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Abstract

In this paper, we study the problem of learning a matkixfrom a set of linear measurements.
Our formulation consists in solving an optimization prablevhich involves regularization with a
spectral penalty term. That is, the penalty term is a funatibthe spectrum of the covariance of
W. Instances of this problem in machine learning include irtaltk learning, collaborative filtering
and multi-view learning, among others. Our goal is to elatédthe form of the optimal solution
of spectral learning. The theory of spectral learning sebe the von Neumann characterization
of orthogonally invariant norms and their association veyimmetric gauge functions. Using this
tool we formulate a representer theorem for spectral reigakion and specify it to several useful
example, such as Schattpanorms, trace norm and spectral norm, which should provefiliLise
applications.

Keywords: kernel methods, matrix learning, minimal norm interpaati multi-task learning,
orthogonally invariant norms, regularization

1. Introduction

In this paper, we study the problem of learning a matrix from a set of lineasurements. Our
formulation consists in solving for the matrix

W = argmin{E(1 (W),y) +YQ(W) : W € Mg}, (1)

whereMq p, is the set ofd x n real matricesy anm—dimensional real vector of observations dnd

Mgn — R™ a linear operator, whose components are given by the Frobenius imurgp between

the matrixW and prescribed data matrices. The objective function in (1) combines dedata
E(I(W),y), which measures the fit ¥ to available training data and a penalty term or regularizer,
Q(W). The positive constant controls the trade-off between the two terms and may be chosen
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by prior information on the noise underlying the data. A typical example fordtia term is
E(1(W),y) = || (W) —y]||3, where the subscript indicates the Euclidean norm.

In the design of learning algorithms from the point of view of regularizati@ndhoice of the
penalty term is essential. To obtain insights into this issue, we shall investigatis ipajer the
form of matrices which solve the variational problem (1) when the penalty iganorthogonally
invariant norm(Ol-norm). This means, for any pair of orthogonal matrideandV, that

QUWV) = QW).

There are many important examples of Ol-norms. Among them, the family ott8olp-norms,
1 < p < o, namely the/p—norm of the singular values of a matrix, are especially useful.

Our main motivation for studying the optimization problem (1) arises from its agijdic to
multi-task learning, see Argyriou et al. (2007a) and references thdreithis context, the matrix
columns are interpreted as the parameters of different regressionssificktion tasks and the
regularizerQ is chosen in order to favor certain kinds of dependencies across kise Td operator
| consists of inner products formed from the inputs of each task and tetenmE (I (W), y) is the
sum of losses on the individual tasks. Collaborative filtering (Srebab.€2005) provides another
interesting instance of problem (1), in which the operat formed from a subset of the matrix
elements. Further examples in which Ol-norm have been used include maftiassification
(Amit et al., 2007), multi-view learning (Cavallanti et al., 2008) and similarityeay (Maurer,
2008a).

A recent trend in regularization methods in machine learning is to use matritargus which
are orthogonally invariant (Argyriou et al., 2007a,b; Abernethy et 8092 Srebro et al., 2005). In
particular, an important case is the Schatten one noi,ofhich is often referred to as theace
norm The general idea behind this methodology is that a small trace norm fawsrank solution
matrices to (1). This means that the tasks (the column)oéire related in that they all lie in a
low-dimensional subspace Bf. Indeed, if we choose the regularizer to be the rank of a matrix, we
obtained a non-convex NP-hard problem. However, the trace nomidpsoa convex relaxation of
this problem, which has been justified in various ways (see, for examel &aal., 2001; Careb
and Recht, 2008).

The main purpose of this paper is to characterize the form of the solutionoldem (1).
Specifically, we provide what in machine learning is known aspgesenter theorenNamely we
show, for a wide variety of Ol-norm regularizers, that it is possible tmmate the inner product
(W, X) only in terms of themx m Gram matrix*| andl(X). A representer theorem is appealing
from a practical point of view, because it ensures that the cost oihgpllie optimization problem
(1) depends on the siza of the training sample, which can be much smaller than the number of
elements of the matriv. For example, in multi-task learning, the number of rows in the matrix
W may be much larger than the number of data per task. More fundamentallyskheetzors (the
columns of matrixV) may be elements of a reproducing kernel Hilbert Space.

Our point of view in developing these theorems is through the study ahthienal norm inter-
polationproblem

min{||W| : 1(W) =9, W € Mgn}.

The reason for this is that the solutité of problem (1) also solves trle above problem for an
appropriately chosenpc R™. Specifically, this is the case if we chogse I(W). In the development
of these results, tools from convex analysis are needed. In partialkay, tool that we use in this
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paper is a classical result of von Neumann (1962), which charagdfiz@orms in terms of the
notion of symmetric gauge functiosee also Lewis (1995) for a discussion of the von Neumann
theorem in the context of convex analysis. We record some of thesenfaicts we need in Section

4.

The paper is organized in the following manner. In Section 2 we introduceaation and
describe the connection between minimal norm interpolation and regularizdtidection 3 we
describe the relationship between any solution of (1) and any solution oélapdoblem, which
involves a number of variables equal to the training set size. In Section gpeafy this result
to the class of Ol-norms. In particular, we describe a special casecbfrearms, which contains
the Schatterp—norms, and derive a linear representer theorem for this case. As allessk,
this computation in general involves a nonlinear function and a singular dak@mposition of an
appropriate matrix.

2. Background

Before proceeding, we introduce some of the notation used in the papexaew some basic facts.

