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Abstract

The standard maximum margin approach for structured preditacks a straightforward proba-
bilistic interpretation of the learning scheme and the fmtézh rule. Therefore its unique advan-
tages such as dual sparseness and kernel tricks cannotilyeceagined with the merits of a
probabilistic model such as Bayesian regularization, rhaderaging, and ability to model hidden
variables. In this paper, we present a new general frameealldd maximum entropy discrimina-
tion Markov networkgéMaxEnDNet, or simply, MEDN), which integrates these twpagaches and
combines and extends their merits. Major innovations af #gproach include: 1) It extends the
conventional max-entropy discrimination learning of sifisation rules to a newstructural max-
entropy discrimination paradigm of learning a distribatiaf Markov networks. 2) It generalizes
the extant Markov network structured-prediction rule lohge a point estimator of model coeffi-
cients to an averaging model akin to a Bayesian predictdritbhegrates over a learned posterior
distribution of model coefficients. 3) It admits flexible eogic regularization of the model during
learning. By plugging in different prior distributions df¢ model coefficients, it subsumes the well-
known maximum margin Markov networks @) as a special case, and leads to a model similar to
anLi-regularized MN that is simultaneously primal and dual sparse, or othertgpas of Markov
networks. 4) It applies a modular learning algorithm thanbmes existing variational inference
techniques and convex-optimization basetN\solvers as subroutines. Essentially, MEDN can be
understood as a jointly maximum likelihood and maximum rivaggtimate of Markov network.
It represents the first successful attempt to combine maxirentropy learning (a dual form of
maximum likelihood learning) with maximum margin learniofMarkov network for structured
input/output problems; and the basic principle can be gdized to learning arbitrary graphical
models, such as the generative Bayesian networks or modgélstwctured hidden variables. We
discuss a number of theoretical properties of this approactl show that empirically it outper-
forms a wide array of competing methods for structured ifquiput learning on both synthetic
and real OCR and web data extraction data sets.

Keywords: maximum entropy discrimination, structured input/outpwdel, maximum margin
Markov network, graphical models, entropic regularizatio; regularization

1. Introduction

Inferring structured predictions based on high-dimensional, often multafreott hybrid covari-
ates remains a central problem in data mining (e.g., web-info extraction)jmedntelligence (e.g.,
machine translation), and scientific discovery (e.g., genome annotatiomgrabeecent approaches
to this problem are based on learning discriminative graphical models defirmm@mposite features
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that explicitly exploit the structured dependencies among input elementdrantiieed interpreta-
tional outputs. Major instances of such models include the conditional nafietds (CRFs) (Laf-
ferty et al., 2001), Markov networks (MNs) (Taskar et al., 2003} ather specialized graphical
models (Altun et al., 2003). Various paradigms for training such modelsitwaseifferent loss func-
tions have been explored, including the maximum conditional likelihood lealhzigerty et al.,
2001) and the maximum margin learning (Altun et al., 2003; Taskar et al.,; ZG@ghantaridis
et al., 2004), with remarkable success.

The likelihood-based models for structured predictions are usually lmesadoint distribution
of both input and output variables (Rabiner, 1989) or a conditionaliloligiton of the output given
the input (Lafferty et al., 2001). Therefore this paradigm offersdlfle probabilistic framework
that can naturally facilitate: hidden variables that capture latent semantitsis@ generative hier-
archy (Quattoni et al., 2004; Zhu et al., 2008a); Bayesian regulanivttas imposes desirable biases
such as sparseness (Lee et al., 2006; Wainwright et al., 2006; wadiceGao, 2007); and Bayesian
prediction based on combining predictions across all values of modehptees (i.e., model av-
eraging), which can reduce the risk of overfitting. On the other handntrgin-based structured
prediction models leverage the maximum margin principle and convex optimizationlttion un-
derlying the support vector machines, and concentrate directly on theoofuut mapping (Taskar
et al., 2003; Altun et al., 2003; Tsochantaridis et al., 2004). In princtpis,approach can lead
to a robust decision boundary due to the dual sparseness (i.e., dependonly a few support
vectors) and global optimality of the learned model. However, althougrabhga more desirable
paradigm for training highly discriminative structured prediction models inmalar of application
contexts, the lack of a straightforward probabilistic interpretation of the maximargin models
makes them unable to offer the same flexibilities of likelihood-based models séstabove.

For example, for domains with complex feature space, it is often desirablegdaga “sparse”
representation of the model that leaves out irrelevant features. In tloelibased estimation, sparse
model fitting has been extensively studied. A commonly used strategy is toddepgnalty to the
likelihood function, which can also be viewed as a MAP estimation under a t@apldor. However,
little progress has been made so far on learning sparse MNs or log-lindeismogeneral based on
the maximum margin principle. While sparsity has been pursued in maximum margimbtgaf
certain discriminative models such as SVM that are “unstructured” (i.e., witlvariate output), by
usingL;-regularization (Bennett and Mangasarian, 1992) or by adding éneditgd constraint (Chan
et al., 2007), generalization of these techniques to structured outfpa pas out to be non-trivial,
as we discuss later in this paper. There is also very little theoretical anatys$ie @erformance
guarantee of margin-based models under ditggegularization. Our empirical results as shown in
this paper suggest that &p-regularized maximum margin Markov network, even when estimable,
can be sensitive to the magnitude of the regularization coefficient. Disgatidénfeatures that
are not completely irrelevant can potentially hurt generalization ability. Aeroixample, it is
well known that presence of hidden variables in MNs can cause signtifidéiculty for maximum
margin learning. Indeed, semi-supervised or unsupervised learnstguefured maximum margin
model remains an open problem of which progress was only made in a fiakpases, with
usually computationally very expensive algorithms (Xu et al., 2006; Altuth €2@06; Brefeld and
Scheffer, 2006).

In this paper, we propose a general theory of maximum entropy discriminktéokov net-
works (MaxEnDNet, or simply MEDN) for structured input/output learnimgl grediction. This
formalism offers a formal paradigm for integrating both generative &udichinative principles and
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the Bayesian regularization techniques for learning structured preditibaiels. It integrates the
spirit of maximum margin learning from SVM, the design of discriminative stmactyprediction
model in maximum margin Markov networks M), and the ideas of entropic regularization and
model averaging in maximum entropy discrimination methods (Jaakkola et af).1B8sentially,
MaxEnDNet can be understood as a jointly maximum likelihood and maximum mastynate of
Markov networks. It allows one to learndastribution of structured prediction models that offers
a wide range of important advantages over conventional models sucANMisidluding more ro-
bust prediction due to an averaging prediction-function based on theekkdistribution of models,
Bayesian-style regularization that can lead to a model that is simultaneoud aricdhdual sparse,
and allowance of hidden variables and semi-supervised learning bagedtlly labeled data.

While the formalism of MaxEnDNet is extremely general, our main focus amdribations
of this paper will be concentrated on the following results. We will formallyrdethe MaxEnD-
Net as solving a generalized entropy optimization problem subject to exp@etayin constraints
on the structured predictions, and under an arbitrary prior of featefficients; and we derive
a general form of the solution to this problem. An interesting insight immediatéitysimg this
general form is that, a trivial assumption on the prior distribution of thefioberfts, that is, a stan-
dard normal, reduces the linear MaxEnDNet to the standaid,Ms shown in Theorem 3. This
understanding opens the way to use different priors for MaxEnDNatldeve more interesting
regularization effects. We show that, by using a Laplace prior for theifeaoefficients, the re-
sulting Laplace MaxEnDNet (LapMEDN) is effectively an®M that is not only dual sparse (i.e.,
defined by a few support vectors), but also primal sparse (i.e., stygntn coefficients correspond-
ing to irrelevant features). We develop a novel variational learning ndeftwothe LapMEDN,
which leverages on the hierarchical/scale-mixture representation of gtadegprior (Andrews and
Mallows, 1974; Figueiredo, 2003) and the reducibility of MaxEnDNet t&Nyiand combines the
variational Bayesian technique with existing convex optimization algorithmslajsse for M°N
(Taskar et al., 2003; Bartlett et al., 2004; Ratliff et al., 2007). We alswige a formal analysis
of the generalization error of the MaxEnDNet, and prove a PAC-Bagesd on the prediction
error by MaxEnDNet. We performed a thorough comparison of the Lap¥sxEnDNet with com-
peting methods, including RN (i.e., the Gaussian MaxEnDNet);-regularized MN (Zhu et al.,
2009b), CRFd 1-regularized CRFs, and-regularized CRFs, on both synthetic and real structured
input/output data. The Laplace MaxEnDNet exhibits mostly superior, amgtimes comparable
performance in all scenarios been tested.

As demonstrated in our recent work (Zhu et al., 2008c, 2009a), Makletis not limited to
fully observable MNs, but can readily facilitate jointly maximum entropy and marinmargin
learning of partially observed structured 1/O models, and directed grapmodels such as the
supervised latent Dirichlet allocation (LDA). Due to space limit, we leave tivegantiations and
generalizations to future papers.

The rest of the paper is structured as follows. In the next section,wi@réhe basic structured
prediction formalism and set the stage for our model. Section 3 presentsrteeagtheory of max-
imum entropy discrimination Markov networks and some basic theoreticdtgefllowed by two
instantiations of the general MaxEnDNet, the Gaussian MaxEnDNet arndifitace MaxEnDNet.
Section 4 offers a detailed discussion of the primal and dual sparsiteryapf Laplace MaxEnD-
Net. Section 5 presents a novel iterative learning algorithm based otimaaleapproximation and
convex optimization. In Section 6, we briefly discuss the generalizationchofiMaxEnDNet.
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Then, we show empirical results on both synthetic and real OCR and welextsaction data sets
in Section 7. Section 8 discusses some related work and Section 9 contlisdeeper.

2. Preliminaries

In structured prediction problems such as natural language parsinge iamagptation, or DNA
decoding, one aims to learn a functionX — 9 that maps a structured inpat X, e.g., a sentence
or an image, to a structured output 9/, e.g., a sentence parsing or a scene annotation, where,
unlike a standard classification problems a multivariate prediction consisting of multiple labeling
elements. Let denote the cardinality of the output, amg wherel = 1,...,L denote the arity of
each element, thef = 97 x --- x 91 with 9f = {a4,...,am } represents a combinatorial space of
structured interpretations of the multi-facet objects in the inputs. For exapigieuld correspond
to the space of all possible instantiations of the parse trees of a sentetiespace of all possible
ways of labeling entities over some segmentation of an image. The predyctiofys,...,y.) is
structuredbecause each individual labgle 91 within y must be determined in the context of other
labelsyi 4, rather than independently as in classification, in order to arrive at aljlclatisfactory
and consistent prediction.

