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Abstract

The standard maximum margin approach for structured prediction lacks a straightforward proba-
bilistic interpretation of the learning scheme and the prediction rule. Therefore its unique advan-
tages such as dual sparseness and kernel tricks cannot be easily conjoined with the merits of a
probabilistic model such as Bayesian regularization, model averaging, and ability to model hidden
variables. In this paper, we present a new general frameworkcalledmaximum entropy discrimina-
tion Markov networks(MaxEnDNet, or simply, MEDN), which integrates these two approaches and
combines and extends their merits. Major innovations of this approach include: 1) It extends the
conventional max-entropy discrimination learning of classification rules to a newstructuralmax-
entropy discrimination paradigm of learning a distribution of Markov networks. 2) It generalizes
the extant Markov network structured-prediction rule based on a point estimator of model coeffi-
cients to an averaging model akin to a Bayesian predictor that integrates over a learned posterior
distribution of model coefficients. 3) It admits flexible entropic regularization of the model during
learning. By plugging in different prior distributions of the model coefficients, it subsumes the well-
known maximum margin Markov networks (M3N) as a special case, and leads to a model similar to
anL1-regularized M3N that is simultaneously primal and dual sparse, or other newtypes of Markov
networks. 4) It applies a modular learning algorithm that combines existing variational inference
techniques and convex-optimization based M3N solvers as subroutines. Essentially, MEDN can be
understood as a jointly maximum likelihood and maximum margin estimate of Markov network.
It represents the first successful attempt to combine maximum entropy learning (a dual form of
maximum likelihood learning) with maximum margin learningof Markov network for structured
input/output problems; and the basic principle can be generalized to learning arbitrary graphical
models, such as the generative Bayesian networks or models with structured hidden variables. We
discuss a number of theoretical properties of this approach, and show that empirically it outper-
forms a wide array of competing methods for structured input/output learning on both synthetic
and real OCR and web data extraction data sets.

Keywords: maximum entropy discrimination, structured input/outputmodel, maximum margin
Markov network, graphical models, entropic regularization, L1 regularization

1. Introduction

Inferring structured predictions based on high-dimensional, often multi-modal and hybrid covari-
ates remains a central problem in data mining (e.g., web-info extraction), machine intelligence (e.g.,
machine translation), and scientific discovery (e.g., genome annotation). Several recent approaches
to this problem are based on learning discriminative graphical models definedon composite features
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that explicitly exploit the structured dependencies among input elements and structured interpreta-
tional outputs. Major instances of such models include the conditional random fields (CRFs) (Laf-
ferty et al., 2001), Markov networks (MNs) (Taskar et al., 2003), and other specialized graphical
models (Altun et al., 2003). Various paradigms for training such models based on different loss func-
tions have been explored, including the maximum conditional likelihood learning(Lafferty et al.,
2001) and the maximum margin learning (Altun et al., 2003; Taskar et al., 2003; Tsochantaridis
et al., 2004), with remarkable success.

The likelihood-based models for structured predictions are usually basedon a joint distribution
of both input and output variables (Rabiner, 1989) or a conditional distribution of the output given
the input (Lafferty et al., 2001). Therefore this paradigm offers a flexible probabilistic framework
that can naturally facilitate: hidden variables that capture latent semantics such as a generative hier-
archy (Quattoni et al., 2004; Zhu et al., 2008a); Bayesian regularization that imposes desirable biases
such as sparseness (Lee et al., 2006; Wainwright et al., 2006; Andrew and Gao, 2007); and Bayesian
prediction based on combining predictions across all values of model parameters (i.e., model av-
eraging), which can reduce the risk of overfitting. On the other hand, themargin-based structured
prediction models leverage the maximum margin principle and convex optimization formulation un-
derlying the support vector machines, and concentrate directly on the input-output mapping (Taskar
et al., 2003; Altun et al., 2003; Tsochantaridis et al., 2004). In principle,this approach can lead
to a robust decision boundary due to the dual sparseness (i.e., depending on only a few support
vectors) and global optimality of the learned model. However, although arguably a more desirable
paradigm for training highly discriminative structured prediction models in a number of application
contexts, the lack of a straightforward probabilistic interpretation of the maximum-margin models
makes them unable to offer the same flexibilities of likelihood-based models discussed above.

For example, for domains with complex feature space, it is often desirable to pursue a “sparse”
representation of the model that leaves out irrelevant features. In likelihood-based estimation, sparse
model fitting has been extensively studied. A commonly used strategy is to add an L1-penalty to the
likelihood function, which can also be viewed as a MAP estimation under a Laplace prior. However,
little progress has been made so far on learning sparse MNs or log-linear models in general based on
the maximum margin principle. While sparsity has been pursued in maximum margin learning of
certain discriminative models such as SVM that are “unstructured” (i.e., with aunivariate output), by
usingL1-regularization (Bennett and Mangasarian, 1992) or by adding a cardinality constraint (Chan
et al., 2007), generalization of these techniques to structured output space turns out to be non-trivial,
as we discuss later in this paper. There is also very little theoretical analysis on the performance
guarantee of margin-based models under directL1-regularization. Our empirical results as shown in
this paper suggest that anL1-regularized maximum margin Markov network, even when estimable,
can be sensitive to the magnitude of the regularization coefficient. Discarding the features that
are not completely irrelevant can potentially hurt generalization ability. Another example, it is
well known that presence of hidden variables in MNs can cause significant difficulty for maximum
margin learning. Indeed, semi-supervised or unsupervised learning ofstructured maximum margin
model remains an open problem of which progress was only made in a few special cases, with
usually computationally very expensive algorithms (Xu et al., 2006; Altun et al., 2006; Brefeld and
Scheffer, 2006).

In this paper, we propose a general theory of maximum entropy discrimination Markov net-
works (MaxEnDNet, or simply MEDN) for structured input/output learning and prediction. This
formalism offers a formal paradigm for integrating both generative and discriminative principles and
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the Bayesian regularization techniques for learning structured predictionmodels. It integrates the
spirit of maximum margin learning from SVM, the design of discriminative structured prediction
model in maximum margin Markov networks (M3N), and the ideas of entropic regularization and
model averaging in maximum entropy discrimination methods (Jaakkola et al., 1999). Essentially,
MaxEnDNet can be understood as a jointly maximum likelihood and maximum margin estimate of
Markov networks. It allows one to learn adistributionof structured prediction models that offers
a wide range of important advantages over conventional models such as M3N, including more ro-
bust prediction due to an averaging prediction-function based on the learned distribution of models,
Bayesian-style regularization that can lead to a model that is simultaneous primal and dual sparse,
and allowance of hidden variables and semi-supervised learning based on partially labeled data.

While the formalism of MaxEnDNet is extremely general, our main focus and contributions
of this paper will be concentrated on the following results. We will formally define the MaxEnD-
Net as solving a generalized entropy optimization problem subject to expected margin constraints
on the structured predictions, and under an arbitrary prior of feature coefficients; and we derive
a general form of the solution to this problem. An interesting insight immediately following this
general form is that, a trivial assumption on the prior distribution of the coefficients, that is, a stan-
dard normal, reduces the linear MaxEnDNet to the standard M3N, as shown in Theorem 3. This
understanding opens the way to use different priors for MaxEnDNet toachieve more interesting
regularization effects. We show that, by using a Laplace prior for the feature coefficients, the re-
sulting Laplace MaxEnDNet (LapMEDN) is effectively an M3N that is not only dual sparse (i.e.,
defined by a few support vectors), but also primal sparse (i.e., shrinkage on coefficients correspond-
ing to irrelevant features). We develop a novel variational learning method for the LapMEDN,
which leverages on the hierarchical/scale-mixture representation of the Laplace prior (Andrews and
Mallows, 1974; Figueiredo, 2003) and the reducibility of MaxEnDNet to M3N, and combines the
variational Bayesian technique with existing convex optimization algorithms developed for M3N
(Taskar et al., 2003; Bartlett et al., 2004; Ratliff et al., 2007). We also provide a formal analysis
of the generalization error of the MaxEnDNet, and prove a PAC-Bayes bound on the prediction
error by MaxEnDNet. We performed a thorough comparison of the Laplace MaxEnDNet with com-
peting methods, including M3N (i.e., the Gaussian MaxEnDNet),L1-regularized M3N (Zhu et al.,
2009b), CRFs,L1-regularized CRFs, andL2-regularized CRFs, on both synthetic and real structured
input/output data. The Laplace MaxEnDNet exhibits mostly superior, and sometimes comparable
performance in all scenarios been tested.

As demonstrated in our recent work (Zhu et al., 2008c, 2009a), MaxEnDNet is not limited to
fully observable MNs, but can readily facilitate jointly maximum entropy and maximum margin
learning of partially observed structured I/O models, and directed graphical models such as the
supervised latent Dirichlet allocation (LDA). Due to space limit, we leave theseinstantiations and
generalizations to future papers.

The rest of the paper is structured as follows. In the next section, we review the basic structured
prediction formalism and set the stage for our model. Section 3 presents the general theory of max-
imum entropy discrimination Markov networks and some basic theoretical results, followed by two
instantiations of the general MaxEnDNet, the Gaussian MaxEnDNet and theLaplace MaxEnDNet.
Section 4 offers a detailed discussion of the primal and dual sparsity property of Laplace MaxEnD-
Net. Section 5 presents a novel iterative learning algorithm based on variational approximation and
convex optimization. In Section 6, we briefly discuss the generalization bound of MaxEnDNet.
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Then, we show empirical results on both synthetic and real OCR and web data extraction data sets
in Section 7. Section 8 discusses some related work and Section 9 concludesthis paper.

2. Preliminaries

In structured prediction problems such as natural language parsing, image annotation, or DNA
decoding, one aims to learn a functionh :X →Y that maps a structured inputx∈X , e.g., a sentence
or an image, to a structured outputy ∈ Y , e.g., a sentence parsing or a scene annotation, where,
unlike a standard classification problem,y is a multivariate prediction consisting of multiple labeling
elements. LetL denote the cardinality of the output, andml wherel = 1, . . . ,L denote the arity of
each element, thenY = Y1×·· ·×YL with Yl = {a1, . . . ,aml} represents a combinatorial space of
structured interpretations of the multi-facet objects in the inputs. For example,Y could correspond
to the space of all possible instantiations of the parse trees of a sentence, or the space of all possible
ways of labeling entities over some segmentation of an image. The predictiony ≡ (y1, . . . ,yL) is
structuredbecause each individual labelyl ∈ Yl within y must be determined in the context of other
labelsyl ′ 6=l , rather than independently as in classification, in order to arrive at a globally satisfactory
and consistent prediction.

Let F : X ×Y → R represent a discriminant function over the input-output pairs from which
one can define the predictive function, and letH denote the space of all possibleF . A common
choice ofF is a linear model,F(x,y;w) = g(w⊤f(x,y)), wheref = [ f1 . . . fK ]⊤ is aK-dimensional
column vector of the feature functionsfk : X ×Y → R, andw = [w1 . . .wK ]⊤ is the corresponding
vector of the weights of the feature functions. Typically, a structured prediction model chooses an
optimal estimatew⋆ by minimizing some loss functionJ(w), and defines a predictive function in
terms of an optimization problem that maximizesF( · ;w⋆) over the response variabley given an
inputx:

h0(x;w⋆) = arg max
y∈Y (x)

F(x,y;w⋆), (1)

whereY (x) ⊆ Y is the feasible subset of structured labels for the inputx. Here, we assume that
Y (x) is finite for anyx.

