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Abstract

We show that all consistent learning methods—that is, thahptotically achieve the lowest pos-
sible expected loss for any distribution @4,Y)—are necessarily localizable, by which we mean
that they do not significantly change their response at acpdat point when we show them only
the part of the training set that is close to that point. Thisruie in particular for methods that
appear to be defined in a non-local manner, such as suppaotr veachines in classification and
least-squares estimators in regression. Aside from slipthit consistency implies a specific form
of localizability, we also show that consistency is logigalquivalent to the combination of two
properties: (1) a form of localizability, and (2) that thethmed’s global mean (over the entikée
distribution) correctly estimates the true mean. Consistean therefore be seen as comprised of
two aspects, one local and one global.
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1. Introduction

In a supervised learning problem we are given an i.i.d sar8pte {(xi,Vi) }i=1.n of sizen from
some distributiorP; then a new paifx,y) is drawn from the samP and our goal is to predict
when shown only. Our prediction (also called estimate, or guessy & written f(S,,X), some
function that depends on the training set and the point at which we estinuaget¥at it is slightly
atypical to have both the training set and point as input$,tbut this will be very convenient
in our setting). We callf alearning method in the context of regression we will also use the
termestimator and in the context of classification we will use the teriassifier In both of these
settings, iff achieves the lowest possible expected loss-aswo, for every distribution, then we call
f consisten{we will formalize all of these definitions later on; for now we just sketch tbeegal
ideas). Consistent estimators are of obvious interest due to their capabidiirmovithout knowing
in advance anything about the actual distribution.

When we look at the learning methods known to be consistent, we can teefieam into two
general types. In the first of these we have methods that are defindadal ananner, for example,
the k-nearest-neighbor (k-NN) classifier (Stone, 1977; Devroyg. £1996). The k-NN classifier
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guesses the class of a pokbased on its nearest neighbors in the training set, thus, this classifier
behaves in a ‘local’ way: only close-by points affect the estimate. Moneigdly, by a locally-
behaving method we mean one that, given a trainingSsetnd a pointx at which to estimate

the value ofy, in some way treats the close-by part of the training set as the most important. A
second type of consistent learning method is defined in a global mannexxdmple, support
vector machines (see Vapnik, 1998; Steinwart, 2002, for a descriptidrpeoof of consistency,
respectively). It is not clear from the definition of support vector nraeh whether they behave
locally or not: The separating hyperplane is determined based on the eativiedrsets,, and
furthermore does not depend on the specific priat which we classify, perhaps leading us to
expect that support vector machines mtt behave locally. Thus, on an intuitive level we might
think that some consistent methods behave locally and some do not.

This intuition also appears relevant when we consider regression:-Nieregression estima-
tor appears to behave locally, while on the other hand support vect@ssign (see, e.g., Smola
and Schoelkopf, 1998), kernel ridge regression (Saunders &98B), etc., seem not to have that
property. Another example is that of orthogonal series estimation, thdtusjrg a weighted sum
of fixed harmonic functions (Lugosi and Zeger, 1995); this method agpe not behave locally
both because the harmonic functions are non-local and because ffig@us are determined in a
way based on all of the data.

Despite the intuition that some consistent methods might not behave locally, weewithat
in factall of them necessarily behave in that manner. As mentioned before, wdyakeaw that
some locally-behaving methods are consistent, since some are in factddefiadocal manner,
for example, k-NN. What we will see is that all other consistent methods atssbehave locally.

In classification, this implies that, in particular, (properly regularized) sttpgector machines and
boosting (Freund and Schapire, 1999; Zhang, 2004; Bartlett as#ifit2007) must behave locally,
despite being defined in a way that appears global. In the area of segresur results show
that neural network estimators, orthogonal series estimators, etc., ninastebecally if they are

consistent, again, despite their being defined in a way that does not inslichtéehavior.

In the rest of this introductory section we will present a summary of ourcgg and results as
well as background regarding related work. While doing so we focusgmession problems since
that setting allows for simpler and clearer definitions. For the same reasonghaéso focus on
regression in the main part of this paper; in a later section we will show hoppiy aur results to
classification.

Our goal in regression is to estimat&x) = E(y|x), that is, the expected value ptonditioned
on x, or the regression of on x. Our hope is thaff (S,,X) is close tof*(x). We say thatf is
consistent on a distributior iff

La(f) = E|[f(Sh,X) — f*(X) —2
where the expected value is taken over training Segsd observationsboth distributed according
to P (which is suppressed in the notation). If a method is consistent &tlaéin we call it consistent
(this is sometimes calleghiversal consistengyNote that there are stronger notions of consistency,
such as requiring that the loss converge to 0 with probability 1 (see, e.grfi@yal., 2002), but we
will focus on the loss as just described. Note also thatthless is ‘global’ in that we average over
all x, which makes it all the more interesting to see whether methods that minimize it ntugpen
behaving locally.
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The notion of local behavior that we will consider will be calledalizability, and it entails that
the method returns a similar estimate fowhen showrs, in comparison to the estimate it would
have returned when shown only the parSpthat is close tx. In other words, if we define

S ={(6¥) €S« |} =X <r}
then a localizable method has the property that
f(Sh,x) = f(Sa(xr),x)

for some smalfl > 0 (the formal definitions of all of these concepts will be given in later ses}ion
More specifically, for any sequen&a \, 0 we can seg(Sy,X) = f (Si(x,Rq),x) as a ‘localization’
of f, since it appliesf to the close-by part of the training set for the particular point at which we
estimate. In other words, a localizable method is one that behaves similarly taledtion of
itself. (Note the convenience of tHéS,, x) notation here, that is, of seeirfgas a function of both
S, andx.)

Why is the concept of localizability of interest? The main motivation for us is tisatyeawill
see later, consistency implies a form of localizability. That is, even an estirdafiored in what
seems to be a global manner, for example, by minimizing a global loss of theatjéaren

S RUOMELD

wherel is, for example, least-squares, anid (optional) complexity penalization—then even such
an estimator must be in some sense localizable, if it is consistent. Thus, oundirgation is to
point out that not only locally-defined methods like k-NN behave locallyakso all other consistent
methods as well.

Aside from this main motivation for investigating localizability, another reasonaittallows
us to answer questions such as, “What might happen if we localize a rswgmbor machine?”
That is, we can apply a support vector machine (or some other usefubd)dthonly the close-
by part of the training set, perhaps motivated by the fact that training orsitinédler set is more
computationally efficient, at least if all we need is to generate estimates at ansmmdder of points.
If support vector machines are localizable, then we in fact know thdt ancapproach can be
consistent; and if they are not localizable, then we may end up with a naistem method with
poor performance. Thus, localizability can have practical applications.

Note that one can consider other ways to define local behaviour thdizéimbty. In one such
approach, we can evaluate the behavior of a method when altering tb# fmart of the training
set, as opposed to removing it (which is what we do with localizability). Workglihose lines
(Zakai and Ritov, 2008) arrives at similar conclusions to the ones miex$dere. Comparing the
two approaches, localizability has the advantage of relevance to pragigaations, as mentioned
in the previous paragraph.

Previous work related to localizability has been done in the context of leamathods that
work by minimizing a loss function: We can ‘localize’ the loss function by reghng it so that
close-by points are more influential; this has been investigated in the cortExbmrical Risk
Minimization (ERM; Vapnik, 1998) (Bottou and Vapnik, 1992; Vapnik andtBao, 1993), as well
as in the specific case of linear regression (see, e.g., Cleveland addrL.@895, and references
therein); this approach has also lead to various applications (AtkestnX%v). In this paper we
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differ from these approaches in that we work in a more general corf®extapproach is applicable
to all learning methods, and not just those that are based on minimizing a fag®futhat can
be re-weighted. Another difference is that we consider consistencyisghse of asymptotically
arriving at the lowest possible loss achievable by any measurable fapatid not in the sense of
minimizing the loss within a set of finite VC dimension.

Another related work is that of Bengio et al. (2006), in which it was shthaihkernel machines
behave locally, in the sense of requiring a large number of examples in twrdearn complex
functions (because each local area must be learned separately)apoach differs from this
work in the way we define local behavior, and in that we are interested {nalkistent) learning
methods, not just kernel machines. However, our conclusion is in mgmewith theirs, that even
methods that may appear to be global like support vector machines in femtéokcally.