2.1 Notation

We useNy as a shorthand for the set of integéts. .., d}, RY for the linear space of vectors with
real components andy , for the linear space af x n real matrices. For any vectarc RY we use
a; to denote itd-th component and for any matii € Mg, we usew; to denote the-th column
of W, fort € Ny,. For a vector € RY, we let Diag)) or Diag(Ai )ic, to denote thel x d diagonal
matrix having the elements @f on the diagonal. We denote the trace of matbby tr(W). We
useS? to denote the set af x d real symmetric matrices arl andS . to denote the subsets
of positive semidefinite and positive definite ones, respectively. We-uaed - for the positive
definite and positive semidefinite partial orderingsSInrespectively. We also lady be the set of
d x d orthogonal matrices anély the set ofd x d permutation matrices. Finally, in this paper, the
notation(-,-) denotes the standard inner productsdrandMg n, that is,(a, b) = 5y, abi for any
vectorsa, b € RY and(W,V) = tr(W'V) for any matrice$V,V € Mg n.

2.2 Regularization and Interpolation with Matrices

Let us first describe the type of optimization problems of interest in this papar motivation
comes from recent work in machine learning which deals with the problem tf-task learn-
ing. Beyond these practical concerns, the matrix optimization problems ve&deorinere have the
property that thenatrix structures important.

We shall consideregularizationproblems of the type

min{E(I(W),y) +yQ(W) :W € Mg} , (2)

whereE : R™x R™ — R is called doss functionQ : My n — R aregularizer, y > 0 theregularization
parameter| : Mg, — R™ is alinear operatorandy € R™. Associated to the above regularization
problem is thenterpolation problem

min{Q(W) :W € Mgn, (W) =y} . (3)

Unless otherwise stated, we always assume that the minima in problems (3) aneldttained.
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Regularization enables one to trade off interpolation of the data againstiemese or simplicity
of the model, whereas interpolation frequently suffers fimrarfitting Note that the family of the
former problems encompasses the latter ones. Indeed, an interpolattanprcan be simply
obtained in the limit as the regularization paramegtgoes to zero (see, for example, Micchelli and
Pinkus, 1994).

For example, a special case of matrix regularization problems of the type ¢Bjained with
the choice

(W) = (W, Xi) it € Np,i € Ny ),

where thex; are given input vectors ilR9. This occurs, for example, in multi-task learning and
problems closely related to it (Abernethy et al., 2009; Argyriou et al., a@)Tanés and Recht,
2008; Cavallanti et al., 2008; Izenman, 1975; Maurer, 2006a,ar®&ethl., 2005; Yuan et al., 2007,
etc.). In learning multiple tasks jointly, each task may be represented by a wéategression
parameters which corresponds to the columrin our notation. There ara tasks andm data
examples (X, Y:i) : i € Ny } for thet-th task.

In multi-task learning, the error teri in (2) expresses the objective that the regression vector
for each task should fit well the data for this particular task. The choitieeofegularizef is im-
portant in that it captures certain relationships between the tasks. Fopkxane such regularizer,
considered in Evgeniou et al. (2005), is a specific quadratic fovd,inamely

QW) = Z (Ws, Estwt),
steN,

where the matriceBg € S are chosen to model cross-tasks interactions.

Another common choice for the regularizer is trece norm which is defined to be the sum of
the singular values of a matrix,

QW) = > oj(W),
JEN;

wherer = min(d, m). Equivalently this regularizer can be expresse@a#/) = tr(WTW)%. Reg-
ularization with the trace norm learns the tasks as one joint optimization probleffiavoring
matrices with low rank (Argyriou et al., 2007a). In other words, the vaatgrare related in that
they areall linear combinations of amall set of basis vectors. It has been demonstrated that this
approach allows for accurate estimation of related tasks even when thayelya afewdata points
available for each task.

In general, the linear operatbcan be written in the form

(W) = ((W,X) :i € Nm) , (4)

where the inputs matrice§ are inMq . Recall that thedjointoperator)* : R™ — Mg p, is defined
by the property that
(1"(c),W) = (c,(W)),

for all c € R™,W € Mg . Therefore, it follows that* is given atc € R™, by

(0= Y aX.

iEN

We denote byR (1) andA/(1) the range and the null space of the operatoespectively.
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In this paper, we are interested in studying the form of the solution to matrbigos (2) or
(3). For certain families of regularizers, the solutions can be exprasserdns of the given inputs
X in (4). Such facts are known in machine learninggesenter theoremsee Argyriou et al.
(2009) and reference therein.

The line of attack we shall follow in this paper will go througitterpolation That is, our main
concern will be to obtain representer theorems which hold for problems3jkeThis in turn will
imply representer theorems for the associated regularization problemss Justified by the next
lemma.

Lemmal LetE: R™xR™— R, alinear operator I: Mg n — R™, Q: Mg — R, y> 0such that the
problemg2) and(3) admit a minimizer for every g R™. Then for every ¥ R™ there existy € R™
such that any solution of the interpolation probl€®&) with y= ¥ is a solution of the regularization
problem(2).

Proof If W solves (2), we may defing:= I(W). It then readily follows that any solution of (3)
with ¥ in place ofy is a solution of (2). [ |

For some other results relating optimality conditions for regularization and oitgipn problems,
see Argyriou et al. (2009). We shall return to this issue in Section 4,awverstudy representer
theorems of a particular type for regularizers which are Ol-norms.

