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Abstract

This paper studies the feature selection problem usingedgreast squares regression algorithm.
We show that under a certain irrepresentable condition erdésign matrix (but independent of
the sparse target), the greedy algorithm can select featmsistently when the sample size ap-
proaches infinity. The condition is identical to a corregging condition for Lasso.

Moreover, under a sparse eigenvalue condition, the gregdyitlam can reliably identify fea-
tures as long as each nonzero coefficient is larger than aastrisnes the noise level. In compar-
ison, Lasso may require the coefficients to be larger B@ayfs) times the noise level in the worst
case, whersis the number of nonzero coefficients.
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1. Introduction

We are interested in the statistical feature selection problem for leasesgegression. LeX =
[X1,...,Xq] € R™9 be ann x d data matrix witrx; € R" (j = 1,...,d) as its columns. Assume that
the response vectgr= [y1,...,Yn] € R" is generated from a sparse linear combination of the basis
vectors{x;} plus a zero-mean stochastic noise veetarR":

_ d _
y=XB+z= 73 BiXj+z (1)
=

where most coefficient;_equal zero. The goal of feature selection is to identify the set of non-
zeros{j : Bj # O}, wheref = [B4,...,Bq]. The purpose of this paper is study the performance of
greedy least squares regression for feature selection.

The following notations are used throughout the paper. GBrerR¢Y, define

suprB) = {j : Bj # 0}

Givenx € R"andF c {1,...,d}, let

~ — 1 . _
Bx(F,x) = min =|[XB—x|3 subjectto sup(B) CF.
BcRd N
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That is,fix (_F_,x) is the least squares solution with coefficients restricteel.to

GivenF € {1,...,d}, we letXg be then x |F| matrix that is the restriction of columns ¥fto
F. That is,Xg’s columns are the basis functiorgwith j € F_arranged in the ascending order. The
following quantity, appeared in Tropp (2004), is important in our analalso(see Wainwright,
2006):

ux(F) = ro‘¢aF_X||(XFIXF_)_lXFIXj 1.
We also define for alF c {1,...,d}

ox(F) —int{ L1XBI3/ I3 suprp) < F}.

This quantity is the smallest eigenvalue of the restricted design m#l@é(f which has also
appeared in previous work such as Wainwright (2006) and Zhao a@006). The requirement
that px (F) is bounded away from zero for smat| is often referred to as the sparse eigenvalue
condition (or the restricted isometry condition).

2. Related Work

The feature selection problem of estimating s(tﬁc)pfrom observatiory defined in (1) has attracted
significant attention in recent years. One of the frequently used methdeédtrre selection is
Lasso, which solves the following regularization problem:

2

+AIBIL] ()

A |1
B=argmin| -
B[N )

d
D Bixj—y
=

wherel > 0 is an appropriately chosen regularization parameter.

The effectiveness of feature selection using Lasso was establishéadnand Yu (2006) (also
see Meinshausen and Buhlmann, 2006) under irrepresentable cosithialepend on the signs of
the true target sd). Results established in this paper have cruder forms that depend onlg on th
design matrix but not the sparse tar@etSuch conditions have also been studied by Zhao and Yu
(2006) (also see Wainwright, 2006).

In addition to Lasso, greedy algorithms have also been widely used faréeselection. Greedy
algorithms for least squares regression are called matching pursuit iigia grocessing commu-
nity (Mallat and Zhang, 1993). The particular algorithm analyzed in thiepgmme time referred
to as orthogonal matching pursuit or OMP) is presented in Figure 1. Thoetaly is often called
forward greedy selection in the machine learning literature.

This paper investigates the behavior of greedy least squares algoritRigure 1 for feature
selection under the stochastic noise model (1). Our result extends thetpg (2004), which only
considered the situation without stochastic noise. It was shown by T&8)8j) thaiux(F_) <1lis
sufficient for the greedy algorithm to identify the correct feature spp@) when the noise vector
z=0. The main contribution of this paper is to generalize Tropp’s analysis widaon-zero sub-
Gaussian stochastic noise vectors. In particular, we will establish corgldomin o) |Bj| and

the stopping criteriom in Figure 1, so that the algorithm finds the correct feature set(fupphe
selection of stopping criterioa in the greedy algorithm is equivalent to selecting an appropriate
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FEATURE SELECTION USING GREEDY LEAST SQUARES

