

E [rn(X)− r(X)]2 = E [rn(X)− r̃n(X)]2 +E [r̃n(X)− r(X)]2 . (1)

The first term is easily bounded by noting that, for allx ∈ R
d,

E [rn(x)− r̃n(x)]2 = E

[

n

∑
i=1

Vi
(

Y(i)(x)− r(X(i)(x))
)

]2

= E

[

n

∑
i=1

V2
i

(

Y(i)(x)− r(X(i)(x))
)2

]

= E

[

n

∑
i=1

V2
i σ2(X(i)(x)

)

]

≤ σ2
n

∑
i=1

V2
i . (2)

To analyse the bias term in (1), we will need the following result, which bounds the convergence
rate of the expectedi-th nearest neighbor squared distance in terms of the metric covering radiiof
the support of the distributionµ of X. Proposition 5 is a generalization of Theorem 1, page 1032
in Kulkarni and Posner (1995), which only reports results for the rate of convergence ofthenearest
neighbor. Therefore, this result is interesting by itself.

Proposition 5 Suppose thatX is bounded. Then

E‖X(i)(X)−X‖2 ≤ 8i
n

⌊n/i⌋

∑
j=1

[

N −1( j,S(µ))
]2

.

For any bounded setA in the Euclidean d-space, the covering radius satisfies
N −1(r,A) ≤N −1(1,A)r−1/d (see Kolmogorov and Tihomirov, 1961). Hence the following corol-
lary:
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Corollary 6 Suppose thatX is bounded, and setρ =N −1(1,S(µ)). Then

(i) If d = 1,

E‖X(i)(X)−X‖2 ≤ 16ρ2i
n

.

(ii) If d = 2,

E‖X(i)(X)−X‖2 ≤ 8ρ2i
n

[

1+ ln
(n

i

)]

.

(iii ) If d ≥ 3,

E‖X(i)(X)−X‖2 ≤ 8ρ2⌊n/i⌋−
2
d

1−2/d
.

Thus, to prove Theorem 4, it suffices to note from (1) and (2) that

E [rn(X)− r(X)]2 ≤ σ2
n

∑
i=1

V2
i +E [r̃n(X)− r(X)]2 .

Next,

E [r̃n(x)− r(x)]2 = E

[

n

∑
i=1

Vi
(

r(X(i)(x))− r(x)
)

]2

≤ E

[

n

∑
i=1

Vi
∣

∣r(X(i)(x))− r(x)
∣

∣

]2

≤C2
E

[

n

∑
i=1

Vi
∥

∥X(i)(x)−x
∥

∥

]2

≤C2

[

n

∑
i=1

Vi E‖X(i)(x)−x‖2

]

(by Jensen’s inequality).

Therefore, integrating with respect to the distribution ofX, we obtain

E [r̃n(X)− r(X)]2 ≤C2

[

n

∑
i=1

Vi E‖X(i)(X)−X‖2

]

,

and the conclusion follows by applying Corollary 6.

Theorem 4 offers a general result, which can be made more precise according to the weights defini-
tion. Taking for example

Vi =

{

1/kn if i ≤ kn

0 otherwise,

we get the ordinarykn-NN rule back. Here,

n

∑
i=1

V2
i =

1
kn
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and

n

∑
i=1

Vi

⌊n
i

⌋−2/d
=

1
kn

kn

∑
i=1

⌊n
i

⌋−2/d

≤ 1
kn

kn

∑
i=1

⌊

n
kn

⌋−2/d

=

⌊

n
kn

⌋−2/d

≤ ξ
(

n
kn

)−2/d

for some positiveξ. Therefore, in this context, according to Theorem 4, ford ≥ 3, there exists a
sequence(kn) with kn ∝ n

2
d+2 such that

E [rn(X)− r(X)]2 ≤ Λ
(

(ρC)dσ2

n

)

2
d+2

,

for some positive constantΛ independent ofρ, C andσ2. This is exactly Theorem 6.2, page 93
of Györfi et al. (2002), which states that the standard nearest neighbor estimate is of optimum
rate for the classF of (1,C,ρ,σ2)-smooth distributions(X,Y) such thatX has compact support
with covering radiusρ, the regression functionr is Lipschitz with constantC and, for allx ∈ R

d,
σ2(x) = V[Y |X = x]≤ σ2 (note however that the ordinarykn-NN predictor isnotoptimal for higher
smoothness, see Problem 6.2 in Györfi et al., 2002).

The adaptation of Theorem 4 to the 1-NN bagged regression estimate needsmore careful atten-
tion. This will be the topic of the next two Sections.

2.2 Bagging with Replacement

This bagging-type is sometimes called moon-bagging, standing form outof n bootstrapaggregating.
As seen in the introduction, in this case, the weighted nearest neighbor regression estimate takes the
form

r⋆
n(x) =

n

∑
i=1

Vi Y(i)(x),

where

Vi =

(

1− i−1
n

)kn

−
(

1− i
n

)kn

.