3. Duality and Minimal Norm Interpolation

In this section, we turn our attention to the study of the interpolation problemt{8h the function
Qis anormon Mg . That is we prescribe a linear operatarMq , — R™, a vectory € R (1) \ {0}
and study the minimal norm interpolation problem

@:=min{||W| : (W) =y,W € Mg n}. (5)

The approach we take to analyze problem (5) makes use of a dualprobteidentify it, we
recall the definition of the dual norm, given by

[Xlo = max{ (X,W) : W &€ Mg n, [W[| < 1}.
Consequently, it follows, for everf,W € My, that
[(X, W) < [[X]|o[[WI]. (6)
Associated with this inequality is the notion of theak sebf the norm|| - || at X, namely
Z|X] =W : (X,W) = [[X[|p,: W € My, W] = 1},

Note that, for eactX € My n\{0} the peak setZ|X|| is a nonempty compact convex set which
contains alW € Mq ,\ {0} that make the bound in (6) tight.
As we shall see in the theorem below, the dual norm leads to the folladuabproblem

6:=min{[II"(0)[, : ce R(1), {c,y) =1}. (7)

Let us first observe that both the primal and dual problem have solutiotise primal problem we
minimize a norm which is a function which grows at infinity and, so, the existeheesolution is
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assured. Similarly, the quantitjf*(c)||o which is minimized in the dual problem is also norm on
ce R(I).

The main result of this section establishes the relationship between the sohftiblesprimal
problem (5) and those of the dual problem (7).

Theorem 2 A vectoré € R™ solves the dual probleii?) if and only if there existé/ € 8-12]|1*(¢)||
such that (W) = y. Moreover, in this casé/ solves the primal proble() andgd = 1. Conversely,
for every\WW solving the primal probler() andanysolution¢ of the dual problen(7), it holds that
W e o 1g|1%@)].

Before we proceed with a proof, let us explain the rationale behind thidt.r&he number of
free parameters in the dual problem is at most 1, while the primal problem involvedn—m
parameters. Typically, in applicationdn is much larger thamm. Recalling the connection to
multi-task learning in Section 2, this means tldats much larger than the number of data per
task, ™. Therefore, from the perspective of this parameter count, solvinguakmioblem may be
advantageous. More importantly, any solution of the dual problem willideows with a solution of
the primal problem and conditions on the latter are obtained from a study pé#iesetZ || *(€)||.
For example, as we shall see in Section 4, in the case of Ol-norms, thisifidloe facilitated by
fundamental matrix inequalities.

Proof of Theorem 2First let us establish that

1

=@ (8)

To this end, consider argye R™ with (c,y) = 1 andW € Mg, with | (W) =y. Then
1=(cy) = (&, 1(W)) = (I"(c),W) < [[I"(c) [o]IWI]. (9)

From this inequality we get the desired claim. To prove the reverse inequal8y, e letc’e R (1)
be a solution of the dual problem (7) and conclude, forlamyR® (1) such thatb,y) = 0, that

i I+ ) o~ 1°(@) o

> 0.
e—0t €

Since the dual norm is a maximum of linear functions over a compact set, wappgyTheorem 22
in the case that = {X : X € My, [|X|| < 1}, W = Mg, (W, X) = (W, X), and evaluate Equation
(16) forw = 1*(€) andA = I*(b) to obtain the inequality

max{(I*(b),T) : T € Z||I"(¢)||} > 0.

Using the fact thab € R (1) and(b,y) = 0, we can rephrase this inequality in the following fashion.
For everyZ € Mg such thatZ,1*(y)) = 0 we have that

max{(Z,1"1(T)) : T € 2||1*(¢)||} > 0.

To resolve this set of inequalities we use Lemma 21 in the appendixkwiti, J : Mgn — R
defined atV € Mg n asJ(W) = (I*(y),W) and W := 1" (Z][1*(€)||). SinceJ* : R — Mqn is given
for ac R asJ*(a) = al*(y), we conclude that there existc R andW € 2||I*(€)|| such that

A (y) = 11 (W).
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This equation implies thaty — I (W) € AL(1*). However, recalling the fact thate R (1), we also
have thatly — I (W) € R (I). Therefore, we have established that

Ay =1 (W).
To identify the value oh we use the fact thal,€) = 1 and obtain that

A= (&10W)) = (17 (&) W) = 1" (©)]]o = ©.

o~ 1 A . ~ .
Now, we defindV = éw and note that(W) =y and sincg|W|| = 1 we obtain that

< W] =3

This inequality, combined with inequality (8) demonstrates gt 1 and thatV is a solution to
the primal problem (5).

To complete the proof, consider awy solving (5) andcsolving (7) and it easily follows from
inequality (9) andpd = 1 thatW € 8~12||1*(¢)||. n

Theorem 2 describes the relation between the set of solutions of the priobégm (5) and the
dual problem (7). It also relates the set of solutions of the primal protdehre range of the adjoint
operator *. This latter property, combined with Lemma 1, may be viewed as a gene@rakenter
theoremthat is, the theorem implies that the solutions of the regularization probleand ) atrices
in the setZ||1*(€)||, for somec’e R™. However, additional effort is required to obtain a concrete
representation of such solution. For example, for the Frobenius rafix|| = {X/||X||} and, so,
the optimality condition becoma¥ = | *(&). We refer to this condition throughout the paper as the
standard representer theorelsee Argyriou et al. (2009) and references therein. In other wirds
standard representer theorem\fémmeans thav € & (1*).