We now sketch our main result, which is that consistency is logically equivedehe combi-
nation of two properties (which will be given later, in Definitions 2 and @jiform Approximate
Localizability (UAL), which is a form of localizability, andVeak Consistency in MeglVCM),
which deals with the meah f(S,,x) estimating the true medaf*(x) reasonably well, where the
expected values are taken orandx. It will be easy to see that the UAL and WCM properties
are ‘independent’ in the sense that neither implies the other, and thevegatan see consistency
as comprised of two independent aspects, which might be presented as

Consistency <= UAL ¢ WCM.

This can be seen as describing consistency in terms of local (UAL) afclg(@d/CM) aspects
(WCM is ‘global’ in the sense of only comparing scalar values averageoxv
Note that there are two issues here which might be surprising, the firshichvinas already
been mentioned—that all consistent methods must behave locally. Theddegoortant issue is
that WCM is sufficient, when combined with UAL, to imply consistency. That isuif goal is to
be consistent,
E[f(Sh,x) — *(X)] — 0 (1)

then it is interesting that all that is needed in addition to behaving locally is a&pyogose to
|E f(Sh,x) —Ef*(x)] — O.

Note that the latter condition is very weak. For example, itis fulfilled){&, x) = % yiVYi, the simple
empirical mean of thg values in the sampl§, (ignoring thexs completely), sinc% Siyi — Ey=
E f*(x) a.s., wher&yis the mean of. On the other handydoes not fulfill the stronger property (1)
except on trivial distributions.

Our main result, which has just been described, will also be generalizettitogs other than
that of methods consistent on the set of all distributions. This will lead tolipe@onsequences:
Consider, for example, the following two sets of distributions:

P;={P:y=f*(x)+¢, Ee=0, eisindependentaf} , P,={P:Ey=0}

(note thatP; is simply regression with additive noise). It turns out that a method consistefy
must behave locally on that set (just as with the set of all distributions)heusame is not true
for P», where a consistent method does not necessarily behave locally. 83wnror this will be
explained later.
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The rest of this work is as follows. In Section 2 we present the formal gedinal other pre-
liminary matters. In Section 3 we present definitions of local propertiesgpadifically UAL) as
well as some results concerning them. In Section 4 we define the globaptsrtbat we need,
specifically WCM. In Section 5 we present our main result, the equivalehcensistency to the
combination of UAL and WCM. In Section 6 we extend our results to variotsafedistributions.
In Section 7 we use results from previous sections in order to derisegoences for classification.
In Section 8 we summarize our results and discuss some directions fordgtkeFinally, proofs
of our results appear in the Appendices.

2. Preliminaries

We now complete the description of the formal setting in which we work, as wédlygout notation
useful later. Most of this section deals with the context of regressidailsispecific to classification
will appear in Section 7.

We consider distributionB on (X,Y) whereX c RY,Y C R. We assume that,Y are bounded,
SUBex | X[, SURey Y| < M1 for someM; > 0 which is the same for all distributions. Thus, when we
say ‘all distributions’ we mean all distributions bounded by the same valiy ofVe also assume
that our learning methods return bounded responsgs;, |f(S x)| < M. Let M be a constant
fulfilling M > M1, M. Importantly, note that while these boundedness assumptions are riah-triv
in the context of regression, they do not limit us when we consider clagsgific as we will see in
Section 7.

Note that we wrotd (S x) instead off (S,, x) in the previous paragraph. The reason is thaill
always denote the size of the original training set, which in turn will alwaye/htten asS,. Since
we will also applyf to to other training sets (in particular, subsetsSf, for clarity of notation
we will therefore writeS for a general (finite) set of pairsq,yi) and define learning methods via
f(SXx).

Formally speaking, a learning methddS x) is defined as a sequence of measurable functions
{fk}ken, Where eacHy is a function on training sets of sikethat is,

fi: (X XY)kXX—>Y.

For brevity, we will continue to writef instead offy since whichfy is used is determined by the
size of the training set that we passftpthat is, f(S,x) = fi5(Sx). For example, we will often
denote byS a subset of the original training s&. Then in an expression of the forlfr(§ X) the
actual function used i$,, wherem= ]§|, and in this example we expect to hawe< n (where, as
mentioned before) is the size of the original training s&t).

For any distributiorP on (X,Y), we write f*(x) = E(y|x), as already mentioned, and we denote
the marginal distribution oX by p. We write f3, pp instead off *, pto make explicit the dependence
onPwhen necessary. Denote by sypB) = supg ) the support ofie. The measure of seBC X
will be written in the formu(B).

1. Note that this is a minor assumption since for most methods we haygf $8px)| < C-max |y;| for someC > 0, and
they; values are already assumed to be bounded. If this does not hold, éhemightt in any case want to consider
enforcing boundedness based on the sample, that is, to truncate lea@igzsn absolute value than méy|, and in
doing so perhaps improve performance. Finally, recall that we areetned with consistent methods, that is, that
behave similarly tof* in the limit, andf* is bounded.
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We denote random variables by, for examgley) ~ P andS, ~ P where in the latter case we
intend a random i.i.d sample ofelements from the distributioR. We will often abbreviate and
write X,y ~ P instead of(x,y) ~ P; also, we will writex ~ P where we meax ~ pp. To prevent
confusion we always useandy to indicate a paifx,y) sampled fronP.

We will write the mean and variance of random variablesE (v) = Evanda?(v), respectively.
More generally, expected values will be denoted®y,/H (v) = E,H(v) wherev is a random vari-
able distributed according @ andH(v) is some function of;; we may writeEH(v) when the
random variables are clear from the context. The conditional expeatad @fH (v) givenw will
be written in the fornE,, (H(v)).

We will work mainly with the £, loss, which we can now write formally as

Lnp(f) = Egx~p|T (S, X) — fp(X)[,

or, more briefly,
Ln(f) = Egu|f(S,%) — F*(¥)].
Note that for purposes of consistency (ilg,(f) — 0) all L, losses are equivalent, since

VO< p<q E|z|p < (E|Z!q)p/q < (ZM)D(Q—p)/Q(EMp)p/q

wherez = f(S,,x) — f*(x). Thus, if oneL, loss converges to 0, so do all the others. Hence our
results apply to all, norms; we work mainly with thet; norm for convenience.

For any seB C X, denote byPs the conditioning ofP on B, that is, the conditioning ofip
on B (and leaving unchanged the behavioryajivenx). Denote the ball of radius aroundx by
Byr = {X € R : ||x—x|| <r}. LetP, = Pg,,.

Finally, we mention two useful conventions. Note that we defined consistema single
distribution, and then consistency in general as the property of beirgjstent on all distributions.
More specifically, for any propert that can hold for a methodl on particular distributions, we
say thatf has propertyA on asetof distributionsP when f has propertyA on allP € P. We
also say thaf has propertyA (without specifyingP or IP) when it has propert on the set ofll
distributions (with bounded support). This convention will be used fosid@ncy as well as for
UAL and other properties.

Similarly, when we start by defining a properyon the set of all distributions, we then use
the convention thaf has propertyA on a setP when we simply replacgP with VP € P. This
convention will be used with the WCM property.

3. Local Behavior

In this section we consider local properties of learning methods. We wikpitea series of defini-
tions, leading up to a definition of Uniform Approximate Localizability (UAL).

We start with some introductory definitions. For any two learning mettiogiswe say that they
aremutually consistentiff

Di(f.9) = Es | F(Sh.X) ~ 9(ShX)| —0.

That is, f and g are mutually consistent if they behave asymptotically similarly according to a
distance metri®,. The term ‘mutual consistency’ is used siriag(f, f*) = Ly(f) (where we can
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formally definef*(S x) = f*(x)), that is, being mutually consistent witfi is equivalent to being
consistent. Thus, mutual consistency is a natural extension of congisidote thatD,, obeys the
triangle inequality,

Vfagah Dn(f7g)§Dn(f7h)+Dn(h7g)

which will be convenient later.
We now define some useful notation for the topic of locality. For any trainet@ andr > 0,
we call
Sxr) ={(6.yi) €S [[x =X/ <r}

alocal training set for x within S, of radiusr. For every learning methofiandr > 0, let

Fle (Sx) = F(S(x,r),%).

