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Abstract
In this paper, we study the problem of learning a matrixW from a set of linear measurements.
Our formulation consists in solving an optimization problem which involves regularization with a
spectral penalty term. That is, the penalty term is a function of the spectrum of the covariance of
W. Instances of this problem in machine learning include multi-task learning, collaborative filtering
and multi-view learning, among others. Our goal is to elucidate the form of the optimal solution
of spectral learning. The theory of spectral learning relies on the von Neumann characterization
of orthogonally invariant norms and their association withsymmetric gauge functions. Using this
tool we formulate a representer theorem for spectral regularization and specify it to several useful
example, such as Schattenp−norms, trace norm and spectral norm, which should proved useful in
applications.

Keywords: kernel methods, matrix learning, minimal norm interpolation, multi-task learning,
orthogonally invariant norms, regularization

1. Introduction

In this paper, we study the problem of learning a matrix from a set of linear measurements. Our
formulation consists in solving for the matrix

Ŵ = argmin{E(I(W),y)+ γΩ(W) : W ∈ Md,n}, (1)

whereMd,n is the set ofd×n real matrices,y anm−dimensional real vector of observations andI :
Md,n → R

m a linear operator, whose components are given by the Frobenius inner product between
the matrixW and prescribed data matrices. The objective function in (1) combines a dataterm,
E(I(W),y), which measures the fit ofW to available training data and a penalty term or regularizer,
Ω(W). The positive constantγ controls the trade-off between the two terms and may be chosen
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by prior information on the noise underlying the data. A typical example for thedata term is
E(I(W),y) = ‖I(W)−y‖2

2, where the subscript indicates the Euclidean norm.
In the design of learning algorithms from the point of view of regularization the choice of the

penalty term is essential. To obtain insights into this issue, we shall investigate in this paper the
form of matrices which solve the variational problem (1) when the penalty term is anorthogonally
invariant norm(OI-norm). This means, for any pair of orthogonal matricesU andV, that

Ω(UWV) = Ω(W).

There are many important examples of OI-norms. Among them, the family of Schatten p−norms,
1≤ p≤ ∞, namely theℓp−norm of the singular values of a matrix, are especially useful.

Our main motivation for studying the optimization problem (1) arises from its application to
multi-task learning, see Argyriou et al. (2007a) and references therein. In this context, the matrix
columns are interpreted as the parameters of different regression or classification tasks and the
regularizerΩ is chosen in order to favor certain kinds of dependencies across the tasks. The operator
I consists of inner products formed from the inputs of each task and the error termE(I(W),y) is the
sum of losses on the individual tasks. Collaborative filtering (Srebro etal., 2005) provides another
interesting instance of problem (1), in which the operatorI is formed from a subset of the matrix
elements. Further examples in which OI-norm have been used include multi-class classification
(Amit et al., 2007), multi-view learning (Cavallanti et al., 2008) and similarity learning (Maurer,
2008a).

A recent trend in regularization methods in machine learning is to use matrix regularizers which
are orthogonally invariant (Argyriou et al., 2007a,b; Abernethy et al., 2009; Srebro et al., 2005). In
particular, an important case is the Schatten one norm ofW, which is often referred to as thetrace
norm. The general idea behind this methodology is that a small trace norm favorslow-rank solution
matrices to (1). This means that the tasks (the columns ofW) are related in that they all lie in a
low-dimensional subspace ofR

d. Indeed, if we choose the regularizer to be the rank of a matrix, we
obtained a non-convex NP-hard problem. However, the trace norm provides a convex relaxation of
this problem, which has been justified in various ways (see, for example, Fazel et al., 2001; Cand̀es
and Recht, 2008).

The main purpose of this paper is to characterize the form of the solutions to problem (1).
Specifically, we provide what in machine learning is known as arepresenter theorem. Namely we
show, for a wide variety of OI-norm regularizers, that it is possible to compute the inner product
〈Ŵ,X〉 only in terms of them×m Gram matrixI∗I andI(X). A representer theorem is appealing
from a practical point of view, because it ensures that the cost of solving the optimization problem
(1) depends on the sizem of the training sample, which can be much smaller than the number of
elements of the matrixW. For example, in multi-task learning, the number of rows in the matrix
W may be much larger than the number of data per task. More fundamentally, the task vectors (the
columns of matrixW) may be elements of a reproducing kernel Hilbert Space.

Our point of view in developing these theorems is through the study of theminimal norm inter-
polationproblem

min{‖W‖ : I(W) = ŷ, W ∈ Md,n}.

The reason for this is that the solution̂W of problem (1) also solves the above problem for an
appropriately chosen ˆy∈R

m. Specifically, this is the case if we choose ˆy= I(Ŵ). In the development
of these results, tools from convex analysis are needed. In particular,a key tool that we use in this
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paper is a classical result of von Neumann (1962), which characterizes OI-norms in terms of the
notion of symmetric gauge function; see also Lewis (1995) for a discussion of the von Neumann
theorem in the context of convex analysis. We record some of these factswhich we need in Section
4.

The paper is organized in the following manner. In Section 2 we introduce our notation and
describe the connection between minimal norm interpolation and regularization. In Section 3 we
describe the relationship between any solution of (1) and any solution of a dual problem, which
involves a number of variables equal to the training set size. In Section 4 wespecify this result
to the class of OI-norms. In particular, we describe a special case of such norms, which contains
the Schattenp−norms, and derive a linear representer theorem for this case. As we shall see,
this computation in general involves a nonlinear function and a singular valuedecomposition of an
appropriate matrix.

2. Background

Before proceeding, we introduce some of the notation used in the paper and review some basic facts.

2.1 Notation

We useNd as a shorthand for the set of integers{1, . . . ,d}, R
d for the linear space of vectors withd

real components andMd,n for the linear space ofd×n real matrices. For any vectora∈ R
d we use

ai to denote itsi-th component and for any matrixW ∈ Md,n we usewt to denote thet-th column
of W, for t ∈ Nn. For a vectorλ ∈ R

d, we let Diag(λ) or Diag(λi)i∈Nd to denote thed×d diagonal
matrix having the elements ofλ on the diagonal. We denote the trace of matrixW by tr(W). We
useSd to denote the set ofd× d real symmetric matrices andSd

+ andSd
++ to denote the subsets

of positive semidefinite and positive definite ones, respectively. We use≻ and� for the positive
definite and positive semidefinite partial orderings onSd, respectively. We also letOd be the set of
d×d orthogonal matrices andPd the set ofd×d permutation matrices. Finally, in this paper, the
notation〈·, ·〉 denotes the standard inner products onR

d andMd,n, that is,〈a,b〉= ∑i∈Nd
aibi for any

vectorsa,b∈ R
d and〈W,V〉 = tr(W⊤V) for any matricesW,V ∈ Md,n.

