Journal of Machine Learning Research 11 (2010) 1803-1831 bm&ted 4/09; Revised 11/09; Published 6/10

How to Explain Individual Classification Decisions

David Baehrens BAEHRENS@CS.TU-BERLIN.DE
Timon Schroeter* TIMON @CS.TU-BERLIN.DE
Technische Universit Berlin

Franklinstr. 28/29, FR 6-9

10587 Berlin, Germany

Stefan Harmeling* STEFAN.HARMELING @TUEBINGEN.MPG.DE
MPI for Biological Cybernetics

Spemannstr. 38

72076 Tbingen, Germany

Motoaki Kawanabe' MOTOAKI .KAWANABE @FIRST.FRAUNHOFERDE
Fraunhofer Institute FIRST.IDA

Kekulestr.7

12489 Berlin, Germany

Katja Hansen KHANSEN@CS.TU-BERLIN.DE
Klaus-Robert M uller KLAUS-ROBERT.MUELLER@TU-BERLIN.DE

Technische Universit Berlin
Franklinstr. 28/29, FR 6-9
10587 Berlin, Germany

Editor: Carl Edward Rasmussen

Abstract

After building a classifier with modern tools of machine ldag we typically have a black box at
hand that is able to predict well for unseen data. Thus, wamgenswer to the questiovhatis the
most likely label of a given unseen data point. However, moethods will provide no answerhy
the model predicted a particular label for a single instaarawhat features were most influential
for that particular instance. The only method that is cutyeable to provide such explanations are
decision trees. This paper proposes a procedure whichdlmsa set of assumptions) allows to
explain the decisions @nyclassification method.

Keywords: explaining, nonlinear, black box model, kernel methods eAmutagenicity

1. Introduction

Automatic nonlinear classification is a common and powerful tool in data anaMsishine learn-
ing research has created methods that are practically useful and nhaltssify unseen data after
being trained on a limited training set of labeled examples.

Nevertheless, most of the algorithms do e&plaintheir decision. However in practical data
analysis it is essential to obtain an instance-based explanation, that ispule lke to gain an
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understanding what input features made the nonlinear machine give\iterafias each individual
data point.

Typically, explanations are provided jointly for all instances of the trainieig ®r example
feature selection methods (including Automatic Relevance Determination) finditoah inputs
are salient for a good generalization (see Guyon and Elisseeff, 2603, review). While this can
give a coarse impression about the global usefulness of each inputsioneit is still an ensemble
view and does not provide an answer on an instance basighe neural network literature also
solely an ensemble view was taken in algorithms like input pruning (e.g., Bid88h; LeCun
et al.,, 1998). The only classification that does provide individual exgplans are decision trees
(e.g., Hastie et al., 2001).

This paper proposes a simple framework that provides local explanaiors applicable to
anyclassification method in order to help understanding prediction results fileslata instances.
The local explanation yields the features relevant for the prediction atettyepoints of interest
in the data space, and is able to spot local peculiarities that are neglectedglolial view, for
example, due to cancellation effects.

The paper is organized as follows: We define local explanation vedatass probability gradi-
ents in Section 2 and give an illustration for Gaussian Process Classifi(@fi). Some methods
output a prediction without a direct probability interpretation. For thesenapgse in Section 3 a
way to estimate local explanations. In Section 4 we apply our methodology todestinguishing
properties of Iris flowers by estimating explanation vectors for a k-NNsiflas applied to the clas-
sic Iris data set. In Section 5 we discuss how our approach applied to acB#sifier allows us to
explain how digit “2” is distinguished from digit “8” in the USPS data set. Ict&m 6 we focus on
a more real-world application scenario where the proposed explanapabitites prove useful in
drug discovery: Human experts regularly decide how to modify existingdeatbounds in order
to obtain new compounds with improved properties. Models capable of exgaredictions can
help in the process of choosing promising modifications. Our automaticallyajede=xplanations
match with chemical domain knowledge about toxifying functional groups efcimpounds in
guestion. Section 7 contrasts our approach with related work and Sedieougses characteristic
properties and limitations of our approach, before we conclude the pafection 9.

2. Definitions of Explanation Vectors

In this Section we will give definitions for our approach of local explamatiectors in the classi-
fication setting. We start with a theoretical definition for multi-class Bayes cleatdh and then
give a specialized definition being more practical for the binary case.

For the multi-class case, suppose we are given data paints, x, € 09 with labelsys, ..., yn €
{1,...,C} and we intend to learn a function that predicts the labels of unlabeled dats.pAis
suming that the data is IID-sampled from some unknown joint distriblRiefY), we define the

1. This point is illustrated in Figure 1 (Section 2). Applying feature selectiethods to the training set (a) will lead
to the (correct) conclusion that both dimensions are equally importastctarrate classification. As an alternative
to this ensemble view, one may ask: Which features (or combinationsofhare most influential in the vicinity
of each particular instance. As can be seen in Figure 1 (c), the answends on where the respective instance is
located. On the hypotenuse and at the corners of the triangle, bothefeatuntribute jointly, whereas along each of
the remaining two edges the classification depends almost completely @mgusf the features.

