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Abstract
After building a classifier with modern tools of machine learning we typically have a black box at
hand that is able to predict well for unseen data. Thus, we getan answer to the questionwhat is the
most likely label of a given unseen data point. However, mostmethods will provide no answerwhy
the model predicted a particular label for a single instanceand what features were most influential
for that particular instance. The only method that is currently able to provide such explanations are
decision trees. This paper proposes a procedure which (based on a set of assumptions) allows to
explain the decisions ofanyclassification method.

Keywords: explaining, nonlinear, black box model, kernel methods, Ames mutagenicity

1. Introduction

Automatic nonlinear classification is a common and powerful tool in data analysis. Machine learn-
ing research has created methods that are practically useful and that can classify unseen data after
being trained on a limited training set of labeled examples.

Nevertheless, most of the algorithms do notexplain their decision. However in practical data
analysis it is essential to obtain an instance-based explanation, that is, we would like to gain an
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understanding what input features made the nonlinear machine give its answer for each individual
data point.

Typically, explanations are provided jointly for all instances of the training set, for example
feature selection methods (including Automatic Relevance Determination) find outwhich inputs
are salient for a good generalization (see Guyon and Elisseeff, 2003,for a review). While this can
give a coarse impression about the global usefulness of each input dimension, it is still an ensemble
view and does not provide an answer on an instance basis.1 In the neural network literature also
solely an ensemble view was taken in algorithms like input pruning (e.g., Bishop,1995; LeCun
et al., 1998). The only classification that does provide individual explanations are decision trees
(e.g., Hastie et al., 2001).

This paper proposes a simple framework that provides local explanation vectors applicable to
anyclassification method in order to help understanding prediction results for single data instances.
The local explanation yields the features relevant for the prediction at thevery points of interest
in the data space, and is able to spot local peculiarities that are neglected in the global view, for
example, due to cancellation effects.

The paper is organized as follows: We define local explanation vectors as class probability gradi-
ents in Section 2 and give an illustration for Gaussian Process Classification(GPC). Some methods
output a prediction without a direct probability interpretation. For these we propose in Section 3 a
way to estimate local explanations. In Section 4 we apply our methodology to learn distinguishing
properties of Iris flowers by estimating explanation vectors for a k-NN classifier applied to the clas-
sic Iris data set. In Section 5 we discuss how our approach applied to a SVMclassifier allows us to
explain how digit “2” is distinguished from digit “8” in the USPS data set. In Section 6 we focus on
a more real-world application scenario where the proposed explanation capabilities prove useful in
drug discovery: Human experts regularly decide how to modify existing leadcompounds in order
to obtain new compounds with improved properties. Models capable of explaining predictions can
help in the process of choosing promising modifications. Our automatically generated explanations
match with chemical domain knowledge about toxifying functional groups of the compounds in
question. Section 7 contrasts our approach with related work and Section 8discusses characteristic
properties and limitations of our approach, before we conclude the paperin Section 9.

2. Definitions of Explanation Vectors

In this Section we will give definitions for our approach of local explanation vectors in the classi-
fication setting. We start with a theoretical definition for multi-class Bayes classification and then
give a specialized definition being more practical for the binary case.

For the multi-class case, suppose we are given data pointsx1, . . . ,xn ∈ℜd with labelsy1, . . . ,yn ∈
{1, . . . ,C} and we intend to learn a function that predicts the labels of unlabeled data points. As-
suming that the data is IID-sampled from some unknown joint distributionP(X,Y), we define the

1. This point is illustrated in Figure 1 (Section 2). Applying feature selection methods to the training set (a) will lead
to the (correct) conclusion that both dimensions are equally important foraccurate classification. As an alternative
to this ensemble view, one may ask: Which features (or combinations thereof) are most influential in the vicinity
of each particular instance. As can be seen in Figure 1 (c), the answer depends on where the respective instance is
located. On the hypotenuse and at the corners of the triangle, both features contribute jointly, whereas along each of
the remaining two edges the classification depends almost completely on justone of the features.
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Bayes classifier,

g∗(x) = arg min
c∈{1,...,C}

P(Y 6=c | X=x)

which is optimal for the 0-1 loss function (see Devroye et al., 1996).
For the Bayes classifier we define theexplanation vectorof a data pointx0 to be the derivative

with respect tox atx= x0 of the conditional probability ofY 6=g∗(x0) givenX = x, or formally,

Definition 1

ζ(x0) :=
∂
∂x

P(Y 6=g∗(x) | X=x)

∣

∣

∣

∣

x=x0

.

Note thatζ(x0) is ad-dimensional vector just likex0 is. The classifierg∗ partitions the data spaceℜd

into up toC parts on whichg∗ is constant. We assume that the conditional distributionP(Y = c |X =
x) is first-order differentiable w.r.t.x for all classesc and over the entire input space. For instance,
this assumption holds ifP(X=x | Y=c) is for all c first-order differentiable inx and the supports
of the class densities overlap around the border for all neighboring pairs in the partition by the
Bayes classifier. The vectorζ(x0) defines on each of those parts a vector field that characterizes the
flow away from the corresponding class. Thus entries inζ(x0) with large absolute values highlight
features that will influence the class label decision ofx0. A positive sign of such an entry implies
that increasing that feature would lower the probability thatx0 is assigned tog∗(x0). Ignoring the
orientations of the explanation vectors,ζ forms a continuously changing (orientation-less) vector
field along which the class labels change. This vector field lets uslocally understand the Bayes
classifier.

We remark thatζ(x0) becomes a zero vector, for example, whenP(Y 6=g∗(x) | X = x)|x=x0 is
equal to one in some neighborhood ofx0. Our explanation vector fits well to classifiers where the
conditional distributionP(Y = c | X = x) is usually not completely flat in some regions. In the
case of deterministic classifiers, despite of this issue, Parzen window estimators with appropriate
widths (Section 3) can provide meaningful explanation vectors for many samples in practice (see
also Section 8).