2.2 Regularization and Interpolation with Matrices

Let us first describe the type of optimization problems of interest in this paper. Our motivation
comes from recent work in machine learning which deals with the problem of multi-task learn-
ing. Beyond these practical concerns, the matrix optimization problems we consider here have the
property that thematrix structureis important.

We shall considerregularizationproblems of the type

min{E(I(W),y)+ γΩ(W) : W ∈ Md,n} , (2)

whereE : R
m×R

m→R is called aloss function, Ω : Md,n→R aregularizer, γ > 0 theregularization
parameter, I : Md,n → R

m is a linear operatorandy∈ R
m. Associated to the above regularization

problem is theinterpolation problem

min{Ω(W) : W ∈ Md,n, I(W) = y} . (3)

Unless otherwise stated, we always assume that the minima in problems (2) and (3) are attained.
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Regularization enables one to trade off interpolation of the data against smoothness or simplicity
of the model, whereas interpolation frequently suffers fromoverfitting. Note that the family of the
former problems encompasses the latter ones. Indeed, an interpolation problem can be simply
obtained in the limit as the regularization parameterγ goes to zero (see, for example, Micchelli and
Pinkus, 1994).

For example, a special case of matrix regularization problems of the type (2)is obtained with
the choice

I(W) = (〈wt ,xti〉 : t ∈ Nn, i ∈ Nmt ) ,

where thexti are given input vectors inRd. This occurs, for example, in multi-task learning and
problems closely related to it (Abernethy et al., 2009; Argyriou et al., 2007a,b; Cand̀es and Recht,
2008; Cavallanti et al., 2008; Izenman, 1975; Maurer, 2006a,a; Srebro et al., 2005; Yuan et al., 2007,
etc.). In learning multiple tasks jointly, each task may be represented by a vector of regression
parameters which corresponds to the columnwt in our notation. There aren tasks andmt data
examples{(xti ,yti) : i ∈ Nmt} for thet-th task.

In multi-task learning, the error termE in (2) expresses the objective that the regression vector
for each task should fit well the data for this particular task. The choice ofthe regularizerΩ is im-
portant in that it captures certain relationships between the tasks. For example, one such regularizer,
considered in Evgeniou et al. (2005), is a specific quadratic form inW, namely

Ω(W) = ∑
s,t∈Nn

〈ws,Estwt〉,

where the matricesEst ∈ Sd are chosen to model cross-tasks interactions.
Another common choice for the regularizer is thetrace norm, which is defined to be the sum of

the singular values of a matrix,
Ω(W) = ∑

j∈Nr

σ j(W),

wherer = min(d,m). Equivalently this regularizer can be expressed asΩ(W) = tr(W⊤W)
1
2 . Reg-

ularization with the trace norm learns the tasks as one joint optimization problem, by favoring
matrices with low rank (Argyriou et al., 2007a). In other words, the vectors wt are related in that
they areall linear combinations of asmallset of basis vectors. It has been demonstrated that this
approach allows for accurate estimation of related tasks even when there are only afewdata points
available for each task.

In general, the linear operatorI can be written in the form

I(W) = (〈W,Xi〉 : i ∈ Nm) , (4)

where the inputs matricesXi are inMd,n. Recall that theadjointoperator,I∗ : R
m→ Md,n, is defined

by the property that
〈I∗(c),W〉 = 〈c, I(W)〉 ,

for all c∈ R
m,W ∈ Md,n. Therefore, it follows thatI∗ is given atc∈ R

m, by

I∗(c) = ∑
i∈Nm

ciXi .

We denote byR (I) andN (I) the range and the null space of the operatorI , respectively.
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In this paper, we are interested in studying the form of the solution to matrix problems (2) or
(3). For certain families of regularizers, the solutions can be expressedin terms of the given inputs
Xi in (4). Such facts are known in machine learning asrepresenter theorems, see Argyriou et al.
(2009) and reference therein.

The line of attack we shall follow in this paper will go throughinterpolation. That is, our main
concern will be to obtain representer theorems which hold for problems like (3). This in turn will
imply representer theorems for the associated regularization problems. Thisis justified by the next
lemma.

Lemma 1 Let E : R
m×R

m→R, a linear operator I: Md,n →R
m, Ω : Md,n →R, γ > 0 such that the

problems(2) and(3) admit a minimizer for every y∈ R
m. Then for every y∈ R

m there existŝy∈ R
m

such that any solution of the interpolation problem(3) with y= ŷ is a solution of the regularization
problem(2).

Proof If Ŵ solves (2), we may define ˆy := I(Ŵ). It then readily follows that any solution of (3)
with ŷ in place ofy is a solution of (2).

For some other results relating optimality conditions for regularization and interpolation problems,
see Argyriou et al. (2009). We shall return to this issue in Section 4, where we study representer
theorems of a particular type for regularizers which are OI-norms.

3. Duality and Minimal Norm Interpolation

In this section, we turn our attention to the study of the interpolation problem (3)when the function
Ω is anormon Md,n. That is we prescribe a linear operatorI : Md,n → R

m, a vectory∈ R (I)\{0}
and study the minimal norm interpolation problem

φ := min{‖W‖ : I(W) = y,W ∈ Md,n}. (5)

The approach we take to analyze problem (5) makes use of a dual problem. To identify it, we
recall the definition of the dual norm, given by

‖X‖D = max{〈X,W〉 : W ∈ Md,n,‖W‖ ≤ 1}.

Consequently, it follows, for everyX,W ∈ Md,n, that

|〈X,W〉| ≤ ‖X‖D‖W‖. (6)

Associated with this inequality is the notion of thepeak setof the norm‖ · ‖ atX, namely

D‖X‖ = {W : 〈X,W〉 = ‖X‖D, : W ∈ Md,n,‖W‖ = 1}.

