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Abstract

We propose the recursive autonomy identification (RAI) gt for constraint-based (CB) Bayes-
ian network structure learning. The RAI algorithm learns structure by sequential application of
conditional independence (Cl) tests, edge direction anattsire decomposition into autonomous
sub-structures. The sequence of operations is perforntosieely for each autonomous sub-
structure while simultaneously increasing the order of @Gieest. While other CB algorithms
d-separate structures and then direct the resulted utelirgcaph, the RAI algorithm combines the
two processes from the outset and along the procedure. Bynisans and due to structure decom-
position, learning a structure using RAI requires a smailienber of Cl tests of high orders. This
reduces the complexity and run-time of the algorithm andsiases the accuracy by diminishing the
curse-of-dimensionality. When the RAI algorithm learnedictiures from databases representing
synthetic problems, known networks and natural problenagmonstrated superiority with respect
to computational complexity, run-time, structural cotrexss and classification accuracy over the
PC, Three Phase Dependency Analysis, Optimal Reinsegreedy search, Greedy Equivalence
Search, Sparse Candidate, and Max-Min Hill-Climbing altbaons.

Keywords: Bayesian networks, constraint-based structure learning

1. Introduction

A Bayesian network (BN) is a graphical model that efficiently encodegoiheprobability distri-
bution for a set of variables (Heckerman, 1995; Pearl, 1988). Thed@ists of a structure and
a set of parameters. The structure is a directed acyclic graph (DAGjstisamposed of nodes
representing domain variables and edges connecting these nodesgédmadifests dependence
between the nodes connected by the edge, while the absence of areetgesttates independence
between the nodes. The parameters of a BN are conditional probabiléiesitids) that quantify
the graph edges. Once the BN structure has been learned, the pasametesually estimated (in
the case of discrete variables) using the relative frequencies of allicatidms of variable states as
exemplified in the data. Learning the structure from data by consideringsdile structures ex-

x. This work was done while the author was at the Department of ElectmchCamputer Engineering, Ben-Gurion
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haustively is not feasible in most domains, regardless of the size of théQhatkering et al., 2004),

since the number of possible structures grows exponentially with the nurhbedes (Cooper and
Herskovits, 1992). Hence, structure learning requires either stitmageuristic search algorithms
or algorithms that are optimal under certain assumptions.

One approach to structure learning—known as search-and-scRf) (E€hickering, 2002;
Cooper and Herskovits, 1992; Heckerman, 1995; Heckerman et 8b)-+&ombines a strategy
for searching through the space of possible structures with a sconotgdo measuring the fitness
of each structure to the data. The structure achieving the highest stoea iselected. Algorithms
of this approach may also require node ordering, in which a parent maadedes a child node
so as to narrow the search space (Cooper and Herskovits, 1998)sdoond approach—known
as constraint-based (CB) (Cheng et al., 1997; Pearl, 2000; Spireds @000)—each structure
edge is learned if meeting a constraint usually derived from comparingatine of a statistical
or information-theory-based test of conditional independence (Cl)ttoeshold. Meeting such
constraints enables the formation of an undirected graph, which is thimerfutirected based on
orientation rules (Pearl, 2000; Spirtes et al., 2000). That is, generdhgiS8&S approach we learn
structures, whereas in the CB approach we learn edges composingtarstru

Search-and-score algorithms allow the incorporation of user knowkbdgegh the use of prior
probabilities over the structures and parameters (Heckerman et al., B)®@8hnsidering several
models altogether, the S&S approach may enhance inference and abetienfor model uncer-
tainty (Heckerman et al., 1999). However, S&S algorithms are heuristic sunlly have no proof
of correctness (Cheng et al., 1997) (for a counter-example seedtinmgk2002, providing an S&S
algorithm that identifies the optimal graph in the limit of a large sample and haagiroorrect-
ness). As mentioned above, S&S algorithms may sometimes depend on nadlego@eoper and
Herskovits, 1992). Recently, it was shown that when applied to clagsifica structure having a
higher score does not necessarily provide a higher classificatiomaagc{iFriedman et al., 1997;
Grossman and Domingos, 2004; Kontkanen et al., 1999).

Algorithms of the CB approach are generally asymptotically correct (Chealy, 1997; Spirtes
et al., 2000). They are relatively quick and have a well-defined stopiibgrion (Dash and
Druzdzel, 2003). However, they depend on the threshold selectéd festing (Dash and Druzdzel,
1999) and may be unreliable in performing Cl tests using large conditionrstslanited data size
(Cooper and Herskovits, 1992; Heckerman et al., 1999; Spirtes eD@D).2They can also be un-
stable in the sense that a ClI test error may lead to a sequence of esultsgein an erroneous
graph (Dash and Druzdzel, 1999; Heckerman et al., 1999; Spirtés 20@0). Additional infor-
mation on the above two approaches, their advantages and disadvantagds found in Cheng
et al. (1997), Cooper and Herskovits (1992), Dash and Druzd28K(), Dash and Druzdzel (2003),
Heckerman (1995), Heckerman et al. (1995), Heckerman et al. {18@@rl (2000) and Spirtes
et al. (2000). We note that Cowell (2001) showed that for complete dagajen node ordering
and using cross-entropy methods for checking Cl and maximizing logarittoores to evaluate
structures, the two approaches are equivalent. In addition, hybridtalgps have been suggested in
which a CB algorithm is employed to create an initial ordering (Singh and Valtt®&b), to obtain
a starting graph (Spirtes and Meek, 1995; Tsamardinos et al., 200&aharrow the search space
(Dash and Druzdzel, 1999) for an S&S algorithm.

Most CB algorithms, such as Inductive Causation (IC) (Pearl, 20@D) 3pirtes et al., 2000)
and Three Phase Dependency Analysis (TPDA) (Cheng et al., 1@9%truct a DAG in two con-
secutive stages. The first stage is learning associations betweeregaf@ironstructing an undi-

1528



BAYESIAN NETWORK STRUCTURELEARNING BY RECURSIVEAUTONOMY IDENTIFICATION

rected structure. This requires a number of Cl tests growing exponentigiiyhe number of nodes.
This complexity is reduced in the PC algorithm to polynomial complexity by fixing theimne
number of parents a node can have and in the TPDA algorithm by measueisgréimgths of the
independences computed while CI testing along with making a strong assumptiatrilze under-
lying graph (Cheng et al., 1997). The TPDA algorithm does not taketditeps to restrict the size
of the condition set employed in Cl testing in order to mitigate the curse-of-dioveaigy.

In the second stage, most CB algorithms direct edges by employing oriemagstin two con-
secutive steps: finding and directing V-structures and directing additolges inductively (Pearl,
2000). Edge direction (orientation) is unstable. This means that smalkémdhe input to the
stage (i.e., Cl testing) yield large errors in the output (Spirtes et al., 200@)rskn Cl testing are
usually the result of large condition sets. These sets, selected baseslmup Cl test results, are
more likely to be incorrect due to their size, and they also lead, for a smalllsaiap, to poorer
estimation of dependences due to the curse-of-dimensionality. Thuspaiyusgart learning using
Cl tests of low order (i.e., using small condition sets), which are the most Ieliabts (Spirtes
et al., 2000). We further note that the division of learning in CB algorithmstimtoconsecutive
stages is mainly for simplicity, since no directionality constraints have to be gatgé during the
first stage. However, errors in Cl testing is a main reason for the instalfil@B@lgorithms, which
we set out to tackle in this research.

We propose the recursive autonomy identification (RAI) algorithm, whichG8anodel that
learns the structure of a BN by sequential application of CI tests, edgetidiveand structure de-
composition into autonomous sub-structures that comply with the Markov pyope., the sub-
structure includes all its nodes’ parents). This sequence of oper&ipesformed recursively for
each autonomous sub-structure. In each recursive call of the algotitle order of the CI test
is increased similarly to the PC algorithm (Spirtes et al., 2000). By performingsts of low
order (i.e., tests employing small conditions sets) before those of high, théeRAI algorithm
performs more reliable tests first, and thereby obviates the need to pdefsmeliable tests later.
By directing edges while testing conditional independence, the RAI algoadmtonsider parent-
child relations so as to rule out nodes from condition sets and thereby i @avoecessary Cl
tests and to perform tests using smaller condition sets. Cl tests using smadticosets are faster
to implement and more accurate than those using large sets. By decomposimgghénto au-
tonomous sub-structures, further elimination of both the number of CI tedtsiam of condition
sets is obtained. Graph decomposition also aids in subsequent iteratiorectaduitional edges.
By recursively repeating both mechanisms for autonomies decomposedHeograph, further re-
duction of computational complexity, database queries and structured @rsubsequent iterations
is achieved. Overall, the RAI algorithm learns faster a more precise steuctu

Tested using synthetic databases, nineteen known networks, and nib&lédatabases, RAI
showed in this study superiority with respect to structural correctnessplexity, run-time and
classification accuracy over PC, Three Phase Dependency An&yisjal Reinsertion, a greedy
hill-climbing search algorithm with a Tabu list, Greedy Equivalence Seapdrsg Candidate, naive
Bayesian, and Max-Min Hill-Climbing algorithms.

After providing some preliminaries and definitions in Section 2, we introducdrihlealgo-
rithm and prove its correctness in Section 3. Section 4 presents expelieeaitation of the RAI
algorithm with respect to structural correctness, complexity, run-time lasdification accuracy in
comparison to CB, S&S and hybrid structure learning algorithms. Section Guctes the paper
with a discussion.
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2. Preliminaries

A BN B(G,0) is a model for representing the joint probability distribution for a set of em

X = {X1...%}. The structureg(V,E) is a DAG composed 0¥, a set of nodes representing the
domain variableX, andE, a set of directed edges connecting the nodes. A directedXdgeX;
connects a child nods; to its parent nod;. We denotd®a(X, G) as the set of parents of noden

a graphg. The set of paramete holds local conditional probabilities ov&t, P(X|Pa(Xi, G))Vi

that quantify the graph edges. The joint probability distributionXarepresented by a BN that

is assumed to encode this distribuiaa (Cooper and Herskovits, 1992; Heckerman, 1995; Pearl,
1988)

P %) = []PUXIPAX. ). ®

Though there is no theoretical restriction on the functional form of theitional probability dis-
tributions in Equation 1, we restrict ourselves in this study to discrete vasiablgs implies joint
distributions which are unrestricted discrete distributions and conditioohlapility distributions
which are independent multinomials for each variable and each parefiguration (Chickering,
2002).

We also make use of the term partially directed graph, that is, a graph thahawayboth
directed and undirected edges and has at most one edge betweerirafynpdes (Meek, 1995).
We use this term while learning a graph starting from a complete undirectpt gral removing
and directing edges until uncovering a graph representing a family dfdvaquivalent structures
(pattern) of the true underlying BN[Pearl, 2000; Spirtes et al., 200Ma,(X, G), Adj(X, G) and
Ch(X, G) are, respectively, the sets of potential parents, adjacent haddschildren of nod« in
a partially directed graply, Pay(X, G) = Adj(X, G)\Ch(X, G).

We indicate thaiX andY are independent conditioned on a set of no8ése., the condition
set) usingX 1L Y|S, and make use of the notion of d-separation (Pearl, 1988). Thereater
define d-separation resolution with the aim to evaluate d-separation feradiffsizes of condition
sets, d-separation resolution of a graph, an exogenous cause tphaagié an autonomous sub-
structure. We concentrate in this section only on terms and definitions thdiracédly relevant to
the RAI concept and algorithm, where other more general terms and defnidil@vant to BNs can
be found in Heckerman (1995), Pearl (1988), Pearl (2000), airteS et al. (2000).

Definition 1 — d-separation resolutionThe resolution of a d-separation relation between a pair of
non-adjacent nodes in a graph is the size of the smallest condition setdbparhtes the two nodes.

Examples of d-separation resolutions of 0, 1 and 2 between nodedY are given in Figure 1.

Definition 2 — d-separation resolution of a graphThe d-separation resolution of a graph is the
highest d-separation resolution in the graph.

The d-separation relations encoded by the example graph in Figure 2elavaht to the de-
termination of the d-separation resolution of this graph areXi1)L X, |0; 2) X L X4 |{X3}; 3)
X1 AL Xs[{Xs}; 4) X1 1L Xe[{Xs}; 5) X2 1L Xa[{Xs}; 6) Xz LL Xs[{Xs}; 7) Xz LL Xe[{Xs}; 8)
X3 1L Xg|{Xa,Xs} and 9)Xs 1L Xs5|{X3}. Due to relation 8, exemplifying d-separation resolution

1. Throughout the paper, we assume faithfulness of the probabilitybdiom to a DAG (Spirtes et al., 2000).

2. Two BNs are Markov equivalent if and only if they have the same datdjacencies and V-structures (Verma and
Pearl, 1990).