In the case of binary classification we directly define local explanation vectors as local gradients
of the probability functionp(x) = P(Y = 1 | X = x) of the learned model for the positive class.

For a probability functionp : ℜd → [0,1] of a classification model learned from examples
{(x1,y1), . . . ,(xn,yn)} ∈ ℜd ×{−1,+1} the explanation vector for a classified test pointx0 is the
local gradient ofp atx0:

Definition 2
ηp(x0) := ∇p(x)|x=x0.

By this definition the explanationη is again ad-dimensional vector just like the test pointx0 is.
The sign of each of its individual entries indicates whether the prediction would increase or decrease
when the corresponding feature ofx0 is increased locally and each entry’s absolute value gives the
amount of influence in the change in prediction. The vectorη gives the direction of the steepest
ascent from the test point to higher probabilities for the positive class. For binary classification the
negative version−ηp(x0) indicates the changes in features needed to increase the probability for
the negative class which may be especially useful forx0 predicted in the positive class.
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For an example we apply Definition 2 to model predictions learned by GaussianProcess Clas-
sification (GPC), see Rasmussen and Williams (2006). GPC is used here forthree reasons:
(i) In our real-world application we are interested in classifying data from drug discovery, which
is an area where Gaussian processes have proven to show state-of-the-art performance, see, for
example, Obrezanova and Segall (2010), Obrezanova et al., Schroeter et al. (2007c), Schroeter
et al. (2007a), Schroeter et al. (2007b), Schwaighofer et al. (2007), Schwaighofer et al. (2008) and
Obrezanova et al. (2008). It is natural to expect a model with high prediction accuracy on a complex
problem to capture relevant structure of the data which is worth explaining and may give domain
specific insights in addition to the values predicted. For an evaluation of the explaining capabilities
of our approach on a complex problem from chemoinformatics see Section 6.
(ii) GPC does model the class probability function used in Definition 2 directly. For other classi-
fication methods such as Support Vector Machines that do not provide a probability function as its
output we give an example for an estimation method starting from Definition 1 in Section 3.
(iii) The local gradients of the probability function can be calculated analytically for differentiable
kernels as we discuss next.

Let f (x)=∑n
i=1 αik(x,xi) be a Gaussian Process (GP) model trained on sample pointsx1, . . . ,xn∈

ℜd wherek is a kernel function andαi are the learned weights of each sample point. For a test point
x0 ∈ ℜd let varf (x0) be the variance off (x0) under the GP posterior off . Because the posterior
cannot be calculated analytically for GP classification models, we used an approximation by ex-
pectation propagation (EP) (Kuss and Ramussen, 2005). In the case ofthe probit likelihood term
defined by the error function, the probability for being of the positive class p(x0) can be computed
easily from this approximated posterior as

p(x0) =
1
2

erfc

(

− f (x0)√
2 ·
√

1+varf (x0)

)

,

where erfc denotes the complementary error function (see Equation 6 in Schwaighofer et al., 2008).
Then the local gradient ofp(x0) is given by2

∇p(x)|x=x0 =
exp
(

− f (x0)
2

2(1+varf (x0))

)

√
2π

(

∇ f (x)|x=x0
√

1+varf (x0)
− 1

2
f (x0)

(1+varf (x0))
3
2

∇varf (x)|x=x0

)

. (1)

As a kernel function choose, for example, the RBF-kernelk(x0,x1) = exp(−w(x0−x1)
2), which has

the derivative(∂/∂x0, j)k(x0,x1) =−2wexp(−w(x0−x1)
2)(x0, j −x1, j) for j ∈ {1, . . . ,d}. Then the

elements of the local gradient∇ f (x)|x=x0 are

∂ f
∂x0, j

=−2w
n

∑
i=1

αi exp(−w(x0−xi)
2)(x0, j −xi, j) for j ∈ {1, . . . ,d}.

2. For a detailed derivation, see Appendix A.1.
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For varf (x0) = k(x0,x0)−kT
∗ (K+Σ)−1k∗ the derivative is given by3

∇varf (x)|x=x0 =
∂varf

∂x0, j
=

(

∂
∂x0, j

k(x0,x0)

)

−2∗kT
∗ (K+Σ)−1 ∂

∂x0, j
k∗ for j ∈ {1, . . . ,d}.
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(c) Local explanation vectors

0

0.2

0.4

0.6

0.8

1 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Direction of explanation vectors

Figure 1: Explaining simple object classification with Gaussian Processes

Panel (a) of Figure 1 shows the training data of a simple object classificationtask and panel (b)
shows the model learned using GPC.4 The data is labeled−1 for the blue points and+1 for the red
points. As illustrated in panel (b) the model is a probability function for the positive class which
gives every data point a probability of being in this class. Panel (c) shows the probability gradient
of the model together with the local gradient explanation vectors. Along the hypotenuse and at the
corners of the triangle explanations from both features interact towardsthe triangle class while along

3. Herek∗ = (k(x0,x1), . . . ,k(x0,xn))
T is the evaluation of the kernel function between the test pointx0 and every

training point. Σ is the diagonal matrix of the variance parameter. For details see Rasmussen and Williams (2006,
Chapter 3).

4. Hyperparameters were tuned by a gradient ascend on the evidence.
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the edges the importance of one of the two feature dimensions dominates. At thetransition from
the negative to the positive class the length of the local gradient vectors represents the increased
importance of the relevant features. In panel (d) we see that explanations close to the edges of the
plot (especially in the right hand side corner) point away from the positive class. However, panel
(c) shows that their magnitude is very small. For discussion of this issue see Section 8.