LetF : X x 9 — R represent a discriminant function over the input-output pairs from which
one can define the predictive function, and 4étdenote the space of all possilile A common
choice ofF is a linear modelF (x,y;w) = g(w'f(x,y)), wheref = [f;... fx]" is aK-dimensional
column vector of the feature functiorig: X x 9 — R, andw = [wy...wk] ' is the corresponding
vector of the weights of the feature functions. Typically, a structuredigtion model chooses an
optimal estimatev* by minimizing some loss functiod(w), and defines a predictive function in
terms of an optimization problem that maximiZeg- ;w*) over the response variabjegiven an
inputx:

ho(x;w*) = arg maxF (x,y;w"), Q)
yey (x)

where9’(x) C 9 is the feasible subset of structured labels for the inputere, we assume that
Y (x) is finite for anyx.

Depending on the specific choiceg(f) (e.g., linear, or log linear), and the loss functid(fw)
(e.g., likelihood, or margin-based loss) for estimating the paramétencarnations of the general
structured prediction formalism described above can be seen in clagsicahtive models such as
the HMM (Rabiner, 1989) wherg(-) can be an exponential family distribution function ahe)
is the (negative) joint likelihood of the input and its labeling; and in recemfriisnative models
such as CRFs (Lafferty et al., 2001), wheie) is a Boltzmann machine arldw) is the (negative)
conditional likelihood of the structured labeling given input; and théNMTaskar et al., 2003),
whereg(+) is an identity function and(w) is a loss defined on the margin between the true labeling
and any other feasible labeling9ri(x). Our approach toward a more general discriminative training
is based on a maximum entropy principle that allows an elegant combination disttreninative
maximum margin learning with the generative Bayesian regularization anddiiaa modeling,
and we consider the more general problem of finding a distributidt of w) over A that enables
a convex combination of discriminant functions for robust structuredigtien.

Before delving into the exposition of the proposed approach, we enddti®s with a brief
recapitulation of the basic fIN, upon which the proposed approach is built. Under a max-margin
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framework, given a set of fully observed training déa= {(x',y")}N ,, we obtain a point estimate
of the weight vectow by solving the following max-margin problem PO (Taskar et al., 2003):

1 N
3 . N T 2 .
PO(M®N) : len 2||WH +Ci:§ &i
st.Vi,wvy#£y':  wiAfi(y) > A4(y)—&, & >0,

whereAfi(y) = f(x,y") —f(x',y) andAF (y;w) = w' Afi(y) is the “margin” between the true label
y' and a predictiory, A/ (y) is a labeling loss with respect tb, and; represents a slack variable
that absorbs errors in the training data. Various forms of the labeling bss leen proposed in
the literature (Tsochantaridis et al., 2004). In this paper, we adopictimening lossised by Taskar
et al. (2003):A¢i(y) = z'j-:l]l(yj # yij), wherell(+) is an indicator function that equals to one if the
argument is true and zero otherwise. The problem PO is not directly $elbgtusing a standard
constrained optimization toolbox because the feasible spaeg for

Fo= {WZWTAfi(y) > AG(y) —§&; Vi,W#V}

is defined byO(N|9’|) number of constraints, an@” is exponential to the size of the input
Exploring sparse dependencies among individual |apefsy, as reflected in the specific design of
the feature functions (e.g., based on pair-wise labeling potentials in a jz@markov network),
and the convex duality of the objective, efficient optimization algorithms bagecutting-plane
(Tsochantaridis et al., 2004) or message-passing (Taskar et al), l1Zzd@8been proposed to obtain
an approximate optimum solution to PO. As described shortly, these algorithmmisecdirectly
employed as subroutines in solving our proposed model.

3. Maximum Entropy Discrimination Markov Networks

Instead of learning a point estimator wfas in M?N, in this paper, we take a Bayesian-style ap-
proach and learn a distributigriw), in @ max-margin manner. For prediction, we employ a convex
combination of all possible model - ;w) € # based orp(w), that is:

hi(x) = arg max/p F(x,y;w)dw. 2)
yey (x

Now, the open question underlying this averaging prediction rule is hovaweevise an appro-
priate loss function and constraints oygw), in a similar spirit as the margin-based scheme aver
in PO, that lead to an optimum estimatepgfv). In the sequel, we preseltaximum Entropy Dis-
crimination Markov Networksa novel framework that facilitates the estimation of a Bayesian-style
regularizediistributionof M3Ns defined byp(w). As we show below, this new Bayesian-style max-
margin learning formalism offers several advantages such as simultapemal and dual sparsity,
PAC-Bayesian generalization guarantee, and estimation robustnessthbiiotee MaxEnDNet is
different from the traditional Bayesian methods for discriminative strectprediction such as the
Bayesian CRFs (Qi et al., 2005), where the likelihood function is well ddfitdere, our approach
is of a “Bayesian-style” because it learns and uses a “posterior” diitibof all predictive mod-
els instead of choosing one model according to some criterion, but thenlgaigorithm is not
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based on the Bayes theorem, but a maximum entropy principle that biasedsavdistribution
that makes less additional assumptions over a given prior over the prediatdels. We emphasize
that this “posterior” is different from, and should not be confused with,conventional Bayesian
posterior defined according to the Bayes rule.

It is well-known that exponential family distributions can be expressei@tianally as the so-
lution to a maximum entropy estimation subject to moment constraints, and the maxinmompyen
estimation of parameters can be understood as a dual to the maximum likelitinoaties of the
parameters of exponential family distributions. Thus our combination of thénmoax entropy
principle with the maximum margin principle to be presented in the sequel offeefegant way
of achieving jointly maximum margin and maximum likelihood effects on learning tetred in-
put/output Markov networks, and in fact, general exponential familphlycal models.

3.1 Structured Maximum Entropy Discrimination

Given a training sefD of structured input-output pairs, analogous to the feasible sggder the
weight vectorw in a standard NN (c.f., problem P0), we define the feasible subspagcéor the
weight distributionp(w) by a set ofexpectednargin constraints:

Fi= {pw): [ PIWIBR(y:w) ~ B4(y)]dw > ~&, Vi, vy 2y }.

We learn the optimunp(w) from #; based on atructured maximum entropy discrimination
principle generalized from the maximum entropy discrimination (Jaakkola et al., 189@er this
principle, the optimunp(w) corresponds to the distribution that minimizes its relative entropy with
respect to some chosen primy, as measured by the Kullback-Leibler divergence betweamd po:
KL(p||po) = (log(p/po))p, Where(-) , denotes the expectations with respecptdf pg is uniform,
then minimizing this KL-divergence is equivalent to maximizing the entidgp) = —(logp)p. A
natural information theoretic interpretation of this formulation is that we favtisaibution over
the discriminant function clas# that bears minimum assumptions among all feasible distributions
in F1. The pg is a regularizer that introduces an appropriate bias, if necessary.

To accommodate non-separable cases in the discriminative predictionmpramd¢ead of min-
imizing the usual KL, we optimize thgeneralized entrop{Dudik et al., 2007; Lebanon and Laf-
ferty, 2001), or a regularized KL-divergendél(p(w)||po(w)) +U (), whereU (§) is a closed
proper convex function over the slack variables. This term can berstodel as an additional “po-
tential” in the maximum entropy principle. Putting everything together, we canstate a general
formalism based on the following maximum entropy discrimination Markov netdrarkework:

Definition 1 (Maximum Entropy Discrimination Markov Networks) Given training data® =
{(x',y")}N ,, a chosen form of discriminant functior(¥ y;w), a loss functiom\(y), and an ensu-
ing feasible subspac#; (defined above) for parameter distributiorfvp), the MaxEnDNet model
that leads to a prediction function of the form of Equation (2) is defined by Hosving generalized
relative entropy minimization with respect to a parameter prigfvp):

P1(MaxEnDNet - min KL(p(w)|po(w) +U (&)

s.t. p(W) € fla Ei > O,V|
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The P1 defined above is a variational optimization problem @¢er) in a subspace of valid
parameter distributions. Since both the KL and the fundtian P1 are convex, and the constraints
in #; are linear, P1 is a convex program. In addition, the expectatiefs y; w)) ,w) are required
to be bounded in order fd¥ to be a meaningful model. Thus, the problem P1 satisfieSker's
conditiont (Boyd and Vandenberghe, 2004, chap. 5), which together with theegiim make P1
enjoy nice properties, such as strong duality and the existence of soluTioaproblem P1 can be
solved via applying the calculus of variations to the Lagrangian to obtainiatieaal extremum,
followed by a dual transformation of P1. We state the main results below asrathgfollowed by
a brief proof that lends many insights into the solution to P1 which we will expfoseibsequent
analysis.

Theorem 2 (Solution to MaxEnDNet) The variational optimization problem P1 underlying the
MaxEnDNet gives rise to the following optimum distribution of Markov netwarkmpetersw:

PW) = 7 Pl exp 3 alonyim) 4]} @

where Za) is a normalization factor and the Lagrange multipliens(y) (corresponding to the
constraints inf;) can be obtained by solving the dual problem of P1:

D1: max —logZ(a) —U*(a)
st. ai(y) >0, Vi, vy £y

where U(-) is the conjugate of the slack function(y), that is, Ur(a) = sug ( Yy ®i(Y)& —
U(E)).

Proof (sketch Since the problem P1 is a convex program and satisfies the Slatergiconde
can form a Lagrangian function, whose saddle point gives the optinhatio of P1 and D1, by
introducing a non-negative dual variatiigy) for each constraint i¥; and another non-negative
dual variablec for the normalization constraintp(w)dw = 1. Details are deferred to Appendix
B.1. |

Since the problem P1 is a convex program and satisfies the Slater’s conthigosaddle point
of the Lagrangian function is the KKT point of P1. From the KKT conditioBsyd and Vanden-
berghe, 2004, Chap. 5), it can be shown that the above solution ehjaysparsity that is, only a
few Lagrange multipliers will be non-zero, which correspond to the actwistraints whose equal-
ity holds, analogous to the support vectors in SVM. Thus MaxEnDNelysrgasimilar generaliza-
tion property as the BN and SVM due to the the small “effective size” of the margin constraints.
But it is important to realize that this does not mean that the learned model is tymiraese”, that
is, only a few elements in the weight vect@mare non-zero. We will return to this pointin Section 4.

For a closed proper convex functigfu), its conjugate is defined &8 (v) = sugl[vTu— o(p)].