Depending on the specific choice ofg(·) (e.g., linear, or log linear), and the loss functionJ(w)
(e.g., likelihood, or margin-based loss) for estimating the parameterw⋆, incarnations of the general
structured prediction formalism described above can be seen in classicalgenerative models such as
the HMM (Rabiner, 1989) whereg(·) can be an exponential family distribution function andJ(w)
is the (negative) joint likelihood of the input and its labeling; and in recent discriminative models
such as CRFs (Lafferty et al., 2001), whereg(·) is a Boltzmann machine andJ(w) is the (negative)
conditional likelihood of the structured labeling given input; and the M3N (Taskar et al., 2003),
whereg(·) is an identity function andJ(w) is a loss defined on the margin between the true labeling
and any other feasible labeling inY (x). Our approach toward a more general discriminative training
is based on a maximum entropy principle that allows an elegant combination of thediscriminative
maximum margin learning with the generative Bayesian regularization and hierarchical modeling,
and we consider the more general problem of finding a distribution ofF( · ;w) overH that enables
a convex combination of discriminant functions for robust structured prediction.

Before delving into the exposition of the proposed approach, we end this section with a brief
recapitulation of the basic M3N, upon which the proposed approach is built. Under a max-margin
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framework, given a set of fully observed training dataD = {〈xi ,yi〉}Ni=1, we obtain a point estimate
of the weight vectorw by solving the following max-margin problem P0 (Taskar et al., 2003):

P0(M3N) : min
w,ξ

1
2
‖w‖2 +C

N

∑
i=1

ξi

s.t. ∀i,∀y 6= yi : w⊤∆f i(y)≥ ∆ℓi(y)−ξi , ξi ≥ 0 ,

where∆f i(y) = f(xi ,yi)− f(xi ,y) and∆Fi(y;w) = w⊤∆f i(y) is the “margin” between the true label
yi and a predictiony, ∆ℓi(y) is a labeling loss with respect toyi , andξi represents a slack variable
that absorbs errors in the training data. Various forms of the labeling loss have been proposed in
the literature (Tsochantaridis et al., 2004). In this paper, we adopt thehamming lossused by Taskar
et al. (2003):∆ℓi(y) = ∑L

j=1I(y j 6= yi
j), whereI(·) is an indicator function that equals to one if the

argument is true and zero otherwise. The problem P0 is not directly solvable by using a standard
constrained optimization toolbox because the feasible space forw,

F0 =
{

w : w⊤∆f i(y)≥ ∆ℓi(y)−ξi ; ∀i,∀y 6= yi
}

,

is defined byO(N|Y |) number of constraints, andY is exponential to the size of the inputx.
Exploring sparse dependencies among individual labelsyl in y, as reflected in the specific design of
the feature functions (e.g., based on pair-wise labeling potentials in a pair-wise Markov network),
and the convex duality of the objective, efficient optimization algorithms basedon cutting-plane
(Tsochantaridis et al., 2004) or message-passing (Taskar et al., 2003) have been proposed to obtain
an approximate optimum solution to P0. As described shortly, these algorithms can be directly
employed as subroutines in solving our proposed model.

3. Maximum Entropy Discrimination Markov Networks

Instead of learning a point estimator ofw as in M3N, in this paper, we take a Bayesian-style ap-
proach and learn a distributionp(w), in a max-margin manner. For prediction, we employ a convex
combination of all possible modelsF( · ;w) ∈H based onp(w), that is:

h1(x) = arg max
y∈Y (x)

Z

p(w)F(x,y;w)dw . (2)

Now, the open question underlying this averaging prediction rule is how we can devise an appro-
priate loss function and constraints overp(w), in a similar spirit as the margin-based scheme overw
in P0, that lead to an optimum estimate ofp(w). In the sequel, we presentMaximum Entropy Dis-
crimination Markov Networks, a novel framework that facilitates the estimation of a Bayesian-style
regularizeddistributionof M3Ns defined byp(w). As we show below, this new Bayesian-style max-
margin learning formalism offers several advantages such as simultaneous primal and dual sparsity,
PAC-Bayesian generalization guarantee, and estimation robustness. Notethat the MaxEnDNet is
different from the traditional Bayesian methods for discriminative structured prediction such as the
Bayesian CRFs (Qi et al., 2005), where the likelihood function is well defined. Here, our approach
is of a “Bayesian-style” because it learns and uses a “posterior” distribution of all predictive mod-
els instead of choosing one model according to some criterion, but the learning algorithm is not
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based on the Bayes theorem, but a maximum entropy principle that biases towards a distribution
that makes less additional assumptions over a given prior over the predictive models. We emphasize
that this “posterior” is different from, and should not be confused with,the conventional Bayesian
posterior defined according to the Bayes rule.

It is well-known that exponential family distributions can be expressed variationally as the so-
lution to a maximum entropy estimation subject to moment constraints, and the maximum entropy
estimation of parameters can be understood as a dual to the maximum likelihood estimation of the
parameters of exponential family distributions. Thus our combination of the maximum entropy
principle with the maximum margin principle to be presented in the sequel offers an elegant way
of achieving jointly maximum margin and maximum likelihood effects on learning structured in-
put/output Markov networks, and in fact, general exponential family graphical models.

3.1 Structured Maximum Entropy Discrimination

Given a training setD of structured input-output pairs, analogous to the feasible spaceF0 for the
weight vectorw in a standard M3N (c.f., problem P0), we define the feasible subspaceF1 for the
weight distributionp(w) by a set ofexpectedmargin constraints:

F1 =
{

p(w) :
Z

p(w)[∆Fi(y;w)−∆ℓi(y)]dw≥−ξi , ∀i,∀y 6= yi
}

.

We learn the optimump(w) from F1 based on astructured maximum entropy discrimination
principlegeneralized from the maximum entropy discrimination (Jaakkola et al., 1999).Under this
principle, the optimump(w) corresponds to the distribution that minimizes its relative entropy with
respect to some chosen priorp0, as measured by the Kullback-Leibler divergence betweenp andp0:
KL(p||p0) = 〈log(p/p0)〉p, where〈·〉p denotes the expectations with respect top. If p0 is uniform,
then minimizing this KL-divergence is equivalent to maximizing the entropyH(p) =−〈logp〉p. A
natural information theoretic interpretation of this formulation is that we favor adistribution over
the discriminant function classH that bears minimum assumptions among all feasible distributions
in F1. Thep0 is a regularizer that introduces an appropriate bias, if necessary.

To accommodate non-separable cases in the discriminative prediction problem, instead of min-
imizing the usual KL, we optimize thegeneralized entropy(Dud́ık et al., 2007; Lebanon and Laf-
ferty, 2001), or a regularized KL-divergence,KL(p(w)||p0(w)) +U(ξ), whereU(ξ) is a closed
proper convex function over the slack variables. This term can be understood as an additional “po-
tential” in the maximum entropy principle. Putting everything together, we can nowstate a general
formalism based on the following maximum entropy discrimination Markov networkframework:

Definition 1 (Maximum Entropy Discrimination Markov Networks) Given training dataD =
{〈xi ,yi〉}Ni=1, a chosen form of discriminant function F(x,y;w), a loss function∆ℓ(y), and an ensu-
ing feasible subspaceF1 (defined above) for parameter distribution p(w), the MaxEnDNet model
that leads to a prediction function of the form of Equation (2) is defined by the following generalized
relative entropy minimization with respect to a parameter prior p0(w):

P1(MaxEnDNet) : min
p(w),ξ

KL(p(w)||p0(w))+U(ξ)

s.t. p(w) ∈ F1, ξi ≥ 0,∀i.
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The P1 defined above is a variational optimization problem overp(w) in a subspace of valid
parameter distributions. Since both the KL and the functionU in P1 are convex, and the constraints
in F1 are linear, P1 is a convex program. In addition, the expectations〈F(x,y;w)〉p(w) are required
to be bounded in order forF to be a meaningful model. Thus, the problem P1 satisfies theSlater’s
condition1 (Boyd and Vandenberghe, 2004, chap. 5), which together with the convexity make P1
enjoy nice properties, such as strong duality and the existence of solutions. The problem P1 can be
solved via applying the calculus of variations to the Lagrangian to obtain a variational extremum,
followed by a dual transformation of P1. We state the main results below as a theorem, followed by
a brief proof that lends many insights into the solution to P1 which we will explorein subsequent
analysis.

Theorem 2 (Solution to MaxEnDNet) The variational optimization problem P1 underlying the
MaxEnDNet gives rise to the following optimum distribution of Markov network parametersw:

p(w) =
1

Z(α)
p0(w)exp

{

∑
i,y 6=yi

αi(y)[∆Fi(y;w)−∆ℓi(y)]
}

, (3)

where Z(α) is a normalization factor and the Lagrange multipliersαi(y) (corresponding to the
constraints inF1) can be obtained by solving the dual problem of P1:

D1 : max
α
− logZ(α)−U⋆(α)

s.t. αi(y)≥ 0, ∀i, ∀y 6= yi

where U⋆(·) is the conjugate of the slack function U(·), that is, U⋆(α) = supξ (∑i,y 6=yi αi(y)ξi −
U(ξ)).

Proof (sketch) Since the problem P1 is a convex program and satisfies the Slater’s condition, we
can form a Lagrangian function, whose saddle point gives the optimal solution of P1 and D1, by
introducing a non-negative dual variableαi(y) for each constraint inF1 and another non-negative
dual variablec for the normalization constraint

R

p(w)dw = 1. Details are deferred to Appendix
B.1.

Since the problem P1 is a convex program and satisfies the Slater’s condition, the saddle point
of the Lagrangian function is the KKT point of P1. From the KKT conditions (Boyd and Vanden-
berghe, 2004, Chap. 5), it can be shown that the above solution enjoysdual sparsity, that is, only a
few Lagrange multipliers will be non-zero, which correspond to the activeconstraints whose equal-
ity holds, analogous to the support vectors in SVM. Thus MaxEnDNet enjoys a similar generaliza-
tion property as the M3N and SVM due to the the small “effective size” of the margin constraints.
But it is important to realize that this does not mean that the learned model is “primal-sparse”, that
is, only a few elements in the weight vectorw are non-zero. We will return to this point in Section 4.

For a closed proper convex functionφ(µ), its conjugate is defined asφ⋆(ν) = supµ[ν⊤µ−φ(µ)].
In the problem D1, by convex duality (Boyd and Vandenberghe, 2004), the log normalizer logZ(α)
can be shown to be the conjugate of the KL-divergence. If the slack function isU(ξ) = C‖ξ‖ =

1. Since〈F(x,y;w)〉p(w) are bounded andξi ≥ 0, there always exists aξ, which is large enough to make the pair
(p(w),ξ) satisfy the Slater’s condition.
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C∑i ξi , it is easy to show thatU⋆(α) = I∞(∑y αi(y) ≤C, ∀i), whereI∞(·) is a function that equals
to zero when its argument holds true and infinity otherwise. Here, the inequality corresponds to the
trivial solutionξ = 0, that is, the training data are perfectly separable. Ignoring this inequalitydoes
not affect the solution since the special caseξ = 0 is still included. Thus, the Lagrange multipliers
αi(y) in the dual problem D1 comply with the set of constraints that∑y αi(y) = C, ∀i. Another
example isU(ξ) = KL(p(ξ)||p0(ξ)) by introducing uncertainty on the slack variables (Jaakkola
et al., 1999). In this case, expectations with respect top(ξ) are taken on both sides of all the
constraints inF1. Take the duality, and the dual function ofU is another log normalizer. More
details were provided by Jaakkola et al. (1999). Some otherU functions and their dual functions
are studied by Lebanon and Lafferty (2001) and Dudı́k et al. (2007).