1804



How TO EXPLAIN INDIVIDUAL CLASSIFICATION DECISIONS

Bayes classifier,

which is optimal for the 0-1 loss function (see Devroye et al., 1996).
For the Bayes classifier we define tigplanation vectoof a data poinkg to be the derivative
with respect toc atx = X of the conditional probability of - g*(xo) givenX = x, or formally,

Definition 1

200) == 2 PYAG ()| X=X)
X=Xo

Note thatl (xo) is ad-dimensional vector just likey is. The classifieg* partitions the data space?
into up toC parts on whictg* is constant. We assume that the conditional distribuBiph=c | X =
x) is first-order differentiable w.r.tx for all classes and over the entire input space. For instance,
this assumption holds P(X=x|Y =c) is for all c first-order differentiable ix and the supports
of the class densities overlap around the border for all neighboring paihe partition by the
Bayes classifier. The vectg(Xp) defines on each of those parts a vector field that characterizes the
flow away from the corresponding class. Thus entrie&kg) with large absolute values highlight
features that will influence the class label decisiox@fA positive sign of such an entry implies
that increasing that feature would lower the probability thais assigned t@* (xp). Ignoring the
orientations of the explanation vectofsforms a continuously changing (orientation-less) vector
field along which the class labels change. This vector field leteamly understand the Bayes
classifier.

We remark thaf (xg) becomes a zero vector, for example, WHEIY # g*(X) | X =X)|x=x, IS
equal to one in some neighborhoodxgf Our explanation vector fits well to classifiers where the
conditional distributionP(Y = ¢ | X = x) is usually not completely flat in some regions. In the
case of deterministic classifiers, despite of this issue, Parzen window esimditio appropriate
widths (Section 3) can provide meaningful explanation vectors for mamples in practice (see
also Section 8).

In the case of binary classification we directly define local explanatiotoksas local gradients
of the probability functiorp(x) = P(Y = 1| X = x) of the learned model for the positive class.

For a probability functionp : 09 — [0,1] of a classification model learned from examples
{(X1,¥1),---, (Xn,Yn)} € 09 x {—1,+1} the explanation vector for a classified test poigis the
local gradient ofp at Xg:

Definition 2
Np(X0) := OP(X)|x=x,-

By this definition the explanation is again ad-dimensional vector just like the test poigtis.
The sign of each of its individual entries indicates whether the predictiohdvocrease or decrease
when the corresponding featurexafis increased locally and each entry’s absolute value gives the
amount of influence in the change in prediction. The veqtgives the direction of the steepest
ascent from the test point to higher probabilities for the positive clagsbiRary classification the
negative version-np(xo) indicates the changes in features needed to increase the probability for
the negative class which may be especially usefukfqredicted in the positive class.
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For an example we apply Definition 2 to model predictions learned by GauBeigess Clas-
sification (GPC), see Rasmussen and Williams (2006). GPC is used hénesioreasons:
() In our real-world application we are interested in classifying data froung dliscovery, which
is an area where Gaussian processes have proven to show stadeadf-gierformance, see, for
example, Obrezanova and Segall (2010), Obrezanova et al., Sshedeal. (2007c), Schroeter
et al. (2007a), Schroeter et al. (2007b), Schwaighofer et al.7)2@zhwaighofer et al. (2008) and
Obrezanova et al. (2008). Itis natural to expect a model with highigifed accuracy on a complex
problem to capture relevant structure of the data which is worth explaimidgreay give domain
specific insights in addition to the values predicted. For an evaluation of tiiaieixg capabilities
of our approach on a complex problem from chemoinformatics see Section 6.
(i) GPC does model the class probability function used in Definition 2 directy. dther classi-
fication methods such as Support Vector Machines that do not providgbalglity function as its
output we give an example for an estimation method starting from Definition 1cioBeS.
(iii) The local gradients of the probability function can be calculated analigitar differentiable
kernels as we discuss next.

Let f(x) = T, aik(x, X ) be a Gaussian Process (GP) model trained on sample ggints x, €
09 wherek is a kernel function and; are the learned weights of each sample point. For a test point
xo € 09 let var (xo) be the variance of (xp) under the GP posterior df. Because the posterior
cannot be calculated analytically for GP classification models, we usedproxapation by ex-
pectation propagation (EP) (Kuss and Ramussen, 2005). In the c#se mfobit likelihood term
defined by the error function, the probability for being of the positivescf#ig) can be computed
easily from this approximated posterior as

1 —f(x%)
p(xo)_zerfc< w3 m)

where erfc denotes the complementary error function (see Equation Buvaghofer et al., 2008).
Then the local gradient gi(xo) is given by

—f(x)? _ _
eXp<2(1+varf (xo))) ( O (X) | x=xo 1 f(xo)

NI

U p(X) ’X:XO - \/E[ -

1+ vars (xo) g Ve <X>‘X_XO) - @

(1+vari(Xo))?

As a kernel function choose, for example, the RBF-kekiig), ;) = exp(—W(Xo — X1)?), which has
the derivative(d,/0xo | )K(Xo,X1) = —2wexp(—W(Xo — X1)?)(Xo,j — X1,j) for j € {1,...,d}. Then the
elements of the local gradienif (x)|x—x, are

af n
—— = 2w ajexp—w(xo—X)?) (Xo.i —%.;) forje{1,...,d}.
aXO,j i; i IO( (XO XI) )(XO.,J I,j) J { }

2. For a detailed derivation, see Appendix A.1.
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For var (Xo) = K(Xo,Xo) — K! (K + )~ 1k, the derivative is given by

Ovars (X) |x=x,

o, (afo.k(Xo,Xo)>_2*KT(K+Z)‘1ak* for je{1,...,d}.
7J

0X07 j

0.5 X

0.2

i
=~ o
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(c) Local explanation vectors (d) Direction of explanation vectors

Figure 1: Explaining simple object classification with Gaussian Processes

Panel (a) of Figure 1 shows the training data of a simple object classificatkrand panel (b)
shows the model learned using GPThe data is labeled 1 for the blue points and-1 for the red
points. As illustrated in panel (b) the model is a probability function for thetipesclass which
gives every data point a probability of being in this class. Panel (c) shiogvprobability gradient
of the model together with the local gradient explanation vectors. Alongyhetbnuse and at the
corners of the triangle explanations from both features interact towsedgangle class while along

3. Herek, = (k(xg,%1),...,k(xo,%))T is the evaluation of the kernel function between the test pojrand every
training point. Z is the diagonal matrix of the variance parameter. For details see Rasmasd Williams (2006,
Chapter 3).