3. Estimating Explanation Vectors

Several classification methods directly estimate the decision rule, which often has no interpretation
as the probability function in terms of Definition 2. For example Support VectorMachines estimate
a decision function of the form

f (x) =
n

∑
i=1

αik(xi ,x)+b,

αi ,b ∈ ℜ. Suppose we have two classes (each with one cluster) in one dimension (see Figure 2)
and train a SVM with RBF kernel. For points outside the data clustersf (x) tends to zero. Thus, the
derivative of f (x) (shown as arrows above the curves) for points on the very left or on the very right
side of the axis will point to the wrong side. In the following, we will explain howexplanations can

0

x

p(       |   )y=1  x
1

0.5

0

x

classifier output

Figure 2: Classifier output of an SVM (top) compared top(y=1|x) (bottom).

be obtained for such classifiers.
In practice, we do not have access to the true underlying distributionP(X,Y). Consequently,

we have no access to the Bayes classifier as defined in Section 2. Instead, we can apply sophis-
ticated learning machinery like Support Vector Machines (Vapnik, 1995; Schölkopf and Smola,
2002; Müller et al., 2001) that estimates some classifierg that tries to mimicg∗. For test data points
z1, . . . ,zm ∈ ℜd which are assumed to be sampled from the same unknown distribution as the train-
ing data,g estimates labelsg(z1), . . . ,g(zm). Now, instead of trying to explaing∗, to which we have
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no access, we will define explanation vectors that help us understand theclassifierg on the test data
points.

Since we do not assume that we have access to some intermediate real-valuedclassifier output
here (of whichg might be a thresholded version and which further might not be an estimate ofP(Y=
c | X=x)), we suggest to approximateg by another classifier ˆg, the actual form of which resembles
the Bayes classifier. There are several choices for ˆg, for example, GPC, logistic regression, and
Parzen windows.5 In this paper we apply Parzen windows to the training points to estimate the
weighted class densitiesP(Y=c) ·P(X |Y=c), for the index setIc = {i | g(xi) = c}

p̂σ(x,y=c) =
1
n ∑

i∈Ic

kσ(x−xi) (2)

and withkσ(z) being a Gaussian kernelkσ(z) = exp(−0.5 z⊤z/σ2)/
√

2πσ2 (as always other kernels
are also possible). This estimatesP(Y=c | X=x) for all c,

p̂σ(y=c|x) = p̂σ(x,y=c)
p̂σ(x,y=c)+ p̂σ(x,y 6=c)

≈ ∑i∈Ic kσ(x−xi)

∑i kσ(x−xi)
(3)

and thus is an estimate of the Bayes classifier (that mimicsg),

ĝσ(x) = arg min
c∈{1,...,C}

p̂σ(y 6=c | x).

This approach has the advantage that we can use our estimated classifierg to generate any amount
of labeled data for constructing ˆg. The single hyper-parameterσ is chosen such that ˆg approximates
g (which we want to explain), that is,

σ̂ := argmin
σ

m

∑
j=1

I
{

g(zj) 6= ĝσ(zj)
}

,

whereI{· · ·} is the indicator function.σ is assigned the constant valueσ̂ from here on and omitted
as a subscript. For ˆg it is straightforward to define explanation vectors:

Definition 3

ζ̂(z) :=
∂
∂x

p̂(y 6=g(z) | x)

∣

∣

∣

∣

x=z
=

(

∑i /∈Ig(z) k(z−xi)
)(

∑i∈Ig(z) k(z−xi)(z−xi)
)

σ2
(

∑n
i=1k(z−xi)

)2

−

(

∑i /∈Ig(z) k(z−xi)(z−xi)
)(

∑i∈Ig(z) k(z−xi)
)

σ2
(

∑n
i=1k(z−xi)

)2 .

This is easily derived using Equation (3) and the derivative of Equation (2), see Appendix A.3.1.
Note that we useg instead of ˆg. This choice ensures that the orientation ofζ̂(z) fits to the labels
assigned byg, which allows better interpretations.

In summary, we imitate the classifierg which we would like to explain locally by a Parzen
window classifier ˆg that has the same form as the Bayes estimator and for which we can estimate the

5. For Support Vector Machines Platt (1999) fits a sigmoid function to mapthe outputs to probabilities. In the following,
we will present a more general method for estimating explanation vectors.
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explanation vectors using Definition 3. Practically there are some caveats: The mimicking classifier
ĝ has to be estimated fromg even in high dimensions; this needs to be done with care. However,
in principle we have an arbitrary amount of training data available for constructing ĝ since we may
use our estimated classifierg to generate labeled data.

4. Explaining Iris Flower Classification by k-Nearest Neighbors

The Iris flower data set (introduced in Fisher, 1936) describes 150 flowers from the genus Iris by four
features: sepal length, sepal width, petal length, and petal width, all ofwhich are easily measured
properties of certain leaves of the corolla of the flower. There are threeclusters in this data set that
correspond to three different species:Iris setosa, Iris virginica, andIris versicolor.

Let us consider the problem of classifying the data points ofIris versicolor (class 0) against the
other two species (class 1). We applied standard classification machinery tothis problem as follows:

• Class 0 consists of all examples ofIris versicolor.

• Class 1 consists of all examples ofIris setosaandIris virginica.

• Randomly split 150 data points into 100 training and 50 test examples.

• Normalize training and test set using the mean and variance of the training set.

• Apply k-nearest neighbor classification withk= 4 (chosen by leave-one-out cross-validation
on the training data).

• Training error is 3% (i.e., 3 mistakes in 100).

• Test error is 8% (i.e., 4 mistakes in 50).

In order to estimate explanation vectors we mimic the classification results with a Parzen window
classifier. The best fit (3% error) is obtained with a kernel width ofσ = 0.26 (chosen by leave-one-
out cross-validation on the training data).