Note that, for eachX ∈ Md,n\{0} the peak setD‖X‖ is a nonempty compact convex set which
contains allW ∈ Md,n\{0} that make the bound in (6) tight.

As we shall see in the theorem below, the dual norm leads to the followingdual problem

θ := min{‖I∗(c)‖D : c∈ R (I), 〈c,y〉 = 1} . (7)

Let us first observe that both the primal and dual problem have solutions. In the primal problem we
minimize a norm which is a function which grows at infinity and, so, the existenceof a solution is
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assured. Similarly, the quantity‖I∗(c)‖D which is minimized in the dual problem is also norm on
c∈ R (I).

The main result of this section establishes the relationship between the solutionsof the primal
problem (5) and those of the dual problem (7).

Theorem 2 A vectorĉ∈R
m solves the dual problem(7) if and only if there existŝW∈ θ−1D‖I∗(ĉ)‖

such that I(Ŵ) = y. Moreover, in this casêW solves the primal problem(5) andφθ = 1. Conversely,
for everyŴ solving the primal problem(5) andanysolutionĉ of the dual problem(7), it holds that
Ŵ ∈ θ−1D‖I∗(ĉ)‖.

Before we proceed with a proof, let us explain the rationale behind this result. The number of
free parameters in the dual problem is at mostm− 1, while the primal problem involvesdn−m
parameters. Typically, in applications,dn is much larger thanm. Recalling the connection to
multi-task learning in Section 2, this means thatd is much larger than the number of data per
task, m

n . Therefore, from the perspective of this parameter count, solving the dual problem may be
advantageous. More importantly, any solution of the dual problem will provide us with a solution of
the primal problem and conditions on the latter are obtained from a study of thepeak setD‖I∗(ĉ)‖.
For example, as we shall see in Section 4, in the case of OI-norms, this factwill be facilitated by
fundamental matrix inequalities.
Proof of Theorem 2First let us establish that

1
θ
≤ φ. (8)

To this end, consider anyc∈ R
m with 〈c,y〉 = 1 andW ∈ Md,n with I(W) = y. Then

1 = 〈c,y〉 = 〈c, I(W)〉 = 〈I∗(c),W〉 ≤ ‖I∗(c)‖D‖W‖. (9)

From this inequality we get the desired claim. To prove the reverse inequality in(8), we letĉ∈R (I)
be a solution of the dual problem (7) and conclude, for anyb∈ R (I) such that〈b,y〉 = 0, that

lim
ε→0+

‖I∗(ĉ+ εb)‖D −‖I∗(ĉ)‖D

ε
≥ 0.

Since the dual norm is a maximum of linear functions over a compact set, we mayapply Theorem 22
in the case thatX = {X : X ∈ Md,n,‖X‖ ≤ 1},W = Md,n, f (W,X) = 〈W,X〉, and evaluate Equation
(16) forW = I∗(ĉ) and∆ = I∗(b) to obtain the inequality

max{〈I∗(b),T〉 : T ∈ D‖I∗(ĉ)‖} ≥ 0.

Using the fact thatb∈ R (I) and〈b,y〉= 0, we can rephrase this inequality in the following fashion.
For everyZ ∈ Md,n such that〈Z, I∗(y)〉 = 0 we have that

max{〈Z, I∗I(T)〉 : T ∈ D‖I∗(ĉ)‖} ≥ 0.

To resolve this set of inequalities we use Lemma 21 in the appendix withk = 1, J : Md,n → R

defined atW ∈ Md,n asJ(W) = 〈I∗(y),W〉 andW := I∗I(D‖I∗(ĉ)‖). SinceJ∗ : R → Md,n is given
for a∈ R asJ∗(a) = aI∗(y), we conclude that there existλ ∈ R andW̃ ∈ D‖I∗(ĉ)‖ such that

λ I∗(y) = I∗I(W̃).
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This equation implies thatλy− I(W̃) ∈ N (I∗). However, recalling the fact thaty∈ R (I), we also
have thatλy− I(W̃) ∈ R (I). Therefore, we have established that

λy = I(W̃).

To identify the value ofλ we use the fact that〈y, ĉ〉 = 1 and obtain that

λ = 〈ĉ, I(W̃)〉 = 〈I∗(ĉ),W̃〉 = ‖I∗(ĉ)‖D = θ.

Now, we defineŴ =
1
θ

W̃ and note thatI(Ŵ) = y and since‖W̃‖ = 1 we obtain that

φ ≤ ‖Ŵ‖ =
1
θ
.

This inequality, combined with inequality (8) demonstrates thatφθ = 1 and thatŴ is a solution to
the primal problem (5).

To complete the proof, consider anyŴ solving (5) and ˆc solving (7) and it easily follows from
inequality (9) andφθ = 1 thatŴ ∈ θ−1D‖I∗(ĉ)‖.

Theorem 2 describes the relation between the set of solutions of the primal problem (5) and the
dual problem (7). It also relates the set of solutions of the primal problemto the range of the adjoint
operatorI∗. This latter property, combined with Lemma 1, may be viewed as a generalrepresenter
theorem, that is, the theorem implies that the solutions of the regularization problem (2)are matrices
in the setD‖I∗(c̃)‖, for some ˜c ∈ R

m. However, additional effort is required to obtain a concrete
representation of such solution. For example, for the Frobenius norm,D‖X‖ = {X/‖X‖} and, so,
the optimality condition becomeŝW = I∗(c̃). We refer to this condition throughout the paper as the
standard representer theorem, see Argyriou et al. (2009) and references therein. In other words, the
standard representer theorem forŴ means that̂W ∈ R (I∗).

We make no claim of originality for Theorem 2 as its proof uses well established tools of convex
analysis. On the contrary, we emphasize the utility of this result for machine learning. Alternatively,
we can approach the minimal norm interpolation problem by use of the Lagrangian, defined, for
W ∈ Md,n andλ ∈ R

m, as

L(W,λ) = ‖W‖+ 〈W, I∗(λ)〉−〈y,λ〉.

