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Abstract

This work deals with four classical prediction settingsmedy full information, bandit, label effi-
cient and bandit label efficient as well as four differentioiag of regret: pseudo-regret, expected re-
gret, high probability regret and tracking the best expegtet. We introduce a new forecaster, INF
(Implicitly Normalized Forecaster) based on an arbitranyctiony for which we propose a unified
analysis of its pseudo-regret in the four games we considgarticular, for)(x) = exp(nx) + £,
INF reduces to the classical exponentially weighted avefagecaster and our analysis of the
pseudo-regret recovers known results while for the expeegret we slightly tighten the bounds.
On the other hand witlp(x) = (%)q + %, which defines a new forecaster, we are able to remove
the extraneous logarithmic factor in the pseudo-regrentiedor bandits games, and thus fill in a
long open gap in the characterization of the minimax ratétferpseudo-regret in the bandit game.
We also provide high probability bounds depending on theutative reward of the optimal action.
Finally, we consider the stochastic bandit game, and pioaean appropriate modification of
the upper confidence bound policy UCB1 (Auer et al., 2002haieaes the distribution-free optimal
rate while still having a distribution-dependent rate ldpenic in the number of plays.
Keywords: Bandits (adversarial and stochastic), regret bound, na@rirate, label efficient, upper
confidence bound (UCB) policy, online learning, predictiaith limited feedback.

1. Introduction

This section starts by defining the prediction tasks, the different regtieins that we will consider,
and the different adversaries of the forecaster. We will then reciairexlower and upper regret
bounds for the different settings, and give an overview of our cauttabs.

1.1 The Four Prediction Tasks

We consider a general prediction game where at each stage, a ter¢oadecision maker) chooses
one action (or arm), and receives a reward from it. Then the foreaasteives a feedback about
the rewards which he can use to make his choice at the next stage. His goahaximize his

cumulative gain. In the simplest version, after choosing an arm the &israabserves the rewards
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Parameters:the number of arms (or action®) and the number of rounds with
n>K2>2.

Foreachrounti=1,2,...,n

(1) The forecaster chooses an akne {1,...,K}, possibly with the help of an
external randomization.

(2) Simultaneously the adversary chooses a gain vetot (git,...,0kt) €
[0,1]K (see Section 8 for loss games or signed games).

(3) The forecaster receives the gajip; (without systematically observing it). He
observes

the reward vectofgy, ..., 0k t) in thefull information game,

the reward vectofg., ..., 0k ) if he asks for it with the global constraint
that he is not allowed to ask it more themtimes for some fixed integer
number 1< m < n. This prediction game is tHabel efficientgame,

only gy, 1 in thebandit game,

only his obtained reward, ; if he asks for it with the global constraint
that he is not allowed to ask it more thamtimes for some fixed integer
number 1< m < n. This prediction game is thiabel efficient bandit
game.

Goal : The forecaster tries to maximize his cumulative gl gj, .

Figure 1: The four prediction tasks considered in this work.

for all arms, this is the so called full information game. In the label efficiemhayaoriginally
proposed by Helmbold and Panizza (1997), after choosing its actioneagey the forecaster decides
whether to ask for the rewards of the different actions at this stagejikgahat he is allowed to do
it a limited number of times. Another classical setting is the bandit game whererdwasber only
observes the reward of the arm he has chosen. In its original veRa@bb(ns, 1952), this game
was considered in a stochastic setting, that is, the nature draws the sdwarda fixed product-
distribution. Later it was considered in an adversarial framework (Atat., 1995), where there
is an adversary choosing the rewards on the arms. A combination of theréwioys settings is
the label efficient bandit game (@sgy and Ottucak, 2006), in which the only observed rewards
are the ones obtained and asked by the forecaster, with again a limitationrmmtber of possible
gueries. These four games are described more precisely in Figureit Hemnan consistency has
been considered in Allenberg et al. (2006) in the case of unboundeekloslere we will focus on
regret upper bounds and minimax policies for bounded losses.

1.2 Regret and Pseudo-regret

A natural way to assess the performance of a forecaster is to compusgtgsnith respect to the
best action in hindsight (see Section 7 for a more general regret in wid@atompare to the best
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switching strategy having a fixed number of action-switches):

n

R, = mathl (0t — Git)-

1<i<K

A lot of attention has been drawn by the characterization of the minimax expegeet in the dif-
ferent games we have described. More precisely for a given ganus,Weite sup for the supremum
over all allowed adversaries and inf for the infimum over all forecastategjies for this game. We
are interested in the quantity:

infSupER,,

where the expectation is with respect to the possible randomization of tleastee and the adver-
sary. Another related quantity which can be easier to handle isshedo-regret

n

R, = lrgiz)éEt: (Git—9ut)-

Note that, by Jensen’s inequality, the pseudo-regret is always smalfeththaxpected regret. In
Appendix D we discuss cases where the converse inequality holds (n@tidéional term).

1.3 The Different Adversaries

The simplest adversary is the deterministic one. It is characterized bydanfiagix of nK rewards
corresponding tdg;t)1<i<k 1<t<n. Another adversary is the “stochastic” one, in which the reward
vectors are independent and have the same distribbititinis adversary is characterized by a dis-
tribution on[0,1]¥, corresponding to the common distributionggft = 1,...,n. A more general
adversary is the fully oblivious one, in which the reward vectors arepiexéent. Here the adver-
sary is characterized hy distributions on[0, 1€ corresponding to the distributions gf, ..., gn.
Deterministic and stochastic adversaries are fully oblivious adversaries.

An even more general adversary is the oblivious one, in which the omigtaint on the ad-
versary is that the reward vectors are independent of the past dectfithe forecaster. The most
general adversary is the one who may choose the reward gge@sa function of the past decisions
l1,...,li_1 (non-oblivious adversary).

1.4 Known Regret Bounds

Table 1 recaps existing lower and upper bounds on the minimax pseudt-aegl the minimax
expected regret for general adversaries (i.e., possibly non-alsidoes). For the first three lines,
we refer the reader to the book (Cesa-Bianchi and Lugosi, 200&eéences within, particularly
Cesa-Bianchi et al. (1997) and Cesa-Bianchi (1999) for the fulirmftion game, Cesa-Bianchi
et al. (2005) for the label efficient game, Auer et al. (2002b) for #wedit game and Gy gy and
Ottucsak (2006) for the label efficient bandit game. The lower bounds in théit@sdo not appear
in the existing litterature, but we prove them in this paper. Apart from therftdkrmation game,
the upper bounds are usually proved on the pseudo-regret. Thehqpwls on the expected regret
are obtained by using high probability bounds on the regret. The paranoétée algorithm in the

1. The term “stochastic” can be a bit misleading since the assumption issi@tgchasticity but rather an i.i.d. as-
sumption.
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infsupR, infsupER,
Lower bound| Upper bound| Lower bound| Upper bound
Full information game y/nlogK v/nlogK y/nlogK v/nlogK
Label efficient game ny/ 2k ny/ ‘2K ny/ 2k ny/'9n
Bandit game vnK v/nKlogK vnK v/nKlogn
Bandit label efficient game n\/% n\/&n?K n\/% n\/%

Table 1: Existing bounds (apart from the lower bounds in the last line wdiiehproved in this
paper) on the pseudo-regret and expected regret. Except foultheférmation game,
there are logarithmic gaps between lower and upper bounds.

latter bounds usually depend on the confidence i@ttt we want to obtain. Thus to derive bounds
on the expected regret we can not integrate the deviations but ratheveedtaked of order I/n,
which leads to the gaps involving 1ag). Table 1 exhibits several logarithmic gaps between upper
and lower bounds on the minimax rate, namely:

e /log(K) gap for the minimax pseudo-regret in the bandit game as well as the lalbedreffi
bandit game.

¢ /log(n) gap for the minimax expected regret in the bandit game as well as the labedreffi
bandit game.

e /log(n)/log(K) gap for the minimax expected regret in the label efficient game,

1.5 Contributions of This Work

We reduce the above gaps by improving the upper bounds as showrbley2laDifferent proof
techniques are used and new forecasting strategies are propogecho$horiginal contribution is
the introduction of a new forecaster, INF (Implicitly Normalized Forecaster)wvhich we propose
a unified analysis of its regret in the four games we consider. The an#@ysiginal (it avoids
the traditional but scope-limiting argument based on the simplification of a suagafithms of
ratios), and allows to fill in the long open gap in the bandit problems with obkvaalyersaries (and
with general adversaries for the pseudo-regret notion). The anallg® applies to exponentially
weighted average forecasters. It allows to prove a regret bounder ¢'nKSlog(nK/S) when the
forecaster’s strategy is compared to a strategy allowed to s®ittches between arms, while the
best known bound wag/nKSlog(nK) (Auer, 2002), and achieved for a different policy.

An “orthogonal” contribution is to propose a tuning of the parameters ofdtecfisting policies
such that the high probability regret bounds holds for any confidene¢ (iastead of holding just
for a single confidence level as in previous works). Bounds on theotag regret that are deduced
from these PAC (“probably approximately correct”) regret bounésbetter than previous bounds
by a logarithmic factor in the games with limited information (see columns on ifER4fin Tables
1 and 2). The arguments to obtain these bounds are not fundamentallndeelyaessentially on
a careful use of deviation inequalities for supermartingales. They casdzkeither in the standard
analysis of exponentially weighted average forecasters or in the moeeajenntext of INF.
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infsupR, | infsSupER, High probability

bound onR,
Label efficient game n "’%K n\/%
Bandit game with fully oblivious adversary +/nK vnK vnKlog(d—1)
Bandit game with oblivious adversary vnK vnK \/&Iog(Ké h
Bandit game with general adversary vnK v/nKlogK \/&Iog(Ké h

L.E. bandit with deterministic adversary

>

>

\ﬁ log(3™1)

log(K&~1)
log(K&~1)

L.E. bandit with oblivious adversary n

mIogK

z

S
318
=

L.E. bandit with general adversary n n

mIogK

Table 2: New regret upper bounds proposed in this work. The higbapility bounds are for a
policy of the forecaster that does not depend on the confidenced€ualike previously
known high probability bounds).

Another “orthogonal” contribution is the proposal of a new biased estimfatieearewards in
bandit games, which allows to achieve high probability regret bounds:déeggeon the performance
of the optimal arm: in this new bound, the factois replaced byGmax= max-1_.n Y 10i:. If the
forecaster drawii according to the distributiopy = (p1t,..., Pk.t), then the new biased estimate
of gitisvit = LIS 'Iog( Bg”) This estimate should be comparedvio = g; t F'; =L for which
bounds in terms onax exists in expectations as shown in (Auer et al., 2002b, Section 3), and to
Vit = Oit " L4 B for somef3 > 0 for which high probability bounds exist but they are expressed

with then factor and noGnax (see Section 6 of Auer et al., 2002b, and Section 6.8 of Cesa-Bianchi
and Lugosi, 2006).

We also propose a unified proof to obtain the lower bounds in Table 1. digilsution of
this proof is two-fold. First it gives the first lower bound for the labdioént bandit game. Sec-
ondly in the case of the label efficient (full information) game it is a simplepptban the one
proposed in Cesa-Bianchi et al. (2005). Indeed in the latter proofautieors use Birg's version
of Fano’s lemma to prove the lower bound for deterministic forecasters thieeextension to non-
deterministic forecasters is done by a generalization of this information lemneadewbmposition
of general forecasters into a convex combination of deterministic faexsad he benefit from this
proof technique is to be able to deal with the cise 2 andK = 3 while the basic version of Fano’s
lemma does not give any information in this case. Here we propose to usensequality for
the caseK = 2 andK = 3. This allows us to use the basic version of Fano’'s lemma and to extend
the result to non-deterministic forecasters with a simple application of Fubingsrém.

The last contribution of this work is also independent of the previous ongsancerns the
stochastic bandit game (that is the bandit game with “stochastic” adver¥dgeyrove that a mod-
ification of UCB1, Auer et al. (2002a), attains the optimal distribution-fege v/nK as well as the
logarithmic distribution-dependent rate. The key idea, compared to psewotks, is to reduce
exploration of sufficiently drawn arms.
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1.6 Outline

In Section 2, we describe a new class of forecasters, called INFrédigtion games. Then we
present a new forecaster inside this class, called Poly INF, for whighregse a general theorem
bounding its regret. A more general statement on the regret of any IiNBecbbund in Appendix A.
Exponentially weighted average forecasters are a special case agIsltown in Section 3. In Sec-
tion 4, we prove that our forecasters and analysis recover the kresuits for the full information
game.

Section 5 contains the core contributions of the paper, namely all the tegretls for the lim-
ited feedback games. The interest of Poly INF appears in the bandit gemees it satisfies a regret
bound without a logarithmic factor, unlike exponentially weighted averagecésters. Section 6
provides high probability bounds in the bandit games that depends onrthdative reward of the
optimal arm: the facton is replaced by maxi<k S{_;19it. In Section 7, we consider a stronger
notion of regret, when we compare ourselves to a strategy allowed to sweiteledn arms a fixed
number of times. Section 8 shows how to generalize our results when osigl@@nlosses rather
than gains, or signed games.