Note that, as mentioned previouslyfit= { fx }ken then in the expressiof(S,(x,r),X) (whereS, is,
as always, the original training set of sizg we are passing,(X,r),x to fm, wherem= |S(x,r)
which will in general be smaller tham= |S,|. Thus, formally speaking we might write

f[r (SX) = fisxn (SX1),X)

but for simplicity we will continue to drop the lower index dn Note thatf |, can also be formally
defined as a series of functiofi$|, x }ken, but again, for simplicity we avoid this.

In words, f|; is a learning method that results from forcifigo only work on local training
sets of radiug aroundx, when estimating the value &t For example, iff is a linear regression
estimator then we can sd§ as performing local linear regression (Cleveland and Loader, 1995).

Continuing in our definitions, for any sequenid® }ken, R« > 0,R¢ — 0, we call f \{Rk} alocal
version, or alocalization of f; by this notation, we mean

fl(r}(SX) = T(S(x,Rg).X)

—that is, whichRy is used from the sequen¢®,} depends on the size of the training set passed to
fl{r- In particular, for the original training s&, we have

Flirg (S0,%) = (S (% Rn) %)

Note that, as a consequence, local versions are indeed ‘local’ in the limét wie haver, — O.
We can now define one form of local behavior: Call a metlddcalizableon a distributiorP
iff there exists a local versioh|{Rk} of f with which f is mutually consistent, that is,

Thus, alocalizable method is one that is similar, in the sense of mutual congjsteatocal version
of it, which implies that it gives similar results when seeing the entire trainingesstg only the
local part of it; we can localize the method without changing the estimates sagrtlficNote once
more that the requiremeR, — 0 is what makes this definition truly define local behavior.

We will also need a notion of a method that, when localized, is consistent. Caltrdg
locally consistenton a distributiorP iff there exists a local versiof|g,; of f which is consistent,

Ln (flrg) = Dn (flrg ) —20.
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That is, there is a way to localizeso that it becomes consistent.

Are all consistent learning methods localizable and locally consistent? @oisellatter prop-
erty: It appears as if any consistent method must be locally consisters, aicensistent method
can successfully ‘learn’ given any underlying distribution, and wherogalize such a method we
are in effect applying that same useful behavior in every local aréas,Tit seems reasonable to
expect a localization of a consistent method to be consistent as well, and iehastrue then it
might have useful practical applications, as mentioned in the introductidanthigeintuition turns
out to be false, and a similar failure occurs for localizability:

Proposition 1 A learning method exists which is consistent but neither localizable nor looatly
sistent.

The proof of Proposition 1 (appearing in Appendix A) is mainly technical, @nsists in con-
structing a method = { fx} which becomes less smoothragses, and asymptotically considerably
less smooth than the trué. That is, the issue is that we have required merely that the functions
be measurable, and it turns out that without additional assumptions théyebane erratically in
a manner that rendeffsnot locally consistent. The specific example that we construct in the proof
involves functionsfy that behave oddly on an area clos&bobut otherwise perform well. It is then
possible to show that the ‘problematic area’ nEarcan be large enough so that all local versions
of the method behave poorly, but small enough so that the original methodsgstent.

Now, the counterexample constructed in the proof of Proposition 1 mighfullyhbe called a
‘fringe case’. Yet, it suffices to show that not all consistent methoglfoaalizable, contrary perhaps
to intuition. There is therefore the question of what to do. One solution to this mstie work
with a property stronger than consistency, one that includes an addisiomaithness requirement.
The disadvantage of such an approach is that we cannot immediatelg derigequences for the
various methods known to be consistent, unless we also prove that thetjhieastronger property.

Instead, the approach that we will follow is to define more complex notionscaf lmehavior
which can be used to arrive at properties equivalent to consisteriays, Dne major goal of this
paper is to arrive at suitable definitions for the topic of local behaviot,ahahe one hand capture
the intuition correctly and on the other allow useful results to be proven. sithple definitions
given before fail in the second matter; we will now give definitions that dymikat problem.

In order to formulate our improved definitions we first require some patigax. For any, q> 0
and distributiorP, let

f’l(’](sx) = EX’NPx,q,r f(S(X7r)7X/)' (2)
Compared td|y, f_|ﬁ adds a smoothing operation performed arounctavhich we estimate. Note
that if g = O then we interpret the expected value as a delta function and wE&et f|,. Note
also that we require the actual unknown distributom the definition off|‘ﬁ, that is,f\? cannot
be directly implemented in practicef} is a construction useful mainly for theoretical purposes.
However, we can implement an approximate versiori|BfS x) by replacing the true expectation
with the empirical one. We will return to this matter later.

We define the following set of sequences:

T = {{Tk} LT\, 0 strictly}.

For any sequencé& = {Ty}, let T = {Tx : k€ N}, that is, the set containing the elements in the
sequence. For any such sequefice {Ti}, we then define the set of its infinite subsequences and

834



CONSISTENCY ANDLOCALIZABILITY

selection functions on them by

R(T)
QUT) =

{R={R} : RCT R0},
{QT%T: qm\m}

ForanyT € 7 and{Rc} € R(T), Qe Q(T), we callf\{Q(Rk asmoothed local versiorof f;
by this notation, we mean to replace tipe values in (2) in an appropriate manner, that is,
f(S(xRs).X)-

|{Rk} (S,X) Ex ‘~PaRrs)Rg

Note that on the original training s&t we get

‘{Rk} (S“ X) = Ex~B gy m | (S(*;Rn),X).

We now elaborate on these definitions. is the set of possible values th@(R,),R, can take;
these values must approach 0 as our goal is to consider local beh®&\id). contains sequences
of radii of local training sets; we require thg}, ™\, 0, as we are interested in behavior on local
training sets with radius descending to 0, that is, that become truly ‘locaipisfically. Q(T)
contains functions that become small whigns small; the valueQ(R,) determine radii on which
to smooth, viaQ(R,) - Ry. SinceQ(R,) - Ry = 0(R,), the smoothing is done on radii much smaller
(asymptotically negligibly small) than the radii of the local training $&{sand therefore this is a
minor operation. In conclusion, a smoothed local version is similar to a locsiove but adds an
averaging operation on small radii.

We now start with our main definitions. The idea behind them is not overly comiplg their
description is necessarily somewhat technical.

Definition 2 Call a learning method fJniformly Approximately Localizable (UAL) iff
VP VT eT

3Qe Q(T)
vQ' e Q(T), Q
HRe} € R(T)

V{R} € R(T), {R} > {Ra}

Dn (i)™ ) ;20

(Here the expressiofR, } > {R«} simply implies an inequality for the entire series, that is, for all
k. @ > QimpliesQ'(Tx) > Q(T) for all k.)

In essence, a UAL learning method is one for whom, for any choic€, dll large-enough
choices ofQ and{Rx} are suitable in order to get similar behavior betwéeand a smoothed local
version of f. That is, if we take{R«} andQ slowly enough to 0 then we get local behavior. Note
that in any case takingRg} to O very quickly is problematic since we may get empty local training
sets, that is(X, Rn) =

Concerning our choice of name for this definition, ‘uniformly’ appears atitie ‘uniformly
approximately local’ due to the requirement for all large-enough choitéRg, Q to be relevant,
and ‘approximately’ appears because we allow smoothed local versidnsoajust local versions.
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Both of these changes from the original definition of localizability are preiseorder to prevent
odd counterexamples. A concrete counterexample was shown in Propdsiiiomake clear the
need for smoothing; we do not present one in full for the uniformity respeént in order to save
space.
Note that we only consid€iRy}, Q taking values in some fixe®l, and that whileT is arbitrary
it does need to be determined in advance. The issue is that if we instead ktlog/ alues/0, )
to appear i{R¢} andQ then, due to this being an uncountable set, it is not clear to the authors if
additional conditions are not required to prove our main results in that baary event, a countable
set of possible values is of sufficient interest for any practical legstfiroretical purpose, and as
already mentioned the actual set of possible values can be chosen ivevimganer is desired.
We also need a definition parallel to that of local consistency, as follows.