4. Representer Theorems for Orthogonally Invariant Norms

In this section, we focus our attention on matrix norms which are invariant under left and right
multiplication by orthogonal matrices. As we shall see, for such norms, the representer theorem
can be written in terms of the singular value decomposition. In addition, in Section4.3, we shall
describe a subclass of OI-norms for which representer theorems can be phrased in terms of matrix
multiples of the adjoint operator valueI∗(ĉ). This type of representer theorem arises inmulti-task
learningas described in Argyriou et al. (2009). That is, each of the columns of the optimal matrix
lies in the span of the corresponding columns of the input matricesXi .
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4.1 Notation

Let W ∈ Md,n be a matrix and setr = min{d,n}. We express the singular value decomposition of
the matrixW in the form

W = UΣV⊤,

whereU ∈ Od,V ∈ On andΣ ∈ Md,n is a diagonal matrix with nonnegative elements, that isΣ =
diag(σ(W)), whereσ(W) = (σi(W) : i ∈ Nr) ∈ R

r
+. We assume that the singular values areordered

in a non-increasing sense, that is,

σ1(W) ≥ ·· · ≥ σr(W) ≥ 0.

Note thatσ(W) is uniquely defined in this way. Sometimes we also useΣ(W) to denote the diagonal
matrix Σ. The components ofσ(W) are thesingular valuesof W. They are equal to the square root
of the largestr eigenvalues ofW⊤W, which are the same as those ofWW⊤. We shall call functions
of the singular values of a matrixspectral functions.

In the case of a symmetric matrixA∈ Sn, we similarly write

A = UΛU⊤

for a spectral decomposition ofA, whereU ∈ On, Λ = Diag(λ(A)) andλ(A) = (λ j : j ∈ Nn) has
components ordered in non-decreasing sense

λ1(A) ≥ ·· · ≥ λn(A) .

In addition, forx ∈ R
r , we shall use|x| to denote the vector of absolute values(|xi | : i ∈ Nr).

Finally, for two vectorsx,y∈ R
r we writex≤ y whenever, for alli ∈ Nr , xi ≤ yi .

4.2 Orthogonally Invariant Norms

A norm ‖ · ‖ on Md,n is calledorthogonally invariantwhenever, for everyU ∈ Od, V ∈ On and
W ∈ Md,n, we have that

‖UWV⊤‖ = ‖W‖ .

It is clear from the definition that an OI-norm that‖ · ‖ is a spectral function. That is, for some
function f , we have that‖W‖ = f (σ(W)).

The remaining conditions onf which characterize OI-norms were given by von Neumann
(1962) (see also Horn and Johnson, 1991, Section 3.5). He established that OI-norms are exactly
symmetric gauge functions(SG-functions) of the singular values. To this end, we letPr be the subset
of r × r permutation matrices.

Definition 3 A function f : R
r → R+ is called an SG-function whenever the following properties

hold:

1. f is a norm onRr ;

2. f(x) = f (|x|) for all x ∈ R
r ;

3. f(Px) = f (x) for all x ∈ R
r and all permutation matrices P∈ Pr .
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Property 2 states thatf is absolutelyor gauge invariant. Property 3 states thatf is symmetricor
permutation invariant. Hence, an SG-function is an absolutely symmetric norm.

Von Neumann’s result is stated in the following theorem.

Theorem 4 If ‖ · ‖ is an OI-norm on Md,n then there exists an SG-function f: R
r → R+ such that

‖W‖ = f (σ(W)) , for all W ∈ Md,n. Conversely, if f: R
r → R is an SG-function then the norm

defined at W∈ Md,n, as‖W‖ = f (σ(W)) is orthogonally invariant.

The best known example of OI-norms are theSchatten p-norms, wherep≥ 1, They are defined,
for everyW ∈ Md,n, as

‖W‖p =

(

∑
i∈Nr

(σi(W))p

)
1
p

and, forp = ∞, as
‖W‖∞ = σ1(W).

The Schatten 1−norm is sometimes called thetrace normor nuclear norm. Other common values
of p give rise to theFrobenius norm(p= 2) and thespectral norm(p= ∞). The Frobenius norm can
also be written as

√
trW⊤W and the spectral norm is alternatively expressed as max{‖Wx‖2 : ‖x‖2 =

1}, where the subscript on the vector norm indicates the Euclidean norm of that vector. Another
well-known family of OI-norms are theKy Fan normsdefined, for everyW ∈ Md,n as

‖W‖(k) = ∑
i∈Nk

σi(W)

where 1≤ k≤ r (the casesk = 1 andk = r are the spectral and trace norms, respectively). For more
examples and for many interesting results involving OI-norms, we refer the reader to (Bhatia, 1997,
Sec. IV.2) and (Horn and Johnson, 1991, Sec. 3.5).

We also mention, in passing, a formula from Argyriou et al. (2007b) which isuseful for algo-
rithmic developments. Specifically, we recall, forp∈ (0,2], that

‖W‖p = inf
{

〈WW⊤,D− 2−p
p 〉 : D ∈ Sd

++, trD ≤ 1
}

. (10)

Whenp∈ [1,2], the function

(W,D) 7→ 〈WW⊤,D− 2−p
p 〉

is jointly convex inW andD and, so, the infimum in (10) is convex inW, in agreement with the
convexity of the norm of‖W‖p. Furthermore, ifWW⊤ is invertible andp∈ (0,2], then the infimum
is uniquely attained by the matrix

D =
(WW⊤)

p
2

tr(WW⊤)
p
2
.

In machine learning practice, regularization with the trace norm has been proposed for collab-
orative filtering and multi-task learning (Abernethy et al., 2009; Argyriou et al., 2007a,b; Maurer,
2006a; Srebro et al., 2005, and references therein) and related problems (Yuan et al., 2007). If
Ω(W) = rank(W) the regularization problem (1) is non-convex. However, a common technique that
overcomes this issue is to replace the rank by the trace norm (Fazel et al., 2001). The trace norm
is theℓ1 norm on the singular values and hence there is an analogy to regularizationof a vector

943



ARGYRIOU, M ICCHELLI AND PONTIL

variable with theℓ1 norm, which is often used to obtain sparse solutions, see Candès and Recht
(2008) and reference therein. In analogy toℓ1 regularization, it has recently been shown that for
certain configurations of the input data the low rank solution can be recovered using the trace norm
approach (Cand̀es and Recht, 2008; Recht et al., 2008). More generally, regardlessof the rank of
the solution, it has been demonstrated that this approach allows for accurate joint estimation of mul-
tiple related tasks even when there are onlyfew data points available for each task (Srebro et al.,
2005; Argyriou et al., 2007a). One motivation is to approximate a matrix with a (possibly low-rank)
factorization (Srebro et al., 2005). Another is that fitting multiple learning tasks simultaneously, so
that they share a small set of orthogonal features, leads to a trace normproblem (Argyriou et al.,
2007a).

