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Abstract

We propose a new algorithm for building decision tree cfagsi. The algorithm is executed in
a distributed environment and is especially designed fassifying large data sets and streaming
data. It is empirically shown to be as accurate as a standanididn tree classifier, while being
scalable for processing of streaming data on multiple memes. These findings are supported by
a rigorous analysis of the algorithm’s accuracy.

The essence of the algorithm is to quickly construct histotg at the processors, which com-
press the data to a fixed amount of memory. A master processsr this information to find
near-optimal split points to terminal tree nodes. Our asialghows that guarantees on the local
accuracy of split points imply guarantees on the overadl srecuracy.

Keywords: decision tree classifiers, distributed computing, stregrdiata, scalability

1. Introduction

We propose a new algorithm for building decision tree classifiers foritags both large data
sets and streaming data. As recently noted (Bottou and Bousquet, 2@08haltenge which dis-
tinguishes large-scale learning from small-scale learning is that training time isdisot@pared
to the amount of available data. Thus, in our algorithm both training and testngxacuted in
a distributed environment, using only one pass on the data. We refer towhalgarithm as the
Streaming Parallel Decision Tree (SPDT).

Decision trees are simple yet effective classification algorithms. One ofrtiair advantages
is that they provide human-readable rules of classification. Decisiontiesesseveral drawbacks,
one of which is the need to sort all numerical attributes in order to decideewthesplit a node.
This becomes costly in terms of running time and memory size, especially whisiodettees
are trained on large data. The various techniques for handling largeaiatae roughly grouped
into two approaches: performing pre-sorting of the data, as in SLIQ {@ehal., 1996) and its
successors SPRINT (Shafer et al., 1996) and ScalParC (Joshil&Xa8), or replacing sorting with
approximate representations of the data such as sampling and/or histagtdimgb for example,
BOAT (Gehrke et al., 1999), CLOUDS (AlSabti et al., 1998), and SRIE$and Agrawal, 2003).
While pre-sorting techniques are more accurate, they cannot accommedgalarge data sets or
streaming data.

Faced with the challenge of handling large data, a large body of workdsasdedicated to par-
allel decision tree algorithms (Shafer et al., 1996; Joshi et al., 1998kalad 998; Jin and Agrawal,
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2003; Srivastava et al., 1999; Sreenivas et al., 1999; Goil anddblaoy, 1999). There are several
ways to parallelize decision trees, described in detail in Amado et al. (2Bf¢astava et al. (1999)
and Narlikar (1998). Horizontal parallelism partitions the data so thatrdifteprocessors see dif-
ferent example$. Vertical parallelism enables different processors to see differeitiuttis. Task
parallelism distributes the tree nodes among the processors. Finally, ipgvéliielism combines
horizontal or vertical parallelism in the first stages of tree constructiontagthparallelism towards
the end.

Like their serial counterparts, parallel decision trees overcome thegottistacle by applying
pre-sorting, distributed sorting, and approximations. Following our intémestreaming data, we
focus on approximate algorithms. Our proposed algorithm builds the detis®im a breadth-first
mode, using horizontal parallelism. The core of our algorithm is an on-lineaddtr building
histograms from streaming data at the processors. The histogramsergatlyscompressed repre-
sentations of the data, so that each processor can transmit an appralésaiption of the data that
it sees to a master processor, with low communication complexity. The mastespooéntegrates
the information received from all the processors and determines whitlin@rnodes to split and
how.

This paper is organized as follows. In Section 2 we introduce the SPDTitalgoand the
underlying histogram building algorithm. We dwell upon the advantages DITS#er existing
algorithms. In Section 3 we analyze the tree accuracy. In Section 4 wenpresperiments that
compare the SPDT algorithm with the standard decision tree. The experirhentstait the SPDT
algorithm compares favorably with the traditional, single-processor algoritfioreover, it is scal-
able to streaming data and multiple processors. We conclude in Section 5.

2. Algorithm Description

Consider the following problem: given a (possibly infinite) series of traiexempleq (x1,y1), .- .,
(Xn,Yn)} wherex; € R? andy; € {1,...,c}, our goal is to construct a decision tree that will accurately
classify test examples. The classifier is built using multiple processing rfpdesCPUs), where
each of the processing nodes observes approximatéidt the training examples (whew is the
number of processing nodes). This partitioning happens for one efaaeasons: for example, the
data may not be stored in a single location, and may not arrive at a singt®tgaa it may be too
abundant to be handled by a single node in a timely manner.

Because of the large number of training examples, it is not feasible to swexéimples (even
in each separate processor). Therefore, a processor can eilkees short buffer of examples and
use them to improve (or construct) the classifier, or build a representatimenary statistic from
the examples, improving it over time, but never saving the examples themskivbss paper we
take the latter approach.

Although the setting described here is generally applicable to streams oftdatalso appli-
cable to the classification of large data sets in batch mode, where memory aedging power
constraints require the distribution of data across multiple processorsitmtiimited memory for
each processor.

We first present our histogram data structure and the methods related sthewdescribe the
tree building process.

1. We refer to processing nodes as processors, to avoid confusfotree nodes.
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Algorithm 1 Update Procedure
input A histogramh = {(p1,m),...,(ps, M)}, a pointp.
output A histogram withB bins that represents the &t/ { p}, whereSis the set represented by

1. if p= p; for somei then

22 m=m-+1

3: else

4:  Add the bin(p, 1) to the histogram, resulting in a histogranB 1 binshu{(p,1)}. Denote
Pe+1= pandmg;; = 1.

