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Abstract
This paper studies the feature selection problem using a greedy least squares regression algorithm.
We show that under a certain irrepresentable condition on the design matrix (but independent of
the sparse target), the greedy algorithm can select features consistently when the sample size ap-
proaches infinity. The condition is identical to a corresponding condition for Lasso.

Moreover, under a sparse eigenvalue condition, the greedy algorithm can reliably identify fea-
tures as long as each nonzero coefficient is larger than a constant times the noise level. In compar-
ison, Lasso may require the coefficients to be larger thanO(

√
s) times the noise level in the worst

case, wheres is the number of nonzero coefficients.
Keywords: greedy algorithm, feature selection, sparsity

1. Introduction

We are interested in the statistical feature selection problem for least squares regression. LetX =
[x1, . . . ,xd] ∈ R

n×d be ann×d data matrix withx j ∈ R
n ( j = 1, . . . ,d) as its columns. Assume that

the response vectory = [y1, . . . ,yn] ∈ R
n is generated from a sparse linear combination of the basis

vectors{x j} plus a zero-mean stochastic noise vectorz∈ R
n:

y = Xβ̄+z =
d

∑
j=1

β̄ jx j +z, (1)

where most coefficients̄β j equal zero. The goal of feature selection is to identify the set of non-
zeros{ j : β̄ j 6= 0}, whereβ̄ = [β̄1, . . . , β̄d]. The purpose of this paper is study the performance of
greedy least squares regression for feature selection.

The following notations are used throughout the paper. Givenβ ∈ R
d, define

supp(β) = { j : β j 6= 0}.

Givenx ∈ R
n andF̄ ⊂ {1, . . . ,d}, let

β̂X(F̄ ,x) = min
β∈Rd

1
n
‖Xβ−x‖2

2 subject to supp(β) ⊂ F̄ .
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That is,β̂X(F̄ ,x) is the least squares solution with coefficients restricted toF̄ .
Given F̄ ∈ {1, . . . ,d}, we letXF̄ be then×|F̄| matrix that is the restriction of columns ofX to

F̄ . That is,XF̄ ’s columns are the basis functionsx j with j ∈ F̄ arranged in the ascending order. The
following quantity, appeared in Tropp (2004), is important in our analysis (also see Wainwright,
2006):

µX(F̄) = max
j /∈F̄

‖(XT
F̄ XF̄)−1XT

F̄ x j‖1.

We also define for all̄F ⊂ {1, . . . ,d}

ρX(F̄) = inf

{

1
n
‖Xβ‖2

2/‖β‖2
2 : supp(β) ⊂ F̄

}

.

This quantity is the smallest eigenvalue of the restricted design matrix1
nXT

F̄ XF̄ , which has also
appeared in previous work such as Wainwright (2006) and Zhao and Yu (2006). The requirement
that ρX(F) is bounded away from zero for small|F| is often referred to as the sparse eigenvalue
condition (or the restricted isometry condition).

2. Related Work

The feature selection problem of estimating supp(β̄) from observationy defined in (1) has attracted
significant attention in recent years. One of the frequently used method forfeature selection is
Lasso, which solves the followingL1 regularization problem:

β̂ = argmin
β





1
n

∥

∥

∥

∥

∥

d

∑
j=1

β jx j −y

∥

∥

∥

∥

∥

2

2

+λ‖β‖1



 , (2)

whereλ > 0 is an appropriately chosen regularization parameter.
The effectiveness of feature selection using Lasso was established in Zhao and Yu (2006) (also

see Meinshausen and Buhlmann, 2006) under irrepresentable conditions that depend on the signs of
the true target sgn(β̄). Results established in this paper have cruder forms that depend only on the
design matrix but not the sparse targetβ̄. Such conditions have also been studied by Zhao and Yu
(2006) (also see Wainwright, 2006).

In addition to Lasso, greedy algorithms have also been widely used for feature selection. Greedy
algorithms for least squares regression are called matching pursuit in the signal processing commu-
nity (Mallat and Zhang, 1993). The particular algorithm analyzed in this paper (some time referred
to as orthogonal matching pursuit or OMP) is presented in Figure 1. The algorithm is often called
forward greedy selection in the machine learning literature.