From now on,Γ(t) will denote the Gamma function, that is,

Γ(t) =
Z ∞

0
xt−1e−xdx, t > 0.

In order to make full use of Theorem 4, we first need a careful control of the term∑n
i=1V2

i . This is
done in the next proposition.
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Proposition 7 For i = 1, . . . ,n, let

Vi =

(

1− i−1
n

)kn

−
(

1− i
n

)kn

.

Then
n

∑
i=1

V2
i ≤ 2kn

n

(

1+
1
n

)2kn

.

The message of Proposition 7 is that, when resampling is done with replacement,the variance term
of the bagged NN estimate is O(kn/n). Let us now turn to the bias term analysis.

Proposition 8 For i = 1, . . . ,n, let

Vi =

(

1− i−1
n

)kn

−
(

1− i
n

)kn

.

Then

(i) If d = 1,
n

∑
i=1

Vi
i
n
≤ 2

kn

(

1+
1
n

)kn

.

(ii) If d = 2,
n

∑
i=1

Vi
i
n

[

1+ ln
(n

i

)]

≤ 2
kn

(

1+
1
n

)kn

[1+ ln(kn +1)] .

(iii ) If d ≥ 3,
n

∑
i=1

Vi

⌊n
i

⌋−2/d
≤ 1

nkn
+αd

(

1+
1
n

)kn

kn
− 2

d ,

where

αd = 2Γ
(

d−2
d

)

Γ
(

d+2
d

)

.

The take-home message here is that, ford ≥ 3, the squared bias is O(k−2/d
n ). Finally, putting all the

pieces together, we obtain

Theorem 9 Suppose thatX is bounded, and setρ = N −1(1,S(µ)). Suppose in addition that, for
all x andx′ ∈ R

d,
σ2(x) = V[Y |X = x] ≤ σ2

and
∣

∣r(x)− r(x′)
∣

∣≤C‖x−x′‖,
for some positive constantsσ2 and C. Then

(i) If d = 1,

E [r⋆
n(X)− r(X)]2 ≤ 2σ2kn

n

(

1+
1
n

)2kn

+
32ρ2C2

kn

(

1+
1
n

)kn

.
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(ii) If d = 2,

E [r⋆
n(X)− r(X)]2 ≤ 2σ2kn

n

(

1+
1
n

)2kn

+
16ρ2C2

kn

(

1+
1
n

)kn

[1+ ln(kn +1)] .

(iii ) If d ≥ 3,

E [r⋆
n(X)− r(X)]2 ≤ 2σ2kn

n

(

1+
1
n

)2kn

+
8ρ2C2

1−2/d

[

1
nkn

+αd

(

1+
1
n

)kn

kn
− 2

d

]

,

where

αd = 2Γ
(

d−2
d

)

Γ
(

d+2
d

)

.

By balancing the terms in Theorem 9, we are led to the following corollary:

Corollary 10 Under the assumptions of Theorem 9,

(i) If d = 1, there exists a sequence(kn) such that kn → ∞, kn/n→ 0, and

E [r⋆
n(X)− r(X)]2 ≤ Λ

ρCσ√
n

,

for some positive constantΛ independent ofρ, C andσ2.

(ii) If d = 2, there exists a sequence(kn) such that kn → ∞, kn/n→ 0, and

E [r⋆
n(X)− r(X)]2 ≤ (Λ+o(1))ρCσ

√

lnn
n

,

for some positive constantΛ independent ofρ, C andσ2.

(iii ) If d ≥ 3, there exists a sequence(kn) with kn ∝ n
d

d+2 such that

E [r⋆
n(X)− r(X)]2 ≤ Λ

(

(ρC)dσ2

n

)

2
d+2

,

for some positive constantΛ independent ofρ, C andσ2.

Two important remarks are in order.

1. First, we note that, ford ≥ 3 and a suitable choice ofkn, the bagged 1-NN estimate achieves
both the minimaxn−2/(d+2) rate and the optimal order of magnitude((ρC)dσ2)2/(d+2) in the
constant, for the classF of (1,C,ρ,σ2)-smooth distributions(X,Y) such thatX has compact
support with covering radiusρ, the regression functionr is Lipschitz with constantC and, for
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all x ∈ R
d, σ2(x) = V[Y |X = x] ≤ σ2. Seconds, the bound is valid for finite sample sizes, so

that we are in fact able to approach the minimax lower bound not only asymptotically but even
for finite sample sizes. On the other hand, the estimate with the optimal rate of convergence
depends on the unknown distribution of(X,Y), and especially on the covering radiusρ and
the smoothness of the regression function measured by the constantC. It is to correct this
situation that we present adaptation results in Section 2.4.