5.  Sort the sequencps,...,ps:+1. Denote byys,...,qs.1 the sorted sequence, and tebe a
permutation on 1..,B+ 1 such thatjj = py;) foralli=1,...,B+1. Denoteki = my;),
namely, the histogramu (p,1) is equivalent tdqs, ki), ..., (Os+1,Ke+1), 1 < ... < OB+1-

. Find a pointg; that minimizes; ;1 — ;.
7 Replace the bing&g;, ki), (gi+1,ki+1) by the bin

(Qiki +Oir1kiv1
Ki + ki1

7ki+ki+1>'

8: end if

2.1 On-line Histogram Building

A histogram is a set 0B pairs (called bins) of real numbef$épi,m),...,(ps,me)}, whereBis a
preset constant integer. The histogram is a compressed and approseprasentation of a s&
of real numbers. At any time we hayg = Y2 ; m, where|S is the number of points i$. The
histogram data structure supports four procedures, napaad e, nmer ge, sum anduni f orm The
updat e procedure is based on an on-line clustering algorithm developed byaaietial. (1999).
A demonstration of the algorithms on actual input is given in the appendix.

Algorithm 1 presents thaepdat e procedure, which adds a new point to a set that is already
represented by a given histogram. Tiee ge procedure (Algorithm 2) creates a histogram that rep-
resents the unio&; U S of the setsS;, S, whose representing histograms are given. The algorithm
is similar to the update algorithm; in the first step, the two histograms form a singg e with
many bins. In the second step, bins which are closest are merged togethedifes 5 and 6 in
Algorithm 1) to form a single bin. The process repeats until the histograB bans.

Thesumprocedure estimates the number of points in a given intgayh], that belong to a set
whose histogram is given. Algorithm 3 describes how to calculate the sufn¢a b], and can be
used to calculate the sum fia; b}, since it is equal to the sum o+ oo, b] minus the sum fof—, a.

The algorithm assumes that for a Kip, m), there arem points surrounding, of which m/2
points are to the left of the bin amd/2 points are to the right. Consequently, the number of points
in the interval[p;, pi.1] is equal tolmy +m;1)/2, which is the area of the trapezdig ,0), (pi, m),
(Pi+1,M+1), (Pi+1,0), divided by (pi+1 — pi). To estimate the number of points in the interval
[pi,b], for pi < b < piy1, we draw a straight line fronip;, my) to (piy1,My1). We setmy =m; +
H(b— pi), so that(b, my) is on this line. The estimated number of points in the intefpab]
is then the area of the trapezdigi,0), (pi,m), (b,my), (b,0), divided again by(pi+1 — pi). The
case wheré < p; or b > pg requires special treatment. One possibility is to add two dummy bins
(po,0) and(pg+1,0), wherepy andpg;1 are chosen using prior knowledge, according to which all
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Algorithm 2 Merge Procedure

input Histogramsh; = {(p(ll), m(ll)), ey (pglf, m(Bll))}, hy = {(p(lz),m(lz)), ey (p(Bzz),m(Bzz))}, an inte-

gerB.

output A histogram withB bins that represents the stU S, whereS, andS; are the sets repre-

sented byh; andh,, respectively.
Fori=1,...,B;, denotep; = pi(l) andm, = mi(l). Fori =1,...,By, denotepg,+i = pi(z)
Mg, +i = m(z)-
Sort the sequencpy, .. ., pg,+8,. Denote byqy, ..., 0s,+8, the sorted sequence, and tebe a
permutation on 1..,B; + B such that = pyy;) for alli =1,...,B; + Bp. Denotek = my;),
namely, the histograry Uh; is equivalent tdqy, ki), . .., (Os,+B,, K, +B,), 01 < - .. < OB, +B,-
repeat

Find a pointg; that minimizesy+1 — q;.

Replace the bingg;, ki), (Gi+1,ki+1) by the bin

(CIiki +0ir1kit1
Ki + ki1

and

,ki+ki+1>.

until The histogram haB bins

Algorithm 3 Sum Procedure

input A histogram{(p1,m),...,(ps,Ms)}, a pointb such thatp; < b < pg.
output Estimated number of points in the interyaleo, b.

1:
2:

o gk w

Findi such thaty; < b < pj11.
Set
m+m, b—p
S: .

2 Pit1— P

where m m
My =m + #(b_ pi)-

Pi+1—pi

forall j <ido
S=s+m;

end for
S=s+m/2

or almost all the points i are in the intervalpo, ps+1] (po andpg+1 can be determined on the fly
during the histogram’s construction).

The uni f or m (Algorithm 4) procedure receives as input a histogrgip., m), ..., (ps,me) }

and an intege and outputs a set of real numbess< ... < ug_4, With the property that the number
of points between two consecutive numbeyal; 1, and the number of data points to the lefigf

and to the right ofiz_, is Lg. The algorithm works like theumprocedure in the inverse direction:

After the pointu; was determined, we analytically find a point.; such that the number of points

in [uj,uj;1] is estimated to be equal @ This is very similar to the calculations performed in
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Algorithm 4 Uniform Procedure
input A histogram{(pz,my),...,(ps,me)}, an integeiB.
output A set of real numbers; < ... < ug, with the property that the number of points between
two consecutive numbersg, u;,1, as well as the number of data points to the leftpfind to
the right ofug, is 3 5., m.
1: forall j=1,...,B—1do

22 Sets=iy%,m
3:  Findi such thasum([—eo, pi]) < s< sum([—co, pit+1]).
4:  Setd to be the difference betwearandsum([—eo, pi]).
5:  Search fow; such that
m-+my U —p
d= . ,
2 Pi+1— Pi
where m m
+1—
My =M Pi+1— Pi (U =p)
Substituting
7— uj—pi 7
Pi+1— Pi
we obtain a quadratic equatia® +bz+c=0witha= m_;—m, b= 2m, andc= —2d.
Hence set; = p; + (pi+1 — pi)z where
L —b+vb?—4ac
B 2a '
6: end for

sum where this time we are given the area of a trapezoid and have to computotdaates of its
vertices (see line 5 in Algorithm 4).