We make no claim of originality for Theorem 2 as its proof uses well estalisiws of convex
analysis. On the contrary, we emphasize the utility of this result for machirmgnga Alternatively,
we can approach the minimal norm interpolation problem by use of the Lgigrandefined, for
W € Mg andA € R™, as

LW,A) = W[+ W, 1(A)) = (¥, A).

4. Representer Theorems for Orthogonally Invariant Norms

In this section, we focus our attention on matrix norms which are invariantruieét and right
multiplication by orthogonal matrices. As we shall see, for such norms, firegenter theorem
can be written in terms of the singular value decomposition. In addition, in Settmnwe shall
describe a subclass of Ol-norms for which representer theoremsegatméised in terms of matrix
multiples of the adjoint operator valué(€). This type of representer theorem arisesnulti-task
learningas described in Argyriou et al. (2009). That is, each of the columnseabptimal matrix
lies in the span of the corresponding columns of the input matKces
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4.1 Notation

LetW € Mg, be a matrix and set= min{d,n}. We express the singular value decomposition of
the matrixW in the form
W=uUxVv',

whereU € 04,V € O, andZ € Mgy, is a diagonal matrix with nonnegative elements, tha is
diag(a(W)), wherea(W) = (0;(W) :i € N;) € R!,. We assume that the singular values andered
in a non-increasing sense, that is,

01(W)>--- >0, (W) >0.

Note thato(W) is uniquely defined in this way. Sometimes we alsoXLi&#) to denote the diagonal
matrix . The components af(W) are thesingular valueof W. They are equal to the square root
of the largest eigenvalues ofV™W, which are the same as those/®iV". We shall call functions
of the singular values of a matrgpectral functions

In the case of a symmetric matixe S, we similarly write

A=UAU"

for a spectral decomposition &, whereU € O,, A = Diag(A(A)) andA(A) = (Aj : j € Np) has
components ordered in non-decreasing sense

A(A) > > Mn(A).

In addition, forx € R", we shall usex| to denote the vector of absolute valugs| : i € N;).
Finally, for two vectors,y € R" we writex < y whenever, for all € Ny, x <.

4.2 Orthogonally Invariant Norms

A norm || - || on My, is calledorthogonally invariantwhenever, for every) € Og, V € O, and
W € Mg n, we have that
VWV = W]

It is clear from the definition that an Ol-norm thit || is a spectral function. That is, for some
function f, we have thafW|| = f(ao(W)).

The remaining conditions ori which characterize Ol-norms were given by von Neumann
(1962) (see also Horn and Johnson, 1991, Section 3.5). He estallistieOl-norms are exactly
symmetric gauge functiofSG-functions) of the singular values. To this end, wefldte the subset
of r x r permutation matrices.

Definition 3 A function f: R" — R, is called an SG-function whenever the following properties
hold:

1. fisanormorR";
2. f(x)=f(|x|) forallx e R";

3. f(Px)= f(x) forall x € R" and all permutation matrices B 7.
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Property 2 states thdt is absolutelyor gauge invariant Property 3 states thdtis symmetricor
permutation invariantHence, an SG-function is an absolutely symmetric norm.
Von Neumann'’s result is stated in the following theorem.

Theorem 4 If || - || is an Ol-norm on M, then there exists an SG-function R" — R such that
W] = f(o(W)), for all W € Mgqn. Conversely, if f R" — R is an SG-function then the norm
defined at We My, as||W|| = f(a(W)) is orthogonally invariant.

The best known example of Ol-norms are Sehatten p-normsvherep > 1, They are defined,
for everyW € My, as
1
p
IWlip= ( (i (W))p>
ie%r

[Wlleo = 02(W).

and, forp= o0, as

The Schatten-2norm is sometimes called tlieace normor nuclear norm Other common values
of p give rise to thé-robenius norn{p = 2) and thespectral norm(p = ). The Frobenius norm can
also be written as/trWT™W and the spectral norm is alternatively expressed ag fivex|2 : ||x||2 =
1}, where the subscript on the vector norm indicates the Euclidean nornatofehtor. Another
well-known family of Ol-norms are thKy Fan normgefined, for everyV € Mgy, as

Wllgg= > oi(W)

ieNg

where 1< k <r (the casek = 1 andk = r are the spectral and trace norms, respectively). For more
examples and for many interesting results involving Ol-norms, we refeetder to (Bhatia, 1997,
Sec. IV.2) and (Horn and Johnson, 1991, Sec. 3.5).

We also mention, in passing, a formula from Argyriou et al. (2007b) whialséful for algo-
rithmic developments. Specifically, we recall, foe (0,2], that

HWHp:inf{<WWT,D’2;f> : DeS‘i+,trD§1}. (10)

Whenp € [1,2], the function
2—
(W,D) — (WW',D~7')

is jointly convex inW andD and, so, the infimum in (10) is convex W, in agreement with the
convexity of the norm offW||,. Furthermore, iiWW' is invertible andp € (0, 2], then the infimum
is uniquely attained by the matrix