Input: X = [X1,...,Xq] € R™9, y € R" ande > 0
Output: F® andp®
letXj = x;/||X|| be normalized basig & 1,...,d)
letF©O =0andp® =0
fork=1,2,...

leti® = argmax|xT (XBKk—Y —y)|

if (1%, (XB*Y —y)| <€) break

let F0 = (iK1 UF K1)

let B = Bx (F(,y)
end

Figure 1: Greedy Least Squares Regression (OMP)

regularization conditior in the Lasso formulation (2), which is necessary both in theory and in
practice. The condition on me‘supp{E) IBj| also naturally appears in the analysis of Lasso (Zhao

and Yu, 2006). In fact, our result shows that the condition ijEQUBqE) |B;j| required for greedy
algorithm is weaker than the corresponding condition for Lasso.

The greedy algorithm analysis employed in this paper is a combination of anvakisn by
Tropp (2004, see Lemma 11) and some technical lemmas for the behavieeolygeast squares
regression by Zhang (2008), which are included in Appendix A for detepess. Note that Zhang
(2008) only studied a forward-backward procedure, but not themiandard forward greedy algo-
rithm considered here. In this paper, both the employment of the conﬂ;ti(tﬁ_\) < 1 and the proof
in Appendix B are new. _

As we shall see in this paper, the conditigr{F ) < 1 is necessary for the success of the forward
greedy procedure. It is worth mentioning that Lasso is consistent immedea estimation under a
weaker sparse eigenvalue condition, even if the condjtidfr ) < 1 fails (which means Lasso may
not estimate the true feature set correctly): for example, see Meinshanderu (2008) and Zhang
(2009). Although similar results may be obtained for greedy least squegesssion, when the
conditionux(F_) < 1 fails, it was shown by Zhang (2008) that the performance of grelgdyithm
can be improved by incorporating backward steps. In contrast, resutésipaper show that if

the design matrix satisfies the additional conditiq{F) < 1, then the standard forward greedy
algorithm will be successful without complicated backward steps.

3. Feature Selection using Greedy Least Squares Regression

We would like to establish conditions under which the forward greedy algorithFigure 1 never
makes any mistake (with large probability), and thus suitable for featurdiseleEor convenience,
we state an assumption before stating the theoretical result.

Assumption 1 Assume that
e The basis functions are normalized such tﬁﬁxj [2=1forall j=1,....d.
e The target function is truly sparse: there exiB_ts RY with F = supp(E) such thatty = X[g.

e ux(F) <landpx(F)>0.
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e y = [yili=1....n are independent (but not necessarily identically distributed) sub-Sans:
there exist > 0 such thatvi € {1,...,n} and¥t € R, E, &8 < got?/2,

Both Gaussian and bounded random variables are sub-Gaussiathesaigve definition. For
example, if a random variablé € [a,b], then Eg¢-E%) < e-@**/8_|f 3 random variable is
Gaussiang ~ N(0,02), thenEge? < eot?/2,

The following theorem gives conditions under which the forward gredglgrithm can identify
the correct set of features.

Theorem 1 Consider the greedy least squares algorithm in Figure 1, where Adsomp holds.
Given anyn € (0,0.5), with probability larger thanl — 2n, if the stopping criterion satisfies

1

£>-———0/2In(2d/n), mmlB,|>3£px( =)/ v,
1-wx(F) je

then when the procedure stops, we hae ¥ = F and

1B — Bl < 01/ (2In(2IF | /0))/(npx (F)):

The result is a simple consequence of the following slightly more generakime@s proof is
left to Appendix B).

Theorem 2 Consider the greedy least squares algorithm in Figure 1, where Adsomp holds.
Given anyn € (0,0.5), with probability larger thanl — 2n, if the stopping criterion satisfies

> T oV 2,
then when the procedure stops, the following claims are true:
e F-U CF,
o [F—FkD <2{jeF:|Bj <3epx(F) /vl
o [B%Y —Bx(F.y)ll2 < ep(F)*v/[F —FDI[/n,
o [IBx(F.y) — Bl < 0+/(2In(2[F]/n))/(npx (F)).