This paper investigates the behavior of greedy least squares algorithm inFigure 1 for feature
selection under the stochastic noise model (1). Our result extends that ofTropp (2004), which only
considered the situation without stochastic noise. It was shown by Tropp (2004) thatµX(F̄) < 1 is
sufficient for the greedy algorithm to identify the correct feature set supp(β̄) when the noise vector
z = 0. The main contribution of this paper is to generalize Tropp’s analysis to handle non-zero sub-
Gaussian stochastic noise vectors. In particular, we will establish conditions on minj∈supp(β̄) |β̄ j | and

the stopping criterionε in Figure 1, so that the algorithm finds the correct feature set supp(β̄). The
selection of stopping criterionε in the greedy algorithm is equivalent to selecting an appropriate
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Input: X = [x1, . . . ,xd] ∈ R
n×d, y ∈ R

n andε > 0
Output:F(k) andβ(k)

let x̃ j = x j/‖x j‖2 be normalized basis (j = 1, . . . ,d)
let F(0) = /0 andβ(0) = 0
for k = 1,2, . . .

let i(k) = argmaxi |x̃T
i (Xβ(k−1)−y)|

if (|x̃T
i(k)

(Xβ(k−1)−y)| ≤ ε) break
let F(k) = {i(k)}∪F(k−1)

let β(k) = β̂X(F(k),y)
end

Figure 1: Greedy Least Squares Regression (OMP)

regularization conditionλ in the Lasso formulation (2), which is necessary both in theory and in
practice. The condition on minj∈supp(β̄) |β̄ j | also naturally appears in the analysis of Lasso (Zhao

and Yu, 2006). In fact, our result shows that the condition of minj∈supp(β̄) |β̄ j | required for greedy
algorithm is weaker than the corresponding condition for Lasso.

The greedy algorithm analysis employed in this paper is a combination of an observation by
Tropp (2004, see Lemma 11) and some technical lemmas for the behavior of greedy least squares
regression by Zhang (2008), which are included in Appendix A for completeness. Note that Zhang
(2008) only studied a forward-backward procedure, but not the more standard forward greedy algo-
rithm considered here. In this paper, both the employment of the conditionµX(F̄) < 1 and the proof
in Appendix B are new.

As we shall see in this paper, the conditionµX(F̄)≤ 1 is necessary for the success of the forward
greedy procedure. It is worth mentioning that Lasso is consistent in parameter estimation under a
weaker sparse eigenvalue condition, even if the conditionµX(F̄) ≤ 1 fails (which means Lasso may
not estimate the true feature set correctly): for example, see Meinshausen and Yu (2008) and Zhang
(2009). Although similar results may be obtained for greedy least squaresregression, when the
conditionµX(F̄) ≤ 1 fails, it was shown by Zhang (2008) that the performance of greedy algorithm
can be improved by incorporating backward steps. In contrast, results inthis paper show that if
the design matrix satisfies the additional conditionµX(F̄) < 1, then the standard forward greedy
algorithm will be successful without complicated backward steps.

3. Feature Selection using Greedy Least Squares Regression

We would like to establish conditions under which the forward greedy algorithm in Figure 1 never
makes any mistake (with large probability), and thus suitable for feature selection. For convenience,
we state an assumption before stating the theoretical result.

Assumption 1 Assume that

• The basis functions are normalized such that1
n‖x j‖2

2 = 1 for all j = 1, . . . ,d.

• The target function is truly sparse: there existsβ̄ ∈ R
d with F̄ = supp(β̄) such thatEy = Xβ̄.

• µX(F̄) < 1 andρX(F̄) > 0.
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• y = [yi ]i=1,...,n are independent (but not necessarily identically distributed) sub-Gaussians:

there existsσ ≥ 0 such that∀i ∈ {1, . . . ,n} and∀t ∈ R, Eyi e
t(yi−Eyi) ≤ eσ2t2/2.

Both Gaussian and bounded random variables are sub-Gaussian usingthe above definition. For
example, if a random variableξ ∈ [a,b], then Eξet(ξ−Eξ) ≤ e(b−a)2t2/8. If a random variable is

Gaussian:ξ ∼ N(0,σ2), thenEξetξ ≤ eσ2t2/2.
The following theorem gives conditions under which the forward greedyalgorithm can identify

the correct set of features.

Theorem 1 Consider the greedy least squares algorithm in Figure 1, where Assumption 1 holds.
Given anyη ∈ (0,0.5), with probability larger than1−2η, if the stopping criterion satisfies

ε >
1

1−µX(F̄)
σ
√

2ln(2d/η), min
j∈F̄

|β̄ j | ≥ 3ερX(F̄)−1/
√

n,

then when the procedure stops, we have F(k−1) = F̄ and

‖β(k−1)− β̄‖∞ ≤ σ
√

(2ln(2|F̄|/η))/(nρX(F̄)).

The result is a simple consequence of the following slightly more general theorem (its proof is
left to Appendix B).

Theorem 2 Consider the greedy least squares algorithm in Figure 1, where Assumption 1 holds.
Given anyη ∈ (0,0.5), with probability larger than1−2η, if the stopping criterion satisfies

ε >
1

1−µX(F̄)
σ
√

2ln(2d/η),

then when the procedure stops, the following claims are true:

• F(k−1) ⊂ F̄.