Since the explanation vectors live in the input space we can visualize them withscatter plots of
the initially measured features. The resultingexplanations(i.e., vectors) for the test set are shown
in Figure 3. The blue markers correspond to explanation vectors ofIris setosaand the red markers
correspond to those of ofIris virginica (both class 1). Both groups of markers point to the green
markers ofIris versicolor. The most important feature is the combination of petal length and petal
width (see the corresponding panel), the product of which corresponds roughly to the area of the
petals. However, the resulting explanations for the two species in class 1 are different:

• Iris setosa(class 1) is different fromIris versicolor(class 0) because its petal area issmaller.

• Iris virginica (class 1) is different fromIris versicolor(class 0) because its petal area islarger.

Also the dimensions of the sepal (another part of the blossom) are relevant, but not as distinguishing.
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Figure 3: Scatter plots of the explanation vectors for the test data. Shown are all explanation vectors
for both classes: class 1 containingIris setosa(shown in blue) andIris virginica (shown
in red) versus class 0 containing only the speciesIris versicolor (shown in green). Note
that the explanations why an Iris flower is not anIris versicolor is different forIris setosa
andIris virginica.

5. Explaining USPS Digit Classification by Support Vector Machine

We now apply the framework of estimating explanation vectors to a high dimensional data set, the
USPS digits. The classification problem that we designed for illustration purposes is detailed in the
following list:

• digits: 16×16 images that are reshaped to 256×1 dimensional column vectors

• classifier: SVM from Schwaighofer (2002) with RBF kernel widthσ = 1 and regularization
constantC= 10 (chosen by grid search in cross-validation on the training data).

• training set: 47 “twos”, 53 “eights”; training error 0.00

• test set: 48 “twos”, 52 “eights”; test error 0.05

We approximated the estimated class labels obtained by the SVM with the Parzen window classifier
(Parzen window sizeσ = 10.2505, chosen by grid search in cross-validation on the training data).
The SVM and the Parzen window classifier only disagreed on 2% of the testexamples, so a good
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Figure 4: USPS digits (training set): “twos” (left) and “eights” (right) with correct classification.
For each digit from left to right: (i) explanation vector (with black being negative, white
being positive), (ii) the original digit, (iii-end) artificial digits along the explanation vector
towards the other class.

Figure 5: USPS digits (test set bottom part): “twos” (left) and “eights” (right) with correct classifi-
cation. For each digit from left to right: (i) explanation vector (with black being negative,
white being positive), (ii) the original digit, (iii-end) artificial digits along the explanation
vector towards the other class.
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fit was achieved. Figures 4 and 5 show our results. All parts show threeexamples per row. For
each example we display from left to right: (i) the explanation vector, (ii) the original digit, (iii-end)
artificial digits along the explanation vector towards the other class.6 These artificial digits should
help to understand and interpret the explanation vector. Let us first have a look at the results on the
training set:

Figure 4 (left panel): Let us focus on the top example framed in red. The line that forms the “two”
is part of some “eight” from the data set. Thus the parts of the lines that are missing show
up in the explanation vector: if the dark parts (which correspond to the missing lines) are
added to the “two” digit then it will be classified as an “eight”. In other words, because of
the lack of those parts the digit was classified as a “two” and not as an “eight”. A similar
explanation holds for the middle example framed in red in the same Figure. Not allexamples
transform easily to “eights”: Besides adding parts of black lines, some existing black spots
(that make the digit be a “two”) must be removed. This is reflected in the explanation vector
by white spots/lines. The bottom “two”, framed in red, is actually a dash and is inthe data set
by mistake. However, its explanation vector shows nicely which parts have tobe added and
which have to be removed.

Figure 4 (right panel): We see similar results for the “eights” class. The explanation vectors again
tell us how the “eights” have to change to become classified as “twos”. However, sometimes
the transformation does not reach the “twos”. This is probably due to the fact that some of
the “eights” are inside the cloud of “eights”.

On the test set the explanation vectors are not as pronounced as on the training set. However, they
show similar tendencies:

Figure 5 (left panel): We see the correctly classified “twos”. Let’s focus on the example framed in
red. Again the explanation vector shows us how to edit the image of the “two” totransform it
into an “eights”, that is, exactly which parts of the digit were important for theclassification
result. For several other “twos” the explanation vectors do not directly lead to the “eights”
but weight the different parts of the digits that were relevant for the classification.

Figure 5 (right panel): Similarly to the training data, we see that also these explanation vectors
are not bringing all “eights” to “twos”. Their explanation vectors mainly suggest to remove
most of the “eights” (black pixels) and add some black in the lower part (the light parts, which
look like a white shadow).

Overall, the explanation vectors tell us how to edit our example digits to changethe assigned class
label. Hereby, we get a better understanding of the reasons why the chosen classifier classified the
way it did.

6. Explaining Mutagenicity Classification by Gaussian Processes

In the following Section we describe an application of our local gradient explanation methodology to
a complex real world data set. Our aim is to find structure specific to the problem domain that hasnot

6. For the sake of simplicity, no intermediate updates were performed, that is, artificial digits were generated by taking
equal-sized steps in the direction given by the original explanation vector calculated for the original digit.
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been fed into training explicitly but is captured implicitly by the GPC model in the high-dimensional
feature space used to determine its prediction. We investigate the task of predicting Ames mutagenic
activity of chemical compounds. Not being mutagenic (i.e., not able to cause mutations in the DNA)
is an important requirement for compounds under investigation in drug discovery and design. The
Ames test (Ames et al., 1972) is a standard experimental setup for measuringmutagenicity. The
following experiments are based on a set of Ames test results for 6512 chemical compounds that we
published previously.7

GPC was applied as follows:

• Class 0 consists of non-mutagenic compounds.

• Class 1 consists of mutagenic compounds.

• Randomly split 6512 data points into 2000 training and 4512 test examples suchthat:

– The training set consists of equally many class 0 and class 1 examples.