4. Hyperparameters were tuned by a gradient ascend on the evidence
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the edges the importance of one of the two feature dimensions dominates. thdribigion from
the negative to the positive class the length of the local gradient vecimmesents the increased
importance of the relevant features. In panel (d) we see that explagafiose to the edges of the
plot (especially in the right hand side corner) point away from the pestiass. However, panel
(c) shows that their magnitude is very small. For discussion of this issuecstiors8.

3. Estimating Explanation Vectors

Several classification methods directly estimate the decision rule, which @semchinterpretation
as the probability function in terms of Definition 2. For example Support Védawrhines estimate

a decision function of the form
n

f(x) = _Zlaik(xi,x) +b,

aj,b € 0. Suppose we have two classes (each with one cluster) in one dimensioRidsee 2)
and train a SVM with RBF kernel. For points outside the data cludte(stends to zero. Thus, the
derivative off (x) (shown as arrows above the curves) for points on the very left oreowety right
side of the axis will point to the wrong side. In the following, we will explain hexplanations can

A - — -
classifier output
0
+ +4+#H+++ 0 0O0mWO O X
14 — — —
p(y=1[x)
0.
0 .
+ ++H+++ O 0OCmWO O X

Figure 2: Classifier output of an SVM (top) comparegty=1|x) (bottom).

be obtained for such classifiers.

In practice, we do not have access to the true underlying distrib@inY). Consequently,
we have no access to the Bayes classifier as defined in Section 2. Jngteadn apply sophis-
ticated learning machinery like Support Vector Machines (Vapnik, 19@59I8opf and Smola,
2002; Miller et al., 2001) that estimates some classdittrat tries to mimiay*. For test data points
71,...,zZm € 09 which are assumed to be sampled from the same unknown distribution as the train
ing data,g estimates labelg(z), ...,9(zn). Now, instead of trying to explaig*, to which we have
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no access, we will define explanation vectors that help us understaolgsdierg on the test data
points.

Since we do not assume that we have access to some intermediate realeledgéikr output
here (of whichg might be a thresholded version and which further might not be an estimag¥ ef
c| X=x)), we suggest to approximaggby another classifigy, the actual form of which resembles
the Bayes classifier. There are several choicegyfdor"example, GPC, logistic regression, and
Parzen windows. In this paper we apply Parzen windows to the training points to estimate the
weighted class densitigéXY =c) - P(X | Y =c), for the index set. = {i | g(%) =c}

Po(x,y=c) Z Ko(X—%) (2)
and withks(2) being a Gaussian kernk}(z) = exp(—0.52'z/0?) /v/2m0? (as always other kernels

are also possible). This estimat®y =c| X=x) for all c,

Bo(xy=0)  _ Fierkox—x)
Bo(X.y=C)+ Po(xY£0) 3 iko(x—X)

and thus is an estimate of the Bayes classifier (that mig)ics

Po(y=clx) = 3

ds(x) = arg {T”,‘C} Bo(y#C| X).

This approach has the advantage that we can use our estimated clgdsifggmerate any amount
of labeled data for constructingy The single hyper-parametetis chosen such thatapproximates
g (which we want to explain), that is,

m
6 :=arg ng’in,; 1{9(z) #8s(z)) } .
wherel {---} is the indicator functiono is assigned the constant val@érom here on and omitted

as a subscript. Fayifis straightforward to define explanation vectors:

Definition 3

 (Zigtge Kz=2)) (Zicty, Kz=x)(z=x))
x:z_ 02 (Zi”:lk(z—x;))z
(it Mz x)2-x) ) (S, Kz—x)
0? (Zinzlk(Z—Xi))z .

This is easily derived using Equation (3) and the derivative of EquaBtynsee Appendix A.3.1.
Note that we usg instead ofg. This choice ensures that the orientation¢f) fits to the labels
assigned by, which allows better interpretations.

In summary, we imitate the classifigrwhich we would like to explain locally by a Parzen
window classifiegthat has the same form as the Bayes estimator and for which we can estimate the

(2= 2 ply£e@ | %

5. For Support Vector Machines Platt (1999) fits a sigmoid function totimaputputs to probabilities. In the following,
we will present a more general method for estimating explanation vectors
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explanation vectors using Definition 3. Practically there are some cavédasnimicking classifier

g has to be estimated frogieven in high dimensions; this needs to be done with care. However,
in principle we have an arbitrary amount of training data available for cactatg g since we may

use our estimated classifigto generate labeled data.

4. Explaining Iris Flower Classification by k-Nearest Neighbors

The Iris flower data set (introduced in Fisher, 1936) describes 1&@ftofrom the genus Iris by four
features: sepal length, sepal width, petal length, and petal width, alhich are easily measured
properties of certain leaves of the corolla of the flower. There are thusters in this data set that
correspond to three different speciéss setosalris virginica, andlris versicolor.

Let us consider the problem of classifying the data pointsiefersicolor (class 0) against the
other two species (class 1). We applied standard classification machinkiypooblem as follows:

e Class 0 consists of all examplesldé versicolor.

e Class 1 consists of all exampleslds setosaandlris virginica.

e Randomly split 150 data points into 100 training and 50 test examples.

e Normalize training and test set using the mean and variance of the training set.

e Apply k-nearest neighbor classification wkh= 4 (chosen by leave-one-out cross-validation
on the training data).

e Training error is 3% (i.e., 3 mistakes in 100).
e Testerroris 8% (i.e., 4 mistakes in 50).