In the following, we discuss some consequences of Theorem 1 and€erheéd) and compare
them with those of Lasso. Lé&(e) be the number of € F such thai;| < 3epx (F =)-1/,/n. The-
orem 2 implies thatF — F&-| < 2k(¢); that is,|[F — Fk~1)| is small wherk(g) is small. In such
case, the feature setk-1) ) selected by the greedy least squares algorithm is approximately correct.
Moreover, we hav@k—1 ~ B. In fact, one can show (e.g., see Zhang, 2008) that with probability
larger than 1-n:

IBx (F,y) — Bll2 < ov/F|/(p(F)n)[1+ \/20In(1/n)].

By combining this estimate with Theorem 2, we have

IB*Y —BJl2 < o1/|F|/(p(F)n)[1+ v/20In(1/n)] +&p(F)~1\/2k(e) /n.
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That is, |B* Y — B|2 = O(+/|F|/n+ &ey/k(g)/n). This implies that whenu (F) < 1, greedy
least squares regression leads to a good estimation of the true par@meBgr choosinge =
O(o+/In(2d/n)), we obtain||pk-1 —Bll2= \/|F|/n+ V/K(g)Ind/n). The corresponding re-
sult for the Lasso estimatd in (2) is ||[3 BHZ = O(A/|F|/n), where we requir@ to be of the
ordera+/In(d/n)/nor larger. Therefore, ik(€) is small, then Lasso is inferior due to the extrdIn
factor. This factor is inherent to thg regularization in Lasso, which introduces a bias that cannot
be removed.

In this paper, we are mainly interested in the situatigg) = O, which implies that with the
stopping criteriore, greedy least squares regression can correctly identify all featitedarge
probability. Note that in order to correctly identify all featurds{Y = F), the requirement
min;cg |Bj| > 3epx(F)~1/y/n in Theorem 1 is natural. Observe that we may take
e = 0,/3In(d/n)/(1—ux(F)). This means that under the assumption of Theorem 1, it is pos-
sible to identify all features correctly using the greedy least squarestalgaas long as the target
coefficientsB; (j € F) are larger than the order,/In(d/n)/n.

In fact, sinceo\/In(d/n)/nis the noise level, if there exists a target coefflcié,rmat is smaller
thanO(a/In(d/n)/n) in absolute value, then we cannot distinguish such a small coefficient from
zero (or noise) with large probability. Therefore when the conditig(F) < 1 holds, it is not
possible to do much better than greedy least squares regression fxdiyet constant hidden in

O(-) and its dependency q(F) andyix (F).

In comparison, for Lasso, the condition required of [’QMB] | depends not only op(F ) Land

(1—mx(F))~%, but also on the quantity(XIXg) [« (see Wainwright, 2006), where

Ty-\-1
|OXEXE) Y — sup NEXE) Ul

ueRlFl [[ul|eo

Consider the matrigXIXz)~* = 1 +0.5B/+/|F|, =lorj=1ori=j,
andB; ; = 0 otherwise. Then itis not hard to verify thatF ) ~* < 2 and|| (X2 Xg) ~*{|e,e0 > 0.5/|F |
(by takingu = [1,...,1]). This means that in the worst case, we can find mad;].—'iXF* such that

OXIXE) o > 0.25¢/ |F|p(F)

Therefore, if we only assume thp(F_) is bounded away from zero without using the quantity
[(XEXE) w0, the feature consistency result in Zhao and Yu (2006) and Wainwragiete) for
Lasso requires the condition

min_|Bj| > coy/|F|In(d/n)/n
jesuppp)

for some constantthat is proportional te(F)~1(1—px (F)) L. This is a more restrictive condition
than that of greedy least squares regression. Unfortunately, tioe tvaf_] cannot be removed for
Lasso, unless we make the additional and stronger assumptidf(l@sxp— )" Ywo = O(P(F)™1).

As we discussed after Theorem 2, the biakefegularization also leads to suboptimal estima-
tion for Lasso. For example, for the greedy algorithm, we can s}hbWF y)—Bll2=0(a+/|F|/n)
and ||[3x(F y) — Bl = O(c\/IN[F|/n). Under the conditions of Theorem 1, we hais1 —

Bx(F,y), and thus||p*Y — B, = O(c/[F|/n) and %Y — B|lw = O(c+/In[F|/n). Und;r
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the same conditions, for the Lasso estimfiaf (2), we have|| — Bll2 = O(o+/|F|Ind/n) and
||[§— Bl = O(o+/Ind/n). The Ind factor (bias) is inherent to Lasso, which can be removed with
two-stage procedures (e.g., Zhang, 2009). However, such pnaxedre less robust and more com-
plicated than the simple greedy algorithm.