In the problem D1, by convex duality (Boyd and Vandenberghe, 2@0d)og normalizer log(a)
can be shown to be the conjugate of the KL-divergence. If the slaakimisU (§) = C||§|| =

1. Since(F(X,y;w))pw) are bounded ang; > 0, there always exists & which is large enough to make the pair
(p(w), &) satisfy the Slater’s condition.
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Cyi&, itis easy to show thdt*(a) = L.(y, ai(y) < C, Vi), wherel.(-) is a function that equals
to zero when its argument holds true and infinity otherwise. Here, the iliggu@responds to the
trivial solutiong = 0, that is, the training data are perfectly separable. Ignoring this ineqdakty
not affect the solution since the special cgse 0 is still included. Thus, the Lagrange multipliers
ai(y) in the dual problem D1 comply with the set of constraints thatii(y) = C, Vi. Another
example isU(§) = KL(p(&)||po(§)) by introducing uncertainty on the slack variables (Jaakkola
et al., 1999). In this case, expectations with respegb(§) are taken on both sides of all the
constraints inf;. Take the duality, and the dual function Ofis another log normalizer. More
details were provided by Jaakkola et al. (1999). Some dthimctions and their dual functions
are studied by Lebanon and Lafferty (2001) and et al. (2007).

Unlike most extant structured discriminative models including the highly suitdé®43N, which
rely on a point estimator of the parameters, the MaxEnDNet model defd@e: gjives an optimum
parameter distribution, which is used to make prediction via the rule (2). dh@dsewe will show
shortly, the MaxEnDNet is strictly more general than théNvnd subsumes the later as a special
case. But more importantly, the MaxEnDNet in its full generality offers a remab important
advantages while retaining all the merits of théNM First, MaxEnDNet admits a prior that can be
designed to introduce useful regularization effects, such as a primuaigpbias.Second the Max-
EnDNet prediction is based on model averaging and therefore enjogsiralble smoothing effect,
with a uniform convergence bound on generalization effbitd , MaxEnDNet offers a principled
way to incorporatdniddengenerative models underlying the structured predictions, but allows the
predictive model to be discriminatively trained based on partially labeled diatthe sequel, we
analyze the first two points in detail; exploration of the third point is beyonddbee of this paper,
and can be found in Zhu et al. (2008c), whengaatially observedvlaxEnDNet (POMEN) is devel-
oped, which combines (possibly latent) generative model and discrimiriegining for structured
prediction.

3.2 Gaussian MaxEnDNet

As Equation (3) suggests, different choices of the parameter prideadrio different MaxEnDNet
models for predictive parameter distribution. In this subsection and the faljpsne, we explore a
few common choices, e.g., Gaussian and Laplace priors.

We first show that, when the parameter prior is set to be a standard norasebidNet leads
to a predictor that is identical to that of the3M. This somewhat surprising reduction offers an
important insight for understanding the property of MaxEnDNet. Indiésiresult should not
be totally unexpected given the striking isomorphisms of the opt-problem BXe#sible space
71, and the predictive functioh; underlying a MaxEnDNet, to their counterparts BQ, andhg,
respectively, underlying an #i. The following theorem makes our claim explicit.

Theorem 3 (Gaussian MaxEnDNet: Reduction of MEDN to MN) Assuming  Fx,y;w) =
w'f(x,y), UE) =C¥;&, and p(w) = A(w|0,1), where | denotes an identity matrix, then the
posterior distribution is pw) = AL(w|u, 1), where p= 3 ,yi 0 (y)Afi (y), and the Lagrange multi-
pliersa;(y) in p(w) are obtained by solving the following dual problem, which is isomorphic to the
dual form of the MN:

max Z .ai(y)ABi(y)—%ll Z .Gi(y)Afi(Y)Hz
iLyAy iLy#y'
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st. 3 ai(y) =C; ai(y) 2 0, Vi, Wy # ',
y7y'

whereAf;(y) = f(x,y') —f(x',y) as in PO. When applied to;hp(w) leads to a predictive function
that is identical to j(x; w) given by Equation (1).

Proof See Appendix B.2 for details. |

The above theorem is stated in the duality form. We can also show the follogjirigaéence in
the primal form.

Corollary 4 Under the same assumptions as in Theorem 3, the mean p of the posistribution
p(w) under a Gaussian MaxEnDNet is obtained by solving the following primdilerno:

1 N
min = +C -
st. WAFfi(y) > Dli(y)—&; & >0, Vi, vy £y

Proof See Appendix B.3 for details. |

Theorem 3 and Corollary 4 both show that in the supervised learning setiadveN is a
special case of MaxEnDNet when the slack function is linear and thenedea prior is a standard
normal. As we shall see later, this connection renders many existing teesriansolving the MN
directly applicable for solving the MaxEnDNet.

3.3 Laplace MaxEnDNet

Recent trends in pursuing “sparse” graphical models has led to the emeergf regularized ver-
sion of CRFs (Andrew and Gao, 2007) and Markov networks (Le& ,e2@06; Wainwright et al.,
2006). Interestingly, while such extensions have been successfullynmapted by several authors
in maximum likelihood learning of various sparse graphical models, they matvget been fully
explored or evaluated in the context of maximum margin learning, although existaing methods
can be extended to achieve sparse max-margin estimators, as explainved belo

One possible way to learn a sparséNMis to adopt the strategy &f;-SVM (Bennett and Man-
gasarian, 1992; Zhu et al., 2004) and directly usd_amstead of the_,-norm of w in the loss
function (see appendix A for a detailed description of this formulation anduladty derivation).
However, the primal problem of am-regularized MN is not directly solvable using a standard
optimization toolbox by re-formulating it as an LP problem due to the exponentiaber of con-
straints; solving the dual problem, which now has only a polynomial numbeomstraints as in
the dual of MN, is also non-trivial due to the complicated form of the constraints. Thetraint
generation methods (Tsochantaridis et al., 2004) are possible. Hovadtherugh such methods
have been shown to be efficient for solving the QP problem in the staiffiXd our preliminary
empirical results show that such a scheme with an LP solver fok thregularized MN can be
extremely expensive for a non-trivial real data set. Another type s$ipte solvers are based on a
projection toL;-ball (Duchi et al., 2008), such as the gradient descent (Ratliff e2@D7) and the
dual extragradient (Taskar et al., 2006) methods.
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The MaxEnDNet interpretation of the offers an alternative strategy that resembles Bayesian
regularization (Tipping, 2001; Kaban, 2007) in maximum likelihood estimatidreres shrinkage
effects can be introduced by appropriate priors over the model paraméte Theorem 3 reveals,
an MEN corresponds to a Gaussian MaxEnDNet that admits a standard noiardbpthe weight
vectorw. According to the standard Bayesian regularization theory, to achieparaesestimate
of a model, in the posterior distribution of the feature weights, the weights eleuant features
should peak around zero with very small variances. However, the jgotfthe variances in all
dimensions of the feature space under a standard normal prior make=agibié for the resulting
M3N to adjust the variances in different dimensions to fit a sparse model. Altesty, now we
employ a Laplace prior fow to learn a Laplace MaxEnDNet. We show in the sequel that, the
parameter posterigp(w) under a Laplace MaxEnDNet has a shrinkage effect on small weights,
which is similar to directly applying ah;-regularizer on an NN. Although exact learning of a
Laplace MaxEnDNet is also intractable, we show that this model can begfficapproximated
by a variational inference procedure based on existing methods.

The Laplace prior ofv is expressed ga(w) = [1K_; *2 e~ VAW — (¥2)Ke-VAIWI This density
function is heavy tailed and peaked at zero; thus, it encodes a priof theli¢he distribution ofv is
strongly peaked around zero. Another nice property of the Laplatstgies that it is log-concave,
or the negative logarithm is convex, which can be exploited to obtain a x@stgnation problem
analogous to LASSO (Tibshirani, 1996).

Theorem 5 (Laplace MaxEnDNet: a sparse MN) Assuming B, y;w) = wlf(x,y),
U(E) = C3&, and p(w) = MK, Ye VAl — (¥2)Ke—VAIWI, then the Lagrange multipliers
ai(y) in p(w) (as defined in Theorem 2) are obtained by solving the following dual prable

K
A
max ai(y)Abi(y)— Y log
“ i,);yi | | kzl A— n%
st. > ai(y)=C; ai(y) >0, Vi, vy £y

y7#y'

whereny = 3y i (Y)Af(y), andAfk(y) = fi(x',y") — fi(x,y) represents the kth component of
Afi(y). Furthermore, constraintg? < A, Wk, must be satisfied.

Since several intermediate results from the proof of this Theorem will bd issubsequent
presentations, we provide the complete proof below. Our proof is basedhterarchical repre-
sentation of the Laplace prior. As noted by Andrews and Mallows (19/é)l_aplace distribution

p(w) = @eﬂm‘"" is equivalent to a two-layer hierarchical Gaussian-exponential modhe;ew
follows a zero-mean Gaussian distributiptw|t) = A (w|0,T) and the variance admits an expo-
nential hyper-prior density,

p(T|A) = %exp{ - %T}, fort>0.

This alternative form straightforwardly leads to the following new repreg®n of our multivariate
Laplace prior for the parameter vectatin MaxEnDNet:

K K
= = A)dt = A)dr, 4
po(w) = [ po(w) = 1 | Pk/Tp(rwA) i = [ plwi)plcin) e @
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wherep(w|t) = [Tr_; p(wk|Tk) andp(t|A) = [1K_; p(tk|A) represent multivariate Gaussian and ex-
ponential, respectively, and e dt; - - - dik.

Proof (of Theorem pSubstitute the hierarchical representation of the Laplace prior (Equd)ion
into p(w) in Theorem 2, and we get the normalization fac¢m) as follows,

//pw|r (T|A) dt - exp{w n-— Z ai(y)Ali(y)} dw

LAY

= [ P [ pwi)-explwn— 3 ai(y)ati(y)}dw

Ly#y
= [ p() [ AWl A expiwn— 3 ai(y)Ai(y)}dw
Ly7y!
= [ paiexpizn An~ Y aily)ady)dr
Ly
K
—exp(— 3 ay)ay)} [ [ 5exn— 5t exalynnodr
Ly k=1
KA
= exp{— i,;yi ai(y)Adi(y)} I!:ll)\_in%» (5)

whereA = diag(tk) is a diagonal matrix and is a column vector witmy defined as in Theorem 5.
The last equality is due to the moment generating function of an exponenti@uti®n. The con-
straintr]ﬁ < A, Ykis needed in this derivation to avoid the integration going infinity. Substituting
the normalization factor derived above into the general dual problem Dheorem 2, and using
the same argument of the convex conjugate () = C ¥ ;& as in Theorem 3, we arrive at the dual
problem in Theorem 5. |

It can be shown that the dual objective function of Laplace MaxEnDiMN&heorem 5 is con-
cave? But since eaclm, depends on all the dual variablesandnﬁ appears within a logarithm, the
optimization problem underlying Laplace MaxEnDNet would be very diffitukolve. The SMO
(Taskar et al., 2003) and the exponentiated gradient methods (Bartitt 2004) developed for
the QP dual problem of RN cannot be easily applied here. Thus, we will turn to a variational ap-
proximation method, as shown in Section 5. For completeness, we end thisiseiti@ corollary
similar to the Corollary 4, which states the primal optimization problem underlyiniylthéenDNet
with a Laplace prior. As we shall see, the primal optimization problem in thisisas@nplicated
and provides another perspective of the hardness of solving thededidiaxEnDNet.