2. Ford = 1, the obtained rate is not optimal, whereas it is optimal up to a log term ford = 2.
This low-dimensional phenomenon is also known to hold for the traditionalkn-NN regression
estimate, which does not achieve the optimal rates in dimensions 1 and 2 (see Problems 6.1
and 6.7 in Gÿorfi et al., 2002, Chap. 3).

2.3 Bagging Without Replacement

We briefly analyse in this subsection the rate of convergence of the bagged 1-NN regression es-
timate, assuming this time that, at each step, thekn observations are distinctly chosen at random
within the sample setDn. This alternative aggregation scheme is called subagging (forsubsample
aggregating) in Bühlmann and Yu (2002). We know that, in this case, the weighted nearest neighbor
regression estimate takes the form

r⋆
n(x) =

n

∑
i=1

ViY(i)(x),

where

Vi =























(

n− i
kn−1

)

(

n
kn

) , i ≤ n−kn +1

0, i > n−kn +1.

Due to the fact that there is no repetition in the sampling process, the analysis turns out to be simpler.
To prove Theorem 13 below, we start again by a control of the varianceterm∑n

i=1V2
i .

Proposition 11 For i = 1, . . . ,n, let

Vi =























(

n− i
kn−1

)

(

n
kn

) , i ≤ n−kn +1

0, i > n−kn +1.

Then
n

∑
i=1

V2
i ≤ kn

n
1

(1−kn/n+1/n)2 .

Thus, as for bagging with replacement, the variance term of the without replacement bagged 1-
NN estimate is O(kn/n). The bias term may be treated by resorting to Theorem 4, via complex
calculations due to the complicate form of the bagging weights. However, a much simpler route
may be followed. Recall that

r̃⋆
n(x) =

n

∑
i=1

Vi r(X(i)(x)),
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and observe that
r̃⋆
n(x) = E

⋆
[

r(X⋆
(1)(x))

]

,

whereX⋆
(1)(x) is the nearest neighbor ofx in a random subsampleSn drawn without replacement

from {(X1,Y1), . . . ,(Xn,Yn)} with Card(Sn) = kn, andE
⋆ denotes expectation with respect to the

resampling distribution, conditionally on the data setDn. This is the basic ingredient for the proof
of the next proposition.

Proposition 12 Suppose thatX is bounded, and setρ = N −1(1,S(µ)). Suppose in addition that,
for all x andx′ ∈ R

d,
∣

∣r(x)− r(x′)
∣

∣≤C‖x−x′‖,
for some positive constant C. Then

(i) If d = 1,

E [r̃⋆
n(X)− r(X)]2 ≤ 16ρ2C2

kn
.

(ii) If d = 2,

E [r̃⋆
n(X)− r(X)]2 ≤ 8ρ2C2

kn
(1+ lnkn).

(iii ) If d ≥ 3,

E [r̃⋆
n(X)− r(X)]2 ≤ 8ρ2C2

1−2/d
kn

− 2
d .

Thus, ford≥ 3,E [r̃⋆
n(X)− r(X)]2 = O(k−2/d

n ). Combining Proposition 11 and Proposition 12 leads
to the desired theorem:

Theorem 13 Suppose thatX is bounded, and setρ = N −1(1,S(µ)). Suppose in addition that, for
all x andx′ ∈ R

d,
σ2(x) = V[Y |X = x] ≤ σ2

and
∣

∣r(x)− r(x′)
∣

∣≤C‖x−x′‖,
for some positive constantsσ2 and C. Then

(i) If d = 1,

E [r⋆
n(X)− r(X)]2 ≤ kn

n
σ2

(1−kn/n+1/n)2 +
16ρ2C2

kn
.

(ii) If d = 2,

E [r⋆
n(X)− r(X)]2 ≤ kn

n
σ2

(1−kn/n+1/n)2 +
8ρ2C2

kn
(1+ lnkn).

(iii ) If d ≥ 3,

E [r⋆
n(X)− r(X)]2 ≤ kn

n
σ2

(1−kn/n+1/n)2 +
8ρ2C2

1−2/d
k
− 2

d
n .
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By balancing the variance and bias terms, we obtain the following useful corollary:

Corollary 14 Under the assumptions of Theorem 13,

(i) If d = 1, there exists a sequence(kn) such that kn → ∞, kn/n→ 0, and

E [r⋆
n(X)− r(X)]2 ≤ (Λ+o(1))

ρCσ√
n

,

for some positive constantΛ independent ofρ, C andσ2.

(ii) If d = 2, there exists a sequence(kn) such that kn → ∞, kn/n→ 0, and

E [r⋆
n(X)− r(X)]2 ≤ (Λ+o(1))ρCσ

√

lnn
n

,

for some positive constantΛ independent ofρ, C andσ2.

(iii ) If d ≥ 3, there exists a sequence(kn) with kn ∝ n
d

d+2 such that

E [r⋆
n(X)− r(X)]2 ≤ (Λ+o(1))

(

(ρC)dσ2

n

)

2
d+2

,

for some positive constantΛ independent ofρ, C andσ2.