_(ww)t

St (WW) 2

In machine learning practice, regularization with the trace norm has beponged for collab-

orative filtering and multi-task learning (Abernethy et al., 2009; Argyribale 2007a,b; Maurer,
2006a; Srebro et al., 2005, and references therein) and relatbmo (Yuan et al., 2007). If
Q(W) = rank'W) the regularization problem (1) is non-convex. However, a common tewé mingt
overcomes this issue is to replace the rank by the trace norm (Fazel €Cdl), Z’'he trace norm
is the /1 norm on the singular values and hence there is an analogy to regularish@owvector
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variable with the/; norm, which is often used to obtain sparse solutions, see &aadd Recht
(2008) and reference therein. In analogy’taegularization, it has recently been shown that for
certain configurations of the input data the low rank solution can be reswusing the trace norm
approach (Careb and Recht, 2008; Recht et al., 2008). More generally, regamfi¢ise rank of
the solution, it has been demonstrated that this approach allows for gcjminaestimation of mul-
tiple related tasks even when there are dely data points available for each task (Srebro et al.,
2005; Argyriou et al., 2007a). One motivation is to approximate a matrix witlvssiply low-rank)
factorization (Srebro et al., 2005). Another is that fitting multiple learningstagkultaneously, so
that they share a small set of orthogonal features, leads to a tracepnolbhem (Argyriou et al.,
2007a).

The spectral norm| - ||, is also of interest in the context of filter design (Zames, 1981) in
control theory. Moreover, Schattgmnorms in the range € [1,2] can be used for trading off
sparsity of the model against task independence in multi-task learningr{@ugst al., 2007b). In
general, Ol-norms are a natural class of regularizers to consideg siany matrix optimization
problems can be posed in terms of the spectrum of the matrix.

We now proceed by reviewing some facts on duals of Ol-norms. To thisveadirst state a
useful inequality, which can be found, for example, in (Horn and Jommnk991, ex. 3.3.10). This
inequality also originates from von Neumann (1962) and is sometimes ealleNeumann’s trace
theoremor Ky Fan inequality

Lemma5 Forany XY € Mg, we have that
(X,Y) < (a(X),a(Y)) (11)

and equality holds if and only if there are & Oq and V € O, such that X=UZ(X)V' and Y =
Us(Y)VT.

We emphasize that equality in (11) implies that the matriKesdY admit the same ordered sys-
tem of singular vectors, where the ordering is givenobgering of the singular valueslt is also
important to note that this inequality is stronger than the Cauchy-Schwanzaligdgor the Frobe-
nius norm,(X,Y) < || X||2||Y|2. Moreover, in the case of diagonal matrices one obtains a vector
inequality due to Hardy et al. (1988)

y) < (X, ¥)

wherex,y € RY and[x] denotes the vector consisting of the componenisiohon-increasing order.
Let us also mention that apart from norm duality, Lemma 5 underlies manyteiaalyroperties of
spectral functions, such as convexity, Fenchel conjugacy, sdiegita and differentiability (see, for
example, Lewis, 1995 for a review).

For our purposes, inequality (11) can be used to compute the dual dfaor@ in terms of the
dual of the corresponding SG-function. This is expressed in the folip¥@mmas, which follow
easily from (11) (see also Bhatia, 1997, Secs. IV.1, IV.2).

Lemma 6 If the norm|| - || on My, is orthogonally invariant and f is the corresponding SG-
function, then the dual norm is given, for @Mg p, by

IWllo = fo(a(W))

where f : R" — R, is the dual norm of f.
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Lemma 7 ||-| isan Ol-normon M, if and only if|| - |5 is orthogonally invariant. Also, fR" — R
is an SG-function if and only ifyfis an SG-function.

The next useful formula describes the peak set for any Ol-norm.

Lemma 8 Let W e Mg\ {0} and W=UZ(W)V ' its singular value decomposition. If the norm
||-|| is orthogonally invariant and f is the corresponding SG-function, then

P2|W| ={Z:Z2=UZ(Z2)V',0(2) € 2f(c(W))}.

Lemma9 Let W e Mgp\ {0} and W=UZ(X)V ' its singular value decomposition. If the norm
|| - || is orthogonally invariant and the corresponding SG-function differentiableat (W), then
||| is differentiable at W and

OwW| =uOf(o(W))V'.

Lemma 10 If f is an SG-function, x R" \ {0} and we Zf(x), thenw € 2f(X), wherew,x € R'
are the vectors with elements the absolute valuesxfrespectively, in decreasing order. Moreover,
|w|,|x| can yieldw, X with a simultaneous permutation of their elements.

In other words, duality of Ol-norms translates to duality of SG-functionermNduality pre-
serves orthogonal invariance as well as the symmetric gauge propérieslual pairs of matrices
with respect to Ol-norms directly relate to dual pairs of vectors with reéspesG-functions. Simi-
larly, (sub)gradients of Ol-norms correspond to (sub)gradient&Gefudctions. In fact, Lemmas 8
and 9 hold, more generally, for all symmetric functions of the singular vglumsis, 1995).

As an example, the dual of a Schattemorm | - ||, is the norm| - ||q, Where% +% =1. For
p>1and everyV =UZ(W)V' € My \ {0}, one can readily obtain the set of duals from the
equality conditions in llder’s inequality. These give that

(o1 (W))4

D|W|p=43Z2:Z=UZ(Z2)V',0i(2)= "L
IWilp = { @VT0(2) =

ieNr}.

Moreover, this norm is differentiable fqr> 1 and the gradient is given by

1
O|W||p = U Diag A\ )V ————— |
IWI[p 9\ SOOI

wherel; = (0;(W))PLi e N,.

Before continuing to the main result about Ol-norms, we briefly review dtegtion between
regularizationandinterpolationproblems, mentioned at the end of Section 2. We are interested in
obtaining representer theorems and optimality conditions, in general, idareation problems of
the form (2). We shall focus, however, on representer theorematimpolation problems of the
form (3).