• |F̄ −F(k−1)| ≤ 2|{ j ∈ F̄ : |β̄ j | < 3ερX(F̄)−1/
√

n}|

• ‖β(k−1)− β̂X(F̄ ,y)‖2 ≤ ερ(F̄)−1
√

|F̄ −F(k−1)|/n.

• ‖β̂X(F̄ ,y)− β̄‖∞ ≤ σ
√

(2ln(2|F̄|/η))/(nρX(F̄)).

In the following, we discuss some consequences of Theorem 1 and Theorem 2, and compare
them with those of Lasso. Letk(ε) be the number ofj ∈ F̄ such that|β̄ j | < 3ερX(F̄)−1/

√
n. The-

orem 2 implies that|F̄ −F(k−1)| ≤ 2k(ε); that is,|F̄ −F(k−1)| is small whenk(ε) is small. In such
case, the feature setF(k−1) selected by the greedy least squares algorithm is approximately correct.
Moreover, we haveβ(k−1) ≈ β̄. In fact, one can show (e.g., see Zhang, 2008) that with probability
larger than 1−η:

‖β̂X(F̄ ,y)− β̄‖2 ≤ σ
√

|F̄|/(ρ(F̄)n)[1+
√

20ln(1/η)].

By combining this estimate with Theorem 2, we have

‖β(k−1)− β̄‖2 ≤ σ
√

|F̄|/(ρ(F̄)n)[1+
√

20ln(1/η)]+ ερ(F̄)−1
√

2k(ε)/n.
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That is, ‖β(k−1) − β̄‖2 = O(
√

|F̄|/n+ ε
√

k(ε)/n). This implies that whenµX(F̄) < 1, greedy
least squares regression leads to a good estimation of the true parameterβ̄. By choosingε =
O(σ

√

ln(2d/η)), we obtain‖β(k−1) − β̄‖2 = O(
√

|F̄|/n+
√

k(ε) lnd/n). The corresponding re-
sult for the Lasso estimator̂β in (2) is ‖β̂− β̄‖2 = O(λ

√

|F̄|/n), where we requireλ to be of the
orderσ

√

ln(d/η)/n or larger. Therefore, ifk(ε) is small, then Lasso is inferior due to the extra lnd
factor. This factor is inherent to theL1 regularization in Lasso, which introduces a bias that cannot
be removed.

In this paper, we are mainly interested in the situationk(ε) = 0, which implies that with the
stopping criterionε, greedy least squares regression can correctly identify all featureswith large
probability. Note that in order to correctly identify all features (F(k−1) = F̄), the requirement
min j∈F̄ |β̄ j | ≥ 3ερX(F̄)−1/

√
n in Theorem 1 is natural. Observe that we may take

ε = σ
√

3ln(d/η)/(1− µX(F̄)). This means that under the assumption of Theorem 1, it is pos-
sible to identify all features correctly using the greedy least squares algorithm as long as the target
coefficientsβ̄ j ( j ∈ F̄) are larger than the orderσ

√

ln(d/η)/n.
In fact, sinceσ

√

ln(d/η)/n is the noise level, if there exists a target coefficientβ̄ j that is smaller
thanO(σ

√

ln(d/η)/n) in absolute value, then we cannot distinguish such a small coefficient from
zero (or noise) with large probability. Therefore when the conditionµX(F̄) < 1 holds, it is not
possible to do much better than greedy least squares regression exceptfor the constant hidden in
O(·) and its dependency onρ(F̄) andµX(F̄).

In comparison, for Lasso, the condition required of minj∈F̄ |β̄ j | depends not only onρ(F̄)−1 and
(1−µX(F̄))−1, but also on the quantity‖(XT

F̄ XF̄)−1‖∞,∞ (see Wainwright, 2006), where

‖(XT
F̄ XF̄)−1‖∞,∞ = sup

u∈R|F̄ |

‖(XT
F̄ XF̄)−1u‖∞

‖u‖∞
.

Consider the matrix(XT
F̄ XF̄)−1 = I +0.5B/

√

|F̄|, whereBi, j = 1 when eitheri = 1 or j = 1 or i = j,

andBi, j = 0 otherwise. Then it is not hard to verify thatρ(F̄)−1 < 2 and‖(XT
F̄ XF̄)−1‖∞,∞ > 0.5

√

|F̄|
(by takingu = [1, . . . ,1]). This means that in the worst case, we can find matrixXT

F̄ XF̄ such that

‖(XT
F̄ XF̄)−1‖∞,∞ > 0.25

√

|F̄|ρ(F̄)−1.