4. Feature Selection Consistency

As we have mentioned before, the effectiveness of feature selectiupliesso was established by
Zhao and Yu (2006), under more refined irrepresentable conditiondepand on the signs of the
true target sgfB). In comparison, the conditiquk (F) < 1 in Theorem 2 depends only on the design
matrix but not the sparse targét That is, the condition is with respect to the worst case choice of
B with support sup(B) = F. Due to the complexity of greedy procedure, we cannot establish a
simple target dependent condition that ensures feature selection coogistéis means for any
specific target, the behavior of forward greedy algorithm and Lassatinggtiifferent, and one may
be preferred over the other under different scenarios. Experinredtsang (2008) illustrated this
point.

In the following, we introduce the target independent irrepresentabiéittans that are equiv-
alent to the irrepresentable conditions of Zhao and Yu (2006) with thet wase choice of sdf)
(also see Wainwright, 2006).

Definition 3 Consider a sequence of problems indexed by n: at each sample &ze&() be an
nx d™ dimensional data matrix, and we obse® € R" that is corrupted with noise. Lét("
be the feature set, whekgy™ = XM andsupgp™) = F™ .

We say that the sequence satisfiesstineng target independent irrepresentaioledition if there
existsd > 0 such thaimp ey (FV) <1-38.

We say that the sequence satisfies weak target independent irrepresentabtadition if
Wy (FM) < 1 for all sufficiently large n.

It was shown by Zhao and Yu (2006) that the strong (target indepgnidespresentable condition
is sufficient for Lasso to select features consistently for all possibrecigibination o™ when
n — oo (under appropriate assumptions). In addition, the weak (target indep8rirrepresentable
condition is necessary for Lasso to select features consistentlymher. The target independent
irrepresentable conditions are considered by Zhao and Yu (2008)Vamivright (2006). Similar
conditions were also considered by Tropp (2004) without stochastie.nois

Results parallel to that of Lasso can be obtained for Algorithm 1. Spdbifitee following two
theorems show that the strong target independent irrepresentabliarorgsufficient for Algo-
rithm 1 to select features consistently, while the weak target independemtasentable condition
is necessary.

Theorem 4 Consider regression problems indexed by the sample size n, andtaiem®in Defini-

tion 3. Let Assumption 1 hold, with noisendependent of n. Assume that the strong irrepresentable
condition holds. For each problem of sample size n, denote, lllge-feature set from Algorithm 1
when it stops witls = n¥? for some s= (0, 1]. Then for all sufficiently large n, we have

P(F, # FM) < exp(—n®/Inn)

if the following conditions hold:
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1. d, <exp(n®/Inn)
2. min; g [B"] > 3n(s-1/2/p(FI0).

Proof Whennis sufficiently large, the two conditions of Theorem 1 hold wjth 0.5exp—n®/Inn).
Therefore the theorem is a direct consequence. |

Theorem 5 Consider regression problems indexed by the sample size n, andtaiem®in Defini-
tion 3. Let Assumption 1 hold, with nmsendependent of n. Assume that the weak irrepresentable
condition is violated at sample sizes @i ny < ---. There exist targetB™) with arbitrarily large

min, gy ]Ei(n")\, such that at each sample sizg Algorithm 1 chooses a basid)i¢ F in the first
step with probability larger tha®.5.

Proof By definition of i (F), there existy = XFIXF—)u e RIFl such that
b (F) = max| (XEXe) ™ xi 2
VT (XEXE) XX |