Section 9 considers a framework fundamentally different from the pusvéections, namely
the stochastic multi-armed bandit problem. There we propose a new faedd®SS, for which
we prove an optimal distribution-free rate as well as a logarithmic distributigreaident rate.

Appendix A contains a general regret upper bound for INF and tvedulisechnical lemmas.
Appendix B contains the unified proof of the lower bounds. Appendix @ains the proofs that
have not been detailed in the main body of the paper. Finally, Appendix Ceigathe different
results we have obtained regarding the relation between the expectetaiedithe pseudo-regret.

2. The Implicitly Normalized Forecaster

In this section, we define a new class of randomized policies for the dearediction game. Let
us consider a continuously differentiable functipnR* — R* satisfying

V>0, lm g(x) <1/K,  Iimyx)=>1 @

Lemma 1 There exists a continuously differentiable function® — R satisfying for any x=
(X1,..., %) € RK,

. < _w!
ggm<qw_g§m Y (1/K), 2
and
K
P —C(x) = 1. (3)
2
Proof Consider a fixeck = (x,...,%). The decreasing functiop: ¢+ S, Y(x — c) satisfies
Hlmx N ¢c)>1 and HIlmocp(c) <1l

1<i<K

From the intermediate value theorem, there is a un@pe satisfyingg(C(x)) = 1. From the im-
plicit function theorem, the mapping— C(Xx) is continuously differentiable. |
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INF (Implicitly Normalized Forecaster):
Parameters:
¢ the continuously differentiable functiap: R* — R’ satisfying (1)

o the estimates;; of g1 based on the (drawn arms and) observed rewards at time
t (and before time)

Let p; be the uniform distribution ovefrl, ... ,K}.
Foreachround=1,2,...,
(1) Draw an arml; from the probability distributiorp.

(2) Use the observed reward(s) to build the estimate= (vig,...,vikt) Of
(91t ---,0kt) and letVi =S4 vs = (Vag,...,Vk ).

(3) Compute the normalization const&ht= C(\4).
(4) Compute the new probability distributign,1 = (P1t+1,---, Pk t+1) Where

Pitr1 =PVt —C).

Figure 2: The proposed policy for the general prediction game.

The implicitly normalized forecaster (INF) is defined in Figure 2. Equality (3ke@sahe fourth
step in Figure 2 legitimate. From (2J(V;) is roughly equal to max<k Vi:. Recall thad/; is an
estimate of the cumulative gain at timdor armi. This means that INF chooses the probability
assigned to arnmh as a function of the (estimated) regret. Note that, in spirit, it is similar to the
traditional weighted average forecaster, see for example Section 2.@safBlanchi and Lugosi
(2006), where the probabilities are proportional to a function of thereiffee between the (esti-
mated) cumulative reward of arirand the cumulative reward of the policy, which should be, for a
well-performing policy, of orde€(\}).

The interesting feature of the implicit normalization is the following argument, walickvs to
recover the results concerning the exponentially weighted averageaftees, and more interest-
ingly to propose a policy having a regret of ordénK in the bandit game with oblivious adversary.
First note thaty_; YK ; pitvit roughly evaluates the cumulative rewarfl ; g, 1 of the policy. In
fact, it is exactly the cumulative gain in the bandit game when= gi7t%, and its expectation is
exactly the expected cumulative reward in the full information game whes g;;. The argument

starts with an Abel transformation and consequently is “orthogonal” to thal asgument given in
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the beginning of Section C.2. Letting = 0 € RX. We have

n n K
;iglnt ~ tzlzi Pi tVit
- R
= tii Pit(Vit —Vit—1)
=1i=
= i Pint1Vin+ i ivi’t(pi’t — Pit+1)

= lel n+1 p| n+1 ‘|‘Cn "‘lel pl t+1 +Ct)(pi7t_ pi,t+1)

_Cn"f'zlplmrlllJ (Pin+1) +lelw (Pit+1)(Pit — Pit+1),

where the remarkable simplification in the last step is closely linked to our spelzfis of ran-
domized algorithms. The equality is interesting since, from GZ)approximates the maximum
estimated cumulative reward max<k Vi n, which should be close to the cumulative reward of the
optimal arm max<i<k Gi n, whereGi , = i, gi+. Since the last term in the right-hand side is

ZZ‘“ (Pes) (P = Piasa) ZZ/.

we obtain

Pin+1

i / L Ywde @

pi, t+1

pi, n+1
1@22 Gin— Zigm =~ Zl pi, n—&-1L|»I (pi, n+1 + Zl/ B (5)

The right-hand side is easy to study: it depends only on the final probakslityr and has simple
upper bounds for adequate choicesyof For instance, forf(x) = exp(nx) + ¥ with n > 0 and

y € [0,1), which corresponds to exponentially weighted average forecasteve asll explain in
Section 3, the right-hand side is smaller tHg#log () +YCn. Forw(x) = (& )"+ ¥ with n >0,
g> 1 andy € [0,1), which will appear to be a fruitful choice, it is smaller thg%\inKl/q+nd. For
sake of simplicity, we have been hiding the residual terms of (4) coming frefidilor expansions
of the primitive function ofg—1. However, these terms when added togeth&r terms!) are not
that small, and in fact constrain the choice of the paramgtansln if one wishes to get the tightest
bound.

The rigorous formulation of (5) is given in Theorem 27, which has begmpAppendix A for
lack of readability. We propose here its specialization to the fungiion = ()% + ¥ with n >0,
g> 1andye€ [0,1). This function obviously satisfies conditions (1). We will refer to the aissed
forecasting strategy as “Poly INF”. Here the (normalizing) func@dmas no closed form expression
(this is a consequence of Abel’s impossibility theorem). Actually this remarlksholgeneral, hence
the name of the general policy. However this does not lead to a major compatasisue since, in
the interval given by (2)C(x) is the unique solution of(c) = 1, where@: ¢+— K W(x —c) is
a decreasing function. We will prove that Poly INF forecaster generater probability updates
than the exponentially weighted average forecasteras as, for bandies giabel efficient or not), it
allows to remove the extraneous kKdactor in the pseudo-regret bounds and some regret bounds.
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Theorem 2 (General regret bound for Poly INF) Let y(x) = (%X)q +% withg> 1, n > 0 and
ye [0,1). Let(vit)1<i<k, 1<t<n be a sequence of nonnegative real numbers,

B; = max v;;, and B= maxB;.
1I<i<K 7 t

If y=0then INF satisfies:

(e 3,ue) - ZZ“ i< Aok dop(2T2e) St @
max n Vi C S < 9 kyayd 7
<1<i<KtZL |,t> ZLZPMVM q— n +— n exp< >2121plt it 7)

Fory> O, if we have % = %Jli:h for some random variable taking values irf0, c] with 0 < ¢ <
(9-1)/q
an ( (q_V1>K) , then

and

n n K q
<rgg <2 V|t> (1+Y0) ZZD.N.Kq nKs, (8)
where
‘- 1 ((q—l)cKu(lﬂi))q
(q-1K 2yn ’
with

(a-1)/q _ (@-1)/q\
oo 21 () (1 (190 T L

In all this work, the parameters, g andy will be chosen such tha andp act as numerical
constants. To derive concrete bounds from the above theorem, mbstwbrk lies in relating the
left-hand side with the different notions of regret we consider. This imshvial for the pseudo-
regret. To derive high probability regret bounds, deviation inequalibestipermartingales are
used on top of (6) and (8) (which hold with probability one). Finally, theseted regret bounds are
obtained by integration of the high probability bounds.

As long as numerical constants do not matter, one can use (7) to receveouhds obtained
from (6). The advantage of (7) over (6) is that it allows to get regoeinols where the factaris
replaced byGmax = max=1,...nGin.

3. Exponentially Weighted Average Forecasters

The normalization by division that weighted average forecasters peifodifferent from the nor-
malization by shift of the real axis that INF performs. Nonetheless, wereemver exactly the
exponentially weighted average forecasters because of the spdaimref the exponential with
the addition and the multiplication.

Let Yy(x) = exp(nx) + & with n > 0 andy € [0,1). Then conditions (1) are clearly satisfied and
(3) is equivalent to exp-nC(x)) = _i, which implies

Y1 exp(nxi)
exp(nVit) n

Y
i1 = (A=) o T i
P = (1) Yy expnviy) K
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In other words, for the full information case (label efficient or not), mweover the exponentially
weighted average forecaster (with= 0) while for the bandit game we recover EXP3. For the label
efficient bandit game, it does not give us the GREEN policy proposedlémBerg et al. (2006)
but rather the straightforward modification of the exponentially weightethgesforecaster to this
game (Gyrgy and Ottucsak, 2006). Theorem 3 below gives a unified view on this algorithm for
these four games. In the following, we will refer to this algorithm as the “erptially weighted
average forecaster” whatever the game is.

Theorem 3 (Regret bound for the exponentially weighted averagefecaster)
Lety(x) = exp(nx)+ ¥ withn > 0andy € [0,1). Let(Vi)1<i<k, 1<t<n be @ sequence of nonnegative
real numbers,

B: = max Vit, and B= math

1<t<n
Consider the increasing functid® : u+— e”*u[“ equal tol/2 by continuity at zero. I = 0 then
INF satisfies:
logK n
<1rgg>ézlv”> Zizlp.tv”<—+ ZlBt 9)
and
n
lo

<|22 tZ\V|t> ZZp|tV|t<ﬁ+ﬂB@ nB) Zzpltvlt (10)

If we have

y> Kno(nB) maxpiVit, (11)

then INF satisfies:

(1—v)(1rgg>}gzlv.t> lep.tv.t 1y, (12)

We have the same discussion about (9) and (10) than about (6) amdg@jality (10) allows to
prove bounds where the factois replaced bYGmax= max—1._..nGin, but at the price of worsened
numerical constants, when compared to (9). We illustrate this point in Timeérevhere (13) and
(14) respectively comes from (9) and (10) .

The above theorem relies on the standard argument based on the ¢iamcefleerms in a sum
of logarithms of ratios (see Section C.2). For sake of comparison, weslpglied our general result
for INF forecasters, that is Theorem 27 (see Appendix A). This leatise same result with wors-
ened constants. Precisely, become% exp(2nB) in (9) while ©(nNB) becomes™AZBn)[Lrexp26n)
in (11). This seems to be the price for having a theorem applying to a lageaflforecasters.

4. The Full Information (FI) Game

The purpose of this section is to illustrate the general regret boundsigiféneorems 2 and 3 in the
simplest case, when we sgt = g ¢, which is possible since the rewards for all arms are observed
in the full information setting. The next theorem is given explicitly to show ay egplication of
Inequalities (9) and (10).
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Theorem 4 (Exponentially weighted average forecaster in the FI gae) Lety(x) = exp(nx) with
n > 0. Let\vt = git. Then in the full information game, INF satisfies

logK nn
1gg§219.t—2121p.tg.t_—+§ (13)

and n n K IogK n K
M 2 it = 2 3 Pl < = = 4Nn0M) ) 5 Pl (14)

In particular withn = 8'?19K, we gefER, < ,/JlogK, and there existg > 0 such that

ER, < v/ 2EGmaxlogK.

Proof It comes from (9) and (10) since we haBe< 1 and zt”:lBtz < n. The only nontrivial
result is the last inequality. It obviously holds for anywhenEGnax = 0, and is achieved for
n = log(1+ 1/2(logK)/EGmax), WhenEGmax > 0. Indeed, by taking the expectation in (14), we

get
NEGmax— IogK 2IogK (EGmax)® ]EGmaXIogK
E Zx zlp' G = Cexpn)—-1 =log < EGmax 2logk
EEGmw—ZH@E@%QgE,

where we use lod +x) > x— X—; for anyx > 0 in the last inequality. [ |

Now we consider a new algorithm for the FI game, that is INF witk) = ( ) andvit = git.

Theorem 5 (Poly INF in the FI game) Lety(x) = (L)% withn >0and g > 1. Let vy = gi.
Then in the full information game, INF satisfies:
n K

max Zgu—ZZpltg.t<qqnKl/q+exp( nq)%- (15)

1<i<K

In particular with g= 3logK andn = 1.8 /nlogK we get

ER, < 7y/nlogK.

Proof It comes from (6)q+1<2qandy; ; B? <n. |

Remark 6 By using the Hoeffding-Azuma inequality (see, e.g., Lemma A.7 of Cesa-Biama
Lugosi, 2006), one can derive high probability bounds from (13)(@sd for instance, from (15),
for anyd > 0, with probability at least % 8, Poly INF satisfies:

log(d-1)
< 1/q 4qyan [nlog(dt)
Ri< —nK +exp( ; )on ot >
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5. The Limited Feedback Games

This section provides regret bounds for three limited feedback gamekbtbleefficient game, the
bandit game, and the mixed game, that is the label efficient bandit game.

5.1 Label Efficient Game (LE)

The variants of the LE game consider that the number of queried reweta sé&s constrained either
strictly or just in expectation. This section considers successively theseases.

5.1.1 GONSTRAINT ON THEEXPECTEDNUMBER OF QUERIED REWARD VECTORS

As in Section 4, the purpose of this section is to show how to use INF in ordectwer known
minimax bounds (up to constant factors) in a slight modification of the LE ganeesithple LE
game, in which the requirement is that #vepectechumber of queried reward vectors should be
less or equal ton.

