
Journal of Machine Learning Research 10 (2009) 1571-1610 Submitted 1/08; Revised 12/08; Published 7/09

Learning Linear Ranking Functions for Beam Search
with Application to Planning

Yuehua Xu XUYU @EECS.OREGONSTATE.EDU

Alan Fern AFERN@EECS.OREGONSTATE.EDU

School of Electrical Engineering and Computer Science
Oregon State University
Kelley Engineering Center
Corvallis, OR 97330

Sungwook Yoon SUNGWOOK.YOON@PARC.COM

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

Editor: Michael Littman

Abstract

Beam search is commonly used to help maintain tractability in large search spaces at the expense
of completeness and optimality. Here we study supervised learning of linear ranking functions for
controlling beam search. The goal is to learn ranking functions that allow for beam search to per-
form nearly as well as unconstrained search, and hence gain computational efficiency without seri-
ously sacrificing optimality. In this paper, we develop theoretical aspects of this learning problem
and investigate the application of this framework to learning in the context of automated planning.
We first study the computational complexity of the learning problem, showing that even for expo-
nentially large search spaces the general consistency problem is in NP. We also identify tractable
and intractable subclasses of the learning problem, givinginsight into the problem structure. Next,
we analyze the convergence of recently proposed and modifiedonline learning algorithms, where
we introduce several notions of problem margin that imply convergence for the various algorithms.
Finally, we present empirical results in automated planning, where ranking functions are learned
to guide beam search in a number of benchmark planning domains. The results show that our ap-
proach is often able to outperform an existing state-of-the-art planning heuristic as well as a recent
approach to learning such heuristics.

Keywords: beam search, speedup learning, automated planning, structured classification

1. Introduction

Throughout artificial intelligence and computer science, heuristic searchis a fundamental approach
to solving complex problems. Unfortunately, when the heuristic is not accurate enough, memory and
time constraints make pure heuristic search impractical. One common way to attempt tomaintain
tractability of heuristic search is through a pruning technique known as beam search. At each search
step, beam search maintains a “beam” of the heuristically bestb nodes, pruning all other nodes from
the search queue. Due to this pruning, beam search is not guaranteed tobe complete nor optimal.
However, if the heuristic is good enough to keep a good solution path in the beam, then the solution
will be found quickly.

c©2009 Yuehua Xu, Alan Fern and Sungwook Yoon.

XU, FERN AND YOON

The goal of this paper is to study the problem of learning heuristics, or ranking functions, that
allow beam search to quickly find solutions, without seriously sacrificing optimality compared to
unconstrained search. We consider this problem for the case of linear ranking functions, where each
search nodev is associated with a feature vectorf (v) and nodes are ranked according tow · f (v)
wherew is a weight vector. Each instance in our training set corresponds to a search space that is
labeled by a set of target solutions, each solution being a (satisficing) pathfrom the initial node to
a goal node. Given a training set, our learning objective is to select a weight vectorw such that a
beam search of a specified beam width always maintains one of the target paths in the beam until
finally reaching a goal node. Such aw effectively represents a ranking function that allows beam
search to efficiently solve all of the training instances, and ideally new search problems for which
the training set is representative.

Recent work (Dauḿe III and Marcu, 2005) has considered the problem of learning beam search
ranking functions in the context of structured classification. Structured classification is the problem
of learning a mapping from structured inputs (e.g., sentences) to structured outputs (e.g., syntactic
parses) and there has been much recent work that extends traditional classification algorithms to this
setting including conditional random fields (Lafferty et al., 2001), the generalized Perceptron algo-
rithm (Collins, 2002), and margin optimization (Taskar et al., 2003). The approach of Dauḿe III
and Marcu (2005) differs from prior approaches in that it explicitly views structured classification
as a search problem, where given an inputx, the problem of labelingx by a structured outputy is
treated as searching through an exponentially large set of candidate outputs. For example, in part-
of-speech tagging wherex is a sequence of words andy is a sequence of word tags, each node in the
search space is a pair(x,y′) wherey′ is a partial labeling of the words inx. Learning corresponds
to inducing a ranking function that quickly guides the search to the search node(x,y∗) wherey∗ is
the desired output. This framework, known aslearning as search optimization (LaSO), has demon-
strated highly competitive performance on a number of structured classification problems.

This paper builds on the LaSO framework and makes two key contributions. First, we analyze
the learning problem theoretically, in terms of its computational complexity and the convergence
properties of various learning algorithms. Secondly, this paper providesan empirical evaluation
in the context of automated planning, a problem that is qualitatively very different from structured
classification.

Our complexity analysis considers a number of subclasses of the generalbeam-search learning
problem. First, we provide an upper bound on the complexity of the generalproblem by showing
that even for exponentially large search spaces, which are the norm, theconsistency problem (i.e.,
finding aw that solves all training instances) remains in NP. Next, we identify several core tractable
and intractable subclasses of the beam-search learning problem. Interestingly, some of these sub-
classes resemble more traditional “learning to rank” problems (Agarwal and Roth, 2005) with clear
analogies to applications.

Our convergence analysis studies convergence properties of perceptron-style online learning
algorithms. In prior work, Dauḿe III and Marcu (2005) proposed a notion of linear separability for
this learning problem and proved convergence of the algorithm for linearly separable data. However,
here we show that result to be inaccurate for subtle reasons and give acounter example. We then
propose new notions of problem margin and show that convergence canbe guaranteed for revised
versions of the algorithm given positive margins. For the case where training data is ambiguous,
that is, where many good solutions to a search problem are not included in the target solution set, we
also give sufficient conditions on the minimum beam width to guarantee convergence. This result

1572

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

also provides a formal characterization of the intuition that the learning problem should become
easier as the beam width increases, by showing that the mistake bound decreases with increasing
beam width.

While the LaSO framework has been empirically evaluated in structured classification, with
impressive results, its utility in other types of search problems has not been demonstrated. Here
we consider the application of a LaSO-style algorithm to automated planning, which is a problem
that is qualitatively very different compared to structured classification. The planning problems we
consider are most naturally viewed as goal-finding problems, where we must search for a short path
to a goal node in an exponentially large graph. Rather, structured classification is most naturally
viewed as an optimization problem, where we must search for a structured object that optimizes an
objective function. While the two problem classes are related they differ in significant ways. For
example, the search problems studied in structured classification typically have a single or small
number of solution paths, whereas in automated planning there are often a large number of equally
good solutions, which can contribute to ambiguous training data. Furthermore, the size of the search
spaces encountered in automated planning are usually much larger than in structured classification,
because of the larger depths and branching factors. These differences raise the empirical question
of whether a LaSO-style approach will be effective in automated planning.

To evaluate this question we incorporated a LaSO-style learning mechanism into a forward state-
space search planner in order to learn domain-specific heuristics, or ranking functions, from training
examples. For a given planning domain, the training examples given to our learner include solution
plans to a set of planning problems from the domain. The learned ranking function for a domain
can then be used to guide beam search in order to solve new test problems from the same domain.
We evaluate this approach on a number of benchmark planning domains and show that our learned
ranking functions are often able to outperform both a state-of-the-art domain-independent planning
heuristic and the heuristics learned by another recently proposed learning mechanism based on
linear regression.

The remainder of this paper proceeds as follows. In Section 2, we introduce our formal setup
of the beam-search learning problem and then, in Section 3, study the computational complexity
of this learning problem. In Section 4, we describe two online learning mechanisms followed by
their convergence analysis. In Section 5, we apply the learning problem toautomated planning and
present the experimental results. Finally Section 6 concludes and suggests future directions.

2. Problem Setup

In this section, we first describe two different beam search paradigms:breadth-first beam search
and best-first beam search. We then introduce the learning problems thatwe study in these two
paradigms, followed by an illustrative example from automated planning. Finally, we describe how
our formulation, which was motivated by automated planning, relates to structured classification.

2.1 Beam Search

We first define breadth-first and best-first beam search, the two paradigms considered in this work.
A search spaceis a tuple〈I ,s(·), f (·),<〉, whereI is the initial search node,s is a successor function
from search nodes to finite sets of search nodes,f is a feature function from search nodes tom-
dimensional real-valued vectors, and< is a total preference ordering on search nodes. We think of
f as defining properties of search nodes that are useful for evaluatingtheir relative goodness and<

1573

XU, FERN AND YOON

as defining a canonical ordering on nodes, for example, lexicographic. In this work, we usef to
define a linear ranking functionw · f (v) on nodes wherew is anm-dimensional weight vector, and
nodes with larger values are considered to be higher ranked, or more preferred. Since a givenw may
assign two nodes the same rank, we use< to break ties such thatv is ranked higher thanv′ given
w· f (v′) = w· f (v) andv′ < v, arriving at a total rank ordering on search nodes. We denote this total
rank ordering asr(v′,v|w,<), or justr(v′,v) whenw and< are clear from context, indicating thatv
is ranked higher thanv′.