Unlike most extant structured discriminative models including the highly successful M3N, which
rely on a point estimator of the parameters, the MaxEnDNet model derived above gives an optimum
parameter distribution, which is used to make prediction via the rule (2). Indeed, as we will show
shortly, the MaxEnDNet is strictly more general than the M3N and subsumes the later as a special
case. But more importantly, the MaxEnDNet in its full generality offers a number of important
advantages while retaining all the merits of the M3N. First , MaxEnDNet admits a prior that can be
designed to introduce useful regularization effects, such as a primal sparsity bias.Second, the Max-
EnDNet prediction is based on model averaging and therefore enjoys a desirable smoothing effect,
with a uniform convergence bound on generalization error.Third , MaxEnDNet offers a principled
way to incorporatehiddengenerative models underlying the structured predictions, but allows the
predictive model to be discriminatively trained based on partially labeled data.In the sequel, we
analyze the first two points in detail; exploration of the third point is beyond thescope of this paper,
and can be found in Zhu et al. (2008c), where apartially observedMaxEnDNet (PoMEN) is devel-
oped, which combines (possibly latent) generative model and discriminativetraining for structured
prediction.

3.2 Gaussian MaxEnDNet

As Equation (3) suggests, different choices of the parameter prior canlead to different MaxEnDNet
models for predictive parameter distribution. In this subsection and the following one, we explore a
few common choices, e.g., Gaussian and Laplace priors.

We first show that, when the parameter prior is set to be a standard normal, MaxEnDNet leads
to a predictor that is identical to that of the M3N. This somewhat surprising reduction offers an
important insight for understanding the property of MaxEnDNet. Indeedthis result should not
be totally unexpected given the striking isomorphisms of the opt-problem P1, the feasible space
F1, and the predictive functionh1 underlying a MaxEnDNet, to their counterparts P0,F0, andh0,
respectively, underlying an M3N. The following theorem makes our claim explicit.

Theorem 3 (Gaussian MaxEnDNet: Reduction of MEDN to M3N) Assuming F(x,y;w) =
w⊤f(x,y), U(ξ) = C∑i ξi , and p0(w) = N (w|0, I), where I denotes an identity matrix, then the
posterior distribution is p(w) =N (w|µ, I), where µ= ∑i,y 6=yi αi(y)∆f i(y), and the Lagrange multi-
pliersαi(y) in p(w) are obtained by solving the following dual problem, which is isomorphic to the
dual form of the M3N:

max
α ∑

i,y 6=yi

αi(y)∆ℓi(y)− 1
2
‖ ∑

i,y 6=yi

αi(y)∆f i(y)‖2
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s.t. ∑
y 6=yi

αi(y) = C; αi(y)≥ 0, ∀i, ∀y 6= yi ,

where∆f i(y) = f(xi ,yi)− f(xi ,y) as in P0. When applied to h1, p(w) leads to a predictive function
that is identical to h0(x;w) given by Equation (1).

Proof See Appendix B.2 for details.

The above theorem is stated in the duality form. We can also show the following equivalence in
the primal form.

Corollary 4 Under the same assumptions as in Theorem 3, the mean µ of the posterior distribution
p(w) under a Gaussian MaxEnDNet is obtained by solving the following primal problem:

min
µ,ξ

1
2

µ⊤µ+C
N

∑
i=1

ξi

s.t. µ⊤∆f i(y)≥ ∆ℓi(y)−ξi ; ξi ≥ 0, ∀i, ∀y 6= yi .

Proof See Appendix B.3 for details.

Theorem 3 and Corollary 4 both show that in the supervised learning setting, the M3N is a
special case of MaxEnDNet when the slack function is linear and the parameter prior is a standard
normal. As we shall see later, this connection renders many existing techniques for solving the M3N
directly applicable for solving the MaxEnDNet.

3.3 Laplace MaxEnDNet

Recent trends in pursuing “sparse” graphical models has led to the emergence of regularized ver-
sion of CRFs (Andrew and Gao, 2007) and Markov networks (Lee et al., 2006; Wainwright et al.,
2006). Interestingly, while such extensions have been successfully implemented by several authors
in maximum likelihood learning of various sparse graphical models, they havenot yet been fully
explored or evaluated in the context of maximum margin learning, although someexisting methods
can be extended to achieve sparse max-margin estimators, as explained below.

One possible way to learn a sparse M3N is to adopt the strategy ofL1-SVM (Bennett and Man-
gasarian, 1992; Zhu et al., 2004) and directly use anL1 instead of theL2-norm of w in the loss
function (see appendix A for a detailed description of this formulation and theduality derivation).
However, the primal problem of anL1-regularized M3N is not directly solvable using a standard
optimization toolbox by re-formulating it as an LP problem due to the exponentialnumber of con-
straints; solving the dual problem, which now has only a polynomial number ofconstraints as in
the dual of M3N, is also non-trivial due to the complicated form of the constraints. The constraint
generation methods (Tsochantaridis et al., 2004) are possible. However, although such methods
have been shown to be efficient for solving the QP problem in the standardM3N, our preliminary
empirical results show that such a scheme with an LP solver for theL1-regularized M3N can be
extremely expensive for a non-trivial real data set. Another type of possible solvers are based on a
projection toL1-ball (Duchi et al., 2008), such as the gradient descent (Ratliff et al.,2007) and the
dual extragradient (Taskar et al., 2006) methods.
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The MaxEnDNet interpretation of the M3N offers an alternative strategy that resembles Bayesian
regularization (Tipping, 2001; Kaban, 2007) in maximum likelihood estimation, where shrinkage
effects can be introduced by appropriate priors over the model parameters. As Theorem 3 reveals,
an M3N corresponds to a Gaussian MaxEnDNet that admits a standard normal prior for the weight
vectorw. According to the standard Bayesian regularization theory, to achieve a sparse estimate
of a model, in the posterior distribution of the feature weights, the weights of irrelevant features
should peak around zero with very small variances. However, the isotropy of the variances in all
dimensions of the feature space under a standard normal prior makes it infeasible for the resulting
M3N to adjust the variances in different dimensions to fit a sparse model. Alternatively, now we
employ a Laplace prior forw to learn a Laplace MaxEnDNet. We show in the sequel that, the
parameter posteriorp(w) under a Laplace MaxEnDNet has a shrinkage effect on small weights,
which is similar to directly applying anL1-regularizer on an M3N. Although exact learning of a
Laplace MaxEnDNet is also intractable, we show that this model can be efficiently approximated
by a variational inference procedure based on existing methods.

The Laplace prior ofw is expressed asp0(w) = ∏K
k=1

√
λ

2 e−
√

λ|wk|= (
√

λ
2 )Ke−

√
λ‖w‖. This density

function is heavy tailed and peaked at zero; thus, it encodes a prior belief that the distribution ofw is
strongly peaked around zero. Another nice property of the Laplace density is that it is log-concave,
or the negative logarithm is convex, which can be exploited to obtain a convex estimation problem
analogous to LASSO (Tibshirani, 1996).

Theorem 5 (Laplace MaxEnDNet: a sparse M3N) Assuming F(x,y;w) = w⊤f(x,y),

U(ξ) = C∑i ξi , and p0(w) = ∏K
k=1

√
λ

2 e−
√

λ|wk| = (
√

λ
2 )Ke−

√
λ‖w‖, then the Lagrange multipliers

αi(y) in p(w) (as defined in Theorem 2) are obtained by solving the following dual problem:

max
α ∑

i,y 6=yi

αi(y)∆ℓi(y)−
K

∑
k=1

log
λ

λ−η2
k

s.t. ∑
y 6=yi

αi(y) = C; αi(y)≥ 0, ∀i, ∀y 6= yi .

whereηk = ∑i,y 6=yi αi(y)∆fk
i (y), and∆fk

i (y) = fk(xi ,yi)− fk(xi ,y) represents the kth component of
∆f i(y). Furthermore, constraintsη2

k < λ, ∀k, must be satisfied.

Since several intermediate results from the proof of this Theorem will be used in subsequent
presentations, we provide the complete proof below. Our proof is based on a hierarchical repre-
sentation of the Laplace prior. As noted by Andrews and Mallows (1974),the Laplace distribution
p(w) =

√
λ

2 e−
√

λ|w| is equivalent to a two-layer hierarchical Gaussian-exponential model, wherew
follows a zero-mean Gaussian distributionp(w|τ) = N (w|0,τ) and the varianceτ admits an expo-
nential hyper-prior density,

p(τ|λ) =
λ
2

exp{− λ
2

τ}, for τ≥ 0.

This alternative form straightforwardly leads to the following new representation of our multivariate
Laplace prior for the parameter vectorw in MaxEnDNet:

p0(w) =
K

∏
k=1

p0(wk) =
K

∏
k=1

Z

p(wk|τk)p(τk|λ)dτk =
Z

p(w|τ)p(τ|λ)dτ, (4)
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wherep(w|τ) = ∏K
k=1 p(wk|τk) andp(τ|λ) = ∏K

k=1 p(τk|λ) represent multivariate Gaussian and ex-
ponential, respectively, and dτ , dτ1 · · ·dτK .
Proof (of Theorem 5) Substitute the hierarchical representation of the Laplace prior (Equation4)
into p(w) in Theorem 2, and we get the normalization factorZ(α) as follows,

Z(α) =
Z Z

p(w|τ)p(τ|λ)dτ ·exp{w⊤η− ∑
i,y 6=yi

αi(y)∆ℓi(y)}dw

=
Z

p(τ|λ)
Z

p(w|τ) ·exp{w⊤η− ∑
i,y 6=yi

αi(y)∆ℓi(y)}dw dτ

=
Z

p(τ|λ)
Z

N (w|0,A)exp{w⊤η− ∑
i,y 6=yi

αi(y)∆ℓi(y)}dw dτ

=
Z

p(τ|λ)exp{1
2

η⊤Aη− ∑
i,y 6=yi

αi(y)∆ℓi(y)}dτ

= exp{− ∑
i,y 6=yi

αi(y)∆ℓi(y)}
K

∏
k=1

Z λ
2

exp(−λ
2

τk)exp(
1
2

η2
kτk)dτk

= exp{− ∑
i,y 6=yi

αi(y)∆ℓi(y)}
K

∏
k=1

λ
λ−η2

k

, (5)

whereA = diag(τk) is a diagonal matrix andη is a column vector withηk defined as in Theorem 5.
The last equality is due to the moment generating function of an exponential distribution. The con-
straintη2

k < λ, ∀k is needed in this derivation to avoid the integration going infinity. Substituting
the normalization factor derived above into the general dual problem D1 inTheorem 2, and using
the same argument of the convex conjugate ofU(ξ) = C∑i ξi as in Theorem 3, we arrive at the dual
problem in Theorem 5.

It can be shown that the dual objective function of Laplace MaxEnDNetin Theorem 5 is con-
cave.2 But since eachηk depends on all the dual variablesα andη2

k appears within a logarithm, the
optimization problem underlying Laplace MaxEnDNet would be very difficultto solve. The SMO
(Taskar et al., 2003) and the exponentiated gradient methods (Bartlett etal., 2004) developed for
the QP dual problem of M3N cannot be easily applied here. Thus, we will turn to a variational ap-
proximation method, as shown in Section 5. For completeness, we end this section with a corollary
similar to the Corollary 4, which states the primal optimization problem underlying theMaxEnDNet
with a Laplace prior. As we shall see, the primal optimization problem in this caseis complicated
and provides another perspective of the hardness of solving the Laplace MaxEnDNet.

Corollary 6 Under the same assumptions as in Theorem 5, the mean µ of the posterior distribu-
tion p(w) under a Laplace MaxEnDNet is obtained by solving the following primal problem:

min
µ,ξ

√
λ

K

∑
k=1

(

√

µ2
k +

1
λ
− 1√

λ
log

√

λµ2
k +1+1

2

)

+C
N

∑
i=1

ξi

s.t. µ⊤∆f i(y)≥ ∆ℓi(y)−ξi ; ξi ≥ 0, ∀i, ∀y 6= yi .