LetQ: Mgn — R be a given regularizer and assume that, for eyeryR™ and linear operator
| : Mgn — R™, there exists some solution of (3) satisfying a prescribed representeetheThen,
by Lemma 1, for every € R™, | : Mg, — R™andE : R™ x R™ — R, the same representer theorem
holds for some solution of problem (2). In the remainder of the paper ai gtove optimality
conditions for interpolation problems, which thus equally apply to regularizatioblems.

945



ARGYRIOU, MICCHELLI AND PONTIL

Conversely, the representer theorem for the regularization probleas¢dciated with certain
choices of the functio® andE , will also hold for the corresponding interpolation problems (3).
To illustrate this idea, we adopt a result from Argyriou et al. (2009), tvigiencerns the standard
representer theorem,

We R(1%).
Theorem 11 Let E: R™ x R™ — R andQ : Mg, — R be a function with the following properties:
(i) E is lower semicontinuous and bounded from below;

(i) Q is lower semicontinuous and has bounded sublevel sets, that is, for R, the set
{W:W € Mgn, Q(W) <A} is bounded;

(i) for some = R™\ {0},y € R™, there exists ainiqueminimizer ofmin{E(avy) : a € R} and
this minimizer does not equal zero.

If, for all choices of | and y, there exists a solutidhe R (1) of (2), then, for all choices of | and
y such that ¥ R (1), there exists a solutiow € R (1*) of (3).

As noted in Argyriou et al. (2009), the square loss, hinge loss or logisgcdee all valid error
functions in this theorem. The above results allow us to focus on the interpofatiblems, as a
devise to study the regularization problem.

We are now ready to describe the main result of this section, which canttegrform of the
solution of interpolation problems (5) for the class of Ol-norms.

Theorem 12 Assume thaf - || is an Ol-norm and let f be the corresponding SG-function. If the
matrixW € Mg, \ {0} is a solution of(5) and the vecto€ € R™ is a solution of(7), then

W=UZW)VT, I"(€) =U Z(I*(€))VT
for some Ue 09,V € 0", and
. 1 o
o(W) e m.@f(c(l (€)).

Proof By Theorem 2 we obtain thdfi*(€)||;\W € 2]1*(¢)|
singular value decompositioh}(€) = U Z(1*(€))V" with U
conclude that

. We can writel *(€) in terms of its
e 09V € O". Using Lemma 8 we

(&) loW = U (|[1*(©) [l (W) VT,
where|[1*(6)[|o a(W) € 2 (a(1%(6))). m

This theorem implies that, in order to solve the minimal norm interpolation problgmwémay first
solve the dual problem (7) and then find a matrix in the peak détof scaled by 1||1*(€)||5, which
interpolates the data. The latter step in turn requires computing a singulardesdamposition of
I*(€) and then solving a non-linear system of equations. However, when tHar&Bon is smooth,
there is a unique elements in the peak set and, so, there is no need to sole-tlear equations.

For example, if| - || is the Frobenius norm, Theorem 12 readily yields the standard represente
theorem.
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4.3 Admissible Orthogonally Invariant Norms

In this section, we define a subclass of Ol-norms, which obey an impkarsibn of the representer
theorem presented above.
We begin with a definition.

Definition 13 A norm|| - || onR" is said to beadmissibleif for any xe R', any ke N; such that
Xk 7 0 we have that
X < 11

where X is the vector all of whose components agree with x, except the k-th cempahich is
zero.

The simplest example of admissible norms aredhaorm onRY, || - ||, for p € [1,»). From
this norm we can form other admissible norms in various ways. Specificadlgifyp1, p2 € [1, ),
we see that the norr- ||p, + || - [|p, Or the norm maX|| - ||, || - |lp,} are both admissible. Note
that some of these norms are not strictly convex. Also compare this definititrat@f weakly
monotone norms (Horn and Johnson, 1985, Def. 5.5.13).

Lemma 14 If || - || is an admissible norm oR', x € R"\{0} and we Z||x||, then for any ke N;
with % = O it holds that w = 0.

Conversely, assume that, for everg R"\ {0}, w € 2||x|| and ke N;, if xx = 0 it holds that
wi = 0. Then|| - || is admissible.

Proof Letw e 2]x||, wherex € R"\ {0}, with x, = 0. Suppose to the contrary that # 0. Since
| - || is admissible it follows thatiwX|| < ||w||, and so, we get thdiwX| < 1, becauséw|| = 1.
However, we also have that

IXllo = (w.x) = (WK, %) < [wH][x]lo

from which it follows that|w¥|| > 1. This proves the first part of the claim.

For the converse, we considemec R"\ {0} with wy # 0. We shall show thatwX|| < |lw]|. To
this end, we choosec Z||wK||, and then we choosge Z||xX||. By our hypothesis, we conclude
thaty, = 0 and by our choice we have, in particular that 1]y|| = ||x||. Consequently, it follows
that

X410 = (% X€) = (v, %) < Iyll][x]lo =1
from which conclude that

|| = (W) = (W) < w]. (12)

Moreover, if equality holds in this inequality it would follow thrﬁ\ﬁ € 2|x¢||. But then, we can
invoke our hypothesis once again and obtain a contradiction. That isjatigg(12) is strict and
therefore|| - || is an admissible norm, as asserted. [

The above observation leads us to consider the following subclassmof@is.