3. Two nodes in a graph that are connected by an edge are adjacent.
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(@) (b) ()

Figure 1: Examples of d-separation resolutions of (a) 0, (b) 1 andlife)#een nodeX andy.

of 2, the d-separation resolution of the graph is 2. Eliminating relation 8 bypgdlue edgeXs — X,
we form a graph having a d-separation resolution of 1 (Figure 2b).uBkhdr adding edges to the
graph, eliminating relations of resolution 1, we form a graph having a dra@pn resolution of 0
(Figure 2c) that encodes only relation 1.

(a) (b) (c)
Figure 2: Examples of graph d-separation resolutions of (a) 2, (bji 1&r0.

Definition 3 — exogenous causeA nodeY in G(V,E) is an exogenous cause &(V',E’), where
V' cVandE CE,ifY ¢V andvX e V', Y € Pa(X, G) orY ¢ Adj(X, G) (Pearl, 2000).

Definition 4 — autonomous sub-structureln a DAG G(V,E), a sub-structurgs” (VA E”) such
thatVA C V andE” C E is said to be autonomous i given a seWe C V of exogenous causes to
G if YX € VA, Pa(X, G) C {VAUV}. If Ve is empty, we say the sub-structure is (completely)
autonomous

We define sub-structure autonomy in the sense that the sub-structusetmMarkov property
for its nodes. Given a structurg, any two non-adjacent nodes in an autonomous sub-structure
G" in G are d-separated given nodes either included in the sub-strugfume exogenous causes
to GA. Figure 3 depicts a structurg containing a sub-structurg”. Since nodes; andX; are
exogenous causes B (i.e., they are either parents of nodesgft or not adjacent to them; see
Definition 3), gA is said to be autonomous @ given nodes; andXo.

Proposition 1 If GA(VA,E”) is an autonomous sub-structure in a DARV,E) given a set
Ve C V of exogenous causes @A andX 1L Y |S, whereX,Y € VA, Sc V, then3S such that
S c {VAUVg} andX 1L Y|S.

4. If G is a partially directed graph, thétap(X, G) replaceda(X, G).
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Figure 3: An example of an autonomous sub-structure.

Proof: The proof is based on Lemma 1.
Lemma L If in a DAG, X andY are non-adjacent and is not a descendant &f° thenX andY
are d-separated giveta(Y) (Pearl, 1988; Spirtes et al., 2000).

If in a DAG G(V,E), X 1L Y|S for some seS, whereX andY are non-adjacent, and X is
not a descendant of, then, according to Lemma X, andY are d-separated givé?a(Y). SinceX
andY are contained in the sub-structugé (VA E*), which is autonomous given the set of nodes
Ve, then, following the definition of an autonomous sub-structure, all pacéiite nodes inVA—
and specificallyPa(Y)—are members in sétvV* U Ve . Then,3S such thatS' ¢ {VA UV} and
X 1 Y|S, which proves Proposition 1. |

3. Recursive Autonomy Identification

Starting from a complete undirected graph and proceeding from low to nigihgl-separation res-
olution, the RAI algorithm uncovers the correct patfeoha structure by performing the following
sequence of operations: (1) test of Cl between nodes, followed bsetheval of edges related
to independences, (2) edge direction according to orientation ruleg3amdaph decomposition
into autonomous sub-structures. For each autonomous sub-struceuRAltlalgorithm is applied

recursively, while increasing the order of CI testing.

Cl testingof ordern between nodeX andY is performed by thresholding the value of a criterion
that measures the dependence between the nodes conditioned onrarsades (i.e., the condition
set) from the parents of or Y. The set is determined by the Markov property (Pearl, 2000), for
example, ifX is directed intoY, then onlyY’s parents are included in the set. Commonly, this
criterion is thex? goodness of fit test (Spirtes et al., 2000) or conditional mutual informé@id)
(Cheng et al., 1997).

5. If X is a descendant of, we change the roles of andY and replacéa(Y) with Pa(X).

6. In the absence of a topological node ordering, uncovering theatgoattern is the ultimate goal of BN structure
learning algorithms, since a pattern represents the same set of prolmhb#itieat of the true structure (Spirtes et al.,
2000).
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Directing edgeds conducted according to orientation rules (Pearl, 2000; Spirtes et @0).20
Given an undirected graph and a set of independences, both beimgsthie of ClI testing, the
following two steps are performed consecutively. First, intransitive triletedes (V-structures)
are identified, and the corresponding edges are directed. An intranspiletX — Z — Y is defined
if 1) X andY are non-adjacent neighborsofand 2)Z is not in the condition set that separabéed
andY. In the second step, also known as the inductive stage, edges arauatintdirected until
no more edges can be directed, while assuring that no new V-struchdewalirected cycles are
created.

Decompositiorinto separated, smaller, autonomous sub-structures reveals the sthietare
chy. Decomposition also decreases the number and length of paths batwdesrthat are Cl-tested,
thereby diminishing, respectively, the number of Cl tests and the sizesditiom sets used in these
tests. Both reduce computational complexity. Moreover, due to decompositiditional edges can
be directed, which reduces the complexity of Cl testing of the subsequeatidtes. Following de-
composition, the RAI algorithm identifies ancestor and descendant sudistrs; the former are
autonomous, and the latter are autonomous given nodes of the former.

3.1 The RAI Algorithm

Similarly to other algorithms of structure learning (Cheng et al., 1997; CaopkHerskovits, 1992;
Heckerman, 1995), the RAI algoritinassumes that all the independences entailed from the given
data can be encoded by a DAG. Similarly to other CB algorithms of structurgngaiCheng et al.,
1997; Spirtes et al., 2000), the RAI algorithm assumes that the data sangie Isige enough for
reliable Cl tests.

An iteration of the RAI algorithm starts with knowledge produced in the previtaration and
the current d-separation resolution, Previous knowledge includegsar, @ structure having a d-
separation resolution of— 1, andg,,, a set of structures each having possible exogenous causes to
Gstart Another input is the graplya, which containsGsiary, G, and edges connecting them. Note
that Ga1 may also contain other nodes and edges, which may not be required featheng task
(e.g., edges directed from nodesgaart into nodes that are not igstart OF G ), and these will be
ignored by the RAL. In the first iteratiom = 0, G, = 0, GstarV, E) is the complete undirected
graph and the d-separation resolution is not defined, since there para®f d-separated nodes.
SincegG,, is empty,Gai = Gstart

Given a structurejsiart having d-separation resolution- 1, the RAI algorithm seeks indepen-
dences between adjacent nodes conditioned on sets af aizé removes the edges corresponding
to these independences. The resulting structure has a d-separadiotioasof n. After applying
orientation rules so as to direct the remaining edges, a partial topologitsalisrobtained in which
parent nodes precede their descendants. Childless nodes have ésetlopological order. This
order is partial, since not all the edges can be directed; thus, edgestimait be directed connect
nodes of equal topological order. Using this partial topological ordethe algorithm decomposes
the structure into ancestor and descendent autonomous sub-strgotasg® reduce the complexity
of the successive stages.

First, descendant sub-structures are established containing thetopasgical order nodes. A
descendant sub-structure may be composed of a single childless nesleeal adjacent childless

7. The RAI algorithm and a preliminary experimental evaluation of the atgarwere introduced in Yehezkel and
Lerner (2005).
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nodes. We will further refer to a single descendent sub-structureguglthsuch a sub-structure
may consist of several non-connected sub-structures. Secomwedgal pointing towards nodes of
the descendant sub-structure are temporarily removed (together witkegsherdlant sub-structure
itself), and the remaining clusters of connected nodes are identified estansub-structures. The
descendent sub-structure is autonomous, given nodes of highéodimab order composing the
ancestor sub-structures. To consider smaller numbers of parents@atly smaller condition set
sizes) when ClI testing nodes of the descendant sub-structure, théhagéirst learns ancestor
sub-structures, then the connections between ancestor and degcsualstructures, and finally
the descendant sub-structure itself. Each ancestor or descentiestrigcture is further learned
by recursive calls to the algorithm. Figures 4, 5 and 6 show, respectireyRAI algorithm, a
manifesting example and the algorithm execution order for this example.

The RAI algorithm is composed of four stages (denoted in Figure 4 assStagB, C and
D) and an exit condition checked before the execution of any of the stabige purpose of the
exit condition is to assure that a Cl test of a required order can indepérfi@med, that is, the
number of potential parents required to perform the test is adequatepufrpese of Stage Al is
to thin the link betweeng,, and Gsary the latter having d-separation resolutionnof 1. This is
achieved by removing edges corresponding to independences betades ing,, and nodes in
Gstartconditioned on sets of sizeof nodes that are either exogenous to, or witlgga+ Similarly,
in Stage B1, the algorithm tests for CI of ordebetween nodes igsiartgiven sets of siza of nodes
that are either exogenous to, or withifki,, and removes edges corresponding to independences.
The edges removed in Stages Al and B1 could not have been removeiougrapplications of
these stages using condition sets of lower orders. When testing indegentletweerX andy,
conditioned on the potential parents of noiehose nodes in the condition set that are exogenous
to GstarrareX’s parents whereas those nodes that argstpt are either its parents or adjacents.

In Stages A2 and B2, the algorithm directs every edge from the remainggsdtiat can be
directed. In Stage B3, the algorithm groups in a descendant sub-st&raditthe nodes having the
lowest topological order in the derived partially directed structure, atolfing the temporary re-
moval of these nodes, it defines in Stage B4 separate ancestor sutfsisuDue to the topological
order, every edge from a nodéin an ancestor sub-structure to a natien the descendant sub-
structure is directed a$ — Z. In addition, there is no edge connecting one ancestor sub-structure
to another ancestor sub-structure.

Thus, every ancestor sub-structure contains all the potential pafétgsiodes, that is, it is au-
tonomous (or if some potential parents are exogenous, then the sutthgriscautonomous given
the set of exogenous nodes). The descendant sub-structure dgfibition, autonomous given
nodes of ancestor sub-structures. Proposition 1 showed that weeas#ifyichll the conditional in-
dependences between nodes of an autonomous sub-structure, élemgancestor and descendant
sub-structure can be processed independently in Stages C and &tinedp, so as to identify con-
ditional independences of increasing orders in each recursive fadle algorithm. Stage C is a
recursive call for the RAI algorithm for learning each ancestor fuetire with orden+ 1. Sim-
ilarly, Stage D is a recursive call for the RAI algorithm for learning thecdeslant sub-structure
with ordern+ 1, while assuming that the ancestor sub-structures have been fullydeaeng
d-separation resolution of+ 1).

Figure 5 and Figure 6, respectively, show diagrammatically the stages ininigan example
graph and the execution order of the algorithm for this example. Figurbdvessthe true structure
that we wish to uncover. Initiallygstartis the complete undirected graph (Figure 5b) 0, G, is
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Main function: Gout = RAI[N, Gstard Vstart Estart), gex(vem Eex), Galll

Exit condition

If all nodes inGstarthave fewer tham+ 1 potential parents, s&out = Gai and exit.

A. Thinning the link between G, and Gstarrand directing Gstart

1. For every nodeY in Gsiat and its pareniX in G, if 3S C {Pap(Y, Gstar) U
Pa(Y, G.,)\X} and|S| = n such thatX 1L Y|S, then remove the edge betwee

X andY from Gy
2. Direct the edges ifstart Using orientation rules.