2. η2
k is convex overα because it is the composition off (x) = x2 with an affine mapping. So,λ−η2

k is concave and
log(λ−η2

k) is also concave due to the composition rule (Boyd and Vandenberghe, 2004).
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Proof The proof requires the result of Corollary 7. We defer it to Appendix B.4.

Since the “norm”3

K

∑
k=1

(

√

µ2
k +

1
λ
− 1√

λ
log

√

λµ2
k +1+1

2

)

, ‖µ‖KL

corresponds to the KL-divergence betweenp(w) andp0(w) under a Laplace MaxEnDNet, we will
refer to it as aKL-normand denote it by‖·‖KL in the sequel. This KL-norm is different from theL2-
norm as used in M3N, but is closely related to theL1-norm, which encourages a sparse estimator. In
the following section, we provide a detailed analysis of the sparsity of Laplace MaxEnDNet resulted
from the regularization effect from this norm.

4. Entropic Regularization and Sparse M3N

Comparing to the structured prediction lawh0 due to an M3N, which enjoys dual sparsity (i.e., few
support vectors), theh1 defined by a Laplace MaxEnDNet is not only dual-sparse, but also primal
sparse; that is, features that are insignificant will experience strong shrinkage on their corresponding
weightwk.

The primal sparsity ofh1 achieved by the Laplace MaxEnDNet is due to a shrinkage effect
resulting from theLaplacian entropic regularization. In this section, we take a close look at this
regularization effect, in comparison with other common regularizers, such as theL2-norm in M3N
(which is equivalent to the Gaussian MaxEnDNet), and theL1-norm that at least in principle could
be directly applied to M3N. Since our main interest here is the sparsity of the structured prediction
law h1, we examine the posterior mean underp(w) via exact integration. It can be shown that under
a Laplace MaxEnDNet,p(w) exhibits the following posterior shrinkage effect.

Corollary 7 (Entropic Shrinkage) The posterior mean of the Laplace MaxEnDNet has the follow-
ing form:

〈wk〉p =
2ηk

λ−η2
k

, ∀1≤ k≤ K, (6)

whereηk = ∑i,y 6=yi αi(y)( fk(xi ,yi)− fk(xi ,y)) andη2
k < λ, ∀k.

Proof Using the integration result in Equation (5), we can get:

∂logZ
∂αi(y)

= v⊤∆f i(y)−∆ℓi(y), (7)

wherev is a column vector andvk = 2ηk

λ−η2
k
, ∀1≤ k≤ K. An alternative way to compute the deriva-

tives is using the definition ofZ : Z =
R

p0(w) ·exp{w⊤η−∑i,y 6=yi αi(y)∆ℓi(y)}dw . We can get:

∂logZ
∂αi(y)

= 〈w〉⊤p ∆f i(y)−∆ℓi(y). (8)

3. This is not exactly a norm because the positive scalability does not hold.But the KL-norm is non-negative due to
the non-negativity of KL-divergence. In fact, by using the inequalityex ≥ 1+ x, we can show that each component

(
√

µ2
k + 1

λ −
1√
λ

log
√

λµ2
k+1+1
2 ) is monotonically increasing with respect toµ2

k and‖µ‖KL ≥ K/
√

λ, where the equal-

ity holds only whenµ= 0. Thus,‖µ‖KL penalizes large weights. For convenient comparison with the popularL2 and
L1 norms, we call it a KL-norm.
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Figure 1: Posterior means with different priors against their correspondingη = ∑i,y 6=yi αi(y)∆f i(y).
Note that theη for different priors are generally different because of the different dual
parameters.

Comparing Equations (7) and (8), we get〈w〉p = v, that is,〈wk〉p = 2ηk

λ−η2
k
, ∀1≤ k≤ K. The

constraintsη2
k < λ, ∀k are required to get a finite normalization factor as shown in Equation (5).

Hereη is isomorphic to an unregularized estimate of the feature weight vector which directly
comes from a linear combination of support vectors (and therefore not sparsified). A plot of the
relationship between〈wk〉p under a Laplace MaxEnDNet and the correspondingηk revealed by
Corollary 7 is shown in Figure 1 (for example, the red curve), from whichwe can see that, the
smaller theηk is, the more shrinkage toward zero is imposed on〈wk〉p.

This entropic shrinkage effect onw is not present in the standard M3N, and the Gaussian Max-
EnDNet. Recall that by definition, the vectorη , ∑i,y αi(y)∆f i(y) is determined by the dual param-
etersαi(y) obtained by solving a model-specific dual problem. When theαi(y)’s are obtained by
solving the dual of the standard M3N, it can be shown that the optimum point solution of the param-
etersw⋆ = η. When theαi(y)’s are obtained from the dual of the Gaussian MaxEnDNet, Theorem
3 shows that the posterior mean of the parameters〈w〉pGaussian

= η. (As we have already pointed
out, since these two dual problems are isomorphic, theαi(y)’s for M3N and Gaussian MaxEnDNet
are identical, hence the resultingη’s are the same.) In both cases, there is no shrinkage along any
particular dimension of the parameter vectorw or of the mean vector ofp(w). Therefore, although
both M3N and Gaussian MaxEnDNet enjoy the dual sparsity, because the KKT conditions imply
that most of the dual parametersαi(y)’s are zero,w⋆ and〈w〉pGaussian

are not primal sparse. From
Equation (6), we can conclude that the Laplace MaxEnDNet is also dual sparse, because its mean
〈w〉pLaplace

can be uniquely determined byη. But the shrinkage effect on different components of the

〈w〉pLaplace
vector causes〈w〉pLaplace

to be also primal sparse.

A comparison of the posterior mean estimates ofw under MaxEnDNet with three different
priors versus their associatedη is shown in Figure 1. The three priors in question are, a standard
normal, a Laplace withλ = 4, and a Laplace withλ = 6. It can be seen that, under the entropic
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regularization with a Laplace prior, the〈w〉p gets shrunk toward zero whenη is small. The larger
theλ value is, the greater the shrinkage effect. For a fixedλ, the shape of the shrinkage curve (i.e.,
the 〈w〉p−η curve) is smoothly nonlinear, but no component is explicitly discarded, thatis, no
weight is set explicitly to zero. In contrast, for the Gaussian MaxEnDNet, which is equivalent to the
standard M3N, there is no such a shrinkage effect.

Corollary 6 offers another perspective of how the Laplace MaxEnDNet relates to theL1-norm
M3N, which yields a sparse estimator. Note that asλ goes to infinity, the KL-norm‖µ‖KL ap-
proaches‖µ‖1, that is, theL1-norm.4 This means that the MaxEnDNet with a Laplace prior will be
(nearly) the same as theL1-M3N if the regularization constantλ is large enough.

A more explicit illustration of the entropic regularization under a Laplace MaxEnDNet, compar-
ing to the conventionalL1 andL2 regularization over an M3N, can be seen in Figure 2, where the fea-
sible regions due to the three different norms used in the regularizer are plotted in a two dimensional
space. Specifically, it shows (1)L2-norm: w2

1 +w2
2 ≤ 1; (2) L1-norm: |w1|+ |w2| ≤ 1; and (3) KL-

norm:5
√

w2
1 +1/λ+

√

w2
2 +1/λ− (1/

√
λ) log(

√

λw2
1 +1/2+1/2)− (1/

√
λ) log(

√

λw2
1 +1/2+

1/2)≤ b, whereb is a parameter to make the boundary pass the(0,1) point for easy comparison with
theL2 andL1 curves. It is easy to show thatbequals to

√

1/λ+
√

1+1/λ−(1/
√

λ) log(
√

λ+1/2+
1/2). It can be seen that theL1-norm boundary has sharp turning points when it passes the axises,
whereas theL2 and KL-norm boundaries turn smoothly at those points. This is the intuitive ex-
planation of why theL1-norm directly gives sparse estimators, whereas theL2-norm and KL-
norm due to a Laplace prior do not. But as shown in Figure 2(b), when theλ gets larger and
larger, the KL-norm boundary moves closer and closer to theL1-norm boundary. Whenλ→ ∞,
√

w2
1 +1/λ+

√

w2
2 +1/λ−(1/

√
λ) log(

√

λw2
1 +1/2+1/2)−(1/

√
λ) log(

√

λw2
1 +1/2+1/2)→

|w1|+ |w2| andb→ 1, which yields exactly theL1-norm in the two dimensional space. Thus, under
the linear model assumption of the discriminant functionsF( · ;w), our framework can be seen as a
smooth relaxation of theL1-M3N.

5. Variational Learning of Laplace MaxEnDNet

Although Theorem 2 seems to offer a general closed-form solution top(w) under an arbitrary prior
p0(w), in practice the Lagrange multipliersαi(y) in p(w) can be very hard to estimate from the dual
problem D1 except for a few special choices ofp0(w), such as a normal as shown in Theorem 3,
which can be easily generalized to any normal prior. Whenp0(w) is a Laplace prior, as we have
shown in Theorem 5 and Corollary 6, the corresponding dual problem or primal problem involves
a complex objective function that is difficult to optimize. Here, we present a variational method for
an approximate learning of the Laplace MaxEnDNet.

Our approach is built on the hierarchical interpretation of the Laplace prior as shown in Equation
(4). Replacing thep0(w) in Problem P1 with Equation (4), and applying the Jensen’s inequality, we
get an upper bound of the KL-divergence:

KL(p||p0) =−H(p)−〈log
Z

p(w|τ)p(τ|λ)dτ〉p

4. Asλ→ ∞, the logarithm terms in‖µ‖KL disappear because of the fact thatlogx
x → 0 whenx→ ∞.

5. The curves are drawn with a symbolic computational package to solve an equation of the form: 2x− logx = a, where
x is the variable to be solved anda is a constant.
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Figure 2: (a)L2-norm (solid line) andL1-norm (dashed line); (b) KL-norm with different Laplace
priors.

≤−H(p)−〈
Z

q(τ) log
p(w|τ)p(τ|λ)

q(τ)
dτ〉p

, L(p(w),q(τ)),

whereq(τ) is a variational distribution used to approximatep(τ|λ). The upper bound is in fact a
KL-divergence:L(p(w),q(τ)) = KL(p(w)q(τ)||p(w|τ)p(τ|λ)). Thus,L is convex overp(w), and
q(τ), respectively, but not necessarily joint convex over(p(w),q(τ)).

Substituting this upper bound for the KL-divergence in P1, we now solve the following Varia-
tional MaxEnDNet problem,

P1′ (vMEDN) : min
p(w)∈F1;q(τ);ξ

L(p(w),q(τ))+U(ξ).

P1′ can be solved with an iterative minimization algorithm alternating between optimizing over
(p(w),ξ) andq(τ), as outlined in Algorithm 1, and detailed below.

Step 1: Keepq(τ) fixed, optimize P1′ with respect to(p(w),ξ). Using the same procedure as
in solving P1, we get the posterior distributionp(w) as follows,

p(w) ∝ exp{
Z

q(τ) logp(w|τ)dτ −b} ·exp{w⊤η− ∑
i,y 6=yi

αi(y)∆ℓi(y)}

∝ exp{−1
2

w⊤〈A−1〉qw−b+w⊤η− ∑
i,y 6=yi

αi(y)∆ℓi(y)}

=N (w|µ,Σ),
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Algorithm 1 Variational MaxEnDNet

Input: dataD = {〈xi ,yi〉}Ni=1, constantsC andλ, iteration numberT
Output: posterior mean〈w〉Tp
Initialize 〈w〉1p← 0, Σ1← I
for t = 1 to T−1 do

Step 1: solve (9) or (10) for〈w〉t+1
p = Σtη; update〈ww⊤〉t+1

p ← Σt + 〈w〉t+1
p (〈w〉t+1

p )⊤.