Given a search spaceS= 〈I ,s(·), f (·),<〉, a weight vectorw, and a beam widthb, breadth-first
beam searchsimply conducts breadth-first search, but at each search depth keeps only theb highest
ranked nodes according tor. More formally, breadth-first beam search generates a uniquebeam
trajectory(B0,B1, . . .) as follows,

• B0 = {I} is the initial beam;

• Cj+1 = BreadthExpand(B j ,s(·)) =
S

v∈B j
s(v) is the depthj +1 candidate setof the depthj

beam;

• B j+1 is the unique set ofb highest ranked nodes inCj+1 according to the total orderingr.

Note that for anyj, |Cj | ≤ cb and |B j | ≤ b, wherec is the maximum number of children of any
search node.

Best-first beam searchis almost identical to breadth-first beam search except that we replace the
functionBreadthExpand with BestExpand(B j ,s(·)) = B j∪s(v∗)−v∗, wherev∗ is the unique high-
est ranking node inB j . Thus, instead of expanding all nodes in the beam at each search step,best-
first search is more conservative and only expands the single best node. Note that unlike breadth-first
search this can result in beams that contain search nodes from different depths of the search space
relative toI .

2.2 Learning Problems

Our learning problems provide training sets of pairs{〈Si ,Pi〉}, where theSi = 〈Ii ,si(·), fi(·),<i〉 are
search spaces constrained such that eachfi has the same dimension. As described in more detail
below, thePi encode sets oftarget search pathsthat describe desirable search paths through the
corresponding search spaces. Roughly speaking the learning goal isto learn a ranking function that
can produce a beam trajectory of a specified width for each search space that contains at least one
of the corresponding target paths in the training data. For example, in the context of automated
planning, theSi would correspond to planning problems from a particular domain, encodingthe
state space and available actions, and thePi would encode optimal or satisficing plans for those
problems. A successfully learned ranking function would be able to quicklyfind at least one of the
target solution plans for each training problem and ideally new target problems.

We represent each set of target search paths as a sequencePi = (Pi,0,Pi,1, . . . ,Pi,d) of sets of
search nodes wherePi, j contains target nodes at depthj andPi,0 = {Ii}. It is useful to think about
Pi,d as encoding thegoal nodesof the i′th search space. We will refer to the maximum sizet of any
target node setPi, j as thetarget widthof Pi , which will be referred to in our complexity analysis.
The generality of this representation for target paths allows for pathological targets where certain
nodes do not lead to the goal. In order to arrive at convergence results, we rule out such possibilities
by assuming that the training set isdead-end free. That is, for alli and j < d eachv∈ Pi, j has at

1574

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

least one child nodev′ ∈ Pi, j+1. Note that in almost all real problems this property will be naturally
satisfied. For our complexity analysis, we will not need to assume any special properties of the
target search pathsPi .

Intuitively, for a dead-end free training set, eachPi represents a layered directed graph with at
least one path from each target node to a goal node inPi,d. Thus, the training set specifies not only a
set of goals for each search space but also gives possible solution paths to the goals. For simplicity,
we assume that all target solution paths have depthd, but all results easily generalize to non-uniform
depths.

For breadth-first beam search we specify a learning problem by giving a training set and a beam
width 〈{〈Si ,Pi〉},b〉. The objective is to find a weight vectorw that generates a beam trajectory
containing at least one of the target paths for each training instance. More formally, we are interested
in the consistency problem:

Definition 1 (Breadth-First Consistency) Given the input〈{〈Si ,Pi〉},b〉 where b is a positive in-
teger and Pi = (Pi,0,Pi,1, . . . ,Pi,d), the breadth-first consistency problem asks us to decide whether
there exists a weight vector w such that for each Si , the corresponding beam trajectory(Bi,0,Bi,1, . . . ,
Bi,d), produced using w with a beam width of b, satisfies Bi, j ∩Pi, j 6= /0 for each j?

A weight vector that demonstrates a “yes” answer is guaranteed to allow a breath-first beam search
of width b to uncover at least one goal node (i.e., a node inPi,d) within d beam expansions for all
training instances.

Unlike the case of breadth-first beam search, the length of the beam trajectory required by best-
first beam search to reach a goal node can be greater than the depthd of the target paths. This is
because best-first beam search, does not necessarily increase themaximum depth of search nodes in
the beam at each search step. Thus, in addition to specifying a beam width for the learning problem,
we also specify a maximum number of search steps, or horizon,h. The objective is to find a weight
vector that allows a best-first beam search to find a goal node withinh search steps, while always
keeping some node from the target paths in the beam.

Definition 2 (Best-First Consistency)Given the input〈{〈Si ,Pi〉},b,h〉, where b and h are positive
integers and Pi = (Pi,0, . . . ,Pi,d), the best-first consistency problem asks us to decide whether there
is a weight vector w that produces for each Si a beam trajectory(Bi,0, . . . ,Bi,k) of beam width b,
such that k≤ h, Bi,k∩Pi,d 6= /0 (i.e., Bi,k contains a goal node), and each Bi, j for j < k contains at
least one node in

S

j Pi, j?

Again, a weight vector that demonstrates a “yes” answer is guaranteed toallow a best-first beam
search of widthb to find a goal node inh search steps for all training instances.

2.2.1 EXAMPLE FROM AUTOMATED PLANNING .

Figure 1, shows a pictorial example of a single training example from an automated planning prob-
lem. The planning domain in this example is Blocksworld where individual problems involve trans-
forming an initial configuration of blocks to a goal configuration using simple actions such as pick-
ing up, putting down, and stacking the various blocks. The figure shows asearch spaceSi where
each node corresponds to a configuration of blocks and the arcs indicate when it is possible to take an
action that transitions from one configuration to another. The figure depicts, via highlighted nodes,

1575

XU, FERN AND YOON

two target paths. The labelPi would encode these target paths by a sequencePi = (Pi,0,Pi,1, . . . ,Pi,4)
wherePi, j contains the set of all highlighted target nodes at depthj. A solution weight vector, for
this training example, would be required to keep at least one of the highlighted paths in the beam
until uncovering the goal node.

…

…

…

… …

…

…

…

pickup(B) pickup(C)

stack(B, A)

pickup(C)

A B C D

A

B C D A

B

C D A B

C

D A B C

D

pickup(A) pickup(D)

A
B

C D A
B

C D A B
C

D A B
C
D

stack(B, D) stack(C, A) stack(C, D)

A
B C

D

A
B C

D

A

B
C
D

pickup(B)

… …stack(B, A)stack(C, D)

A
B

C

D

pickup(D)

A

B
C
D

pickup(A)

…
…

A
B
C

D

stack(C, B)

A

B
C
D

stack(B, C)

Figure 1: An example from automated planning.

2.2.2 EXAMPLE FROM STRUCTUREDCLASSIFICATION

Dauḿe III and Marcu (2005) considered learning ranking functions to control beam search in the
context of structured classification. Structured classification involves learning a function that maps
structured inputsx to structured outputsy. As an example, consider part-of-speech tagging where
the inputs correspond to English sentences and the correct output for asentence is the sequence of
part-of-speech tags for the words in the sentence. Figure 2 shows howDauḿe III and Marcu (2005)
formulated a single instance of part-of-speech tagging as a search problem. Each search node is a
pair (x,y′) wherex is the input sentence andy′ is a partial labeling of the words inx by part-of-
speech tags. The arcs in this space correspond to search steps that label words in the sentence in
a left-to-right order by extendingy′ in all possible ways by one element. The leaves, or terminal
nodes, of this space correspond to all possible complete labelings ofx. Given a ranking function
and a beam width, Dauḿe III and Marcu (2005) return a predicted output forx by conducting a
beam search until a terminal node becomes the highest ranked node in the beam, and then return
the output component of that terminal node. This approach to making predictions suggests that the
learning objective should require that we learn a ranking function such that the goal terminal node,
is the first terminal node to become highest ranked in the beam. In the figure, there is a single goal
terminal node(x,y) wherey is the correct labeling ofx and there is a unique target path to this goal.

From the above example, we see that there is a difference between the learning objective used
by Dauḿe III and Marcu (2005) for structured classification and the learning objective under our
formulation, which was motivated by automated planning. In particular, our formulation does not
force the goal node to be the highest ranked node in the final beam, but rather only requires that
a goal node appear somewhere in the final beam. While these formulations appear quite different,
it turns out that they are polynomially reducible to one another, which we prove in Appendix A.

1576

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

((the cat ran),(- - -))

((the cat ran), (verb - -))((the cat ran), (article - -))

((the cat ran), (article verb -)) ((the cat ran), (article noun -))

((the cat ran), (article noun verb)) ((the cat ran), (article noun noun))

…

…

…

Goal Node (x, y)

x = (The cat ran)

y = (article noun verb)

Terminal Node (x, y’)

Figure 2: An example from structured classification.

Thus, all of the results in this paper apply equally well to the structured-classification formulation
of Dauḿe III and Marcu (2005).

3. Computational Complexity

In this section, we study the computational complexity of the above consistencyproblems. We first
focus on breadth-first beam search, and then give the corresponding best-first results at the end of
this section. It is important to note that the size of the search spaces will typically be exponential in
the encoding size of the learning problem. For example, in automated planning,standard languages
such as PDDL (McDermott, 1998) are used to compactly encode planning problems that are po-
tentially exponentially large, in terms of the number of states, with respect to the PDDL encoding
size. Throughout this section we measure complexity in terms of the problem encoding size, not the
potentially exponentially larger search space size. All discussions in this section apply to general
search spaces and are not tied to a particular language for describing search space such as PDDL.