>

B. Thinning, directing and decomposingGstart

1. For every nod&’ and its potential parerX both in Gstar, if 3S C {Pa(Y, G, ) U
Pap(Y, Gstar) \X} and|S| = n such thaiX 1L Y |S, then remove the edge betwee

X andY from Ga and Gstart

2. Direct the edges ifstart USing orientation rules.

3. Group the nodes having the lowest topological order into a descesdan
structuregGp.

4. Removegp from Gstartemporarily and define the resulting unconnected structures
as ancestor sub-structurés,, ..., Ga,.

=]

C. Ancestor sub-structure decomposition
Fori = 1tok, call RAIIN+1, Ga;, Gy Galll-

D. Descendant sub-structure decomposition

1. DefineGe, . ={Ga,,---, Gar, Gey) @S the exogenous set .
2. CallRAIIN+1, Gb, Gey, » Gall-
3. SetGout = Gan and exit.

Figure 4: The RAI algorithm.
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Figure 5: Learning an example structure. a) The true structure to Ieamtiél (complete) struc-
ture and structures learned by the RAI algorithm in Stages (see FigujeB4), d) B2,
e) B3 and B4, f) C, g) D and Al, h) D and A2 and i) D, B1 and B2 (i.e., tisilteng
structure).
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[ RAI[0,G({ X1 ... X7}), {}, Ga]

|
6\3 2\1

{ RAI[L, G({ X3, X4, X5}), {}, Ganll } {RAI[lag({Xl})’{}agall]}

12 7
5 /4

RAI[2, G({ X3, X4, X5}), {}, Gatl]

{ RAI[17 g({X27 X67 X7})7 {g({Xl})’ g({X37 X4’ X5})}7 gall] }

1/ f10 RAI2,G({ X2, X6}), {G({X1}), G({ X3, X4, X5}) }, Ganl]

RAI[Z g({X7})7 {g({XQ XG})? g({Xl})7 g({X37 X47 XS})}v gall]

Figure 6: The execution order of the RAI algorithm for the example straafiFigure 5. Recursive
calls of Stages C and D are marked with double and single arrows, reghectihe
numbers annotating the arrows indicate the order of calls and returnsaifjtrithm.
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empty andGai = Gstars SO Stage A is skipped. In Stage B1, any pair of nodeSsigis Cl tested
given an empty condition set (i.e., checking marginal independence)) wikicls the removal of the
edges between nodg and nodes(s, X4 andXs (Figure 5c¢). The edge directions inferred in Stage
B2 are shown in Figure 5d. The nodes having the lowest topologicat (XgeXs, X7) are grouped
into a descendant sub-structugg (Stage B3), while the remaining nodes form two unconnected
ancestor sub-structure§a, and Ga, (Stage B4)(Figure 5e). Note that after decomposition, every
edge between a nodk,, in an ancestor sub-structure, and a nogjein a descendant sub-structure
is a directed edg¥; — X;. The set of all edges from an ancestor sub-structure to the destenda
sub-structure is illustrated in Figure 5e by a wide arrow connecting thetsubkures. In Stage C,
the algorithm is called recursively for each of the ancestor sub-staesctithn = 1, Gstart= Ga,
(i=1,2) andG,, = 0. Since sub-structurga, contains a single node, the exit condition for this
structure is satisfied. While callinGstart= Ga,, Stage A is skipped, and in Stage B1 the algorithm
identifies thaiXs Ll Xs| X3, thus removing the edg&, — Xs. No orientations are identified (e.g
cannot be a collider, since it separatédandXs), so the three nodes have equal topological order
and they are grouped to form a descendant sub-structure. Thsiveccall for this sub-structure
with n = 2 is returned immediately, since the exit condition is satisfied (Figure 5f). Motgn
Stage D, the RAI is called witm = 1, Gstat= Gp and G, = {Ga,, Ga,}. Then, in Stage Al
relationsXy L {Xe, X7} | X2, Xa LL {Xg, X7} | X2 and{ Xz, Xs} Ll {Xo, Xs, X7} | X4 are identified, and
the corresponding edges are removed (Figure 5g). In StageXfAdnd X7 cannot collide aiX,
(sinceXs and Xy are adjacent), ani, andXg (X7) cannot collide aX; (Xg) (sinceX, andXg (X7)

are adjacent); hence, no additional V-structures are formed. Basttkdnductive step and since
X1 is directed afXy, X, should be directed &g and atX;. Xg (X7) cannot be directed &t (Xg),
because no new V-structures are allowed (Figure 5h). Stage B1 ofgbetlam identifies the
relationX; L X7|Xs and removes the edg& — X;7. In Stage B2Xs cannot be a collider oX;
andXz, since it has separated them. In the inductive stgpis directed a7, X¢ — X7 (Figure 5i).

In Stages B3 and B4X; and{X;,, Xs} are identified as a descendant sub-structure and an ancestor
sub-structure, respectively. Further recursive calls (8 and 10 ur&ig) are returned immediately,
and the resulting partially directed structure (Figure 5i) represents a fafmilakov equivalent
structures (pattern) of the true structure (Figure 5a).

3.2 Minimality, Stability and Complexity

After describing the RAI algorithm (Section 3.1) and before proving itsaziness (Section 3.3), we
analyze in Section 3.2 three essential aspects of the algorithm—minimality, staldlitpaplexity.

3.2.1 MINIMALITY

A structure recovered by the RAI algorithm in iteratiorhas a higher d-separation resolution and
entails fewer dependences and thus is simpler and prefeieal structure recovered in iteration
m—k where 0< k < m. By increasing the resolution, the RAI algorithm, similarly to the PC
algorithm, moves from a complete undirected graph having maximal dependsdations between
variables to structures having less (or equal) dependences thanusretiactures, ending in a
structure having no edges between conditionally independent nodeis, taaninimal structure.

8. We refer here to structures learned during algorithm execution andtdmnsider the empty graph that naturally has
the lowest d-separation resolution (i.e., 0). This graph, having aksatarginally independent of each other, will
be found by the RAI algorithm immediately after the first iteration for graggolution 0.
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3.2.2 SABILITY

Similarly to Spirtes et al. (2000), we use the notion of stability informally to measeraumber of
errors in the output of a stage of the algorithm due to errors in the input tetttge. Similarly to the
PC algorithm, the main sources of errors of the RAI algorithm are Cl-testidgree identification
of V-structures. Removal of an edge due to an erroneous CI test méyddailure in correctly
removing other edges, which are not in the true graph and also causeritation errors. Failure
to remove an edge due to an erroneous CI test may prevent, or wrongky, caientation of edges.
Missing or wrongly identifying a V-structure affect the orientation of otbh@ges in the graph during
the inductive stage and subsequent stages.

Many CI test errors (i.e., deciding that (in)dependence exists wheeg dot) in CB algo-
rithms are the result of unnecessary large condition sets given a limitechdataize (Spirtes et al.,
2000). Large condition sets are more likely to be inaccurate, since theyaeelikely to include
unnecessary and erroneous nodes (erroneous due to errorsansgages of the algorithm). These
sets may also cause poorer estimation of the criterion that measures degee(elg., CMI org?)
due to the curse-of-dimensionality, as typically there are only too few inssampresenting some
of the combinations of node states. Either way, these condition sets apasésp for many wrong
decisions about whether dependence between two nodes exists oromseglently, these errors
cause structural inaccuracies and hence also poor inference ability.

Although Cl-testing in the PC algorithm is more stable than V-structure identific§8pirtes
et al., 2000), it is difficult to say whether this is also the case in the RAI algoriBeing recursive,
the RAI algorithm might be more unstable. However, Cl test errors amipatly less likely to
occur, since by alternating between CI testing and edge direction the atgarghs knowledge
about parent-child relations before CI testing of higher orders. Thisvladge permits avoiding
some of the tests and decreases the size of conditions sets of some oth@etesismma 1). In
addition, graph decompaosition promotes decisions about well-foundedsonfinode presentation
for subsequent CI tests, contrary to the common arbitrary order ofqmason (see, e.g., the PC
algorithm). Both mechanisms enhance stability and provide some means af@memtion, as will
be demonstrated shortly.

Let us now extensively describe examples that support our claimdiegathe enhanced sta-
bility of the RAI algorithm. Suppose that following CI tests of some order bothPtGeand RAI
algorithms identify a triplet of nodes in which two non-adjacent nodeandY, are adjacent to a
third nodeZ, that is,X —Z —Y. In the immediate edge direction stage, the RAI algorithm identifies
this triplet as a V-structureX — Z < Y. Now, suppose that due to an unreliable CI test of a higher
order the PC algorithm removes— Z and the RAI algorithm removeX — Z. Eventually, both
algorithms fail to identify the V-structure, but the RAI algorithm has an athgaover the PC algo-
rithm in that the other arm of the V-structure is directéd;- Y. This contributes to the possibility to
direct further edges during the inductive stage and subsequemnsikeccalls for the algorithm. The
directed arm would also contribute to fewer Cl tests and tests with smaller consitis during ClI
testing with higher orders (e.g., if we later have to test independence lreYnaed another node,
then we know thaZ should not be included in the condition set, even though it is adjacéf)t 1o
addition, the direction of this edge also contributes to enhanced inferapebitty.

Now, suppose another example in which after removing all edges due tolegliatests using
condition set sizes lower than or equalrtothe algorithm identifies the V-structudé — Z «— Y
(Figure 7a). However, let assume that one of the V-structure arm¥ say, is correctly removed
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on a subsequent iteration using a larger condition set sizen(sdywithout limiting the generality).
We may be concerned that assuming a V-structure for the lower gragibittes, the RAI algorithm
wrongly directs the second arfh—Y asZ < Y. However, we demonstrate that the edge direction
Z < Y remains valid even if there should be no edge Z in the true graph. Suppose théat— Z
was correctly removed conditioned on varialfe which is independent of given any condition
set with a size smaller than or equahtoThen, the possible underlying graphs are shown in Figures
7b-7d. The graph in Figure 7d is not possible, since it yieldsXhanhdY are dependent given all
condition sets of sizes smaller than or equal.ttn Figure 7b and Figure 7&,is a collider between
W andY, and thus the edge directian— Y remains valid. A different graptX — W «— Z-Y (i.e.,

W is a collider), is not possible, since it means tatl Z|S, |S| < n, W ¢ Sand thenX —Z should
have been removed in a previous order (using condition set sineopfower) andX — Z <Y
should not have been identified in the first place. Now, suppos#&\lzatdY are dependant. In this
case, the possible graphs are those shown in Figures 7e-7h. Similarlycsthé whichw andY

are independenty cannot be a collider ok andZ (X — W « Z) in this case as well. The graphs
shown in Figures 7e-7g cannot be the underlying graphs since they depandency between
X andY given a condition set of size lower than or equalnto The graph shown in Figure 7h
exemplifies a V-structurX — W « Y. Since we assume thtandZ are independent givew
(and thusX — Z was removed), a V-structude — W « Z is not allowed. Since the edgé— W

is already directed, the edge betwé#randZ must be directed a4 — Z. In this case, to avoid
the cycleY — W — Z — Y, the edge betweerrandZ must be directed as in the true graph, that is,
Y — Z.

Finally for the stability subsection, we note that the contribution of graphrdposition to
structure learning using the RAI algorithm is threefold. First is the identifinaticearly stages,
using low-order, reliable Cl tests, of the graph hierarchy, exemplifyiedttkbone of causal rela-
tions in the graph. For example, Figure 5e shows that learning our exanaple @rigure 5a) from
the complete graph (Figure 5b) demonstrates, immediately after the first itethtbithe graph is
composed of three sub-structure$Xr}, { X2, Xe, X7} and{Xs, Xa, X5}, where{X;} — {Xz2,Xe, X7}
and{Xs, X4, Xs} — {X2, X6, X7 }. This rough (low-resolution) partition of the graph is helpful in visu-
alizing the problem and representing the current knowledge from thetarnd along the learning.
The second contribution of graph decomposition is the possibility to implememingansing a
parallel processor for each sub-structure independently. Thisitai@amay be further extended in
the recursive calls for the algorithm.

Third is the contribution of graph decomposition to improved performance. Ajraira low
number of CI tests, decomposition provides a sound guideline for decidirag @ducated order
in which the edges should be CI tested. Based on this order, some tests cansidered redun-
dant and thus be avoided. Several methods for selecting the rightfordae PC algorithm were
presented in Spirtes et al. (2000), but these methods are heuristianpesition into ancestor and
descendent sub-structures is followed by three levels of learningré=guthat is, removing and di-
recting edges 1) of ancestor sub-structures, 2) between ancedtdesrendent sub-structures, and
3) of the descendent sub-structure. The second level has theggiieéiteence on further learning.
The removal of edges between ancestor and descendent subfsunid the sequential direction
of edges in the descendant sub-structure assure that, first, fetestipbparents are considered,
while learning the descendent sub-structure and second, more estyé® alirected in this lat-
ter sub-structure. Moreover, these directed edges and the dedvewt{zhild relations prevent an
arbitrary selection order of nodes for Cl testing and thereby enable gmglemaller and more
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(b)

(e)

(f)

@ (h)
Figure 7: Graphs used to exemplify the stability of the RAI algorithm (see text).

accurate condition sets. Take, for example, Cl testing for the reduedget betweeX, and X;

in our example graph (Figure 5i) if the RAI algorithm did not use decompositi@&maph decom-
position forn = 0 (Figure 5e) enables the identification of two ancestor sub-structgegsand
Ga,, as well as a descendent sub-structgrethat are each learned recursively. During Stage D
(Figure 4) and while thinning the links between the ancestor sub-struanmesp (in Stage Al

of the recursion fon = 1), we identify the relation¥; L {Xe, X7} | X2, Xq4 L {X,X7} | X2 and
{X3, X5} 1L {X2,Xs, X7} | X4 @and remove the 10 corresponding edges (Figure 5g). The decision to
test and remove these edges first was enabled by the decomposition cighe@Ga,, Ga, and

Gp. In Stage A2 (Figure 5h), we direct the edge— Xs (asX; LL Xg| X2 and thusX, cannot be

a collider betweerX; andXg) and edgex; — X7 (asXy L X7| Xz and thusX, cannot be a collider
betweenX; andX7), and in Stage B (Figure 5i) we direct the edg¢e— X;. The direction of these
edges could not be assured without removing first the above edges,thim (redundant) edges
pointing ontoXg and Xz would have allowed wrong edge direction, thatig,— X, andX; — Xo.

If we had been using the RAI algorithm with no decomposition (Figure 5dh@iPC algorithm)
and had decided to check the independence betXgandXy, first, we would have had to consider
condition sets containing the nod&s, X3, X4, Xs or Xs (up to 10 CI tests whether we start from
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Xz or X7). Instead, we perform in Stage B1 only one tést,lL X;7|Xs. These benefits are the result
of graph decomposition.