2.2 Tree Growing Algorithm

We construct a decision tree based on a set of training exanfpesy:),...,(Xn,Yn)}, Where
X1,...,Xn € R are the feature vectors agg ...y, € {1,...,c} are the labels. Every internal node
in the tree possesses two ordered child nodes and a decision rule ofrthe(fo< a, wherex( is
theith attribute andh is a real number. Feature vectors that satisfy the decision rule are ditecte
the node’s left child node, and the other vectors are directed to the hgttrode. Thus, every
examplex has a path from the root to one of the leaves, dentiped Every leaf has a labe| so
that an example is assigned the labél (x)).

Algorithm 5 provides an overview of the tree construction algorithm. We natettis descrip-
tion fits standard decision trees as well. Each time that line 3 is executed, Wesayew iteration
has begun. If there are too many samples (possibly infinite in number) agdengredefined number
of samples; otherwise, we use the complete data set. A new level of nogeeisied to the tree in
each iteration. In line 5 we decide whether a le& to be split or labeled, according to a stopping
criterion. Possible stopping criteria can be some threshold on the numbempfes reaching the
node, or on the node’s impurity. A node’s impurity is a funct®nhat measures the homogeneity
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Algorithm 5 Decision Tree
input Training set{(X1,Y1),...,(Xn,Yn)}
1. Initialize T to be a single unlabeled node.
2: while there are unlabeled leavesTindo
3: Navigate data samples to their corresponding leaves.

4. for all unlabeled leavegin T do
5: if v satisfies the stopping criteriar there are no samples reachiwnthen
6: Labelv with the most frequent label among the samples reaching
7 else

8: Choose candidate splits ferand estimaté for each of them.
9: Split v with the highest estimatelamong all possible candidate splits.
10: end if
11:  end for

12: end while

of labels in samples reaching the node. Its parametemgare, gc, whereq; is the probability that
a sample reachinghas labelj andc is the number of labels. The most popular impurity functions
are the Gini criterion,
1-3 9
]

and the entropy function
— > @jIngj where 0In0=0.
]

In our analysis in Section 3, we requio be continuous and satis®({q;}) > 1—max;{q;}.
These properties hold for the Gini and entropy functions.

The notationd, appearing in lines 8 and 9, represents the gap in the impurity functionebefor
and after splitting. Suppose that an attribugad a threshold are chosen, so that a nodés split
according to the rulel) < a. Denote byt the probability that a sample reachings directed to/'s
left child node. Denote further by ; andgg j the probabilities of labej in the left and right child
nodes, respectively. We define the functid, {q;},{q.,;},{drj}) = A(vi,a) as

A=G({q}) —16({aLj}) - 1-1)G({ar})- (1)

To complete the algorithm’s description, we need to specify what are thedea@dplits, men-
tioned in lines 8 and 9, and how the functirfor each split is estimated in a distributed environ-
ment. We begin by providing an interpretation for these notions in the classttaig, that is, for
the standard, serial algorithm. Most algorithms sort every attribute in théngeset, and test splits
of the formx() < %b wherea andb are two consecutive numbers in the sorted sequence ahthe
attribute. For every candidate split.can be calculated precisely, as in (1).

In the parallel setting, we apply a distributed architecture that consisté pfocessors (also
called workers). Each processor can obseri Df the data, but has a view of the complete
classification tree built so far. We do not wish each processor to sorhdie of the data set,
because this operation is not scalable to extremely large data sets. Mopteeveommunication
complexity between the processors must be a constant that does not depthe size of the data
set. Our algorithm addresses these issues by trading time and communicatiplexaty with
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Algorithm 6 Compress Data Sets

input 1/W of the training set, wherd/ is the number of processors

output histograms to be transmitted to the master processor
1: Initialize an empty histogram(v,i, j) for every unlabeled leaf, attributei, and clasg.
2: for all observed training samplésy, yk), wherexy = (xl((l), . .xl((d)) do
3. if the sample is directed to an unlabeled le#ien

4 for all attributes do _

5 Update the histogram(v, i, yx) with the pointx,(('), using theupdat e procedure.
6: end for

7. endif

8: end for

classification accuracy. The processors build histograms describidgtihéhey observed and send
them to a master processor. Algorithm 6 specifies which histograms arermlhiosy. The number
of bins in the histograms is specified through a trade-off between agcamdocomputational load:
A large number of bins allows a more accurate description, whereas snagaisis are beneficial
for avoiding time, memory, and communications overloads.

For every unlabeled leaf, attributei, and classj, the master processor merges ehis-
togramsh(v,i, j) received from the processors. The master node now has an exadekige of
the frequency of each label in each tree node, and hence the ability tdatalthe impurity of all
unlabeled leaves. Leaves that satisfy the stopping criterion are labededhd-other leaves, the
guestions remain of how to choose candidate splits and how to estimatA.tfidiey are answered
as follows. Letv be an unlabeled leaf (that remains unlabeled after the application of thergfopp
criterion) and let be an attribute. We first merge the histogramgi,1),...,h(v,i,c) (c denotes
the number of labels). The new histogram, dendtedi), represents thigh dimension of feature
vectors that reach, with no distinction between vectors of different labels. We now apply the
uni f or mprocedure ot(v,i) with some choseB. The resulting sef; < ... < uz_; constitutes the
locations of the candidate splits for tith attribute. FinallyA for each candidate split is estimated
using thesumprocedure and the histogram&,i, j). We clarify the rationale behind this choice of
split locations. Suppose that the best splitis < a, whereuy, < a < ux,1. The number of points
in the interval[uy, a) is bounded, implying a bound on the degree of changkifrone splits atuy
instead ofa. This issue is discussed in more detail in Section 3.