Our complexity analysis will consider various sub-classes of the breadth-first consistency prob-
lem, where the sub-classes will be defined by placing constraints on the following problem param-
eters:n - the number of training instances,d - the depth of target solution paths,c - the maximum
number of children of any search node,t - the maximum target width of anyPi as defined in Section
2.2, andb - the beam width. Figure 3 gives a pictorial depiction of these key problem parame-
ters. Throughout the complexity analysis we will restrict our attention to problem classes where the
maximum number of childrenc and beam widthb are polynomial in the problem size, which are
necessary conditions to ensure that each beam search step requires only polynomial time and space.
We will also assume that all feature functions can be evaluated in polynomial timein the problem
size.

Note that restricting the number of childrenc may rule out the use of certain search space encod-
ings for some problems. For example, in a multi-agent planning scenario, there are an exponential
number of joint actions to consider from each state, and thus an exponential number of children.
However, here it is possible to re-encode the search space by increasing the depth of the search tree,
so that each joint action is encoded by a sequence of steps where each agent selects an action in
turn followed by all of them executing the selected actions. The resulting search space has only a
polynomial number of children and thus satisfies our assumption, though the required search depth

1577

XU, FERN AND YOON

has increased. This form of re-encoding from a search space with exponentially many children to
one with polynomially many children can be done whenever the actions in the original space have
a compact, factored encoding, which is typically the case in practice.

. . . .

b
n

d

Figure 3: The key problem parameters:n - the number of training instances,d - the depth of target
solution paths,b - the beam width. Not depicted in the figure are:c - maximum number
of children of any node,t - the maximum target width of any example.

3.1 Hardness Upper Bounds

We first show an upper bound on the complexity of breadth-first consistency by proving that the
general problem is in NP even for exponentially large search spaces.

Observe that given a weight vectorw and beam widthb, we can easily generate a unique depth
d beam trajectory for each training instance. Our upper bound is based onconsidering the inverse
problem of checking whether a set of hypothesized beam trajectories, one for each training instance,
could have been generated by some weight vector. The algorithmTestTrajectoriesin Figure 4
efficiently carries out this check. The main idea is to observe that for any search spaceS it is
possible to efficiently check whether there is a weight vector that starting witha beamB could
generate a beamB′ after one step of breadth-first beam search. This can be done by constructing an
appropriate set of linear constraints on the weight vectorw that are required to generateB′ from B.
In particular, we first generate the set of candidate nodesC from B by unioning all children of nodes
in B. Clearly we must haveB′ ⊆C in order for there to be a solution weight vector. If this is the
case then we create a linear constraint for each pair of nodes(u,v) such thatu∈ B′ andv∈C−B′,
which forcesu to be preferred tov:

w· f (u) > w· f (v)

wherew = (w1,w2, . . . ,wm) are the constraint variables andf (·) = (f1(·), f2(·), . . . , fm(·)) is the
vector of feature functions. Note that ifu is more preferred thanv in the total preference ordering,
then we only need to require thatw · f (u)≥ w · f (v). The overall algorithmTestTrajectoriessimply
creates this set of constraints for each consecutive pair of beams in each beam trajectory and then
tests to see whether there is aw that satisfies all of the constraints.

Lemma 3 Given a set of search spaces{Si} and a corresponding set of width b beam trajectories
{(Bi,0, . . . ,Bi,d)}, the algorithmTestTrajectories(Figure 4) decides in polynomial time whether there
exists a weight vector w that can generate(Bi,0, . . . ,Bi,d) in Si for all i.

1578

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

Proof It is straightforward to show thatw satisfies the constraints generated byTestTrajectories
iff for each i, j, r(v′,v| <i ,w) leads beam search to generateBi, j+1 from Bi, j . The linear program
containsm variables and at mostndcb2 constraints. Since we are assuming that the maximum
number of children of a nodev is polynomial in the size of the learning problem, the size of the
linear program is also polynomial and thus can be solved in polynomial time (Khachiyan, 1979).

This lemma shows that sets of beam trajectories can be used as efficiently-checkable certificates for
breadth-first consistency, which leads to an upper bound on the problem’s complexity.

Theorem 4 Breadth-first consistency is in NP.

Proof Given a learning problem〈{〈Si ,Pi〉},b〉 our certificates correspond to sets of beam trajec-
tories{(Bi,0, . . . ,Bi,d)} each of size at mostO(ndb) which is polynomial in the problem size. The
certificate can then be checked in polynomial time to see if for eachi, (Bi,0, . . . ,Bi,d) contains a
target solution path encoded inPi as required by Definition 1. If it is consistent then according to
Lemma 3 we can efficiently decide whether there is aw that can generate{(Bi,0, . . . ,Bi,d)}.

This result suggests an enumeration-based decision procedure for breadth-first consistency as
given in Figure 4. In that procedure, the functionEnumerate creates a list of all possible combi-
nations of beam trajectories for the training data. Thus, each element of thislist is a list of beam
trajectories, one for each training example, where a beam trajectory is simplya sequence of sets of
nodes that are selected from the given search space. For each enumerated combination of beam tra-
jectories, the functionIsConsistentchecks whether the beam trajectory for each example contains
a target path for that example and if soTestTrajectorieswill be called to determine whether there
exists a weight vector that could produce those trajectories. The followinggives us the worst case
complexity of this algorithm in terms of the key problem parameters.

Theorem 5 The procedureExhaustiveAlgorithm(Figure 4) decides breadth-first consistency and
returns a solution weight vector if there is a solution in time O

(

(t +poly(m))(cb)bdn
)

.

Proof We first bound the number of certificates. Breadth-first beam search expands nodes in the
current beam, resulting in at mostcbnodes, from whichb nodes are selected for the next beam. Enu-
merating these possible choices overd levels andn trajectories, one for each training instance, we
can bound the number of certificates byO

(

(cb)bdn
)

. For each certificate the enumeration process
checks consistency with the target paths{Pi} in timeO(tbdn) and then callsTestTrajectorieswhich
runs in time poly(m,ndcb2). The total time complexity then isO

((

tbdn+poly(m,ndcb2)
)

(cb)bdn
)

= O
(

(t +poly(m))(cb)bdn
)

.

Not surprisingly the complexity is exponential in the beam widthb, target path depthd, and
number of training instancesn. However, it is polynomial in the maximum number of childrenc
and the maximum target widtht. Thus, breadth-first consistency can be solved in polynomial time
for any problem class whereb, d, andn are constants. Of course, for most problems these constants
would be too large for this result to be of practical interest. This leads to the question of whether we
can do better than the exhaustive algorithm for restricted problem classes. For at least one problem
class we can.

1579

XU, FERN AND YOON

ExhaustiveAlgorithm ({〈Si ,Pi〉},b)
Γ = Enumerate({〈Si ,Pi〉},b)
// enumerates all possible sets of beam trajectories
for each{(Bi,0 . . . ,Bi,d)} ∈ Γ

if IsConsistent({Pi},{(Bi,0 . . . ,Bi,d)}) then
w= TestTrajectories({Si},{(Bi,0, . . . ,Bi,d)})
if w 6= false then

return w
return false

TestTrajectories({Si},{(Bi,0, . . . ,Bi,d)})
// Si = 〈Ii ,si(·), fi(·),<i〉
construct a linear programming problemLP as below

the variables arew = {w1,w2, . . . ,wm}
for (i, j) ∈ {1, . . . ,n}×{1, . . . ,d}

Ci, j =BreadthExpand(Bi, j−1,si(·))
if Bi, j ⊆Ci, j then

for eachu∈ Bi, j andv∈Ci, j −Bi, j

if v <i u then
add a constraintw· fi(u)≥ w· fi(v)

elseadd a constraintw· fi(u) > w· fi(v)
else return false

w = LPSolver(LP)
if LP is solvedthen

return w
return false

Figure 4: The exhaustive algorithm for breadth-first consistency.

Theorem 6 The class of breadth-first consistency problems where b= 1 and t = 1 is solvable in
polynomial time.

Proof Given a learning problem〈{〈Si ,Pi〉},b〉 wherePi = (Pi,0, . . . ,Pi,d), t = 1 implies that each
Pi, j contains exactly one node. Since the beam widthb = 1, then the only way that a beam trajec-
tory (Bi,0, . . . ,Bi,d) can satisfy the conditionBi, j ∩Pi, j 6= /0 for any i, j, is for Bi, j = Pi, j . Thus there
is exactly one beam trajectory for each training example, equal to the targettrajectory, and using
Lemma 3 we can check for a solution weight vector for these trajectories in polynomial time.

This problem class, as depicted in Figure 5, corresponds to the case where each training instance
is labeled by exactly a single solution path and we are asked to find aw that leads a greedy hill-
climbing search, or reactive policy, to follow those paths. This is a common learning setting, for
example, when attempting to learn reactive control policies based on demonstrations of target poli-
cies, perhaps from an expert, as in Khardon (1999).

1580

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

. . .