Therefore, if we only assume thatρ(F̄) is bounded away from zero without using the quantity
‖(XT

F̄ XF̄)−1‖∞,∞, the feature consistency result in Zhao and Yu (2006) and Wainwright (2006) for
Lasso requires the condition

min
j∈supp(β̄)

|β̄ j | ≥ cσ
√

|F̄| ln(d/η)/n

for some constantc that is proportional toρ(F̄)−1(1−µX(F̄))−1. This is a more restrictive condition
than that of greedy least squares regression. Unfortunately, the factor

√

|F̄| cannot be removed for
Lasso, unless we make the additional and stronger assumption that‖(XT

F̄ XF̄)−1‖∞,∞ = O(ρ(F̄)−1).
As we discussed after Theorem 2, the bias ofL1-regularization also leads to suboptimal estima-

tion for Lasso. For example, for the greedy algorithm, we can show‖β̂X(F̄ ,y)− β̄‖2 = O(σ
√

|F̄|/n)

and‖β̂X(F̄ ,y)− β̄‖∞ = O(σ
√

ln |F̄|/n). Under the conditions of Theorem 1, we haveβ(k−1) =

β̂X(F̄ ,y), and thus‖β(k−1) − β̄‖2 = O(σ
√

|F̄|/n) and ‖β(k−1) − β̄‖∞ = O(σ
√

ln |F̄ |/n). Under
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the same conditions, for the Lasso estimatorβ̂ of (2), we have‖β̂− β̄‖2 = O(σ
√

|F̄| lnd/n) and
‖β̂− β̄‖∞ = O(σ

√

lnd/n). The lnd factor (bias) is inherent to Lasso, which can be removed with
two-stage procedures (e.g., Zhang, 2009). However, such procedures are less robust and more com-
plicated than the simple greedy algorithm.

4. Feature Selection Consistency

As we have mentioned before, the effectiveness of feature selection using Lasso was established by
Zhao and Yu (2006), under more refined irrepresentable conditions that depend on the signs of the
true target sgn(β̄). In comparison, the conditionµX(F̄) < 1 in Theorem 2 depends only on the design
matrix but not the sparse targetβ̄. That is, the condition is with respect to the worst case choice of
β̄ with support supp(β̄) = F̄ . Due to the complexity of greedy procedure, we cannot establish a
simple target dependent condition that ensures feature selection consistency. This means for any
specific target, the behavior of forward greedy algorithm and Lasso might be different, and one may
be preferred over the other under different scenarios. Experimentsin Zhang (2008) illustrated this
point.

In the following, we introduce the target independent irrepresentable conditions that are equiv-
alent to the irrepresentable conditions of Zhao and Yu (2006) with the worst case choice of sgn(β̄)
(also see Wainwright, 2006).

Definition 3 Consider a sequence of problems indexed by n: at each sample size n,let X(n) be an
n×d(n) dimensional data matrix, and we observey(n) ∈ R

n that is corrupted with noise. Let̄F(n)

be the feature set, whereEy(n) = X(n)β̄(n) andsupp(β̄(n)) = F̄(n) .
We say that the sequence satisfies thestrong target independent irrepresentablecondition if there

existsδ > 0 such thatlimn→∞µX(n)(F̄(n)) ≤ 1−δ.
We say that the sequence satisfies theweak target independent irrepresentablecondition if

µX(n)(F̄(n)) ≤ 1 for all sufficiently large n.

It was shown by Zhao and Yu (2006) that the strong (target independent) irrepresentable condition
is sufficient for Lasso to select features consistently for all possible sign combination of̄β(n) when
n→ ∞ (under appropriate assumptions). In addition, the weak (target independent) irrepresentable
condition is necessary for Lasso to select features consistently whenn→ ∞. The target independent
irrepresentable conditions are considered by Zhao and Yu (2006) andWainwright (2006). Similar
conditions were also considered by Tropp (2004) without stochastic noise.

Results parallel to that of Lasso can be obtained for Algorithm 1. Specifically, the following two
theorems show that the strong target independent irrepresentable condition is sufficient for Algo-
rithm 1 to select features consistently, while the weak target independent irrepresentable condition
is necessary.

Theorem 4 Consider regression problems indexed by the sample size n, and use notations in Defini-
tion 3. Let Assumption 1 hold, with noiseσ independent of n. Assume that the strong irrepresentable
condition holds. For each problem of sample size n, denote by Fn the feature set from Algorithm 1
when it stops withε = ns/2 for some s∈ (0,1]. Then for all sufficiently large n, we have

P(Fn 6= F̄(n)) ≤ exp(−ns/ lnn)

if the following conditions hold:
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1. dn ≤ exp(ns/ lnn)

2. min j∈F̄(n) |β̄(n)
j | ≥ 3n(s−1)/2/ρ(F̄(n)).

Proof Whenn is sufficiently large, the two conditions of Theorem 1 hold withη = 0.5exp(−ns/ lnn).
Therefore the theorem is a direct consequence.