3.2.3 GOMPLEXITY

Cl tests are the major contributors to the (run-time) complexity of CB algorithmen@and
Greiner, 1999). In the worst case, the RAI algorithm will neither direst edges nor decom-
pose the structure and will thus identify the entire structure as a desd¢endmatructure, calling
Stages D and B1 iteratively while skipping all other stages. Then, the ixeaf the algorithm
will be similar to that of the PC algorithm, and thus the complexity will be bounded dyahthe
PC algorithm. Given the maximal number of possible par&rdaad the number of nodas the
number of Cl tests is bounded by (Spirtes et al., 2000)

2< 2 > K < ni—l ) _ nz(n—l)'H’
i; - (k=1
which leads to complexity aD(n¥).

This bound is loose even in the worst case (Spirtes et al., 2000) espéciadisl-world ap-
plications requiring graphs having V-structures. This means that in moss ca@sne edges are
directed and the structure is decomposed; hence, the number of CI testshismaller than that
of the worst case. For example, by decomposing our example graphréByinto descendent
and ancestor sub-structures in the first application of Stage B4 (Figdren® avoid checking
Xe L X7]{X1,X3, X4, Xs}. This is becausé€Xy, X3, Xa, X5} are neitheXs's nor X;’s parents and thus
are not included in the (autonomous) descendent sub-structure.eBiing onlyXs Ll X7 |{Xz2},

the RAI algorithm saves Cl tests that are performed by the PC algorithm. Whuwtfier elaborate
on the RAI algorithm complexity in our forthcoming study.

3.3 Proof of Correctness

We prove the correctness of the RAI algorithm using Proposition 2. We #iett only conditional
independences (of all orders) entailed by the true underlying grapidantified by the RAI al-
gorithm and that all V-structures are correctly identified. We then note ®cdirectness of edge
direction.

Proposition 2 If the input data to the RAI algorithm are faithful to a DAGye, having any
d-separation resolution, then the algorithm yields the correct patteGfer

Proof: We use mathematical induction to prove the proposition, where in each indwstép,m,
we prove that the RAI algorithm finds (a) all conditional independen€esder m and lower, (b)
no false conditional independences, (c) only correct V-structurégd all V-structures, that is, no
V-structures are missing.

Base stepri= 0): If the input data to the RAI algorithm was generated from a distribution aithf
to a DAG, Giue, having d-separation resolution 0, then the algorithm yields the corréerpéor
g&me

Given that the true underlying DAG has a d-separation resolution of Oddkee entail only
marginal independences. In the beginning of learniiightis a complete graph and = 0. Since
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there are no exogenous causes, Stage A is skipped. In Stage B, tlithalgests for independence
between every pair of nodes with an empty condition set, th&tis,Y | 0 (marginal independence),
removes the redundant edges and directs the remaining edges as pas#il@eesulting structure,
all the edges between independent nodes have been removed alse woffalitional independences
are entailed. Thus, all the identified V-structures are correct, as dsgus Section 3.2.2 on stabil-
ity, and there are no missing V-structures, since the RAI algorithm has testegendence for all
pair of nodes (edges). At the end of Stage B2 (edge direction), thtingsstructure andjy e have
the same set of V-structures and the same set of edges. Thus, tret pattern forGie is identi-
fied. Since the data entail only independences of zero order, fugbersive calls withm > 1 will
not find independences with condition sets of sizeand thus no edges will be removed, leaving
the graph unchanged.

Inductive stepri+ 1): Suppose that at induction step the RAI algorithm discovers all condi-
tional independences of order and lower, no false conditional independences are entailed, all
V-structures are correct, and no V-structures are missing. Then, ifhthe data to the RAI al-
gorithm was generated from a distribution faithful to a DAG.e, having d-separation resolution
m-+ 1, then the RAI algorithm would yield the correct pattern for that graph.

In stepm, the RAI algorithm discovers all conditional independences of ondand lower.
Given input data faithful to a DAGGiue, having d-separation resolution+ 1, there exists at
least one pair of nodes, s4X,Y}, in the true graph, that has a d-separation resolutian ¢f1.°
Since the RAI, by the recursive cati+ 1 (i.e., calling RAIM+ 1, Gstart, G o Ganl]), has identified
only conditional independences of ordarand lower, an edgdxy = (X —Y), exists in the input
graph,Gstarr The smallest condition set required to identify the independence betvaedY is
Sxy (X L Y |Sxy), such thatSxy| > m+1. Thus,|Pay(X)\Y| > m+1 or |Pap(Y)\X| > m+1,
meaning that either nod€ or nodeY has at leasin+ 2 potential parents. Such an edge exists
in at least one of the autonomous sub-structures decomposed fronafgteygelded at the end of
iterationm. When calling, in Stage C or Stage D, the algorithm recursively for thisstuizture
with m' = m+ 1, the exit condition is not satisfied because either nbdenodeY has at leagst’ +1
parents. Since Stepassured that the sub-structure is autonomous, it contains all the mycesda
parents. Note that decomposition into ancesfar,and descendang;p, sub-structures occurs after
identification of all nodes having the lowest topological order, such tetyeedge from a node
X'in Ga to a nodeY in Gp is directed,X — Y. In the case that the sub-structure is an ancestor
sub-structureSxy contains nodes of the sub-structure and its exogenous causes. as¢hat the
sub-structure is a descendant sub-structsge contains nodes from the ancestor sub-structures and
the descendant sub-structure. Therefore, based on Propositiua RAI algorithm tests all edges
using condition sets of sized and removegyxy (and all similar edges) in either Stage A or Stage
B, yielding a structure with d-separation resolutiomdfand thereby yields the correct pattern for
the true underlying graph of d-separation resolution 1.

Spirtes (2001)—when introducing the anytime fast casual inferenc€l(dtgorithm—proved
the correctness of edge direction of AFCI. The AFCI algorithm can berimged at any stage
(resolution), and the resultant graph at this stage is correct with pilitpalne in the large sample

9. If the d-separation resolution ¢K,Y} is n? > m+ 1, then the RAI algorithm will not modify the graph until steph
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limit, although possibly less informati¥®than if had been allowed to continue uninterruptéd.
Recall that interrupting learning means that we avoid CI tests of highersordéis renders the
resultant graph more reliable. We use this proof here for proving thectoess of edge direction
in the RAI algorithm. Completing ClI testing with a specific graph resolutionthe RAI algorithm
and interrupting the AFCI at any stage of Cl testing are analogous. Forthe, Spirtes (2001)
proves that interrupting the algorithm at any stage is also possible durgegdiection, that is,
once an edge is directed, the algorithm never changes that directioectiors3.2.2, we showed
that even if a directed edge of a V-structure is removed, the direction eéthaining edge is still
correct. Since directing edges by the AFCI algorithm after interruption yieldorrect (although
less informative) graph (Spirtes, 2001), also the direction of edgesebRAl algorithm yields
a correct graph. Having (real) parents in a condition set used forsfih¢g instead of potential
parents, which are the result of edge direction for resolutions lower rthas a virtue, as was
confirmed in Section 3.1. All that is required that all parents, either repbtantial, be included
within the corresponding condition set, and this is indeed guaranteed byttdrany of each sub-
structure, as was proved above. [ |

4. Experiments and Results

We compare the RAI algorithm with other state-of-the-art algorithms with m$pestructural cor-
rectness, computational complexity, run-time and classification accuraay il learned structure
is used in classification. The algorithms learned structures from datategsesenting synthetic
problems, real decision support systems and natural classificatiolem®bWe present the experi-
mental evaluation in four sections. In Section 4.1, the complexity of the RAli#hgois measured
by the number of CI tests required for learning synthetically generatectstes in comparison to
the complexity of the PC algorithm (Spirtes et al., 2000).

The order of presentation of nodes is not an input to the PC algorithm rikeless, Cl testing
of orders higher than 0, and therefore also edge directing, whichndegen CI testing, may be
sensitive to that order. This may cause learning different graphsevkemhe order is changed.
Dash and Druzdzel (1999) turned this vice of the PC algorithm into a virjueniploying the
partially directed graphs formed by using different orderings for theaR@rithm as the search
space from which the structure having the highest value of the K2 metrop@and Herskovits,
1992) is selected. For the RAI algorithm, sensitivity to the order of preSentaf nodes is expected
to be reduced compared to the PC algorithm, since the RAI algorithm, due tadedggon and
graph decomposition, decides on the order of performing most of the Slaed does not use an
arbitrary order (Section 3.2.2). Nevertheless, to account for thelpp@sensitivity of the RAI and
PC algorithms to this order, we preliminarily employed 100 different permutdfiafishe order for
each of ten Alarm network (Beinlich et al., 1989) databases. Since thikssre§these experiments

10. Less informative in the sense that it answers “can't tell” for a langenber of questions; that is, identifying, for
example, 4" edge endpoint (placing no restriction on the relation between the paidasnimaking the edge) instead
of “—" endpoint.

11. The AFCI algorithm is also correct if hidden and selection variabliss. e selection variable models the possibility
of an observable variable having some missing data. We focus here @atk where neither hidden nor selection
variables exist.

12. Dash and Druzdzel (1999) examined the relationships betweentttigen of order permutations and the numbers of
variables and instances. We fixed the number of order permutatiof® at 1
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had showed that the difference in performance for different permuotaigcslight, we further limited
the experiments with the PC and RAI algorithms to a single permutation.

In Section 4.2, we present our methodology of selecting a threshold foiCR£esting. We
propose selecting a threshold for which the learned structure has a maxifraulikelihood-based
score value.

In Section 4.3, we use the Alarm network (Beinlich et al., 1989), which is &widccepted
benchmark for structure learning, to evaluate the structural correcofegraphs learned by the
RAI algorithm. The correctness of the structure recovered by RAI is enadpto those of struc-
tures learned using other algorithms—PC, TPDA (Cheng et al., 1997), (G&iSkering, 2002;
Meek, 1997), SC (Friedman et al., 1999) and MMHC (Tsamardinos et@6d). The PC and
TPDA algorithms are the most popular CB algorithms (Cheng et al., 2002;etieanal., 2001;
Marengoni et al., 1999; Spirtes et al., 2000); GES and SC are stéte-aft S&S algorithms
(Tsamardinos et al., 2006a); and MMHC is a hybrid algorithm that hasitlgdeeen developed and
showed superiority, with respect to different criteria, over all the {Réu#) algorithms examined
here (Tsamardinos et al., 2006a). In addition to correctness, the catpglethe RAI algorithm,
as measured through the enumeration of Cl tests and log operations, isredtp#hose of the
other CB algorithms (PC and TPDA) for the Alarm network.

In Section 4.4, we extend the examination of RAI in structure learning to kmatmorks other
than the Alarm. Although the Alarm is a popular benchmark network, manyidigm perform
well for this network. Hence, it is important to examine RAI performance oerotietworks for
which the true graph is known. In the comparison of RAI to other algorithnesjneluded all
the algorithms of Section 4.3, as well as the Optimal Reinsertion (OR) (Moaré\&amg, 2003)
algorithm and a greedy hill-climbing search algorithm with a Tabu list (GS) dRran et al., 1999).
We compared algorithm performances with respect to structural coess;trun-time, number of
statistical calls and the combination of correctness and run-time.

In Section 4.5, the complexity and run-time of the RAI algorithm are comparedse thf the
PC algorithm using nineteen natural databases. In addition, the classifiaatioracy of the RAI
algorithm for these databases is compared to those of the PC, TPDA, GESCIMSC and naive
Bayesian classifier (NBC) algorithms. No structure learning is requireB&C and all the domain
variables are used. This classifier is included in the study as a refeieacgmple, yet accurate,
classifier. Because we are interested in this section in classification, araliadidd-based score
does not reflect the importance of the class variable in structures useldgsification (Friedman
et al., 1997; Kontkanen et al., 1999; Grossman and Domingos, 2004;afathChang, 2002), we
prefer here the classification accuracy score in evaluating structtfoempance.

In the implementations of all sections, except Section 4.4, we were aided [Batfes net
toolbox (BNT) (Murphy, 2001), BNT structure learning package éyeand Francois, 2004) and
PowerConstructor software (Cheng, 1998) and evaluated all algorithrsslves. In Section 4.4,
we downloaded and used the results reported in Tsamardinos et alajZod@éhe non-RAl al-
gorithms and used the Causal Explorer algorithm library (Aliferis et al. 3p@Bttp://www.dsl-
lab.org/causaexplorer/index.html). The Causal Explorer algorithm library makes use of-meth
ods and values of parameters for each algorithm as suggested by tbesanftteach algorithm
(Tsamardinos et al., 2006a). For example, BDeu score (Heckerman £985) with equivalent
sample size 10 for GS, GES, OR and MMHX?; p-values at the standard 5% for the MMHC'’s
and PC'’s statistical thresholds; threshold of 1% for the TPDA mutual infoomégest; the Bayesian
scoring heuristic, equivalent sample size of 10 and maximum allowed sizébgefoandidate parent
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set of 5 and 10 for SC; and maximum number of parents allowed of 5, 1Q@@mthd maximum
allowed run time, which is one and two times the time used by MMHC on the corrdsgpdata
set, for OR. The only parameter that requires optimization in the RAI algorisimilér to the other
CB algorithms - PC and TPDA) is the CI testing threshold. We use no prior ledg® to find this
threshold but a training set for each database (see Section 4.2 for)d®aiks, however that we do
not account for the time required for selecting the threshold when regdhinexecution time.