Decision trees are frequently pruned during or after training to obtain sniadks and better
generalization. In the experiments presented in Section 4, we adapted thebd&d pruning
algorithm of Mehta et al. (1996), which is similar to the one used in CART (Breigial., 1984).
This algorithm involves simple calculations during node splitting that reflectade’a purity. In a
bottom-up pass on the complete tree, some subtrees are chosen to be lpageddn estimates of
the expected error rate before and after pruning. The distributecoenvémt neither changes this
pruning algorithm nor does it affect its output.

2.3 Complexity Analysis

Every iteration consists of an updating phase performed simultaneouslythe @rocessors and
a merging phase performed by the master processor. In the update @bageprocessor makes
one pass on the data batch assigned to it. The only memory allocation is fortihgrduiss being
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constructed. The number of bins in the histograms is constant; hencatiopsion histograms take
a constant amount of time. Every processor performs at M@ét histogram updates, wheleis
the size of the data batch awdis the number of processors. There @fe< L x ¢ x d histograms,
wherelL is the number of leaves in the current iterations the number of labels, andl is the
number of attributes. Assuming that L, ¢, andd are all independent &, it follows that the space
complexity isO(1). The histograms are communicated to the master processor, which merges them
and applies theumanduni f or mprocedures. If thani f or mprocedure is applied with a constant
parameteB, then the time complexity of the merging phas©id).

To summarize, each iteration requires the following:

e At mostN/W operations by each processor in the updating phase.
e Constant space and communication complexities.

e Constant time in the merging phase.

2.4 Related Work

In this section we discuss previous work on histogram and quantile d@pptans, as well as
procedures for building decision trees on parallel platforms.

2.4.1 HSTOGRAMS AND QUANTILES APPROXIMATIONS

Data structures that summarize large sets are substantial componentsietyaofaalgorithms in
database management and data mining. Our histogram algorithms tackle twd pelteems:
data compression and quantile approximat®nEhere is broad coverage of these topics in the
literature, with an inclination towards one pass algorithms, see Gilbert etQl2)2Guha et al.
(2006), loannidis (2003) and Lin (2007) and references therempd3ed solutions can be divided
into two categories: The first category consists of algorithms with proveroapnation guarantees
(Cormode and Muthukrishnan, 2005; Gilbert et al., 2002; GreenwadKhanna, 2001; Guha et al.,
2006). The demand for a guaranteed accuracy level forces thes#talts to use large amounts of
memory, that is, their space requirements are increasing functions ofttheize. An exception is
the probabilistic algorithm of Manku et al. (1998), which receives an ipptameted and returns
approximate quantiles whose guarantees hold with probaldilitfhe space complexity of this
algorithm increases with but not with the data size. The second category, to which our algorithm
belongs, consists of heuristics that work well empirically and demand low ain@f space, but
lack any rigorous accuracy analysis (Agrawal and Swami, 1995; daitCalamtac, 1985). To our
knowledge, distributed environments are not addressed in either of theategories, except for a
brief mention by Manku et al. (1998).

Guaranteed accuracy at the cost of non-constant memory and ing@ascessing time are
problematic because of the inherent nature of streaming data. For examepddgorithm proposed
by Guha et al. (2006) requires rough®yB?logn) memory, wheren is the number of data points
andB the number of bins. Thus, for example, a stream df tata points (not a large number in
today’s data environments) requires more than 20 times the memory of a ctedated-memory
algorithm.

2. For a sequencgof real numbers, the-quantile, 0< < 1, is defined to be an element Ssuch thaf @S] elements
of Sare smaller or equal &

856



A STREAMING PARALLEL DECISION TREEALGORITHM

The use of a fixed-memory algorithm, like the one proposed in this paperatiatcomes at
a cost in accuracy. As we show, when the data distribution is highly sketiweaccuracy of the
on-line histogram decays. Therefore, in cases where the data casimmed to have originated
in categorical distributions with a limited number of values or in distributions whiemat highly
skewed, the proposed algorithm is sufficiently accurate. In other cagese distributions are
known to be highly skewed, or memory sizes are not a major factor whentxg the algorithm,
practitioners may prefer to resort to guaranteed accuracy algorithnisréfiaces the first part of
the proposed algorithm, but keeps its higher levels intact.

2.4.2 RARALLEL DECISIONTREES

The SPIES (Jin and Agrawal, 2003) and pCLOUDS (Sreenivas et989) lalgorithms build deci-
sion trees for streaming data and work in a distributed environment. Theyraitar to the SPDT
algorithm in that they use histograms to process the data in constant time andyné&mere are,
however, three major differences between these algorithms and the S§@ithan and its anal-
ysis. The first difference is in the histogram building algorithm. Unlike SPth SPIES and
pCLOUDS sample the data. The second difference is in the need of adspasa. CLOUDS
(AlSabti et al., 1998) has two versions, named SS and 8S&E and SPIES may require several
passes over the data, and therefore hold each data batch in memoryrpbseof the second pass
is to locate exactly the best split location for every node, and hence ellgrituconstruct the same
tree as the standard algorithm. SS is more similar to SPDT, since both algorithmhibtalgtams
with an equal number of points in each bin and take the boundaries of thgraiste to be the
candidate splits. Since only a constant number of split locations is cheitkeghossible that a
suboptimal split is chosen, which may cause the entire tree to be diffeoantiie one constructed
by the standard algorithm. The third difference between our work arndopreworks is our ability
to analytically show that the error rate of the parallel tree approachesrtraate of the serial tree,
even though the trees are not identical.