Corollary 6 Under the same assumptions as in Theorem 5, the mean | of the poststriduel
tion p(w) under a Laplace MaxEnDNet is obtained by solving the following primallprab

anEn )\ki(\/p%ri—\lﬁ\log y Auk+l+l>+ci§.

st. pAfi(y) > AG(y) —&; & >0, Vi, Yy £y

2. r]ﬁ is convex over because it is the composition 6fx) = x> with an affine mapping. So, — nﬁ is concave and
log(A — nﬁ) is also concave due to the composition rule (Boyd and Vandenbergb4). 20
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Proof The proof requires the result of Corollary 7. We defer it to Appendix B.4 [ |

Since the “norm?

K ) 1 1 \/)\Hﬁﬂ-l-f-l)A’ ||
- A | = uKL

Z( uk+X—\7)\Iog 5

K=1
corresponds to the KL-divergence betwg®mw) and po(w) under a Laplace MaxEnDNet, we will
refer to it as &L-normand denote it by - ||k. in the sequel. This KL-norm is different from the-
norm as used in BN, but is closely related to tHe;-norm, which encourages a sparse estimator. In
the following section, we provide a detailed analysis of the sparsity of LaplxEnDNet resulted
from the regularization effect from this norm.

4. Entropic Regularization and Sparse MN

Comparing to the structured prediction légvdue to an MN, which enjoys dual sparsity (i.e., few
support vectors), thb; defined by a Laplace MaxEnDNet is not only dual-sparse, but also prima
sparse; that is, features that are insignificant will experience stioinkage on their corresponding
weightwy.

The primal sparsity oh; achieved by the Laplace MaxEnDNet is due to a shrinkage effect
resulting from theLaplacian entropic regularizationin this section, we take a close look at this
regularization effect, in comparison with other common regularizers, ssithed»-norm in M2N
(which is equivalent to the Gaussian MaxEnDNet), andith@orm that at least in principle could
be directly applied to MN. Since our main interest here is the sparsity of the structured prediction
law h;, we examine the posterior mean ungéw) via exact integration. It can be shown that under
a Laplace MaxEnDNetp(w) exhibits the following posterior shrinkage effect.

Corollary 7 (Entropic Shrinkage) The posterior mean of the Laplace MaxEnDNet has the follow-
ing form:
2
(W) p= K W1< k<K, )
A—ni

wheren, = 3y 0 (y) (fi(X,y') — f(X',y)) andnZ < A, k.
Proof Using the integration result in Equation (5), we can get:

dlogZz -+
=V Afi(y) —A4G(y), 7
aai(y) |(y) |(y) ( )
wherev is a column vector and = Azj‘gz, V1 < k < K. An alternative way to compute the deriva-
k
tives is using the definition & : Z = [ po(w)-exp{w ' n — ;i i (y)AZi(y)} dw. We can get:
dlogZ T
—— = (W) Afi(y) — A4i(y). 8
aai(y) ( >p |(y) |(y) ( )

3. This is not exactly a norm because the positive scalability does not Baldthe KL-norm is non-negative due to
the non-negativity of KL-divergence. In fact, by using the inequadity> 1+ x, we can show that each component
/A2
(\/ M2+ % - % log M"krjlﬂ) is monotonically increasing with respectiidand||pjkL > K/v/A, where the equal-
ity holds only wheru= 0. Thus,||i/|kL penalizes large weights. For convenient comparison with the popgikand
L; norms, we call it a KL-norm.
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Figure 1: Posterior means with different priors against their correipgm = ¥ ;i ai (y)Afi(y).
Note that then for different priors are generally different because of the dififedual
parameters.

Comparing Equations (7) and (8), we det), = v, that is, (Wk)p = )\2_7”,]%, V1<k<K. The
k
constraints)2 < A, Vk are required to get a finite normalization factor as shown in Equatiorli5).

Heren is isomorphic to an unregularized estimate of the feature weight vector whiattlg
comes from a linear combination of support vectors (and thereforepaosified). A plot of the
relationship betweerwy), under a Laplace MaxEnDNet and the correspondijpgevealed by
Corollary 7 is shown in Figure 1 (for example, the red curve), from whighcan see that, the
smaller theny is, the more shrinkage toward zero is imposed\wk) p.

This entropic shrinkage effect amis not present in the standard®M, and the Gaussian Max-
EnDNet. Recall that by definition, the vectpe YiyQi(y)Afi(y) is determined by the dual param-
etersa;(y) obtained by solving a model-specific dual problem. Whenctfig)'s are obtained by
solving the dual of the standard3N, it can be shown that the optimum point solution of the param-
etersw* = n. When thea;(y)’s are obtained from the dual of the Gaussian MaxEnDNet, Theorem
3 shows that the posterior mean of the parame(wb%aussian: n. (As we have already pointed
out, since these two dual problems are isomorphicgiig)’s for M3N and Gaussian MaxEnDNet
are identical, hence the resultings are the same.) In both cases, there is no shrinkage along any
particular dimension of the parameter veatoor of the mean vector gb(w). Therefore, although
both M®N and Gaussian MaxEnDNet enjoy the dual sparsity, because the Kiditmms imply
that most of the dual parametexgy)'s are zerow* and(w),__ _ are not primal sparse. From
Equation (6), we can conclude that the Laplace MaxEnDNet is also gasde, because its mean
(w) PLapiace €21 be uniquely determined by But the shrinkage effect on different components of the

(w) PLapince VECLOT causesw) PLapiace (O be also primal sparse.

A comparison of the posterior mean estimatesvofinder MaxEnDNet with three different
priors versus their associatgdis shown in Figure 1. The three priors in question are, a standard
normal, a Laplace withh = 4, and a Laplace with = 6. It can be seen that, under the entropic
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regularization with a Laplace prior, tHgv), gets shrunk toward zero whenis small. The larger
theA value is, the greater the shrinkage effect. For a fixetthe shape of the shrinkage curve (i.e.,
the (w)p, —n curve) is smoothly nonlinear, but no component is explicitly discarded,ishaio
weight is set explicitly to zero. In contrast, for the Gaussian MaxEnDNeit;ilwis equivalent to the
standard MN, there is no such a shrinkage effect.

Corollary 6 offers another perspective of how the Laplace MaxErtD&lates to the_;-norm
M3N, which yields a sparse estimator. Note that\agoes to infinity, the KL-norm|u|x. ap-
proached|y||1, that is, theL;-norm# This means that the MaxEnDNet with a Laplace prior will be
(nearly) the same as thg-M>3N if the regularization constantis large enough.

A more explicitillustration of the entropic regularization under a Laplace MéX&et, compar-
ing to the conventiondl; andL, regularization over an RN, can be seen in Figure 2, where the fea-
sible regions due to the three different norms used in the regularizelogiedin a two dimensional
space. Specifically, it shows (Ly-norm: w2 +w3 < 1; (2) Ly-norm: |wy |+ |wz| < 1; and (3) KL-
norm? \/w§+1/)\+ \/w§+1/>\— (1/VA)log(y/AW2 4+ 1/2+1/2) — (1/vV/A) log(y/AwW3 +1/2 +
1/2) <b, wherebis a parameter to make the boundary pas$@he) point for easy comparison with
theL, andL; curves. Itis easy to show thiaequals to,/1/A+ /14 1/A— (1/vA)log(vVA +1/2+
1/2). It can be seen that thg-norm boundary has sharp turning points when it passes the axises,
whereas thd.; and KL-norm boundaries turn smoothly at those points. This is the intuitive ex
planation of why thel;-norm directly gives sparse estimators, whereasltf@orm and KL-
norm due to a Laplace prior do not. But as shown in Figure 2(b), whem thets larger and
larger, the KL-norm boundary moves closer and closer toLtheorm boundary. Wheh — oo,

VW8 +1/A 4+ B+ /A — (1/VA) log(y/ W2 +1/2+1/2) — (1/VA) log(/AWR + 1/2+1/2) —
|wi| + |wz| andb — 1, which yields exactly thé;-norm in the two dimensional space. Thus, under

the linear model assumption of the discriminant functibis ;w), our framework can be seen as a
smooth relaxation of the;-M3N.

5. Variational Learning of Laplace MaxEnDNet

Although Theorem 2 seems to offer a general closed-form solutipfvtg under an arbitrary prior
po(W), in practice the Lagrange multipliess(y) in p(w) can be very hard to estimate from the dual
problem D1 except for a few special choicespafw), such as a normal as shown in Theorem 3,
which can be easily generalized to any normal prior. Wpe(w) is a Laplace prior, as we have
shown in Theorem 5 and Corollary 6, the corresponding dual probtgmimal problem involves
a complex objective function that is difficult to optimize. Here, we preseiir@atonal method for
an approximate learning of the Laplace MaxEnDNet.

Our approach is built on the hierarchical interpretation of the Laplace @sishown in Equation
(4). Replacing the(w) in Problem P1 with Equation (4), and applying the Jensen’s inequality, we
get an upper bound of the KL-divergence:

KL(Pllpo) = ~H(p) ~ (log [ p(wit)p(rIA) ),

4. As\ — =, the logarithm terms iffjp||kL disappear because of the fact tl&’&f—( — 0 whenx — .
5. The curves are drawn with a symbolic computational package to sokguation of the form: 2— logx = a, where
xis the variable to be solved amds a constant.
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Figure 2: (a)L2-norm (solid line) and_1-norm (dashed line); (b) KL-norm with different Laplace
priors.

/q p(W[T) TIO)(TP\) O

= L(p(w),q

whereq(T) is a variational distribution used to approximat@|A). The upper bound is in fact a
KL-divergence:L(p(w),q(t)) = KL(p(w)q(T)||p(w|T)p(T|A)). Thus, L is convex ovemp(w), and
q(1), respectively, but not necessarily joint convex oyefw),q(T)).

Substituting this upper bound for the KL-divergence in P1, we now solvddifowing Varia-
tional MaxEnDNet problem,

PY(WMEDN):  min  L£(p(w),q(r)) +U(E).

P can be solved with an iterative minimization algorithm alternating between optimizirg ov
(p(w),&) andq(t), as outlined in Algorithm 1, and detailed below.