Figure 5: A tractable class of breadth-first consistency, whereb = 1 andt = 1.

3.2 Hardness Lower Bounds

Unfortunately, outside of the above problem classes it appears that breadth-first consistency is com-
putationally hard even under strict restrictions. In particular, the followingthree results show that
if any one ofb, d, or n are not bounded then the consistency problem is hard even when the other
problem parameters are small constants.

First, we show that the problem class wheren = d = t = 1 butb≥ 1 is NP-complete. That is, a
single training instance involving a depth one search space is sufficient for hardness. This problem
class, resembles more traditional ranking problems and has a nice analogy inthe application domain
of web-page ranking, where the depth 1 leaves of our search space correspond to possibly relevant
web-pages for a particular query. One of those pages is marked as a target page, for example, the
page that a user eventually went to. The learning problem is then to find a weight vector that will
cause for the target page to be ranked among the topb pages. Our result shows that this problem is
NP-complete and hence will be exponential inb unlessP = NP.

Theorem 7 The class of breadth-first consistency problems where n= 1, d = 1, t = 1, and b≥ 1 is
NP-complete.

Proof Our reduction is from the Minimum Disagreement problem for linear binary classifiers,
which was proven to be NP-complete by Hoffgen et al. (1995). The inputto this problem is a train-
ing setT = {x+

1 , · · · ,x+
r1
,x−1 , · · · ,x−r2

} of positive and negativem-dimensional vectors and a positive
integerk. A weight vectorw classifies a vector as positive iffw · x≥ 0 and otherwise as negative.
The Minimum Disagreement problem is to decide whether there exists a weight vector that commits
no more thank misclassification.

Given a Minimum Disagreement problem we construct an instance〈〈S1,P1〉,b〉 of the breadth-
first consistency problem as follows. Assume without loss of generalityS1 = 〈I ,s(·), f (·),<〉.
Let s(I) = {q0,q1, · · · ,qr1+r2}. For eachi ∈ {1, · · · , r1}, define f (qi) = −x+

i ∈ Rm. For each
i ∈ {1, · · · , r2},define f (qi+r1) = x−i ∈ Rm. Define f (q0) = 0∈ Rm, P1 = ({I},{q0}) andb = k+1.
Define the total ordering< to be a total ordering in whichqi < q0 for everyi = 1, . . . , r1 andq0 < qi

for everyi = r1 +1, . . . , r1 + r2.We claim that there exists a linear classifier with at mostk misclas-
sifications if and only if there exists a solution to the corresponding consistency problem.

First, suppose there exists a linear classifierw · x≥ 0 with at mostk misclassifications. Using
the weight vectorw, we have

• w· f (q0) = 0;

1581

XU, FERN AND YOON

• for i = 1, · · · , r1 :
if w·x+

i ≥ 0, w· f (qi) = w· (−x+
i)≤ 0;

if w·x+
i < 0, w· f (qi) = w· (−x+

i) > 0;

• for i = r1 +1, . . . , r1 + r2:
if w·x−i ≥ 0, w· f (qi) = w·x−i ≥ 0;
if w·x−i < 0, w· f (qi) = w·x−i < 0.

For i = 1, · · · , r1 + r2, the nodeqi in the consistency problem is ranked lower thanq0 if and only
if its corresponding example in the Minimum Disagreement problem is labeled correctly, is ranked
higher thanq0 if and only if its corresponding example in the Minimum Disagreement problem is
labeled incorrectly. Therefore, there are at mostk nodes which are ranked higher thanq0. With
beam widthb = k+1, the beamBi,1 is guaranteed to contain nodeq0, indicating thatw is a solution
to the consistency problem.

On the other hand, suppose there exists a solutionw to the consistency problem. There are at
mostb−1 = k nodes that are ranked higher thanq0. That is, at leastr1 + r2− k nodes are ranked
lower thanq0. For i = 1, . . . , r1, qi is ranked lower thanq0 if and only if w · f (qi) ≤ w · f (q0).
For i = r1 + 1, . . . , r1 + r2, qi is ranked lower thanq0 if and only if w · f (qi) < w · f (q0). Since
w· f (q0) = 0, we have

• for i = 1, · · · , r1 :
w· f (qi)≤ 0⇒ w· (−x+

i)≤ 0⇒ w·x+
i ≥ 0;

• for i = r1 +1, . . . , r1 + r2 :
w· f (qi) < 0⇒ w·x−i < 0⇒ w·x−i < 0.

Therefore, using the linear classifierw·x≥ 0, at leastr1+ r2−k nodes are labeled correctly, that is,
it makes at mostk misclassifications.

Since the time required to construct the instance〈〈S1,P1〉,b〉 from T,k is polynomial in the size
of T,k, we conclude that the consistency problem is NP-Complete even restricted ton = 1, d = 1
andt = 1.

The next result shows that if we do not bound the number of training instancesn, then the prob-
lem remains hard even when the target path depth and beam width are equalto one. Interestingly,
this subclass of breadth-first consistency corresponds to the multi-labellearning problem as defined
in Jin and Ghahramani (2002). In multi-label learning each training instancecan be viewed as a bag
of m-dimensional vectors, some of which are labeled as positive, which in our context correspond to
the target nodes. The learning goal is to find aw that for each bag, ranks one of the positive vectors
as best.

Theorem 8 The class of breadth-first consistency problems where d= 1, b = 1, c = 6, t = 3, and
n≥ 1 is NP-complete.

Proof The proof is by reduction from 3-SAT (Garey and Johnson, 1979), which is the following.
“Given a set U of boolean variables, a collection Q of clauses over U suchthat each clause

q∈Q has|q|= 3, decide whether there a satisfying truth assignment for C.”

1582

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

Let U = {u1, . . . ,um}, Q = {q11∨ q12∨ q13, . . . ,qn1∨ qn2∨ qn3} be an instance of the 3-SAT
problem. Here,qi j = u or ¬u for someu∈U . We construct fromU,Q an instance〈{〈Si ,Pi〉},b〉
of the breadth-first consistency problem as follows. For each clauseqi1∨ qi2∨ qi3, let si(Ii) =
{pi,1, · · · , pi,6} , Pi = ({Ii},{pi,1, pi,2, pi,3}), b= 1, and the total ordering<i is defined so thatpi, j <i

pi,k for j = 1,2,3 andk = 4,5,6. Let ek ∈ {0,1}m denote a vector of zeros except a 1 in the
k′th component. For eachi = 1, . . . ,n, j = 1,2,3, if qi j = uk for somek then fi(pi, j) = ek and
fi(pi, j+3) = −ek/2, otherwise ifqi j = ¬uk for somek then fi(pi, j) = −ek and fi(pi, j+3) = ek/2.
We claim that there exists a satisfying truth assignment if and only if there existsa solution to the
corresponding consistency problem.

First, suppose that there exists a satisfying truth assignment. Letw = (w1, · · · ,wm), where
wk = 1 if uk is true, andwk = −1 if uk is false in the truth assignment. For eachi = 1, . . . ,n,
j = 1, . . . ,3, we have:

• if qi j is true, then
w· fi(pi, j) = 1 andw· fi(pi, j+3) =−1/2;

• if qi j is false, then
w· fi(pi, j) =−1 andw· fi(pi, j+3) = 1/2.

Note that for each clauseqi1∨ qi2∨ qi3, at least one of the literals is true. Thus, for every set of
nodes{pi,1, pi,2, pi,3}, at least one of the nodes will have the highest rank value equal to 1, resulting
in Bi,1 = {v} wherev∈ {pi,1, pi,2, pi,3}. By the definition, the weight vectorw is a solution to the
consistency problem.

On the other hand, suppose that there exists a solutionw = (w1, . . . ,wm) to the consistency
problem. Assume the beam trajectory for eachi is ({Ii},{vi}). Thenvi = pi, j for somej ∈ {1,2,3},
and for thisi and j, qi j = uk or ¬uk for somek. Let uk be true ifqi j = uk and be false ifqi j = ¬uk.
As long as there is no contradiction in this assignment, this is a satisfying truth assignment because
at least one of{qi1,qi2,qi3} is true for everyi, that is, every clause is true.

Now we will prove that there is no contradiction in this assignment, that is, any variable is
assigned either true or false, but not both. Note that for any nodev∈ {pi,1, pi,2, pi,3}, there always
exists a nodev′ ∈ {pi,4, . . . , pi,6} such that:

• w· fi(v) < 0⇔ w· fi(v′) > 0;

• w· fi(v) > 0⇔ w· fi(v′) < 0;

• w· fi(v) = 0⇔ w· fi(v′) = 0.

Then because of the total ordering<i we defined, the nodevi = pi, j appearing in the beam trajectory,
must hasw· fi(vi) > 0. Assume without loss of generality thatqi j = uk, thenuk is assigned to be true.
Although¬uk might appear in other clauses, for example,qi′ j ′ = ¬uk, its corresponding nodepi′, j ′

can never appear in the beam trajectory becausew· fi′(pi′, j ′)= w·(−ek) =−w·ek =−w· fi(pi, j) < 0.
Therefore,uk will never be assigned false. A similar proof can be given for the case ofqi j = ¬uk.