Step 2: use (11) to updateΣt+1← diag(
√

〈w2
k〉t+1

p

λ ).
end for

whereη = ∑i,y 6=yi αi(y)∆f i(y), A = diag(τk), andb = KL(q(τ)||p(τ|λ)) is a constant. The posterior
mean and variance are〈w〉p = µ = Ση andΣ = (〈A−1〉q)−1 = 〈ww⊤〉p−〈w〉p〈w〉⊤p , respectively.
Note that this posterior distribution is also a normal distribution. Analogous to the proof of Theorem
3, we can derive that the dual parametersα are estimated by solving the following dual problem:

max
α ∑

i,y 6=yi

αi(y)∆ℓi(y)− 1
2

η⊤Ση (9)

s.t. ∑
y 6=yi

αi(y) = C; αi(y)≥ 0, ∀i, ∀y 6= yi .

This dual problem is now a standard quadratic program symbolically identical to the dual of an
M3N, and can be directly solved using existing algorithms developed for M3N, such as the SMO
(Taskar et al., 2003) and the exponentiated gradient (Bartlett et al., 2004) methods. Alternatively,
we can solve the following primal problem:

min
w,ξ

1
2

w⊤Σ−1w+C
N

∑
i=1

ξi (10)

s.t. w⊤∆f i(y)≥ ∆ℓi(y)−ξi ; ξi ≥ 0, ∀i, ∀y 6= yi .

Based on the proof of Corollary 4, it is easy to show that the solution of the problem (10) leads to
the posterior mean ofw underp(w), which will be used to do prediction byh1. The primal problem
can be solved with the subgradient (Ratliff et al., 2007), cutting-plane (Tsochantaridis et al., 2004),
or extragradient (Taskar et al., 2006) method.

Step 2: Keep p(w) fixed, optimize P1′ with respect toq(τ). Taking the derivative ofL with
respect toq(τ) and set it to zero, we get:

q(τ) ∝ p(τ|λ)exp{〈logp(w|τ)〉p}.

Since bothp(w|τ) andp(τ|λ) can be written as a product of univariate Gaussian and univariate ex-
ponential distributions, respectively, over each dimension,q(τ) also factorizes over each dimension:
q(τ) = ∏K

k=1q(τk), where eachq(τk) can be expressed as:

∀k : q(τk) ∝ p(τk|λ)exp{〈logp(wk|τk)〉p}

∝ N (
√

〈w2
k〉p|0,τk)exp(−1

2
λτk).
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The same distribution has been derived by Kaban (2007), and similar to the hierarchical rep-

resentation of a Laplace distribution we can get the normalization factor:
R

N (
√

〈w2
k〉p|0,τk) ·

λ
2 exp(−1

2λτk)dτk =
√

λ
2 exp(−

√

λ〈w2
k〉p). Also, we can calculate the expectations〈τ−1

k 〉q which

are required in calculating〈A−1〉q as follows,

〈 1
τk
〉q =

Z

1
τk

q(τk)dτk =

√

λ
〈w2

k〉p
. (11)

We iterate between the above two steps until convergence. Due to the convexity (not joint
convexity) of the upper bound, the algorithm is guaranteed to converge toa local optimum. Then,
we apply the posterior distributionp(w), which is in the form of a normal distribution, to make
prediction using the averaging prediction law in Equation (2). Due to the shrinkage effect of the
Laplacian entropic regularization discussed in Section 4, for irrelevant features, the variances should
converge to zeros and thus lead to a sparse estimation ofw. To summarize, the intuition behind this
iterative minimization algorithm is as follows. First, we use a Gaussian distribution toapproximate
the Laplace distribution and thus get a QP problem that is analogous to that ofthe standard M3N;
then, in the second step we update the covariance matrix in the QP problem with an exponential
hyper-prior on the variance.

6. Generalization Bound

The PAC-Bayes theory for averaging classifiers (McAllester, 1999; Langford et al., 2001) provides
a theoretical motivation to learn an averaging model for classification. In thissection, we extend
the classic PAC-Bayes theory on binary classifiers to MaxEnDNet, and analyze the generalization
performance of the structured prediction ruleh1 in Equation (2). In order to prove an error bound
for h1, the following mild assumption on the boundedness of discriminant functionF( · ;w) is
necessary, that is, there exists a positive constantc, such that,

∀w, F( · ;w) ∈H : X ×Y → [−c,c].

Recall that the averaging structured prediction function under the MaxEnDNet is defined ash(x,y)=
〈F(x,y;w)〉p(w). Let’s define the predictive margin of an instance(x,y) under a functionh as
M(h,x,y) = h(x,y)−maxy′ 6=y h(x,y′). Clearly, h makes a wrong prediction on(x,y) only if
M(h,x,y) ≤ 0. Let Q denote a distribution overX ×Y , and letD represent a sample ofN in-
stances randomly drawn fromQ. With these definitions, we have the following structured version
of PAC-Bayes theorem.

Theorem 8 (PAC-Bayes Bound of MaxEnDNet)Let p0 be any continuous probability distribu-
tion overH and letδ ∈ (0,1). If F( · ;w) ∈H is bounded by±c as above, then with probability at
least1−δ, for a random sampleD of N instances from Q, for every distribution p overH , and for
all margin thresholdsγ > 0:

PrQ(M(h,x,y)≤ 0)≤ PrD(M(h,x,y)≤ γ)+O
(

√

γ−2KL(p||p0) ln(N|Y |)+ lnN+ lnδ−1

N

)

,
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wherePrQ(.) andPrD(.) represent the probabilities of events over the true distribution Q, and over
the empirical distribution ofD, respectively.

The proof of Theorem 8 follows the same spirit of the proof of the originalPAC-Bayes bound,
but with a number of technical extensions dealing with structured outputs andmargins. See ap-
pendix B.5 for the details.

Recently, McAllester (2007) presents astochasticmax-margin structured prediction model,
which is different from the averaging predictor under the MaxEnDNet model, by defining/designing
a “posterior” distribution from which a model is sampled to make prediction, andachieves a PAC-
Bayes bound which holds for arbitrary models sampled from the particular posterior distribution.
Langford and Shawe-Taylor (2003) show an interesting connection between the PAC-Bayes bounds
for averaging classifiers and stochastic classifiers, again by designinga posterior distribution. But
our posterior distribution is solved with MaxEnDNet and is generally different from those designed
by McAllester (2007) and Langford and Shawe-Taylor (2003).

7. Experiments

In this section, we present empirical evaluations of the proposed LaplaceMaxEnDNet (LapMEDN)
on both synthetic and real data sets. We compare LapMEDN with M3N (i.e., the Gaussian MaxEnD-
Net), L1-regularized M3N (L1-M3N), CRFs,L1-regularized CRFs (L1-CRFs), andL2-regularized
CRFs (L2-CRFs). We use the quasi-Newton method (Liu and Nocedal, 1989) and its variant (An-
drew and Gao, 2007) to solve the optimization problem of CRFs,L1-CRFs, andL2-CRFs. For M3N
and LapMEDN, we use the exponentiated gradient method (Bartlett et al., 2004) to solve the dual
QP problem; and we also use the sub-gradient method (Ratliff et al., 2007) to solve the correspond-
ing primal problem. To the best of our knowledge, no formal description, implementation, and
evaluation of theL1-M3N exist in the literature, therefore for comparison purpose we had to de-
velop this model and algorithm anew. Details of our work along this line was reported in Zhu et al.
(2009b), which is beyond the scope of this paper. But briefly, for ourexperiments on synthetic data,
we implemented the constraint generating method (Tsochantaridis et al., 2004)which uses MOSEK
to solve an equivalent LP re-formulation ofL1-M3N. However, this approach is extremely slow on
larger problems; therefore on real data we instead applied the sub-gradient method (Ratliff et al.,
2007) with a projection to anL1-ball (Duchi et al., 2008) to solve the largerL1-M3N based on the
equivalent re-formulation with anL1-norm constraint (i.e., the second formulation in Appendix A).

7.1 Evaluation on Synthetic Data

We first evaluate all the competing models on synthetic data where the true structured predictions are
known. Here, we consider sequence data, that is, each inputx is a sequence(x1, . . . ,xL), and each
componentxl is a d-dimensional vector of input features. The synthetic data are generatedfrom
pre-specified conditional random field models with either i.i.d. instantiations of the input features
(i.e., elements in thed-dimensional feature vectors) or correlated (i.e., structured) instantiations of
the input features, from which samples of the structured outputy, that is, a sequence(y1, . . . ,yL),
can be drawn from the conditional distributionp(y|x) defined by the CRF based on a Gibbs sampler.

2548



MAXIMUM ENTROPY DISCRIMINATION MARKOV NETWORKS

7.1.1 I.I .D. INPUT FEATURES

The first experiment is conducted on synthetic sequence data with 100 i.i.d. input features (i.e.,
d = 100). We generate three types of data sets with 10, 30, and 50 relevant input features, respec-
tively. For each type, we randomly generate 10 linear-chain CRFs with 8 binary labeling states (i.e.,
L = 8 andYl = {0,1}). The feature functions include: a real valued state-feature function over a one
dimensional input feature and a class label; and 4 (2×2) binary transition feature functions captur-
ing pairwise label dependencies. For each model we generate a data setof 1000 samples. For each
sample, we firstindependentlydraw the 100 input features from a standard normal distribution, and
then apply a Gibbs sampler (based on the conditional distribution of the generated CRFs) to assign
a labeling sequence with 5000 iterations.

For each data set, we randomly draw a subset as training data and use the rest for testing.
The sizes of training set are 30, 50, 80, 100, and 150. The QP problemin M3N and the first
step of LapMEDN is solved with the exponentiated gradient method (Bartlett etal., 2004). In all
the following experiments, the regularization constants ofL1-CRFs andL2-CRFs are chosen from
{0.01,0.1,1,4,9,16} by a 5-fold cross-validation during the training. For the LapMEDN, we use
the same method to chooseλ from 20 roughly evenly spaced values between 1 and 268. For each
setting, a performance score is computed from the average over 10 random samples of data sets.

The results are shown in Figure 3. All the results of the LapMEDN are achieved with 3 itera-
tions of the variational learning algorithm. From the results, we can see that under different settings
LapMEDN consistently outperforms M3N and performs comparably withL1-CRFs andL1-M3N,
both of which encourage a sparse estimate; and both theL1-CRFs andL2-CRFs outperform the
un-regularized CRFs, especially in the cases where the number of trainingdata is small. One in-
teresting result is that the M3N andL2-CRFs perform comparably. This is reasonable because as
derived by Lebanon and Lafferty (2001) and noted by Globerson etal. (2007) that theL2-regularized
maximum likelihood estimation of CRFs has a similar convex dual as that of the M3N, and the only
difference is the loss they try to optimize, that is, CRFs optimize the log-loss while M3N optimizes
the hinge-loss. Another interesting observation is that when there are very few relevant features,
L1-M3N performs the best (slightly better than LapMEDN); but as the number of relevant features
increases LapMEDN performs slightly better than theL1-M3N. Finally, as the number of training
data increases, all the algorithms consistently achieve better performance.

7.1.2 CORRELATED INPUT FEATURES

In reality, most data sets contain redundancies and the input features areusually correlated. So,
we evaluate our models on synthetic data sets with correlated input features.We take the similar
procedure as in generating the data sets with i.i.d. features to first generate10 linear-chain CRF
models. Then, each CRF is used to generate a data set that contain 1000 instances, each with 100
input features of which 30 are relevant to the output. The 30 relevant input features are partitioned
into 10 groups. For the features in each group, we first draw a real-value from a standard normal
distribution and then corrupt the feature with a random Gaussian noise to get 3 correlated features.
The noise Gaussian has a zero mean and standard variance 0.05. Here and in all the remaining
experiments, we use the sub-gradient method (Ratliff et al., 2007) to solve the QP problem in both
M3N and the variational learning algorithm of LapMEDN. We use the learning rate and complexity
constant that are suggested by the authors, that is,αt = 1

2β
√

t
andC = 200β, whereβ is a parameter

we introduced to adjustαt andC. We do K-fold CV on each data set and take the average over the
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Figure 3: Evaluation results on data sets with i.i.d features.
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Figure 4: Results on data sets with 30 relevant features.