Step 1: Keepq(T) fixed, optimize P1with respect ta p(w),§). Using the same procedure as
in solving P1, we get the posterior distributipfw) as follows,

pw)  Dexp( [ qv)logp(wlt)dt — b} -explwn—  ai(y)A4(y)}
i,yy'

Dexp(—ow (A Hgw—btwn— ¥ ai(y)ah(y)}
iLy#y'

= N(W“‘l? z)a
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Algorithm 1 Variational MaxEnDNet
Input: data® = {(x,y")}N ,, constant€ and), iteration numbef
Output: posterior meamwﬂ)
Initialize (w)5 < 0, £ — |
fort=1toT—1do
Step 1: solve (9) or (10) fofw);"* = ='n; update(ww )5 — =t 4 (W)L ((w) ) T

. 1 ; (w5
Step 2: use (11) to updak&+! « diag( ).

end for

wheren = ¥, i (y)Afi(y), A= diag(tk), andb = KL(q(t)|| p(t|A)) is a constant. The posterior
mean and variance af@v)p, = = n andZ = ((A 1))t = (ww'), — (w)p(w) ], respectively.
Note that this posterior distribution is also a normal distribution. Analogous tatiwé pf Theorem
3, we can derive that the dual paramete@re estimated by solving the following dual problem:

max T a(y)Bh(y) - 50"z ©
Ly£Yy'

st. S aiy) =C; ai(y) >0, vi, vy £y
y#y'

This dual problem is now a standard quadratic program symbolically idétdittae dual of an
M3N, and can be directly solved using existing algorithms developed fdt,Much as the SMO
(Taskar et al., 2003) and the exponentiated gradient (Bartlett et all) 20&thods. Alternatively,
we can solve the following primal problem:

1 o N
min éWTZ 1W+Ci;Ei (10)

W,
st. wiAfi(y) > Ab(y) - &; & >0, Vi, vy #Y"

Based on the proof of Corollary 4, it is easy to show that the solution ofrtitdgm (10) leads to
the posterior mean af underp(w), which will be used to do prediction By. The primal problem
can be solved with the subgradient (Ratliff et al., 2007), cutting-planec{lantaridis et al., 2004),
or extragradient (Taskar et al., 2006) method.

Step 2 Keep p(w) fixed, optimize P1with respect tag(t). Taking the derivative of. with
respect ta)(t1) and set it to zero, we get:

q(t)  Op(t|r)exp{(logp(w|t))p}-

Since bothp(w|t) and p(t|A) can be written as a product of univariate Gaussian and univariate ex-
ponential distributions, respectively, over each dimensign, also factorizes over each dimension:
a(t) = MK_, 9(t), where eacly(ty) can be expressed as:

vk: q(t) O p(tk/A) exp{({log p(wi|Tk))p}
O N(M\O,Tk) exp(—%)qk).
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The same distribution has been derived by Kaban (2007), and similar toigrerdhical rep-
resentation of a Laplace distribution we can get the normalization fagta¢(,/ (W) p|0, k) -

%exp(—%)\rk) dry = gexp(—\ /Nw2)p). Also, we can calculate the expectatiofigt)q which
are required in calculatingA—1), as follows,

<1>q=/1OI(Tk) dtk = (vv%p' (11)

Tk Tk

We iterate between the above two steps until convergence. Due to thexitgprinet joint
convexity) of the upper bound, the algorithm is guaranteed to convergéotmal optimum. Then,
we apply the posterior distributiop(w), which is in the form of a normal distribution, to make
prediction using the averaging prediction law in Equation (2). Due to thelsigaeffect of the
Laplacian entropic regularization discussed in Section 4, for irreleeattfes, the variances should
converge to zeros and thus lead to a sparse estimationd summarize, the intuition behind this
iterative minimization algorithm is as follows. First, we use a Gaussian distributiapgmoximate
the Laplace distribution and thus get a QP problem that is analogous to tnat standard NN;
then, in the second step we update the covariance matrix in the QP problermvéxpanential
hyper-prior on the variance.

6. Generalization Bound

The PAC-Bayes theory for averaging classifiers (McAllester, 19@@ygfford et al., 2001) provides
a theoretical motivation to learn an averaging model for classification. Irséugon, we extend
the classic PAC-Bayes theory on binary classifiers to MaxEnDNet, aslgznthe generalization
performance of the structured prediction rakein Equation (2). In order to prove an error bound
for hy, the following mild assumption on the boundedness of discriminant funétion;w) is
necessary, that is, there exists a positive constanich that,

Yw, F(-;w)eH: Xx9 —[-c.qc.

Recall that the averaging structured prediction function under the MaXEnis defined ab(x,y) =
(F(X,y;wW))pw)- Let's define the predictive margin of an instanoey) under a functiorh as
M(h,x,y) = h(x,y) — maxy.,h(x,y’). Clearly, h makes a wrong prediction ofx,y) only if
M(h,x,y) < 0. LetQ denote a distribution ovek x 9, and letD represent a sample &f in-
stances randomly drawn fro@. With these definitions, we have the following structured version
of PAC-Bayes theorem.

Theorem 8 (PAC-Bayes Bound of MaxEnDNet)Let p be any continuous probability distribu-
tion over# and letd € (0,1). If F( - ;w) € # is bounded bytc as above, then with probability at
leastl— d, for a random samplé of N instances from Q, for every distribution p ov&r, and for
all margin thresholdy > O:

)In(NQf])+InN+In6—1>

2
Pig(M(h,x,y) < 0) < Prp(M(h,x,y) SV)*‘)(\/T KL(p[|po I
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wherePrg(.) andPry(.) represent the probabilities of events over the true distribution Q, and over
the empirical distribution ofD, respectively.

The proof of Theorem 8 follows the same spirit of the proof of the origh#eC-Bayes bound,
but with a hnumber of technical extensions dealing with structured outputsnangins. See ap-
pendix B.5 for the details.

Recently, McAllester (2007) presentsstochasticmax-margin structured prediction model,
which is different from the averaging predictor under the MaxEnDNedehdy defining/designing
a “posterior” distribution from which a model is sampled to make prediction aamhieves a PAC-
Bayes bound which holds for arbitrary models sampled from the particoEepor distribution.
Langford and Shawe-Taylor (2003) show an interesting connectiovelea the PAC-Bayes bounds
for averaging classifiers and stochastic classifiers, again by desigmiogterior distribution. But
our posterior distribution is solved with MaxEnDNet and is generally diffefem those designed
by McAllester (2007) and Langford and Shawe-Taylor (2003).

7. Experiments

In this section, we present empirical evaluations of the proposed LadlacEnDNet (LapMEDN)
on both synthetic and real data sets. We compare LapMEDN witt (ile., the Gaussian MaxEnD-
Net), Li-regularized MN (L1-M3N), CRFs,L;-regularized CRFsLi-CRFs), and.,-regularized
CRFs (2-CRFs). We use the quasi-Newton method (Liu and Nocedal, 1989) anaritéaw(An-
drew and Gao, 2007) to solve the optimization problem of CRE€RFs, and.»-CRFs. For MN
and LapMEDN, we use the exponentiated gradient method (Bartlett et @4f) &®) solve the dual
QP problem; and we also use the sub-gradient method (Ratliff et al., 20031yéotke correspond-
ing primal problem. To the best of our knowledge, no formal description/Jeémentation, and
evaluation of theL1-M3N exist in the literature, therefore for comparison purpose we had to de-
velop this model and algorithm anew. Details of our work along this line wasrteghin Zhu et al.
(2009b), which is beyond the scope of this paper. But briefly, foraperiments on synthetic data,
we implemented the constraint generating method (Tsochantaridis et al. vi#@igd)uses MOSEK
to solve an equivalent LP re-formulation lof-M3N. However, this approach is extremely slow on
larger problems; therefore on real data we instead applied the suiegratkethod (Ratliff et al.,
2007) with a projection to ah;-ball (Duchi et al., 2008) to solve the larger-M3N based on the
equivalent re-formulation with alb;-norm constraint (i.e., the second formulation in Appendix A).

7.1 Evaluation on Synthetic Data

We first evaluate all the competing models on synthetic data where the trueistipredictions are
known. Here, we consider sequence data, that is, eachxiput sequencéxy,...,x ), and each
componenty is ad-dimensional vector of input features. The synthetic data are gendratad
pre-specified conditional random field models with either i.i.d. instantiationseoingut features
(i.e., elements in thd-dimensional feature vectors) or correlated (i.e., structured) instangation
the input features, from which samples of the structured owtptitat is, a sequenags,...,y.),

can be drawn from the conditional distributipty|x) defined by the CRF based on a Gibbs sampler.
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7.1.1 11.D. INPUT FEATURES

The first experiment is conducted on synthetic sequence data with 100 ijpdt features (i.e.,

d = 100). We generate three types of data sets with 10, 30, and 50 relepanhfeatures, respec-
tively. For each type, we randomly generate 10 linear-chain CRFs witheBybiabeling states (i.e.,
L=8and9j ={0,1}). The feature functions include: a real valued state-feature functiemecone
dimensional input feature and a class label; and» 22 binary transition feature functions captur-
ing pairwise label dependencies. For each model we generate a datd880 samples. For each
sample, we firsindependentlygraw the 100 input features from a standard normal distribution, and
then apply a Gibbs sampler (based on the conditional distribution of theajlede€ZRFs) to assign

a labeling sequence with 5000 iterations.

For each data set, we randomly draw a subset as training data and ussttiier testing.
The sizes of training set are 30, 50, 80, 100, and 150. The QP prdhléWiN and the first
step of LapMEDN is solved with the exponentiated gradient method (Bartlatt,e2004). In all
the following experiments, the regularization constantke€CRFs and_,-CRFs are chosen from
{0.01,0.1,1,4,9,16} by a 5-fold cross-validation during the training. For the LapMEDN, we use
the same method to choosdrom 20 roughly evenly spaced values between 1 and 268. For each
setting, a performance score is computed from the average over lihmagaunples of data sets.

The results are shown in Figure 3. All the results of the LapMEDN are eetiieith 3 itera-
tions of the variational learning algorithm. From the results, we can seerttat different settings
LapMEDN consistently outperforms ¥ and performs comparably withy-CRFs and_;-M3N,
both of which encourage a sparse estimate; and both ##&RFs and_,-CRFs outperform the
un-regularized CRFs, especially in the cases where the number of trai@iads small. One in-
teresting result is that the ¥l andL,-CRFs perform comparably. This is reasonable because as
derived by Lebanon and Lafferty (2001) and noted by Globersah €t007) that thé&,-regularized
maximum likelihood estimation of CRFs has a similar convex dual as that of the &hd the only
difference is the loss they try to optimize, that is, CRFs optimize the log-loss wiiNdgtimizes
the hinge-loss. Another interesting observation is that when there ardewerelevant features,
L1-M3N performs the best (slightly better than LapMEDN); but as the number@faet features
increases LapMEDN performs slightly better than theM3N. Finally, as the number of training
data increases, all the algorithms consistently achieve better performance.