Since the time required to construct the instance〈{〈Si ,Pi〉},b〉 from U,Q is polynomial in the
size ofU,Q, we conclude that the consistency problem is NP-Complete for the case ofd = 1, b= 1,
c = 6 andt = 3.

1583

XU, FERN AND YOON

Finally, we show that when the depthd is unbounded the consistency problem remains hard even
whenb = n = 1.

Theorem 9 The class of breadth-first consistency problems where n= 1, b = 1, c = 6, t = 3, and
d≥ 1 is NP-complete.

Proof Assumex = 〈{〈Si ,Pi〉|i = 1, . . . ,n},b〉, whereSi = 〈Ii ,si(·), fi(·),<i〉 andPi = ({Ii},Pi,1), is
an instance of the consistency problem withd = 1, b = 1, c = 6 andt = 3. We can construct an
instancey of the consistency problem withn= 1, b= 1, c= 6, andt = 3. Lety= 〈〈S̄1, P̄1〉,b〉where
S̄1 = 〈I1, s̄(·), f̄ (·), <̄〉, andP̄1 = ({I1},P1,1,P2,1, . . . ,Pt,1). We define ¯s(·), f̄ (·), <̄ as below.

• s̄(I1) = s1(I1), f̄ (I1) = f1(I1);

• for eachi = 1, . . . ,n−1
∀v∈ si(Ii), f̄ (v) = fi(v) ands̄(v) = si+1(Ii+1);
∀(v,v′) ∈ si(Ii), <̄(v,v′) =<i (v,v′);

• ∀v∈ sn(In), f̄ (v) = fn(v);
∀(v,v′) ∈ sn(In), <̄(v,v′) =<n (v,v′).

Obviously, a weight vectorw is a solution for the instancex if and only if w is a solution for the
constructed instancey.

b n d c t Complexity
poly ≥ 1 ≥ 1 poly ≥ 1 NP
K K K poly ≥ 1 P
1 ≥ 1 ≥ 1 poly 1 P

poly 1 1 poly 1 NP-Complete
1 ≥ 1 1 6 3 NP-Complete
1 1 ≥ 1 6 3 NP-Complete

Figure 6: Complexity results for breadth-first consistency. Each row corresponds to a sub-class of
the problem and indicates the computational complexity.K indicates a constant value and
“poly” indicates that the quantity must be polynomially related to the problem size.

Figure 6 summarizes our main complexity results from this section for breadth-first consistency.
For best-first beam search, most of these results can be carried over. Recall that for best-first con-
sistency the problem specifies a search horizonh in addition to a beam width. Using a similar
approach as above we can show that best-first consistency is in NP assuming thath is polynomial
in the problem size, which is a reasonable assumption. Similarly, one can extend the polynomial
time result for fixedb, n, andd. The remaining results in the table can be directly transferred to
best-first search, since in each case eitherb = 1 or d = 1 and best-first beam search is equivalent to
breadth-first beam search in either of these cases.

1584

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

4. Convergence of Online Updates

In the previous section, we identified a limited set of tractable problem classesand saw that even
very restricted classes remain NP-hard. We also saw that some of these hard classes had interesting
application relevance. Thus, it is desirable to consider efficient learningmechanisms that work well
in practice. Below we describe two such algorithms based on online perceptron updates.

4.1 Online Perceptron Updates

Figure 7 gives the LaSO-BR algorithm for learning ranking functions forbreadth-first beam search.
It resembles thelearning as search optimization (LaSO)algorithm for best-first search by Daumé III
and Marcu (2005). LaSO-BR iterates through all training instances〈Si ,Pi〉 and for each one con-
ducts a beam search of the specified width. After generating the depthj beam for theith training
instance, if at least one of the target nodes inPi, j are in the beam then no weight update occurs.
Rather, if none of the target nodes inPi, j are in the beam then a search error is flagged and weights
are updated according to the following perceptron-style rule,

w = w+α ·
(

∑v∗∈Pi, j∩C f (v∗)

|Pi, j ∩C| − ∑v∈B f (v)
b

)

where 0< α≤ 1 is a learning rate parameter,B is the current beam andC is the candidate set from
which B was generated (i.e., the beam expansion of the previous beam). For simplicityof notation,
here we assume thatf is a feature function for all training instances. Intuitively this weight update
moves the weights in the direction of the average feature function of target nodes that appear inC,
and away from the average feature function of non-target nodes in thebeam. This has the effect of
increasing the rank of target nodes inC and decreasing the rank of non-targets in the beam. Ideally,
this will cause at least one of the target nodes to become preferred enough to remain on the beam
next time through the search. Note that the use of averages over target and non-target nodes is
important so as to account for the different sizes of these sets of nodes. After each weight update,
the beam is reset to contain only the set of target nodes inC and the beam search then continues.
Importantly, on each iteration, the processing of each training instance is guaranteed to terminate in
d search steps.

Figure 8 gives the LaSO-BST algorithm for learning in best-first beam search, which is a slight
modification of the original LaSO algorithm. The main difference compared to theoriginal LaSO
is in the weight update equation, a change that appears necessary for our convergence analysis. The
algorithm is similar to LaSO-BR except that a best-first beam search is conducted, which means that
termination for each training instance is not guaranteed to be withind steps. Rather, the number of
search steps for a single training instance remains unbounded without further assumptions, which
we will address later in this section. In particular, there is no bound on the number of search
steps between weight updates for a given training example. This difference between LaSO-BR and
LaSO-BST was of great practical importance in our automated planning application. In particular,
LaSO-BST typically did not produce useful learning results due to the fact that the number of search
steps between weight updates was extremely large. Note that in the case of structured classification,
Dauḿe III and Marcu (2005) did not experience this difficulty due to the bounded-depth nature of
their search spaces.

1585

XU, FERN AND YOON

LaSO-BR ({〈Si ,Pi〉},b)
w← 0
repeatuntil w is unchangedor a large number of iterations

for everyi
Update-BR(Si ,Pi ,b,w)

return w

Update-BR (Si ,Pi ,b,w)
// Si = 〈Ii ,si(·), f (·),<i〉 andPi = (Pi,0, . . . ,Pi,d)
B←{Ii} // initial beam
for j = 1, . . . ,d

C← BreadthExpand(B,si(·))
for everyv∈C

H(v)← w· f (v) // compute heuristic value ofv
OrderC according toH and the total ordering<i

B← the firstb nodes inC
if B∩Pi, j = /0 then

w← w+α ·
(

∑v∗∈Pi, j∩C f (v∗)

|Pi, j∩C| − ∑v∈B f (v)
b

)

B← Pi, j ∩C
return

Figure 7: The LaSO-BR online algorithm for breadth-first beam search.

4.2 Previous Result and Counter Example

Adjusting to our terminology, Dauḿe III and Marcu (2005) defined a training set to belinear separa-
ble iff there is a weight vector that solves the corresponding consistency problem. Also for linearly
separable data they defined a notion of margin of a weight vector, which werefer to here as the
search margin. The formal definition of search margin is given below.

Definition 10 (Search Margin) The search margin of a weight vector w for a linearly separable
training set is defined asγ = min{(v∗,v)}(w · f (v∗)−w · f (v)), where the set{(v∗,v)} contains any
pair where v∗ is a target node and v is a non-target node that was compared during thebeam search
guided by w.

Dauḿe III and Marcu (2005) state that the existence of aw with positive search margin, which
implies linear separability, implies convergence of the original LaSO algorithm after a finite number
of weight updates. On further investigation, we have found that a positive search margin is not suf-
ficient to guarantee convergence for LaSO, LaSO-BR, or LaSO-BST. Intuitively, the key difficulty
is that our learning problem contains hidden state in the form of the desired beam trajectory. Given
the beam trajectory of a consistent weight vector one can compute the weights, and likewise given
consistent weights one can compute the beam trajectory. However, we aregiven neither to begin
with and our approach can be viewed as an online EM-style algorithm, which alternates between

1586

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

LaSO-BST ({〈Si ,Pi〉},b)
w← 0
repeatuntil w is unchangedor a large number of iterations

for everyi
Update-BST(Si ,Pi ,b,w)

return w

Update-BST(Si ,Pi ,b,w)
// Si = 〈Ii ,si(·), f (·),<i〉 andPi = (Pi,0, . . . ,Pi,d)
B←{Ii} // initial beam
P̄ = Pi,0∪Pi,2∪ . . .∪Pi,d

while B∩Pi,d = /0
C← BestExpand(B,si(·))
for everyv∈C

H(v)← w· f (v) // compute heuristic value ofv
OrderC according toH and the total ordering<i

B← the firstb nodes inC
if B∩ P̄ = /0 then

w← w+α ·
(

∑v∗∈P̄∩C f (v∗)
|P̄∩C| − ∑v∈B f (v)

b

)

B← P̄∩C
return

Figure 8: Online algorithm for best-first beam search.

updating weights given the current beam and recomputing the beam giventhe updated weights.
Just as traditional EM is quite prone to local minima, so are the LaSO algorithms in general, and
in particular even when there is a positive search margin as demonstrated in the following counter
example. Note that the standard Perceptron algorithm for classification learning does not run into
this problem since there is no hidden state involved.