3. Bounding the Error of SPDT

In this section, we investigate the training error rate of SPDT. We adopt desivgrsion of the
framework set by Kearns and Mansour (1999), which views tree :nadeweak learners. This
approach allows us to obtain an overall estimate of the tree by studying thenigravements in
classification accuracy induced by the internal nodes.

3.1 Background

Let n be the number of training samples used to train a decisiotr&er a tree nodg, denote by
ny the number of training samples that reagland byq, ; the probability that a sample reaching
has labelj, for j =1,...,c. The training error rate of is

er =~ mv(1—max{ay;}).
r]vle;nT ' ! ")

3. pCLOUDS is a parallelization of the SSE version of CLOUDS. We mentios8eersion as well because it can be
similarly parallelized.
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Henceforth, we require that the impurity functi@nis continuous and satisfi€x({q;}) > 1 —
max;{d;}. The last inequality implies that we haee < Gy, where

1
Gr = ﬁvle;nTnvG({qv,j})- (2)

For our analysis, we rewrite Algorithm 5 such that only one new leaf is catinlehe tree in
each iteration (see Algorithm 7). The resulting full-grown tree is identical éctithe constructed
by Algorithm 5. LetT; be the tree produced by Algorithm 7 after title iteration. Suppose that the
nodev is split in thetth iteration and assigned the rol& < a, and letv, , vg denote its left and right
child nodes respectively. Then

Gr, — Gy

= (G{}) ~ M Gk 1}) ~ MGl {Gh})

Ny .
=—A :
SAvLa)
It follows that a lower bound o0A(v,i,a) yields an upper bound d@y, and hence also o, .

Definition 1 An internal node v, split by a rubel!) < a, is said to perform locally well with respect
to a function {{q;}) if it satisfiesA(v,i,a) > f({qy;}). Atree T is said to perform locally well if
every internal node v in it performs locally well. Finally, a decision tree bugditgorithm performs
locally well if for every training set, the output tree performs locally well.

Suppose thak_; has a leaf for which f ({q,j }) can be lower-bounded by a quantitt, Gr, ,)

that depends only onandGy, ;. Then a lower bound on the training error rate of an algorithm that
performs locally well can be derived by solving the recurre@ge< Gy, , — h(t,Gy, ;). As a
simple example, considdi({q;}) = aG({q;}) for some positive constant By (2), and since the
number of leaves ifl;_; ist, there exists a leaf in T,_1 for which G({qy;}) > Gr,_,/t, hence
M f({ovj}) > $Gr_,. LetVbe the node which is split in th¢h iteration. By definition (see line 10
in Algorithm 7), A > A, whereA, andAy; are the best splits forandv. We have

Gr.,—Gr = 0> A, > M f({au}) 2 TOr.

Let Gp be an upper bound 0Bt,. Solving the recurrenc&r, < (1—a/t)Gy,_, with initial value
Go, We obtainGy, < Go(t —1)~%/2, thereforeer, < Go(t —1)~%/2,

Kearns and Mansour (1999) made a stronger assumption, named thélWestkesis Assump-
tion, on the local performance of tree nodes. For binary classificatidradimite feature space, it
is shown that ifG(qz, g2) is the Gini index, the entropy function, @(q:,d2) = /0102, then the
Weak Hypothesis Assumption implies good local performance (each splititegan with respect
to its own f(qgi1,02)). Lower bounds on the training error of trees with these splitting criteria are

then derived, as described above. These bounds are subject @ittty wf the Weak Hypothesis
Assumption.
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3.2 Main Result

To build an SPDT, we have to set the parame&mdé. Recall thaB is the number of bins in the
histograms constructed by the processors, Biiglthe size of the output afni f orm Encouraged
by empirical results concerning the histograms’ accuracy, (see Sejtime 4etB = B and assume
that all applications of theni f or mandsumprocedures during SPDT runtime provide us with exact
information on the data set. For example, it is assumedAhatcalculated exactly and not only
“estimated” (see line 9 in Algorithm 5). We note that all our results remain intaotibwe allow
the calculations to be somewhat biased (the empirical evidence points to d aEBI05%).

It follows that the only source for sub-optimality with respect to standacibam trees is in the
choice of the candidate splits. We recall that for the standard decisiqihiesieumber of candidate
splits for a noder is equal to the number of training samples that reastinus one. This luxury is
out of the reach of the SPDT because of scalability requirements. Th& 8RB must test only a
constant number of candidate splits before it announces the winning spéitfollowing theorem
asserts thah for the split chosen by the SPDT algorithm can be arbitrarily close to the opfimal
(of the split chosen by the standard algorithm). The number of bins degmntiow close to the
realA we wish to be, and also on the shape of the training set, but not on its size.

Theorem 2 Assume that the functions operating on histograms return exact answets be a
leaf in a decision tree which is under construction, andi&t< a be the best split for v according
to the standard algorithm. Denoteq;j,q.,j,0rj as in Section 2.2. Then for evedy> 0 there exists

B that depends om, {q;},{dL;}.{drj}, andd, such that the splix) < & chosen by the SPDT
algorithm with B bins satisfie&(v,1,8) > A(v,i,a) — d.

Proof. Fix B and consider the spli¢(‘) < Uk, Whereug < a < Uk (takeux = uy if a < ug or ug = Uy
if a> u, ; in the sequel we assume without loss of generality éhatu;). Denote byt, §., §r the
quantities relevant to this split. Le denote the probability that a training samglthat reaches
satisfiesu, < x) < aand has labej. Then

T=T1—-po—p1

~ _ UOLj—Pj
4 _ (A-Darj+pj
R 1-t

By the continuity ofA(t,{q;},{d.j},{dr}), for everyd > O there exists such that

A(Tv {ql }7 {qLJ }7 {qR,j }) - A(fv {ql }7 {qL,j }7 {qR,j }) <.

for all pj < €. Sincep; < ﬁ, we can guarantee thpj < € for all j by settingB = 1/¢. We thus
haveA(v,1,8) > A(v,i,ux) > A(v,i,a) — §, as required.
Theorem 2 implies the following corollary.