7.1.2 ORRELATEDINPUT FEATURES

In reality, most data sets contain redundancies and the input featurasuasiy correlated. So,
we evaluate our models on synthetic data sets with correlated input featMestake the similar
procedure as in generating the data sets with i.i.d. features to first gefi®ritear-chain CRF
models. Then, each CRF is used to generate a data set that contain 1800easeach with 100
input features of which 30 are relevant to the output. The 30 relevauat faptures are partitioned
into 10 groups. For the features in each group, we first draw a réad-filom a standard normal
distribution and then corrupt the feature with a random Gaussian nois¢ 3occgerelated features.
The noise Gaussian has a zero mean and standard variance 0.05.ntiéneadl the remaining
experiments, we use the sub-gradient method (Ratliff et al., 2007) to s@v@Riproblem in both
M3N and the variational learning algorithm of LapMEDN. We use the learnitegailad complexity
constant that are suggested by the authors, that is,flﬁ andC = 2003, wherep is a parameter

we introduced to adjust; andC. We do K-fold CV on each data set and take the average over the
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Figure 3: Evaluation results on data sets with i.i.d features.
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Figure 4: Results on data sets with 30 relevant features.

10 data sets as the final results. Like the method of Taskar et al. (20@3)clrrun we choose one
part to do training and test on the rest K-1 parts. We vary K from 20719, to 4. In other words,
we use 50, 100, about 150, 200, and 250 samples during the trainingsé\tee same grid search
to choose\ andf3 from {9, 16, 25,36,49,64} and{1,10,20,30,40,50,60} respectively. Results are
shown in Figure 4. We can get the same conclusions as in the previolis.resu

Figure 5 shows the true weights of the corresponding 200 state feahatofs in the model
that generates the first data set, and the average of estimated weightseofdhtires under all
competing models fitted from the first data set. All the averages are takerlOveld cross-
validation. From the plots (2 to 7) of the average model weights, we can aeddhthe last 140
state feature functions, which correspond to the last 70 irrelevantrésatiheir average weights
under LapMEDN (averaged posterior meandn this case)L1-M3N andL;-CRFs are extremely
small, while CRFs antl,-CRFs can have larger values; for the first 60 state feature functidmsh
correspond to the 30 relevant features, the overall weight estimaticar uagMEDN is similar to
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Figure 5: From top to bottom, plot 1 shows the weights of the state featurédngdn the linear-
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Figure 6: The average variances of the features on the first datg sepMEDN.
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that of the sparsk;-CRFs and_;-M3N, but appear to exhibit more shrinkage. Noticeably, CRFs
andL»-CRFs both have more feature functions with large average weights. Notalitthe models
have quite different average weights from the model (see the first piatyémerates the data. This
is because we use a stochastic procedure (i.e., Gibbs sampler) to asslgddbe generated data
samples instead of using the labels that are predicted by the model thadtgsribe data. In fact,
if we use the model that generates the data to do prediction on its genertethdaerror rate is
about 0.5. Thus, the learned models, which get lower error ratesiffedt from the model that
generates the data. Figure 6 shows the variances of the 100-dimernisjutafieatures (since the
variances of the two feature functions that correspond to the same egttuté are the same, we
collapse each pair into one point) learned by LapMEDN. Again, the vaegare the averages over
10 fold cross-validation. From the plot, we can see that the LapMEDNea@over the correlation
among the features to some extend, e.g., for the first 30 correlated feattnieh are the relevant
to the output, the features in the same group tend to have similar (averagecearin LapMEDN,
whereas there is no such correlation among all the other features. Fesmdhservations in both
Figure 5 and 6, we can conclude that LapMEDN can reasonably nette/eparse structures in the
input data.

7.2 Real-World OCR Data Set

The OCR data set is partitioned into 10 subsets for 10-fold CV as in Tas&an2003) and Ratliff
et al. (2007). We randomly selelst samples from each fold and put them together to do 10-fold
CV. We varyN from 100, 150, 200, to 250, and denote the selected data sets by OGRIRA50,
OCR200, and OCR250, respectively. On these data sets and the wedsdat&ection 7.4, our
implementation of the cutting plane method fqrM3N is extremely slow. The warm-start simplex
method of MOSEK does not help either. For example, if we stop the algorithmB@@hterations
on OCR100, then it will take about 20 hours to finish the 10 fold CV. Even witire than 5
thousands of constraints in each training, the performance is still verytiactrror rate is about
0.45). Thus, we turn to an approximate projected sub-gradient methodviotee L1-M3N by
combining the on-line subgradient method (Ratliff et al., 2007) and the eificieball projection
algorithm (Duchi et al., 2008). The projected sub-gradient method xoeg/ork so well as the
cutting plane method on the synthetic data sets. That's why we use two diffeetimods.

Forp =4 on OCR100 and OCR15p,~= 2 on OCR200 and OCR250, ahd- 36, the results are
shown in Figure 7. We can see that as the number of training instanceasesreall the algorithms
get lower error rates and smaller variances. Generally, the LapMEDNistently outperforms
all the other models. RN outperforms the standard, non-regularized, CRFs and.{h@RFs.
Again, L,-CRFs perform comparably with 8. This is a bit surprising but still reasonable due to
the understanding of their only difference on the loss functions (Globesal., 2007) as we have
stated. By examining the prediction accuracy during the learning, we eaamsabvious over-fitting
in CRFs and_1-CRFs as shown in Figure 8. In contrast;CRFs are very robust. This is because
unlike the synthetic data sets, features in real-world data are usually mpietely irrelevant. In
this case, putting small weights to zero ag{rCRFs will hurt generalization ability and also lead to
instability to regularization constants as shown later. Instea;RFs do not put small weights to
zero but shrink them towards zero as in the LapMEDN. The non-ragathmaximum likelihood
estimation can easily lead to over-fitting too. For the two sparse models, tHts resggest the
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Figure 7: Evaluation results on OCR data set with different numbers aftsdl€eata.
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Figure 8: The error rates of CRF models on test data during the learnimgth& left plot, the
horizontal axis is\/1/ratioLL, whereratioLL is the relative change ratios of the log-
likelihood and from left to right, the change ratios are 1, 0.5, 0.4, 0.3, 012,005,
0.04, 0.03, 0.02, 0.01, 0.005, 0.004, 0.003, 0.002, 0.001, 0.0005, 00063, 0.0002,
0.0001, and 0.00005; for the right plot, the horizontal axig'(8000/negLL, wherenegLL
is the negative log-likelihood, and from left to righégLLare 1000, 800, 700, 600, 500,
300, 100, 50, 30, 10, 5, 3,1, 0.5, 0.3, 0.1, 0.05, 0.03, 0.01, 0.00%33,0a0d 0.002.
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Figure 9: Error rates of different models on OCR100 with differentif@gzation constants. The
regularization constant is the parame@eior M3N, and for all the other models, it is the
parameteh. From left to right, the regularization constants for the two regularizedsCRF
(above plot) are 0.0001, 0.001, 0.01, 0.1, 1, 4, 9, 16, and 28)3drand LapMEDN, the
regularization constants aké, 1 < k < 9; and forL;-M3N, the constants are?, 13 <
k <21.

potential advantages &fi-norm regularized NN, which are consistently better than the CRFs.
Furthermore, as we shall see latef;M3N is more stable than tHe -CRFs.

7.3 Sensitivity to Regularization Constants

Figure 9 shows the error rates of the models in question on the data set0OD©R4r different
magnitudes of the regularization constants. FGNytthe regularization constant is the parameter
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C, and for all the other models, the regularization constant is the parameddnen thek changes,
the paramete€ in LapMEDN andL:-M?3N is fixed at the unit 1.

From the results, we can see that theCRFs are quite sensitive to the regularization constants.
However,L,-CRFs, MN, L1-M3N and LapMEDN are much less sensitive. LapMEDN apdvi3N
are the most stable models. The stability of LapMEDN is due to the posterior tivegjghstead of
hard-thresholding to set small weights to zero as i th€RFs. One interesting observation is that
the max-margin baseld;-M3N is much more stable compared to thenorm regularized CRFs.
One possible reason is that like LapMEDN;M23N enjoys both the primal and dual sparsity, which
makes it less sensitive to outliers; whereaslthRF is only primal sparse.

7.4 Real-World Web Data Extraction

The last experiments are conducted on the real world web data extrastmeasively studied by
Zhu et al. (2008a). Web data extraction is a task to identify interested infiomTfaom web pages.
Each sample is a data record or an entire web page which is represeatsetas HTML elements.
One striking characteristic of web data extraction is that various typesuaftstal dependencies
between HTML elements exist, e.g. the HTML tag tree or the Document ObjedeMB®OM)
structure is itself hierarchical. In the work of Zhu et al. (2008a), hariaal CRFs are shown to
have great promise and achieve better performance than flat models likedive@a CRFs (Lafferty
et al., 2001). One method to construct a hierarchical model is to first ypsgsar to construct
a so called vision tree. Then, based on the vision tree, a hierarchical cadée constructed
accordingly to extract the interested attributes, e.g. a product’s name,,ipramge description, etc.
See the paper (Zhu et al., 2008a) for an example of the vision tree anartheponding hierarchical
model. In such a hierarchical extraction model, inner nodes are useahddmorate long distance
dependencies, and the variables at one level are refinements ofitil@desat upper levels.

In these experimentswe identify product items for sale on the Web. For each product item,
four attributes—Name Image Price, andDescriptionare extracted. We use the data set that is built
with web pages generated by 37 different templates (Zhu et al., 200&=9a€h template, there are
5 pages for training and 10 for testing. We evaluate all the methods oadbel leve] that is, we
assume that data records are given, and we compare different madbks accuracy of extracting
attributes in the given records. In the 185 training pages, there areddi&%ecords in total; in the
370 testing pages, 3391 data records are collected. As for the evalodtera, we use the two
comprehensive measures, that is, average F1 and block instancacgc@s defined by Zhu et al.
(2008a), average F1 is the average value of the F1 scores of thatfobutes, and block instance
accuracy is the percent of data records whHdame Image andPrice are all correctly identified.