4.1 Experimentation with Synthetic Data

The complexity of the RAI algorithm was evaluated in comparison to that of thal§&@ithm by
the number of CI tests required to learn synthetically generated struct8nese the true graph
is known for these structures, we could assume that all Cl tests werectamd compare the
numbers of CI tests required by the algorithms to learn the true independslatenships. In
one experiment, all 29,281 possible structures having 5 nodes weredeaasimg the PC and RAI
algorithms. The average number of Cl tests employed by each algorithmws sihé-igure 8a for
increasing orders (condition set sizes). Figure 8b depicts the aveeagentages of Cl tests saved
by the RAI algorithm compared to the PC algorithm for increasing orderssd bercentages were
calculated for each graph independently and then averaged. It itheg#ehe advantage of the RAI
algorithm over the PC algorithm is more prominent for high orders.
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Figure 8: Measured for increasing orders, the (a) average nurhlidrtests required by the RAI
and PC algorithms for learning all possible structures having five nodeémverage
over all structures of the reduction percentage in Cl tests achieved IRAthalgorithm
compared to the PC algorithm.

In another experiment, we learned graphs of sizes (numbers of noeegen 6 and 15. We
selected from a large number of randomly generated graphs 3,00Gdtegttwere restricted by a
maximal fan-in value of 3; that is, every node in such a graph has 3 tgsasémost and at least
one node in the graph has 3 parents. This renders a practical learsingTtiaus, the structures
can theoretically be learned by employing CI tests of order 3 and belowhanddsnot use tests
of orders higher than 3. In such a case, the most demanding test, hagihggtrest impact on
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Figure 9: Average number of Cl tests required by the PC and RAI algoritbmscreasing graph
sizes and orders of (a) 3 and (b) 4.

computational time, is of order 3. Figure 9a shows the average numbeidesdt€ performed for
this order by the PC and RAI algorithms for graphs with increasing sizeseder, because the
maximal fan-in is 3, all Cl tests of order 4 are a priori redundant, so wduwgher check how well
each algorithm avoids these unnecessary tests. Figure 9b depicts thgeamambers of Cl tests
performed by the two algorithms for order 4 and graphs with increasing.siBagth Figure 9a and
Figure 9b show that the number of CI tests employed by the RAI algorithmagsesemore slowly
with the graph size compared to that of the PC algorithm and that this advastageh more
significant for the redundant (and more costly) Cl tests of order 4.

We further expanded the examination of the algorithms in CI testing for diffep@ph sizes
and Cl test orders. Figure 10 shows the average number and pgeeftal tests saved using the
RAI algorithm compared to the PC algorithm for different condition set sirekgraph sizes. The
number of CI tests having an empty condition set employed by each of thétlahgeis equal and
is therefore omitted from the comparison. The figure shows that the pageeof Cl tests saved
using the RAI algorithm increases with both graph and condition set sipegxBmple, the saving
in Cl tests when using the RAI algorithm instead of the PC algorithm for leamigigaph having
15 nodes and using condition sets of size 4 is above 70% (Figure 10l9ediion 4.4, we will
demonstrate the RAI quality of requiring relatively fewer tests of high artlean of low orders for
graphs of larger sizes for real, rather than synthetic, data.

4.2 Selecting the Threshold for RAI CI Testing

Cl testing for the RAI algorithm can be based onA¢est as for the PC algorithm or the conditional
mutual information (CMI) as for the TPDA algorithm. The CMI between nadasdY conditioned
on a set of nodes (i.e., the condition set), is:

Nx Ny Nz

CMI(X,Y|Z) = Zl Zlkzl [P(xi,yj,zk) -log =
i=1]=1k=

P(Xi,Yjlz)
xi|z) - P(yjlz) |’

(2)
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Figure 10: (a) Average number and (b) percentage of ClI tests sgvadiiy the RAI algorithm
compared to the PC algorithm for graph sizes of 6, 9, 12 or 15 (grayeshadd orders
between 1 and 4.

wherex; andy; represent, respectively, states)ofindY, z represents a combination of states of
all variables inz, andNy, Ny andNz are the numbers of statesXfY andZ, respectively.

In both CI testing methods, the value of interest (eitfreor CMI) is compared to a threshold.
For example, CMI values that are higher or lower than the threshold indiessgectively, condi-
tional dependence or independence betw¢emdY givenZ. However, the optimal threshold is
unknown beforehand. Moreover, the optimal threshold is problem ataddtiven, that is, it de-
pends, on the one hand, on the database and its size and, on the otheridye variables and the
numbers of their states. Thus, it is not possible to set a “default” threshhld that will accurately
determine conditional (in)dependence while using any database or proble

To find an optimal threshold for a database, we propose to score sesittarned using differ-
ent thresholds by a likelihood-based criterion evaluated using the traiaimgally validation) set
and to select the threshold leading to the structure achieving the highest §&wech a score may
be BDeu (Heckerman et al., 1995), although other scores (Heckeitrahn¥995) may also be ap-
propriate. Note that BDeu scores equally statistically indistinguishable stesctiigure 11 shows
BDeu values for structures learned by RAI for the Alarm network usiffgrént CMI threshold
values. The maximum BDeu value was achieved at a threshold value oftat-®as selected as
the threshold for RAI Cl testing for the Alarm network.

To assess the threshold selected using the suggested method, we emm@ofkdrthnetwork
and computed the errors between structures learned using differeshdtas and the pattern that
corresponds to the true known graph. Following Spirtes et al. (20@0) saamardinos et al. (2006a),
we define five types of structural errors to evaluate structural doess. An extra edge (commis-
sion; EE) error is due to an edge learned by the algorithm although it d@begist in the true graph.
A missing edge (omission; ME) error is due to an edge missed by the algorithouglittexists in
the true graph. An extra direction (ED) error is due to edge direction thzeas in the learned
graph but not in the true graph, whereas a missing direction (MD) erdwuego edge direction that
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Figure 11: BDeu values averaged over ten validation sets consistingafdl®amples each drawn
from the Alarm network for increasing CMI thresholds used in CI testingHe RAI
algorithm.

appears in the true graph but not in the learned graph. Finally, a eeleigction (RD) error is due
to edge direction in the learned graph that is opposite to the edge directiontingrgraph.

Figure 12a shows the sensitivity of the five structural errors to the CMktiold. Each point
on the graph is the average error over ten validation databases contEir®@9 randomly sampled
instances each. Figure 12a demonstrates that the MD, RD and ED ewoedaively constant in
the examined range of thresholds and the ME error increases monotanitiadyEE error is the
highest error among the five error types, and it has a minimum at a threstio&lof 3e-3.

In Figure 12b, we cast the three directional errors using the total dine¢tesror (DE), DE =
ED + MD + RD, and plot this error together with the ME and EE errors. The anhpieach error
for increasing thresholds is now clearer; the contribution of the DE @'@most constant, that of
the ME error increases with the threshold but is less than DE, and thatBEtkeror dominants for
every threshold.

Tsamardinos et al. (2006a) suggested assessing the quality of a letmetdre using the
structural Hamming distance (SHD) metric, which is the sum of the five abaeeserWe plot
in Figure 12c this error for the experiment with the Alarm network. Compar&fahe threshold
responsible for the minimum of the SHD error (2.5e-3) to that selecteddiogaio BDeu (4e-3 in
Figure 11) shows only a small difference, especially as the maximum valiBi3en are obtained
between thresholds of 2.5e-3 and 4e-3. This result motivates using the &iore, as measured on
a validation set, as a criterion for finding good thresholds for RAI CI testiftgesholds that are
smaller than this range lead to too many pairs of variables that are wrongtfiettas dependent
and thus the edges between them are not removed, contributing to highideg (see, for exam-
ple, Figure 12b). In addition, for thresholds higher than 3e-3, moresdge wrongly removed,
contributing to high ME errors.
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Figure 12: Structural errors of the RAI algorithm learning the Alarm nektwor different CMI
thresholds as averaged over ten validation sets of 10,000 samples &pElve(types
(ME, EE, MD, ED and RD) of structural errors, (b) EE, ME and DEoesr and (c) SHD
error (mean and std).

4.3 Learning the Alarm Network

For evaluating the correctness of learned BN structures, we used time #déwork, which is widely
accepted as a benchmark for structure learning algorithms, since theaplefgr this problem is
known. The RAI algorithm was compared to the PC, TPDA, GES, SC and KMlgorithms using

ten databases containing 10,000 random instances each sampled fratwtbiekn

Structural correctnesscan be measured using different scores. However, some of thesscore

suggested in the literature are not always accurate or related to the wokistr For example,
Tsamardinos et al. (2006a), who examined the BDeu score (Hecketrabnl®95) and KL diver-
gence (Kullback and Leibler, 1951) in evaluating learned networksdrtbeg it is not known in
practice to what degree the assumptions (e.g., a Dirichlet distribution of pgezfgrameters) in the
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Extra Missing  Reversed Directional | Extra | Missing

Direction Direction Direction Error Edge| Edge || SHD
(ED) (MD) (RD) (DE) (EE) | (ME)

SC 1 9.5 4.6 15.1 4.7 45 24.3
MMHC 0.8 3.3 5.7 9.8 2.6 0.7 13.1
GES 0.1 0.6 1.2 1.9 2.7 0.8 5.4
TPDA 0 4.2 0 4.2 24 2.9 9.5
PC 0 0 0.8 0.8 2.5 1.0 4.3
RAI 0 0 0.3 0.3 1.8 1.4 35

Table 1: Structural errors of several algorithms as averaged ovelatilbases each containing
10,000 randomly generated instances of the Alarm network. The totatidimakterror
is the sum of three different directional errors, DE=ED+MD+RD, arel D error is
DE+EE+ME. Bold font emphasizes the smallest error over all algorithmsdohn type of
structural error.

basis of the BDeu score hold. Moreover, usually such a score is ubethitearning and evaluation
of a structure; hence the score favors algorithms that use it in learngggmdrdinos et al. (2006a)
also mentioned that both scores do not rely on the true structure. Thyssufgested the SHD
metric, which is directly related to structural correctness, since it is the $uhedive errors of
Section 4.2. Nevertheless, since SHD can be measured only when theaphegknown, scores
such as BDeu and KL divergence are of great value in practical sihgatior example, in classi-
fication problems like those examined in Section 4.5 in which the true graph iswoatrk These
scores are also beneficial in the determination of algorithm parametersx&ople, in Section 4.2
we measured BDeu scores of structures learned using differenidiaiesn order to select a good
threshold for RAI Cl testing.

Although SHD sums all five structural errors, we were first interestedaméaing the contri-
bution of each individual error to the total error. Table 1 summarizes tbesfiwctural errors for
each algorithm as averaged over 10 databases of 10,000 instanbesaeguled from the Alarm
network. These databases are different from those validation databasd for threshold setting.
The table also shows the total directional error, DE, which is the sum of tée thirectional errors.
Table 1 demonstrates that the lowest EE and DE errors are achieved Rjltladgorithm and the
lowest ME error is accomplished by the MMHC algorithm. Computing SHD shoesttvantage
of the RAI (3.5) algorithm over the PC (4.3), TPDA (9.5), GES (5.4), MMH@.1) and the SC
(24.3) algorithms. Further, we propose such a table as Table 1 as atoséfor the identification
of the sources of structural errors of a given structure learningitigo.

Note that the SHD error weighs each of the five error types equally. \lievbdhat a score
that weighs the five types based on their relative significance to structaurarig will be a more
accurate method to evaluate structural correctness; however, desivah a score is a topic for
future research.

Complexitywas evaluated for each of the CB algorithms by measuring the number oft€l tes
employed for each order (condition set size) and the total number of leqatipns. The latter
criterion is proportional to the total number of multiplications, divisions andridga evaluations
that is required for calculating the CMI (Equation 2) during Cl testing. FedL depicts the average
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Figure 13: Average percentage (number) of Cl tests reduced byRgihgpmpared to using (a) PC
and (b) TPDA, as a function of the condition set size when learning thenatwork.

percentage (and number) of Cl tests reduced by using the RAI algor@hmpared to using the PC
or TPDA algorithms for increasing sizes of the condition sets. The RAI dlgorreduces the

number of Cl tests of orders 1 and above required by the PC algorithrthasd of orders 2 and
above required by the TPDA algorithm. Moreover, the RAI algorithm comipletids the use of

Cl tests of orders 4 and above and almost completely avoids ClI tests of3cdenpared to both
the PC and TPDA algorithms. However, the RAI algorithm performs more & térder 1 than

the TPDA algorithm.