The spectral norm,‖ · ‖∞, is also of interest in the context of filter design (Zames, 1981) in
control theory. Moreover, Schattenp-norms in the rangep ∈ [1,2] can be used for trading off
sparsity of the model against task independence in multi-task learning (Argyriou et al., 2007b). In
general, OI-norms are a natural class of regularizers to consider, since many matrix optimization
problems can be posed in terms of the spectrum of the matrix.

We now proceed by reviewing some facts on duals of OI-norms. To this end, we first state a
useful inequality, which can be found, for example, in (Horn and Johnson, 1991, ex. 3.3.10). This
inequality also originates from von Neumann (1962) and is sometimes calledvon Neumann’s trace
theoremor Ky Fan inequality.

Lemma 5 For any X,Y ∈ Md,n, we have that

〈X,Y〉 ≤ 〈σ(X),σ(Y)〉 (11)

and equality holds if and only if there are U∈ Od and V∈ On such that X= UΣ(X)V⊤ and Y=
UΣ(Y)V⊤.

We emphasize that equality in (11) implies that the matricesX andY admit the same ordered sys-
tem of singular vectors, where the ordering is given byordering of the singular values. It is also
important to note that this inequality is stronger than the Cauchy-Schwarz inequality for the Frobe-
nius norm,〈X,Y〉 ≤ ‖X‖2‖Y‖2. Moreover, in the case of diagonal matrices one obtains a vector
inequality due to Hardy et al. (1988)

〈x,y〉 ≤ 〈[x], [y]〉 ,

wherex,y∈R
d and[x] denotes the vector consisting of the components ofx in non-increasing order.

Let us also mention that apart from norm duality, Lemma 5 underlies many analytical properties of
spectral functions, such as convexity, Fenchel conjugacy, subgradients and differentiability (see, for
example, Lewis, 1995 for a review).

For our purposes, inequality (11) can be used to compute the dual of an OI-norm in terms of the
dual of the corresponding SG-function. This is expressed in the following lemmas, which follow
easily from (11) (see also Bhatia, 1997, Secs. IV.1, IV.2).

Lemma 6 If the norm‖ · ‖ on Md,n is orthogonally invariant and f is the corresponding SG-
function, then the dual norm is given, for W∈ Md,n, by

‖W‖D = fD(σ(W))

where fD : R
r → R+ is the dual norm of f .
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Lemma 7 ‖·‖ is an OI-norm on Md,n if and only if‖·‖D is orthogonally invariant. Also, f: R
r →R

is an SG-function if and only if fD is an SG-function.

The next useful formula describes the peak set for any OI-norm.

Lemma 8 Let W∈ Md,n \ {0} and W= UΣ(W)V⊤ its singular value decomposition. If the norm
‖ · ‖ is orthogonally invariant and f is the corresponding SG-function, then

D‖W‖ = {Z : Z = UΣ(Z)V⊤,σ(Z) ∈ D f (σ(W))} .

Lemma 9 Let W∈ Md,n \ {0} and W= UΣ(X)V⊤ its singular value decomposition. If the norm
‖ · ‖ is orthogonally invariant and the corresponding SG-function f isdifferentiableat σ(W), then
‖ · ‖ is differentiable at W and

∇‖W‖ = U ∇ f (σ(W))V⊤ .

Lemma 10 If f is an SG-function, x∈ R
r \{0} and w∈ D f (x), thenw∈ D f (x), wherew,x∈ R

r

are the vectors with elements the absolute values of w,x, respectively, in decreasing order. Moreover,
|w|, |x| can yieldw,x with a simultaneous permutation of their elements.

In other words, duality of OI-norms translates to duality of SG-functions. Norm duality pre-
serves orthogonal invariance as well as the symmetric gauge properties.And dual pairs of matrices
with respect to OI-norms directly relate to dual pairs of vectors with respect to SG-functions. Simi-
larly, (sub)gradients of OI-norms correspond to (sub)gradients of SG-functions. In fact, Lemmas 8
and 9 hold, more generally, for all symmetric functions of the singular values(Lewis, 1995).

As an example, the dual of a Schattenp-norm‖ · ‖p is the norm‖ · ‖q, where 1
p + 1

q = 1. For
p > 1 and everyW = UΣ(W)V⊤ ∈ Md,n \ {0}, one can readily obtain the set of duals from the
equality conditions in Ḧolder’s inequality. These give that

D‖W‖p =
{

Z : Z = UΣ(Z)V⊤,σi(Z) =
(σi(W))q−1

‖σ(W)‖q−1
q

, i ∈ Nr

}

.

Moreover, this norm is differentiable forp > 1 and the gradient is given by

∇‖W‖p = U Diag(λ)V⊤ 1

‖σ(X)‖p−1
p

,

whereλi = (σi(W))p−1, i ∈ Nr .
Before continuing to the main result about OI-norms, we briefly review the relation between

regularizationandinterpolationproblems, mentioned at the end of Section 2. We are interested in
obtaining representer theorems and optimality conditions, in general, for regularization problems of
the form (2). We shall focus, however, on representer theorems forinterpolation problems of the
form (3).

Let Ω : Md,n → R be a given regularizer and assume that, for everyy∈ R
m and linear operator

I : Md,n → R
m, there exists some solution of (3) satisfying a prescribed representer theorem. Then,

by Lemma 1, for everyy∈ R
m, I : Md,n → R

m andE : R
m×R

m→ R, the same representer theorem
holds for some solution of problem (2). In the remainder of the paper we shall prove optimality
conditions for interpolation problems, which thus equally apply to regularization problems.
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Conversely, the representer theorem for the regularization problem (2) associated with certain
choices of the functionΩ andE , will also hold for the corresponding interpolation problems (3).
To illustrate this idea, we adopt a result from Argyriou et al. (2009), which concerns the standard
representer theorem,

Ŵ ∈ R (I∗) .