Let us consider the following policy. At each round, we draw a Bernealidom variable,
with parametee = m/n, to decide whether we ask for the gains or not. Note that we do not fulfill
exactly the requirement of the LE game as we might ask a bit morentiveward vectors, but we
fulfill the one of the simple LE game. We do so in order to avoid technical detadS@cus on
the main argument of the proof. The exact LE game will be addressed fini$écl.2, where, in
addition, we will prove bounds on the expected redig}, instead of just the pseudo-regkt

In this section, the estimate gf; isviy = %Zt, which is observable since the rewards at time
for all arms are observed whei= 1.

Theorem 7 (Exponentially weighted average forecaster in the simpleE game) Let W{(x) =

exp(nx) with n = Y89 ) et vy = %47 with e = M. Then in the simple LE game, INF satis-
fies

Proof The first inequality comes from (9). Since we h&e< Z; /€ andv; = %Zt, we obtain

IogK

n Zt n K Zt
(pig)é t;gl’ts) —t;i; Pielity < ——+ @ let
hence, by taking the expectation of both sides,

IogK L logKk n°n

<1T|2)|§Ezlg't> Ezlzlpngn* — 8£:T+87m'

Straightforward computations conclude the proof. [ |

A similar result can be proved for the INF forecaster wjtfx) = (%()q n > 0 andq of order
logK. We do not state it since we will prove a stronger result in the next section.
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5.1.2 HARD CONSTRAINT ON THENUMBER OF QUERIED REWARD VECTORS

The goal of this section is to push the idea that by using high probability soamen intermediate
step, one can control the expected red@Bh = Emax<i<k Si_1 (ght - gh,t) instead of just the
pseudo-regreR, = max<i<k E¥{ ; (gi_,t — g.t_rt). Most previous works have obtained results for
R.. These results are interesting for oblivious opponents, that is wheutieesary’s choices of the
rewards do not depend on the past draws and obtained rewardsjrsthis case Proposition 33 in
Appendix D shows that one can extend bounds on the pseudo-Ragethe expected regréR;,.

For non-oblivious opponents, upper boundsRarare rather weak statements and high probability
bounds orRR, or bounds oIER, are desirable. In Auer (2002) and Cesa-Bianchi and Lugosi (2006
high probability bounds offir, have been given. Unfortunately, the policies proposed there are
depending on the confidence level of the bound. As a consequeacestiiting best bound &R,
obtained by choosing the policies with confidence level parameter of dfdehas an extraneous
lognterm. Specifically, from Theorem 6.2 of Cesa-Bianchi and Lugosi§p@the can immediately

deriveER, < 8n w + 1. The theorems of this section essentially show that tha tegm
can be removed.

As in Section 5.1.1, we still use a draw of a Bernoulli random varidbte decide whether we
ask for the gains or not. The difference is thagiﬁ Zs > m, we do not ask for the gains (as we are
not allowed to do so). To avoid that this last constraint interferes in thisisathe parameter of
the Bernoulli random variable is setdc= i—m and the probability of the everyt! ; Z; > mis upper
bounded. The estimate gfi remainsvi; = %Zt.

Theorem 8 (Exponentially weighted average forecaster in the LE gae) Let y(x) = exp(nx)
with n = Y™K | et v = 97 with ¢ = 3™, Then in the LE game, for any> 0, with prob-
ability at leastl — &, INF satisfies:

—1
- [2710g(2Kd )7
m
ER, < n /27Iog(6K).
m
log(2K)

Theorem 9 (Poly INF in the LE game) Lety(x) = () with = 3log(2K) andn = 2n,/ 2225,

m

Letvi= %Zt withe = i—rr']‘. Then in the LE game, for ard/> 0, with probability at least. — 8, INF

and

satisfies:
—1
RnS(Sm)ﬂ\/log(ZK)Jrn\/Z?Iog(ZKé >’
m m
and
log(6K)
ER, <8n e

5.2 Bandit Game

This section is cut into two parts. In the first one, from Theorem 2 andrEme 3, we derive
upper bounds on the pseudo-redigt= max<i<k ES 1, (gi,t — gw). To bound the expected regret
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ERy = Emaxi<i<k Y1 (9t — 9i.t), we will then use high probability bounds on top of the use of
these theorems. Since this makes the proofs more intricate, we have chquenitie the less
general results, but easier to obtain, in Section 5.2.1 and the more genesah Section 5.2.2.

The main results here are that, by using the INF with a polynomial funepiowe obtain
an upper bound of ordey'nK for R,, which imply a bound of order/nK on ER, for oblivious
adversaries (Proposition 33 in Appendix D). In the general casddioimg the non-oblivious
opponent), we show an upper bound of or¢gérKlogK on ER,. We conjecture that this bound
cannot be improved, that is the opponent may take advantage of the pazkeécathe player pay a
regret with the extra logarithmic factor (see Remark 14).

5.2.1 BOUNDS ON THEPSEUDO-REGRET

In this section, the estimate of; is viy = %]Ih:i, which is observable since the rewayg; is
revealed at timé.

Theorem 10 (Exponentially weighted average forecaster in the balit game) Let  Q(x) =
expnx) + £ with 1 >y > 1 > 0. Lety; = g"i 1;,—i. Then in the bandit game, INF satisfies:

logK
n YK EGin.

; ; 1 4KIO K 5logK
In particular, fory = min (? \/ e ) andn = /2%, we have

R < \/%BnKlogK.

Proof One simply needs to note that foy 5 4Kn, (11) is satisfied (sincB = K /y), and thus (12)
can be rewritten into

R < ——

IogK

S T R

By taking the expectation, we get

= lo

R, < (1—y)% +vy maxIEG. n
For the numerical application, sin& < n, the bound is triviak /(4K logK) /(5n) < % Otherwise,
it is a direct application of the general bound. [ |

Theorem 11 (Poly INF in the bandit game) Considerp(x) = (2 )%+ X withy = min (%, \/ %) ,
n=+5nand g= 2. Let V= %Jl.t:i. Then in the bandit game, INF satisfies:

R, < 8VnK.

2798



REGRETBOUNDS UNDER PARTIAL MONITORING

Proof The bound is trivial wher} < /3%, So we consider hereafter that= /3¢ < 1. By

taking the expectation in (8) and Iettir@max = max<i<k EGih, we obtain that fory > (q—
1)K (gn)¥2-9 > 0 (condition coming from the condition arfor (8)),

n
— q 1
1-y)G —1+ZEZ < ——nKa,
( y) max ( y) £ g|,t q 1r]

with
(=

1 ((qf DKu(1+ u))q
(q-1)K 2yn ’

(@-1)/q _ (@-1)/q\
oo 2518 ()" (12 ()T L

We thus have

and

R < V(1+7)Gmax+ qﬁané <Y(1+{n+ qﬁané.

The desired inequality is trivial whe/K /n > 1/8. So we now consider thgyK/n < 1/8. For
y=/3K/n, n = v5nandq = 2, the condition ory is satisfied (sincg/K /n < 1/8), and we have
%(%)(q‘l)/q <0.121, hence1 < 2.3,Z < 1 andR, < 8v/nkK. [

We have arbitrarily choseqp= 2 to provide an explicit upper bound. Maore generally, it is easy
to check from the proof of Theorem 11 that for any real nuntperl, we obtain the convergence
rate/nK, provided thay andn are respectively taken of ordgfK /n and/nK/K1/9,

5.2.2 HGH PROBABILITY BOUNDS AND BOUNDS ON THEEXPECTED REGRET

Theorems 10 and 11 provide upper boundRer= max<i<k E¥{ 1 (Git — Jit). To boundER, =
Emax<i<k Y11 (Uit — it), we will use high probability bounds. First we need to modify the
estimates ofj ; by considering;; = %]lh:i + L with 0 < B < 1, as was proposed in Auer (2002),

Bglt)

orvit = " ! Iog( as we propose here

Theorem 12 (Exponentially weighted average forecaster in the balit game)
Consider §(x) = exp(nx) + £ with y = min(2 2 M) and n = 2,/"°93) | et v,

—% Iog( B‘9"‘) with 3 = me ) Then in the bandit game, against any adversary (possibly a

non-oblivious one), for any > 0, with probability at leastl — 5, INF satisfies:

Re < 3y/nKIog(3K) + m log(K& 1),

and alsoER, < (3++/2)/nKlog(3K).

2. The technical reason for this modification, which may appear singrés it introduces a bias in the estimateyaf,
is that it allows to have high probability upper bounds with the correct ratbedifferencey ; git — 311 Vit. A
second reason for this modification (but useless for this particular sgdsidhat it allows to track the best expert
(see Section 7).
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This theorem is similar to Theorem 6.10 of Cesa-Bianchi and Lugosi {20DBe main dif-
ference here is that the high probability bound holds for any confidieved and not only for a
confidence level depending on the algorithm. As a consequence, ouitlaig, unlike the one pro-
posed in previous works, satisfies both a high probability bound and@eced regret bound of

ordery/nKlog(K).

Theorem 13 (Poly INF in the bandit game) Lety(x) = (L)% + ¥ withn = 2\/n, =2 andy =

min (%,3\/?) Consider y; = — 4 log (1 - B) with B = 5+ Then in the bandit game,

against a deterministic adversary, for ady- 0, with probability at leastL — d, INF satisfies:
Rn < 9VNK +v/2nKlog(51). (16)
Against an oblivious adversary, it satisfies
ER, < 10v/nK. (17)

Moreover in the general case (containing the non-oblivious opponeiit) the following parame-
ters g= 2, y = min (%, 3 K'°?](3K)>, N =2, /im0 andp=1/ 09(3) it satisfies with probability

at leastl — 9,
2nK 1
<
Rn < 9¢/nKlog(3K) + 4 / l0g(3K) log(d~ "),
and

ER, < 94y/nKlog(3K).

Remark 14 We conjecture that the ordeynKlogK of the bound orER, cannot be improved in
the general case containing the non-oblivious opponent. Here is the nimant to support our
conjecture. Consider an adversary choosing all rewards to be efguahe until time 72 (say n

is even to simplify). Then, l&tdenote the arm for which the estimatg ¥ = Y 1<t<n/2 Vit Of the
cumulative reward of arm i is the smallest. After tim@pall rewards are chosen to be equal to zero
except for armk for which the rewards are still chosen to be equaltdsince we believe that with
high probability,max <<k Vi n/2 — Minje1, .k} Vjn/2 > Ky/NKIogK for some small enough > 0,

it seems that the INF algorithm achieving a bound of orgéK on ER, in the oblivious setting
will suffer an expected regret of order at leaghKlogK. While this does not prove the conjecture
as one can design other algorithms, it makes the conjecture likely to hold.

5.3 Label Efficient Bandit Game (LE Bandit)

The following theorems concern the simple LE bandit game, in which the regeireis that the
expectechumber of queried rewards should be less or equail td/e consider the following policy.
At each round, we draw a Bernoulli random variaBlewith parameteg = m/n, to decide whether
the gain of the chosen arm is revealed or not. Note that this policy doesilfibiekactly the
requirement of the LE bandit game as we might ask a bit morerthaawards, but, as was argued
in Section 5.1.2, it can be modified in order to fulfil the hard constraint of #meeg The theoretical
guarantees are then the same (up to numerical constant factors).
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Theorem 15 (Exponentially weighted average forecaster in the sinkp LE bandit game) Let

W(x) = exp(nx) + ¢ with y = min <%,\/4K5"r’r?K> andn = £,/99%9K Let vy = gi 12 with

e = 1. Then in the simple LE bandit game, INF satisfies:

— 16K logK
<ny/ —.
Rasn 5m

Proof One simply needs to note that foy 5 ?” (11) is satisfied, and thus by taking the expecta-
tion in (12), we get

= logK ' logK
%Sﬂ—ijﬁvggngéﬂ—w7r+WL

We thus have 0aK
— . n og
< — —Y)—— :
Ro< (-0 +ym)
The numerical application for the term in parenthesis is then exactly the satime @se proposed
in the proof of Theorem 10 (with andn respectively replaced by andn /g). |

Theorem 16 (Poly INF in the simple LE bandit game)Let ¢(x) = (2)% + ¥ with y =
min (%m/%)’ n= n\/g and q=2. Let v = g, 2='Z with ¢ = ™. Then in the simple LE

pit € n
bandit game, INF satisfies:

— K
Rn§8n\/;.

Proof By taking the expectation in (8) and Iettir@nax = max<i<k EGj h, we obtain that for
y> (q—1)K(gne)¥ -9 > 0 (condition coming from the condition anfor (8)),

n
q 1
( V) max ( V) A Okt = ]Il

with
(=

1 CQ—DKM1+M)Q
(q—1K 2yne ’

(a-1)/q _ (@-1)/q\ 4
B ) ()

We thus have

and

~ q 1
Ry < p~ (V(1+Z)m+ q_l(ns)Kq> :

The numerical application for the term in parenthesis is exactly the same thanelgoposed in
the proof of Theorem 11 (with andn respectively replaced by andng). |

Both previous theorems only consider the pseudo-regret. By estingtinlfferently, we ob-
tain the following result for the regret.
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Theorem 17 (Poly INF in the simple LE bandit game) Let {s(x) = (i)q+ Y withn = 2n//m,
g=2andy= min (%,3\/%> Consider y; = 't 4 log(1— Bg") with B = 2,/7¢. Then in the
simple LE bandit game, against a deterministic adversary, foramy0, with probability at least

1— 9, INF satisfies:
[K /K =
< 10. —+3. —
R, <10.7n m+31n mIog(6

Against an oblivious adversary, it satisfies
ER, < 13vnK.