10 data sets as the final results. Like the method of Taskar et al. (2003), ineach run we choose one
part to do training and test on the rest K-1 parts. We vary K from 20, 10,7, 5, to 4. In other words,
we use 50, 100, about 150, 200, and 250 samples during the training. Weuse the same grid search
to chooseλ andβ from {9,16,25,36,49,64} and{1,10,20,30,40,50,60} respectively. Results are
shown in Figure 4. We can get the same conclusions as in the previous results.

Figure 5 shows the true weights of the corresponding 200 state feature functions in the model
that generates the first data set, and the average of estimated weights of these features under all
competing models fitted from the first data set. All the averages are taken over 10 fold cross-
validation. From the plots (2 to 7) of the average model weights, we can see that: for the last 140
state feature functions, which correspond to the last 70 irrelevant features, their average weights
under LapMEDN (averaged posterior meansw in this case),L1-M3N andL1-CRFs are extremely
small, while CRFs andL2-CRFs can have larger values; for the first 60 state feature functions,which
correspond to the 30 relevant features, the overall weight estimation under LapMEDN is similar to
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Figure 5: From top to bottom, plot 1 shows the weights of the state feature functions in the linear-
chain CRF model from which the data are generated; plot 2 to plot 7 show theaverage
weights of the learned LapMEDN, M3N, L1-M3N, CRFs,L2-CRFs, andL1-CRFs over
10 fold CV, respectively.

0 10 20 30 40 50 60 70 80 90 100
2

3

4
x 10

−3

Features

V
ar

 o
f L

ap
M

E
D

N

Figure 6: The average variances of the features on the first data set by LapMEDN.
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that of the sparseL1-CRFs andL1-M3N, but appear to exhibit more shrinkage. Noticeably, CRFs
andL2-CRFs both have more feature functions with large average weights. Note that all the models
have quite different average weights from the model (see the first plot) that generates the data. This
is because we use a stochastic procedure (i.e., Gibbs sampler) to assign labels to the generated data
samples instead of using the labels that are predicted by the model that generates the data. In fact,
if we use the model that generates the data to do prediction on its generated data, the error rate is
about 0.5. Thus, the learned models, which get lower error rates, are different from the model that
generates the data. Figure 6 shows the variances of the 100-dimensionalinput features (since the
variances of the two feature functions that correspond to the same input feature are the same, we
collapse each pair into one point) learned by LapMEDN. Again, the variances are the averages over
10 fold cross-validation. From the plot, we can see that the LapMEDN can recover the correlation
among the features to some extend, e.g., for the first 30 correlated features, which are the relevant
to the output, the features in the same group tend to have similar (average) variances in LapMEDN,
whereas there is no such correlation among all the other features. From these observations in both
Figure 5 and 6, we can conclude that LapMEDN can reasonably recover the sparse structures in the
input data.

7.2 Real-World OCR Data Set

The OCR data set is partitioned into 10 subsets for 10-fold CV as in Taskar et al. (2003) and Ratliff
et al. (2007). We randomly selectN samples from each fold and put them together to do 10-fold
CV. We varyN from 100, 150, 200, to 250, and denote the selected data sets by OCR100, OCR150,
OCR200, and OCR250, respectively. On these data sets and the web dataas in Section 7.4, our
implementation of the cutting plane method forL1-M3N is extremely slow. The warm-start simplex
method of MOSEK does not help either. For example, if we stop the algorithm with600 iterations
on OCR100, then it will take about 20 hours to finish the 10 fold CV. Even withmore than 5
thousands of constraints in each training, the performance is still very bad(the error rate is about
0.45). Thus, we turn to an approximate projected sub-gradient method to solve theL1-M3N by
combining the on-line subgradient method (Ratliff et al., 2007) and the efficient L1-ball projection
algorithm (Duchi et al., 2008). The projected sub-gradient method doesnot work so well as the
cutting plane method on the synthetic data sets. That’s why we use two different methods.

Forβ = 4 on OCR100 and OCR150,β = 2 on OCR200 and OCR250, andλ = 36, the results are
shown in Figure 7. We can see that as the number of training instances increases, all the algorithms
get lower error rates and smaller variances. Generally, the LapMEDN consistently outperforms
all the other models. M3N outperforms the standard, non-regularized, CRFs and theL1-CRFs.
Again, L2-CRFs perform comparably with M3N. This is a bit surprising but still reasonable due to
the understanding of their only difference on the loss functions (Globerson et al., 2007) as we have
stated. By examining the prediction accuracy during the learning, we can see an obvious over-fitting
in CRFs andL1-CRFs as shown in Figure 8. In contrast,L2-CRFs are very robust. This is because
unlike the synthetic data sets, features in real-world data are usually not completely irrelevant. In
this case, putting small weights to zero as inL1-CRFs will hurt generalization ability and also lead to
instability to regularization constants as shown later. Instead,L2-CRFs do not put small weights to
zero but shrink them towards zero as in the LapMEDN. The non-regularized maximum likelihood
estimation can easily lead to over-fitting too. For the two sparse models, the results suggest the
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Figure 7: Evaluation results on OCR data set with different numbers of selected data.
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Figure 9: Error rates of different models on OCR100 with different regularization constants. The
regularization constant is the parameterC for M3N, and for all the other models, it is the
parameterλ. From left to right, the regularization constants for the two regularized CRFs
(above plot) are 0.0001, 0.001, 0.01, 0.1, 1, 4, 9, 16, and 25; forM3N and LapMEDN, the
regularization constants arek2, 1≤ k≤ 9; and forL1-M3N, the constants arek2, 13≤
k≤ 21.

potential advantages ofL1-norm regularized M3N, which are consistently better than theL1-CRFs.
Furthermore, as we shall see later,L1-M3N is more stable than theL1-CRFs.

7.3 Sensitivity to Regularization Constants

Figure 9 shows the error rates of the models in question on the data set OCR100 over different
magnitudes of the regularization constants. For M3N, the regularization constant is the parameter
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C, and for all the other models, the regularization constant is the parameterλ. When theλ changes,
the parameterC in LapMEDN andL1-M3N is fixed at the unit 1.

From the results, we can see that theL1-CRFs are quite sensitive to the regularization constants.
However,L2-CRFs, M3N, L1-M3N and LapMEDN are much less sensitive. LapMEDN andL1-M3N
are the most stable models. The stability of LapMEDN is due to the posterior weighting instead of
hard-thresholding to set small weights to zero as in theL1-CRFs. One interesting observation is that
the max-margin basedL1-M3N is much more stable compared to theL1-norm regularized CRFs.
One possible reason is that like LapMEDN,L1-M3N enjoys both the primal and dual sparsity, which
makes it less sensitive to outliers; whereas theL1-CRF is only primal sparse.

7.4 Real-World Web Data Extraction

The last experiments are conducted on the real world web data extraction as extensively studied by
Zhu et al. (2008a). Web data extraction is a task to identify interested information from web pages.
Each sample is a data record or an entire web page which is represented asa set of HTML elements.
One striking characteristic of web data extraction is that various types of structural dependencies
between HTML elements exist, e.g. the HTML tag tree or the Document Object Model (DOM)
structure is itself hierarchical. In the work of Zhu et al. (2008a), hierarchical CRFs are shown to
have great promise and achieve better performance than flat models like linear-chain CRFs (Lafferty
et al., 2001). One method to construct a hierarchical model is to first use aparser to construct
a so called vision tree. Then, based on the vision tree, a hierarchical model can be constructed
accordingly to extract the interested attributes, e.g. a product’s name, image, price, description, etc.
See the paper (Zhu et al., 2008a) for an example of the vision tree and the corresponding hierarchical
model. In such a hierarchical extraction model, inner nodes are useful toincorporate long distance
dependencies, and the variables at one level are refinements of the variables at upper levels.

In these experiments,6 we identify product items for sale on the Web. For each product item,
four attributes—Name, Image, Price, andDescriptionare extracted. We use the data set that is built
with web pages generated by 37 different templates (Zhu et al., 2008a). For each template, there are
5 pages for training and 10 for testing. We evaluate all the methods on therecord level, that is, we
assume that data records are given, and we compare different models on the accuracy of extracting
attributes in the given records. In the 185 training pages, there are 1585data records in total; in the
370 testing pages, 3391 data records are collected. As for the evaluationcriteria, we use the two
comprehensive measures, that is, average F1 and block instance accuracy. As defined by Zhu et al.
(2008a), average F1 is the average value of the F1 scores of the fourattributes, and block instance
accuracy is the percent of data records whoseName, Image, andPriceare all correctly identified.

We randomly selectm = 5,10,15,20,30,40,or,50 percent of the training records as training
data, and test on all the testing records. For eachm, 10 independent experiments were conducted and
the average performance is summarized in Figure 10. From the results, we can see that all: first, the
models (especially the max-margin models, that is, M3N, L1-M3N, and LapMEDN) with regular-
ization (i.e.,L1-norm,L2-norm, or the entropic regularization of LapMEDN) can significantly out-
perform the un-regularized CRFs. Second, the max-margin models generally outperform the condi-
tional likelihood-based models (i.e., CRFs,L2-CRFs, andL1-CRFs). Third, the LapMEDN perform
comparably with theL1-M3N, which enjoys both dual and primal sparsity as the LapMEDN, and

6. These experiments are slightly different from those by Zhu et al. (2008a). Here, we introduce more general feature
functions based on the content and visual features as used by Zhu et al. (2008a).
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Figure 10: The average F1 values and block instance accuracy on webdata extraction with different
number of training data.

outperforms all other models, especially when the number of training data is small. Finally, as in
the previous experiments on OCR data, theL1-M3N generally outperforms theL1-CRFs, which
suggests the potential promise of the max-margin basedL1-M3N.

8. Related Work

Our work is motivated by the maximum entropy discrimination (MED) method proposed by Jaakkola
et al. (1999), which integrates SVM and entropic regularization to obtain anaveraging maximum
margin model for classification. The MaxEnDNet model presented is essentially a structured ver-
sion of MED built on M3N—the so called “structured SVM”. As we presented in this paper, this
extension leads to a substantially more flexible and powerful new paradigm for structured discrim-
inative learning and prediction, which enjoys a number of advantages such as model averaging,
primal and dual sparsity, accommodation of latent generative structures,but at the same time raises
new algorithmic challenges in inference and learning.

Related to our approach, a sparse Bayesian learning framework has been proposed to find sparse
and robust solutions to regression and classification. One example along this line is the relevance
vector machine (RVM) (Tipping, 2001). The RVM was proposed based on SVM. But unlike SVM
which directly optimizes on the margins, RVM defines a likelihood function from the margins with
a Gaussian distribution for regression and a logistic sigmoid link function for classification and then
doestype-II maximum likelihoodestimation, that is, RVM maximizes themarginal likelihood. Al-
though calledsparse Bayesian learning(Figueiredo, 2001; Eyheramendy et al., 2003), as shown by
Kaban (2007) the sparsity is actually due to the MAP estimation. The similar ambiguityof RVM is
justified by Wipf et al. (2003). Unlike these approaches, we adhere to a full Bayesian-style principle
and learn a distribution of predictive models by optimizing a generalized maximum entropy under
a set of theexpectedmargin constraints. By defining likelihood functions with margins, similar
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Bayesian interpretations of both binary and multi-class SVM were studied by Sollich (2002) and
Zhang and Jordan (2006).