Theorem 5 Consider regression problems indexed by the sample size n, and use notations in Defini-
tion 3. Let Assumption 1 hold, with noiseσ independent of n. Assume that the weak irrepresentable
condition is violated at sample sizes n1 < n2 < · · · . There exist targets̄β(n j ) with arbitrarily large

min
i∈F̄(nj ) |β̄

(n j )
i |, such that at each sample size nj , Algorithm 1 chooses a basis i(1) /∈ F̄ in the first

step with probability larger than0.5.

Proof By definition ofµX(F̄), there existsv = (XT
F̄ XF̄)u ∈ R

|F̄ | such that

µX(F̄) =max
j /∈F̄

‖(XT
F̄ XF̄)−1XT

F̄ x j‖1

=max
j /∈F̄

|vT(XT
F̄ XF̄)−1XT

F̄ x j |
‖v‖∞

=max
j /∈F̄

|uTXT
F̄ x j |

‖(XT
F̄ XF̄)u‖∞

=
maxj /∈F |xT

j XF̄u|
maxi∈F̄ |(xT

i XF̄)u| .

Therefore ifµX(F̄) > 1, we can findu ∈ R
|F̄ | such that maxj /∈F |xT

j XF̄u| > maxi∈F̄ |(xT
i XF̄)u|.

Consider an arbitrary sequenceδn > 0 (n = 1,2, . . .). At any sample sizen = n j , since
µX(n)(F̄(n)) > 1, we can find a sufficiently large target vectorβ̄(n) such that

max
i∈F̄(n)

|xT
i X(n)β̄(n)| < max

j /∈F̄(n)
|xT

j X(n)β̄(n)|−2δn. (3)

Now we may takeδn = σ
√

2nln(4dn); then Lemma 8 implies that with probability larger than 0.5,
maxj∈{1,...,d} |xT

j (y−X(n)β̄(n))| ≤ δn. Therefore (3) implies that

max
i∈F̄(n)

[|xT
i X(n)β̄(n)|+ |xT

i (y−X(n)β̄(n))|] < max
j /∈F̄(n)

[|xT
j X(n)β̄(n)|− |xT

j (y−X(n)β̄(n))|].

Therefore

max
i∈F̄(n)

|xT
i y| < max

j /∈F̄(n)
|xT

j y|.

This means that we picki(1) /∈ F̄ in the first step with probability larger than 0.5.
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5. Conclusion

We have shown that weak and strong target independent irrepresentable conditions are necessary and
sufficient conditions for a greedy least squares regression algorithmto select features consistently.
These conditions match the target independent versions of the necessary and sufficient conditions
for Lasso by Zhao and Yu (2006).

Moreover, if the eigenvalueρ(F̄) is bounded away from zero, then the greedy algorithm can
reliably identify features as long as each nonzero coefficient is larger than a constant times the noise
level. In comparison, under the same condition, Lasso may require the coefficients to be larger than
O(

√
s) times the noise level, wheres is the number of nonzero coefficients. This implies that under

some conditions, greedy least squares regression may potentially select features more effectively
than Lasso in the presence of stochastic noise.

Although the target independent versions of the irrepresentable conditions for greedy least
squares regression match those of Lasso, our result does not show which algorithm is better for
any specific target. In fact, the target specific behaviors of the two algorithms are different, and one
may be preferred over the other under different scenarios.
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Appendix A. Auxiliary Lemmas

The following technical lemmas from Zhang (2008) are needed to analyze the behavior of greedy
least squares regression under stochastic noise. For completeness, we include them here with proofs.

The following lemma relates the squared error reduction in one greedy step tocorrelation coef-
ficients.

Lemma 6 For all x,x′,y ∈ R
n, we have

inf
α∈R

‖x+αx′−y‖2
2 = ‖x−y‖2

2− ((x−y)Tx′)2/‖x′‖2
2.

Proof The equality follows from simple algebra with the optimalα achieved at−(x−y)Tx′/‖x′‖2
2.

The following lemma provides a bound on the squared error reduction of one forward greedy
step. Some ingredients of the proof has appeared in Natarajan (1995).

Lemma 7 Let Assumption 1 hold. Consider F⊂ F̄ ⊂ {1, . . . ,d}. Let β′ = β̂X(F̄ ,y), β = β̂X(F,y),
x′ = Xβ′, andx = Xβ. Then

inf
α∈R, j∈F̄−F

‖x+αx j −y‖2
2 ≤ ‖x−y‖2

2−
ρ(F̄)

|F̄ −F|‖x−x′‖2
2.
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Proof For all j ∈ F , we have‖x + αx j − y‖2
2 achieves the minimum atα = 0. This implies that

(x−y)Tx j = 0 for j ∈ F . Therefore we have

(x−y)T ∑
j∈F̄−F

(β′
j −β j)x j

=(x−y)T ∑
j∈F̄∪F

(β′
j −β j)x j = (x−y)T(x′−x)

=−‖x−x′‖2
2 +(x′−y)T(x′−x) = −‖x−x′‖2

2.