As in bagging with replacement, Corollary 14 expresses the fact that, ford ≥ 3, the without re-
placement bagged 1-NN estimate asymptotically achieves both the minimaxn−2/(d+2) rate of con-
vergence and the optimal order of magnitude((ρC)dσ2)d/(d+2) in the constant, for the classF of
(1,C,ρ,σ2)-smooth distributions(X,Y).

2.4 Adaptation

In the previous subsections, the parameterkn of the estimate with the optimal rate of convergence
for the classF depends on the unknown distribution of(X,Y), especially on the smoothness of the
regression function measured by the Lipschitz constantC. In this subsection, we present a data-
dependent way of choosing the resampling sizekn and show that, for boundedY, the estimate with
parameter chosen in such an adaptive way achieves the optimal rate of convergence (irrespectively
of the resampling type). To this aim, we split the sampleDn = {(X1,Y1), . . . ,(Xn,Yn)} in two parts
of size⌊n/2⌋ andn−⌊n/2⌋, respectively (assumingn≥ 2). The first half is denoted byDℓ

n (learning
set) and is used to construct the bagged 1-NN estimater⋆

⌊n/2⌋(x,Dℓ
n) = r⋆

k,⌊n/2⌋(x,Dℓ
n) (for the sake

of clarity, we make the dependence of the estimate uponk explicit). The second half of the sample,
denoted byDt

n (testing set), is used to choosek by pickingk̂n ∈ K = {1, . . . ,⌊n/2⌋} to minimize the
empirical risk

1
n−⌊n/2⌋

n

∑
i=⌊n/2⌋+1

(

Yi − r⋆
k,⌊n/2⌋(X i)

)2
.

Define the estimate
r⋆
n(x) = r⋆

k̂n,⌊n/2⌋(x,Dℓ
n),
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and note thatr⋆
n depends on the entire dataDn. If |Y| ≤ L < ∞ almost surely, a straightforward

adaptation of Theorem 7.1 in Györfi et al. (2002) shows that, for anyδ > 0,

E[r⋆
n(X)− r(X)]2 ≤ (1+δ) inf

k∈K
E[r⋆

k,⌊n/2⌋(X)− r(X)]2 +Ξ
lnn
n

,

for some positive constantΞ depending only onL, d andδ. Immediately from Corollary 10 and
Corollary 14 we can conclude:

Theorem 15 Suppose that|Y| ≤ L almost surely, and let r⋆n be the bagged 1-NN estimate with k∈
K = {1, . . . ,⌊n/2⌋} chosen by data-splitting, irrespectively of the resampling type. Then
(lnn)(d+2)/(2d)n−1/2 ≤ ρC together with d≥ 3 implies, for n≥ 2,

E[r⋆
n(X)− r(X)]2 ≤ (Λ+o(1))

(

(ρC)d

n

)

2
d+2

,

for some positive constantΛ which depends only on L and d.

Thus, the expected error of the estimate obtained via data-splitting is boundedfrom above up to a
constant by the corresponding minimax lower bound for the classF of regression functions, with
the optimal dependence inC andρ.

3. Proofs

Proofs of the main results are gathered in this section.

3.1 Proof of Proposition 5

All the covering and metric numbers we use in this proof are pertaining to the bounded setS(µ).
Therefore, to lighten notation a bit, we setN (ε) =N (ε,S(µ)) andN −1(r) =N −1(r,S(µ)).

Let X′ be a random variable distributed as and independent ofX, and let, forε > 0,

FX(ε) = P
(

‖X−X′‖ ≤ ε |X
)

be the conditional cumulative distribution function of the Euclidean distance betweenX andX′. Set
finally

D(i)(X) = ‖X(i)(X)−X‖.
Clearly,

P

(

D2
(i)(X) > ε

)

= E
[

P
(

D(i)(X) >
√

ε |X
)]

= E

[

i−1

∑
j=0

(

n
j

)

[

FX
(√

ε
)] j [

1−FX
(√

ε
)]n− j

]

. (3)

TakeB1, . . . ,BN (
√

ε/2) a
√

ε/2-covering ofS(µ), and define anN (
√

ε/2)-partition ofS(µ) as fol-
lows. For eachℓ = 1, . . . ,N (

√
ε/2), let

Pℓ = Bℓ−
ℓ−1
[

j=1

B j .
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ThenPℓ ⊂ Bℓ and
N (

√
ε/2)

[

ℓ=1

Bℓ =

N (
√

ε/2)
[

ℓ=1

Pℓ,

with Pi ∩Pm = /0. Also,
N (

√
ε/2)

∑
ℓ=1

µ(Pℓ) = 1.