We randomly selecin = 5,10, 15,20, 30,40, 0r,50 percent of the training records as training
data, and test on all the testing records. For eact0 independent experiments were conducted and
the average performance is summarized in Figure 10. From the resultanwee that all: first, the
models (especially the max-margin models, that iSNML;-M3N, and LapMEDN) with regular-
ization (i.e.,L;-norm,L>-norm, or the entropic regularization of LapMEDN) can significantly out-
perform the un-regularized CRFs. Second, the max-margin modelsafjgroertperform the condi-
tional likelihood-based models (i.e., CREs;CRFs, and_;-CRFs). Third, the LapMEDN perform
comparably with thd_;-M3N, which enjoys both dual and primal sparsity as the LapMEDN, and

6. These experiments are slightly different from those by Zhu et a8&0 Here, we introduce more general feature
functions based on the content and visual features as used by Zh(R&08a).
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Figure 10: The average F1 values and block instance accuracy omatgeextraction with different
number of training data.

outperforms all other models, especially when the number of training data Ik $timally, as in
the previous experiments on OCR data, theM3N generally outperforms the;-CRFs, which
suggests the potential promise of the max-margin based>N.

8. Related Work

Our work is motivated by the maximum entropy discrimination (MED) method preghbyg Jaakkola

et al. (1999), which integrates SVM and entropic regularization to obtaewvaraging maximum
margin model for classification. The MaxEnDNet model presented is &sea structured ver-
sion of MED built on MMN—the so called “structured SVM”. As we presented in this paper, this
extension leads to a substantially more flexible and powerful new paradigstréictured discrim-
inative learning and prediction, which enjoys a number of advantagésasimodel averaging,
primal and dual sparsity, accommodation of latent generative struchurest the same time raises
new algorithmic challenges in inference and learning.

Related to our approach, a sparse Bayesian learning frameworkdraptoposed to find sparse
and robust solutions to regression and classification. One example alstigé¢hs the relevance
vector machine (RVM) (Tipping, 2001). The RVM was proposed base8\WWM. But unlike SVM
which directly optimizes on the margins, RVM defines a likelihood function froemntiargins with
a Gaussian distribution for regression and a logistic sigmoid link functiondssification and then
doestype-Il maximum likelihoo@stimation, that is, RVM maximizes tmarginal likelihood Al-
though callegsparse Bayesian learnin@igueiredo, 2001; Eyheramendy et al., 2003), as shown by
Kaban (2007) the sparsity is actually due to the MAP estimation. The similar ambafRYM is
justified by Wipf et al. (2003). Unlike these approaches, we adhereuibBayesian-style principle
and learn a distribution of predictive models by optimizing a generalized maximinopy under
a set of theexpectedmargin constraints. By defining likelihood functions with margins, similar
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Bayesian interpretations of both binary and multi-class SVM were studieligts(2002) and
Zhang and Jordan (2006).

The hierarchical interpretation of the Laplace prior has been exploradhirmber of contexts
in the literature. Based on this interpretation, a Jeffrey’s non-informateend-level hyper-prior
was proposed by Figueiredo (2001), with an EM algorithm developed dotli@a MAP estimate.
The advantage of the Jeffrey’s prior is that it is parameter-free. 8shawn by Eyheramendy et al.
(2003) and Kaban (2007), usually no advantage is achieved by usinlgtfiey’s hyper-prior over
the Laplace prior. A gamma hyper-prior was used by Tipping (2001) inepdiche second-level
exponential as in the hierarchical interpretation of the Laplace prior.

To encourage sparsity in SVM, two strategies have been used. Therfass to replace the
L>-norm by anL;-norm of the weights (Bennett and Mangasarian, 1992; Zhu et al., 200%
second strategy is to explicitly add a cardinality constraint on the weights.wilhiead to a hard
non-convex optimization problem; thus relaxations must be applied (Chdn €0a7). Under
the maximum entropy discrimination models, feature selection was studied by JefthJaakkola
(2000) by introducing a set of structural variables. Recently, a smamtepor shrinkage effect
was shown by Jebara (2009), which is similar to our entropic regularizaffeot. However, an
analysis of their connections and differences is still not obvious.

Although the parameter distributigniw) in Theorem 2 has a similar form as that of the Bayesian
Conditional Random Fields (BCRFs) (Qi et al., 2005), MaxEnDNet is&umentally different from
BCRFs as we have stated. Dredze et al. (2008) present an interestifidenice-weighted linear
classification method, which automatically estimates the mean and variance of paoaleters
in online learning. The procedure is similar to (but indeed different fromn)ariational Bayesian
method of Laplace MaxEnDNet.

Finally, some of the results shown in this paper can be also found in ountreceference
papers (Zhu et al., 2008b; Zhu and Xing, 2009).

9. Conclusions and Future Work

To summarize, we have presented a general theory of maximum entropyndistion Markov net-
works for structured input/output learning and prediction. This formalier®a formal paradigm
for integrating both generative and discriminative principles and the Bayesjalarization tech-
niques for learning structured prediction models. It subsumes populaodsetuch as support
vector machines, maximum entropy discrimination models (Jaakkola et al.,,89naximum
margin Markov networks as special cases, and therefore inherits afighits of these techniques.
The MaxEnDNet model offers a number of important advantages overeational structured
prediction methods, including: 1) model averaging, which leads to a PA@d8an bound on gen-
eralization error; 2) entropic regularization over max-margin learnindgchwban be leveraged to
learn structured prediction models that are simultaneously primal and dargles@and 3) latent
structures underlying the structured input/output variables, which enalekter incorporation of
domain knowledge in model design and semi-supervised learning basedt@ilylabeled data.
In this paper, we have discussed in detail the first two aspects, and tthaspiect was explored in
(Zhu et al., 2008c). We have also shown that certain instantiations of tREmMENet model, such as
the LapMEDN that achieves primal and dual sparsity, can be efficienihetidased on an iterative
optimization scheme that employs existing techniques such as the variatiomre &ayroximation
and the convex optimization procedures that solve the stand3xd We demonstrated that on syn-
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thetic data the LapMEDN can recover the sparse model as well as the kpaegularized MAP
estimation, and on real data sets LapMEDN can achieve superior penfoema

Overall, we believe that the MaxEnDNet model can be extremely genettaddaptive, and it
offers a promising new framework for building more flexible, generalizadohel large scale struc-
tured prediction models that enjoy the benefits from both generative aohdizative modeling
principles. While exploring novel instantiations of this model will be an intergstiinection to
pursue, development of more efficient learning algorithms, formulation bfetigout easy to solve
convex relaxations, and adapting this model to challenging applicationsasisthtistical machine
translation, and structured associations of genome markers to complesedissts could also lead
to fruitful results. Finally, the basic principle of MaxEnDNet can be galieed to directed graph-
ical models. The MedLDA model (Zhu et al., 2009a) for discriminative topicetiag represents
our first successful attempt along this direction.
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Appendix A. L1-M3N and its Lagrange-Dual

Based on thd_;-norm regularized SVM (Zhu et al., 2004; Bennett and Mangasaria@?)l a
straightforward formulation of 1-M3N is as follows,

1 N
T]E” QHWH +Ci;EI
st. wIAfi(y) > Ali(y)—&; & >0, Vi, vy #Y

where||.|| is theLi-norm. Afi(y) = f(x',y") — f(x!,y), andA¢(y) is a loss function. Another equiv-
alent formulatior is as follows:

N
NCS &
HADR
[wil <A
st { wWTAfi(y) > AG(y) —&i; & >0, Vi, vy £V

7. See Taskar et al. (2006) for the transformation technique.
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To derive the convex dual problem, we introduce a dual variaflg) for each constraint in the
former formulation and form the Lagrangian as follows,

N
La.wd) = Il +C3 &~ 5 ai(y)(w’afily) - 6(y) + ).
= iy

By definition, the Lagrangian dual is,

(@) =infL(aw.g)
= inf [}HWH— > ai(y)WTAfi(y)]an [C S % - > ai(y>Ei]+£
w2 B72% : i; B72%
1 N
=—sup\w' (3 ai(y)Afi(y)—Swll| —sup| ¥ ai(y)&—CY &|+¢,
w [ i,};yi 2 } 3 L,}éyi i; ]

wherel = 3 i ai(Y)ALi ().
Again, by definition, the first term on the right-hand side is the convex gatguof@(w) =
2|lw|| and the second term is the conjugat&Jgt) = C s , &. Itis easy to show that,

(@) =L( 3 ayaty)| < vi<ksK),
iLy£Yy'
and

U*(0) =L( 3 ai(y) <C, Vi),
YAy

where as defined befofg(-) is an indicator function that equals zero when its argument is true and
infinity otherwise AfK(y) = (X', y") — f(X,y).
Therefore, we get the dual problem as follows,

max z a; (y)A4i(y)
i,yZ£Y'

1
st | Y ai(y)afi(y)| < 3, vk
Ly#Y
Z ai(y) §C7 vi.
y#Y
Appendix B. Proofs of Theorems and Corollaries

In this section, we prove the theorems and corollaries.

B.1 Proof of Theorem 2

Proof As we have stated, P1 is a convex program and satisfies the Slateri8aantb compute its
convex dual, we introduce a non-negative dual variafp(g) for each constraint irf; and another
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non-negative dual variabkefor the normalization constraintp(w)dw = 1. This gives rise to the
following Lagrangian:

L(p(w),&,,0) = KL(p(w)]|Po(w)) +U (&) + ¢ | p(w)cw —1)

— 3 a)( [ pw) IR (y:w) — Aa(y)] dw +&).
i,yZ£Y'

The Lagrangian dual function is definedla$a, c) = inf,,.: L(p(W),&, o, c). Taking the derivative
of L w.r.t p(w), we get,

oL p(w)
——=1+c+lo - ai(y)[AF (y; w) — A .
ap(w) 9 W) Lyéyi (Y)[AR(y;w) — Adi(y)]
Setting the derivative to zero, we get the following expression of distribytia),
1
p(w) = > —po(w)exp{ 5 ai(y)[AR(y;w)—Ad(y)]},
Z(G) i,y;éyi

whereZ(a) = [ po(wW)exp{ ¥4y 0i (Y)[AR (y;w) — Ali(y)]} dw is a normalization constant and
c=—-1+logZ(a).
Substitutingp(w) into L*, we obtain,

L*(a,0) = p(ier;a (—logZ(a) +U(¢) - Ly;yi ai(y)&i)

- _IogZ(O()+ir£f(U(E)— > ai(y)&)
(A72%

= —logZ(a)—sup( Y ai(y)&—U())
& iyAy
= —logZ(a)—U*(a),

which is the objective in the dual problem D1. The;(y)} derived from D1 lead to the optimum
p(w) according to Equation (3). [ |

B.2 Proof of Theorem 3

Proof Replacingpo(w) andAF (y;w) in Equation (3) withA’(w|0,1) andw " Afi(y) respectively,
we can obtain the following closed-form expression ofZki&) in p(w):

Z(o) = [acwioexp{ 5 aily)w afi(y) - B4 (y)] f

LyZ2Y!