Corollary 3 Assume that the standard decision tree algorithm performs locally well vwstie to
a function f({q;}), and that the functions operating on histograms return exact answéies for
every positive functiod({q; }), the SPDT algorithm performs locally well with respect {4 dj; }) —
5({q;}), in the sense that for every training set there exists B such that the tregected by the
SPDT algorithm with B bins performs locally well. Moreover, B does not néjpa the size of the
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Algorithm 7 Decision Tree One Node per Iteration
input training set{(X1,Y1),---,(Xn,Yn)}
1: Initialize T to be a single node.
2: while there are unlabeled leavesTindo
3. forall unlabeled leavegin T do
if v satisfies the stopping criteriar there are no samples reachmthen
Labelv with the most frequent label among the samples reaching
else
Choose candidate splits ferand estimaté for each of them.
end if
end for
10:  Splitan unlabeled leafsuch that,A is maximal among all unlabeled leaves and all possible
candidate splits, whem, is the number of samples reaching
11: end while

© o NGO

training set, implying constant memory and communication complexity amstartt running time
at the master processor.

We conclude this section with an example in which we explicitly derive an uppend on
the error rate of SPDT. Seit({q;}) = aG({q;}) for a positive constantr, for which we have
seen in Section 3.1 thay, < Go(t —1)~%/2. We note that Kearns and Mansour (1999) show that
for G(qi,02) = /0102, the Weak Hypothesis Assumption implies good local performance with
f(0r,02) = aG(q1,02). Applying Corollary 3 withd({q;}) = 5G({q;}) = f({q;})/2, we deduce
that when using histograms with enough bins, the SPDT'’s error rate iamead to be no more
thanGo(t — 1)~%/4,

4. Empirical Results

In the following section we empirically test the proposed algorithms. We fisty$he accuracy of
the histogram building and merging procedures, and later compare thaexofiSPDT compared
to a standard decision tree algorithm.

4.1 Histogram Algorithms

We evaluated the accuracy of the histogram building and information exmaaigorithms. We
ran experiments on seven synthetic sets, generated via different Kipdsbability distributions,
summarized in Table 1. Each sgtconsisting of 18 points, was partitioned into four equal parts,
denotedS; — S;. For each parf we built a histogranhy with B = 100 bins, using the@pdat e
procedure. We then ran thai f or mprocedure orh, with B = 100, resulting in a sequence of
pointsug, ..., Ugg. FOr each pair of subsequent numbetsi. 1, we checked how many points §f
are in the intervalu;, Ui 1]. We expect to se% = 25000/'100= 250 points in each such interval.
Our findings are summarized in Table 2. We observe that the mean absdieterdié between 250
and the actual number of points in an interval is equal td214.47% of the expected quantity).
We repeat the same experiment on the histogriamshs 4, obtained after mergint; with h
andhs with hs. The mean absolute difference between 50000= 500 and the number of points
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Distribution Probability density function
_ 1%
Normal f(x)= T8 X
Uniform f(x)=1,0<x<1
Exponential f(x) = 1e M, u=05x<0

1 b—1 _ _
Beta f(x) = mxa 1-x) a=05b=05 0<x<1
Gamma f(x) = prg*x® e ¥’ a=3,b=1x>0

(x

Lognormal f(x)_xo\l/ﬁ *( e ,u=1,0=05 x>0
Chi-square f(x) = m xV- 2)/Ze X2 v=10, x>0

Table 1: Probability density functions of synthetic sets used in the experimestsbed in Section

4.1.
Distribution Mean Standard Deviation
Average of| Average of Average of| Average of

hi—hs | hipandhzs | hiosa | hi—hs | hiypandhgs | hiosa
Normal 11.53 26.22 68.89 15.8 36.83 107.45
Uniform 5.99 18.57 34.13 7.55 24.09 46.84
Exponential 13.78 30.5 18.36 39.28 31.52 83.93
Beta 6.95 18.51 30.91 9.56 24.7 45.26
Gamma 11.87 20.4 61.7 15.68 32.08 84.41
Lognormal 15.93 34.75 72.62 21.59 45.03 93.84
Chi-square 12.12 28.17 56 16.42 38 73.75
Average over
all data sets 11.17 25.87 55.36 14.99 34.29 76.5
Percent error,
averaged over
all data sets 4.47 5.17 5.54

Table 2: Mean absolute difference between the number of poifds i, 1] and the desired number
and standard deviation of the number of pointfunu;1]. Details are in Section 4.1.

in (ScUSq1) Nui,uiva], k= 1,3, is 25.87 (517% of the expected quantity). Finally, we merged
h1 > with hz4. Applying theuni f or mprocedure, the obtained mean absolute difference between
1000 andSN [u;, Ui+1] is 55.36 (554% of the expected quantity).

Thesumanduni f or mprocedures assume that there @e+m 1)/2 points in every interval
[pi, pi+1]. We tested this assumption on the histogrdms- hs,hi 2,hs 4 andhy 234. Forhy23a,
the mean absolute differences betwéemn+ m,1)/2 and the actual number of points|ipi, pi1]
is 28.79. Recall that on average there are 1000 points in each intervalingply error of 288%.
Details are in Table 3.