Moreover in the general case (containing the non-oblivious opponeit),the following param-

eters g= 2, y = min (%,3\ / M) = 2n/,/mlog(3K) andB = 2/ m'og 3K) , it satisfies with

probability at leastl — J,

/Klog(3K) /| K 1
R, <10n —m +3.5n 7m|og(3K) log(d

ER, < 13n IogﬁjK).

and

A similar result can be obtained for Exp INF, at the price of an additionaritdgmic term inK
against oblivious (deterministic or not) adversaries. We omit the details.

6. Regret Bounds Scaling with the Optimal Arm Rewards

In this section, we provide regret bounds for bandit games dependitigeoperformance of the
optimal arm: in these bounds, the factas essentially replaced by

Gmax— maX Gr s

whereGj, = 51 0it. Such a bound has been proved on the expected regret for deterministic
adversaries in the seminal work of Auer et al. (2002b). Here, by wsimgv biased estimate gf;,
that is

Vit = —% log (1 Pai t) we obtain a bound holding with high probability and we also consider
its extension to any adversary.

The bounds presented here are especially interesting Bhen< n: this typically occurs in
online advertizing where the different arms are the ads that can be gheomebsite and where
the probability that a user clicks on an ad banner (and thus induces alrenhe webpage owner)
is very low. For deterministic adversaries, as in the bandit game, thé fagtor appearing in the
exponentially weighted average forecaster regret bound disagpdhesPoly INF regret bound as
follows.
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Theorem 18 Let Gy be a real number such thatyG> 81K. Let(x ) = (ix)q+ ¥ with n = 2,/Gq,

q=2andy= 3, /%' Let vy = — 2= 'Iog( Bg") with B = m Then in the bandit game,
against a deterministic adversary, for ady> 0, with probability at leastlL — 8, INF satisfies:

2
Rn < 4.5, /KGGﬂX +4/KGo+/2KGolog(5°1). (18)
0

For fully oblivious adversaries, for any > 0, with probability at leastl — §, INF satisfies:

Ra < 45, K =1 4/KGo + /2K Golog(25 ) + )+ /810g(2K5 ) Gmaxc (19)

For the choice&, = n, the high probability upper bounds are of the ordey/oK ++/nKlog(571).
The interest of the theorem is to provide a policy which, for silly, leads to smaller regret
bounds, as long &Sy is taken much smaller thamand but not much smaller th&y,ax. For deter-
ministic adversarieSGmax is nonrandom, and provided that we know its order, one has interest of
taking G of this order. Precisely, we have the following corollary for deterministicceshries.
Corollary 19 Lety(x) = ()% + ¥ withn = 2\/Gmax, = 2 andy = min (%, 3, /%) Consider
Vit = —%Iog(l— %) with B = ﬁm Then in the bandit game, against a deterministic
adversary, for any > 0, with probability at leastL — 3, INF satisfies:

Ry < 9\/KGmax+ \/ZKGmaXIOQ(6_1)7 (20)
and
ERy < 10\/KGrmax (21)

For more general adversaries than fully oblivious ones, we have Hlogviiag result in which
the logK factor reappears.

Theorem 20 Let Gy > 81K log(3K). Lety(x) = (L)% + ¥ withq=2,y=3 K'og( K) andn =

2\/ gt Let vy = —%Iog( Bg“) with B = 'Ozgééf) Then in the bandit game, against
any adversary (possibly a non-oblivious one), for @y 0, with probability at leastl — o, INF

satisfies:
KGO 2KGg 1
Rn<f ma"Klo (3K)+4 log(K& ™).
\/ o 109(3K) g(Kd ™)

This last result concerning Poly INF is similar to the following one concerttisgexponentially
weighted average forecaster: the advantage of Poly INF only appbarsit allows to remove the
logK factor.

Theorem 21 Let G > 4K log(3K). Lety(x) = exp(nx) + & withy=2 K'Og(3K andn =2 %

Letvit = ]l't ' Iog( Bg"‘) with B = % Then in the bandit game, against any adversary
(possibly a non -oblivious one), for ady> 0, with probability at leastl — 9, INF satisfies:

2K Gy
log(3K)

KGolog(3K) +

5 G%ax
R, < = K log(3K) + log(K3 ™).
2\ Go

1
2
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7. Tracking the Best Expert in the Bandit Game

In the previous sections, the cumulative gain of the forecaster was cedhmathe cumulative gain
of the best single expert. Here, it will be compared to more flexible stratdmaésire allowed to
switch actions. We will use

:HI‘:i + £7

Pi t Pi t

Vit =0t

with 0 < B < 1. Thef term introduces a bias in the estimategpf, that constrains the differences
maxi<i<k Vit — Mini<j<k Vj to be relatively small. This is the key property in order to track the
best switching strategy, provided that the number of switches is not tom largwitching strategy

is defined by a vecta(is, . ..,in) € {1,...,K}". Its size is defined by

n—-1
S(ilv Ty |n) = t; ]Iit+17éita

and its cumulative gain is

The regret of a forecaster with respect to the best switching strategyBwitlitches is then given
by:

n

= max i G(il,...,in)—t;gh,t-

Theorem 22 (INF for tracking the best expert in the bandit game)

Let s= Slog(%) + 2logK with the natural conventionI8g(3nK/S) = 0 for S=0. Let v; =
gt + £ with B= 3,/ Letw(x) = exp(nx) + ¥ withy = min(%, «/%) andn = %,/
Then in the bandit game, for afly< S< n— 1, for anyd > 0, with probability at leastL — o, INF
satisfies:

RS < 7VnKs+ \/Tlog(é‘l),

and
ERS < 7v/nKs

Note that forS= 0, we haveR,? = R,, and we recover an expected regret bound of order
v/nKlogK similar to the one of Theorem 12.

Remark 23 Up to constant factors, the same bounds as the ones of Theorem 22 chtaimed
(via a tedious proof not requiring new arguments than the ones presertesl work) for the INF

C3S
forecaster usingp(x) = # (EQQK) ’ + G2/, With s = Slog(%) +log(2K) and appropriate
constantg,, ¢, andca.
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8. Gains vs Losses, Unsigned Games vs Signed Games

To simplify, we have considered so far that the rewards wel8,it]. Here is a trivial argument
which shows how to transfer our analysis to loss games (i.e., games with onjyasdtive rewards),
and more generally to signed games (i.e., games in which the rewards casitbee@md negative).
If the rewards, denoted nog?t, are in some intervgh, b] potentially containing zero, we sgt; =

gl'; a € [0,1]. Then we can apply our analysis to:

A less straightforward analysis can be done by looking at the INF algodihently applied to
the observed rewards (and not to the renormalized rewards). In gg@sa&siit was already noted in
Remark 6.5 of Cesa-Bianchi and Lugosi (2006), the behavior of tlogitigh may be very different
for loss and gain games. However it can be proved that our analysisdth lup to constant
factors (one has to go over the proofs and make appropriate modificatiaesfor simplicity, we
have presented the general results concerning INF under the assusrtpidthe estimateg; are
nonnegative). In Section 6, we provide regret bounds scaling withuheilative reward of the
optimal arm. For this kind of results, renormalizing will not lead to regret bgwstaling with the
cumulative reward before renormalization of the optimal arm, and constguthe study of INF
directly applied to the observed rewards is necessary. In particul@inoty low regret bounds
when the optimal arm has small cumulative loss would require appropriate oatidifis in the
proof.

9. Stochastic Bandit Game

By considering the deterministic case when the rewardgjare 1 if i = 1 andg;; = O otherwise,

it can be proved that the INF policies considered in Theorem 10 andr@imedl have a pseudo-
regret lower bounded by'nK. In this simple setting, and more generally in most of the stochastic
multi-armed bandit problems, one would like to suffer a much smaller regret.

We recall that in the stochastic bandit considered in this section, the regard.., g, are
independent and drawn from a fixed distributigron [0, 1] for each arni, and the reward vectors
1, .-,0n are independerftThe suboptimality of an arris then measured b = maxi<j<k Mj —

W wherey; is the mean ob;. We provide now a strategy achieving/aK regret in the worst case,
and a much smaller regret as soon as/thef the suboptimal arms are much larger thgi /n.

Let [ s be the empirical mean of arimafters draws of this arm. LeTj(t) denote the number
of times we have drawn armon the firstt rounds. In this section, we propose a policy, called
MOSS (Minimax Optimal Strategy in the Stochastic case), inspired by the UChBdy déuer
et al., 2002a). As in UCB1, each arm has an index measuring its perfoemand at each round,
we choose the arm having the highest index. The only difference with1Ui€Bo use lod %)
instead of logt) at timet (see Figure 3). As a consequence, an arm that has been drawn amore th
n/K times has an index equal to the empirical mean of the rewards obtained framthand when

3. Note that we do not assume independenag gf. . ., gk « for eacht. This assumption is usually made in the literature,
but is often useless. In our work, assuming it would just have imprBvegosition 36 by a constant factor, and would
not have improved the constant in Theorem 24.
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it has been drawn close ty/K times, the logarithmic term is much smaller than the one of UCBL,
implying less exploration of this already intensively drawn arm.

MOSS (Minimax Optimal Strategy in the Stochastic case):

For an armi, define its indexB; s by

. max(log(+%),0
Bi,s:lli,s—l-\/( gS(KS) )

for s> 1 andB; g = +.

Attimet, draw an arm maximizin; 1, _1)-

Figure 3: The proposed policy for the stochastic bandit game.

Theorem 24 IntroduceA = min Ai. MOSS satisfies
ie{1,...K}:5>0

R, < % log (max(llonAz 104)> , (22)

K )
and
ER, < 25vnK. (23)

Besides, if there exists a unique arm with= 0, we also have

2
ER, < 2 log <max<m]A, 104>> : (24)
A K
The distribution-dependent bounds Inequalities (22) and (24) shodetieed logarithmic de-
pendence im, while the distribution-free regret bound (23) has the minimax vat&.

Remark 25 The uniqueness of the optimal arm is really needed to have the logarithmjd@und

on the expected regret. This can be easily seen by considering a twd-bemeit in which both
reward distributions are identical (and non degenerated). In this ttespseudo-regret is equal to
zero while the expected regret is of ordgn. This reveals a fundamental difference between the
expected regret and the pseudo-regret.

Remark 26 A careful tuning of the constants in front and inside the logarithmic terB) 9&nd of
the thresholds used in the proof leads to smaller numerical constants invieipréneorem, and in
particular to sufER, < 64/nK. However, it makes the proof more intricate. So we will only prove
(23).

Acknowledgments

Thanks to Gilles Stoltz for pointing us out Proposition 33. This work has lsepported by the
French National Research Agency (ANR) through the COSINUS progiANR-08-COSI-004:
EXPLO-RA project).

2806



REGRETBOUNDS UNDER PARTIAL MONITORING

Appendix A. The General Regret Upper Bound of INF

Theorem 27 (INF regret upper bound) For any nonnegative real numbergwhere ic {1,...,K}
andte N*, we still use v= (v1y,...,Vkt) and \ = z;lvt, with the conventiony)&=0¢ Rﬁ. Define
M-1,M] = {AVic1+ (1—-A)V;: : A € [0,1]}. Let

= Max V;
B[ 1<i2K (AS)

_ W'(vi —C(v))
P= 122(1 vweM_1 M), 1<i<k W' (W —C(w))’

and
K K
A = min (B?,lelo L|J_1(pi,t), (1+ pz) lel»"o Lp_l(pi,t)vﬁt> )

Then the INF forecaster based gnsatisfies:

n K K 1/K 2 n
. v , 1 -1 P~
max Vin <Ch < t;i; PitVit — i; (p.,nmu (Pins1) + 1 (u)dU) +5 t;At. (25)

Pin+1

Proof Let us seCy = C(Vy). The proof is divided into four steps.
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First step: Rewritings ! ; S, piviz.

We start with a simple Abel transformation:

n K n K
tZlEl PitVit = tZlEl Pit(Vit —Vit-1)
1= = =
= i Pin+1Vint i i\/i’t(pi’t — Piti1)

= lel n+l pl 1) ‘|‘Cn + Zl Zl pl t+1) FC)(Pit — Pits1)

=Cnt i; Pinta® (Pinsa) + i;t;wfl(pum)(pu — Pigs1)
where the last step comes from the fact tfat; pi; = 1.
Second step: A Taylor-Lagrange expansion.
For x € [0,1] we define f(x) = [Fw 1(u)du. Remark thatf'(x) = ¢~1(x) and f”(x) =
1/W (@~1(x)). Then by the Taylor-Lagrange formula, we know that for arynere exist9it;1 €

[Pit, Pit+1] (with the conventiona, b] = [b,a] whena > b) such that

(Pit — Pigr1)? 0

f(piy) = f(Pitr1) + (Pit — Piger) T (Pigsa) + f (Bit+1),
or, in other words:
-1 T (Pit— Piis+1)?
it— Pi i = u)du— ’ - )
(PPl P = [ W0 oy 1 (B

Now by summing ovet the first term on the right-hand side becorrfé‘éﬁ1 ¢~1(u)du. More-
over, sincex — YP(x — C(x)) is continuous, there exist&/(') € [\;,Vi11] C RK such that
P (V\/i("t) —C(W““)) = Pit1. Thus we have

iitill»'_l(pi,wl)(pi,t —Pitr1) = .il/p.l:zw u)du— ZLZLZQJ’ ( plt B, t+1)2| t))) .