Counter Example 1 We give a training set for which the existence of a weight vector with pos-
itive search margin does not guarantee convergence to a solution weightvector for LaSO-BR
or LaSO-BST. Consider a problem that consists of a single training instance with search space
shown in Figure 9, preference ordering C< B < F < E < D < H < G, and single target path
P = ({A},{B},{E}).

First we will consider using breadth-first beam search with a beam width of b = 2. Using the
weight vector w= [γ,γ] the resulting beam trajectory will be (note that higher values of w· f (v) are
better):

{A},{B,C},{E,F}.

The search margin of w, which is only sensitive to pairs of target and non-target nodes that were
compared during the search, is equal to,

γ = w· f (B)−w· f (C) = w· f (E)−w· f (F)

1587

XU, FERN AND YOON

A

B C D

)1,1()(Bf

E F G H

)1,1()(Ef)1,0()(Ff)1,1()(Gf)1,1()(Hf

)1,0()(Cf)0,0()(Df

)1,1()(Af

Figure 9: Counter example for convergence under positive search margin.

which is positive. We now show that the existence of w does not imply convergence under perceptron
updates.

Consider simulating LaSO-BR starting from w′ = 0. The first search step gives the beam{D,B}
according to the given preference ordering. Since B is on the target path we continue expanding to
the next level where we get the new beam{G,H}. None of the nodes are on the target path so we
update the weights as follows:

w′ = w′+ f (E)−0.5[f (G)+ f (H)]

= w′+[1,1]− [1,1]

= w′.

This shows that w′ does not change and we have converged to the weight vector w′ = 0, which is not
a solution to the problem.

For the case of best-first beam search, the performance is similar. Given the weight vector
w = [γ,γ], the resulting beam search with beam width 2 will generate the beam sequence,

{A},{B,C},{E,C}

which is consistent with the target trajectory. From this we can see that w hasa positive search
margin of:

γ = w· f (B)−w· f (C) = w· f (E)−w· f (C).

However, if we follow the perceptron algorithm when started with the weight vector w′ = 0 we can
again show that the algorithm does not converge to a solution weight vector. In particular, the first
search step gives the beam{D,B} and since B is on the target path, we do not update the weights
and generate a new beam{G,H} by expanding the node D. At this point there are no target nodes
in the beam and the weights are updated as follows

w′ = w′+ f (B)−0.5[f (G)+ f (H)]

= w′+[1,1]− [1,1]

= w′

1588

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

showing that the algorithm has converged to w′ = 0, which is not a solution to the problem.
Thus, we have shown that a positive search margin does not guaranteeconvergence for either

LaSO-BR or LaSO-BST. This counter example also applies to the original LaSO algorithm, which
is quite similar to LaSO-BST.

4.3 Convergence Under Stronger Notions of Margin

Given that linear separability, or equivalently a positive search margin, isnot sufficient to guarantee
convergence we consider a stronger notion of margin, thelevel margin, which measures by how
much the target nodes are ranked above (or below) other non-target nodes at the same search level.

Definition 11 (Level Margin) The level margin of a weight vector w for a training set is defined as
γ = min{(v∗,v)}(w· f (v∗)−w· f (v)), where the set{(v∗,v)} contains any pair such that v∗ is a target
node at some depth j and v can be reached in j search steps from the initialsearch node—that is,
v∗ and v are at the same level.

For breadth-first beam search, a positive level margin forw implies a positive search margin, but not
necessarily vice versa, showing that level margin is a strictly stronger notion of separability. The
following result shows that a positive level margin is sufficient to guarantee convergence of LaSO-
BR. Throughout we will letR be a constant such that for all training instances, for all nodesv and
v′, ‖ f (v)− f (v′)‖ ≤ R. The proof of this result follows similar lines as the Perceptron convergence
proof for standard classification problems Rosenblatt (1962).

Theorem 12 Given a dead-end free training set such that there exists a weight vector wwith level
marginγ > 0 and‖w‖= 1, LaSO-BR will converge with a consistent weight vector after making no
more than(R/γ)2 weight updates.

Proof First note that the dead-end free property of the training data can be used to show that unless
the current weight vector is a solution it will eventually trigger a “meaningful”weight update (one
where the candidate set contains target nodes).

Let wk be the weights before thek′th mistake is made. Thenw1 = 0. Suppose thek′th mistake
is made for the training data〈Si ,Pi〉, whenB∩Pi, j = /0. Here,Pi, j is the j ′th element ofPi , B is the
beam generated at depthj for Si andC is the candidate set from whichB is selected. Note thatC is
generated by expanding all nodes in the previous beam and at least oneof them is inPi, j−1. With
the dead-end free property, we are guaranteed thatC′ = Pi, j ∩C 6= /0. The occurrence of the mistake
indicates that,∀v∗ ∈ Pi, j ∩C,v∈ B, wk · f (v∗) ≤ wk · f (v), which lets us derive an upper bound for
‖wk+1‖2.

‖wk+1‖2 = ‖wk +
∑v∗∈C′ f (v∗)
|C′| − ∑v∈B f (v)

b
‖2

= ‖wk‖2 +‖∑v∗∈C′ f (v∗)
|C′| − ∑v∈B f (v)

b
‖2

+2wk · (∑v∗∈C′ f (v∗)
|C′| − ∑v∈B f (v)

b
)

≤ ‖wk‖2 +‖∑v∗∈C′ f (v∗)
|C′| − ∑v∈B f (v)

b
‖2

≤ ‖wk‖2 +R2

1589

XU, FERN AND YOON

where the first equality follows from the definition of the perceptron-update rule, the first inequality
follows becausewk ·(f (v∗)− f (v)) < 0 for all v∗ ∈C′,v∈B, and the second inequality follows from
the definition ofR. Using this upper-bound we get by induction that

‖wk+1‖2≤ kR2.

Suppose there is a weight vectorw such that||w|| = 1 andw has a positive level margin, then
we can derive a lower bound forw·wk+1.

w·wk+1 = w·wk +w· (∑v∗∈C′ f (v∗)
|C′| − ∑v∈B f (v)

b
)

= w·wk +
∑v∗∈C′w· f (v∗)

|C′| − ∑v∈Bw· f (v)
b

≥ w·wk + γ.

This inequality follows from the definition of the level marginγ of the weight vectorw.
By induction, we get thatw ·wk+1 ≥ kγ. Combining this result with the above upper bound on

‖wk+1‖ and the fact that‖w‖= 1 we get that

1≥ w·wk+1

‖w‖‖wk+1‖ ≥
√

k
γ
R
⇒ k≤ R2

γ2 .

Without the dead-end free property, LaSO-BR might generate a candidate set that contains no
target nodes, which would allow for a mistake that does not result in a weight update. However, for
a dead-end free training set, it is guaranteed that the weights will be updated if and only if a mistake
is made. Thus, the mistake bound is equal to the bound on the weight updates.

Note that for the example search space in Figure 9 there is no weight vectorwith a positive
level margin since the final layer contains target and non-target nodes with identical weight vectors.
Thus, the non-convergence of LaSO-BR on that example is consistent with the above result. Unlike
LaSO-BR, LaSO-BST and LaSO do not have such a guarantee since their beams can contain nodes
from multiple levels. This is demonstrated by the following counter example.

Counter Example 2 We give a training set for which the existence of a w with positive level margin
does not guarantee convergence for LaSO-BST. Consider a single training example with the search
space in Figure 10, single target path P= ({A},{B},{E}), and preference ordering C< B < E <
F < G < D.

Given the weight vector w= [2γ,γ], the level margin of w is equal toγ. However, starting with
w′ = 0 and running LaSO-BST the first search step gives the beam{D,B}. Since B is on the target
path, we get the new beam{G,F} by expanding the node D. This beam does not contain a target
node, which triggers the following weight update:

w′ = w′+ f (B)− [f (F)+ f (G)]/2

= w′+[1,0]− [1,0]

= w′.

Since w′ does not change the algorithm has converged to w′ = 0, which is not a solution to this
problem. This shows that a positive level margin is not sufficient to guarantee the convergence of
LaSO-BST. The same can be shown for the original LaSO.

1590

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

A

B C D

)0,1()(Bf

E F G

)1,1()(Ef)0,1()(Ff)0,1()(Gf

)0,0()(Cf)1,0()(Df

)0,0()(Af

Figure 10: Counter example to convergence under positive level margin.

In order to guarantee convergence of LaSO-BST, we require an even stronger notion of margin,
global margin, which measures the rank difference between any target node and anynon-target
node, regardless of search space level.

Definition 13 (Global Margin) The global margin of a weight vector w for a training set is defined
asγ = min{(v∗,v)}(w · f (v∗)−w · f (v)), where the set{(v∗,v)} contains any pair such that v∗ is any
target node and v is any non-target node in the search space.

Note that ifw has a positive global margin then it has a positive level margin. The converse is
not necessarily true. The global margin is similar to the common definitions of marginused to
characterize the convergence of linear perceptron classifiers (Novikoff, 1962).

To ensure convergence of LaSO-BST we also assume that the search spaces are all finite trees.
This avoids the possibility of infinite best-first beam trajectories that never terminate at a goal node.
Tree structures are quite common in practice and it is often easy to transforma finite search space
into a tree. The structured classification experiments of Daumé III and Marcu (2005) and our own
automated experiments both involve tree structured spaces.