Definition 15 A norm|| - || on My, is said to beadmissible orthogonally invariaiftthere exists an
admissible vector norr- || onR" such that, for every V& My ,,, we have thafjW|| = ||a(W)]].
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Examples of non-admissible Ol-norms are the spectral norm, the Ky Fansnpr||, for
1 <k<randthe norm maj| - ||1,a| - ||~} for a € (1,0).

We have now accumulated sufficient information on admissible Ol-norms sepren im-
proved representer theorem for problem (5). We shall prove bémany admissible Ol-normy
can be expressed as

W= % &XR.
IS\™
In other words\V is obtained by first applying the standard representer theorem and thplynu
ing it from the right by the matriR. In the case of the Frobenius nofn= I,.

Theorem 16 If || - || is admissible orthogonally invariant, the matki € Mg\ {0} is a solution of
(5) and the vecto€ € R™ is a solution of(7), then there exists a matrix &S]} such that

~

W=1"(€)R (13)
and the eigenvectors of R are right singular vectors*¢€).

Proof By Theorem 12, there exist$(€¢) =U Z(1*(€))V', obtained from a dual solutiondf (7),
such that]l1*(€)||,W = U Diag(A\)V ", whereA € 2f (o(1*(€))) andf is the SG-function associated
with || -||. Sincef is admissible, Lemma 14 implies that= 0 whenevero;(1*(€)) = 0. Hence
there existg1 € R, such that\; = g;(1*(€))W, i € N, andy; = 0 whenevero; (1*(€)) = 0. Thus,

[1(&)[[oW = UZ(1*(¢))V'VDiag(wV' and the corollary follows by selecting

1 )
@, DiadH)

Note that, in the above theorem, the eigenvectorR oked not correspond to right singular
vectors ofl *(€) according to a simultaneous ordering of the eigenvalues / singular values.

We may also state a converse of Theorem 16, that is, the only Ol-normk sdiisfy property
(13) are admissible.

Theorem 17 If || - || is orthogonally invariant and conditio(l3) holds (without any conditions on
R € Mn,n), for every linear operator t Mg, — R™, ye K (I)\ {0}, every solutiolV of (5) and
every solutior€ of (7), then the norm - || is admissible orthogonally invariant.

Proof Let f be the SG-function correspondingfte||. Let arbitraryx € R"\ {0} andw € Zf(x).
Definex,w € R, to be the vectors with elements the absolute valueswf respectively, in de-
scending order. By Lemma 10, we obtain tiat 2 f(X). Define alsoX = Diag(X) € Mg and
W = Diag(W) € Mq,. By Lemma 8, we obtain thatV € 2| X||. Now, consider the problem
min{||Z]| : Z € Mg n, (Z,X) = || X||o}, whose set of solutions i¥|/X||. By hypothesisW = cXR
for someR € M, , and forc = W (the only solution of the dual problem). Therefore, Djay=
c Diag(X)R and hencey = 0 implieswy = 0, for allk € N,. By Lemma 10, this implies in turn that
wig = 0 if xx =0, for all k € N;. Combining with Lemma 14, we deduce thats admissible, as
required. |
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We remark that there exist norms &y, which are not orthogonally invariant and satisfy
condition (13). In fact, given two non-singular matric®s= Mq g andM € My, the normwW —
IIQW M2 is not orthogonally invariant, but the representer theorem is easily sdsen to

W=(QQ 1" (¢)(MM") %,

Furthermore, concerning the converse of Theorem 16, it can benstiaw if we restrict the
eigenvectors oR to be right singular vectors of (€), then|| - || has to be orthogonally invariant.

Moreover, if the norm| - || is not admissible, then it can be shown that for every solutioh ~
the dual problem there exists a solution of the primal satisfying (13). Axamgle, see Corollary
20 below (spectral norm). For a characterization of functions yieldih sepresenter theorems,
see Argyriou et al. (2009).

Returning to Theorem 12, for the Schattemorms we have the following corollary. To state
it, we use the notatio®d! as a shorthand for the matris Diag(a;(A)41)icy, VT when A =
UZ(AV'.

Corollary 18 If the matrixW € Mg, \ {0} is a solution of (5) for the Schatten pnorm, with
p € (1,), then there exists a vectére R™ such that

1,1_
Where5+a =1

Proof The corollary follows directly from Theorem 12 and the descriptioAjf- ||, in Section
4.2. [ |

The above corollary does not cover the casesphatl or p = «. We state them separately.

Corollary 19 If W € Mg n\ {0} is a solution of(5) for the trace norm¢ € R™ a solution of(7) and
1*(€) = Jjen, 0i(1*(€))uiv is a singular value decomposition, then

1

Wo_ 1
Ol(l*((:)) i€Nrmax

AUV,

for someA; > 0,i € Ny, such thatZieNrmax)‘i = 1, where max is the multiplicity of the largest

singular valueos (1*(€)). MoreoverW = I*(¢)R, where
1

R=———— ViVi .
20@) .2 "

Proof The corollary follows from Theorem 12 and the descriptior4ff- ||1. From the definition,
it is easy to obtain that, for evesye R’ , Z||x[|l1 ={y € R} :yi =0, if Xi <||X[|oo, Yicry, ¥i = 1}
Thus,o1(1*(€))W = [[I*(€)||«W =UAVT, for A = Diag(A) andAj =0fori >rmax, > Aj=1.