Definition 3 LetUniform Approximate Local Consistency (UALC) be the property defined exactly
the same as UAL, except for replacing the last condition with

() ~0u(.) 20

A UALC method is one whose smoothed local versions are consistentydae-enough choice
of Q, {Rd}-

We now mention some properties of UAL and UALC, noting first that they adependent, in
that each can exist without the other. Consider the following two methods:

fy(Sx) = él__lzﬁyi,

fy (called thus because it considers only yhealues) is UALC since a local version of it is simply
a kernel estimator, using the ‘window kernk{x) = 1{||x|| < 1}, and thus consistent, for af{r}
fulfiling nRY — o (Devroye and Wagner, 1980)R«} acts as the bandwidth parameter of a kernel
estimator. (Note that smoothing has no effect, as the guess does notdepeh fy, however,
clearly cannot be UAL (e.g., consider the simple exampbewdiform on[—1, 1] andy = sign(x));
neither is it consistent. Turning t&y, this method is clearly UAL but it is neither UALC nor
consistent.

Our first main result is that consistency is equivalent to the combination afdud UALC:

fo(Sx) =0 3

Theorem 4 A learning method is consistent iff it is both UAL and UALC.
In light of the independence of UAL and UALC, mentioned before, westanmarize this as
Consistency <= UAL ¢ UALC.

The proof of< is immediate: Pick anff. We derive som&, Q from the appropriaté clauses of
the definitions of UAL and UALC, respectively; I € Q(T) fulfil Q@ > Q,Q. GivenQ, we can
then derive soméR}, {R¢} from the appropriaté clauses of UAL and UALC; le{R,} € R (T)
fulfill R, > Ry, Rk. Itis then clear that

o (T, on T 1) o
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due to UALC and UAL. By the triangle inequality we get

Dn (f, %) < n (1, flig ™) +Dn(fiR)% 1) —0 @)

that is, consistency. Thus, itis fairly immediate from the definitions of UALIHAHC that together
they suffice for consistency. What is interesting is that they are eqoiviaet. Instead of proving
that fact directly, the remainder of the proof of Theorem 4 will be a canptéithe results in Section
5.

4. Global Properties

In this section we define global properties that will be useful in the neticse where we present
our main results.
First we need some preliminary definitions. We define the mealfisfdfin the natural way,

En(f) = Enp(f) = Es xf (S, X),

E(f*) =Ep(f*) = Exf*(X) = ExE(y|x) = E
the latter expression which is just the global meapn &/e also want to consider the Mean Absolute
Deviation (MAD) of f and f*,
MAD (f) = MADpp(f) = Es, x| f(Sh,X) —En(f)],

MAD (f*) = MADp(f*) = Ey| f*(x) — E(f*)|.

We can now define the first version of the global property of interesstoe say thaff is
consistent in meaniff

VP ,!'L‘lJEn( )—E(f)] = Aﬂ'MAD (f)—MAD(f*)| = 0.
A consistent in mean learning method is required to correctly estifgte) and MAD(f*); that
is, we require that the global behavior bifaveraged ovex, be asymptotically equal to that éf.
Note that we are only interested here in two scalar values which reprgiedat averages of the
behavior off, f*.
Consistency in mean is obviously a weaker property than requiring thayevage,f behave
similarly to f* on everyx separately—that is, consistency—since

[En(f) — E(F)] = [Egxf (Sh,X) — Exf"(X)| < Eg,x|f(Sh,x) — £ (X)]. (5)

By consistency the RHS converges to 0, and therefore so does theddnSider now the MAD:

MAD () = Esg, x| T (Sh,X) — En(f)]
= Esux|F (S %) = £700 + 1700 —E(f") + E(f") — Ea(f)]
< Egx[ (S, X) = T2 (X)[ + B[ 7 (%) —E(f")| + [E(f") — En(f)]
< Dn(f, ) +MAD (%) + [E(f") — En(F).
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Of the last three expressions, the first converges to 0 by consistarttihe third by (5) (which was
implied by consistency). Similarly,

MAD (f) > MAD (£*) — Dy(f, £*) — [E(f*) — En(f)]

showing thafMAD(f) — MAD (f*)| — 0. Thus, unsurprisingly, consistency implies consistency
in mean.
It turns out that a weaker property than consistency in mean is sufffoleatir purposes:

Definition 5 We say that f idMeakly Consistent in Mean (WCM) iff there exists a function H
R — R, H(0) =0, lim{_oH(t) = 0, for which

VP limsup|En(f) —E(f*)|, limsupMAD,(f) < H(MAD(f*)).

n—oo n—oo

(Note that the samid is used for alP.) A WCM learning method is required only to do ‘reasonably’
well in estimating the global properties of the distribution, in a way that depamdse MAD, that
is, on the difficulty: We only require that performance be good when theilegatask is overall quite
easy, in the sense df (x) being almost constant. Note that whddMAD (f*)) > 2M we require
nothing of f for suchf* (since|f|,|f*| < M), and also that for small MADf*) we may allow the
MAD of f to be significantly larger than that df (consider, for exampleii(t) = c- (v/t +t) for
largec > 0). Note also that we take the limsups, that is, we do not even require élatits exist
(except in the trivial case where MAD*) = 0).

To see the justification for the adjective ‘weak’, note first that consigteanmean immediately
implies WCM, usingH (t) = t. Second, recall the example hinted at in the introductig(s x) =
% YiYi is clearly not consistent, since it ignores #se nor is it consistent in mean, since

1
MADn(fy) = Es\ x| fy(Sh.X) —En(fy)| = Eyp.yn | 7 D Vi —EY) — 0.
|

However, fy is WCM, sinceE,(fy) — E(f*) and, as just mentioned,’s MAD converges to 0. (In
fact, fy is WCM with H = 0, that is, in the strongest sense. That is, there are even ‘weakeddseth
that are WCM.)

5. Main Result

In this section we present our main result, the logical equivalence ofstensy to the combination
of the UAL and WCM properties. This will be arrived at during the cowsproving the final step
of Theorem 4.

The logical relationships between the concepts of consistency, UAL,GJAbhd WCM are
shown in graph form in Figure 1. Note that we already saw that consistenmies WCM (since
consistency implies consistency in mean, which implies WCM), and that UAL cadbivith
UALC implies consistency (shown immediately after the statement of Theoreims4¢ad of prov-
ing directly that consistency implies UAL and UALC, we will prove that WCM implig&LC, and
hence that consistency implies UALC. Consistency combined with UALC, in torplies UAL,

since
Dn (. FIRT") < Da(f, 1)+ Da (IRT 1) — 0

similarly to (4). Thus, in order to complete the picture sketched in Figure Imiires to show that
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Consistency.— (UAL + UALC)

WCM

Figure 1: Logical relations between consistency, Uniform Approximatalizability (UAL), Uni-
form Approximate Local Consistency (UALC) and Weak Consistency iai@VCM).
That is, consistency is equivalent to the combination of UAL and UALC sistaency
implies WCM; and WCM implies UALC.

Lemma 6 A learning method that is WCM is UALC.

The proof of Lemma 6 is the most complex of our results; we now sketch itlweefly (the full
proof appears in Appendix B). The initial idea is to consifigx, r) as|S,(x, r)| points derived from
P«r. The expected loss of a smoothed local version can then be seen torbriaygpely equal to
a mean of expected losses oWy for variousx. The expected losses ovBt, can, in turn, be
bounded by the MADs ofg and f as well as the difference between their means; we bound the
latter two using the WCM property. Finally, we construct in a recursive rea@rand {R¢} that
fulfill the requirements of UALC, using some results from measure thegarding the asymptotic
behavior offg .

Based on our results thus far, as summarized in Figure 1, it is obviouséhamalso conclude
the following:

Corollary 7 A learning method is consistent iff it is both UAL and WCM.

This can be stated as
Consistency <«<— UAL & WCM

since just like UAL and UALC, UAL and WCM are clearly independent in theither implies the
other, in fact, the same two examples seen in (3) apply higreas already been mentioned to be
WCM, while clearly it is not UAL, wherea$y is UAL but not WCM.

6. Localizable Sets of Distributions

Thus far we have been concerned with consistency in the sense ofttbé &k (appropriately
bounded) distributions; this is a very general case. However, maiifisggpes of learning prob-
lems consider more limited sets of distributions. Our goal in this section is to apphesuits to
such problems. In addition, this section will provide some of the tools usedciin8e7 to derive
results for classification.