Thus, lettingpℓ = µ(Pℓ), we may write

FX
(√

ε
)

≥ P(∃ ℓ = 1, . . . ,N (
√

ε/2) : X ∈ Pℓ andX′ ∈ Pℓ |X)

= E

[

N (
√

ε/2)

∑
ℓ=1

1[X∈Pℓ]1[X′∈Pℓ]

∣

∣

∣

∣

∣

X

]

=
N (

√
ε/2)

∑
ℓ=1

pℓ1[X∈Pℓ].

As a by-product, we remark that, for allε > 0, FX
(√

ε
)

> 0 almost surely. Moreover

E

[

1

FX
(√

ε
)

]

≤ E

[

1

∑N (
√

ε/2)
ℓ=1 pℓ1[X∈Pℓ]

]

= E

[

N (
√

ε/2)

∑
ℓ=1

1
pℓ

1[X∈Pℓ]

]

,

leading to

E

[

1

FX
(√

ε
)

]

≤N

(√
ε

2

)

. (4)

Consequently, combining inequalities (3), (4) and technical Lemma 16, we obtain

P

(

D2
(i)(X) > ε

)

= E

[

1

FX
(√

ε
)

i−1

∑
j=0

(

n
j

)

[

FX
(√

ε
)] j+1[

1−FX
(√

ε
)]n− j

]

≤ i
n+1

E

[

1

FX
(√

ε
)

]

≤ i
n
N

(√
ε

2

)

.

Thus, sinceP(D2
(i)(X) > ε) = 0 for ε > 4[N −1(1)]2, we obtain

E

[

D2
(i)(X)

]

=
Z ∞

0
P(D2

(i)(X) > ε)dε

=
Z 4[N −1(1)]2

0
P(D2

(i)(X) > ε)dε

≤ 4
[

N −1
(⌊n

i

⌋)]2
+

i
n

Z 4[N −1(1)]2

4[N −1(⌊n/i⌋)]2
N (

√
ε/2)dε.
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SinceN (
√

ε) = j for N −1( j) ≤√
ε <N −1( j −1), we get

E

[

D2
(i)(X)

]

≤ 4
[

N −1
(⌊n

i

⌋)]2
+

4i
n

Z [N −1(1)]2

[N −1(⌊n/i⌋)]2
N (

√
ε)dε

≤ 4
[

N −1
(⌊n

i

⌋)]2
+

4i
n

⌊n/i⌋

∑
j=2

Z [N −1( j−1)]2

[N −1( j)]2
j dε

= 4
[

N −1
(⌊n

i

⌋)]2

+
4i
n

[

2
[

N −1(1)
]2−

⌊n
i

⌋[

N −1
(⌊n

i

⌋)]2
+

⌊n/i⌋−1

∑
j=2

[

N −1( j)
]2

]

≤ 8i
n

[

N −1(1)
]2

+
4i
n

[

N −1
(⌊n

i

⌋)]2
+

4i
n

⌊n/i⌋−1

∑
j=2

[

N −1( j)
]2

,

where the last statement follows from the inequality

−4i
n

⌊n
i

⌋

+4≤ 4i
n

.

In conclusion, we are led to

E

[

D2
(i)(X)

]

≤ 8i
n

⌊n/i⌋

∑
j=1

[

N −1( j)
]2

,

as desired.

3.2 Proof of Corollary 6

For any bounded setA in the Euclidean d-space, the covering radius satisfies
N −1(r,A)≤N −1(1,A)r−1/d (see Kolmogorov and Tihomirov, 1961). Consequently, using Propo-
sition 5, we obtain

(i) For d = 1,

E‖X(i)(X)−X‖2 ≤ 8ρ2i
n

⌊n/i⌋

∑
j=1

j−2

≤ 8ρ2i
n

[

1+
Z ⌊n/i⌋

1
x−2dx

]

≤ 16ρ2i
n

.

(ii) For d = 2,

E‖X(i)(X)−X‖2 ≤ 8ρ2i
n

⌊n/i⌋

∑
j=1

j−1

≤ 8ρ2i
n

[

1+
Z ⌊n/i⌋

1
x−1dx

]

≤ 8ρ2i
n

[

1+ ln
(n

i

)]

.
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(iii ) For d ≥ 3,

E‖X(i)(X)−X‖2 ≤ 8ρ2i
n

⌊n/i⌋

∑
j=1

j−
2
d

≤ 8ρ2i
n

Z ⌊n/i⌋

0
x−

2
d dx

=
8ρ2⌊n/i⌋−

2
d

1−2/d
.

In the last statement, we used the inequalityi/n≤ 1/⌊n/i⌋.

3.3 Proof of Proposition 7

An easy calculation shows that

n

∑
i=1

V2
i =

n

∑
i=1

[

(

1− i−1
n

)kn

−
(

1− i
n

)kn
]2

= 2
n−1

∑
i=0

(

1− i
n

)kn
[

(

1− i
n

)kn

−
(

1− i +1
n

)kn
]

−1.