In order to estimate explanation vectors we mimic the classification results witlzarPamdow
classifier. The best fit (3% error) is obtained with a kernel widtly ef 0.26 (chosen by leave-one-
out cross-validation on the training data).

Since the explanation vectors live in the input space we can visualize therscatitier plots of
the initially measured features. The resultplanationgi.e., vectors) for the test set are shown
in Figure 3. The blue markers correspond to explanation vectdrisafetosaand the red markers
correspond to those of dfis virginica (both class 1). Both groups of markers point to the green
markers oflris versicolor. The most important feature is the combination of petal length and petal
width (see the corresponding panel), the product of which correspaughly to the area of the
petals. However, the resulting explanations for the two species in clasddifferent:

e Iris setosa(class 1) is different frontris versicolor (class 0) because its petal arearnsaller.
e Irisvirginica (class 1) is different fronfris versicolor(class 0) because its petal arekaiger.

Also the dimensions of the sepal (another part of the blossom) are relbuainot as distinguishing.
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3 \ / }
\ 1 / }/// Lo
£ 2 | £ //////// c ! e/
= E\i\'\'\ ) S / ///// > / //é//f//f 7
= . Q 0
oM N T B |/ g7, 7
I N O U ) Q /
NI T, gl
-1 0 1 —1 0 1 —1 0o 1
sepal length sepal length sepal length
\ % // 1 I f/‘ //
£ il 5 |7 g ////
S | M\M!” g E /%
50|/ | = 50 v
2 g g -
1 N N Ny
NN W WO T
-1 0 1 2 3 -1 0 1 2 3 —1 0 1
sepal width sepal width petal length

Figure 3: Scatter plots of the explanation vectors for the test data. Shiewati explanation vectors
for both classes: class 1 containilg setosa(shown in blue) andris virginica (shown
in red) versus class 0 containing only the spetiissversicolor (shown in green). Note

that the explanations why an Iris flower is notlas versicoloris different forlris setosa
andlris virginica.

5. Explaining USPS Digit Classification by Support Vector Maclne

We now apply the framework of estimating explanation vectors to a high dimexigiata set, the

USPS digits. The classification problem that we designed for illustratioropesis detailed in the
following list:

e digits: 16x 16 images that are reshaped to 256 dimensional column vectors

e classifier: SVM from Schwaighofer (2002) with RBF kernel width= 1 and regularization
constanC = 10 (chosen by grid search in cross-validation on the training data).

e training set: 47 “twos”, 53 “eights”; training error 0.00

e test set: 48 “twos”, 52 “eights”; test error 0.05

We approximated the estimated class labels obtained by the SVM with the Parzenwaiassifier
(Parzen window size = 10.2505, chosen by grid search in cross-validation on the training data).
The SVM and the Parzen window classifier only disagreed on 2% of thexasiples, so a good
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Figure 4: USPS digits (training set): “twos” (left) and “eights” (right) withri@et classification.

For each digit from left to right: (i) explanation vector (with black beingateg, white
being positive), (ii) the original digit, (iii-end) artificial digits along the expdion vector

towards the other class.
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Figure 5: USPS digits (test set bottom part): “twos” (left) and “eights™jigvith correct classifi-

cation. For each digit from left to right: (i) explanation vector (with blackgenegative,
white being positive), (ii) the original digit, (iii-end) artificial digits along theptanation

vector towards the other class.
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fit was achieved. Figures 4 and 5 show our results. All parts show gxamples per row. For
each example we display from left to right: (i) the explanation vector, (ii) tiggral digit, (iii-end)
artificial digits along the explanation vector towards the other daBsese artificial digits should
help to understand and interpret the explanation vector. Let us firgtdnbnok at the results on the
training set:

Figure 4 (left panel): Let us focus on the top example framed in red. The line that forms the “two”
is part of some “eight” from the data set. Thus the parts of the lines that arengh&sow
up in the explanation vector: if the dark parts (which correspond to the mgisisies) are
added to the “two” digit then it will be classified as an “eight”. In other wotgscause of
the lack of those parts the digit was classified as a “two” and not as ant"eighsimilar
explanation holds for the middle example framed in red in the same Figure. Nogatiples
transform easily to “eights”: Besides adding parts of black lines, somérexislack spots
(that make the digit be a “two”) must be removed. This is reflected in the extptanvector
by white spots/lines. The bottom “two”, framed in red, is actually a dash andleidata set
by mistake. However, its explanation vector shows nicely which parts have &olded and
which have to be removed.

Figure 4 (right panel): We see similar results for the “eights” class. The explanation vectors again
tell us how the “eights” have to change to become classified as “twos”. wsometimes
the transformation does not reach the “twos”. This is probably due to tte¢Hat some of
the “eights” are inside the cloud of “eights”.

On the test set the explanation vectors are not as pronounced as aurimgtset. However, they
show similar tendencies:

Figure 5 (left panel): We see the correctly classified “twos”. Let’s focus on the example framed in
red. Again the explanation vector shows us how to edit the image of the “twcdneform it
into an “eights”, that is, exactly which parts of the digit were important fordlassification
result. For several other “twos” the explanation vectors do not direclgt te the “eights”
but weight the different parts of the digits that were relevant for thesiflaation.

Figure 5 (right panel): Similarly to the training data, we see that also these explanation vectors
are not bringing all “eights” to “twos”. Their explanation vectors mainly gest to remove
most of the “eights” (black pixels) and add some black in the lower part (thepiarts, which
look like a white shadow).

Overall, the explanation vectors tell us how to edit our example digits to chtegessigned class
label. Hereby, we get a better understanding of the reasons why teerchiassifier classified the
way it did.