From the equality obtained in the first step, it gives

n K K 1 1/K 1
—t;i; PitVit = —i; <pi,n+1llJ_ (Pint1) + Pi,n+1qJ_ (U)dU>
pl t - pl t+1)

K
T2 29/ (W' —cwiv))

n
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Third step: The mean value theorem to comgye 1 — pit)>.
It is now convenient to consider the functiofisandh; defined for any Rﬁ by

fi(%) = W(x —C(x) and hi(x) = ' (x —C(x)).

We are going to boung ;1 — pit = fi(\) — fi(Vi—1) by using the mean value theorem. To do so
we need to compute the gradientfpf First, we have

S0 = (1= 5500 ) (v,

Now, by definition ofC, we haves{ ; fk(x) = 1 and thussi¢ ; §¥(x) = 0, which implies

09 = i) O o (3-89
aT(i(X)_ZE:thk(X) and ax,() (Jl._J Zf_ihk(x)>h'(x)'

Now the mean value theorem says that there exisfs € [V;_1,V] such that

f (V — f V Vi fl
t t— l E 135

Thus we have

K hi (Vi) 2
D 2 _ i S J (i)
(pl,t p|7t+1) - <glvj,t <:“I—] Zlf_lhk(v(m))) hl(V ! ))

i 2
=h(VIN2 [ v — zlf:lvj,thj (Vi)
| ) Z||(<:1 hk(V(It)) :

Fourth step: An almost variance term.

We introducep = maX,wev_; ], 1<t<n, 1<i<K h(( )) Thus we have

i 2

p|t p|t+1)2 _ n h. Vit_zT:1Vj7thj(Y(|,t))
Z Z 20 ( u))) Z - Zepuhirs
2 n K K_ . V(i’t) 2
o) o ZEEEIE )

2 S keq (VD)

5K he(V i) ) . Remark that since the functiapis

increasing we know thdt (x) > 0, ¥x. Now since we have €& v;; < B, we can simply bound this
last term byB?. A different bound can be obtained by usifa@— b)? < a? 4 b?> whena andb have

Now we need to control the terr(xviat -
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the same sign:

Vit — 51V (V) < A+ ¥ vy ehy (VY)Y
sV ) T S v )

Z 1V2th (V( ))
V2, 2=
s h(vin)
2 Y 1Vhi (V1)
T S (M)

where the first inequality comes from the fact that both terms are nonvegatd the second in-
equality comes from Jensen’s inequality. As a consequence, we have

<

< h'(V ) Vig— ZJ 1VJth( ( )) ? h V V2 + h V
i; i(Vt-1 it Zkzlhk( ) Zl k1) p Z t— 1
K

< (1+p?) Zlhi (M—1)V.

We have so far proved

n K K 1/K p n
t;i; Pt B i; <p|7n+1lp (pl n+1) " Pin+1 v ( > 2 Z
The announced result is then obtained by using Inequality (2). |

To apply successfully Theorem 27 (page 2807), we need to have tight bpunds op. The
two following lemmas provide such bounds.

Lemma 28 (A simple bound on the quantityp of Theorem 27) Lety be a convex function satis-
fying (1) and assume that there exists>B) such thatvi, j,t [vit —vj| < B. Then:

p = max max Y —Cv) < sup exp<BwH(x)> .
)]

1<t<n vweM_1 M), 1<i<k P (w —C(w))  xe(—o -1 g
Proof Leth;j(x) = y/'(x —C(x)),m(x) = W’ (x —C(x)). Fora € [0, 1] we note

0(c) = log {hy (_1-+a(V —\ 1))}

Remark that we should rather note this functimn(a) but for sake of simplicity we omit this
dependency. With these notations we have max, ge(o,1); 1<t<n, 1<i<k €XP($(a) — §(B)). By the
mean value theorem for amy B € [0, 1] there existg € [0, 1] such thath(a) —$(B) = (a —P)d’' ().
Now with the calculus done in the third step of the proof of Theorem 27 aimd) tlse notations
hi i=hi(M-1+&M —Vi-1)), m == m(Vi—1+&(M —Vi-1)) we obtain

€ hi \m & (Me—vidhym
!/ — V —V'_ :“i:__ J >: > )5 Ji.
$1)= 3 ViV (B ) = 3 MR
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Thus we get

/!
[9'(&)] < max |vie—Vi;| sup v

1<i.j< veMaw W (v =cw).

Moreover, using that — Y(x— C(x)) is continuous we know that there exigig 1 € [Pit, Pit+1]
such thapt11 = Y(vi — C(v)) and thusy; — C(v) = Y~ (fit41). This concludes the proof. M

Lemma 29 (An other bound on the quantityp of Theorem 27) Lety be a function satisfyinfl)
and assume that there exists>c0 such that0 < v;; < ﬁ]li:h. We also assume that'/y is a

nondecreasing function and that there exists & such thatp (x+ ﬁ) <ay(x). Then:

X)

l.|JN )
p< sup  exp (ac X) | .
xe(~oo (D) TR

Proof We extract from the previous proof that< maxc(o 1] 1<t<n, 1<i<k €XP(|¢’(§)|) where

ey e (Vig=Vvihi m
o' (%) JZl S B

Note that, since the functionsandy’/y are nondecreasing, the functigris convex, hence” > 0
andm > 0. Now using our assumption oty and sincep; = fi(M-1), if i # Iy we have:

hy

Crri— fi, (Vi1 + &Vt — Vi h 1
(@) < ME =¢ 4 1f—lit_(i/(ttl) ) 8 f|l(thl+E|(tVt—thl)) . % 8 hy, +hi’
Noticing that for any,yin R*, El((zij”jl{(%) < L,,/lf;)%%y)v we obtain
i (Vi Vi — V4o
/()] < o uM 1f|+l(§,itl) L y fi(vtlrz(vt V1)
On the other hand if= I; then / c m
9'(8)] < (A

To finish we only have to prove thé{ (Mi—1+ &M —W-1)) < af, (M_1). Sincey is increasing
it is enough to prove thaf, (V;) < afj, (Vt_1) which is equivalent to

PMt-1+vt —C) <aPM,t-1—Ci—1).
Since 0< vj; < ﬁ]li:h andC is an increasing function in each of its argument it is enough to prove

c
PMt-1—GCG-1)
which is true by hypothesis ap. |

U] (VIt,t—l -G+ ) <aPpM,t-1—Ci-1)
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Appendix B. Lower Bounds

In this section we propose a simple unified proof to derive lower boundseopseudo-regret in the
four problems that we consider.

Theorem 30 Let m> K. Letsuprepresents the supremum taken over all oblivious adversaries and
inf the infimum taken over all forecasters, then the following holds true in the édfigibnt gamé

infsupR, > 0.03n Iogrg]K).

and in the label efficient bandit game we have:

infsupR, > 0.04n\/§.

Proof First step: Definitions.

We consider a set &f oblivious adversaries. TH& adversary selects its gain vectors as follows:
Foranyt € {1,...,n},gi ~ Ber(1£) and forj #1i, gj  ~ Ber(15£). We noteE; when we integrate
with respect to the reward generation process ofithadversary. We focus on the label efficient
versions of the full information and bandits games since by taikirgn we recover the traditional
games.

Until the fifth step we consider a deterministic forecaster, that is he dodsametaccess to an
external randomization. Lef = (Qun, . . .,0k n) be the empirical distribution of plays over the arms
defined by:

Ztn:l :I'Ilt:i

=

Let J, be drawn according tg,. We noteP; the law ofJ, when the forecaster plays against the
i'" adversary. Remark that we ha?gJ, = j) = Eii 51, 1), hence, against th& adversary we
have:

Gin=

n

R, =E; tZl(gi,t —Oit) = 5”;Pi (Ih=1]) =en(1—-Pi(I=1)),

which implies (since a maximum is larger than a mean)

_ 1K
supRa>en|1—— N Pi(dh=1i) |. (26)
(k5
Second step: Information inequality.
Let Py (respectivelyPx 1) be the law of], against the adversary drawing all its losses from

the Bernoulli of paramete%g—a (respectively% + %), we call it the ®" adversary (respectively the
(K 4+ 1) adversary). Now we use either Pinsker’s inequality which gives:

Pi(dh=1) <Po(In=1)+1/ %KL(PO,IP%),

4. Slightly better numerical constants can be obtained with a more capfuiipation in step four of the proof.
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and thus (thanks to the concavity of the square root)

i )< = +\/2}< ZKL (Po, B); 27)

or Fano’s lemma;

1X 1092+ g 58 KL (P, Pe1)
Ri;PI (Jn = |) < Iog(K — l) . (28)

We will use (28) for the full information games wh&n> 3 and (27) the bandits games and the full
information games wittk € {2,3}.

Third step: Computation dfL (Pg, ;) and KL (P;,Pk.1) with the chain rule for Kullback-Leibler
divergence.

Remark that since the forecaster is deterministic, the sequence of absemards (up to time
n) Wy (Wh € {0,1}™ for the full information label efficient game aml, € {0,1}™ for the label
efficient bandit game) uniquely determines the empirical distribution of gjgyand in particular
the law ofJ, conditionally toW, is the same for any adversary. Thus, if far {O,...,K+1} we
noteP! the law ofW, when the forecaster plays against ieadversary, then one can easily prove
that

KL (Po,Pi) < KL (Pg,P"), and KL(P;,Pk+1) < KL (P, PR, 1)

Now we use the Chain rule for Kullback-Leibler divergence iteratively tmituce the law®! of
the observed reward8 up to timet. We also not&; = 1 if some rewards are revealed at the end
of roundt andZ; = 0 otherwise. With these notations we have in the full information games, for
K>3,
KL (PP, PR, 4)

= KL(P}PE,q)+ zz > P (1)KL (P (w1, Py 1 (wi-1)

= KL(P}, Pk, q)

+Z{Wﬂ§ IP’thVt1)|:KL<1—£8,18 ;) + (K — 1)KL<128,12+;)]}
{KL<1;£,128+;> (K — 1)KL<1,12s 8)]1{«:.2&
m[KL(lz,lz+;>+(K—1)KL(12,12+;>].

Summing and plugging this into (28) we obtain for the full information games:

N

IN

K log2+mKL (48, 584 & K—-1)KL (55,58 + £
lzpi(\]n:i)_c’g + KL (52, 55+ %) +m( ) (2’2+K). (29)
Ki& log(K —1)
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In the bandits games we have:
KL (P, P
= KL (PSP + ; R (Wt KL (Ph(.[wi—1), PL(.[wh_1))

l1-¢ 1+¢
= KL (P3P +; ; Ph (W 1)KL< ; . >
W_1:Z=1 =i 2 2
l-¢ 1+¢

= KL (2,>Eozﬂzt 1l=i-

Summing and plugging this into (27) we obtain for the bandits games:

1K 1 1-¢ 1+¢
KZP (Jh=i)< = +\/2KK|_ <2 2). (30)

Note that with the same reasoning we obtain for the full information games:

1K 1 1-¢ 1+¢
S P =)< = Myl )

Fourth step: Conclusion for deterministic forecasters.

(31)

To conclude the proof for deterministic forecaster one needs to plug )r(fg@xhe full infor-
mation games witk > 3) or (31) (for the full information games witk € {2,3}) or (30) (for the
bandits games) in (26) along with straightforward computations and the foljosimple formula:

(P—)?
q(1-aq)
Fifth step: Fubini's theorem to handle non-deterministic forecasters.

KL(p,q) <

Now let us consider a randomized forecaster. Denot&bByarq; the expectation with respect
to the reward generation process of iHeadversaryEang the expectation with respect to the
randomization of the forecaster afigl the expectation with respect to both processes. Then one
has (thanks to Fubini’s Theorem),

n

1 K n 1 K
R i;Ei t;(gi,t - glnt) = ErandR i;Ereward,i t;(gi’t _ glt,t)-

Now remark that if we fix the realization of the forecaster’s randomization the results of the
previous steps apply and in particular we can lower bo&@(ﬁﬁl Erewardi ¥ 1-1(0it — i t) as before.
[ ]

Appendix C. Proofs

This section gathers the proofs that have not been provided so far.
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C.1 Proof of Theorem 2 (page 2793)

The proof relies on combining Theorem 27 (page 2807) with Lemma 28 @&t@® fory= 0, and
with Lemma 29 (page 2811) fgr> O.