Let the mapf : R → R be defined byf (x) = (1−x)kn. Then, by the mean value theorem,

0≤
(

1− i
n

)kn

−
(

1− i +1
n

)kn

≤−1
n

f ′
(

i
n

)

=
kn

n

(

1− i
n

)kn−1

.

Thus,
n

∑
i=1

V2
i ≤ 2kn

n

n−1

∑
i=0

(

1− i
n

)2kn−1

−1.

In addition, let the mapg : R → R be defined byg(x) = (1−x)2kn−1. Observing that

Z 1

0
g(x)dx =

1
2kn

,

we obtain

n

∑
i=1

V2
i ≤ 2kn

[

1
n

n−1

∑
i=0

g

(

i
n

)

−
Z 1

0
g(x)dx

]

= 2kn

n−1

∑
i=0

Z (i+1)/n

i/n

[

g

(

i
n

)

−g(x)

]

dx.

Invoking again the mean value theorem, we may write, for allx∈ [i/n,(i +1)/n],

0≤ g

(

i
n

)

−g(x) ≤−1
n

g′
(

i
n

)

.
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Therefore,
n

∑
i=1

V2
i ≤ 2kn

n2

n−1

∑
i=0

[

−g′
(

i
n

)]

.

Clearly,
1
n

n−1

∑
i=0

[

−g′
(

i
n

)]

≤−
Z 1−1/n

−1/n
g′(x)dx = g

(

−1
n

)

−g

(

1− 1
n

)

.

Putting all the pieces together, we finally obtain

n

∑
i=1

V2
i ≤ 2kn

n

[

(

1+
1
n

)2kn−1

−
(

1
n

)2kn−1
]

≤ 2kn

n

(

1+
1
n

)2kn

.

This concludes the proof of the proposition.

3.4 Proof of Proposition 8

We distinguish between the casesd = 1, d = 2 andd ≥ 3.

(i) If d = 1, for i = 1, . . . ,n, by definition of theVi ’s,

n

∑
i=1

Vi
i
n

=
n

∑
i=1

[

(

1− i−1
n

)kn

−
(

1− i
n

)kn
]

i
n
.

Thus

n

∑
i=1

Vi
i
n

=
n

∑
i=1

[

(

1− i
n

+
1
n

)kn

−
(

1− i
n

)kn
]

i
n

=
n

∑
i=1

[

kn

∑
j=1

(

kn

j

)

1
n j

(

1− i
n

)kn− j
]

i
n

=
kn

∑
j=1

(

kn

j

)

1
n j−1

[

1
n

n

∑
i=1

i
n

(

1− i
n

)kn− j
]

.

For all j = 1, . . . ,kn, we use the inequality

1
n

n

∑
i=1

i
n

(

1− i
n

)kn− j

≤ 2
Z 1

0
x(1−x)kn− jdx,

which is clearly true forj = kn, without the factor 2 in front of the integral. Forj < kn, it is
illustrated in Figure 1, where we have plotted the functionf (x) = x(1−x)kn− j . The factor 2
is necessary becausef is not monotonic on[0,1].

Consequently,
n

∑
i=1

Vi
i
n
≤ 2

kn

∑
j=1

(

kn

j

)

1
n j−1

Z 1

0
x(1−x)kn− jdx.

704



BAGGED NEARESTNEIGHBOR ESTIMATE

i0+1

n

i0

n

n−1

n
1

1

2n

(

f( i0

n
) + f( i0+1

n
)
)

≤

∫
i0+1

n

i0

n

f(x)dx

Figure 1: Illustration of
1
n

n

∑
i=1

i
n

(

1− i
n

)kn− j

≤ 2
Z 1

0
x(1−x)kn− jdx.
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Recalling the general formula
Z 1

0
xp−1(1−x)q−1dx =

Γ(p)Γ(q)

Γ(p+q)
, p,q > 0, (5)

we obtain
n

∑
i=1

Vi
i
n
≤ 2

kn

∑
j=1

(

kn

j

)

1
n j−1

Γ(2)Γ(kn− j +1)

Γ(kn− j +3)

= 2
kn

∑
j=1

(

kn

j

)

1
n j−1

1
(kn− j +1)(kn− j +2)

= 2
kn

∑
j=1

(

kn

j −1

)

1
n j−1

1
j(kn− j +2)

= 2
kn−1

∑
j=0

(

kn

j

)

1
n j

1
( j +1)(kn− j +1)

.

Observing finally that( j +1)(kn− j +1) ≥ kn for all j = 0, . . . ,kn−1, we conclude

n

∑
i=1

Vi
i
n
≤ 2

kn

kn−1

∑
j=0

(

kn

j

)

1
n j ≤

2
kn

(

1+
1
n

)kn

.