This section relies on the following definition:

Definition 8 We call a set of distribution® localizable iff

PelP = Vr > 0,xe sup(P) P eP.
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That is, a localizable set of distributions contains all conditionings of its digtabs onto small
balls. Simple inspection of the proof of Lemma 6 reveals that it holds true otizabbe sets of
distributions, and not just on the set of all distributions, simply becausgplg the WCM property

of f only on distribution$’ ;. Consequently, it is easy to see that our results—specifically, Theorem
4 and Corollary 7—apply to localizable sets in general, and not just to thaf sditdistributions
bounded by some constavit> 0 (which is just one type of example of a localizable set). Note that
the requirement that a set of distributions be localizable is in a sense the miempaement we
would expect, since if is consistent on a distributiddbut not on som&,, then there is no reason

to expectf to be UALC. We will say more about this matter in Section 8.

Are all standard learning problems defined (perhaps implicitly) on localizsddie of distri-
butions? The answer is no; for example, if we assumeHyat 0, which impliesExf*(x) = 0,
then this is clearly not necessarily preserved when we consider Boméiowever, the converse
is true for many standard setups in statistics and machine learning. Speaifiples include the
following, to all of which our results apply (assuming the boundednessrgstion is upheld):

1. y=1*(x)+¢, eisindependentat , Ee=0

This is the standard regression model with additive noise (and randdgnylappearing in
statistics. It is clearly a setup that implicitly works on a localizable set dheeetains the
property thay = f*(x) +¢.

2. As a subcase of the previous example, we can assumétlmatf, where ¥ is the set of
all continuous functions, or alternatively some ‘smoothness class’ xEmmple, Lipschitz-
continuous functions, etc. Note, however, that if the density of the maudjstaibution onX
is assumed to be bounded then this is no longer a localizable set.

3. P(y=f*(x)) =1, vSx f(Sx), f*(x) € {-1,+1}

This is a noiseless classification problem, or set-estimation problem with restapping
sets, since

P(F(S1X) #Y) = Es, o 1 (S0 # ¥} = 2Es 1(S16) — £°(0] = SLa(1).

That is, the 0-1 loss used in classification is equal to (half)Ahdoss in this case. Note,
however, that we assunmféS x) € {—1,+1}, and smoothed local versions do not have this
property; for them the equality between the 0-1 andosses is not valid. If we are willing
to use the£y, norm for classification, however, then our results apply here.

In the next section we will see a way to derive results for the 0-1 losseliswallow noisy
distributions, that is, the standard classification setup. This will require whatedifferent
definitions than those used for regression.

4. x = @(z) for some random variabte whereg: R* — RP is smooth and > d.

We conclude with this final somewhat more complex example in order to showdualv
izable sets can be present even in settings where we might not expect lthéme. setting
described here, the original datay) lies on some low-dimensional space, but we observe
(x,¥) = (9(2),y), which lies on a low-dimensional manifold inside a high-dimensional space.
This sort of setting is considered in the manifold-learning field in unsugedhlesarning (see,
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e.g., Roweis and Saul, 2000; Belkin and Niyogi, 2003); recently such miethave been
applied to supervised learning (see, e.g., Kouropteva et al., 2003aLi €005). Note also
the relevance to the kernel trick, in which a kernel implicitly defines suchnafimamationg.

The assumption ok = @(z) (and thatg is smooth) is a nontrivial requirement; however, it
is easy to see that if we consider the set of@#nd z then this set is a localizable set of
distributions.

7. Classification

As mentioned in the previous section, noiseless classification intherm can be dealt with using
the results we have seen thus far, but this is quite limiting. Therefore in thisrs@e consider the
standard case of classification, using the natural 0-1 loss, and allowritigef possibility of noise.

In classification (also known as pattern recognition; Devroye et al.,)1@@6consider only
distributions for whon¥ = {—1,+1}; when we say ‘all distributions’ in this section we mean only
distributions of this sort. Note that such distributions form a localizable seftfaurs we might
expect our results to apply to them. Note also thax) = E(y|x) = 2n(x) — 1 wheren(x) =
P(y = 1|x), the conditional probability. We call a learning method classifieriff VS x ¢(S x) €
{-1,+1}. We will usec,d, etc., to denote classifiers, to differentiate them from general learning
methods, which we generally dendteg.

In classification the natural loss is the 0-1,

ROfl(C) - P(C(Shvx) 5& Y) - ESq,(x,y)l{C(ShyX) ?é Y}
and the minimal (Bayesian) loss is

Ry = infEqyL{h(x) # )

where the infimum is taken over all measurahl®enote the optimal (Bayesian) classification rule
by

¢ (x) = sign(f*(x)) = sign(2n(x) — 1)
which clearly minimizeRy_;. We are interested in the relative Id8By_1(c) = Ro-1(c) — Rj_;.
This is well-known to be equal to (half the value of)

Ln(C) = Es,xlC(Sh,X) —¢"(¥)| - [2n(%) — 1| = Es,x|c(Sh, X) — ¢ (x)] - [ F*(X)|.

That is, we have the usudh loss but it is weighted according to the distancen@f) from 1/2.
Another difference is that we comparé¢o c* = sign(f*) and not tof “. These differences between
L» and the loss., we considered in the main part of this work prevent an immediate application
of our results. We will therefore present alternative definitions that Wilaus to get around this
problem.

First, we define mutual consistency in the context of classification, whictiweall mutual
classification-consistencyor, briefly, mutual C-consistency, using

Dn(c,d) = Es, x/¢(Sh,X) — d(Sh,X)| - [2n(X) = 1| — O

—that s, we simply add the same weighting akinThis leads to defininglassification-consistency
(or, briefly, C-consistency on a distributiorP as

Ln(c) = Dn(c,¢") = Eg,x|c(Sh,X) — ¢ (¥)] - [2n(x) — 1| — 0
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(denotingc*(S,x) = c*(x)). Note that, in a similar way as in regressi@iconsistency is a specific
case of mutuaC-consistency.

A change needs to be made to smoothed local versions to ensure thatritzey obassifiers,
sincec]? can return values not ifi-1,+1}. Define, therefore,

SIS X) = Sig(TP(S X)) = SigN(Ex~pq (S 1), X))

When we talk of smoothed local versions in the context of classification, iadiy.

We can now define a version of UAL for the context of classification, in tilewing natural
way. LetC-UAL be the same as UAL, but replabg with Dy, f with ¢ and f|{ with &|{.

Instead of proving results ‘from scratch’ for the definitions given in #astion, we can build
upon the previous ones, using the following general technique ftelbe a consistent Nadaraya-
Watson kernel estimator using the window kernel. Define

fH (S X) = | fker(SX)|-

For any classifiec, define a learning method
fe(SX) = c(Sx)f(SX).

We can seéd¢(S x) as an estimate df*(x), using (in a plug-in manneg) S x) to estimate sigff *(x))
andf (S x) to estimate f*(x)|.

We will now use our results on regression for estimatfarén order to arrive at conclusions
for classifiersc. Note that|fc(S x)| < 1 (since fxer uses the window kernel, it is bounded by the
largest|y;| in the training set, which is 1). Given the additional fact that in classificatierhave
Y ={—1,+1}, we can conclude that our boundedness assumption on learning metbbuds on-
sequence to our treatment of classification, that is, to get completely jersrids for classification
we need only rely on bounded regression with= 1.

To arrive at results, we will need some minor facts:

Lemma 9 The following hold true for every,P,d:
1. Dy(fe, fg) — 0 — D (c,d) — 0.

2. Dn(fe, f*)—0 — Dn(c,c*) — 0.

3. LisUALC =  Dp ((f_c)ggk(fk”, fCQQ(?k)}) =0
Re
for large-enough Q{R} in the sense appearing in the definitions UAL,UALC.

The first part of the lemma indicates that Bemutual consistency of ang,d are linked to the
mutual consistency of;, fq; the second does the same @consistency and consistency. The third
part of the lemma shows that ff is UALC then smoothed local versions &f are asymptotically
equivalent tofy, wherec’ is a smoothed local version in the sense of classification (af other
words, we can either smooth or first smoothc and then applyf; the result is similar). A proof of
all parts of the lemma appears in Appendix E.