– For the steroid compound class the balance in the training and test set is enforced.

• 10 additional random splits were investigated individually. This confirmed theresults pre-
sented below.

• Each example (chemical compound) is represented by a vector of counts of 142 molecular
substructures calculated using the DRAGON software (Todeschini et al., 2006).

• Normalize training and test set using the mean and variance of the training set.

• Apply GPC model with RBF kernel.

• Performance (84 % area under curve) confirms our previous results (Hansen et al., 2009).
Error rates can be obtained from Figure 6.

Together with the prediction we calculated the explanation vector (as introduced in Definition 2) for
each test point. The remainder of this Section is an evaluation of these local explanations.

In Figures 7 and 8 we show the distribution of the local importance of selectedfeatures across
the test set: For each input feature we generate a histogram of local importance values, as indicated
by its corresponding entry in the explanation vector of each of the 4512 test compounds. The
features examined in Figure 7 are counts of substructures known to cause mutagenicity. We show
all approved “specific toxicophores” introduced by Kazius et al. (2005) that are also represented
in the DRAGON set of features. The features shown in Figure 8 are known to detoxify certain
toxicophores (again see Kazius et al., 2005). With the exception of 7(e) the toxicophores also have
a toxifying influence according to our GPC prediction model. Feature 7(e) seems to be mostly
irrelevant for the prediction of the GPC model on the test points. In contrast the detoxicophores
show overall negative influence on the prediction outcome of the GPC model.Modifying the test
compounds by adding toxicophores will increase the probability of being mutagenic as predicted by
the GPC model while adding detoxicophores will decrease this predicted probability.

7. See Hansen et al. (2009) for results of modeling this set using different machine learning methods. The data itself is
available online athttp://ml.cs.tu-berlin.de/toxbenchmark .
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Figure 6: Receiver operating characteristic curve of GPC model for mutagenicity prediction

We have seen that the conclusions drawn from our explanation vectors agree with established
knowledge about toxicophores and detoxicophores. While this is reassuring, such a sanity check re-
quired existing knowledge about which compounds are toxicophores anddetoxicophores and which
are not. Thus it is interesting to ask whether we also could havediscoveredthat knowledge from the
explanation vectors. To answer this question we ranked all 142 featuresby the means of their local
gradients.8 Clear trends result: 9 out of 10 known toxicophores can be found closeto the top of the
list (mean rank of 19). The only exception (rank 81) is the aromatic nitrosamine feature.9 This trend
is even stronger for the detoxicophores: The mean rank of these five features is 138 (out of 142),
that is, they consistently exhibit the largest negative local gradients. Consequently, the established
knowledge about toxicophores and detoxicophores could indeed havebeendiscoveredusing our
methodology.

In the following paragraph we will discuss steroids10 as an example of an important compound
class for which the meaning of features differs from this global trend, sothat local explanation
vectors are needed to correctly identify relevant features.

Figure 9 displays the difference in relevance of epoxide (a) and aliphatic nitrosamine (c) sub-
structures for the predicted mutagenicity of steroids and non-steroid compounds. For compari-
son we also show the distributions for compounds chosen at random fromthe test set (b,d). Each
subfigure contains two measures of (dis-)similarity for each pair of distributions. The p-value of
the Kolmogorov-Smirnoff test (KS) gives the probability of error when rejecting the hypothesis
that both relative frequencies are drawn from the same underlying distribution. The symmetrized

8. Tables resulting from this ranking are made available as a supplement tothis paper and can be downloaded from the
journals website.

9. This finding agrees with the result obtained by visually inspecting Figure 7(e). We found that only very few com-
pounds with this feature are present in the data set. Consequently, detection of this feature is only possible if enough
of these few compounds are included in the training data. This was not the case in the random split used to produce
the results presented above.

10. Steroids are natural products and occur in humans, animals, and plants. They have a characteristic backbone contain-
ing four fused carbon-rings. Many hormones important to the development of the human body are steroids, including
androgens, estrogens, progestagens, cholesterol and natural anabolics. These have been used as starting points for
the development of many different drugs, including the most reliable contraceptives currently on the market.
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−1 −0.5 0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

local gradient DR17:nArNNOx

re
la

tiv
e 

fr
eq

ue
nc

y

(e) aromatic nitrosamine
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(j) aliphatic halide

Figure 7: Distribution of local importance of selected features across the test set of 4512 com-
pounds. Nine out of ten known toxicophores (Kazius et al., 2005) indeed exhibit positive
local gradients.
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(c) arylsulfonyl
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(d) aliphatic carboxylic acid
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Figure 8: Distribution of local importance of selected features across the test set of 4512 com-
pounds. All five known detoxicophores exhibit negative local gradients

Kullback-Leibler divergence (KLD) gives a metric of the distance between the two distributions.11

While containing epoxides generally tends to make molecules mutagenic (see discussion above), we
do not observe this effect for steroids: In Figure 9(a), almost all epoxide containing non-steroids ex-
hibit positive gradients, thereby following the global distribution of epoxidecontaining compounds
as shown in Figure 7(f). In contrast, almost all epoxide containing steroids exhibit gradients just
below zero. “Immunity” of steroids to the epoxide toxicophore is an established fact and has first
been discussed by Glatt et al. (1983). This peculiarity in chemical space isclearly exhibited by
the local explanation given by our approach. For aliphatic nitrosamine, thesituation in the GPC
model is less clear but still the toxifying influence seems to be less in steroids than in many other
compounds. To our knowledge, this phenomenon has not yet been discussed in the pharmaceutical
literature.

In conclusion, we can learn from the explanation vectors that:

• Toxicophores tend to make compounds mutagenic (class 1).

• Detoxicophores tend to make compounds non-mutagenic (class 0).

• Steroids are immune to the presence of some toxicophores (epoxide, possibly also aliphatic
nitrosamine).