Figure 1 shows how accuracy is affected by the distribution’s skewndsg figure was ob-
tained by calculating the histograms, 3 4 and pointauy, ..., ugg for different values of the param-

4., The skewness of a distribution is defined to<b¢o3, whereks is the third moment and is the standard deviation.
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Distribution | Average of| Average of

hi—hs | hypandhss | hip3a
Normal 4.22 11.07 23.01
Uniform 5.06 14.18 30.28
Exponential 3.74 12.17 24.21
Beta 6.6 15.98 33.2
Gamma 4.02 12.56 18.94
Lognormal 3.68 13.52 29.29
Chi-square 4.14 12.42 28.58
Average over
all data sets 4.5 13.13 28.79
Percent error,
averaged over
all data sets 1.8 2.63 2.88

Details are in Section 4.1.
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Figure 1: Standard deviation of the number if pointsuinu;1] as a function of the distribution’s
skewness. The different degrees of skewness are obtainedyigg/étie parameter of
the chi-square distribution and the paramétef the beta distribution witla = 0.5 (see
Table 1). More details are given in Section 4.1.

eters of the beta and chi-square distributions. We observe that highigdldistributions exhibit
less accurate results.
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Data Set Number of Number of| Number of
examples features classes
Adul t 32561 (16281) 105 2
| sol et 6238 (1559) 617 2
Letter 20000 16 2
Nur sery 12960 25 2
Page Bl ocks 5473 10 2
Pen Digits 7494 (3498) 16 2
Spam Base 4601 57 2
Magi ¢ 19020 10 2
Abal one 4177 10 28
Mil tiple Features 2000 649 11
Face Detection 100000 (10000 900 2
OCR 100000 (10000 1156 2

Table 4: Properties of the data sets used in the experiments. The numkamgfies in parentheses
is the number of test examples (if a train/test partition exists).

4.2 Evaluation of the SPDT Algorithms

We ran our experiments on ten medium-sized data sets taken from the UGitoep(Blake et al.,
1998) and two large data sets taken from the Pascal Large Scale lge@hmalienge (Pascal, 2008).
The characteristics of the data sets are summarized in Table 4. For the dGetia we applied ten-
fold cross validation when a train/test partition was not given. For thedPdata sets, we extracted
10° examples to constitute a training set, and addition4leb@mples to constitute a test set. We
set the number of bins to 50, and limited the depth of the trees to no more thaor1é tJCI data
sets and 10 for the Pascal data sets. We implemented our algorithm in the iBNMePgachine
Learning toolbox (PML), which runs using MPICH2, and executed itmB8-4PU Power5 machine
with 16GB memory using a Linux operating system. We note that none of theieques reported
in previous works involved both a large number of examples and a largeerwhéttributes.

We began by testing the assumption that splits chosen by the SPDT algorithrtoseeto
optimal. To this end, we extracted four continuous attributes from the traieitsg(we chose the
training set of the first fold if there was no train/test partition). For evéinjbaite, we calculated
the following three quantitiesA of the optimal splitting pointA of the splitting point chosen by
SPDT with 8 processors, and averagever all splitting points (chosen by random splitting). We
then normalized bys({q; }), that is,

Ao A, 16(aLih) +(1-1G({aR})

G({a;}) G({a;}) '

The normalized val~ué can be interpreted as the split's efficiency. Si@t€q;}) is the maximum
possible value of\, A represents the ratio between what is actually achieved and the maximum that
can be achieved. Table 7 displays the gain of the various splitting algorithms.
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Data Set Constant | Standard| SPDT SPDT SPDT SPDT
classification| tree 1 worker | 2 workers| 4 workers| 8 workers

Adul t 24 15.73 15.79 15.88 15.69 15.83
| sol et 50 14.95 22.58 26.62 23.09 26.17
Letter 50 8.52 8.59 8.59 8.59 8.59
Nursery 34 2.07 2.17 2.17 2.17 2.17
Page Bl ocks 10 2.89 3.29 3.09 3.03 3.42
Pen Digits 48 5.37 3.77 3.63 3.63 3.63
Spam Base 39 8.17 6.91 7.02 7.15 7.22
Magi ¢ 35 17.91 18.38 18.41 17.95 17.92
Abal one 83.5 79.33 79.93 80.6 79.93 80

Mil tiple Features 90 8.85 8.5 8.15 8.5 8.7

Face Detection 8.5 - 3.31 4.18 4.13 4.03
CCR 48 - 44.1 42.85 39.35 40.73

Table 5: Percent error for UCI and Pascal data sets. The lowestate for each data setis marked
in bold. The “constant classification” column is the percent error of aiflasthat always
outputs the most frequent class, that s, itis 100% minus the frequencyrobistdrequent

class.
Data Set Standard| SPDT SPDT SPDT SPDT
tree 1 worker | 2 workers| 4 workers| 8 workers

Adul t 81.18 80.75 80.84 80.69 81.38
| sol et 89.7 77.72 69.45 73.93 70.71
Letter 95.56 94.89 94.89 94.89 94.91
Nursery 99.72 99.69 99.69 99.69 99.69
Page Bl ocks 95.48 94.69 95.84 96.28 95.05
Pen Digits 97.2 97.48 97.37 97.37 97.37
Spam Base 95.25 94.95 93.68 94.32 94.22
Magi ¢ 80.17 79.81 79.69 80.1 80.27
Face Detection - 97.76 97.32 97.25 95.44
CCR - 61.72 61.48 63.85 62.57

Table 6:

lems. The highest AUC for each data set is marked in bold.