We can now present an example of deriving results for classificatiom those for regression.
Assume that is C-consistent on some localizable $et Then f; is consistent o by part 2 of
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Lemma 9, hence by Theorem 4 (and what we have seen regarding lbtakeas in Section 6l
is UAL on PP, that is, for everyP € P we have

for large-enougl@, Ry in the sense of the definition of UALf, is also UALC onP, and therefore
for large enougl®, R we have

Dn ((E)\g}a‘)}, fél}%&”) —0
by part 3 of Lemma 9, and therefore we conclude by the triangle inequalityfabain, for large

enoughQ, Ry)
Dn (fc, fE{Q(Rk)}> — 0.
R

Hence, by part 1 of Lemma Q,andc”[%{gk(fk)} are mutuallyC-consistent for large-enoud®, Ry, that

is, cis C-UAL on P. Since this was for every € P, we conclude that is C-UAL on P. Since the
entire argument was for an arbitrary localizableRee conclude that

Theorem 10 A C-consistent classifier on a localizable 8&s C-UAL onP.
In particular, since the set of all distributions (haviig- {—1,+1}) is localizable, we get
Corollary 11 A C-consistent classifier is C-UAL.

In a similar way we can define in the context of classification concepts gacall&LC and WCM,
and prove corresponding results (we do not go into details to avoid repgtitio

8. Concluding Remarks

Our analysis of consistency has led to the following result: Consisteniimgamethods must have
two properties, first, that they behave locally (UAL); second, that thearmmeust not be far from
estimating the true mean (WCM). Only a learning method having these two indapeprdperties

is consistent, and vice versa, their combination is logically equivalent tastensy.

To further elaborate on this result, note that UAL is clearly a local propanty WCM a global
one. Thus, we can see consistency as comprised of two aspects, @renldone global. Note also
that the global property, WCM, is a trivial consequence of consistemzytherefore what is worth
noting about this result is that consistency implies local behavior. We carasile in an informal
manner at least, why is this so?

As noted in the introduction, the logg that we considered is a global one, in that we average
overx, and hence it does not seem to directly imply local behavior. What dess 8 be the
crux of the matter is the requirement to perform wellahdistributions, or more generally on a
localizable set; note that the term ‘localizable’ here is a giveaway. Indeaa have a method
that is consistent on mortlocalizable set of distributions, it may not behave locally. As a simple
example (but complex enough for the underlying issues to be evidentys ktaume we work on
distributions havindey= 0 (which was mentioned in Section 6 as being non-localizable). We might
consider the following approach on this problem: ligbe some general learning method known
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to be useful on other data sets; specifically, assumeftiigtonsistent. We can then calibrate its
output so that it returns an empirical mean of 0, which makes sense sinkeomethatEy = 0.
That is, let

0(S%) = (8%~ 75 (5%
i=1..

(alternatively, we might calibrate by multiplying by an appropriate scalar,. ethgn, whileg is
consistent on the set of distributions wHy = 0 (using the consistency df on all distributions),

g does not behave locally. This can be seen, for example, by consideoim@ distribution withx
uniform on[—1,1] andy = sign(x). This distribution fulfilsEy = 0, andg is consistent on it, but
neither UAL nor UALC, since smoothed local versiongyah fact return values tending towards 0.

Thus, in summary, the fact that the set of all distributions is localizable is ezhetes consis-
tency to imply local behavior. If we are concerned about that fact (eegause we suspect local
behavior might lead to the curse of dimensionality; Bengio et al., 2006), themwst do away
with consistency on the set of all distributions and instead talk about camsjsté a more limited
set, one which is not localizable. However, part of the reason why mamgdric methods often
outperform parametric ones on real-world data is precisely becausentilay as few as possible
assumptions about the unknown distribution. Consequently, we may findtaabehavior is hard
to avoid.

We now turn to directions for future work. One such direction is to applyresults towards
proving the consistency of learning methods not yet known to be consisteappears that in
many cases proving the WCM property should not be difficult; hencet vémaains is to prove
UAL. While not necessarily a simple property to show, it may in some caseadier¢han proving
consistency directly.

An additional area for possible future work is empirical investigation, asvslldSince a con-
sistent method is necessarily UALC, we can consider using a smoothedéwosin of the original
method, since if chosen appropriately it is also consisteNbw, if for example we have a large
training set and only a few points at which to estimate, then by training on thegdada of the
original training set we may save time. Of course, there is no guarantetaithaiill be beneficial
on a particular problem, since consistency is an asymptotic property. Farypiical work might
therefore examine real-world data sets in detail to see how the perforroflamal versions of a
method compare to the original.

Acknowledgments

We thank the anonymous reviewers of a previous version of this paptivefio comments. We also
acknowledge support for this project from the Israel Science Fatiodas well as partial support
from NSF grant DMS-0605236.

2. Note that we might not need smoothing in practice, since the smoottiing fzecomes negligibly smald(R« )R« =
o(Ry). That is, local versions might behave similarly enough to smoothed Vecsions for practical purposes.
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Appendix A. Proof of Proposition 1

For any samplé&, denote the mean and standard deviation (oki)doy

25— 1 . 59 = | = _E(9)?

Now, start with a consistent methggdwhich istranslation-invariantin the sense that

VS x,b (S x) =9(S+b,x+Db)

whereS+b={(x +b,yi) : (X,yi) € S} (for example, we can takgto be a kernel estimator).
Define, for anyg > 0O,

fQ(sx):{g(Sx) X ¢ BggqOrxe {x : (%,%) €S}

otherW|se
and let ©
6(S
Q9 = .
S = fog(s)
Finally, let

f(Sx) = A9 (sx).

We will first show thatf is consistent; then we will show thdtis neither locally consistent nor
localizable. A brief overview of the proof is as follows: As— o, we get thaQ(S,) = Bg'(‘r?t This
means thaf is forced to return 0 on an area with vanishing radius, and hérmmhaves likeg on

an area with measure rising to 1, and is consistent. On the other hand, vehemnsider a local
version, we get tha®(S,(x,R,)) ~ O (%) wheremis the size of5,(x,R,). We also get that,

the point at which we are estimating, is at distarc® (f) from E(Sy(x,Ry)), a distance which
is asymptotically smaller tha®@. Hencex will tend to be in the area on whichis forced to return
0, makingf neither locally consistent nor localizable.

We now start with the formal proof, first showing thatis consistent. Sinc& is bounded,

0(S,) is bounded, and hend®(S,) = Ioé?‘)) — 0. We first assume that there is not a point mass

on Ex, which impliesu(BE(&)7Q(&)) — 0 almost surely, which follows from the fact that, since

E(S) — Exas. (by the LLN) and)(S,) — 0, we must have limsyBg s, o(s,) S {EX} with
probability 1. We can then use the consistency td see that

ESnEx|f(Sn,x)—f*(x)]
< Es,Ex1{x ¢ Bg(g) ars) OT X € {X : (%,%1) € Si}}HO(Sh, %) — £ (X)]

+E512Mu(BE ﬂ X 0 (X,¥) €S} )
<Es, [Ex|9(SmX) - f*(X)| +2MU(BI§(51),Q(31))}
—0
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which proves thaf is consistent. Consider now the case where there is a point md&ss étecall
that limsup Bg (s os,) € {EX} a.s., and note that due to the point massonwe haveP(Ex €

{x 1 (%,Yi) € Si}) — 1. Because of these two facts, we get

E%“(Bé@),qm ) {xi @ (aw) € a}c) =0

hence once moré is consistent by the consistencygfby a similar argument as before.

We will now show thatf is not locally consistent. For this, it is sufficient to show a single
distribution on whicH_n(f|{Rk}) does not converge to 0, for any sequeRge—~ 0. TakeX = [0,1]
(higher-dimensional cases can be proved similarly)ulbe uniform onX, and lety = +1 with
probability (1+ f*(x)) /2, and otherwisg = —1 (which makes sense ff*(x) € [-1,+1]). Define

s +1/2 xe 03]
f(x)_{—l/Z ve (11"

Fix somex € (0,1). Note thaty has no point masses, &x € {x : (X,¥i) € $i}) =0, and the
relevant condition in the definition dofY is of no consequence. Now, for large enougtthat is,
small enougtR,) we havex € [R,,1— R,]; we will now focus on that case.