Theorem 11 Let E : R
m×R

m → R andΩ : Md,n → R be a function with the following properties:

(i) E is lower semicontinuous and bounded from below;

(ii) Ω is lower semicontinuous and has bounded sublevel sets, that is, for every λ ∈ R, the set
{W : W ∈ Md,n,Ω(W) ≤ λ} is bounded;

(iii) for some v∈ R
m\{0},y∈ R

m, there exists auniqueminimizer ofmin{E(av,y) : a∈ R} and
this minimizer does not equal zero.

If, for all choices of I and y, there exists a solutionŴ ∈ R (I∗) of (2), then, for all choices of I and
y such that y∈ R (I), there exists a solution̂W ∈ R (I∗) of (3).

As noted in Argyriou et al. (2009), the square loss, hinge loss or logistic loss are all valid error
functions in this theorem. The above results allow us to focus on the interpolation problems, as a
devise to study the regularization problem.

We are now ready to describe the main result of this section, which concerns the form of the
solution of interpolation problems (5) for the class of OI-norms.

Theorem 12 Assume that‖ · ‖ is an OI-norm and let f be the corresponding SG-function. If the
matrixŴ ∈ Md,n\{0} is a solution of(5) and the vector̂c∈ R

m is a solution of(7), then

Ŵ = U Σ(Ŵ)V⊤ , I∗(ĉ) = U Σ(I∗(ĉ))V⊤

for some U∈ Od,V ∈ On, and

σ(Ŵ) ∈ 1
‖I∗(ĉ)‖D

D f (σ(I∗(ĉ))) .

Proof By Theorem 2 we obtain that‖I∗(ĉ)‖DŴ ∈ D‖I∗(ĉ)‖. We can writeI∗(ĉ) in terms of its
singular value decomposition,I∗(ĉ) = U Σ(I∗(ĉ))V⊤ with U ∈ Od,V ∈ On. Using Lemma 8 we
conclude that

‖I∗(ĉ)‖DŴ = U (‖I∗(ĉ)‖DΣ(Ŵ))V⊤,

where‖I∗(ĉ)‖D σ(Ŵ) ∈ D f (σ(I∗(ĉ))).

This theorem implies that, in order to solve the minimal norm interpolation problem (5), we may first
solve the dual problem (7) and then find a matrix in the peak set ofI∗(ĉ) scaled by 1/‖I∗(ĉ)‖D, which
interpolates the data. The latter step in turn requires computing a singular valuedecomposition of
I∗(ĉ) and then solving a non-linear system of equations. However, when the SG-function is smooth,
there is a unique elements in the peak set and, so, there is no need to solve thenon-linear equations.
For example, if‖ · ‖ is the Frobenius norm, Theorem 12 readily yields the standard representer
theorem.
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4.3 Admissible Orthogonally Invariant Norms

In this section, we define a subclass of OI-norms, which obey an improvedversion of the representer
theorem presented above.

We begin with a definition.

Definition 13 A norm‖ · ‖ on R
r is said to beadmissibleif for any x∈ R

r , any k∈ Nr such that
xk 6= 0 we have that

‖xk‖ < ‖x‖
where xk is the vector all of whose components agree with x, except the k-th component which is
zero.

The simplest example of admissible norms are theℓp norm onR
d, ‖ · ‖p, for p∈ [1,∞). From

this norm we can form other admissible norms in various ways. Specifically, for anyp1, p2 ∈ [1,∞),
we see that the norm‖ · ‖p1 + ‖ · ‖p2 or the norm max{‖ · ‖p1,‖ · ‖p2} are both admissible. Note
that some of these norms are not strictly convex. Also compare this definition tothat of weakly
monotone norms (Horn and Johnson, 1985, Def. 5.5.13).

Lemma 14 If ‖ · ‖ is an admissible norm onRr , x∈ R
r\{0} and w∈ D‖x‖, then for any k∈ Nr

with xk = 0 it holds that wk = 0.
Conversely, assume that, for every x∈ R

r\{0}, w∈ D‖x‖ and k∈ Nr , if xk = 0 it holds that
wk = 0. Then‖ · ‖ is admissible.

Proof Let w∈ D‖x‖, wherex∈ R
r\{0}, with xk = 0. Suppose to the contrary thatwk 6= 0. Since

‖ · ‖ is admissible it follows that‖wk‖ < ‖w‖, and so, we get that‖wk‖ < 1, because‖w‖ = 1.
However, we also have that

‖x‖D = 〈w,x〉 = 〈wk,x〉 ≤ ‖wk‖‖x‖D

from which it follows that‖wk‖ ≥ 1. This proves the first part of the claim.
For the converse, we consider aw∈ R

r\{0} with wk 6= 0. We shall show that‖wk‖ < ‖w‖. To
this end, we choosex∈ D‖wk‖D and then we choosey∈ D‖xk‖. By our hypothesis, we conclude
thatyk = 0 and by our choice we have, in particular that 1= ‖y‖ = ‖x‖D. Consequently, it follows
that

‖xk‖D = 〈y,xk〉 = 〈y,x〉 ≤ ‖y‖‖x‖D = 1

from which conclude that
‖wk‖ = 〈wk,x〉 = 〈w,xk〉 ≤ ‖w‖. (12)

Moreover, if equality holds in this inequality it would follow thatw‖w‖ ∈ D‖xk‖. But then, we can
invoke our hypothesis once again and obtain a contradiction. That is, inequality (12) is strict and
therefore‖ · ‖ is an admissible norm, as asserted.

The above observation leads us to consider the following subclass of OI-norms.

Definition 15 A norm‖ · ‖ on Md,n is said to beadmissible orthogonally invariantif there exists an
admissible vector norm‖ · ‖ onR

r such that, for every W∈ Md,n, we have that‖W‖ = ‖σ(W)‖.

947



ARGYRIOU, M ICCHELLI AND PONTIL

Examples of non-admissible OI-norms are the spectral norm, the Ky Fan norms ‖ · ‖(k) for
1≤ k < r and the norm max{‖ · ‖1,α‖ · ‖∞} for α ∈ (1,∞).