=maxX

j¢F VIl
u" XIx;
~ max | TXF il
i#F [[(XEXE)Ullw
 maxige X[ Xeu|

- maxce| (x Xl

Therefore ifux (F) > 1, we can findi € RIFl such that mayr IXI Xzu| > max g | (X Xe)ul.
Consider an arbitrary sequenég > 0 (n = 1,2,...)._ At any sample sizen = n;, since
by (F() > 1, we can find a sufficiently large target vecﬁS’P such that

max|x’ X(WRM | < max|xTX B| — 25, (3)
icF(M j¢Fm

Now we may taked, = 03/2nln (4d,); then Lemma 8 implies that with probability larger thas,0
MaXjc(1,.. d) |x (y — X(MBM)| < &,. Therefore (3) implies that

ax[xT XV |+ [xT (y X (VB[] < max|ix] XVB| —[xf (y ~ X))
icF(n jgF™

Therefore
max|x y| < max|xJ yl.
icF(n ¢F(

This means that we pidk!) ¢ F in the first step with probability larger than3) |
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5. Conclusion

We have shown that weak and strong target independent irreprelserdaditions are necessary and
sufficient conditions for a greedy least squares regression algatdtiselect features consistently.
These conditions match the target independent versions of the ngcasdasufficient conditions
for Lasso by Zhao and Yu (2006).

Moreover, if the eigenvalup(F) is bounded away from zero, then the greedy algorithm can
reliably identify features as long as each nonzero coefficient is largaraltonstant times the noise
level. In comparison, under the same condition, Lasso may require tHecwds to be larger than
O(+/s) times the noise level, wherds the number of nonzero coefficients. This implies that under
some conditions, greedy least squares regression may potentially saiocet more effectively
than Lasso in the presence of stochastic noise.

Although the target independent versions of the irrepresentable corglitio greedy least
squares regression match those of Lasso, our result does not diiolv algorithm is better for
any specific target. In fact, the target specific behaviors of the twoidigts are different, and one
may be preferred over the other under different scenarios.
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Appendix A. Auxiliary Lemmas

The following technical lemmas from Zhang (2008) are needed to analgzeetiavior of greedy
least squares regression under stochastic noise. For completea@sdime them here with proofs.

The following lemma relates the squared error reduction in one greedy steprédation coef-
ficients.

Lemma 6 For all x,x’,y € R", we have
Inf [|x +ax’ =I5 = [Ix =I5 = (x=y)Tx)?/|IX3.

Proof The equality follows from simple algebra with the optinsedchieved at-(x —y) "' /||X'||3.
|

The following lemma provides a bound on the squared error reductioneofaward greedy
step. Some ingredients of the proof has appeared in Natarajan (1995).

Lemma 7 Let Assumption 1 hold. ConsiderEF c {1,...,d}. Letp = Bx(F,y), B=Bx(F.y),
x'=XB/, andx = XB. Then

p(F)
F—F]

2
[ = x][3-

inf_ |Ix+oaxi—vy|[2<|x—y|Z—
O(GR/J_EF_FH =Yz <[x=yll2
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Proof For all j € F, we have||x + ax;j —y||3 achieves the minimum at = 0. This implies that
(x—y)Tx; =0 for j € F. Therefore we have

x=y" > (B Bjx;

jeF—F

=x=y)" 5 Bj-Bi)xj=(x=y)T(X =x)
jeFUF

== [Ix=X3+ (X =y)T (X' =x) = =[x = X[}3.

The last quality follows from the definition @ = f&x(F_,y) andF c F, which implies thatx’ —
y)T (X' —x) = 0. Now, lets = |F — F|, then the above inequality leads to the following derivation
vn > 0:

S inf _lx+n(Bj—Bi)xi -yl
< 3 Ix+n(®—B)x -Vl

jeF-F
=s|x—y[3+n® ¥ B -B)xl3+2nx-y" T (BB
jeF—F jeF—F
=s|x=yl3+nn® Y (Bj—B;)*—2n[X —x]3.
jeF-F

Note that in the last equation, we have ugggl|3 = nin Assumption 1. By optimizing over, we
obtain

s inf F—Bi)x; — VI3
J_G'QZF”XﬁLﬂ(BJ Bi)Xj — VIl

¥ —x|3
aneE(B/j - Bj)z

This leads to the lemma. [ |

<s|x -yl - < x—yl5—p(F)|x' —x[3.

The following lemma is a standard empirical processes bound for sutsi@ausndom vari-
ables. The bound is used to derive probability estimates in our analysis.

Lemma 8 Consider n independent random variabfes. . ., &, such thatEe & —E&) < e97t?/2 for
alltandi. Consider g; fori=1,...,nand j=1,...,m, we have for alj € (0,1), with probability
larger thanl—n:

sup -Zlgi’j (& —E&)| <ay/2In(2m/n),
where & = sup 31, ¢7;07.