Theorem 14 Given a dead-end free training set of finite tree search spaces such thatthere exists a
weight vector w with global marginγ > 0 and‖w‖= 1, LaSO-BST will converge with a consistent
weight vector after making no more than(R/γ)2 weight updates.

The proof is similar to that of Theorem 12 except that the derivation of the lower bound makes use
of the global margin and we must verify that the restriction to finite tree searchspaces guarantees
that each iteration of LaSO-BST will terminate with a goal node being reached. We were unable to
show convergence for the original LaSO algorithm even under the assumptions of this theorem.

In summary, this section has introduced three different notions of margin: search margin, level
margin, and global margin. Both algorithms converge for a positive global margin, which implies a
positive search margin and a positive level margin. For LaSO-BR, but not LaSO-BST, convergence
is guaranteed for a positive level margin, which implies a positive search margin. This shows that
LaSO-BR converges under a strictly weaker notion of margin than LaSO-BST due to the fact that
the ranking decisions of breadth-first search are restricted to nodes at the same level of the search
space, as opposed to best-first search. This suggests that it may oftenbe easier to define effective
feature spaces for the breadth-first paradigm. Finally, a positive search margin corresponds exactly

1591

XU, FERN AND YOON

to linear separability, but is not enough to guarantee convergence for either algorithm. This is in
contrast to results for linear classifier learning, where linear separabilityimplies convergence of
perceptron updates.

4.4 Convergence for Ambiguous Training Data

Here we study convergence for linearly inseparable training data. Inseparability is often the result
of training-data ambiguity, in the sense that many “good” solution paths are not included as tar-
get paths. For example, this is common in automated planning where there can bemany (nearly)
optimal solutions, many of which are inherently identical (e.g., differing in the orderings of un-
related actions). It is usually impractical to include all solutions in the training data, which can
make it infeasible to learn a ranking function that strictly prefers the target paths over the inherently
identical paths not included as targets. In these situations, the above notions of margin will all be
negative. Here we consider the notion ofbeam marginthat allows for some amount of ambiguity,
or inseparability.

For each instance〈Si ,Pi〉, whereSi = 〈Ii ,si(·), f (·),<i〉 andPi = (Pi,1,Pi,2, . . . ,Pi,di), let Di j be
the set of nodes that can be reached inj search steps fromIi . That is,Di j is the set of all possible
non-target nodes that could be in beamBi, j . A beam margin is a triple(b′,δ1,δ2) whereb′ is a
non-negative integer, andδ1,δ2≥ 0.

Definition 15 (Beam Margin) A weight vector w has beam margin(b′,δ1,δ2) on a training set
{〈Si ,Pi〉}, if for each i, j there is a set D′i j ⊆ Di j such that|D′i j | ≤ b′ and

∀v∗ ∈ Pi, j ,v∈ Di j −D′i j , w· f (v∗)−w· f (v)≥ δ1 and,

∀v∗ ∈ Pi, j ,v∈ D′i j , δ1 > w· f (v∗)−w· f (v)≥−δ2.

A weight vectorw has beam margin(b′,δ1,δ2) if at each search depth it ranks the target nodes better
than most other non-target nodes (those inDi j −D′i j) by a margin of at leastδ1, and ranks at mostb′

non-target nodes (those inD′i j) better than the target nodes by a margin no greater thanδ2. Whenever
this condition is satisfied we are guaranteed that a beam search of widthb > b′ guided byw will
solve all of the training problems. The case whereb′ = 0 corresponds to the level margin, where
the data is separable. By allowingb′ > 0 we can consider cases where there is no “dominating”
weight vector that ranks all targets better than all non-targets at the same level. The following result
shows that for a large enough beam width, which is dependent on the beam margin, LaSO-BR will
converge to a consistent solution.

Theorem 16 Given a dead-end free training set, if there exists a weight vector w with beammargin
(b′,δ1,δ2) and‖w‖ = 1, then for any beam width b> (1+δ2/δ1)b′ = b∗, LaSO-BR will converge

with a consistent weight vector after making no more than(R/δ1)
2(

1−b∗b−1
)−2

weight updates.

Proof Let wk be the weights before thek′th mistake is made, so thatw1 = 0. Suppose that thek′th
mistake is made whenB∩Pi, j = /0 whereB is the beam generated at depthj for the ith training
instance. We can derive the upper bound of‖wk+1‖2≤ kR2 as in the proof of Theorem 12.

Next we derive a lower bound onw ·wk+1. Denote byB′ ⊆ B the set of nodes in the beam such
thatδ1 > w· (f (v∗)− f (v))≥−δ2 and letC′ = Pi, j ∩C. By the definition of beam margin, we have
|B′|< b′.

1592

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

w·wk+1 = w·wk +w· (∑v∗∈C′ f (v∗)
|C′| − ∑v∈B f (v)

b
)

= w·wk +w· ∑
v∈B−B′

∑v∗∈C′ f (v∗)
|C′| − f (v)

b

+w· ∑
v∈B′

∑v∗∈C′ f (v∗)
|C′| − f (v)

b

≥ w·wk +
(b−b′)δ1

b
− b′δ2

b
.

By induction, we get thatw ·wk+1 ≥ k(b−b′)δ1−b′δ2
b . Combining this result with the above upper

bound on‖wk+1‖ and the fact that‖w‖= 1 we get that 1≥ w·wk+1

‖w‖‖wk+1‖ ≥
√

k(b−b′)δ1−b′δ2
bR . The mistake

bound follows by noting thatb > b∗ and algebra.

Similar to Theorem 12, the dead-end free property of the training set guarantees that the mistake
bound is equal to the bound on the weight updates.

Note that when there is a positive level margin (i.e.,b′ = 0), the mistake bound here reduces to
(R/δ1)

2, which does not depend on the beam width and matches the result for separable data. This
is also the behavior whenb >> b∗.

An interesting aspect of this result is that the mistake bound depends on the beam width. Rather,
all of our previous convergence results were independent of the beam width and held even for beam
width b = 1. Thus, those previous results did not provide any formalization of the intuition that
the learning problem will often become easier as the beam width increases, or equivalently as the
amount of search increases. Indeed, in the extreme case of exhaustive search, no learning is needed
at all, whereas forb = 1 the ranking function has little room for error.

To get a sense for the dependence on the beam width consider two extremecases. As noted
above, for very large beam widths such thatb >> b∗, the bound becomes(R/δ1)

2. On the other
extreme, if we assumeδ1 = δ2 and we use the smallest possible beam width allowed by the theorem
b = 2b′+ 1, then the bound becomes((2b′+1)R/δ1)

2, which is a factor of(2b′+ 1)2 larger than
whenb >> b′. This shows that as we increaseb (i.e., the amount of search), the mistake bound
decreases, suggesting that learning becomes easier, agreeing with intuition.

It is also possible to define an analog to the beam margin for best first beamsearch. However,
in order to guarantee convergence, the conditions on ambiguity would be relative to the global state
space, rather than local to each level of the search space.

5. Application to Automated Planning

In this section, we present an empirical evaluation of beam-search learning in the context of auto-
mated planning. We first give related background, followed by the technical details regarding our
application to automated planning. Then, we present the experimental results.

1593

XU, FERN AND YOON

5.1 Background

Here we give background related to automated planning, the problem of learning to plan, and prior
related work in the area of learning to plan.

5.1.1 AUTOMATED PLANNING

Planning is a subfield of artificial intelligence that studies algorithms for selecting sequences of
actions in order to achieve goals. In this work, we consider planning domains and planning prob-
lems described using the STRIPS fragment of the planning domain descriptionlanguage (PDDL)
(McDermott, 1998), which we now outline.

A planning domainD defines a set of possible actionsA and a set of world statesW in terms
of a set of predicate symbolsP, action typesY, and constantsC. A state fact is the application
of a predicate to the appropriate number of constants, with a state being a setof state facts. Each
actiona ∈ A consists of: 1) an action name, which is an action type applied to the appropriate
number of constants, 2) a set of precondition state facts Pre(a), 3) two sets of state facts Add(a)
and Del(a) representing the add and delete effects respectively. An actiona is applicable to a world
stateω iff Pre(a) ⊆ ω, and the application of an (applicable) actiona to ω results in the new state
ω′ = (ω\Del(a))∪Add(a). That is, the application of an action adds the facts in the add list to the
state and deletes facts in the delete list.

Given a planning domain, a planning problem is a tuple(ω,A,g), whereA ⊆ A is a set of
actions,ω ∈W is the initial state, andg is a set of state facts representing the goal. A solution
plan for a planning problem is a sequence of actions〈a1, . . . ,al 〉, where the sequential application
of the sequence starting in stateω leads to a goal stateω′ whereg⊆ ω′. In this paper, we will view
planning problems as directed graphs where the vertices represent states and the edges represent
possible state transitions. Planning then reduces to graph search for a path from the initial state to
goal.