The last quality follows from the definition ofβ′ = β̂X(F̄ ,y) andF ⊂ F̄ , which implies that(x′−
y)T(x′− x) = 0. Now, lets′ = |F̄ −F|, then the above inequality leads to the following derivation
∀η > 0:

s′ inf
j∈F̄−F

‖x+η(β′
j −β j)x j −y‖2

2

≤ ∑
j∈F̄−F

‖x+η(β′
j −β j)x j −y‖2

2

=s′‖x−y‖2
2 +η2 ∑

j∈F̄−F

(β′
j −β j)

2‖x j‖2
2 +2η(x−y)T ∑

j∈F̄−F

(β′
j −β j)x j

=s′‖x−y‖2
2 +nη2 ∑

j∈F̄−F

(β′
j −β j)

2−2η‖x′−x‖2
2.

Note that in the last equation, we have used‖x j‖2
2 = n in Assumption 1. By optimizing overη, we

obtain

s′ inf
j∈F̄−F

‖x+η(β′
j −β j)x j −y‖2

2

≤s′‖x−y‖2
2−

‖x′−x‖4
2

n∑ j∈F̄(β′
j −β j)2 ≤ s′‖x−y‖2

2−ρ(F̄)‖x′−x‖2
2.

This leads to the lemma.

The following lemma is a standard empirical processes bound for sub-Gaussian random vari-
ables. The bound is used to derive probability estimates in our analysis.

Lemma 8 Consider n independent random variablesξ1, . . . ,ξn such thatEet(ξi−Eξi) ≤ eσ2
i t2/2 for

all t and i. Consider gi, j for i = 1, . . . ,n and j= 1, . . . ,m, we have for allη ∈ (0,1), with probability
larger than1−η:

sup
j
|

n

∑
i=1

gi, j(ξi −Eξi)| ≤ a
√

2ln(2m/η),

where a2 = supj ∑n
i=1g2

i, jσ2
i .

Proof For a fixed j, we letsj = ∑n
i=1gi, j(ξi −Eξi); then by assumption,E(etsj +e−tsj ) ≤ 2ea2t2/2,

which implies that for allε > 0: P(|sj | ≥ ε)etε ≤ 2ea2t2/2. Now let t = ε/a2, we obtain:

P

(∣

∣

∣

∣

∣

n

∑
i=1

gi, j(ξi −Eξi)

∣

∣

∣

∣

∣

≥ ε

)

≤ 2e−ε2/2a2
.
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This implies that

P

[

sup
j

∣

∣

∣

∣

∣

n

∑
i=1

gi, j(ξi −Eξi)

∣

∣

∣

∣

∣

≥ ε

]

≤ msup
j

P

[∣

∣

∣

∣

∣

n

∑
i=1

gi, j(ξi −Eξi)

∣

∣

∣

∣

∣

≥ ε

]

≤ 2me−ε2/(2a2).

This implies the lemma.

The following lemma gives a bound on the infinity norm of the difference between the estimated
parameter̂βX(F̄ ,y) and the true parameter̄β when the set of features̄F are known in advance.

Lemma 9 Let Assumption 1 hold. Consider any fixed̄F ⊂ {1, . . . ,d}. For all η ∈ (0,1), with
probability larger than1−η, we have

‖β̂X(F̄,y)− β̂X(F̄,Ey)‖∞ ≤ σ
√

(2ln(2|F̄|/η))/(nρ(F̄)).

Proof For simplicity, letG = XF̄ and k̄ = |F̄|. Let β̂′ ∈ R
k̄ and β̄′ ∈ R

k̄ be the restrictions of
β̂X(F̄ ,y) ∈ R

d and β̂X(F̄ ,Ey) ∈ R
d to F̄ respectively. Algebraically, we havêβ′ = (GTG)−1GTy

andβ̄′ = (GTG)−1GTEy. It follows that

β̂′− β̄′ = (GTG)−1GT(y−Ey).

Therefore
|β̂′

j − β̄′
j | = |eT

j (G
TG)−1GT(y−Ey)|.

Lemma 8 implies that with probability larger than 1−η, for all j:

|eT
j (G

TG)−1GT(y−Ey)| ≤ σ‖eT
j (G

TG)−1GT‖2

√

2ln(2k̄/η).

Since by definition,ρ(F̄)n is no larger than the smallest eigenvalue ofGTG, the desired inequality
follows from the estimate

‖eT
j (G

TG)−1GT‖2
2 = eT

j (G
TG)−1ej ≤ 1/(nρ(F̄)).

The following lemma estimates the correlation coefficient ofx j with j /∈ F̄ .