6. Explaining Mutagenicity Classification by Gaussian Proceses

In the following Section we describe an application of our local gradigpibeation methodology to
a complex real world data set. Our aim is to find structure specific to the pnatdenain that hasot

6. For the sake of simplicity, no intermediate updates were performedstlzatificial digits were generated by taking
equal-sized steps in the direction given by the original explanation veskmulated for the original digit.

1813



BAEHRENS, SCHROETER HARMELING, KAWANABE, HANSEN AND MULLER

been fed into training explicitly but is captured implicitly by the GPC model in the kigiensional
feature space used to determine its prediction. We investigate the taskiotipgedmes mutagenic
activity of chemical compounds. Not being mutagenic (i.e., not able to causgions in the DNA)
is an important requirement for compounds under investigation in drugwdiscand design. The
Ames test (Ames et al., 1972) is a standard experimental setup for measuwriagenicity. The
following experiments are based on a set of Ames test results for 65fh#adieompounds that we
published previously.
GPC was applied as follows:

e Class 0 consists of non-mutagenic compounds.
e Class 1 consists of mutagenic compounds.
e Randomly split 6512 data points into 2000 training and 4512 test exampleshgich

— The training set consists of equally many class 0 and class 1 examples.
— For the steroid compound class the balance in the training and test setriseehfo

¢ 10 additional random splits were investigated individually. This confirmedehelts pre-
sented below.

e Each example (chemical compound) is represented by a vector of cdutv® onolecular
substructures calculated using theAioN software (Todeschini et al., 2006).

e Normalize training and test set using the mean and variance of the training set.
e Apply GPC model with RBF kernel.

e Performance (84 % area under curve) confirms our previous residissén et al., 2009).
Error rates can be obtained from Figure 6.

Together with the prediction we calculated the explanation vector (as inedda®efinition 2) for
each test point. The remainder of this Section is an evaluation of these xptahations.

In Figures 7 and 8 we show the distribution of the local importance of seléestgres across
the test set: For each input feature we generate a histogram of locatampewalues, as indicated
by its corresponding entry in the explanation vector of each of the 451Zdespounds. The
features examined in Figure 7 are counts of substructures known te gauagenicity. We show
all approved “specific toxicophores” introduced by Kazius et al. §)GBat are also represented
in the DRAGON set of features. The features shown in Figure 8 are known to detoaifgio
toxicophores (again see Kazius et al., 2005). With the exception of Hédticophores also have
a toxifying influence according to our GPC prediction model. Feature Bens to be mostly
irrelevant for the prediction of the GPC model on the test points. In cdritresdetoxicophores
show overall negative influence on the prediction outcome of the GPC mbfhbelifying the test
compounds by adding toxicophores will increase the probability of beinggantaas predicted by
the GPC model while adding detoxicophores will decrease this predictedlpfidy.

7. See Hansen et al. (2009) for results of modeling this set usingeadifferachine learning methods. The data itself is
available online afttp://ml.cs.tu-berlin.de/toxbenchmark
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Figure 6: Receiver operating characteristic curve of GPC model forgenteity prediction

We have seen that the conclusions drawn from our explanation veghas with established
knowledge about toxicophores and detoxicophores. While this is mréagssuch a sanity check re-
quired existing knowledge about which compounds are toxicophoredetngicophores and which
are not. Thus itis interesting to ask whether we also could Heso®veredhat knowledge from the
explanation vectors. To answer this question we ranked all 142 fedtyitbe means of their local
gradient$ Clear trends result: 9 out of 10 known toxicophores can be found thase top of the
list (mean rank of 19). The only exception (rank 81) is the aromatic nitrosafeature’ This trend
is even stronger for the detoxicophores: The mean rank of these éigds is 138 (out of 142),
that is, they consistently exhibit the largest negative local gradientssegoently, the established
knowledge about toxicophores and detoxicophores could indeedde@rediscoveredusing our
methodology.

In the following paragraph we will discuss sterditias an example of an important compound
class for which the meaning of features differs from this global trendhablocal explanation
vectors are needed to correctly identify relevant features.

Figure 9 displays the difference in relevance of epoxide (a) and aliphticamine (c) sub-
structures for the predicted mutagenicity of steroids and non-steroid eaomdpo For compari-
son we also show the distributions for compounds chosen at randomttietast set (b,d). Each
subfigure contains two measures of (dis-)similarity for each pair of disioifist The p-value of
the Kolmogorov-Smirnoff test (KS) gives the probability of error whejeetng the hypothesis
that both relative frequencies are drawn from the same underlying disorb The symmetrized

8. Tables resulting from this ranking are made available as a supplentéig fmper and can be downloaded from the
journals website.

9. This finding agrees with the result obtained by visually inspecting Figigle ¥e found that only very few com-
pounds with this feature are present in the data set. Consequently, detédtics feature is only possible if enough
of these few compounds are included in the training data. This was noaskedrtthe random split used to produce
the results presented above.