(ii) For d = 2, a reasoning similar to the one reported in statement(i) above can be followed, to
show that

n

∑
i=1

Vi
i
n

[

1+ ln
(n

i

)]

≤ 2

[

1
kn

(

1+
1
n

)kn

−
kn

∑
j=1

(

kn

j

)

1
n j−1

Z 1

0
x(1−x)kn− j lnxdx

]

. (6)

Denoting byHn then-th harmonic number, that is,

Hn = 1+
1
2

+ . . .+
1
n
,

we have, for allm≥ 0 (see for example Gradshteyn and Ryzhik, 2007, Formula (4.253.1)),

−
Z 1

0
x(1−x)m lnxdx =

Hm+2−1
(m+1)(m+2)

.

Thus we may write

−
kn

∑
j=1

(

kn

j

)

1
n j−1

Z 1

0
x(1−x)kn− j lnxdx

=
kn

∑
j=1

(

kn

j

)

1
n j−1

Hkn− j+2−1
(kn− j +1)(kn− j +2)

=
kn−1

∑
j=0

(

kn

j

)

1
n j

Hkn− j+1−1
( j +1)(kn− j +1)

.
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For all j = 0, . . . ,kn−1, we have( j +1)(kn− j +1) ≥ kn, as well as

Hkn− j+1−1 =
1
2

+ . . .+
1

kn− j +1

≤
Z kn− j+1

1

dx
x

= ln(kn− j +1)

≤ ln(kn +1).

Therefore,

−
kn

∑
j=1

(

kn

j

)

1
n j−1

Z 1

0
x(1−x)kn− j lnxdx

≤ ln(kn +1)

kn

kn−1

∑
j=0

(

kn

j

)

1
n j

≤ ln(kn +1)

kn

(

1+
1
n

)kn

. (7)

Combining inequalities (6) and (7) leads to the desired result.

(iii ) For d ≥ 3, we note that for alli = 1, . . . ,n−1,

⌊n
i

⌋− 2
d ≤

(

i/n
1− i/n

)
2
d

,

and set consequently

Sn =
1

nkn
+

n−1

∑
i=1

[

(

1− i−1
n

)kn

−
(

1− i
n

)kn
]

(

i/n
1− i/n

)
2
d

.

We obtain

Sn =
1

nkn
+

n−1

∑
i=1

[

kn

∑
j=1

(

kn

j

)

1
n j

(

1− i
n

)kn− j
]

(

i/n
1− i/n

)
2
d

=
1

nkn
+

kn

∑
j=1

(

kn

j

)

1
n j−1

[

1
n

n−1

∑
i=1

(

1− i
n

)kn− j− 2
d
(

i
n

)
2
d

]

≤ 1
nkn

+2
kn

∑
j=1

(

kn

j

)

1
n j−1

Z 1

0
x

2
d (1−x)kn− j− 2

d dx.

Applying formula (5) again, together with the identity

Γ
(

p+
d−2

d

)

= Γ
(

d−2
d

) p

∏
ℓ=1

(

ℓ− 2
d

)

,
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we obtain

Sn ≤
1

nkn
+αd

kn

∑
j=1

(

kn

j

)

1
n j−1

1
(kn− j +1)

kn− j

∏
ℓ=1

(

1− 2
dℓ

)

(with αd = 2Γ((d−2)/d)Γ((d+2)/d)

=
1

nkn
+αd

kn

∑
j=1

kn!
j!(kn− j +1)!

1
n j−1

kn− j

∏
ℓ=1

(

1− 2
dℓ

)

=
1

nkn
+αd

kn

∑
j=1

1
n j−1

(

kn

j −1

)

1
j

kn− j

∏
ℓ=1

(

1− 2
dℓ

)

=
1

nkn
+αd

kn−1

∑
j=0

1
n j

(

kn

j

)

1
j +1

kn− j−1

∏
ℓ=1

(

1− 2
dℓ

)

.

Thus, by technical Lemma 17,

Sn ≤
1

nkn
+αd

kn−1

∑
j=0

(

kn

j

)

k
− 2

d
n

n j

≤ 1
nkn

+αd

(

1+
1
n

)kn

k
− 2

d
n .

This concludes the proof of Proposition 8.

3.5 Proof of Proposition 11

We have, fori = 1, . . . ,n−kn +1,

Vi =

(

n− i
kn−1

)

(

n
kn

)

=
kn

n−kn +1

kn−2

∏
j=0

(

1− i
n− j

)

≤ kn

n−kn +1

kn−2

∏
j=0

(

1− i
n

)

=
kn

n−kn +1

(

1− i
n

)kn−1

.

This yields

n

∑
i=1

V2
i ≤ k2

n

(n−kn +1)2

n−kn+1

∑
i=1

(

1− i
n

)2(kn−1)

≤ k2
n n

(n−kn +1)2

1
n

n

∑
i=1

(

1− i
n

)2(kn−1)

.
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Observing finally that

1
n

n

∑
i=1

(

1− i
n

)2(kn−1)

≤
Z 1

0
(1−x)2(kn−1)dx

=
1

2kn−1
,

we conclude that

n

∑
i=1

V2
i ≤ k2

n n
(2kn−1)(n−kn +1)2 ≤ kn

n
1

(1−kn/n+1/n)2 .