DenoteS = S,(x,R,) andm = m(n,x,R,) = |§. Notice thatm is the sum of i.i.d Bernoulli
variables, and that

Em=2nR, , ¢%(m) <2nR, (6)

(recall thatEm o?(m) denote the expected value and variance of the random varaliespec-
tively). Now, consider the case in whigiR, /4 . Then there is some bounded subsequence,
knR, < K for all n. Then (using Chebyshev) clearlyis less than KRy, with non-vanishing prob-
ability on this subsequence. SinBg — 0 then in order forf to be consistent we must, for large
enoughn, discriminate between the two possibilitiés(x) = +1/2, f*(x) = —1/2 in a way that
does not depend upon(due to the translation-invariance 6f which stems from the translation-
invariance ofg). But discriminating between the two cases with arbitrarily small error cabp@ot
done with a bounded sample size, hence the loss cannot go to 0. Thumelede that ihR, /4 o
thenf is not locally consistent.

Consider now the other case, mR, — . We start by formulating bounds fon, [x— E(S)],
and&?(S).

e m: Using Bernstein’s Inequality and (6), we get

1t
P(Im—2nRy| > 1) < Zexp(—zm+t/3> '

Pickingt =t, = nR,, we get

P(Jm—2nR,| > nR,) < 2exp<—énR1> . @)
Note that this bound converges to 0 simé@ — co.
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e |[x—E(S)|: Clearlyx is the mean ofyr,, and also the mean of the individual observations
in S, as they are distributed i.i.d &R, Note that for every € S (i.e., taken from the
distributionPy r,) we haveo?(x;) = Rﬁ . Then, by Hoeffding’s Inequality,

P (‘x— é(é)‘ > t) < Em{ZeXp<—;:;> } :

Pickingt =t, = R, 'OQ”P” , we get

P (x ES)| = Ry 'Ogrf?\,f“) ) < Em{Zexp(—anlog<n%)>} 8)

< 2exp<—;log(an)> +4exp<—(13an>
—0

using the bound fom above (7).

¢ A final bound that we will need relates ﬁ?(é). Note that for any sampl8and pointx,

Consider the first expression on the RHS. On our (sub)saﬁp&e have for every; € Sthat
E(x —X)? = § and note thatx, — x)? < R2. Then, by Hoeffding’s Inequality,

1 m . ) Rr21 2
P<miZL(XI_X) -3 2t> <Em2exp< 2Rﬁ>
Pickingt =t, = R? 'Ogn(;':“), we get
12 o R log(nR»)
P(miZ\(X'X)3 >R R, )
Im
< Em2 eXp<_2an Iog(nl%))

< 2exp(—; Iog(an)> +4exp<—flsnl?n)
—0
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similarly as before. Combined with the bound from beforefor E(S)|, we get, for large
enoughn,

P (@< R (- EE) <RI

nRy,
+P (aZ(é) < %ZRﬁ L (x—E9)° = Rﬁlogrf?))
<P ( i(m X2 < 6R'2]> P (X CEL Iogn(;:?n))

y -5 00

_rlangoP<x—E(S) > Iog(m))

_ NEC) s 1

—,!'L';LP< X—E(S)| 2 oy + 1M~ 20R < Ry . 6%(S) > 12Rﬁ>
| - & Rn

<imP (k-£6]> )

where to reach the very last line we used what we know allxeué(g)\, as appearing in (8). Thus,
for everyx € supp, (P) we haveP (x €Beg Q(§)) — 1.
Finally, we can see that

B | Flimg (10— ()] = s, | (8% — ()]
—Es 1{x€ Beg g} (53— ()]
+Es 1{x ¢ Beg o} (80 - ()
> Es 1{x€Bg(g o5} f (¥
= %Eal{x € Bé(§),Q(§)}
= %P (X € Bé@)@(’s“))

1
2

—
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where we used that*(x) € {—1/2,+1/2}. Taking the expected value overthe dominated con-

vergence theorem gives us
, 1
lim Ln (flirg) = 5-

Thus, f|(r, is not consistent, that id, is not locally consistent (note that this is even by a relatively
large constant factor).

Having shown thaf is consistent but not locally consistent, we now show that in addition
cannot be localizable. This is immediate, sincé ivere localizable, then some sequefze— 0
would exist for whichDy, (f, f|(r ;) — 0, and therefore

Lo (fl{rg) = Dn (flgag: ) < Dn(flirg. f) +Bn(f, 1) — 0

by the localizability and consistency 6f But this result implied is locally consistent, contradict-
ing what we saw earlier.

Appendix B. Proof of Lemma 6

Define (as in the proof of Proposition $)= Si(x,r), m=m(n,xr) = |S(xr)|, the size of the local
training set. Note that we can s8asm points sampled fror®, ;. Then we get, for any,q > 0,

Dn (]9, %) = Egx|ExtoReg f (Sn(%,1),X) — £*(%)]
B F(8X) = (¥

f(§X)~ ()
< ExmEg

SR [ |T(SX) f*()()’
f*(X) — £*(x)] .

= Exmeé\/PX?r ‘ m

S EX?mEéwa‘r ‘ mEX,NPXA’qr

+ Ex,x’ ~Pxgr

We now start to consider the limit behavior of these expressions wherplaeee > 0 with {R¢} €
R (T)andg > 0 with {Q(R«)},Q € Q(T), whereT € 7T is arbitrary. First, for any sucfR«},Q we
have

1im Exx~P.omrn () — " (x)| =0
by the corollary to the following lemma (and sinRg, Q(R,) — 0):

Lemma 12 [Devroye, 1981; Lemma 1.1] For any distribution P and measurable B,.if|g(x)| <
o then

lim Ex~p,, 9(X) = g(x)

for almost all x.

Corollary 13 For any distribution P and measurable g, ifEp|g(X)| < c then

g(X)—g(x)| =0

iy B -p
for almost all x.
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Write S= S,(x, R,) (a minor abuse of our notation, as we also w8te S,(x,r), butr is always a
placeholder foR, in any case). Then

IlmsupDn<f]{Rk} )<I|msupEmeSNF,Fe |, X~ P ’ (SX)— f* (x’)‘

n—oo

To simplify notation for this last expression, define, for any supg (P),ne N,r,qe T,

C(X7 n7 ra q) EmE

f(SxX) - ()

S~Pr | M, X ~Pygr

and
C(n,r,q) = ExC(x,n,r,q).

It is therefore our goal to show th@(n, R,, Q(R,)) — O for appropriatg R}, Q. Towards that end,
we consider the limit limsyp.,, C(n,r,q), for fixedr,q. We have, for everx € supg (P),

C(x,n.r,q)

—EmESNP . X~Pe (éX/)—f*(%)‘

O MBxr) o o B

_MEmESNPXJmVX,NPX" (Ex)— £(

= U(Bxar) m SX’prr|m

_ H(Bxr) ) * *

= By EEsep, | T(8X) —En(f) + En(f) (1) +E(1) — ()

< H(Bxr) Em [MADmp,, (f) + |Emp,, (f) — En,, (f*)| + MADRg,, ()]
H(Bxar)

where the expected valukg,(f),E(f*) on the line before last are w.B%, and the expected values
and MADs on the last two lines are all conditional imn

Now, clearlym — oo almost surely (sincg is in the support oft, andr > 0 is fixed, so there is
a positive probability for an observation to fall withBy ). Hence, by the WCM property df on
P«r (afixeddistribution in the current view),

, H(Bxr)
limsupC(x,n,r,q) <
N0 m( q) lJ(BX qr)

[MADg, (1) +2H (MAD#, ().