The hierarchical interpretation of the Laplace prior has been explored ina number of contexts
in the literature. Based on this interpretation, a Jeffrey’s non-informativesecond-level hyper-prior
was proposed by Figueiredo (2001), with an EM algorithm developed to find the MAP estimate.
The advantage of the Jeffrey’s prior is that it is parameter-free. But as shown by Eyheramendy et al.
(2003) and Kaban (2007), usually no advantage is achieved by using the Jeffrey’s hyper-prior over
the Laplace prior. A gamma hyper-prior was used by Tipping (2001) in place of the second-level
exponential as in the hierarchical interpretation of the Laplace prior.

To encourage sparsity in SVM, two strategies have been used. The firstone is to replace the
L2-norm by anL1-norm of the weights (Bennett and Mangasarian, 1992; Zhu et al., 2004). The
second strategy is to explicitly add a cardinality constraint on the weights. Thiswill lead to a hard
non-convex optimization problem; thus relaxations must be applied (Chan et al., 2007). Under
the maximum entropy discrimination models, feature selection was studied by Jebara and Jaakkola
(2000) by introducing a set of structural variables. Recently, a smooth posterior shrinkage effect
was shown by Jebara (2009), which is similar to our entropic regularizationeffect. However, an
analysis of their connections and differences is still not obvious.

Although the parameter distributionp(w) in Theorem 2 has a similar form as that of the Bayesian
Conditional Random Fields (BCRFs) (Qi et al., 2005), MaxEnDNet is fundamentally different from
BCRFs as we have stated. Dredze et al. (2008) present an interesting confidence-weighted linear
classification method, which automatically estimates the mean and variance of modelparameters
in online learning. The procedure is similar to (but indeed different from) our variational Bayesian
method of Laplace MaxEnDNet.

Finally, some of the results shown in this paper can be also found in our recent conference
papers (Zhu et al., 2008b; Zhu and Xing, 2009).

9. Conclusions and Future Work

To summarize, we have presented a general theory of maximum entropy discrimination Markov net-
works for structured input/output learning and prediction. This formalism offers a formal paradigm
for integrating both generative and discriminative principles and the Bayesian regularization tech-
niques for learning structured prediction models. It subsumes popular methods such as support
vector machines, maximum entropy discrimination models (Jaakkola et al., 1999), and maximum
margin Markov networks as special cases, and therefore inherits all themerits of these techniques.

The MaxEnDNet model offers a number of important advantages over conventional structured
prediction methods, including: 1) model averaging, which leads to a PAC-Bayesian bound on gen-
eralization error; 2) entropic regularization over max-margin learning, which can be leveraged to
learn structured prediction models that are simultaneously primal and dual sparse; and 3) latent
structures underlying the structured input/output variables, which enables better incorporation of
domain knowledge in model design and semi-supervised learning based on partially labeled data.
In this paper, we have discussed in detail the first two aspects, and the third aspect was explored in
(Zhu et al., 2008c). We have also shown that certain instantiations of the MaxEnDNet model, such as
the LapMEDN that achieves primal and dual sparsity, can be efficiently trained based on an iterative
optimization scheme that employs existing techniques such as the variational Bayes approximation
and the convex optimization procedures that solve the standard M3N. We demonstrated that on syn-
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thetic data the LapMEDN can recover the sparse model as well as the sparse L1-regularized MAP
estimation, and on real data sets LapMEDN can achieve superior performance.

Overall, we believe that the MaxEnDNet model can be extremely general and adaptive, and it
offers a promising new framework for building more flexible, generalizable, and large scale struc-
tured prediction models that enjoy the benefits from both generative and discriminative modeling
principles. While exploring novel instantiations of this model will be an interesting direction to
pursue, development of more efficient learning algorithms, formulation of tighter but easy to solve
convex relaxations, and adapting this model to challenging applications suchas statistical machine
translation, and structured associations of genome markers to complex disease traits could also lead
to fruitful results. Finally, the basic principle of MaxEnDNet can be generalized to directed graph-
ical models. The MedLDA model (Zhu et al., 2009a) for discriminative topic modeling represents
our first successful attempt along this direction.
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Appendix A. L1-M3N and its Lagrange-Dual

Based on theL1-norm regularized SVM (Zhu et al., 2004; Bennett and Mangasarian, 1992), a
straightforward formulation ofL1-M3N is as follows,

min
w,ξ

1
2
‖w‖+C

N

∑
i=1

ξi

s.t. w⊤∆f i(y)≥ ∆ℓi(y)−ξi ; ξi ≥ 0, ∀i, ∀y 6= yi

where‖.‖ is theL1-norm. ∆f i(y) = f(xi ,yi)− f(xi ,y), and∆ℓi(y) is a loss function. Another equiv-
alent formulation7 is as follows:

min
w,ξ

C
N

∑
i=1

ξi

s.t.

{

‖w‖ ≤ λ
w⊤∆f i(y)≥ ∆ℓi(y)−ξi ; ξi ≥ 0, ∀i, ∀y 6= yi .

7. See Taskar et al. (2006) for the transformation technique.
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To derive the convex dual problem, we introduce a dual variableαi(y) for each constraint in the
former formulation and form the Lagrangian as follows,

L(α,w,ξ) =
1
2
‖w‖+C

N

∑
i=1

ξi− ∑
i,y 6=yi

αi(y)(w⊤∆f i(y)−∆ℓi(y)+ξi).

By definition, the Lagrangian dual is,

L⋆(α) = inf
w,ξ

L(α,w,ξ)

= inf
w

[1
2
‖w‖− ∑

i,y 6=yi

αi(y)w⊤∆f i(y)
]

+ inf
ξ

[

C
N

∑
i=1

ξi− ∑
i,y 6=yi

αi(y)ξi

]

+ ℓ

=−sup
w

[

w⊤( ∑
i,y 6=yi

αi(y)∆f i(y))− 1
2
‖w‖

]

−sup
ξ

[

∑
i,y 6=yi

αi(y)ξi−C
N

∑
i=1

ξi

]

+ ℓ,

whereℓ = ∑i,y 6=yi αi(y)∆ℓi(y).
Again, by definition, the first term on the right-hand side is the convex conjugate ofφ(w) =

1
2‖w‖ and the second term is the conjugate ofU(ξ) = C∑N

i=1 ξi . It is easy to show that,

φ⋆(α) = I∞(| ∑
i,y 6=yi

αi(y)∆fk
i (y)| ≤ 1

2
, ∀1≤ k≤ K),

and
U⋆(α) = I∞( ∑

y 6=yi

αi(y)≤C, ∀i),

where as defined beforeI∞(·) is an indicator function that equals zero when its argument is true and
infinity otherwise.∆fk

i (y) = fk(xi ,yi)− fk(xi ,y).
Therefore, we get the dual problem as follows,

max
α ∑

i,y 6=yi

αi(y)∆ℓi(y)

s.t. | ∑
i,y 6=yi

αi(y)∆fk
i (y)| ≤ 1

2
, ∀k

∑
y 6=yi

αi(y)≤C, ∀i.

Appendix B. Proofs of Theorems and Corollaries

In this section, we prove the theorems and corollaries.

B.1 Proof of Theorem 2

Proof As we have stated, P1 is a convex program and satisfies the Slater’s condition. To compute its
convex dual, we introduce a non-negative dual variableαi(y) for each constraint inF1 and another
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non-negative dual variablec for the normalization constraint
R

p(w)dw = 1. This gives rise to the
following Lagrangian:

L(p(w),ξ,α,c) = KL(p(w)||p0(w))+U(ξ)+c(
Z

p(w)dw −1)

− ∑
i,y 6=yi

αi(y)(
Z

p(w)[∆Fi(y;w)−∆ℓi(y)]dw +ξi).

The Lagrangian dual function is defined asL⋆(α,c) , infp(w);ξ L(p(w),ξ,α,c). Taking the derivative
of L w.r.t p(w), we get,

∂L
∂p(w)

= 1+c+ log
p(w)

p0(w)
− ∑

i,y 6=yi

αi(y)[∆Fi(y;w)−∆ℓi(y)].

Setting the derivative to zero, we get the following expression of distribution p(w),

p(w) =
1

Z(α)
p0(w)exp{ ∑

i,y 6=yi

αi(y)[∆Fi(y;w)−∆ℓi(y)]},

whereZ(α) ,
R

p0(w)exp{∑i,y 6=yi αi(y)[∆Fi(y;w)−∆ℓi(y)]}dw is a normalization constant and
c =−1+ logZ(α).

Substitutingp(w) into L⋆, we obtain,

L⋆(α,c) = inf
p(w);ξ

(− logZ(α)+U(ξ)− ∑
i,y 6=yi

αi(y)ξi)

= − logZ(α)+ inf
ξ

(U(ξ)− ∑
i,y 6=yi

αi(y)ξi)

= − logZ(α)−sup
ξ

( ∑
i,y 6=yi

αi(y)ξi−U(ξ))

= − logZ(α)−U⋆(α),

which is the objective in the dual problem D1. The{αi(y)} derived from D1 lead to the optimum
p(w) according to Equation (3).

B.2 Proof of Theorem 3

Proof Replacingp0(w) and∆Fi(y;w) in Equation (3) withN (w|0, I) andw⊤∆f i(y) respectively,
we can obtain the following closed-form expression of theZ(α) in p(w):

Z(α) ,

Z

N (w|0, I)exp
{

∑
i,y 6=yi

αi(y)[w⊤∆f i(y)−∆ℓi(y)]
}

dw

=
Z

(2π)−
K
2 exp

{

− 1
2

w⊤w+ ∑
i,y 6=yi

αi(y)[w⊤∆f i(y)−∆ℓi(y)]
}

dw

= exp
(

− ∑
i,y 6=yi

αi(y)∆ℓi(y)+
1
2
‖ ∑

i,y 6=yi

αi(y)∆f i(y)‖2
)

.
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Substituting the normalization factor into the general dual problem D1, we getthe dual prob-
lem of Gaussian MaxEnDNet. As we have stated, the constraints∑y 6=yi αi(y) = C are due to the
conjugate ofU(ξ) = C∑i ξi .

For prediction, again replacingp0(w) and∆Fi(y;w) in Equation (3) withN (w|0, I) andw⊤∆f i(y)
respectively, we can getp(w) = N (w|µ, I), whereµ = ∑i,y 6=yi αi(y)∆f i(y). Substitutingp(w) into
the predictive functionh1, we can geth1(x)= argmaxy∈Y (x) µ⊤f(x,y)= (∑i,y 6=yi αi(y)∆f i(y))⊤f(x,y),
which is identical to the prediction rule of the standard M3N (Taskar et al., 2003) because the dual
parameters are achieved by solving the same dual problem.

B.3 Proof of Corollary 4

Proof Suppose(p⋆(w),ξ⋆) is the optimal solution of P1, then we have: for any(p(w),ξ), p(w) ∈
F1 andξ≥ 0,

KL(p⋆(w)||p0(w))+U(ξ⋆)≤ KL(p(w)||p0(w))+U(ξ).

From Theorem 3, we conclude that the optimum predictive parameter distribution is p⋆(w) =
N (w|µ⋆, I). Sincep0(w) is also normal, for any distributionp(w) = N (w|µ, I)8 with several steps
of algebra it is easy to show thatKL(p(w)|p0(w)) = 1

2µ⊤µ. Thus, we can get: for any(µ,ξ), µ∈
{µ : µ⊤∆f i(y)≥ ∆ℓi(y)−ξi , ∀i, ∀y 6= yi} andξ≥ 0,

1
2
(µ⋆)⊤(µ⋆)+U(ξ⋆)≤ 1

2
µ⊤µ+U(ξ⋆),

which means the mean of the optimum posterior distribution under a Gaussian MaxEnDNet is
achieved by solving a primal problem as stated in the Corollary.