3.6 Proof of Proposition 12

Recall that

r̃⋆
n(x) =

n

∑
i=1

Vi r(X(i)(x)),

and observe that
r̃⋆
n(x) = E

⋆
[

r(X⋆
(1)(x))

]

,

whereX⋆
(1)(x) is the nearest neighbor ofx in a random subsampleSn drawn without replacement

from {(X1,Y1), . . . ,(Xn,Yn)} with Card(Sn) = kn, andE
⋆ denotes expectation with respect to the

resampling distribution, conditionally on the data setDn. Consequently, by Jensen’s inequality,

E [r̃⋆
n(x)− r(x)]2 = E

[

E
⋆
[

r
(

X⋆
(1)(x)

)

|Dn

]

− r(x)
]2

= E

[

E
⋆
[

r
(

X⋆
(1)(x)

)

− r(x) |Dn

]]2

≤ E

[

E
⋆

[

(

r
(

X⋆
(1)(x)

)

− r(x)
)2

|Dn

]]

= E

[

r
(

X⋆
(1)(x)

)

− r(x)
]2

≤C2
E‖X⋆

(1)(x)−x‖2.

Since Card(Sn) = kn, we conclude by applying Corollary 6, withi = 1 and replacingn by kn.

3.7 Two Technical Lemmas

Lemma 16 For j = 0, . . . ,n−1, let the mapϕn, j(p) be defined by

ϕn, j(p) =

(

n
j

)

p j+1(1− p)n− j , 0≤ p≤ 1.

Then, for all i= 1, . . . ,n,

sup
0≤p≤1

i−1

∑
j=0

ϕn, j(p) ≤ i
n+1

.

709
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Proof Each mapϕn, j is nonnegative, continuously increasing on the interval[0,( j + 1)/(n+ 1)]
and decreasing on[( j + 1)/(n+ 1),1]. Consequently, the supremum of the continuous function
∑i−1

j=0 ϕn, j(p) is achieved at some pointp⋆ of the interval[1/(n+1), i/(n+1)]. That is,

sup
0≤p≤1

i−1

∑
j=0

ϕn, j(p) =
i−1

∑
j=0

ϕn, j(p⋆)

= p⋆

i−1

∑
j=0

(

n
j

)

p j
⋆(1− p⋆)

n− j

≤ p⋆

n

∑
j=0

(

n
j

)

p j
⋆(1− p⋆)

n− j

= p⋆ ≤
i

n+1
.

Lemma 17 For each d≥ 3, each kn ≥ 1, and j= 0, . . . ,kn−1, we have

1
j +1

kn− j−1

∏
ℓ=1

(

1− 2
dℓ

)

≤ k
− 2

d
n .

Proof First, since 0≤ 1−x≤ e−x for all x∈ [0,1],

kn− j−1

∏
ℓ=1

(

1− 2
dℓ

)

≤ exp

(

−2
d

kn− j−1

∑
ℓ=1

1
ℓ

)

.

Thus, using 1+1/2+ . . .+1/p≥ ln(p+1), we deduce

kn− j−1

∏
ℓ=1

(

1− 2
dℓ

)

≤ (kn− j)−
2
d .

To conclude, we use the fact that, forj = 0, . . . ,kn−1,

1
j +1

(kn− j)−
2
d ≤ k

− 2
d

n .

To see this, note that the inequality may be written under the equivalent form

(

1− j
kn

)− 2
d

≤ 1+ j = 1+kn ·
j

kn
.

The result can easily be deduced from a comparison between the mapsϕ : x 7→ (1− x)−2/d and

ψ : x 7→ 1+knx on the interval[0,1−1/kn]. Just note thatϕ(0) = ψ(0), ϕ(1−1/kn) = k2/d
n ≤ kn =

ψ(1−1/kn) sinced ≥ 3, andϕ is convex whileψ is affine.
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L. Devroye, L. Gÿorfi, and G. Lugosi.A Probabilistic Theory of Pattern Recognition. Springer-
Verlag, New York, 1996.

T.G. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli, editors,First In-
ternational Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science, pages
1–15, New York, 2000. Springer-Verlag.

E. Fix and J.L. Hodges.Discriminatory Analysis. Nonparametric Discrimination: Consistency
Properties. Technical Report 4, Project Number 21-49-004, USAF School of Aviation Medicine,
Randolph Field, Texas, 1951.

E. Fix and J.L. Hodges.Discriminatory analysis: Small sample performance. Technical Report 11,
Project Number 21-49-004, USAF School of Aviation Medicine, Randolph Field, Texas, 1952.

J.H. Friedman and P. Hall. On bagging and nonlinear estimation.Journal of Statistical Planning
and Inference, 137:669–683, 2000.

711
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