Figure 14 summarizes the total numbers of Cl tests and log operations deeemtifcondition
set sizes required by each algorithm. The RAI algorithm requires 46%Cletssts than the PC
algorithm and 14% more Cl tests (of order 1) than the TPDA algorithm. HowihesRAI algorithm
significantly reduces the number of log operations required by the othalg@athms. The PC or
TPDA algorithms require, respectively, an additional 612% or 367% aitineber of log operations
required by the RAI algorithm. The reason for this substantial advanfafge &Al algorithm over
both the PC and TPDA algorithms is the saving in CI tests of high orders (sae=Fi§). These
tests make use of large condition sets and thus are very expensive coomalita

4.4 Learning Known Networks

In addition to the state-of-art algorithms that were compared in Section 4.3, akglénin this

section the OR and GS algorithms. We compare the performance of the RAitlalgdo these

algorithms by learning the structures of known networks employed in reaida support systems
from a wide range of applications. We use known networks describesiimardinos et al. (2006a),
which include the Alarm (Beinlich et al., 1989), Barley (Kristensen andhiRessen, 2002), Child
(Cowell et al., 1999), Hailfinder (Jensen and Jensen, 1996),dnsar(Binder et al., 1997), Mildew
(Jensen and Jensen, 1996) and Munin (Andreassen et al., 198®ykse All these networks may
be downloaded from the Causal Explorer webpage. The Pigs, Linikcand networks, which were
also evaluated in Tsamardinos et al. (2006a), are omitted from our expeine to memory and
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Figure 14: Cumulative numbers of (a) Cl tests and (b) log operationsreejoy PC, TPDA, and
RAI for learning the Alarm network. Different gray shades repréesifferent sizes of
condition sets. Percentages on tops of the bars are with reference tAltaggBrithm.

run-time limitations of the platform used in our experiment. These limitations are imthpwtation
of the BDeu scoring function (part of the BNT toolbox) that is used ftectang a threshold for the
RAI Cl tests (Section 4.2).

The Casual Explorer webpage also contains larger networks thatoresmeed by tiling net-
works, such as the Alarm, Hailfinder, Child and Insurance, 3, 5 and 18 timehe tiling method
developed by Tsamardinos et al. (2006b), several copies (herad] 80) of the same BN are
tiled until reaching a network having a desired number of variables (e.gmAlaas 5« 37 = 185
variables). The method maintains the structural and probabilistic propefrties original network
but allows the evaluation of the learning algorithm as the number of varialtesaises without
increasing the complexity of the network. Overall, we downloaded andniseteen networks, the
most important details of which are shown in Table 2. Further motivation fogubese networks
and tiling is given in Tsamardinos et al. (2006a).

Throughout this experiment, we used for each network the same trairdrtgstrsets as used in
Tsamardinos et al. (2006a), so we could compare the performance RAlhe all the algorithms
reported in Tsamardinos et al. (2006a). The data in the Causal Explebgage are given for each
network using five training sets and five test sets with 500, 1000 and S50@fles each. We picked
and downloaded the data sets with the smallest sample size (500), which we loblidlenge the
algorithms the most. All the reported results for a network and a learningithlgoin this sub-
section are averages over five experiments in which a different traiatngas used for training the
learning algorithm and a different test set was used for testing this algorith

The RAI algorithm was run by us. CMI thresholds for ClI testing corresieal to the maximum
BDeu values were obtained in five runs using five validation sets indepenfiéhe training and
test sets, and performances were averaged over the five validatiohVeetmte that the thresholds
selected according to the maximum BDeu values (Section 4.2) also led to the ®MP<errors.
The OR algorithm was examined with a maximum number of parents allowed fode (poof
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| # | Network #nodes #edges Maxfan-in Max fan-gut
1 || Alarm 37 46 4 5
2 || Alarm 3 111 149 4 5
3 || Alarm5 185 265 4 6
4 | Alarm 10 370 570 4 7
5 || Barley 48 84 4 5
6 || Child 20 25 2 7
7 || Child 3 60 79 3 7
8 || Child5 100 126 2 7
9 || Child 10 200 257 2 7
10 || Hailfinder 56 66 4 16
11 || Hailfinder 3 168 283 5 18
12 || Hailfinder 5 280 458 5 18
13 || Hailfinder 10 560 1017 5 20
14 || Insurance 27 52 3 7
15 || Insurance 3 81 163 4 7
16 || Insurance 5 135 281 5 8
17 || Insurance 10 270 556 5 8
18 || Mildew 35 46 3 3
19 || Munin 189 282 3 15

Table 2: Nineteen networks with known structures that are used for theation of the structure
learning algorithms. The number that is attached to the network name (3, bindidates
the number of tiles of this network. The # symbol on the first column repteshna
network 1D for further use in the subsequent tables.

5, 10 and 20 and allowed run-time that is one and two times the time used by MMH @or-
responding data set (OR1 and OR2, respectively). The SC algoritlsnewvaduated wittk = 5 and
k = 10 as recommended by its authors. Motivation for using these parametes ad parameter
values used by the remaining algorithms are given in Tsamardinos et aba(200

Following Tsamardinos et al. (2006a), we normalized all SHD results with iti2 i@sults of
the MMHC algorithm. For each network and algorithm, we report on the geeratio over the
five runs. The normalized SHDs are presented in Table 3. A ratio smallge()ahan 1 indicates
that the algorithm learns a more (less) accurate structure than that lemingdhe MMHC algo-
rithm. In addition, we average the ratios over all nineteen databases simildi$pitoardinos et al.
(2006a). Based on these averaged ratios, Tsamardinos et al. Y2006d the MMHC algorithm
to be superior to the PC, TPDA, GES, OR and SC algorithms with respect to Bl 3 shows
that the RAI algorithm is the only algorithm that achieves an average ratiastisataller than 1,
which means it learns structures that on average are more accuratedbaneérned by MMHC,
and thus also more accurate than those learned by all other algorithms. dldi#dhence in SHD
values for Alarm between Table 3 (as measured in Tsamardinos et alg,2f}0@atabases of 500
samples) and Table 1 (as measured by us on databases of 10,000 samples)
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MMHC OR1 OR1 OR1 OR2 OR2 OR2 SC SC GS PC TPDA GES RAI

# k=5 k=10 k=20 k=5 k=10 k=20 k=5 k=10

1 1.00 123 139 167 105 1.02 140 163 166 202 366 234 23 1.
2 1.00 185 1.95 196 178 1.77 1.80 157 157 226 249 394 26 1.
3 1.00 159 161 163 148 163 169 132 135 210 235 310 02 1.
4 1.00 146 152 153 149 152 157 1.18 2.09 2.72 0.87
5 1.00 1.03 1.05 1.08 0.98 0.97 099 1.15 116 1234 144 0937 O

6 1.00 138 130 115 125 124 115 148 156 0.79 3.26 7.1§9 01.60

7 1.00 099 1.06 1.03 0.87 0.86 101 095 097 094 295 5.020 11.22

8 1.00 145 1.74 169 0.89 1.10 099 0.88 093 115 3.71 6.8248 21.59

9 1.00 212 1.40 181 142 144 145 108 112 119 349 596 33 1.
10 1.00 1.01 0.99 1.03 0.99 0.99 1.01 0.96 099 264 236 1141 0
11 1.00 133 134 134 127 1.26 128 1.10 1.01 392 3.01 0.71
12 1.00 140 141 142 130 1.30 128 1.12 1.01 520 3.26 0.76
13 1.00 133 133 134 134 129 133 1.10 1.02 2.99 0.74

14 1.00 1.04 0.93 0.8 095 0.79 076 133 117 120 3.26 2541 10.76
15 1.00 1.08 1.06 125 104 114 115 126 133 157 4.09 3.04 .98 0
16 1.00 125 124 112 113 1.15 117 124 125 159 422 286 910

17 1.00 130 1.29 131 119 113 124 118 124 155 2.87 0.88
18 1.00 1.09 111 110 110 112 1.07 1.04 091 783 208 0830
19 1.00 1.09 1.16 1.06 1.17 0.95 1.30 1.29 0.44

avg. 1.00 132 131 133 119 121 124 119 129 136 4361 3.420 0.95

Table 3: Algorithm SHD errors normalized with respect to the MMHC SHDreiopthe nineteen
networks detailed in Table 2. Average (avg.) for an algorithm is over &Naoris. Blank
cells represent jobs that Tsamardinos et al. (2006a) reported thaedeto run or did not
complete their computations within two days running time.

Next, we compared the run-times of the algorithms in learning the nineteen ketwile note
that the run-time of a structure learning algorithm depends, besides on itsnemtigtion, on the
number of statistical calls (Tsamardinos et al., 2006a) it performs (e.g.sGliteCB algorithms).
For CB algorithms it also depends on the orders of the CI tests and the nofndtates of each
variable that is included in the condition set. The run-time for each algorithmiteggeach network
is presented in Table 4. Following Tsamardinos et al. (2006a), we normhaizeun-time results
with the run-time results of the MMHC algorithm and report on the averagefataach algorithm
and network over five runs. The run-time ratios for all algorithms excegpftin the RAI were taken
from the Causal Explorer webpage. The ratio for the RAI was comptitedranning both the RAI
and MMHC algorithms on our platform using the same data sets. Accordingatodrsiinos et al.
(2006a), MMHC is the fastest algorithm among all algorithms (except RRdble 4 shows that
RAI was the only algorithm that achieved an average ratio smaller than 1hwhgans it is the
new fastest algorithm. The RAI average run-time was between 2.1 (for Mvahd 2387 (for
GES) times shorter than those of all other algorithms. Perhaps part of ghiitf of GES with
respect to run-time can be related (Tsamardinos et al., 2006a) to many ofitmezzsuggested in
Chickering (2002) that were not implemented in Tetrad 4.3.1 that was us&davgardinos et al.
(20064a) affecting their, and thus also our, results.

Accounting for both error and time, we plot in Figure 15 the SHD and run-tomalf nineteen
networks normalized with respect to either the MMHC algorithm (Figure 168jeoRAl algorithm
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Figure 15: Normalized SHD vs. normalized run-time for all algorithms learningesworks. (a)
Normalization is with respect to the MMHC algorithm (thus MMHC results are )1
and (b) normalization is with respect to the RAI algorithm (thus RAI resultaifE 1)).
The points in the graph correspond to 19 networks (average perfoamer 5 runs)
and 14— 1 = 13 algorithms.
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MMHC OR1 OR1 OR1 OR2 OR2 OR2 SC SC GS PC TPDA GES RAI

# k=5 k=10 k=20 k=5 k=10 k=20 k=5 k=10

1 1.00 114 100 107 224 222 233 175 1693 217 187 3.74 .69 0

2 100 162 165 164 251 253 263 715 971 816 115 1275 52 0

3 1.00 121 132 133 235 241 248 6.01 654 980 9264 9.11 59 0

4 1.00 138 161 143 287 293 277 13.85 71.15 41.81 0.65
5 100 126 124 121 229 242 236 7.36 2.74 89.28 4.10 212X

6 100 161 161 153 239 234 325 064 671 105 0.82 6.56123D.25

7 1.00 115 114 106 212 210 218 366 864 244 102 102721 9D.36

8 100 112 114 113 210 219 229 416 831 576 105 14.18830.50

9 100 134 105 132 220 228 245 997 1108 1210 1.36 922.9 0.67

10 1.00 120 1.22 121 231 229 228 158 1.04 142 931 26907 O
11 1.00 113 115 114 215 221 227 488 496 932 32.39 0.65
12 1.00 111 1.15 117 224 227 219 7.39 10.01 23.14 39.22 58 0.
13 1.00 1.18 1.19 115 294 261 274 13.77 20.84 99.00 0.85

14 1.00 102 1.03 103 209 206 205 1.26 1536 1.02 3.62 9107/8.06 0.24
15 1.00 1.09 1.13 118 225 238 221 296 850 3.63 59.50 718.8 0.36
16 1.00 149 148 154 297 295 296 515 788 3.63 173.3 8.67 048

17 1.00 119 112 120 230 235 240 10.73 13.95 22.34 32.00 .64 0
18 1.00 246 243 255 368 346 3.68 61.04 523 176 9.67 734B75
19 1.00 1.05 1.07 1.08 2.09 0.24 0.40 0.27 0.01

avg. 100 130 130 131 243 245 253 861 10.33 10.39 302p527 1146 0.48

Table 4: Algorithm run-times normalized with respect to the MMHC run-time for rilmeteen
networks detailed in Table 2. Average (avg.) for an algorithm is over &Naoris. Blank
cells represent jobs that Tsamardinos et al. (2006a) reported thaedeto run or did not
complete their computations within two days running time.

(Figure 15b). Figure 15 demonstrates that the advantage of RAI owethall algorithms is evident
for both the SHD error and the run-time.