10. Steroids are natural products and occur in humans, animalslaarisl. prhey have a characteristic backbone contain-
ing four fused carbon-rings. Many hormones important to the dewgtop of the human body are steroids, including
androgens, estrogens, progestagens, cholesterol and natbaliest These have been used as starting points for
the development of many different drugs, including the most reliabiéraoceptives currently on the market.
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Figure 7: Distribution of local importance of selected features across shesée of 4512 com-

pounds. Nine out of ten known toxicophores (Kazius et al., 2005) ohdgbibit positive
local gradients.
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Figure 8: Distribution of local importance of selected features across shesé¢ of 4512 com-
pounds. All five known detoxicophores exhibit negative local gradien

Kullback-Leibler divergence (KLD) gives a metric of the distance betwtde two distributions?
While containing epoxides generally tends to make molecules mutagenic (sessthscabove), we
do not observe this effect for steroids: In Figure 9(a), almost alkielgacontaining non-steroids ex-
hibit positive gradients, thereby following the global distribution of epoxidetaining compounds
as shown in Figure 7(f). In contrast, almost all epoxide containing steeitibit gradients just
below zero. “Immunity” of steroids to the epoxide toxicophore is an estaldifdet and has first
been discussed by Glatt et al. (1983). This peculiarity in chemical spadeady exhibited by
the local explanation given by our approach. For aliphatic nitrosaminesitiiation in the GPC
model is less clear but still the toxifying influence seems to be less in sterowléntimaany other
compounds. To our knowledge, this phenomenon has not yet beesshskcin the pharmaceutical
literature.

In conclusion, we can learn from the explanation vectors that:

e Toxicophores tend to make compounds mutagenic (class 1).
e Detoxicophores tend to make compounds non-mutagenic (class 0).

e Steroids are immune to the presence of some toxicophores (epoxide,lypassibaliphatic
nitrosamine).

11. Symmetry is achieved by averaging the two Kullback-Leibler divergs: KL , compare to Johnson
and Sinanovic (2000). To prevent zero-values in the histograms wiaald lead to infinite KL distances, a> 0
has been added to each bin count.

(P1,P2)+KL(P2,P1)
- 2z
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Figure 9: The local distribution of feature importance to steroids and ranumn-steroid com-
pounds significantly differs for two known toxicophores. The small Igecatients found
for the steroids (shown in blue) indicate that the presence of each txio®s irrelevant
to the molecules toxicity. For non-steroids (shown in red) the known toxm@stindeed

exhibit positive local gradients.

7. Related Work

Assigning potentially different explanations to individual data points distsigas our approach
from conventional feature extraction methods that extract global feathat are relevant for all
data points, that is, those features that allow to achieve a small overatitpyederror. Our notion
of explanation is not related to the prediction error, but only to the labeiged by the prediction
algorithm. Even if the error is large, our framework is able to answer thstigumevhythe algorithm
has decided on a data point the way it did.
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The explanation vector proposed here is similar in spirit to sensitivity analysc is common
in various areas of information science. A classical example is outlier setysiti statistics (Ham-
pel et al., 1986). In this case, the effects of removing single data poingstomated parameters
are evaluated by an influence function. If the influence for a data posigmsficantly large, it is
detected as an outlier and should be removed for the following analysiggtassion problems,
leverage analysis is a procedure along similar lines. It detects leverags phich have potential
to give large impact on the estimate of the regression function. In contrést influential points
(outliers), removing a leverage sample may not actually change the regiiégs response is very
close to the predicted value. E.g., for linear regression the samples wipags are far from the
mean are the leverage points. Our framework of explanation vectorgleams different view. It
describes the influence afovingsingle data points locally and it thus answers the question which
directions are locally most influential to the prediction. The explanation v&et@r used to extract
sensitive features that are relevant to the prediction results, rathedétacting/eliminating the
influential samples.

In recent decades, explanation of results by expert systems hasbémportant topic in the
Artificial Intelligence community. Especially for expert systems based ore&aw belief networks,
such explanation is crucial in practical use. In this context sensitivitlysisehas also been used
as a guiding principle (Horvitz et al., 1988). There the influence is evaluateemoving a set of
variables (features) from the evidence and the explanation is constifucte those variables that
affect inference (relevant variables). For example, Suermon@2jlIfdeasures the cost of omitting
a single featur&; by the cross-entropy

N .
H~(E) = H(p(D|E);P(D|E\E)) Z dj|E)lo (F;(JT,’E%

whereE denotes the evidence afi= (dj,... ,dN)T is the target variable. The cost of a subset
F C E can be defined similarly. This line of research is more connected to our, Wwedause
explanation can depend on the assigned values of the evi@igrarel is thus local.

Similarly Robnik-Sikonja and Kononenko (2008) and Strumbelj and Konkm¢2008) try to
explain the decision of trained kNN-, SVM-, and ANN-models for individunatances by measur-
ing the difference in their prediction with sets of features omitted. The cosimitting features
is evaluated as the information difference, the log-odds ratio, or the liiferof probabilities be-
tween the model with knowledge about all features and with omissionsctesde To know what
the prediction would be without the knowledge of a certain feature the modstésrred for every
choice of features whose influence is to be explained. To save the timendircatorial training
Robnik-Sikonja and Kononenko (2008) propose to use neutral vatheh have to be estimated
by a known prior distribution of all possible parameter values. As a theatétaamework for con-
sidering feature interactions, Strumbelj and Kononenko (2008) peojoosalculate the differences
between model predictions for every choice of feature subset.

For multi-layer perceptrons Fraud and Clrot (2002) measure the impertariadividual in-
put variables on clusters of test points. Therefore the change in the maigheit is evaluated for
the change of a single input variable in a chosen interval while all othet wgpiables are fixed.
Lemaire and Feraud (2007) use a similar approach on an instance byabtsis. By considering
each input variable in turn there is no way to measure input feature interactiothe model output
(see LeCun et al., 1998).
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Figure 10:¢(x) is the zero vector in the middle of the cluster in the middle.

The principal differences between our approach and these frarkewoe: (i) We consider
continuous features and no structure among them is required, while soerefratimeworks start
from binary features and may require discretization steps with the neetirtaisparameters for
it. (ii) We allow changes in any direction, that is, any weighted combination néabkes, while
other approaches only consider one feature at a time or the omissiontaffaszagables.

8. Discussion

We have shown that our methods for calculating / estimating explanation sex®@useful in a
variety of situations. In the following we discuss their limitations.