We make use of Theorem 27 and start with straightforward computations:tudlnbe first sum
in (25). We havep~1(x) = —n(x—y/K)~¥9 which admits as a primitivg ¢~*(u)du=
y/K)¥~%4, Thus one immediately gets

1- l/q(

VK -1 n 1 1-1/q
[ cwh@dus e - v/K)
i,n+1

and
Pins1(—W ) (Pins) = —%w’l(piml) 0 (Pines — y/K)EYA,

Summing over proves that

_ 9 v Y s i
Z(pmﬂlp (Pint1) + p|n+1LIJ Yuyd )Sq—an Ki;w (Pint1)-

With the notations of Theorem 27, we need now to bopiaddA;. First we deal with the case=0.
Lemma 28 (page 2810) impligs< exp(B(q+1)/n) since we hav% = &2 = 21, The
proof of (6) is concluded by’ = r‘]‘w a+1/4, and

K
- q _(@+1)/g - Ap2
A<BIS WopH(pi) =BY —p < -BZ
Bti; (Pis) Bti; " rlBt
For (7), the termd; is controlled differently:

K K
A< (14p7) le WPV = (L) > i ar/ap < B p (L) 3 Piavic

Now we have already seen that< exp(B(q+ 1)/n), hencep?(1+ p?) < 2exp8Bq/n), which
leads to (7).

The casey > 0 is more intricate. This is why we restrict ourselves to a specific form for the
estimatew; ;, see the assumption in Theorem 2. We start by using Lemma 29 (page 2@tay¢o
thatp < p. First we haveLl'l’T',’ = %1(41 —y/K)Ya< %ﬂpl/q. Besides, for any > b > d we have

@ < a-d and thus for any < 0, we have

Thus Lemma 29 gives us

(9-1)/a _ (a-1/q\ 4
n Y an Y
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Next we usep’ = (¢ — y/K)(@+1)/4 and the form of, to get

K 1 1
A < (1+pz)_21llJ/OllJfl(pi,t)Vﬁt < al r;Hl) _leqﬂ /qu a r;Hl Pt /qctz

Letl = %ﬁ“‘) From Theorem 27, we get

zlzp.tv” < —nKl/quyC +—ZLA¢——Zziv”

9 1/ ( (1-aq)/q Y >
NnKY 1 4+yCy+
__q l YCn E;Q 4 ﬁ Kt

q

n
r]Kl/quyC +max<Zu1q y) I

t=
d .1/ y < q— 1Z’K>q n
= ——nKY9+yCp+ o

_q

n K
q— anl/q JrVCnJrVZtZH; PitVit-

The proof of (8) is concluded by using Inequality (2).

C.2 Proof of Theorem 3 (page 2794)

We have

n K n
Zx lei,tvi,t = ZlEkNptVKt
t=1li= t=

1_ n
N nytzl <IogEith eXpMH ) —log [exp( a 1n—VEk~ank,t) Eiq exp(ﬂVi,t)] >

_V(S—ti|09(Dt)>7

where
S= leogE.Nq[exp(r]v,t)
- : K :
L IELLULD ) =tog (TP - 1 e, —togi
= Si—iexpnVit-1) K 1<i<K
and

Di = exp< - 1n_yIEkNptvkyt> Eiq exp(nvit)

Wheny = 0, since 0< vi; < B, by applying Hoeffding’s inequality, we get [0D;) < SB‘ , hence
Inequality (9). Fory =0, we can also use Lemma 35 and obtain(g < n?BO(NB)Ei.pVit,
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hence Inequality (10). Forsatisfying (11), we have

D, < exp< _ &EKNQVKOENQ{ <1+ Vi +0(n B)nzvﬁt> 32)
(N n Yy Vig 2
= eXp< l_yEkwpth,t> (1‘|‘ 1_ yE|~QV|t n K(1—y) +0(nB)n qutvﬁt)
< exp< _ &Ekwptvk,t> <1+ 1” T En t) (33)

<1l

To get (32), we used th& is an increasing function and thav;; < nB. To get (33), we noticed
that it is trivial when may pitvit = 0, and that otherwise, we have
yziKzlet S VEiKzl pi,tvﬁt > Y
K(A—y) ~ K(I-y)maxpitvir — Kmax: pitVit
where the last inequality uses (11). We have thus proved

EiNChVEt = ne(nB)qu‘an

LS logK
Z Zipl tVit = TylogEl~pleXp(n\/l n) > (1—V)< maxvl n— g>,
hence the announced result.

C.3 Recovering Theorem 3 from Theorem 27

We start with straightforward computations to bound the first sum in (25). hive P 1(x) =
%Iog(x—y/K) which admits as a primitive ¢~ (u )du— 2 [(u—y/K)log(u—y/K) —u]. Thus one
immediately gets

1/K
- Lp’l(u)du— pi,n+1'~pil(pi,n+1>

Pin+1
1/1 1- 1-
= n (K - Tybg (KV) — Pint1— % log (pi,n+1 - }Z>> .

Summing over proves that

/K 11—y K yE
—zl<p|n+1llJ (Pin+1) + pmﬂw () >—n|09(1_y>—Ki;¢' (Pint1)-

With the notations of Theorem 27, we need now to boprehdA;. For the former, we use Lemma
28 (page 2810) which directly shows< exp(nB). For the latter we distinguish two casesyH- 0
we use

K
A< B?Zw’ow*(pi,o =ngf,

which concludes the proof of the weakened version of (9) \@iﬂeplaced by% exp(2nB). On the
other hand ify > O we use

K K
A< (14 pz)_zwlow_l(pi,t)viz,t <(1+ pz)nzl PieVEr.
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From Theorem 27, when the weakened version of (11) holds, thataa wh

- g Nexp2Bn) [12 +exp(2Bn)]

MaxpitVit,

we have

1—-y K yerao nexp(2Bn) [1+ exp(2Bn)]
<t on () X3 (B 2 53,00

log(1— y) n K yIogK

£ pso-

(1-y) <Cn +
This gives the desired result since we have

log(1— y) 1

o
"t T

—log ( Z exp(nVi, n)) > max\/.,n

<i<K

C.4 Proof of Theorem 8 (page 2797)
We will use the following version of Bernstein’s inequality for martingales.

Theorem 31 Let #3 C --- C F, be afiltration, and X, ..., X, random variables such th&x;| <b
for some b> 0, % is #-measurableRE (X|%_1) = 0andE(X?|%_1) < v for some v> 0. Then, for

any t> 0, we have
n t2
>t) < S
P(Zf‘ >t) < eXp< 2nv+ 2bt/3) ’ (34)

and for anyd > 0O, with probability at leastl — &, we have

n — blog(d?)
X < \/2nvlog(3-1) + —— .
t; 9(8~) 3

Proof of Theorem 31Both inequalities come from Result (1.6) of Freedman (1975). The first in-
equality then usegl + x)log(1+x) —x > 2+22X/3, while the other uses Inequality (45) of Audibert

et al. (2009). This last inequality allows to remove t/i2 factor appearing in Lemma A.8 of Cesa-
Bianchi and Lugosi (2006). |

We start the proof of Theorem 8 by noting that, sifke< n, the result is trivial ford <

2K exp(—m/27) so that we assume hereafter tBat 2K exp(—m/27), or equivalently'%ﬂ <
2. We consider the evert on which we simultaneously have

n
Z <m, (35)
2
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nlog(45-1)

n n K
—t;Qh,t < —t;kzl Pt Okt + — 5 (36)

and

n Z nlog(2Kd-1) log(2K&™1)
1@@&; (9|t—— z pktgkt> <1—8) <2 . + % . (37)

Let us first prove that this event holds with probability at leastdl From (34), we have

P(tizt > m> < exp(—%) < exp(—z—”» < ?1,

So (35) holds with probability at least-18/4. From the concentration of martingales with bounded
differences (Hoeffding, 1963; Azuma, 1967), (36) holds with pholity at least 1— &/4. For
n/(8) < v/2—1 (which is true for our particulan), we can apply Theorem 31 witth= /2/¢
andv = 2/¢ to the random variable$gi; — g — Sk 1 PrtOkt) (1 — %) We get that for a fixed

i € {1,...,K}, with probability at least  /(2K), we have

n K — 1
N 4 nlog(2K&-1)  log(2K&~1)
t; <9|,t 8c kzl pk,tgk,t) <1 - ) <2 + '

€ 2€

From a union bound, we get that (37) holds with probability at leas12. Using again a union
bound, we thus have proved that the ev&rtiolds with probability at least 4 d.
Now, on the evenf, by combining (36) and (37), we obtain

\/W n K
= 1@2)}2 Zg, t— Zgh < +1T2§>é 219 t —Zi Z Prt Gk t

=1
nlog(46 1) z n~XK
< - _ -
< +1T2<2>é Zlglt e tzlkzlpktgkt
n nlog(2Kd-1) o 2K6
N Z 81 <1> o( ), log(
{51 O €
Since we havgt”:lzt < m, the rewards received by the forecaster are equal to the rewaids wh
would receive the forecaster that usggo decide whether he asks for the gains or not, whatever
Z;izs is. This enables us to use (9) (which holds with probability one). We obtain

R, < /nlog(46*1) N IogK l /nlog (2Kd1) Iog 2K6
/nlog( 46 ) IogK n2 /Iog 2K6 2n|og (2K&~ )

Iog(2K5 H

From the inequalitiesn < n, K > 2 and < 2, this implies

10n log(2Kd-1) logK nn?
9( ) | logK  nn®

Rns =3 m n 6m’

The first inequality of the theorem is then obtained by pluggjrg Y™ 29 . The second inequality
is derived by integrating the deviations using the standard formx fl 1IP’(W > log(571))da.

2819



AUDIBERT AND BUBECK

C.5 Proof of Theorem 9 (page 2797)

The proof goes exactly like for Theorem 8. We just use (6) instead)of (9

C.6 Proof of Theorem 12 (page 2799)

The bound is trivial for &log(3K) > n. So we consider hereafter that 2 % < 2. The
result is then a direct consequence of Theorem 21 Gjth= n. The inequality orER, comes by

integrating the deviations.

C.7 Proof of Theorem 13 (page 2800)

First note that (16) holds for\gnK > n since we trivially haveR, < n. For 9/nK < n, we apply
(18) with Go = n > 81K, and obtainR, < 8.5v/nK 4 v/2nKlog(d~1). This implies (16) and also
(17) by using Proposition 33.

For the last assertions, we proceed similarly. They trivially hold Wlog(SK) >n. For
n > 9,/nKlog(3K), we apply Theorem 20 witBo = n, and obtain

R < 2W+4\/ . ¢ oK gl ).

. 1 1 . . . .
By usmg\/W < 109(6) v/10g(3K), this independently implies

2nK _1
Rn < 94/nKlog(3K) + 10g(3K) log(6™),

and by integration,
ER, < 94/nKlog(3K),

hence the desired inequalities.

C.8 Proof of Theorem 17 (page 2802)

The proof follows the scheme described in Section 5.1.2. In particular let

3

V:BKer(l—By};)

Then we have

K
Pi; t th,t
i; itV

B Pt
Ot , VOt th t
> i Al 1 LIl § 1
> (- g (1))
Z. WB &
> - —_—— i t.
= glt,ts c Vit
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Moreover with a simple application of Theorem 31 we have that with probabiliseat 1— 9,

n 2n|og§ 1 logd?t
- g't,t = glt + .
PRI %

Now note that the sequentd = exp(BGLt — B\/i7t), t=1,...,n, is a supermartingale over the
filtration generated byg:, It,Z;),t =1,...,n. Indeed, we have for artye {1,...,n},

Bgm) =1-Bgir < exp(—Boit)-

Ei~p,z €Xp(—BVit) =1—¢e+¢€ (1—

Thus, with probability at least -4 d, we have against deterministic adversaries

logd~?!
1@2{2\4 n > Gmax— B
and against general adversaries
log(K&™1)
1r2§>|é\/| n > Gmax— T
Now we a - _ Y _ BK vy \(@1/qg
pply (8) of Theorem 2. Let= — gy log (1 = ). Ifc< qr]((qfl)K) then we
have
(1—v)<1mlax\/. n) (1+Y0) Zzlp. tVit < —an
where
(=t ((q—l)cKu(l+ u)>q
(-1K 2yn ’
with ’
(9-1)/q _ (@-1)/a\ ~
= exp 2(q+1)c (K) 1_c((q 1)K) .
n Y an Y
Thus, in the case of a deterministic adversaries, we obtain
n
G - Ot
max t;
VBK q 1 log(267Y) 2log(26-1)  log(267Y)
< it 1 T/
S (WA+Q+ =)+ T nKe === n A
~n , q .t log(2s7Y) 2log(25-1)  log(2567Y)
—m<(v(1+Z)+VBK)m+q_ln Kq+7ﬁ, +n T, (38)

wheref’ = /e andn’ = ne. One can see that the term into parenthesis in (38) is exactly the same
than the right hand side of (43), up to the relabelling3adindn into B’ andn’. This allows us

to use the same numerical application as in Section C.9 (up to the additional teisite @f the
parenthesis in (43)). One can apply the same technique in the case aralgatversary.
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C.9 Proof of Theorem 18, Corollary 19 and Theorem 20 (page 2803)
Consider parametelq;> 1 O0<y<1,n>0andB > 0 such thaBK < y and such that the real

numberc = — % Iog( ) satisfiesc < qr](( V)K)(qfl)/q. From (8) of Theorem 2, since we
havevi; = & ]l|l i with ¢ = — Bt log (1 Blfi’jlt) < —gklog (1- BK) = ¢, we have
1+Y o Bai,t q .1
_ A _ L) <
a-n(pmin) + T gpaen (1 = gyt e
where
7= 1 ((q—l)cKu(lJru))q
(q-1K 2y ’
with q
(a-1)/q _ (a-1)/a\ ~
= exp 2(q+1)c (K) 1_c((q 1)K> '
n Y an Y
Let
A
BK ~ log(1-BK/y)
The functionx — = + Iog( 3 is increasing orf0, +). So we have
1 P, t
+ <y,
IOg(l— th,t/ph,t) Bglt.,'[ -
hence

K
p[';t log (1— Bgf“:) > —0it +Vgy.log <1— ?T) > Ot _VB_ZVi,t- (40)
t, t, 1=

Inequality (39) thus implies

n K
)\ _ , q E
(1_V)(1Ti§)év|,n> <1+VZ)t;gh,t (1+vZ)vBi;V.,n§q_1an,
which leads to

(1-y—(1+YQ)vBK) (gg}gvi,n) (1+Y0) Zlgm < nKa, (41)

q—-1
We now provide a high probability lower bound of the left-hand side. Thertieal tool (es-
sentially deviation inequalities for supermartingales) comes from Section €8s#H-Bianchi and
Lugosi (2006).
Foranyt € {1,...,n}, we have

[3p§I]|t>]1|t } =1-Bgi: < exp(—Bit).