Area under ROC curve (%) for UCI and Pascal data sets wittnbatassification prob-

Data Set Attribute | AoptimaL | AsppT | ARANDOM
I sol et 1 0.0239 | 0.0231| 0.0108
Page Bl ocks 9 0.1125 | 0.0985| 0.0199
Spam Base 55 0.2044 | 0.1393| 0.1295
Magi ¢ 1 0.128 | 0.1228| 0.0304

Table 7: A of splits chosen by the standard tree, SPDT, and random splitting. Detaigven in
Section 4.2.
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Data Set Err. (%) | Err. (%) | AUC (%) | AUC (%) | Tree size| Tree size
before after before after before after
pruning | pruning | pruning | pruning | pruning | pruning

Adul t 15.83 13.83 81.38 88.08 5731 359

I sol et 26.17 25.79 70.71 69.9 403 281

Letter 8.59 9.9 94.91 95.29 1069 433

Nursery 2.17 2.28 99.69 99.66 210 194

Page Bl ocks 3.42 3.46 95.05 95.19 62 29

Pen Digits 3.63 4 97.37 96.75 87 77

Spam Base 7.22 9.48 94.22 94.39 384 95

Magi ¢ 17.92 14.75 80.27 88.81 3690 258

Abal one 80 73.5 - - 4539 93

Mil tiple Features 8.7 8.25 - - 173 52

Face Detection 4.03 3.91 95.44 97.75 253 169

OCR 40.73 40.63 62.57 62.63 625 447

Table 8: Percent error, areas under ROC curves, and tree simabén of tree nodes) before and
after pruning, with eight processors.

We proceed to inspect the tree’s accuracy. Tables 5 and 6 displaytheades and areas under
the ROC curves of the standard decision tree and the SPDT algorithm with, ariti 8 processo?s.
We note that it is infeasible to apply the standard algorithm on the Pascakdstdge to their size.
For the UCI data sets, we observe that the approximations undertakee By*IhT algorithm do
not necessarily have a detrimental effect on its error rate. The FF s&tistichined with Holm’s
procedure (Defdar, 2006) with a confidence level of 95% shows that the SPDT algorithihited
accuracy that could not be detected as statistically significantly differemt that of the standard
algorithm.

It is also interesting to study the effect of pruning on the error rate amdsime. Using the
procedure described in Section 2.2, we pruned the trees obtained by. $&lile 8 shows that
pruning usually improves the error rate (though not to a statistically signtficeashold, using sign
test withp < 0.05) while reducing the tree size by 54% on average.

Figure 2 shows the speedup for different sized subsets dfdte det ecti on and OCR data
sets. Referring to data set size as the number of examples multiplied by thermafrdbbeensions,
we found that data set size and speedup are highly correlated (Speeomelation of 0.90). We
further checked the running time as a function of the data set size. In@hoge scale, we obtain
approximate regression curves (averBe= 0.99, see Figure 3). The slopes of the curves decrease
as the number of processors increases, and drops below 1 for eaghspors. In other words, if we
multiply the data size by a factor of 10, the running time is multiplied by less than 10.

The results presented here fit the theoretical analysis of Section 2.3argerdata sets, the
communication between the processors in the merging phase is negligiblesradetie gain in the
update phase. Therefore, increasing the number of processope@aly beneficial for large data
sets.

5. The results for th€CR data set can be somewhat improved if we increase the tree depth to 2&linst0. For four
processors, we obtain an error of 32.56% and AUC of 67.5%.
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sets.
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5. Conclusions

We propose a new algorithm for building decision trees, which we refes theaStreaming Parallel
Decision Tree (SPDT). The algorithm is specially designed for large @#tsand streaming data,
and is executed in a distributed environment. Our experiments reveal thaxrtheate of SPDT is
approximately the same as for the serial algorithm. We also provide a waylyiealty compare
the error rate of trees constructed by serial and parallel algorithms witlemparing similarities
between the trees themselves.
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Appendix A.

We demonstrate how the histogram algorithms run on the following input seguen
23,19,10,16,36,2,9,32 30,45. (3)

Suppose that we wish to build a histogram with five bins for the first sevenesits. To this
end, we perform seven executions of tipglat e procedure. After reading the first five elements,
we obtain the histogram

(23,1),(19,1),(10,1), (16,1), (36,1).

as depicted in Figure 4(a). We then add the (#rl) and merge the two closest bin4,6,1) and
(19,1), to a single bin(17.5,2). This results in the following histogram, depicted in Figure 4(b):

(2,1),(10,1),(17.5,2),(23,1),(36,1).

We repeat this process for the seventh element: thé®ib) is added, and the two closest bins,
(9,1) and(10,1), form a new bin(9.5,2). The resulting histogram is given in Figure 4(c):

(2,1),(9.5,2),(17.5,2),(23,1),(36,1).
Let us now merge the last histogram with the following one:
(321),(30,1),(45,1).

Figure 5 follows the changes in the histogram during the three iterations attlye procedure.
We omit details due to the similarity to thgdat e examples given above. The final histogram is
given in Figure 5(d):

(2,1),(9.5,2),(19.33,3),(3267,3),(45,1).

This histogram represents the set in (3).

We now wish to estimate the number of points smaller than 15. The leftmo§2 Hingives 1
point. The second bin, (9.5,2), hag22= 1 points to its left. The challenge is to estimate how many
points to its right are smaller than 15. We first estimate that ther@are3) /2 = 2.5 points inside
the trapezoid whose vertices d§&5,0), (9.5,2),(19.33 3), and(19.33,0) (see Figure 6). Assum-
ing that the number of points inside a trapezoid is proportional to its area,uthbar of points
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Figure 4: Examples of executions of thyedat e procedure.

inside the trapezoid defined by the verti¢8%,0), (9.5,2), (15,2.56), and(15,0) is estimated to
be

24256 15-95

2 19.33-95

1.28.

We thus estimate that there are in total 1+ 1.28 = 3.28 points smaller than 15. The true answer,
obtained by looking at the set represented by the histogram (see Eq{8)ide three points: 2, 9,
and 10.

The reader can readily verify that thei f or mprocedure with8 = 3 returns the points 15.21 and
28.98. Each one of the intervalsc,15.21],[15.21,28.98], and[28.98 ]| is expected to contain
3.33 points. The true values are 3, 2, and 4, respectively.
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