Using this bound, we can then conclude that

limsupC(n,r,q) = limsupExC(x, n,r,q)

n—oo n—oo

g ExlimSUpC(X, n7 r? q) (9)
gExmin{zM, HBer) AR, () +2H (MADpxr(f*))]}
U—(Bx,qr) ' '
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using the Fatou-Lebesgue theorem for the first inequality, where weorethe trivial fact that
C(x,n,r,q) < 2M based on our boundedness assumption§, éf, and using those same bounded-
ness assumptions for the second inequality as well. We define

C*(r,q) = limsupC(n,r,q),

n—oo

C'(r,q) = Exmin{ZM : HBrr) [MADp, (1 +2H (MADp,, (f*))] } :
H(Bxar) ‘ ’

Hence, based on (9) we have

C*(r,q) <C*(r,q) (10)
We will now need the following lemma:
Lemma 14 [Devroye, 1981; see the proof of Lemma 2.2] For any measure |alfioost every X,

d

lim
r—0 U(Byy)

=Cx , |cx| <.
That is, the limit exists and is finite.
We now conside€* for fixed g and varyingr. By Lemma 14, we know that for almost evety

d
jim HBer) &1
r—OM(Bygr) r—0cxdrd od

(11)

and using Lemma 12 we can consider the MAD, as follows. First, by Lemma hawes for almost
everyx,

Iirrg)EX/NpXr f*(X) = f*(x)

r— ’

so, for almost every,
lim MAD,, (1) = lim Ex-p, |*(X) ~ Exv,, ()
< lim ey, | 17(¢) = (0] +|£() = B, (<)
= lim Ex-p, |1(x) ~ ()|
=0

using Corollary 13 for the last equality. Combining this with (11), and usingptbeerties ofH,
we get

H(Bxr)
U(Bx,qr)
since we have convergence to 0 for almost eveiry the expected value, and can apply the domi-

nated convergence theorem (for which the boundMfig crucial). Consequently, due to (10) we
have

Iin105*(r, q) = IimOEXmin{ZM : [MADg,, (f*)+2H (MADg,, ()] } —0
r— r—

limC*(r,q) < lim C*(r,q) = 0. (12)
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We now turn to definind R¢} andQ, using what we have seen thus far. Recall that {Ty} is
arbitrary and thafk \, 0. Define in a recursive manner, for everg T (where recall thaT is the
set containing all the members in the sequehge

K (TO) = 0)

/ / , , ,
K(Cl)zmin{keN vaeT.q>q  VK=>kvg eT.q >q}

k> K(d) C'(Te,d) <d

(sinceTi \, 0, we start by defining< for the largest value i, which isTp, and then proceed to
lower ones). Note that the clause regard@igs fulfillable by (12) for individualg’, and since we
consider a finite number of sucfl, we can takek large enough for them all. Note also that we
ensure thakK (Ti) strictly increases, for which we rely on the fact tAgstrictly descends.

We now define:

Q(TO)a “eey Q(TK(T;L)) =To,
Q(TK(T1)+1)a ey Q(TK(TZ)) =T, (13)

Q(TK(Tk)+1)7 "'7Q<TK(Tk+1)) = Tk?

Then according to these definitions, for &@yc Q(T),Q > Q, and any (large enougk) € N,
Q(Tw) > Q(Tw) =T¢ for somek fulfilling K > K(Ty)
and hence, for all large enough
C*(Tw, Q'(Tw)) < Q(Ti). (14)

We now work towards defininB= {R«}, which just as wittQ will be done in two stages. First,
we define in a recursive manner, for everg e T,

N(To, To) =0,
N(r,q) =

. vr',d eT,r' >r.d >q Vi >Avr,.d eT,r’ >r,qd >q
mln{n €N A>N(r'.q) and C(f,r',d) <2C*(r',q)

Note that the clause regardi@C* is fulfillable by the definition ofC* as the limsup ofC, and
hence we can achieve it over a set of firgte as well. Note also that we ensurgr,q) strictly
increases whenstrictly descends (angldoes not rise).

Define, for anyQ' € Q(T),

Ro, s Rum.(m) = To,
Ry M)+t Rnmem) =T,

RN (T)+15 - RN 1,0 () = T

852



CONSISTENCY ANDLOCALIZABILITY

Then, foranyR € R (T),R >R, and ifnis large enough,
R, > R, = Ti for somek fulfilling n> N(Ty, Q' (Tk)).
Note thatQ' (R,) > Q'(Tx). Thus, by the definition ol (-,-),
C(n. Ry, Q(Ry) < 2C* (R, Q(Ry))-
If we now also assume th& > Q, whereQ is as defined in (13), then by (14) we get
C(n,R;, Q(Ry)) < 2C7(Ry, Q'(Ry)) < 2Q'(R,) —>0

completing the proof.

Appendix C. Proof of Lemma 9
1. First, note that

vP Esox | f11(ShX) — [T (0] < Egy x| fier(Sh,X) — £ (x)| — 0. (15)
Now, notice that for any, c,d,

Dn (fe, fa) = Es,x|C(Sh, X) f} (S, X) — d(Sh, %) f1(Sh, %) |
= Esx[c(Sh, %) —d(Sh, )| }./(Sh,X)
= Eg,x[c(Sh,X) —d(Sy,x)|[2n(x) — 1
+Egx (S, %) = d(Sh, )| (), (Sh, %) = [2n(x) — 1)
= Dn(c,d) +Eg,x|c(Sh, %) — d(Sh, )| (F4(Sh, %) = [2n(x) — 1)
The last expression converges to 0 by (15) since

Eg,x[C(Sh, %) = d(Sn, X)] (F1:(Sn %) = [20(%) = 1) < 2Eg,x | f1,(Sn,X) —[20(x) —1][ — 0

which leads directly to the result we wanted.

2. By part 1 we know thaD,(f¢, fe) = 0 <«~— I5n(c, c") — 0, so it suffices to prove that
VP Dn(fe, f*) — 0, which can be shown using (15):

Dn(fe, f%) = Esnx‘C ) £ (Sh,X) — £ (X ‘:Esmxlf‘,|(8n,x)f|f*(x)]|HO.

3. We consideby, ((fc)|r, fﬁ\f‘); later we will replaceg, r with {Q(R«)},{R«}. By the definitions,

D ((fe)If, fep)
= Egu| B S(S1 1) X) 1 (S(% 1), X) — sign(Exlwpx,qrc(s«x,rw)) f (S|
< Esx ‘EX’Nqur (Sh(%,1),X) = SigN(Expy g O(Sn(X, 1), X X)) (%)
+Esx15|gn(Ex/~pxqr ( (%, )X))(fu(sq x)—lf ( X))
+ Esyx | B S(Sh %>(f (Sh(x,1),X) = [(x)])] (16)
< Esyx | Exnpiar C(Sh(X, ) —c'(X)] \f
+ Eg, x| (S0, %) — [ F¥(x \\

(S 1), X) = T (x)]|

+ ESMXEXINPx,qr
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where we used the fact th@— sign(a)| < |a—b| for anyb € {—1,+1}. We now consider the final
three expressions separately, denoting them (1), (2) (3):

1) : ESnX‘EX/Nqur (Sh(x,r),X) — Hf*
= Egx |[Exopiq C(Sh(%,1), X )\f ( )I—f*( X)|
< Egyx| ExoPgr S(Si(%,1),X) (| T ()] = f.(Sa(x, 1), X)) |
+ Esyx [ExoRq C(S(% 1), X) i (Sa(%,1), X)) — £ (x) |
<EgxEx~Bg || T ()] = fl(Sh(x.1),X)]
+Egyx |EnRig (S0 1), X) 1 (Sa(x,1),X) — T*(x).
Of the last two expressions, the first is equal to the last of the threessipns we arrived at
in (16), so we can consider later on double the value of that expressiwadof handling it

here. Regarding the second, it is simply equabtd (fc)|', f*), which we know to converge
to O for large-enougk, {R«} sincef. is UALC onP.

(2) : This converges to 0 by (15).
(3) : Since
EsyxEx~Beq | Fi{(Sh(X. 1), X) — [£5(X)]| < Eg,xBxopiq | fherl(Sh(X,1),X) — £4(X)|
we can use the same techniques as in the proof of Lemma 6:

Esq,xEx/NPx,qr }fker(sh(xa r)vxl) - f*(X)}
fker(S’](Xv r)a X,) - f*(xl)‘
+ ExBepg | T (X) — F(X)|

< ESmXEX'NPX,qr

H(Bxr)
= EXp_(erq) EmESvP |m EXNer fker(SX’) — f* ( )‘ 1{X’ c Bx,rq}
+ ExBrpyg [ 17(X) = 7(0)|
H(Bx) ~ *
< Ex IJ.(BX rq) EmESX’NPX., [m ‘ fker(S X’) — f (X’)‘
+ EXEX/prﬂqr f*(xl) - f*(X)}

where, as in previous proofs = |S,(x,r)|. The expression before last converges to 0 for
everyx € supp(P) and fixedr,q > 0 by the consistency ofier 0n Py, (using the fact that
m— o a.s.), and therefore in a similar way as that performed in Lemma 6 we can sdetha
entire expression (with expected value oxeconverges to 0 for slowly-enough descending
Q. {R«}. The final expression converges to 0 for amy— 0 by Corollary 13.

Thus, by replacingj, r with large-enougl®, {R«} we can see that the original expression converges
to 0, as required.
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