We have now accumulated sufficient information on admissible OI-norms to present an im-
proved representer theorem for problem (5). We shall prove below,for any admissible OI-norm,̂W
can be expressed as

Ŵ = ∑
i∈Nm

ĉiXiR.

In other words,Ŵ is obtained by first applying the standard representer theorem and then multiply-
ing it from the right by the matrixR. In the case of the Frobenius normR= In.

Theorem 16 If ‖ ·‖ is admissible orthogonally invariant, the matrix̂W ∈ Md,n\{0} is a solution of
(5) and the vector̂c∈ R

m is a solution of(7), then there exists a matrix R∈ Sn
+ such that

Ŵ = I∗(ĉ)R (13)

and the eigenvectors of R are right singular vectors of I∗(ĉ).

Proof By Theorem 12, there existsI∗(ĉ) = U Σ(I∗(ĉ))V⊤, obtained from a dual solution ˆc of (7),
such that‖I∗(ĉ)‖DŴ = U Diag(λ)V⊤, whereλ ∈ D f (σ(I∗(ĉ))) and f is the SG-function associated
with ‖ · ‖. Since f is admissible, Lemma 14 implies thatλi = 0 wheneverσi(I∗(ĉ)) = 0. Hence
there existsµ∈ R

r
+ such thatλi = σi(I∗(ĉ))µi , i ∈ Nr , andµi = 0 wheneverσi(I∗(ĉ)) = 0. Thus,

‖I∗(ĉ)‖DŴ = U Σ(I∗(ĉ))V⊤V Diag(µ)V⊤ and the corollary follows by selecting

R=
1

‖I∗(ĉ)‖D

V Diag(µ)V⊤.

Note that, in the above theorem, the eigenvectors ofR need not correspond to right singular
vectors ofI∗(ĉ) according to a simultaneous ordering of the eigenvalues / singular values.

We may also state a converse of Theorem 16, that is, the only OI-norms which satisfy property
(13) are admissible.

Theorem 17 If ‖ · ‖ is orthogonally invariant and condition(13) holds (without any conditions on
R∈ Mn,n), for every linear operator I: Md,n → R

m, y∈ R (I) \ {0}, every solutionŴ of (5) and
every solution̂c of (7), then the norm‖ · ‖ is admissible orthogonally invariant.

Proof Let f be the SG-function corresponding to‖ · ‖. Let arbitraryx∈ R
r \{0} andw∈ D f (x).

Definex,w ∈ R
r
+ to be the vectors with elements the absolute values ofx,w, respectively, in de-

scending order. By Lemma 10, we obtain thatw ∈ D f (x). Define alsoX = Diag(x) ∈ Md,n and
W = Diag(w) ∈ Md,n. By Lemma 8, we obtain thatW ∈ D‖X‖. Now, consider the problem
min{‖Z‖ : Z ∈ Md,n,〈Z,X〉 = ‖X‖D}, whose set of solutions isD‖X‖. By hypothesis,W = cXR
for someR∈ Mn,n and forc = 1

‖X‖D
(the only solution of the dual problem). Therefore, Diag(w) =

c Diag(x)Rand hencexk = 0 implieswk = 0, for all k∈ Nr . By Lemma 10, this implies in turn that
wk = 0 if xk = 0, for all k ∈ Nr . Combining with Lemma 14, we deduce thatf is admissible, as
required.
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We remark that there exist norms onMd,n which are not orthogonally invariant and satisfy
condition (13). In fact, given two non-singular matricesQ ∈ Md,d andM ∈ Mn,n, the normW 7→
‖QWM‖2 is not orthogonally invariant, but the representer theorem is easily seen tobe

Ŵ = (Q⊤Q)−1I∗(ĉ)(MM⊤)−1.

Furthermore, concerning the converse of Theorem 16, it can be shown that if we restrict the
eigenvectors ofR to be right singular vectors ofI∗(ĉ), then‖ · ‖ has to be orthogonally invariant.

Moreover, if the norm‖ · ‖ is not admissible, then it can be shown that for every solution ˆc of
the dual problem there exists a solution of the primal satisfying (13). As an example, see Corollary
20 below (spectral norm). For a characterization of functions yielding such representer theorems,
see Argyriou et al. (2009).

Returning to Theorem 12, for the Schattenp-norms we have the following corollary. To state
it, we use the notationAq−1 as a shorthand for the matrixU Diag(σi(A)q−1)i∈NrV

⊤ when A =
U Σ(A)V⊤.

Corollary 18 If the matrixŴ ∈ Md,n \ {0} is a solution of (5) for the Schatten p−norm, with
p∈ (1,∞), then there exists a vectorĉ∈ R

m such that

Ŵ =
I∗(ĉ)q−1

‖I∗(ĉ)‖q
q
,

where1
p + 1

q = 1.

Proof The corollary follows directly from Theorem 12 and the description ofD‖ · ‖p in Section
4.2.

The above corollary does not cover the cases thatp = 1 or p = ∞. We state them separately.

Corollary 19 If Ŵ ∈ Md,n\{0} is a solution of(5) for the trace norm,̂c∈ R
m a solution of(7) and

I∗(ĉ) = ∑i∈Nr
σi(I∗(ĉ))uiv⊤

i is a singular value decomposition, then

Ŵ =
1

σ1(I∗(ĉ))
∑

i∈Nrmax

λiuiv
⊤
i ,

for someλi ≥ 0, i ∈ Nrmax such that∑i∈Nrmax
λi = 1, where rmax is the multiplicity of the largest

singular valueσ1(I∗(ĉ)). Moreover,Ŵ = I∗(ĉ)R, where

R=
1

σ2
1(I

∗(ĉ)) ∑
i∈Nrmax

viv
⊤
i .

Proof The corollary follows from Theorem 12 and the description ofD‖ · ‖1. From the definition,
it is easy to obtain that, for everyx ∈ R

r
+, D‖x‖1 = {y ∈ R

r
+ : yi = 0, if xi < ‖x‖∞,∑i∈Nr

yi = 1}.
Thus,σ1(I∗(ĉ))Ŵ = ‖I∗(ĉ)‖∞Ŵ = UΛV⊤, for Λ = Diag(λ) andλi = 0 for i > rmax, ∑

i∈Nrmax

λi = 1.