11. Symmetry is achieved by averaging the two Kullback-Leibler divergences:KL(P1,P2)+KL(P2,P1)
2 , compare to Johnson

and Sinanovic (2000). To prevent zero-values in the histograms whichwould lead to infinite KL distances, anε > 0
has been added to each bin count.
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(b) epoxide feature: random compounds vs. the rest
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(c) aliphatic nitrosamine feature: steroid vs. non-steroid
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Figure 9: The local distribution of feature importance to steroids and random non-steroid com-
pounds significantly differs for two known toxicophores. The small localgradients found
for the steroids (shown in blue) indicate that the presence of each toxicophore is irrelevant
to the molecules toxicity. For non-steroids (shown in red) the known toxicophores indeed
exhibit positive local gradients.

7. Related Work

Assigning potentially different explanations to individual data points distinguishes our approach
from conventional feature extraction methods that extract global features that are relevant for all
data points, that is, those features that allow to achieve a small overall prediction error. Our notion
of explanation is not related to the prediction error, but only to the label provided by the prediction
algorithm. Even if the error is large, our framework is able to answer the questionwhythe algorithm
has decided on a data point the way it did.
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The explanation vector proposed here is similar in spirit to sensitivity analysiswhich is common
in various areas of information science. A classical example is outlier sensitivity in statistics (Ham-
pel et al., 1986). In this case, the effects of removing single data points onestimated parameters
are evaluated by an influence function. If the influence for a data point issignificantly large, it is
detected as an outlier and should be removed for the following analysis. In regression problems,
leverage analysis is a procedure along similar lines. It detects leverage points which have potential
to give large impact on the estimate of the regression function. In contrast tothe influential points
(outliers), removing a leverage sample may not actually change the regressor, if its response is very
close to the predicted value. E.g., for linear regression the samples whose inputs are far from the
mean are the leverage points. Our framework of explanation vectors considers a different view. It
describes the influence ofmovingsingle data points locally and it thus answers the question which
directions are locally most influential to the prediction. The explanation vectors are used to extract
sensitive features that are relevant to the prediction results, rather thandetecting/eliminating the
influential samples.

In recent decades, explanation of results by expert systems has beenan important topic in the
Artificial Intelligence community. Especially for expert systems based on Bayesian belief networks,
such explanation is crucial in practical use. In this context sensitivity analysis has also been used
as a guiding principle (Horvitz et al., 1988). There the influence is evaluated by removing a set of
variables (features) from the evidence and the explanation is constructed from those variables that
affect inference (relevant variables). For example, Suermondt (1992) measures the cost of omitting
a single featureEi by the cross-entropy

H−(Ei) = H(p(D|E);P(D|E\Ei)) =
N

∑
j=1

P(d j |E) log
P(d j |E)

p(d j |E\Ei)
,

whereE denotes the evidence andD = (d1, . . . ,dN)
T is the target variable. The cost of a subset

F ⊂ E can be defined similarly. This line of research is more connected to our work, because
explanation can depend on the assigned values of the evidenceE, and is thus local.

Similarly Robnik-Sikonja and Kononenko (2008) and Strumbelj and Kononenko (2008) try to
explain the decision of trained kNN-, SVM-, and ANN-models for individual instances by measur-
ing the difference in their prediction with sets of features omitted. The cost ofomitting features
is evaluated as the information difference, the log-odds ratio, or the difference of probabilities be-
tween the model with knowledge about all features and with omissions, respectively. To know what
the prediction would be without the knowledge of a certain feature the model is retrained for every
choice of features whose influence is to be explained. To save the time of combinatorial training
Robnik-Sikonja and Kononenko (2008) propose to use neutral valueswhich have to be estimated
by a known prior distribution of all possible parameter values. As a theoretical framework for con-
sidering feature interactions, Strumbelj and Kononenko (2008) propose to calculate the differences
between model predictions for every choice of feature subset.

For multi-layer perceptrons Fraud and Clrot (2002) measure the importance of individual in-
put variables on clusters of test points. Therefore the change in the modeloutput is evaluated for
the change of a single input variable in a chosen interval while all other input variables are fixed.
Lemaire and Feraud (2007) use a similar approach on an instance by instance basis. By considering
each input variable in turn there is no way to measure input feature interactions on the model output
(see LeCun et al., 1998).
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Figure 10:ζ(x) is the zero vector in the middle of the cluster in the middle.

The principal differences between our approach and these frameworks are: (i) We consider
continuous features and no structure among them is required, while some other frameworks start
from binary features and may require discretization steps with the need to estimate parameters for
it. (ii) We allow changes in any direction, that is, any weighted combination of variables, while
other approaches only consider one feature at a time or the omission of a set of variables.

8. Discussion

We have shown that our methods for calculating / estimating explanation vectors are useful in a
variety of situations. In the following we discuss their limitations.

8.1 What Can We Do if the Derivative is Zero?

This situation is depicted in Figure 10. In the lower panel we see a two-dimensional data set con-
sisting of three clusters. The middle cluster has a different class than the clusters on the left and
on the right. Only the horizontal coordinate (i.e.,x1) is relevant for the classification. The upper
panel shows the projected data and a representative slice ofζ(x). However, the explanationζ(x)
for the center point of the middle cluster is the zero vector, because at thatpoint p(Y=1|X= x)
is maximal. What can we do in such situations? Actually, the (normalized) explanation vector
is derived from the following optimization problem for finding the locally most influential direc-
tion: argmax‖ε‖=1{p(Y 6=g∗(x0)|X = x0+ ε)− p(Y 6=g∗(x0)|X = x0)}. In case that the first deriva-
tive of the above criterion is zero, its Taylor expansion starts from the second order term, which
is a quadratic form of its Hessian matrix. In the example data set with three clusters, the explana-
tion vector is constant along the second dimension. The mostinterestingdirection is given by the
eigenvector corresponding to the largest eigenvalue of the Hessian. This direction will be in our
example along the first dimension. Thus, we can learn from the Hessian thatthe first coordinate
is relevant for the classification, but we do not obtain an orientation for it. Instead it means that
both directions (left and right) will influence the classification. However, ifthe conditional distri-
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butionP(Y = 1 | X = x) is flat in some regions, no meaningful explanation can be obtained by the
gradient-based approach with the remedy mentioned above. Practically, byusing Parzen window
estimators with larger widths, the explanation vector can capture coarse structures of the classifier
at the points that are not so far from the borders. In A.3.2 we give an illustration of this point. In the
future, we would like to work on global approaches, for example, basedon distances to the borders,
or extensions of the approach by Robnik-Sikonja and Kononenko (2008). Since these procedures
are expected to be computationally demanding, our proposal is useful in practice, in particular for
probabilistic classifiers.