It is common to consider the statistical calls performed by an algorithm of steuletarning as
the major criterion of computational complexity (efficiency) and a major corttitia the algorithm
run-rime. In CB algorithms (e.g., PC, TPDA and RAI), the statistical calls aegtal Cl tests, and in
S&S algorithms (e.g., GS, GES, SC, OR) the calls are due to the computation abtiee KHybrid
algorithms (e.g., MMHC) have both types of calls. In Table 5, we compareuhwars of calls for
statistical tests performed by the RAI algorithm and computed by us to those MINHHC, GS, PC
and TPDA, as computed in Tsamardinos et al. (2006a), and downloestedte Causal Explorer
webpage. We find that for all networks the RAI algorithm performs fevedis for statistical tests
than all other algorithms. On average over all networks, the RAI algoritarfopns only 53% of
the calls for statistical tests performed by the MMHC algorithm, which is the algotitiat required
the fewest calls of all algorithms examined in Tsamardinos et al. (2006a)re-ig demonstrates
this advantage of RAI over MMHC graphically using a scatter plot. All poirtew thex =y line
represent data sets for which the numbers of calls for statistical tests éfGAe larger than those
of RAI.

Evaluating the statistical significance of the results in Tables 3-5 using Witcsigmed-ranks
test (Densar, 2006) with a confidence level of 0.05, we find the SHD errors of &l MMHC to
be not significantly different from each other; however, the RAIltinmes and numbers of statistical
calls are significantly shorter than those of the MMHC algorithm.
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# MMHC GS PC TPDA _ RAI
1 1.00 2.42 9.95 1.94 0.81
2 1.00 3.78 2.51 3.34 0.57
3 1.00 4.44  1499.22 3.02 0.67
4 1.00 5.12 2.64 0.75
5 1.00 1.96  2995.87 1.58 0.34
6 1.00 1.32 3.61 2.92 0.21
7 1.00 2.49 4.61 2.97 0.39
8 1.00 3.25 4.40 3.17 0.51
9 1.00 3.91 5.43 3.13 0.64
10 1.00 1.75 36.54 1.93 0.30
11 1.00 2.57 340.44 1.83 0.72
12 1.00 3.07  1033.86 1.87 0.67
13 1.00 3.40 1.85 0.77
14 1.00 1.32 40.57 2.97 0.27
15 1.00 235  1082.45 2.71 0.39
16 1.00 3.12  5143.51 2.97 0.49
17 1.00 4.25 3.20 0.63
18 1.00 3.38 10.78 3.49 0.59
19 1.00 1.75 0.91 0.30

avg. 1.00 2.93 814.25 2.55 0.53

Table 5: Number of statistical calls performed by each algorithm normalizethdoyrumber of
statistical calls performed by the MMHC algorithm for the nineteen networkaildd
in Table 2. Average (avg.) for an algorithm is over all networks. Blarllsgcepresent
jobs that Tsamardinos et al. (2006a) reported that refused to run apotd@bmplete their
computations within two days running time.

In continuation to Section 4.1, we further analyzed the complexity of RAI (aasored by
the numbers of CI tests performed) according to the ClI test orders amgtapk size. However,
here we used real rather than synthetic data. We examined the numbests egfstgerformed for
different orders for the Child, Insurance, Alarm and Hailfinder neka@nd their tiled networks.
Using the tiled networks (Tsamardinos et al., 2006b), we could examine thetimpgraph size
on the number of tests. Figure 17 shows the cumulative percentage ot<ldea specific order
out of the total number of CI tests performed for each network. The fideneonstrates that the
percentages of Cl tests performed decrease with the Cl test ordeeemthé small for orders higher
than the max fan-in of the network (see Table 2). These percentagateatease with the numbers
of nodes in the network (validated on the tiled networks). This is due to ar fiastease of the
number of low-order CI tests compared with the number of high-order @& #esthe graph size
increases for all networks except for Hailfinder. For HailefinderFégl7d), the threshold for the
network was different from those of the tiled networks. This led to an as@én the percentage of
high-order ClI tests and a decrease in Cl tests of order 0 when compiaeihtpilfinder network to
its tiled versions. For all the tiled Alarm networks (Figure 17c), Cl tests déof nearly sufficed

1558



BAYESIAN NETWORK STRUCTURELEARNING BY RECURSIVEAUTONOMY IDENTIFICATION

E T T T
E { )
5 10° :
D ®
<‘_E° Fl
s S -
= 0% : o ; 1
o N X X 4 X
F 4
% ®
© [ ]
S 103, (] *® i
%)
= - .
7] ,
T A | ‘
10° 10* 10°

# of statistical calls of the MMHC algorithm

Figure 16: Number of statistical calls performed by the RAI algorithm vs. timelrer of statistical
calls performed by the MMHC algorithm for all networks and data sets exahmirthis
sub-section (5 data sets19 networks = 95 points).

for learning the network. Overall, the results support our preliminamylt®svith synthetic data
and “perfect” Cl tests (Section 4.1). Thus, we can conclude that asrdtipd gize increases, the
RAI algorithm requires relatively fewer Cl tests of high orders, esfligad@orders higher than the
max fan-in, than tests of low orders. This result enhances the attrazsivém applying the RAI
algorithm also to large problems.

4.5 Structure Learning for General BN Classifiers

Classification is one of the most fundamental tasks in machine learning (Mtl)aalassifier is
primarily expected to achieve high classification accuracy. The Bayestamork classifier (BNC)
is usually not considered as an accurate classifier compared to stat-aft ML classifiers, such
as the neural network (NN) and support vector machine (SVM). Hewdlre BNC has important
advantages over the NN and SVM models. The BNC enhances model @tgdnitity by exhibiting
dependences, independences and causal relations between sattaid® allows the incorporation
of prior knowledge during model learning so as to select a better modeiraptove the estimation
of its data-driven parameters. Moreover, the BNC naturally perforaisife selection as part of
model construction and permits the inclusion of hidden nodes that increated representability
and predictability. In addition, the BN has a natural way of dealing with missimgténby marginal-
izing hidden variables. Finally, compared to NN and SVM, BNC can model leege, multi-class
problems with different types of variables. These advantages are impirt@al-world classifica-
tion problems, since they provide many insights into the problem at hand thhegond the pure
classification decisions provided by NN and SVM.
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Figure 17: Cumulative percentages of Cl tests out of the total numberstefioe increasing orders
as performed by the RAI algorithm for the (a) Child, (b) InsuranceA{aym, and (d)
Hailfinder networks including their tiled networks.

We evaluated the RAI complexity, run-time and accuracy when applied toingaangeneral
BN classifier (Cheng and Greiner, 1999; Friedman et al., 1997) in casopatio other algorithms
of structure learning using nineteen databases of the UCI Repositown{hie et al., 1998) and
Kohavi and John (1997). These databases are detailed in Table 6 wfitbcte¢o the numbers
of variables, classes and instances in each database. All databaseanalyzed using a CV5
experiment, except large databases (e.g., “chess”, “nursery” sindtle”), which were analyzed
using the holdout methodology and the common division to training and testNetgnan et al.,
1998; Friedman et al., 1997; Cheng et al., 1997) as detailed in Table éinGaus variables were
discretized using the MLC++ library (Kohavi et al., 1994) and instand#s missing values were
removed, as is commonly done.
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# # # Test # training # test

Database . . . )
variables classes instances methodology instances instances

australian 14 2 690 CV5 552 138
breast 9 2 683 CV5 544 136
car 6 4 1728 CV5 1380 345
chess 36 2 3196 holdout 2130 1066
cleve 11 2 296 CV5 236 59
cmc 9 3 1473 CV5 1176 294
corral 6 2 128 CV5 100 25
crx 15 2 653 CV5 520 130
flare C 10 9 1389 CV5 1108 277
iris 4 3 150 CV5 120 30
led7 7 10 3200 CV5 2560 640
mofn 3-7-10 10 2 1324 holdout 300 1024
nursery 8 5 12960 holdout 8640 4320
shuttle (s) 8 7 5800 holdout 3866 1934
tic-tac-toe 9 2 958 CVbh 764 191
vehicle 18 4 846 CV5 676 169
vote 16 3 435 CV5 348 87
wine 13 3 178 CV5 140 35
Z00 16 7 101 CV5 80 20

Table 6: Databases of the UCI repository (Newman et al., 1998) and lvdi@and John (1997)
used for evaluating the accuracy of a classifier learned using the Réxithig.

Generally for this sub-section, Cl tests for RAl and PC were carriedsint) thex? test (Spirtes
et al., 2000) and those for TPDA using the CMI independence test {iequ2). However, ClI tests
for RAI and PC for the “corral”, “nursery” and “vehicle” databasa@sre carried out using the
CMI independence test. In the case of the large “nursery” databasegtd to use the CMI test
was due to a Matlab memory limitation in the completion of #ietest using the BNT structure
learning package (Leray and Francgois, 2004). In the case of treaft and “vehicle” databases,
the smallness of the database, together with either the large numbers of classbles or states
for each variable, led to low frequencies of instances for many combisatibvariable states. In
this case, the implementation of tigé test assumes variable dependence (Spirtes et al., 2000) that
prevents the CB (PC, TPDA and RAI) algorithms from removing edgesdézss of the order of
the ClI test, leading to erroneous decisions. Another test of indepemdehich is reported to be
more reliable and robust, especially for small databases or large nunfbergables (Dash and
Druzdzel, 2003), may constitute another solution in these cases.

Thresholds for the ClI tests of the CB algorithms and parameter values fathal algorithms
were chosen for each algorithm and database so as to maximize the clagsificauracy on a
validation set selected from the training set or based on the recommendaheratgorithm authors
or of Tsamardinos et al. (2006a). Although using a validation set deesdhe size of the training
set, it also eliminates the chance of selecting a threshold or a parameterubas tiae model to

1561



Y EHEZKEL AND LERNER

overfit the training set at the expense of the test set. If several tiidsgbarameters were found
suitable for an algorithm, the threshold/parameter chosen was that leadimgféovidst Cl tests (in
the case of CB algorithms). For GES and GS there are no parameterségcait(the equivalent
sample size for the BDeu), and for MMHC we used the selections used lauthers in all their
experiments.

Finally, parameter learning was performed by maximum likelihood estimation. Sieceere
interested in structure learning, no attempt was made to study estimation methedtaththis
simple and most popular generative method (Cooper and Herskovits,A88Rerman, 1995; Yang
and Chang, 2002). Nevertheless, we note that discriminative modelsafampter learning have
recently been suggested (Pernkopf and Bilmes, 2005; Roos et al). ZD8&se models show an
improvement over generative models when estimating the classification egd®ernkopf and
Bilmes, 2005). We expect that any improvement in classification accuedngd)by using param-
eter learning other than maximum likelihood estimation will be shared by classifterised using
any algorithm of structure learning; however, the exact degree of weprent in each case should
be further evaluated.

Complexityof the RAI algorithm was measured by the number of Cl tests employed for eac
size of the condition set and the cumulative run-time of the Cl tests. Theseiterecof complexity
were also measured for the PC algorithm, since both the RAI and PC algorigenthe same
implementation of Cl testing. Table 7 shows the average number and peentatests reduced
by the RAI algorithm compared to the PC algorithm for different Cl test irded each database.
An empty entry in the table means that no ClI tests of this order are require@% tut in CI tests
for a specific order means that RAI does not need any of the Cl testswadddy the PC algorithm
for this order (e.g., orders 2 and above for the “led7” databasegnlte seen that for almost all
databases examined, the RAI algorithm avoids most of the CI tests of dveeiend above that
are required by the PC algorithm (e.g., the “chess” database). Table Fred#/s the reduction in
the CI test run-time due to the RAI algorithm in comparison to the PC algorithmllfoireeteen
databases examined; except for the “australian” database, the cutssretm tens of percentages
for all databases and for six databases this cut is higher than 70%tirReidlifferences between
algorithms may be the result of different implementations. However, sincericase the run-time
is almost entirely based on the number and order of Cl tests and RAI hasegethost of the PC Cl
tests, especially those of high orders that are expensive in run-timeyngaer the above run-time
reduction results to be significant.