Proof For a fixed], we lets; = S, g i (& — E&;); then by assumptiorE (€5 + e 'Si) < 262**/2,
which implies that for alk > 0: P(|sj| > £)e'e < 2¢*"/2, Now lett = £/a2, we obtain:

{

> s) < 272

_igi,j(zi —Eg)
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This implies that

P [sup
i

_igi,j(zi —Eg)

28] SmsupP[
J

_igi,j(zi —Eg)

> s] < 2me /()
This implies the lemma. |

The following lemma gives a bound on the infinity norm of the difference betwiee estimated
parametefx (F,y) and the true paramet@rwhen the set of featurds are known in advance.

Lemma 9 Let Assumption 1 hold. Consider any fixed= {1,...,d}. For all n € (0,1), with
probability larger thanl —n, we have

1Bx(F.y) — Bx (F,Ey)l= < 0,/ (2In(2F| /n))/(np(F)).

Proof For simplicity, letG = Xg and_E: |F_|. Let ﬁ’ € R¥ and E’ € RK be the restrictions of
Bx(F,y) € RY andBx(F,Ey) € RY to F respectively. Algebraically, we hay# = (G'G)G'y
andp’ = (G"G)~G'Ey. It follows that

B—B =(G'G)'G"(y—Ey).

Therefore o
B} —Bjl = 1] (G"G) 'GT (y - Ey)|-
Lemma 8 implies that with probability larger than-T, for all j:
€] (G'G)*G" (y ~Ey)| < 0l|€] (GG) G |12/ 2In(2K/n).

Since by definitionp(F)n is no larger than the smallest eigenvaluezdiG, the desired inequality
follows from the estimate

le] (GTG) G 3= €] (G'G) "ej < 1/(np(F)).

The following lemma estimates the correlation coefficiernt ofvith j ¢ F.

Lemma 10 Let Assumption 1 hold. Assume also thgt= XEWith supp([g) CFc{1,...,d}. For
all n € (0,1), with probability larger tharl —n, we have

max|(XBx(F.y) —y)xj| < o/2nin(2d/n).

Proof Let P be the projection operator to the subspace spanngapyj € F_} onR". Lemma 8
implies that with probability larger than-1n:

sup |(y—Ey)" (I —P)x;| < a/2nin(2d/n),

J:]-‘vd
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where we have usekj||> = /n. LetX = Xfixgi_,y). Since(X —y)Tx; = 0 for all j € F, we have
X = Py. Moreover, sincé¢l —P)Ey = (I —P)Xp3 =0, we have

(y—Ey)"(1 =P)xj = (1 —=P)y — (I = P)Ey)x; = (y — %) "x

Combine this equation with the previous inequality, we obtain the desired bound. |

Appendix B. Proof of Theorem 2

Before the formal proof, we give a brief outline of the main argument. Firstniha 10 im-
plies that with large probability, max=|(XBx(F,y) — y)Tx;| is small. Using this fact, and the
assumption thafix(F) < 1, it follows from Lemma 11 below that when sy@f< ) c F, ei-
ther max|(XB*Y —y)Tx| is sufficiently small (which implies that the greedy procedure stops
andBY ~ B), or ma>g¢,:—](XB(k*1) —y)Tx;j| < max.g | (XBEY —y)Tx;| (which implies that the
greedy procedure chooses a direcii6he F in the next iteration). The claims of the theorem then
follow by induction.

We start the formal proof by introducing the following critical lemma, whichegafizes the
essential idea of Tropp (2004). Note that the result there only coesidiee cas&px(F,y) =Y.