Ej-p eXp(—Pvi.) = Bip exp{ l0g <1

This implies that the sequenté = exp(BGm — [3\/“), t=1,...,n, forms a supermartingale over
the filtration generated big:, l;), t = 1,...,n. Indeed, we have

E(GXFKV\&)‘(QS, |S),S: 1, v ,t — 1) = Egt|(gs7|s)7$1,-.-7t*1]E|tht exp(W) < exp(W_l).
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So, we havéEexp(Wn) < EexpW) < 1, which implies that with probability at least-19, Vi , >
Gin— 'Og(B with probability at least 8. So, for any fixek € {1,...,K}, we have

log(d71)
> )
1@2)}2\/' n = Gin— B

(42)

Combining (41) and (42), we obtain that for ady> 0 and any fixedk € {1,...,K}, with
probability at least + o, we have

n ) 1
(=Y~ (L +Y)VBK)Gen — (14Y0) 3 G gqﬂlnm + '09<§>

hence

q 1 log(d71)

ng_ Y(1+Q) +vBK)Gkn+q—an+ 5 (43)

Now, for Gg > 81K, let us take

K 1
=2 =34/ = = — and = 24/ Gp.
q , Y G()’ B \/ma n 0

Then we have ~ 1.14,v ~ 0.522,u< 2.09,{ < 0.377, and

n 2
— Zlg'“t < 4.51/K%‘+4«/KGO+\/ZKGOIog(é‘l). (44)
t= 0

For deterministic adversaries, the arm achieving a cumulative rewartitedbaax is deterministic
(it does not depend on the randomization of the forecaster). So, we kel égual to this fixed
arm, and obtain (18).

To prove the inequality for a fully oblivious adversary, let us take argmaxesy .y EGin.
From (44) which holds with probability at least-19, it suffices to prove that with probability
at least 1- 8, we haveGy,, > Gmax— \/8Iog(K6*1)GmaX. Let A > 0. Since the reward vectors
g1, ..,0n are independent, and from the inequality @p < 1+ [exp(A) — 1]x for anyx € [0,1]
(by convexity of the exponential function), for afy£ k, from Lemma 35, we have

EexpAGjn) = ﬁEexp()\g“) < ﬁexp[(exp()\) —1)Egj;| =exp[(exp(A) —1)EGj ],
= t=
and

n
Eexp(—AGyn) = rlE exp(—AGkt)
=

< ﬁE(l—)\gm + 1)\2gﬁt>
< r! <1 A(l— A)Egkt>
< r!exp{ (1_ )Egkt] _ exp[ }\(1— )2\>IEG|(]

2823



AUDIBERT AND BUBECK

This implies respectively that for anjy£ k, with probability at least - 9,

log(d~1)
)\ )

Gjn< EGLn‘F)\@O\)EGj,n +

and with probability at least 4 9,
log(6~*)
N

By optimizing the free parametar(using Lemma 32 below), and from a union bound, with proba-
bility at least 1— 6, we simultaneously have

A
EGykn < Gyn+ EEGK” +

log(K&~!
Gjn <EGjn+ \/ZIEGj,nlog(Kes—l) + 9(3)

and

EGkn < Gxn+ \/ZIEGk,n log(K&1).

Since we hav&Gy , > EG; n, we get consecutivel@y , > EGj n — /2EG; nlog(Kd~1), and after
computationsGyn > Gjn — 1/8Gjnlog(Kd~1) for any j # k. With probability at least + 5, we
thus haveGy , > Gmax— \/8Iog(K6*1)Gmax, which concludes the proof of (19).

To prove Corollary 19, first note that (20) holds fo/BGmax > Gmax Since we trivially have
Rn < Gmax For 9/KGnax < Gmax, We may apply Theorem 18 witBy = Gnax SinceGmax > 81K,
and obtairR, < 8.5,/KGmax+ v/2KGmaxlog(d71). This implies (20) and (21).

Lemma 32 LetO(A) = exm)zi;l*)‘ For any A> 0, infy.o {AO(A) + &1 < A+ AZ/6.

Proof Consideringh = Iog(1+A), we have inf.o {A®@(A) + 2;} < log(1+ A)O[log(1+ A)] +
N N s LAtk ®(A) whered(A) 2 log(1+A) — ﬁ:ﬁ . Sinced(0) = 0 and®’ (A) =

2log(1+A) ~ Tog(1+A)

36(1+A)(§A+A2/6)2 >0, we getd(A) > 0, hence the result. [ ]

To prove Theorem 20, we replace (42), which holds with probability &t l&a o, by

log(d~1)
>
lrplg)évl n > Gmax— B

9

which, by a union bound, holds with probability at least K&. (It is this union bound that makes
the logK factor appears in the bound.) This leads to the following modified versioa3)f ith
probability 1— K9,

1 log(d7t
Gmax— Zlglt < (Y(1+Q) +VBK)Gmax+ q? 1[’]Kq + g(B )
Now, for Gg > 81K log(3K), let us takeg = 2,
Klog 3K log(3 Go
y=3 2KG and n= W
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Then we have ~ 1.14,v ~ 0.522,1 < 2.09,{ < 0.377, and

n G2 KGo 2K Gy _
_ < 4. max 1 )
Gmax t;glht < 4.5 / Go Klog(3K) +4\/Iog(3K) + \/Iog(3K) log(d )

This inequality holds with probability at least-1Kd. This implies the result of Theorem 20.

C.10 Proof of Theorem 21 (page 2803)

Consider parametecs> 1, 0<y< 1,n > 0 andB > 0 such thaBK < y. Introducec = —BlK log (1—
B%). We have max pigvi; < c. So (11) holds as soon as

n BK
> _ -
V> Kr]cG)< 5100 (1 v )> (45)
From (12) and as in the proof of Theorem 13, by using (40) withBlK + m, we obtain
(1- y)<maxV )— ng —VBKV- <(1—y)loiK
i,n t; It i; L,n > n )
hence I <
0
(1—y—vBK)< max\/.t> Zigltt (1-vy) ?]

From the same argument as in the proof of Theorem 18, forany, . ..,K}, we havek exp(BGI n—

BVin) <1, and for anyd > 0,Vin > Gin— 'OQ(B ) holds with probability at least 4 8. By a union
bound, we get that with probability at least- K9,

—1
max Vi n > Gmax— log(d ).
1<i<K B

With probability at least 1 &, we thus have

log(K&~1) logK
+ .
B n

This inequality holds for any parameteys- 1, 0< y < 1,n > 0 andp > 0 such that the inequality
BK < yand (45) hold. We choose

Gmax Zlgh V+VBK)Gmax+

Klog(3K) _ /log(3K) . [log(3K
=\ kG, w9 =2\ G,

which givesc =~ 1.23,v ~ 0.536, and

Gmax— Zlgh _2“ maXK|O (3K) \/TO K5 KG0|Og(3K)
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C.11 Proof of Theorem 22 (page 2804)

Consider parametersQy < 1,n > 0 andp > 0. We have max piviy <1+ BTK and max; Vit <
(1+ B)%. So (11) holds as soon as

y> Kn(1+Bj)e<”(ltB>K>. (46)

Then, from (12), we have

(1-y) <1r2§)évi,n) Zigut t—BK < (1-y)—— logK |

Let & = maxi<i<k Vif — Mini<j<k Vjt and § = max<i<n&:. Consider a fixed switching strat-
egy (i1,...,in) € {1,...,K}", and letVi,,..in = Y1 1Vit- One can easily check thﬂ(rp(ax,n >
SIS

-----

Vis,...in) — &S (i1, ... ,in), and consequently
max Vi n ma Vi o _ES
BN Z B st 78

Since exp—x) < 1—x+x2/2 forx <0, we have for any € {1,...,n} and anyi € {1,...,K}

><Elt~p[(1 2I39|t]IF'; |+ 2p%g? ]IF')‘ ')

1t

Ei~p, eXp< ZBg.t
p 1
o ! zgi7t
=1-2Bgi++2p"—
Pi t

<1l- ZB(gi,t — pB)

It

)

< eXp< ZB(g.t—rft)>

hence
Ei~p EXD(ZB(gi,t _Vi,t)) <l
For a fixed(iy, ...,in), by using this inequality times corresponding to thetime steps and their
associated actions, this impIiEﬁexp(ZB( ..... in) — V... ))) < 1, hence with probability at least
1-9,
~1
Gy < 1og(&)

'1,-~-=in) _V(ilv"'vin) - 2[3

LetM = 21-5:0 (”}1) K(K — 1)} be the number of switching strategies of size not larger ®dy a
union bound, we get that with probability at least ®,

max V(il woin) > max G(i
(i1yeesin)iS(igyesin)<S 777 (i1)-in): S (i1, 00in) <S ’
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By putting the previous inequalities together, we obtain that with probability at lead,

logK log(M&~1)
1- max G ot <BnK+(1— + =",
( y)(i17...7in).5(|1,...7in)gs ..... Zlglt B (1-y)— n +&S 2B
hence
n logK log(M&~1)
= Gi, iy— < K —— 4+ &S+ ———=.
imaX Ol 2 Ot < (Y+BK)n+ % + &S+ 20

We now upper boun¥ and¢. We have

y :Ji<n}1>K(K_l)j - KSHi(n}l) <Ks+1<esn>sz eXFZJ(S)’

where the second inequality comes from Sauer’s lemma. Let

. Kny 1+ KB
p=oxp((1+9) <) K0
By contradiction, we now prove
. 1 B y)
<p-—-=-lo =7 |- 47
£<p 0 g<p K (47)

To this end, we start by boundir@y — C;_1. By the mean value theorem, with the notations of the
third step of the proof of Theorem 27, there exiats [Vi—1, V] such that

G —C1=C(\) —C(\-1)
K
—Zlgc Vlt |t 1)
_ W) glt:uh |+B
lej 1hJ W) fi(Vie- 1)

nhi gitd— i+B
z, n TS Z AV ) +ny/K
Jl| i+B_ p & 1+KB
hi (W)= 1,-i+B) = .
S1- vzi i) S 1oy MR =Py
From Lemma 28 (page 2810), we have < exp((1+ B)@), hence G — G_1 <
exp<(1+ B)K”>1+—Kﬁ_p If (47) does not hold, then from Lemma 1, we have

o . . ~ _ _1 ~
max <Q 1g}|§nKVj,t> >p—y(B/P).
Besides we hav€y — mim<j<k Vjo = —p~1(1/K) < p— @~ 1(B/p), sinceKB < p. So there exist
Te{l,....,nfand?l e {1,...,K} such thalCr_1 —V;7-1 < p— L|J71([3/[5) andCr —Vy1 > p—
W=1(B/P). In particular, we haves(V, 1 —Cr +p) < % hence

B B B

Vit —Voero1> = > — >p>Cy —Cr_q,
T = s T W(Ver1—Cr 1) ~ W(Ver —Cr +p) =p=br ot

2827



AUDIBERT AND BUBECK

which contradicts the inequali9r_1 —V,7-1 < Cr —V, 1. This ends the proof of (47). We have
thus proved that for any € y < 1,n > 0 andp > 0 such that (46) holds, we have

logk [3 y log(K&~1) Slog(Ken/S)

with p= LB > exp((1+B)51). For the numerical application, we first notice that the bound trivially
holds for 7\/ s> y/n. For 7/Ks< /n, with s= Slog (2%) + 2logK, we choose

Ks S 1 S
o B=3 K and ”—gw/ﬁ-

We then useg < 7\[, BK < 3 S B< to deducep < 2.25, andpS < 0.05v/nKs. We check (46) by

the upper bound? (1-+ BTK)G)( “T/B) ) <0.84< 1. We also use-log (— —¥) < llog(3nK/s) <
3log (3nK/S). We thus have

R§<<3—|—ﬂ+005+ + >¢nT<s+ (B )§6.5\/M+'°g(§1) %

The last inequality follows by integrating the deviations.