8.2 Does Our Framework Generate Different Explanations for Different Prediction Models?

When using the local gradient of the model prediction directly as in Definition 2and Section 6,
the explanation follows the given model precisely by definition. For the estimation framework this
depends on whether the different classifiers classify the data differently. In that case the explanation
vectors will be different, which makes sense, since they should explain theclassifier at hand, even
if its estimated labels were not all correct. On the other hand, if the differentclassifiers agree on all
labels, the explanation will be exactly equal.

8.3 Which Implicit Limitations Do Analytical Gradients Inherit From Gaussia n Process
Models?

A particular phenomenon can be observed at the boundaries of the training data: Far from the
training data, Gaussian Process Classification models predict a probability of 0.5 for the positive
class. When querying the model in an area of the feature space where predictions are negative,
and one approaches the boundaries of the space populated with training data, explanation vectors
will point away from any training data and therefore also away from areas of positive prediction.
This behavior can be observed in Figure 1(d), where unit length vectors indicate the direction of
explanation vectors. In the right hand side corner, arrows point awayfrom the triangle. However,
we can see that the length of these vectors is so small that they are not evenvisible in Figure
1(c). Consequently, this property of GPC models does not pose a restriction for identifying the
locally most influential features by investigating the features with the highest absolute values in the
respective partial derivatives, as shown in Section 6.

8.4 Stationarity of the Data

Since explanation vectors are defined as local gradients of the model prediction (see Definition 2),
no assumption on the data is made: The local gradients follow the predictive model in any case. If,
however, the model to be explained assumes stationarity of the data, the explanation vectors will
inherit this limitation and reflect any shortcomings of the model (e.g., when the model is applied
to non-stationary data). Our method for estimating explanation vectors, on theother hand, assumes
stationarity of the data.

When modeling data that is in fact non-stationary, appropriate measures to deal with such data
sets should be taken. One option is to separate the feature space into stationary and non-stationary
parts using Stationary Subspace Analysis as introduced by von Bünau et al. (2009). For further
approaches to data set shift see Sugiyama et al. (2007b), Sugiyama et al. (2007a), and the book by
Quionero-Candela et al. (2009).
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9. Conclusion

This paper proposes a method that sheds light on the black boxes of nonlinear classifiers. In other
words, we introduce a method that can explain the local decisions taken by arbitrary (possibly)
nonlinear classification algorithms. In a nutshell, the estimated explanations arelocal gradients that
characterize how a data point has to be moved to change its predicted label. For models where such
gradient information cannot be calculated explicitly, we employ a probabilistic approximate mimic
of the learning machine to be explained.

To validate our methodology we show how it can be used to draw new conclusions on how the
various Iris flowers in Fisher’s famous data set are different from each other and how to identify
the features with which certain types of digits 2 and 8 in the USPS data set can be distinguished.
Furthermore, we applied our method to a challenging drug discovery problem. The results on that
data fully agree with existing domain knowledge, which was not available to ourmethod. Even
local peculiarities in chemical space (the extraordinary behavior of steroids) was discovered using
the local explanations given by our approach.

Future directions are two-fold: First we believe that our method will find its way into the tool
boxes of practitioners who not only want to automatically classify their data but who also would
like to understand the learned classifier. Thus using our explanation framework in computational
biology (see Sonnenburg et al., 2008) and in decision making experiments inpsychophysics (e.g.,
Kienzle et al., 2009) seems most promising. The second direction is to generalize our approach to
other prediction problems such as regression.
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Appendix A.

In the following we present the derivation of direct local gradients and illustrate aspects like the
effect of different kernel functions, outliers and local non-linearities. Furthermore we present the
derivation of explanation vectors based on the parzen window estimation and illustrate how the
quality of the fit of the Parzen window approximation affects the quality of the estimated explanation
vectors.

A.1 Derivation of Direct Local Gradients

Equation (1) is derived by the following steps:
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A.2 Illustration of Direct Local Gradients

In the following we give some illustrative examples of our method to explain modelsusing local
gradients. Since the explanation is derived directly from the respective model, it is interesting to
investigate its acurateness depending on different model parameters andin instructive scenarios.
We examine the effects that local gradients exhibit when choosing different kernel functions, when
introducing outliers, and when the classes are not linearly separable locally.

A.2.1 CHOICE OFKERNEL FUNCTION

Figure 11 shows the effect of different kernel functions on the triangle toy data from Figure 1. The
following observations can be made:

• In any case note that the local gradients explain the model, which in turn may ormay not
capture the true situation.

• In Subfigure 11(a) the linear kernel leads to a model which fails to capturethe non-linear class
separation. This model misspecification is reflected by the explanations given for this model
in Subfigure 11(b).

• The rational quadratic kernel is able to more accurately model the non-linear separation. In
Subfigure 11(c) a non-optimal degree parameter has been chosen forillustrative purposes.
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(d) rational quadratic explanation

Figure 11: The effect of different kernel functions to the local gradient explanations

For other parameter values the rational quadratic kernel leads to similar results as the RBF
kernel function used in Figure 1.