Lemma 10 Let Assumption 1 hold. Assume also thatEy = Xβ̄ with supp(β̄) ⊂ F̄ ⊂ {1, . . . ,d}. For
all η ∈ (0,1), with probability larger than1−η, we have

max
j /∈F̄

|(Xβ̂X(F̄,y)−y)Tx j | ≤ σ
√

2nln(2d/η).

Proof Let P be the projection operator to the subspace spanned by{x j : j ∈ F̄} on R
n. Lemma 8

implies that with probability larger than 1−η:

sup
j=1,...,d

|(y−Ey)T(I −P)x j | ≤ σ
√

2nln(2d/η),
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where we have used‖x j‖2 =
√

n. Let x̂ = Xβ̂X(F̄ ,y). Since(x̂−y)Tx j = 0 for all j ∈ F̄ , we have
x̂ = Py. Moreover, since(I −P)Ey = (I −P)Xβ̄ = 0, we have

(y−Ey)T(I −P)x j = ((I −P)y− (I −P)Ey)Tx j = (y− x̂)Tx j .

Combine this equation with the previous inequality, we obtain the desired bound.

Appendix B. Proof of Theorem 2

Before the formal proof, we give a brief outline of the main argument. First, Lemma 10 im-
plies that with large probability, maxj /∈F̄ |(Xβ̂X(F̄ ,y)− y)Tx j | is small. Using this fact, and the
assumption thatµX(F̄) < 1, it follows from Lemma 11 below that when supp(β(k−1)) ⊂ F̄ , ei-
ther maxi |(Xβ(k−1) − y)Txi | is sufficiently small (which implies that the greedy procedure stops
andβ(k−1) ≈ β̄), or maxj /∈F̄ |(Xβ(k−1)−y)Tx j | < maxi∈F̄ |(Xβ(k−1)−y)Txi | (which implies that the
greedy procedure chooses a directioni(k) ∈ F̄ in the next iteration). The claims of the theorem then
follow by induction.

We start the formal proof by introducing the following critical lemma, which generalizes the
essential idea of Tropp (2004). Note that the result there only considered the caseXβ̂X(F̄ ,y) = y.

Lemma 11 Considerβ ∈ R
d such thatsupp(β) ⊂ F̄. We have

max
j /∈F̄

|(Xβ−y)Tx j | ≤ max
j 6∈F̄

|(Xβ̂X(F̄ ,y)−y)Tx j |+µX(F̄)max
i∈F̄

|(Xβ−y)Txi |.

Proof Let β′ = β̂X(F̄,y). Note that(Xβ′−y)Txi = 0 wheni ∈ F̄ . Therefore

max
i∈F̄

|(Xβ−y)Txi | = max
i∈F̄

|xT
i X(β−β′)| = ‖XT

F̄ XF̄(β−β′)‖∞.

Let v = XT
F̄ XF̄(β−β′), then the definition ofµX(F̄) implies that

µX(F̄) ≥ max
j /∈F̄

|xT
j XF̄(XT

F̄ XF̄)−1v|
‖v‖∞

=
maxj /∈F̄ |xT

j XF̄(β−β′)|
‖XT

F̄ XF̄(β−β′)‖∞
.

We obtain from the above

max
j /∈F̄

|xT
j X(β−β′)| ≤ µX(F̄)‖XT

F̄ XF̄(β−β′)‖∞ = µX(F̄)max
i∈F̄

|(Xβ−y)Txi |.

Now, the lemma follows from the simple inequality

max
j /∈F̄

|(Xβ−y)Tx j | ≤ max
j /∈F̄

|xT
j X(β−β′)|+max

j /∈F̄
|xT

j (Xβ′−y)|

Now we are ready to prove the theorem. From Lemma 9, we obtain with probabilitylarger than
1−η,

‖β̂X(F̄ ,y)− β̄‖∞ ≤ σ
√

(2ln(2|F̄|/η))/(nρ(F̄)).
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From Lemma 10, we obtain with probability larger than 1−η,

max
j /∈F̄

|(X(β̂X(F̄ ,y))−y)T x̃ j | ≤ σ
√

2ln(2d/η) < (1−µX(F̄))ε. (4)

With probability larger than 1−2η, both claims hold.
We now proceed by induction onk to show thatF(k−1) ⊂ F̄ before the procedure stops. Assume

the claim is true afterk−1 steps fork ≥ 1. By induction hypothesis, we haveF(k−1) ⊂ F̄ at the
beginning of stepk. Therefore Lemma 7 implies

min
α,i∈F̄

‖Xβ(k−1) +αxi −y‖2
2 ≤ ‖Xβ(k−1)−y‖2

2−
ρ(F̄)

|F̄ −F(k−1)|‖X(β(k−1)− β̂X(F̄ ,y))‖2
2.