B.4 Proof of Corollary 6

Proof The proof follows the same structure as the above proof of Corollary 4. Here, we only present
the derivation of the KL-divergence under the Laplace MaxEnDNet.

Theorem 2 shows that the general posterior distribution isp(w) = 1
Z(α) p0(w)exp(w⊤η−

∑i,y 6=yi αi(y)∆ℓi(y)) andZ(α) = exp(−∑i,y 6=yi αi(y)∆ℓi(y))∏K
k=1

λ
λ−η2

k
for the Laplace MaxEnDNet

as shown in Equation (5). Use the definition of KL-divergence and we can get:

KL(p(w)|p0(w)) = 〈w〉⊤p η−
K

∑
k=1

log
λ

λ−η2
k

=
K

∑
k=1

µkηk−
K

∑
k=1

log
λ

λ−η2
k

,

Corollary 7 shows thatµk = 2ηk

λ−η2
k
, ∀1≤ k≤ K. Thus, we get λ

λ−η2
k

= λµk
2ηk

and a set of equa-

tions: µkη2
k + 2ηk− λµk = 0, ∀1 ≤ k ≤ K. To solve these equations, we consider two cases.

First, if µk = 0, thenηk = 0. Second, ifµk 6= 0, then we can solve the quadratic equation to get

8. AlthoughF1 is much richer than the set of normal distributions with an identity covariancematrix, Theorem 3 shows
that the solution is a restricted normal distribution. Thus, it suffices to consider only these normal distributions in
order to learn the mean of the optimum distribution. The similar argument applies to the proof of Corollary 6.
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ηk: ηk =
−1±
√

1+λµ2
k

µk
. The second solution includes the first one since we can show that when

µk→ 0,
−1±
√

1+λµ2
k

µk
→ 0 by using theL’Hospital’s Rule. Thus, we get:

µkηk =−1±
√

λµ2
k +1.

Sinceη2
k < λ (otherwise the problem is not bounded),µkηk is always positive. Thus, only the

solutionµkηk =−1+
√

1+λµ2
k is feasible. So, we get:

λ
λ−η2

k

=
λµ2

k

2(
√

λµ2
k +1−1)

=

√

λµ2
k +1+1

2
,

and

KL(p(w)|p0(w)) =
K

∑
k=1

(

√

λµ2
k +1− log

√

λµ2
k +1+1

2

)

−K

=
√

λ
K

∑
k=1

(

√

µ2
k +

1
λ
− 1√

λ
log

√

λµ2
k +1+1

2

)

−K.

Applying the same arguments as in the above proof of Corollary 4 and using the above result of the
KL-divergence, we get the problem in Corollary 6, where the constant−K is ignored. The margin
constraints defined with the meanµare due to the linearity assumption of the discriminant functions.

B.5 Proof of Theorem 8

We follow the same structure as the proof of PAC-Bayes bound for binaryclassifier (Langford et al.,
2001) and employ the similar technique to generalize to multi-class problems (Schapire et al., 1998).
Recall that the output space isY , and the base discriminant function isF( · ;w) ∈ H : X ×Y →
[−c,c], wherec > 0 is a constant. Our averaging model is specified byh(x,y) = 〈F(x,y;w)〉p(w).
We define the margin of an example(x,y) for such a functionh as,

M(h,x,y) = h(x,y)−max
y′ 6=y

h(x,y′). (12)

Thus, the modelh makes a wrong prediction on(x,y) only if M(h,x,y)≤ 0. LetQ be a distribution
overX ×Y , and letD be a sample ofN examples independently and randomly drawn fromQ. With
these definitions, we have the PAC-Bayes theorem. For easy reading, wecopy the theorem in the
following:

Theorem 8 (PAC-Bayes Bound of MaxEnDNet)Let p0 be any continuous probability distri-
bution overH and letδ ∈ (0,1). If F( · ;w) ∈H is bounded by±c as above, then with probability
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at least1−δ, for a random sampleD of N instances from Q, for every distribution p overH , and
for all margin thresholdsγ > 0:

PrQ(M(h,x,y)≤ 0)≤ PrD(M(h,x,y)≤ γ)+O
(

√

γ−2KL(p||p0) ln(N|Y |)+ lnN+ lnδ−1

N

)

,

wherePrQ(.) andPrD(.) represent the probabilities of events over the true distribution Q, and over
the empirical distribution ofD, respectively.
Proof Let m be any natural number. For every distributionp, we independently drawm base
models (i.e., discriminant functions)Fi ∼ p at random. We also independently drawm variables
µi ∼U([−c,c]), whereU denote the uniform distribution. We define the binary functionsgi : X ×
Y →{−c,+c} by:

gi(x,y;Fi ,µi) = 2cI(µi < Fi(x,y))−c.

With theFi , µi , andgi , we defineHm as,

Hm = { f : (x,y) 7→ 1
m

m

∑
i=1

gi(x,y;Fi ,µi)|Fi ∈H ,µi ∈ [−c,c]}.

We denote the distribution off over the setHm by pm. For a fixed pair(x,y), the quantities
gi(x,y;Fi ,µi) are i.i.d bounded random variables with the mean:

〈gi(x,y;Fi ,µi)〉Fi∼p,µi∼U [−c,c] = 〈(+c)p[µi ≤ Fi(x,y)|Fi]+ (−c)p[µi > Fi(x,y)|Fi]〉Fi∼p

= 〈 1
2c

c(c+Fi(x,y))− 1
2c

c(c−Fi(x,y))〉Fi∼p

= h(x,y).

Therefore,〈 f (x,y)〉 f∼pm = h(x,y). Since f (x,y) is the average overm i.i.d bounded variables,
Hoeffding’s inequality applies. Thus, for every(x,y),

Prf∼pm[ f (x,y)−h(x,y) > ξ]≤ e−
m

2c2 ξ2

.

For any two eventsA andB, we have the inequality,

Pr(A) = Pr(A,B)+Pr(A, B̄)≤ Pr(B)+Pr(B̄|A).

Thus, for anyγ > 0 we have

PrQ[M(h,x,y)≤ 0]≤ PrQ[M( f ,x,y)≤ γ
2
]+PrQ[M( f ,x,y) >

γ
2
|M(h,x,y)≤ 0], (13)

where the left hand side does not depend onf . We take the expectation w.r.tf ∼ pm on both sides
and can get
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PrQ[M(h,x,y)≤ 0]≤ 〈PrQ[M( f ,x,y)≤ γ
2
]〉 f∼pm

+〈PrQ[M( f ,x,y) >
γ
2
|M(h,x,y)≤ 0]〉 f∼pm. (14)

Fix h,x, andy, and lety′ achieve the margin in (12). Then, we get

M(h,x,y) = h(x,y)−h(x,y′), andM( f ,x,y)≤ f (x,y)− f (x,y′).

With these two results, since〈 f (x,y)− f (x,y′)〉 f∼pm = h(x,y)−h(x,y′), we can get

〈PrQ[M( f ,x,y) >
γ
2
|M(h,x,y)≤ 0]〉 f∼pm = 〈Prf∼pm[M( f ,x,y) >

γ
2
|M(h,x,y)≤ 0]〉Q

≤ 〈Prf∼pm[ f (x,y)− f (x,y′) >
γ
2
|M(h,x,y)≤ 0]〉Q

≤ 〈Prf∼pm[ f (x,y)− f (x,y′)−M(h,x,y) >
γ
2
]〉Q

≤ e−
mγ2

32c2 , (15)

where the first two inequalities are due to the fact that if two eventsA⊆ B, thenp(A) ≤ p(B), and
the last inequality is due to the Hoeffding’s inequality.

Substitute (15) into (14), and we get,

PrQ[M(h,x,y)≤ 0]≤ 〈PrQ[M( f ,x,y)≤ γ
2
]〉 f∼pm +e−

mγ2

32c2 . (16)

Let pm
0 be a prior distribution onHm. pm

0 is constructed fromp0 over H exactly aspm is
constructed fromp. Then,KL(pm||pm

0 ) = mKL(p||p0). By the PAC-Bayes theorem (McAllester,
1999), with probability at least 1−δ over sampleD, the following bound holds for any distribution
p,

〈PrQ[M( f ,x,y)≤ γ
2
]〉 f∼pm ≤ 〈PrD [M( f ,x,y)≤ γ

2
]〉 f∼pm

+

√

mKL(p||p0)+ lnN+ lnδ−1 +2
2N−1

. (17)

By the similar statement as in (13), for everyf ∈Hm we have,

PrD [M( f ,x,y)≤ γ
2
]≤ PrD [M(h,x,y)≤ γ]+PrD [M( f ,x,y)≤ γ

2
|M(h,x,y) > γ].
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Taking the expectation at both sides w.r.tf ∼ pm, we can get

〈PrD [M( f ,x,y)≤ γ
2
]〉 f∼pm ≤ PrD [M(h,x,y)≤ γ]

+〈PrD [M( f ,x,y)≤ γ
2
|M(h,x,y) > γ]〉 f∼pm, (18)

where the second term at the right hand side equals to〈Prf∼pm[M( f ,x,y)≤ γ
2|M(h,x,y) > γ]〉(x,y)∼D

by exchanging the orders of expectations, and we can get

Prf∼pm
[

M( f ,x,y)≤ γ
2
|M(h,x,y) > γ

]

= Prf∼pm
[

∃y′ 6= y : ∆ f (x,y′)≤ γ
2
|∀y′ 6= y : ∆h(x,y′) > γ

]

≤ Prf∼pm
[

∃y′ 6= y : ∆ f (x,y′)≤ γ
2
|∆h(x,y′) > γ

]

≤ ∑
y′ 6=y

Prf∼pm
[

∆ f (x,y′)≤ γ
2
|∆h(x,y′) > γ

]

≤ (|Y |−1)e
− mγ2

32c2 , (19)

where we use∆ f (x,y′) to denotef (x,y)− f (x,y′), and use∆h(x,y′) to denoteh(x,y)−h(x,y′).
Put (16), (17), (18), and (19) together, then we get following boundholding for any fixedmand

γ > 0,

PrQ[M(h,x,y)≤ 0] ≤ PrD [M(h,x,y)≤ γ]+ |Y |e−
mγ2

32c2 +

√

mKL(p||p0)+ lnN+ lnδ−1 +2
2N−1

.

To finish the proof, we need to remove the dependence onmandγ. This can be done by applying
the union bound. By the definition off , it is obvious that iff ∈ Hm then f (x,y) ∈ {(2k−m)c/m :
k = 0,1, . . . ,m}. Thus, even thoughγ can be any positive value, there are no more thanm+1 events
of the form{M( f ,x,y)≤ γ/2}. Since only the application of PAC-Bayes theorem in (17) depends
on (m,γ) and all the other steps are true with probability one, we just need to considerthe union of
countably many events. Letδm,k = δ/(m(m+ 1)2), then the union of all the possible events has a
probability at most∑m,k δm,k = ∑m(m+ 1)δ/(m(m+ 1)2) = δ. Therefore, with probability at least
1−δ over random samples ofD, the following bound holds for allmand allγ > 0,

PrQ[M(h,x,y)≤ 0]−PrD [M(h,x,y)≤ γ] ≤ |Y |e−
mγ2

32c2 +

√

mKL(p||p0)+ lnN+ lnδ−1
m,k +2

2N−1

≤ |Y |e−
mγ2

32c2 +

√

mKL(p||p0)+ lnN+3ln m+1
δ +2

2N−1
.

Settingm= ⌈16c2γ−2 ln N|Y |2
KL(p||p0)+1⌉ gives the results in the theorem.
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