8.1 What Can We Do if the Derivative is Zero?

This situation is depicted in Figure 10. In the lower panel we see a two-dinmeiglata set con-
sisting of three clusters. The middle cluster has a different class than tterslon the left and
on the right. Only the horizontal coordinate (i.;) is relevant for the classification. The upper
panel shows the projected data and a representative sli¢exof However, the explanatiod(x)
for the center point of the middle cluster is the zero vector, because gidhmtp(Y = 1|X =X)

is maximal. What can we do in such situations? Actually, the (normalized) exanzector
is derived from the following optimization problem for finding the locally mostuafitial direc-
tion: argmaxg_1 {P(Y # 9" (X0)[X =X+ &) — p(Y #g"(X0)|X = Xo) }. In case that the first deriva-
tive of the above criterion is zero, its Taylor expansion starts from thenskeorder term, which
is a quadratic form of its Hessian matrix. In the example data set with threersluste explana-
tion vector is constant along the second dimension. The mteestingdirection is given by the
eigenvector corresponding to the largest eigenvalue of the Hessias .diféction will be in our
example along the first dimension. Thus, we can learn from the Hessiathéhfitst coordinate
is relevant for the classification, but we do not obtain an orientation fomgtehd it means that
both directions (left and right) will influence the classification. Howevethé conditional distri-
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butionP(Y = 1| X = x) is flat in some regions, no meaningful explanation can be obtained by the
gradient-based approach with the remedy mentioned above. Practicallgjryy Parzen window
estimators with larger widths, the explanation vector can capture coarsaustsiof the classifier

at the points that are not so far from the borders. In A.3.2 we give atrdhisn of this point. In the
future, we would like to work on global approaches, for example, basetistances to the borders,

or extensions of the approach by Robnik-Sikonja and Kononenkdj2@&Ince these procedures
are expected to be computationally demanding, our proposal is usefuddtigey, in particular for
probabilistic classifiers.

8.2 Does Our Framework Generate Different Explanations for Differat Prediction Models?

When using the local gradient of the model prediction directly as in Definitiam@® Section 6,
the explanation follows the given model precisely by definition. For the estimfionework this
depends on whether the different classifiers classify the data diffgrenthat case the explanation
vectors will be different, which makes sense, since they should explariaksifier at hand, even
if its estimated labels were not all correct. On the other hand, if the diffetagsifiers agree on all
labels, the explanation will be exactly equal.

8.3 Which Implicit Limitations Do Analytical Gradients Inherit From Gaussia n Process
Models?

A particular phenomenon can be observed at the boundaries of the gralaia: Far from the
training data, Gaussian Process Classification models predict a probabiity for the positive
class. When querying the model in an area of the feature space wieglietjons are negative,
and one approaches the boundaries of the space populated with tradténgxplanation vectors
will point away from any training data and therefore also away fromsacéaositive prediction.
This behavior can be observed in Figure 1(d), where unit length \geitdicate the direction of
explanation vectors. In the right hand side corner, arrows point way the triangle. However,
we can see that the length of these vectors is so small that they are noviside in Figure
1(c). Consequently, this property of GPC models does not pose a tiestfior identifying the
locally most influential features by investigating the features with the highsstwb values in the
respective partial derivatives, as shown in Section 6.

8.4 Stationarity of the Data

Since explanation vectors are defined as local gradients of the modétmme (see Definition 2),
no assumption on the data is made: The local gradients follow the predictivel mahy case. If,
however, the model to be explained assumes stationarity of the data, theagiqravectors will
inherit this limitation and reflect any shortcomings of the model (e.g., when thelndpplied
to non-stationary data). Our method for estimating explanation vectors, athtiehand, assumes
stationarity of the data.

When modeling data that is in fact non-stationary, appropriate measurealtwith such data
sets should be taken. One option is to separate the feature space into stati@haon-stationary
parts using Stationary Subspace Analysis as introduced by woawBet al. (2009). For further
approaches to data set shift see Sugiyama et al. (2007b), Sugiyam@@e0da), and the book by
Quionero-Candela et al. (2009).
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9. Conclusion

This paper proposes a method that sheds light on the black boxes ofeardiassifiers. In other
words, we introduce a method that can explain the local decisions takerbitnaiy (possibly)
nonlinear classification algorithms. In a nutshell, the estimated explanatiolusalgradients that
characterize how a data point has to be moved to change its predicted labelodels where such
gradient information cannot be calculated explicitly, we employ a probabilispcoximate mimic
of the learning machine to be explained.

To validate our methodology we show how it can be used to draw new camtéusn how the
various lIris flowers in Fisher's famous data set are different frooh edher and how to identify
the features with which certain types of digits 2 and 8 in the USPS data sekeddistimguished.
Furthermore, we applied our method to a challenging drug discovery pnoflee results on that
data fully agree with existing domain knowledge, which was not available tonmtihod. Even
local peculiarities in chemical space (the extraordinary behavior ofid&reas discovered using
the local explanations given by our approach.

Future directions are two-fold: First we believe that our method will find itg iméo the tool
boxes of practitioners who not only want to automatically classify their datavho also would
like to understand the learned classifier. Thus using our explanationvitaikén computational
biology (see Sonnenburg et al., 2008) and in decision making experimemsgchophysics (e.g.,
Kienzle et al., 2009) seems most promising. The second direction is to {eaenar approach to
other prediction problems such as regression.
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Appendix A.

In the following we present the derivation of direct local gradients andtitiie aspects like the
effect of different kernel functions, outliers and local non-lineasiti€urthermore we present the
derivation of explanation vectors based on the parzen window estimatabillastrate how the

quality of the fit of the Parzen window approximation affects the quality of stiemated explanation
vectors.