Lemma 11 Considerf € R? such thasupg) C F. We have
max (XB-y)Txj| < Tg%XI(XBx(F_,y) =Y)TXj| + ix (F)max|(XB—y) il
Proof Letp = Bx(F,y). Note thatXp' —y)Tx; = 0 wheni € F. Therefore
max| (XB —y) il = maxixi X (B —B)| = XX (B~ Bl
Letv= XF Xe(B—B'), then the definition ofix (F ) implies that

XD ] mae k] Xe(B-B)
R S =

We obtain from the above

max|x] X (B —B')| < ix (F) XX (B—B) | = ix (F )maX!(XB y) " xil.

j¢F

Now, the lemma follows from the simple inequality

max|(XB—y) xi| < max|x! X(B—B')| +max|x! (Xp' —
j¢F’( B-y) J’_j¢F\J B-B)l j¢F‘j( B -yl

Now we are ready to prove the theorem. From Lemma 9, we obtain with probaditigr than
1-n,

IBx(F.y) Bl < 0/ (2In(2IF]/n))/(np(F)).
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From Lemma 10, we obtain with probability larger than f),

r]T1¢r’31F><|( X(Bx(F,y) —y)"%j| < 0\/2In(2d/n) < (1—x(F))e. (4)

With probability larger than £ 2n, both claims hold. _

We now proceed by induction dato show thaF *1) ¢ F before the procedure stops. Assume
the claim is true aftek — 1 steps fork > 1. By induction hypothesis, we ha'ekY ¢ F at the
beginning of stefk. Therefore Lemma 7 implies

(k-1) 2 k1 oz P(F) k-1 A (E w2
JTI‘g;HXB ) +ax; —yll5 < [XB yliz ﬁ’F_F(kflnﬂx(B Bx (F,y)lI.

Using the above inequality, we obtain from Lemma 6 the following bound on thelation coef-
ficients:

1/2
ma (X TR = B — I3 min IXB* )+ ox, - i

icF
VP(F) k1) _ 3 (F
>¢mmsk Y —Bx(F.y)l2
o Ve(F) Vvnp(F)
V|F —F&T)]

We only need to consider the following two scenarios:

o [B%Y —Bx(F.y)ll2 > ep(F)~*v/[F —F&D[/n.

In this case, we have

1B — By (F,y)|2-

max| (XBKY —y)T%i| > &> f};aﬁx\ (XBx(F.y) =¥) %1/ (1 i (F))-

icF

The second inequality is due to (4). Now by combining this estimate with Lemma 11, we

obtain
max|(XB*Y —y)T%;| < max|(Xp* Y —y)T%i[.
icF

igF
This implies thai®®¥ € F and the procedure does not stop.

o [B%Y —Bx(F.y)ll2 < ep(F)*/[F—F&D/n.

In this case, we have the following scenarios:
K ¢ F: By Lemma 11, we must have:
max|(XB—y)"%| éma_xl(XB—y)Tij\

<f}"'¢aFX|(XBx(F Y) =) %]+ b (F )max|(XB y) %l

<m€<';1:X\(XBx(Fy> y) ;| + bix (F )rJnaX!(XB y)T%j]-
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Therefore

1
max|(XB—y) k| < ————— max|(XPx (F. T <e.
j¢F ’( B y) J| = 1_HX(F) | F ‘ BX y) ) J|

The last inequality is due to (4). This implies that the procedure stops.
2. i® ¢ F and the procedure does not stop.
3. i e F and the procedure stops.

The above situations imply that if the procedure does not stop,ithen F. If the procedure

stops, then
[BY —Bx(F.y)ll2 < &p(F)*y/|F ~ Fk-3)|/n.

Therefore by induction, when the procedure stops, the following tHag®€ hold:
o Flk-1) F.
o B —Bx(F,y)|l2 < gpx(F)"1V/IF —F&D/n.

o IBx(F.y) —Bll» < 01/(2In(2[F]/n))/(npx (F)) < &/ /npx (F
Now, we can lety = v/8epx (F)~1/,/n, then the above claims imply that

y/I{i € F—Fk:[B)| > v}

1/2
—
<| > Bl ]
| jeF-F&D
- 1/2 1/2
<l 5 ijsxw,y)z] " { ﬁx<F,y>2]
= jeESFkD

IF — F=D[[B—Bx (F,Y) [l + [IB*Y — Bx (F.y)|I2

<¢|F F O]/ (npx (F) )& + £px (F) 1y /|F — F kD /n

<2epx(F) 1/ IF = F- 1| /n=yy/|F —F(-] /2.

Therefore _ _ _
2{j e F=FIb gl > v} < [F—FI),

which implies that
IF—F&U =2|F — kD] _ |F — k=)
<2F —FE |2 {je F—F& Y |gj| >y}
=2|{j e F—FlV: |Bj| <y}
<2l{jeF:Bjl <V}l

This proves the theorem.
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