C.12 Proof of Theorem 24 (page 2806)

This proof requires some new arguments compared to the one for UCB1,.vikirneed to decouple
the arm, while not being too loose. This is achieved by introducing apptepti@pping times. The
decoupled upper bound on the pseudo-regret is (51). Secondlisaveeeling arguments to tightly
control the terms in the right-hand side of (51).

We may assumgy > ... > li. Using the trivial equalitys* ; ET;(n) = n, we have

n

R, = 1212)}2Et: (gi,t — gh,t)

n
—n( maxEqg )— E
(1@} ax iy t; O, t
n

K K K
= (3,5m0) (magw) =3 Wi = 3 =i
First step: Decoupling the arms

For an armko, we trivially have SK_; AcTi(n) < nAy, + SR ko+1DKkTk(N). Let Axyq = +oo,
Zi= W — = for ko <k <K+ 1andz, = +«. LetZ = mini<s<nBys andWjy = lequl,z,-)(Ak —
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Ay,) Tk(n). By usingE ztilTk(n) = n—EzE:kOHTk(n), we get

K K
Ri=E Y ATk(n) < nlg+E (Bk — Diy) Ti(M).
k=1 k=ko+1

We have
K

K K K j K K
(Bk = Do) T(N) = % ZOWLk: ZD % Wik+ % > Wik (48)
k=for1 k=for1iS o k=for1 I Rok=TH1

An Abel transformation takes care of the first sum of (48):

K j K K
ZO \Nj,k < %]IZE[ZHLZJ)n(AJ' _Ako) =n :“Z<Zj (Aj _Ajfl)' (49)
SRok=fo+1 = i=for1

To bound the second sum of (48), we introduce the stopping tigresnin{t : Bt < z} and remark
that, by definition of MOSS, we hai& > z} C {Tk(n) < 1«}, since once we have pullad times
armk its index will always be lower than the index of arm 1. This implies

K K K k-1 K K
;@ > Wik= % ;OVVj,k: 1752 ATk(N) < % Tkl (50)
jSRok=T+1 k=ko+1j= k=ko+1 k=ko+1

Combining (48), (49) and (50) and taking the expectation, we get

B K K
Rn < I’]Ak0 + AET+n % P(Z < Zk) (Ak _Ak—l)- (51)
k=ko+1 k=ko+1

Letdg=4/ % and sekg such that\, < 8 < Ay, +1. If ko =K, we trivially haveR, <ndp < v/75nK
so that (22) holds trivially. In the following, we thus consider< K.

Second step: Boundirigry for kg +1 < k < K.

Let log, (x) = max(log(x),0). For/g € N, we have

00

Etx—Vlg = ;)P(Tk >0)—{p (52)
;00 +00
< S P>t =S PVt <{,Bys>z)
E;o f;O

P iV log (n/KZ))
<SS PPr—W>— -\ ———|.
3 e (enz oy

Now let us take/o = [7log (A7) /AZ] with [X] the smallest integer larger thanFor ¢ > ¢o, since

k > ko, we have
n n nA2 LA2  IN2
| — )< — ) <l k) < K < K
°g+<Kz)—°g+(|<eo)—°g+<7}<>— 7 =7
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hence% — \/w > cl, with c= % — \% Therefore, by using Hoeffding’s inequality and
(52), we get
+00

Eti—lo < ZP(ﬁk,é—P«kZCAk)

+oo B exp(—%o(CAk)z) exp(—14c?log(75))
< ; exp(—2¢(ctw)?) = 1— exp(—2(chy)?) = 1—exp(—2c2A?)

where the last inequality uséshZ > 710g(75). Plugging the value ofy, we obtain

7log(2A2 —14c?
AFL < A, <1+ og(§ k)) Acexp(—14c?log(75))

A2 1—exp(—2c2A?)
log (RAZ) N exp(—14c?log(75))
Dy 202(1 — Cz)Ak ’

<147

where the last step uses that, sincedxp(—x) > x— x2/2 for anyx > 0, we have

1 1 1
< <
1—exp(—2c2A%) — 2c2A; —2c*0y — 2¢2AZ(1—¢?)

Third step: Bounding 5 1 P(Z < z) (D — Dr—1).

Let X denote the reward obtained by arm 1 when it is drawn fortitietime. The random
variablesXp, Xp,... are i.i.d. so that we have the maximal inequality (Hoeffding, 1963, Inequality
(2.17)): for anyx > 0 andm > 1,

]P’(Hse {1,...,m},t§(u1—xt) > x> < exp(—%f) .

Sincez = W — Ax/2 and sincer — P (Z < . — u/2) is a nonincreasing function, we have

K
u
P(Z < 2) (B — Di-1) < Dig11P(Z < Zg11) + / Z <H1— f) du. (53)
k +l k0+1 2

We will now concentrate on upper boundifffZ < py — 3) for a fixedu € [8,1]. Let f(u) =
8log(/gu)/u?. We have

P(Z<u1—;u>

S

P(ngsgn:t;(pl—xt) slog, (P?S)+SLJ>

P(ngsgf(u) Zlul— slog, Kis

+ ]P’(Hf(u)<s§ iul— 52>
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For the first term, we use a peeling argument with a geometric grid of the géaﬁ <s<
1,f( u). The numerical constant by ensures that (u) < n/K, which implies that for ang < f( )s

log, (gs) =log(gs). We have

P <§|1§ s< f(u) :t;(lll—xt) > 4/slog (;53))

+00 o :
< P(ﬂzflﬂf(u)SSS;f(U)i (“1_K)>\/;2|09<K?2(U)>>

=

+°°ex Zf(U)zillog(Kr}z(m _EKfu 1 _ 16K \Fu
Pl™ fu)d =20 2 e 9 \VkY)

IN
M

For the second term we also use a peeling argument but with a geometrié tedform 2 f (u) <
s< 241 (u):

(EISE N} 21 M1 — X )
/z (324 f(u) <s<2*f(u):
2/ lf( u)u ) )

< /;eXp< u)2/+1
= %exp( 2f( 2/4)
1 1

</Z)exp (C+1)f(uu?/4) = exp(f(WW2/4)—1 nZ/K—1

2]

(W —X%) > Zflf(u)u>

t=

Putting together the last three computations, we obtain

1\ 16K n 1
Plz<w-3u)=T@lool k') k=1
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Plugging this into (53) gives

K
% IP)(Z < Zk) (Ak —Ak,]_)
+1

k=
16K D1
< log (/O —
LASE] g< k0+1>+ for1/K—1
—16Klog<e nu>+\/ <\fu 1)
nu \V K VRu+1
o 16K (B} | B e <\/Tr Ako+1+1>
= Nl K nAf L1 /K—1 VD1 — 1
_ 1 0 em;: ., (75, V75 K
- nAk0+1 K 74 \/>5 1 rlAk0+1

where the penultimate inequality usig. 1 > % and log1+ x) < x for anyx > 0.
Gathering the results of the three steps, we get

+

R<m+ S <l+7log(2A§) . exp(—14c2|og(75))>

kfor1 AV 202(1 — Cz)Ak
16K emy? 7 7 K
Hoo(Te) (T )

+ +
Dyyr1 K 74 \J75—1) Dy

<Ay, + K+ (16+ 7)Klog<A|erf+1>
'09( ko+1> 33K
D1 " A
Iog( max(4, 30)?) N 108K
max4, do) max(, &)
Iog(“m max(4, 8)?)
max(A, &) 7

16+ 16
(164167 —

< n60]lA§50 + 23K

<23K

<23K

which implies (22) and alsB, < 24v/nK. Since Proposition 34 impli€BR, — R, < v/nK, we have
proved (23). For (24), Proposition 36 implies

- (K v/nK K75
ERn—RnSmm<A, > )SZmao(A,Bo)’

which implies
log (B2 max(a, &)?)
max(A, &)

ER, <23K
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Appendix D. Pseudo-regret vs Expected Regret

The first two propositions hold for the four prediction games considerddsmwork and defined in
Figure 1.

Proposition 33 For deterministic adversaries, we hal#R, = R,. For oblivious adversaries, we
have
ER, < sup Rn.

deterministic adversaries

In particular, this means that the worst oblivious adversary for a &stec cannot lead to a larger
regret than the worst deterministic adversary.
Proof The first assertion is trivial. For the second one JHgj, be the expectation with respect to
the eventual randomization of the adversary Brgbe the expectation with respect to the random-
ization of the forecaster. For oblivious adversaries, we [iERe= E q/Ew0rRn, hence

ER, < sup EforRn = sup Rn.

deterministic adversaries deterministic adversaries

While the previous proposition is useful for upper bounding the red@farecaster against the
worst oblivious adversary, it does not say anything about the diifer between the expected regret
and the pseudo-regret for a given adversary. The next propogitres an upper bound on this dif-
ference for fully oblivious adversaries, which are (oblivious) adages generating independently
the reward vectors.

Proposition 34 For fully oblivious adversaries, we have

nlogK

ERy—Ry < 5

and

- n logK
ER, — R, < 4/ 2log(K) maxE Zlgiﬁr—.
2 3

Proof The proof is similar to the one of the upper bound on the expected suprefarfinite
number of subgaussian random variables. We use the following lemma.

Lemma 35 LetA > 0and W a random variable taking its values[f1]. We have
Eexp(AW) < exp[(exp(A) —1)EW].

Proof By convexity of the exponential function, we have éxp < 1+ (exp(A) —1)x for any
x € [0,1]. So we havéexpAW) < 1+ (exp(A) — 1)EW, hence Lemma 35. [ |
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LetA > 0, then by Jensen’s inequality and Lemma 35, we have

n 1 K n
Emiaxt;gm < EAIOQ_Zlexp(AZigi,t>

< X Iog ZE rlexp()\g. t
1

= 3 og_zl r!Eexp()\gi,t)
1

< —Iogzlr!exp [exp(\) — 1]Egiy)
logK expA)—1 _

< St miaXIEt;g.,t.

This implies
— . . [logK A
_ < —_~ 1
ER, Rn_AIQE< X +A@(A)miaxIEtZlg.,t>,

where®(A) = ”"@27{1_" By using Lemma 32, one obtains the second inequality of the theorem.
Instead of using a variant of Bernstein’s argument to cori@p(Ag;;), one can use Hoeffding’s

inequality. This leads to the first inequality by takihg-= |/ 299, [

We can strengthen the previous result on the difference between tketedpegret and the
pseudo-regret when we consider the stochastic bandit game, in whicevieds coming from a
given arm form an i.i.d. sequence. In particular, when there is a unigtima arm, the following
theorem states that the difference is exponentially small mithstead of being of ordey/n).

Proposition 36 For a givend > 0, let | = {i e{l,...,K}:A < 6} be the set of armsd-close” to
the optimal ones, and 3 {1,...,K} \ | the remaining set of arms. In the stochastic bandit game,

we have
/nIog|I Zexp( ),

nIog|I 802+4A./3 nA?
o= +Z{ o~ gor 4 3)

+80%+4Ai/3ex (_ nA? )
A P 802 +440i/3) [’

where for any je {1,...,K}, 012 denotes the variance of the reward distribution of arm .
In particular when there exists a unique arinsuch that)- = 0, we have

nA?
ER,— R, < ;exp(—z').
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Note that the assumption on the uniqueness of the optimal arm in the last statenesgssary
as we already discussed in Remark 25.
(2)

Proof LetWi" = max SOt — Y1 Gict andWh™ = maXie(1 k) Y1t 0jt — MaXel FiqGit-
We haveER, — R, = Ewn(l) +IEWn(2). From the same argument as in the proof of Proposition 34,
we have

E\Nn(l) < nIo§]I|'

Besides, we have

400
EWM? = [ PW? > u)du
0

+oo n n
< Z/ P <Zlgj’t - rpeallxt;gi,t > u) du
<ZJ/ P(Gjn—Gi<n>u)du

_Z/ P (Gin— EGin+EGi-n— Gi > U+ nA) du

nA; A
gz/ {P(Gi,n—EGLp ur ')+P<Eei*,n—ei*,n> urn ')}du.
ie/0 2 2

This last integrand is upper bounded by Zéxp%%)z) from Hoeffding's inequality, and by

exp(—mo?ﬁ(—ﬂm> +exp<—m(ﬂ(—”lmi)/3) from Bernstein’s inequality. To control the two

corresponding integrals, we note that for a nondecreasing commetidax going to infinity at+-co,

we have
e < ), _ exp(—x(x)

400
[ evtxtdus [ Soexn—x(w)du= ZF

We apply this inequality to the functioms— £ ﬁ andr — to obtain respectively

8n0-2+4r /3

Ew? <ZZ/nAI exp<—)du<Zexp< >,

and
too 2 2 Y 2
/ expl 2u du< (80 %;4A./3) exp| - 2nA,
nA; 8n0i +4U/3 A|(1&f| +4A|/3) 80| +4A|/3
< 802 +4A;/3 <_ nA? )
- JAY 80'i2+4Ai/3
hence

2 44 2 2 44 nA2
EWy™ < ———exp| — expl ————= .
" .GZ{ A g 807 + 40 /3 T, P 802 + 44 /3
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