A.1 Derivation of Direct Local Gradients

Equation (1) is derived by the following steps:
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¢ In any case note that the local gradients explain the model, which in turn manapmnot

A.2 lllustration of Direct Local Gradients

A.2.1 CHOICE OFKERNEL FUNCTION

capture the true situation.

¢ In Subfigure 11(a) the linear kernel leads to a model which fails to cafitangon-linear class
separation. This model misspecification is reflected by the explanationsfgivehis model

in Subfigure 11(b).

e The rational quadratic kernel is able to more accurately model the non-Begaration. In
Subfigure 11(c) a non-optimal degree parameter has been choséindivative purposes.
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In the following we give some illustrative examples of our method to explain madshgy local

gradients. Since the explanation is derived directly from the respectigelmois interesting to
investigate its acurateness depending on different model parametens astructive scenarios.
We examine the effects that local gradients exhibit when choosing diffkeznel functions, when
introducing outliers, and when the classes are not linearly separablig.loca

Figure 11 shows the effect of different kernel functions on the ti@atay data from Figure 1. The
following observations can be made:
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Figure 11: The effect of different kernel functions to the local gratiexplanations

For other parameter values the rational quadratic kernel leads to simildisras the RBF
kernel function used in Figure 1.

e The explanations in Subfigure 11(d) obtained for this model show localrpations at the
small “bumps” of the model but the trends towards the positive class arelstil AAs pre-
viously observed in Figure 1, the explanations make clear that both featuezact at the
corners and on the hypotenuse of the triangle class.

A.2.2 OUTLIERS

In Figure 12 the effects of two outliers in the classification data to GPC with Ridfekare shown.
Once more, note that the local gradients explain the model, which in turn mayyaraoheapture the
true situation. The size of the region affected by the outliers depends &eriie width parameter.
We consider the following items:
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Figure 12: The effect of outliers to the local gradient explanations

e Local gradients are in the same way sensitive to outliers as the model whichryht
explain. Here a single outlier deforms the model and with it the explanation waéghbe
extracted from it.

e Being derivatives the sensitivity of local gradients to a nearby outlier iased over the
sensitivity of the model prediction itself.

e Thus the local gradient of a point near an outlier may not reflect a trpkueation of the
features important in reality. Nevertheless it is the model here which is waiomgnd an
outlier in the first place.

e The histograms in the Figures 7, 8, and 9 in Section 6 show the trends ofspectee
features in the distribution of all test points and are thus not affected biesmutliers.

To compensate for the effect of outliers to the local gradients of points iaffeeted region
we propose to use a sliding window method to smooth the gradients aroungaatbf interest.
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Thus for each point use the mean of all local gradients in the hyperaitiered at this point and
of appropriate size. This way the disrupting effect of an outlier is awetagit for an appropriately
chosen window size.

A.2.3 LOCAL NON-LINEARITY
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Figure 13: The effect of local non-linearity to the local gradient exglims

The effect of locally non-linear class boundaries in the data is shown uré-i again for GPC
with an RBF kernel. The following points can be observed:

e All the non-linear class boundaries are accurately followed by the |loadignts.

e The circle shaped region of negative examples surrounded by posita® shows the full
range of feature interactions towards the positive class.

¢ On the ridge of single positive instances the model introduces small valleigh e re-
flected by the local gradients.
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A.3 Estimating by Parzen Window

Finally we elaborate on some details of our estimation approach of local gtatlieParzen window
approximation. First we give the derivation to obtain the explanation ventbsecond we examine
how the explanation varies with the goodness of fit of the Parzen windowocheth

A.3.1 DERIVATION OF EXPLANATION VECTORS

These are more details on the derivation of Definition 3. We use the indéx=sdi | g(x;) = c}:
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and thus for the index s&§; = {i | g(x) = 9(2)}

i2)= 2 b9 %)

X=z

(Bt K20 ) ( Sty Kz=3) (2= %))

- o2 (3q (Z*Xi))z

- (Ziglg(z) k(Z—Xi)(Z—Xi)) (Zie|g<z> k(Z—Xi))
o? (Zinzlk(Z—Xi))z '

A.3.2 GOODNESS OFFIT BY PARZEN WINDOW

In our estimation framework the quality of the local gradients depends orpfiteximation of the
classifier we want to explain by Parzen windows for which we can calcthiatexplanation vectors
as given by Definition 3.

Figure 14(a) shows an SVM model trained on the classification data fromrd-i3(a). The
local gradients estimated for this model by different Parzen window appeations are depicted in
Subfigures 14(b), 14(c), and 14(d). We observe the following points
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) estimated explanation with= 0.00069

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c) estimated explanation with= 0.1 (d) estimated explanation with= 1.0

Figure 14: Good fit of Parzen window approximation affects the quality @etimated explana-
tion vectors

e The SVM model was trained witi = 10 and using an RBF kernel of width= 0.01.

¢ In Subfigure 14(b) a small window width has been chosen by minimizing the aiesoiute
error over the validation set of labels predicted by the SVM classifier.s Tl obtain ex-
plaining local gradients on the class boundaries but zero vectors in teedlass regions.
While this resembles the piecewise flat SVM model most accurately it may be reefd u
practically to choose a larger width to obtain non-zero gradients pointing tbdiders in
this regions as well. For a more detailed discussion of zero gradients cen:

e A larger width practically useful in this example is shown in Subfigure 144eYe the local
gradients in the inner class regions point to the other class as well.
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e For a too large window width in Subfigure 14(d) the approximation fails to olaial gra-
dients which closely follow the model. Here only two directions are left and tadignts for
the blue class on the left and on the bottom point in the wrong direction.
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