Using the above inequality, we obtain from Lemma 6 the following bound on the correlation coef-
ficients:

max
i∈F̄

|(Xβ(k−1)−y)T x̃i | =
(

‖Xβ(k−1)−y‖2
2− min

α,i∈F̄
‖Xβ(k−1) +αxi −y‖2

2

)1/2

≥
√

ρ(F̄)
√

|F̄ −F(k−1)|
‖X(β(k−1)− β̂X(F̄ ,y))‖2

≥
√

nρ(F̄)
√

|F̄ −F(k−1)|
‖β(k−1)− β̂X(F̄ ,y)‖2.

We only need to consider the following two scenarios:

• ‖β(k−1)− β̂X(F̄ ,y)‖2 > ερ(F̄)−1
√

|F̄ −F(k−1)|/n.

In this case, we have

max
i∈F̄

|(Xβ(k−1)−y)T x̃i | > ε > max
j /∈F̄

|(Xβ̂X(F̄ ,y)−y)T x̃ j |/(1−µX(F̄)).

The second inequality is due to (4). Now by combining this estimate with Lemma 11, we
obtain

max
j /∈F̄

|(Xβ(k−1)−y)T x̃ j | < max
i∈F̄

|(Xβ(k−1)−y)T x̃i |.

This implies thati(k) ∈ F̄ and the procedure does not stop.

• ‖β(k−1)− β̂X(F̄ ,y)‖2 ≤ ερ(F̄)−1
√

|F̄ −F(k−1)|/n.

In this case, we have the following scenarios:

1. i(k) /∈ F̄ : By Lemma 11, we must have:

max
i∈F̄

|(Xβ−y)T x̃i | ≤max
j /∈F̄

|(Xβ−y)T x̃ j |

≤max
j 6∈F̄

|(Xβ̂X(F̄,y)−y)T x̃ j |+µX(F̄)max
i∈F̄

|(Xβ−y)T x̃i |

≤max
j 6∈F̄

|(Xβ̂X(F̄,y)−y)T x̃ j |+µX(F̄)max
j /∈F̄

|(Xβ−y)T x̃ j |.
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Therefore

max
j /∈F̄

|(Xβ−y)T x̃ j | ≤
1

1−µX(F̄)
max
j 6∈F̄

|(Xβ̂X(F̄ ,y)−y)T x̃ j | < ε.

The last inequality is due to (4). This implies that the procedure stops.

2. i(k) ∈ F̄ and the procedure does not stop.

3. i(k) ∈ F̄ and the procedure stops.

The above situations imply that if the procedure does not stop, theni(k) ∈ F̄ . If the procedure
stops, then

‖β(k−1)− β̂X(F̄,y)‖2 ≤ ερ(F̄)−1
√

|F̄ −F(k−1)|/n.

Therefore by induction, when the procedure stops, the following three claims hold:

• F(k−1) ⊂ F̄ .

• ‖β(k−1)− β̂X(F̄ ,y)‖2 ≤ ερX(F̄)−1
√

|F̄ −F(k−1)|/n.

• ‖β̂X(F̄ ,y)− β̄‖∞ ≤ σ
√

(2ln(2|F̄|/η))/(nρX(F̄)) < ε/
√

nρX(F̄).

Now, we can letγ =
√

8ερX(F̄)−1/
√

n, then the above claims imply that

γ
√

|{ j ∈ F̄ −F(k−1) : |β̄ j | ≥ γ}|

≤



 ∑
j∈F̄−F(k−1)

|β̄ j |2




1/2

≤



 ∑
j∈F̄−F(k−1)

|β̄ j − β̂X(F̄ ,y)|2




1/2

+



 ∑
j∈F̄−F(k−1)

|β̂X(F̄,y)|2




1/2

≤
√

|F̄ −F(k−1)|‖β̄− β̂X(F̄,y)‖∞ +‖β(k−1)− β̂X(F̄ ,y)‖2

<
√

|F̄ −F(k−1)|/(nρX(F̄))ε+ ερX(F̄)−1
√

|F̄ −F(k−1)|/n

≤2ερX(F̄)−1
√

|F̄ −F(k−1)|/n = γ
√

|F̄ −F(k−1)|/2.

Therefore
2|{ j ∈ F̄ −F(k−1) : |β̄ j | ≥ γ}| ≤ |F̄ −F(k−1)|,

which implies that

|F̄ −F(k−1)| =2|F̄ −F(k−1)|− |F̄ −F(k−1)|
≤2|F̄ −F(k−1)|−2|{ j ∈ F̄ −F(k−1) : |β̄ j | ≥ γ}|
=2|{ j ∈ F̄ −F(k−1) : |β̄ j | < γ}|
≤2|{ j ∈ F̄ : |β̄ j | < γ}|.

This proves the theorem.
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