SinceΛ =
1

σ1(I∗(ĉ))
Σ(I∗(ĉ))Λ, R can be selected as

1

σ2
1(I

∗(ĉ))
VΛV⊤.
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Corollary 20 If the matrixŴ ∈ Md,n \ {0} is a solution of (5) for the spectral norm,̂c ∈ R
m a

solution of (7) and I∗(ĉ) = ∑i∈Nr
σi(I∗(ĉ))uiv⊤

i is a singular value decomposition, then

Ŵ =
1

‖I∗(ĉ)‖1

rank(I∗(ĉ))

∑
i=1

uiv
⊤
i +

r

∑
i=rank(I∗(ĉ))+1

αi uiv
⊤
i , (14)

for someαi ∈ [0,1], i = rank(I∗(ĉ))+1, . . . , r.

Proof The corollary follows from Theorem 12 and the fact that, for everyx∈ R
r
+, D‖x‖∞ = {y∈

[−1,1]r : yi = 1, if xi > 0}.

The above corollary also confirms that representation (13) does not apply to the spectral norm
(which is not admissible orthogonally invariant). Indeed, from (14) it is clear that the range of̂W
can be a superset of the range ofI∗(ĉ).

To recapitulate the results presented in this section, Theorem 12 allows one toobtain the so-
lutions of the primal minimum norm interpolation problem (5) from those of its dualproblem (7),
which involvesm variables. This is true forall OI-norms, even though the representer theorem in
the form (13) applies only to admissible OI-norms. Part of the appeal of OI-norms is that computing
primal solutions from dual ones reduces to a vector norm optimization problem. Indeed, given a
solution of the dual problem, one just needs to compute thesingular value decompositionof the
matrix I∗(ĉ) andthe peak set of the SG-function f at the singular values. The associated primal so-
lutions are then easily obtained by keeping the same row and column spaces and using elements of
the peak set in place of the singular values. In fact, in many cases, the latterproblem of computing
the peak set off may be straightforward. For example, iffD is differentiable (except at zero), each
dual solution is associated with a single primal one, which equals a multiple of the gradient of fD at
the dual solution.

4.4 Related Work

The results of Section 4 are related to other prior work, besides the already mentioned literature
on representer theorems for the case of the vectorL2 norm (that is, forn = 1). In particular, the
representer theorem for the trace norm (Corollary 19) has been statedin Srebro et al. (2005). Also,
the representation (13) in Theorem 16 relates to the representer theoremsproven in Argyriou et al.
(2009); Abernethy et al. (2009). The results in Abernethy et al. (2009) apply to the case of the trace
norm and when theXi are rank one matrices. The results in Argyriou et al. (2009) give representer
theorems for a broad class of functions, of which differentiable OI-norms are members. However,
as mentioned before, Theorem 16 requires additional conditions on matrixR. In particular, the
requirement on the eigenvectors of this matrix holds only for admissible OI-norms.

5. Conclusion and Future Work

We have characterized the form of the solution of regularization with an orthogonally invariant
penalty term. Our result depends upon a detailed analysis of the corresponding minimal norm inter-
polation problem. In particular, we have derived a dual problem of the minimal norm interpolation
problem and established the relationship between these two problems. The dual problem involves
optimization over a vector of parameters whose size equals the number of datapoints. In practical
circumstances, this number may be smaller than the dimension of the matrix we seek,thus our result
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should prove useful in the development of optimization algorithms for orthogonally invariant norm
regularization. For example, one could combine our result with Lemma 9 in order to implement
gradient methods for solving the dual problem. Note however that the dualproblem involves a sin-
gular value decomposition, and more effort is needed in elucidating the algorithmic implications of
the results presented here.
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Appendix A.

Here, we describe two results which we have used in the paper. Recall that for every linear operator
J : Md,n → R

k, the linear spacesR (J) andN (J) denote the range and the kernel ofJ, respectively.

Lemma 21 Let W be a nonempty, convex and compact subset of Md,n and let J: Md,n → R
k be

a linear operator. The setR (J∗) intersectsW if and only if, for every X∈ N (J) the following
inequality holds

max{〈X,W〉 : W ∈W } ≥ 0. (15)

Proof Suppose that there existz∈ R
k andT ∈W such thatJ∗(z) = T. Then for anyX ∈ Md,n with

J(X) = 0 we have that〈X,T〉 = 0 and, so, inequality (15) holds true.
Now, suppose thatR (J∗)∩W = /0. Then, there is a hyperplane which strictly separatesR (J∗)

fromW (see, for example, Rockafellar, 1970, Cor. 11.4.2). That is, there existW0 ∈Md,n andµ∈R

such that, for allz∈ R
k,

〈W0,J
∗(z)〉+µ≥ 0,

while, for allW ∈W ,
〈W0,W〉+µ< 0.

The first inequality implies thatJ(W0) = 0. To see this, we choose anyz0 ∈R
k andλ ∈R and let

z= λz0 in the first inequality. Now, we allowλ →±∞, to obtain that〈W0,J∗(z0)〉 = 0. Therefore,
the first inequality simplifies to the statement thatµ≥ 0.

The second inequality implies that

max{〈W0,W〉 : W ∈W } < −µ≤ 0,

which contradicts (15) and proves the result.

Next, we state an important rule for taking directional derivatives of a convex function expressed
as a maximum of a family of convex functions. For this purpose, recall that the right directional
derivative of a functiong : W → R in the direction∆ atW ∈W is defined as

g′+(W;∆) = lim
λ→0+

g(W+λ∆)−g(W)

λ
.
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Theorem 22 LetW be a convex subset andX a compact subset of Md,n and f : W ×X → R. If,
for every W∈W , the function X7→ f (W,X) is continuous onX and, for every X∈ X the function
W 7→ f (W,X) is convex onW , then the convex function g: W → R defined at W∈W as

g(W) := max{ f (W,X) : X ∈ X }

has a right directional derivative at W in the direction∆ ∈ Md,n, given as

g′+(W;∆) = max{ f ′+(W;∆,X) : X ∈ M(W)}, (16)

where M(W) = {X : X ∈ X , f (W,X) = g(W)}.
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