• The explanations in Subfigure 11(d) obtained for this model show local perturbations at the
small “bumps” of the model but the trends towards the positive class are still clear. As pre-
viously observed in Figure 1, the explanations make clear that both features interact at the
corners and on the hypotenuse of the triangle class.

A.2.2 OUTLIERS

In Figure 12 the effects of two outliers in the classification data to GPC with RBF kernel are shown.
Once more, note that the local gradients explain the model, which in turn may or may not capture the
true situation. The size of the region affected by the outliers depends on thekernel width parameter.
We consider the following items:
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(b) outliers in model
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(c) outlier explanation

Figure 12: The effect of outliers to the local gradient explanations

• Local gradients are in the same way sensitive to outliers as the model which they try to
explain. Here a single outlier deforms the model and with it the explanation whichmay be
extracted from it.

• Being derivatives the sensitivity of local gradients to a nearby outlier is increased over the
sensitivity of the model prediction itself.

• Thus the local gradient of a point near an outlier may not reflect a true explanation of the
features important in reality. Nevertheless it is the model here which is wrongaround an
outlier in the first place.

• The histograms in the Figures 7, 8, and 9 in Section 6 show the trends of the respective
features in the distribution of all test points and are thus not affected by single outliers.

To compensate for the effect of outliers to the local gradients of points in theaffected region
we propose to use a sliding window method to smooth the gradients around eachpoint of interest.
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Thus for each point use the mean of all local gradients in the hypercube centered at this point and
of appropriate size. This way the disrupting effect of an outlier is averaged out for an appropriately
chosen window size.

A.2.3 LOCAL NON-LINEARITY
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(b) locally non-linear model
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(c) locally non-linear explanation

Figure 13: The effect of local non-linearity to the local gradient explanations

The effect of locally non-linear class boundaries in the data is shown in Figure 13 again for GPC
with an RBF kernel. The following points can be observed:

• All the non-linear class boundaries are accurately followed by the local gradients.

• The circle shaped region of negative examples surrounded by positiveones shows the full
range of feature interactions towards the positive class.

• On the ridge of single positive instances the model introduces small valleys which are re-
flected by the local gradients.
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A.3 Estimating by Parzen Window

Finally we elaborate on some details of our estimation approach of local gradients by Parzen window
approximation. First we give the derivation to obtain the explanation vector and second we examine
how the explanation varies with the goodness of fit of the Parzen window method.

A.3.1 DERIVATION OF EXPLANATION VECTORS

These are more details on the derivation of Definition 3. We use the index setIc = {i | g(xi) = c}:

∂
∂x

kσ(x) =− x
σ2kσ(x)

∂
∂x

p̂σ(x,y 6=c) =
1
n ∑

i /∈Ic

kσ(x−xi)
−(x−xi)

σ2

∂
∂x

p̂σ(y 6=c|x)

=

(

∑i /∈Ic k(x−xi)
)(

∑n
i=1k(x−xi)(x−xi)

)

σ2
(

∑n
i=1k(z−xi)

)2

−

(

∑i /∈Ic k(x−xi)(x−xi)
)(

∑n
i=1k(x−xi)

)

σ2
(

∑n
i=1k(z−xi)

)2

=

(

∑i /∈Ic k(x−xi)
)(

∑i∈Ic k(x−xi)(x−xi)
)

σ2
(

∑n
i=1k(z−xi)

)2

−

(

∑i /∈Ic k(x−xi)(x−xi)
)(

∑i∈Ic k(x−xi)
)

σ2
(

∑n
i=1k(z−xi)

)2

and thus for the index setIg(z) = {i | g(xi) = g(z)}

ζ̂(z) =
∂
∂x

p̂(y 6=g(z) | x)

∣

∣

∣

∣

x=z

=

(

∑i /∈Ig(z) k(z−xi)
)(

∑i∈Ig(z) k(z−xi)(z−xi)
)

σ2
(

∑n
i=1k(z−xi)

)2

−

(

∑i /∈Ig(z) k(z−xi)(z−xi)
)(

∑i∈Ig(z) k(z−xi)
)

σ2
(

∑n
i=1k(z−xi)

)2 .

A.3.2 GOODNESS OFFIT BY PARZEN WINDOW

In our estimation framework the quality of the local gradients depends on the approximation of the
classifier we want to explain by Parzen windows for which we can calculatethe explanation vectors
as given by Definition 3.

Figure 14(a) shows an SVM model trained on the classification data from Figure 13(a). The
local gradients estimated for this model by different Parzen window approximations are depicted in
Subfigures 14(b), 14(c), and 14(d). We observe the following points:
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(b) estimated explanation withσ = 0.00069
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(c) estimated explanation withσ = 0.1
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(d) estimated explanation withσ = 1.0

Figure 14: Good fit of Parzen window approximation affects the quality of the estimated explana-
tion vectors

• The SVM model was trained withC= 10 and using an RBF kernel of widthσ = 0.01.

• In Subfigure 14(b) a small window width has been chosen by minimizing the meanabsolute
error over the validation set of labels predicted by the SVM classifier. Thus we obtain ex-
plaining local gradients on the class boundaries but zero vectors in the inner class regions.
While this resembles the piecewise flat SVM model most accurately it may be more useful
practically to choose a larger width to obtain non-zero gradients pointing to theborders in
this regions as well. For a more detailed discussion of zero gradients see Section 8.

• A larger width practically useful in this example is shown in Subfigure 14(c).Here the local
gradients in the inner class regions point to the other class as well.
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• For a too large window width in Subfigure 14(d) the approximation fails to obtainlocal gra-
dients which closely follow the model. Here only two directions are left and the gradients for
the blue class on the left and on the bottom point in the wrong direction.
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