= [(om S exp{ —gwiw+ Y aily)w af(y) - 86(y)]
iyy'

—exp(— 3 amAi) 4ol Y @m)an)?).

iLyAY iLYyAY
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Substituting the normalization factor into the general dual problem D1, wthgetual prob-
lem of Gaussian MaxEnDNet. As we have stated, the constrgijts ai(y) = C are due to the
conjugate ofJ (&) =C5;é;.

For prediction, again replacing(w) andAF (y; w) in Equation (3) with\’(w|0, I ) andw " Af; (y)
respectively, we can get(w) = A[(w|w, 1), wherep = 5; y#y. (of (y)Af (y). Substitutingp(w) into
the predictive functiofy, we can geb; (x) = arg maxc.y ) 1 TE(x,y) = (5. vy i (Y)Af; (y) Tf(x,y),
which is identical to the prediction rule of the standaréN\/(Taskar et al., 2003) because the dual
parameters are achieved by solving the same dual problem. |

B.3 Proof of Corollary 4

Proof Supposéd p*(w),&*) is the optimal solution of P1, then we have: for gmyw), &), p(w) €
F1andg >0,

KL(p"(W)][po(w)) +U (&) < KL(p(W)]|[po(w)) +U (Z).

From Theorem 3, we conclude that the optimum predictive parameter diginbs p*(w) =
AN (w|us, I). Sincepp(w) is also normal, for any dlstrlbutlop( ) = AL(wly, )8 with several steps
of algebra it is easy to show thEL (p(w)|po(w)) = 2“ K. Thus, we can get: for anf, &), pe

{u: WAf(y) > Abi(y) — &, Vi, vy #y'} andg > 0,

1 ok x * 1 *

ST () +UE) < Su'u+UE,
which means the mean of the optimum posterior distribution under a Gaussiaaniibet is
achieved by solving a primal problem as stated in the Corollary. |

B.4 Proof of Corollary 6

Proof The proof follows the same structure as the above proof of Corollarede,kive only present
the derivation of the KL-divergence under the Laplace MaxEnDNet.

Theorem 2 shows that the general posterior distributiorp(' ) = (1) Po(W) exp(w ' n—
YiyAy Qi(Y)AL(Y)) andZ(a) = exp(— Yy @i (Y)AL(Y)) |‘|k 1722 A > for the Laplace MaxEnDNet
as shown in Equation (5). Use the definition of KL-divergence and wejed

K K
KL(p(w)|po(w) Zlog = Wk— ) log
K=1 =
Corollary 7 shows tha, = 2, V1< k <K. Thus, we getk— and a set of equa-
k

tions: pkr]k + 2Nk — A = 0, v1 g k < K. To solve these equatlons we consider two cases.
First, if i = 0, thennk = 0. Second, ify # 0, then we can solve the quadratic equation to get

8. Although#; is much richer than the set of normal distributions with an identity covarierateix, Theorem 3 shows
that the solution is a restricted normal distribution. Thus, it suffices toidensnly these normal distributions in
order to learn the mean of the optimum distribution. The similar argumetieagp the proof of Corollary 6.
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_ / 2
Nk: Nk = HTW The second solution includes the first one since we can show that when

_ / 2
W — O, “HEVITA 0 by using thd_'Hospital's Rule Thus, we get:

Mk
Mk = —14 (/Ap2 + 1.

SincenZ < A (otherwise the problem is not boundef)n is always positive. Thus, only the
solutionpnk = —1+ 1/ 1+ Al is feasible. So, we get:

A M2 _,/Au§+1+1
A=ng o AR+ 1-1) 2

and

KL(p(w)|Po(w)) = (\/Auwl gV UALLSASES
= AZ(\/ +—Iog”}\uk+l+1>—K.

A 2

Applying the same arguments as in the above proof of Corollary 4 and usraptve result of the
KL-divergence, we get the problem in Corollary 6, where the const#hts ignored. The margin
constraints defined with the mepiare due to the linearity assumption of the discriminant functions.
[ |

B.5 Proof of Theorem 8

We follow the same structure as the proof of PAC-Bayes bound for bolasgifier (Langford et al.,
2001) and employ the similar technique to generalize to multi-class problemf{fxéeal., 1998).
Recall that the output space9$, and the base discriminant functionfg - ;w) € H : X x 9 —
[—c,c], wherec > 0 is a constant. Our averaging model is specifiedhpyy) = (F (X,Y;W)) pw)-
We define the margin of an examgbe y) for such a functiorh as,

M(h,x,y) =h(x,y) — mgxh(x ). (12)
Thus, the modeth makes a wrong prediction ai, y) only if M(h,x,y) < 0. LetQ be a distribution
overX x %, and letD be a sample dil examples independently and randomly drawn fi@nWith
these definitions, we have the PAC-Bayes theorem. For easy readiruppyéehe theorem in the
following:
Theorem 8 (PAC-Bayes Bound of MaxEnDNet) et p be any continuous probability distri-
bution over# and letd € (0,1). If F( - ;w) € A is bounded bytc as above, then with probability
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at leastl — 9, for a random sampl& of N instances from Q, for every distribution p ov&t, and
for all margin thresholdy > O:

y2KL(p||po) IN(N|Y]) +InN +In61)

Pro(M(h,x,y) < 0) < Prp(M(h,x,y) <) +o(\/ .

wherePrg(.) andPry(.) represent the probabilities of events over the true distribution Q, and over
the empirical distribution ofD, respectively.

Proof Let m be any natural number. For every distributipnwe independently drawn base
models (i.e., discriminant function§) ~ p at random. We also independently drawwariables

K ~ U ([—c,c]), whereU denote the uniform distribution. We define the binary functignsx x

9/ i {_C’ +C} by
gi(x,y;F, 1) = 2cl (ki <F(x,y)) —c
With the R, W, andg;, we define#y, as,

Ho= {1 009) = 5 GxyiR IR € 4. € [l

We denote the distribution of over the setH,, by p™. For a fixed pairx,y), the quantities
gi(x,y; R, 1) are i.i.d bounded random variables with the mean:

(G0l < RO (-0l > (6
o(c+F(,Y) ~ 50e— F(6Y)eo
y)

(Gi(X,Y;Fis b)) Fop iU [—c.c)

(o
h(x

2c
(X,
Therefore,(f(x,y))t~pmn = h(X,y). Sincef(x,y) is the average oveni.i.d bounded variables,
Hoeffding’s inequality applies. Thus, for evefy,y),
Pripn[f(x,Y) —h(x,y) > & < e 2%
For any two event# andB, we have the inequality,

Pr(A) = Pr(A,B) + Pr(A,B) < Pr(B) + Pr(BJA).

Thus, for anyy > 0 we have

ProM(h.x.y) < 0] < PigIM(f,xy) < 3] +PioM(f.xy) > T M(hxy) <0l (13)

where the left hand side does not depend ofiVe take the expectation w.ft~ p™ on both sides
and can get
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PrIM(h,x,y) SO/ < (PiQIM(f,x,y) < 2 -pr

+(PRIM(F,x,Y) > JIM(Nx,y) < 0} rpn. 14)

Fix h,x, andy, and lety’ achieve the margin in (12). Then, we get

M(h,X,y) = h(X,y) - h(X,y/), andM(fv)(?y) < f(X,y) - f(X,y/>.

With these two results, singd (x,y) — f(X,y)) f~pm = h(X,y) —h(X,y’), we can get

<PrQ[M(f7X7y) > %“Vl(h?)(vy) < O])prm = <Prf~pm[M(f>X7y) > %\M(h,x,y) < 0]>Q
< (Priplf(xy) ~ F(xy) > 2 M(h,x,y) < O))q
< Priopn[f () — T(x.Y) = M(h.xy) > T))q

m?
e 7, (15)

IN

where the first two inequalities are due to the fact that if two evanisB, thenp(A) < p(B), and
the last inequality is due to the Hoeffding's inequality.
Substitute (15) into (14), and we get,

PrQIM (h.x.y) < 0] < (ProIM(f x.y) < ¥]) g +& 552 (16)

Let pg' be a prior distribution ory,. pg' is constructed fronpg over A exactly asp™ is
constructed fromp. Then,KL(p™||pg") = mKL(p||po). By the PAC-Bayes theorem (McAllester,
1999), with probability at least-4 6 over sampleD, the following bound holds for any distribution
p,

POM(fxY) < Dtopr < (ProlM(.xy) < 3]}t

—1
+\/mKL(p||p0)+|n|\|+|n5 +2 a7

2N—1
By the similar statement as in (13), for everg #,, we have,

Pro[M(f,x.y) < J] < Pra[M(h,x,y) <V +ProM(f,xy) < Y[M(hx,y) > .
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Taking the expectation at both sides wfr4+ p™, we can get

(ProM(f,xy) < Jepm < PipM(hxy) <V

HProM(T,XY) < M X Y) > V) iopn,  (18)

where the second term at the right hand side equdBrta yn[M(f,X,y) < ¥IM(h,X,y) > V]) (xy)u0
by exchanging the orders of expectations, and we can get

Pre_om[M(f,%,y) < g\M(h,x,y) >y =Propn[3y £y AF(xY) < %IW’ #Y:Bh(x,y') > ]
<Priopm[3Y #y:Af(xY) < %IAh(x,y’) >y]

< Y Priopn[Af(x,Y) < %IAh(X,y’) > V]
Y'Yy

_m?
<(7]-1e =2, (19)
where we uséf(x,y’) to denotef (x,y) — f(x,y’), and usé\h(x,y’) to denoteh(x,y) — h(x,y’).

Put (16), (17), (18), and (19) together, then we get following bduiding for any fixednand
y>0,

mKL(p||po) +INN+Ind1+2
2N-1 '

my2
Po[M(h,x,y) <0]  <PrpM(h,x,y) <y]+|Y]e 32 + \/

To finish the proof, we need to remove the dependenceandy. This can be done by applying
the union bound. By the definition df, it is obvious that iff € Hp, thenf(x,y) € {(2k—m)c/m:
k=0,1,...,m}. Thus, even thoughcan be any positive value, there are no more thanl events
of the form{M(f,x,y) <y/2}. Since only the application of PAC-Bayes theorem in (17) depends
on (m,y) and all the other steps are true with probability one, we just need to cotiselenion of
countably many events. Léfx = 8/(m(m+ 1)2), then the union of all the possible events has a
probability at mosty i Smk = ¥m(M+ 1)3/(m(m+ 1)?) = &. Therefore, with probability at least
1-— & over random samples @b, the following bound holds for athand ally > 0,

+INN+Ing 1 +2
2N-1

my? KL
ProIM(h,x.y) < 0] — Prp[M(h,x,y) < i S|y|632C2+\/rr1 (plpo)

m? mKL INN+3In™1 4 2
i B [T 2

Settingm = [16c¢%y?In %} gives the results in the theorem. [ |
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