1€N1ax

. 1 A 1 .
Since\ = WZ(I (€))A\, Rcan be selected aéamw\v . [ |
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Corollary 20 If the matrixW € Mg, \ {0} is a solution of (5) for the spectral norm¢ € R™ a
solution of (7) and I"(€) = Jicy, 0i(1*(€))uV{ is a singular value decomposition, then

~ 1 rank(1*(€)) r
W= _——— TAVAE aj UiV | (14)
[RCIFRP R I
for somea; € [0,1], i =rank(1*(€))+1,...,r.

Proof The corollary follows from Theorem 12 and the fact that, for evegyR'., Z||X||c = {y €
[—1,1]" :yi =1, if x; > 0}. n

The above corollary also confirms that representation (13) does pbt spthe spectral norm
(which is not admissible orthogonally invariant). Indeed, from (14) it isicteat the range iV
can be a superset of the rangd ¢f).

To recapitulate the results presented in this section, Theorem 12 allows ob#aio the so-
lutions of the primal minimum norm interpolation problem (5) from those of its guablem (7),
which involvesm variables. This is true foall Ol-norms even though the representer theorem in
the form (13) applies only to admissible Ol-norms. Part of the appeal-oio@hs is that computing
primal solutions from dual ones reduces to a vector norm optimization pnoblledeed, given a
solution of the dual problem, one just needs to computesthgular value decompositioof the
matrix|*(€) andthe peak set of the SG-function f at the singular valUé® associated primal so-
lutions are then easily obtained by keeping the same row and column spdogsirmmelements of
the peak set in place of the singular values. In fact, in many cases, theplatbéem of computing
the peak set of may be straightforward. For examplefif is differentiable (except at zero), each
dual solution is associated with a single primal one, which equals a multiple ofadegt off, at
the dual solution.

4.4 Related Work

The results of Section 4 are related to other prior work, besides the ylne@tioned literature
on representer theorems for the case of the vdgtororm (that is, fom = 1). In particular, the
representer theorem for the trace norm (Corollary 19) has been gié8eebro et al. (2005). Also,
the representation (13) in Theorem 16 relates to the representer thgomres in Argyriou et al.
(2009); Abernethy et al. (2009). The results in Abernethy et al. 4280ply to the case of the trace
norm and when th&; are rank one matrices. The results in Argyriou et al. (2009) give septer
theorems for a broad class of functions, of which differentiable Ososire members. However,
as mentioned before, Theorem 16 requires additional conditions on nRatrir particular, the
requirement on the eigenvectors of this matrix holds only for admissible ®h$10

5. Conclusion and Future Work

We have characterized the form of the solution of regularization with arogotmally invariant
penalty term. Our result depends upon a detailed analysis of the cardésganinimal norm inter-
polation problem. In particular, we have derived a dual problem of the mimipran interpolation
problem and established the relationship between these two problems. dll@ahlem involves
optimization over a vector of parameters whose size equals the number ghdfats In practical
circumstances, this number may be smaller than the dimension of the matrix wehsisedyr result
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should prove useful in the development of optimization algorithms for orthalfyoinvariant norm
regularization. For example, one could combine our result with Lemma 9 im tsdmplement
gradient methods for solving the dual problem. Note however that thepdolallem involves a sin-
gular value decomposition, and more effort is needed in elucidating thatalgar implications of
the results presented here.

Acknowledgments

The work of the first author and third author was partially supported ISHEPGrant EP/D071542/1.
The work of the second author was supported by NSF Grant ITRAER and Air Force Grant
AFOSR-FA9550.

Appendix A.

Here, we describe two results which we have used in the paper. Rec¢dditkaery linear operator
J: Mg — RK, the linear space® (J) and\((J) denote the range and the kernelpfespectively.

Lemma 21 Let W be a nonempty, convex and compact subsetof &hd let J: Mg, — RK be
a linear operator. The seR (J*) intersects?/ if and only if, for every Xe A((J) the following
inequality holds

max{ (X,W) :W e W} > 0. (15)

Proof Suppose that there exist R¥ andT € W such thatl*(z) = T. Then for anyX Mg n With
J(X) = 0 we have thatX, T) = 0 and, so, inequality (15) holds true.

Now, suppose thag (J*) N W = 0. Then, there is a hyperplane which strictly separ&€3*)
from W (see, for example, Rockafellar, 1970, Cor. 11.4.2). That is, thésesixc Mg, andpe R
such that, for alk € RX,

(Wb, J*(2)) +H =0,
while, for allW € W/,
(Wo, W) +p< 0.

The first inequality implies that(Wp) = 0. To see this, we choose amyc R¥ andA € R and let
z= Az in the first inequality. Now, we allow — +oo, to obtain thatWp,J*(z)) = 0. Therefore,
the first inequality simplifies to the statement that 0.

The second inequality implies that

max{ Wo,W) :W € W} < —u<0,
which contradicts (15) and proves the result. |
Next, we state an important rule for taking directional derivatives of aeofunction expressed

as a maximum of a family of convex functions. For this purpose, recall tleatigiint directional
derivative of a functioy: W — R in the directionA atW € W/ is defined as

g, w;a) = tim SWHAD Z9W)
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Theorem 22 Let W be a convex subset anda compact subset of  and f: W x X — R. If,
for every We W/, the function X— f (W, X) is continuous onX and, for every X X the function
W — f(W,X) is convex or#//, then the convex function:g¥ — R defined at We W as

gW) :=max{f(W,X): X € X}
has a right directional derivative at W in the directidne Mq , given as
g, (W;A) = max{ f} (W;A,X): X € M(W)}, (16)

where MW) = {X: X € X, f(W,X) =g(W)}.
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