Classification accuracyusing a BNC has recently been explored extensively in the literature
(Friedman et al., 1997; Grossman and Domingos, 2004; Kontkanen e98P; Pernkopf and
Bilmes, 2005; Roos et al., 2005). By restricting the general inferenéedfaBN to inference
performed on the class variable, we turn a BN into a BNC. First, we use thinggalata to learn
the structure and then transform the pattern outputted by the algorithm int@a(Dér and Tarsi,
1992). Thereafter, we identify the class node Markov blanket andvertom the graph all the
nodes that are not part of this blanket. Now, we could estimate the probabddraprising the
class node posterior probability(C|X), whereX is the set of the Markov blanket variables. Dur-
ing the test, we inferred the stateof the class nod€ for each test instantiatiorX = x, using
the estimated posterior probability. The classelected was the one that maximized the posterior
probability, meaning that = argmaxP(C = c|X = x). By comparing the class maximizing the
posterior probability and the true class, we could compute the classificatioreagc
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Database Cl test order Run-time
0 1 2 3 4 cut (%)
australian 0@ | 38 (34.4) 6.05
breast 0(0) | 107.2 (54.8)| 35 (99.1) 71.87
car 0(0) 16 (100) | 11.2  (100) 3.2 (100) 91.10
chess 0(0) | 2263 (76.3)| 2516 (89) 581 (94) 249 (100) 80.65
cleve 0() | 124 (63) 39.60
cmc 0() | 10.2 (10.9 8 (32.5) 14.22
corral 0(0) | 224 (100)| 26 (100) 3.6 (100) 87.94
crx 0()| 8.8 (49.6) 25.25
flare C 0(0) 16 (39.6) 3 (100) 20.38
iris 0(0) 2 (40) 19.10
led7 0(0) | 46.2 (45.7)| 105 (100) | 140 (100) 105 (100) 91.74
mofn 3-7-10| 0 (0) 17 (100) 4 (100) 67.70
nursery 0(0) 20 (200) 30 (200) 20 (200) 5 (100) 89.70
shuttle (s) 0O | 14 (0.7) | 95.8 (43.8)| 117.6 (49.3)| 83.6 (56.0) 38.94
tic-tac-toe 0(0) | 53.2 (27.1)| 56.6 (48.6)| 1.8 (51.4) 36.52
vehicle 0@) | -12.4 (-29)| 326 (20.4)| -5.8 (-14.0)| 3.4 (27.4) 13.15
vote 0() | 242 (21.9)| 172 (98.1)| 6.4 (100) 1 (100) 46.06
wine 0(0) | 25.8 (41.0)| 442 (67.6)| 40.6 (82.4) 19 (96.7) 29.11
Z00 0(0) 82 (27.8) | 365.8 (29.6)| 1033.4 (27.7)| 1928.6 (25.6) 13.63

Table 7: Average number (and percentage) of Cl tests reduced byAthaldorithm compared to
the PC algorithm for different databases and ClI test orders and tt§gogin the total Cl
test run-time.

In Table 8 we compared the classification accuracy due to the RAI algoritihose due to
the PC, TPDA, GES, MMHC, SC and NBC algorithms. We note the overallrddgea of the RAI
algorithm, especially for large databases. Since the reliability of the Cl testsased with the
sample size, it seems that RAI benefits from this increase more than the lgttvéthans and excels
in classifying large databases. RAI, when compared to the other strdeamgng algorithms,
yielded the best classifiers on six (“flare C”, “nursery”, “led7”, “mif“tic-tac-toe” and “vehicle”)
of the ten largest databases and among the best classifiers on the rerfmain{fishuttle”, “chess”,
“car” and “cmc”) large databases. The other CB algorithms—PC and HR&l80 showed here,
and in Tsamardinos et al. (2006a), better results on the large dataHasesier, the CB algorithms
are less accurate on very small databases (e.g., “wine” and “zoo”).

Overall, RAl was the best algorithm on 7 databases compared to 5, 2 &nd,5 databases for
the PC, TPDA, GES, MMHC, SC and NBC algorithms, respectively. RAI thasworst classifier
on only a single database, whereas the PC, TPDA, GES, MMHC, SC afdaii®rithms were
the worst classifiers on 2, 4, 6, 2, 2 and 7 databases, respectivelipel@ve that the poor results
of the GES and MMHC algorithms on the “nursery” database may be attributde tfact that
these algorithms find the class nddes a child of many other variables, making the estimation of
P(C|X) unreliable due to the curse-of-dimensionality. The structures learnee logttar algorithms
required a smaller number of such connections and thereby reduced tiee c
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Database PC TPDA GES MMHC e NBC RAI
australian | 85.5 (0.5)| 85.5 (0.5) | 83.5 (2.1) | 86.2 (1.5) | 85.5 (1.2)| 85.9 (3.4)| 855 (0.5)
breast 955 (2.0)| 94.4 (2.7) | 96.8 (1.1) | 97.2 (1.2)| 96.5 (0.8)| 97.5 (0.8) | 96.5 (1.6)
car 84.3 (2.6)| 845 (0.6) | 81.5 (2.3) | 90.2 (2.0)| 93.8 (1.1) | 84.7 (1.3)| 929 (1.1)
chess 93.1 90.1 97.0 94.1 925 87.1 935
cleve 76.7 (7.2)| 72.0 (10.7)| 79.4 (5.7) | 82.1 (45)| 835 (5.7) | 835 (5.2) | 81.4 (5.4)
cme 50.9 (2.3)| 46.4 (2.1) | 46.3 (1.5) | 48.6 (2.6)| 49.7 (2.5)| 51.3 (1.3)| 51.1 (3.2)
corral 100 (0) | 88.2 (6.4) | 100 (0) | 100 (0) | 100 (0) | 85.2 (7.3)| 100 (0)
crx 86.4 (2.6)| 86.7 (3.4) | 82.2 (6.4) | 86.7 (1.7) | 86.7 (3.4) | 86.2 (2.8)| 86.4 (2.6)
flare C 84.3 (2.5) | 84.3 (2.4) | 84.3 (2.5) | 84.3 (2.5) | 84.3 (25) | 77.7 (3.1) | 84.3 (2.5
iris 96.0 (4.3) | 93.3 (2.4) | 96.0 (4.3) | 94.0 (3.6)| 92.7 (1.5) | 94.0 (4.3)| 93.3 (2.4)
led7 73.3 (1.8)| 729 (1.5) | 72.9 (1.5) | 72.9 (1.5) | 72.9 (1.5) | 72.9 (1.5)| 73.6 (1.6)
mofn 3-7-10| 81.4 90.8 79.8 90.5 91.9 89.8 93.2
nursery 72.0 64.7 33.3 29.3 30.3 66.0 72.0
shuttle (s) | 98.4 96.3 99.5 99.2 99.2 98.8 99.2
tic-tactoe | 74.7 (1.4)| 72.2 (3.8) | 69.9 (2.8) | 71.1 (4.2)| 70.4 (4.7)| 69.6 (3.1) | 75.6 (1.9)
vehicle 63.9 (3.3)| 65.6 (2.8) | 64.1 (11.2)| 69.3 (1.5)| 64.8 (9.1)| 62.0 (4.0)| 70.2 (2.8)
vote 95.9 (1.5) | 95.4 (2.1) | 94.7 (2.8) | 95.6 (2.2)| 93.1 (2.2)| 90.6 (3.3)| 95.4 (1.6)
wine 85.4 (7.8) | 97.8 (3.0) | 98.3 (2.5) | 98.3 (2.5)| 98.3 (2.5)| 98.9 (1.5)| 87.1 (5.9)
200 89.0 (8.8) | 96.1 (2.2) | 96.0 (2.3) | 93.1 (4.5)| 95.9 (6.9)| 96.3 (3.8) | 89.0 (8.79)
average 83.5 83.0 81.9 83.3 83.3 83.1 85.3
std 12.7 13.8 18.4 18.4 18.4 13.3 12.3

Table 8: Mean (and standard deviation for CV5 experiments) of the ctzsifi accuracy of the
RAI algorithm in comparison to those of the PC, TPDA, GES, MMHC, SC andCNB
algorithms.Bold anditalic fonts represent, respectively, the best and worst classifiers for
a database.

In addition, we averaged the classification accuracies of the algorithmistlowenineteen
databases. Averaging accuracies over databases has no meanirifjerdesat that the average ac-
curacies over many different problems of different algorithms may ifeutthe relative expected
success of the algorithms in other classification problems. It is interestindedhad although the
different algorithms in our study showed different degrees of sgcorsvarious databases, most
of the algorithms (i.e., PC, TPDA, MMHC, SC and NBC) achieved almost the saerege accu-
racy (83.0%-83.5%). The GES average accuracy was a little inferic@¥®1to that of the above
algorithms, and the average accuracy of the RAI (85.3%) was supertbat®f all algorithms.
Concerning the standard deviation of the classification accuracy, RAaedarmed all classifiers
implying to the robustness of the RAI-based classifier.

Superiority of one algorithm over another algorithm for each databaseewaluated with a
statistical significance test (Dietterich, 1998). We used a single-sidetitbtegaluate whether the
mean difference between any pair of algorithms as measured on the figeofdlie CV5 test was
greater than zero. Table 9 summarizes the statistical significance resulssireteat a significance
level of 0.05, for any two classifiers and each database examined usggvalidation. The number
in each cell of Table 9 describes—for the corresponding algorithm atabdse—the number of
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Databse PC TPDA GES MMHC SC NBC RAI

australian 1 1 0 1 0 1 1
breast 0 0 0 2 0 3 0
car 1 1 0 4 6 1 5
cleve 0 0 0 1 3 3 2
cmc 4 0 0 1 2 2 3
corral 2 0 2 2 2 0 2
Crx 0 0 0 0 0 0 0
flare C 1 1 1 1 1 0 1
iris 1 0 1 0 0 0 0
led7 0 0 0 0 0 0 5
tic-tac-toe 3 2 0 0 0 0 5
vehicle 0 1 0 3 0 0 3
vote 2 2 1 3 0 0 1
wine 0 2 2 2 2 2 0
Z00 0 0 0 0 2 0 0
total 15 10 7 20 18 12 28
average 1.00 0.67 0.47 1.33 1.20 0.81.87

Table 9: Statistical significance using a t-test for the classification agcteaalts of Table 8. For
a given database, each cell indicates the number of algorithms found téeberirat a
significance level of 0.05 to the algorithm above the cell.

algorithms that are inferior to that algorithm for that databases. A “0” valdeates that the
algorithm is either inferior to all the other algorithms or not significantly supedany of them.
For example, for the “car” database the PC, TPDA, GES, MMHC, SC, MBERAI algorithms
were significantly superior to 1, 1, 0, 4, 6, 1 and 5 other algorithms, ctisply. In total, the
superiority of the RAI algorithm over the other algorithms was statistically sigmfi@8 times,
with an average of 1.87 algorithms per database. The second and thiraldm#thms were the
MMHC and SC algorithms, with a total of 20 and 18 times of statistically significapesority
and averages of 1.33 and 1.2 per database, respectively. Thaleasssful classifier, according to
Tables 8 and 9, was the one that is learned using GES. We believe that énisrityf arises from
the assumptions on the type of probabilities and their parameters made by tredBEBM when
computing the BDeu score (Heckerman et al., 1995), assumptions thabfy@w not hold for the
examined databases.

Although this methodology of statistical tests between pairs of classifiers is thepopular
in the machine learning community, there are other methodologies that evaluisticatasignifi-
cance between several classifiers on several databases simulbaneousxample, Desar (2006),
recently suggested using Friedman test (Friedman, 1940) and someppdssts for such an eval-
uation.
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5. Discussion

The performance of a CB algorithm in BN structure learning depends amutider of conditional

independence tests and the sizes of condition sets involved in these testarger the condition

set, the greater the number of Cl tests of high orders that have to berpedand the smaller their
accuracies.

We propose the CB RAI algorithm that learns a BN structure by performiadaftowing se-
guence of operations: 1) test of Cl between nodes and removal e eeigited to independences, 2)
edge direction employing orientation rules, and 3) structure decompositiosniratiber autonomous
sub-structures. This sequence of operations is performed reslyrkiv each sub-structure, along
with increasing the order of the CI tests. Thereby, the RAI algorithm deisl®ss potential par-
ents for the nodes on a tested edge and thus uses smaller condition setabhatlee performance
of fewer ClI tests of higher orders. This reduces the algorithm run-tirdéremeases its accuracy.

By introducing orientation rules through edge direction in early stages odlg@ithm and
following CI tests of lower orders, the graph “backbone” is establish&dguthe most reliable
Cl tests. Relying on this “backbone” and its directed edges in later stagéstesbthe need for
unnecessary Cl tests and enables RAI to be less complex and sensitina$o e

In this study, we proved the correctness of the RAI algorithm. In additiemdemonstrated
empirically, using synthetically generated networks, samples of nineteemnksiwuctures, and
nineteen natural databases used in classification problems, the adwafrttagRAl algorithm over
state-of-the-art structure learning algorithms, such as PC, TPDA, &S, GR, SC and MMHC,
with respect to structural correctness, number of statistical calls, runatimielassification accu-
racy. We note that no attempt was made to optimize the parameters of the othighmdgand the
effect of such optimization was not evaluated. This is due to the fact thae &b the algorithms
have more than one parameter to optimize and besides, no optimization methegsapased by
the algorithm inventors. We propose such an optimization method for the Ravithign that uses
only the training (validation) data.

We plan to extend our study in several directions. One is the comparisoAldbd®ed clas-
sifiers to non-BN classifiers, such as the neural network and suppctar machine. Second is
the incorporation of different types of prior knowledge (e.g., relatedassification) into structure
learning. We also intend to study error correction during learning and taer die inclusion of
hidden variables to improve representation and facilitate learning with the Igéitam.
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