Figure 1 shows an example of the search space corresponding to a problem from the Blocksworld
planning domain. Here, the initial state is described by the facts

ω0 = {clear(A),clear(B),clear(C),clear(D),ontable(A),

ontable(B),ontable(C),ontable(D),armempty}.

An example action from the domain ispickup(A) with the following definition:

Pre(pickup(A)) = {clear(A),ontable(A),armempty}
Add(pickup(A)) = {holding(A)}
Del(pickup(A)) = {clear(A),ontable(A),armempty}.

Note that the precondition of this action is satisfied inω0 and hence can be applied fromω0, which
would result in the new state

ω1 = {holding(A),clear(B),clear(C),clear(D),ontable(B),ontable(C),ontable(D)}.

If the goal of the planning problem isg = {on(C,D),on(B,A),clear(C),clear(B)}, then one solu-
tion for the problem, as shown in Figure 1, is the action sequence〈pickup(B),stack(B,A), pickup(C),
stack(C,D)〉.

1594

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

There has been much recent progress in automated planning. One of the most successful ap-
proaches, and the one most relevant to this paper, is to solve planning problems using forward
state-space search guided by powerful domain-independent planningheuristics. A number of recent
state-of-the-art planners have followed this approach including HSP (Bonet and Geffner, 1999), FF
(Hoffmann and Nebel, 2001), and AltAlt (Nguyen et al., 2002) to name justa few.

5.1.2 LEARNING TO PLAN

It is common for planning systems to be asked to solve many problems from a particular domain.
For example, the bi-annual international planning competition is organized around a number of
planning domains and includes many problems of varying difficulty from eachdomain. Given that
problems from the same domain share significant structure, it is natural to attempt to learn from past
experience in a domain in order to solve future problems from the same domain more efficiently.
However, most state-of-the-art planning systems do not have any suchlearning capability and rather
solve each problem from the domain as if it were the first problem ever encountered by the planner.
The goal of our work is to develop the capability for a planner to learn domain-specific knowledge
in order to improve performance in a target domain of interest.

More specifically, we focus on developing learning capabilities within the simple,but highly
successful, framework of heuristic state-space search planning. Ourgoal is to learn heuristics, or
ranking functions, that can quickly solve problems using beam search witha small beam width.
Given a representative training set of problems from a planning domain, our approach first solves
the problems using potentially expensive search (e.g., using a large beam width), guided by an
existing heuristic. These solutions are then used to learn a heuristic that canguide a small width
beam search to the same solutions. The hope is that the learned heuristic will then generalize and
allow for the quick solution of new problems that could not be practically solved before learning.

5.1.3 PRIOR WORK

There has been a long history of work on learning-to-plan, originating atleast back to the original
STRIPS planner (Fikes et al., 1972), which learned triangle tables or macros that could later be
exploited by the planner. For a collection and survey of work on learning inAI planning see Minton
(1993) and Zimmerman and Kambhampati (2003).

A number of learning-to-plan systems have been based on the explanation-based learning (EBL)
paradigm, for example, Minton et al. (1989) among many others. EBL is a deductive learning
approach, in the sense that the learned knowledge is provably correct.Despite the relatively large
effort invested in EBL research, the best approaches typically did notconsistently lead to significant
gains, and even hurt performance in many cases. A primary way that EBLcan hurt performance is
by learning too many, overly specific control rules, which results in the planner spending too much
time simply evaluating the rules at the cost of reducing the number of search nodes considered. This
problem is commonly referred to as the EBL utility problem (Minton, 1988).

Partly in response to the difficulties associated with EBL-based approaches, there have been a
number of systems based on inductive learning, sometimes combined with EBL. The inductive ap-
proach involves applying statistical learning mechanisms in order to find commonpatterns that can
distinguish between good and bad search decisions. Unlike EBL, the learned control knowledge
typical does not have guarantees of correctness, however, the knowledge is typically more gen-
eral and hence more effective in practice. Some representative examples of such systems include

1595

XU, FERN AND YOON

learning for partial-order planning (Estlin and Mooney, 1996), learningfor planning as satisfiabil-
ity (Huang et al., 2000), and learning for the Prodigy means-ends framework (Aler et al., 2002).
While these systems typically showed better scalability than their EBL counterparts, the evaluations
were typically conducted on only a small number of planning domains and/or small number of test
problems. There is no empirical evidence that such systems are robust enough to compete against
state-of-the-art non-learning planners across a wide range of domains.

More recently there have been several learning-to-plan systems basedon the idea of learning re-
active policies for planning domains (Khardon, 1999; Martin and Geffner, 2000; Yoon et al., 2002).
These approaches use statistical learning techniques to learn policies, orfunctions, that map any
state-goal pair from a given domain to an appropriate action. Given a good reactive policy for a do-
main, problems can be solved quickly, without search, by iterative application of the policy. Despite
its simplicity, this approach has demonstrated considerable success. However, these approaches
have still not demonstrated the robustness necessary to outperform state-of-the-art non-learning
planners across a wide range of domains.

More closely related is work by La Rosa et al. (2007), which uses a case-based reasoning ap-
proach to obtained an improved heuristic for forward state-space search. It is likely that our weight
learning approach could be combined with their system to harness the benefits of both approaches.
The most closely related approach to our work is based on extending forward state-space search
planners by learning improved heuristics (Yoon et al., 2006), an approach which is among the state-
of-the-art among learning-based planners. That work focused on improving the relaxed plan length
heuristic used by the state-of-the-art planner FF (Hoffmann and Nebel,2001). Note that FF con-
sists of two stages: an incomplete local search and a complete best first search. In particular, Yoon
et al. (2006) applied linear regression to learn an approximation of the difference between FF’s
heuristic and the observed distances-to-goal of states in the training plans. The primary contribu-
tion of the work was to define a generic knowledge representation for features and a features-search
procedure that allowed learning of good regression functions acrossa range of planning domains.
While the approach showed promising results, the learning mechanism has a number of potential
shortcomings. Most importantly, the mechanism does not consider the actualsearch performance
of the heuristic during learning. That is, learning is based purely on approximating the observed
distances-to-goal in the training data. Even if the learned heuristic performs poorly on the training
data when used for search, the learner makes no attempt to correct the heuristic in response.

A primary motivation for this paper is to develop a heuristic learning mechanism that is more
tightly integrated with the search process. Our LaSO-style algorithms for learning beam-search
ranking functions do exactly that. Our learning approach can be viewed as error-driven in the sense
that it directly attempts to correct errors as they arise in the search process, rather than attempting to
precisely model the distance-to-goal. In many areas of machine learning, such error-driven methods
have been observed to outperform their traditional passive counterparts. The experimental results
presented here agree with that observation in a number of planning domains.

5.2 Experimental Setup

We present experiments in eight STRIPS domains: Blocksworld, Pipesworld, Pipesworld-with-
tankage, PSR, Philosopher, DriverLog, Depots and FreeCell. All of these domains with the excep-
tion of Blocksworld were taken from the 3rd and 4th international planning competitions (IPC3 and
IPC4). With only two exceptions, this is the same set of domains used to evaluatethe approach of

1596

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

Yoon et al. (2006), which is the only prior work that we are aware of forlearning heuristics to im-
prove forward state-space search in automated planning. The difference between our set of domains
and theirs is that we include Blocksworld, while they did not, and we do not include the Optical
Telegraph domain, while they did. Our reason for not showing results forOptical Telegraph is that
none of the systems we evaluated were able to solve any of the problems.1

5.2.1 DOMAIN PROBLEM SETS

For each domain we needed to create a set of training problems and testing problems on which the
learned heuristics would be trained and evaluated. In Blocksworld, all problems were generated us-
ing the BWSTATES generator (Slaney and Thiébaux, 2001), which produces random Blocksworld
problems. Thirty problems with 10 or 20 blocks were used as training data, and 30 problems with
20, 30, or 40 blocks were used for testing. For DriverLog, Depots and FreeCell, the first 20 prob-
lems are taken from IPC3 and we generated 30 more problems of varying difficulty to arrive at a
set of 50 problems, roughly ordered by difficulty. For each domain, we used the first 15 problems
for training and the remaining 35 for testing. The other four domains are all taken from IPC4. Each
domain includes 50 or 48 problems, roughly ordered by difficulty. In eachcase, we used the first 15
problems for training and the remaining problems for testing.

5.2.2 SEARCH SPACE DEFINITION

We now describe the mapping between the planning problem described in Section 5.1.1 and the
general search spaces described in Section 2, which were the basis for describing our algorithms.
Recall that a general search space is a tuple〈I ,s(·), f (·),<〉 giving the initial state, successor func-
tion, feature function, and preference ordering respectively. In thecontext of planning each search
node is a state-goal pair(ω,g), whereω can be thought of as the current world state,g is the current
goal, and both are represented as sets of facts. Note that it is important that nodes contain both state
and goal information, rather than just state information, since the evaluation/ranking of a search
node depends on how goodω is with respect to the particular goalg. The initial search nodeI is
equal to(ω0,g), whereω0 is the initial state of the planning problem andg is the problem’s goal.
The successor functions maps a search node(ω,g) to the set of all nodes of the form(ω′,g) where
ω′ is a state that can be reached fromω via the application of some action whose preconditions are
satisfied inω. Note that according to this definition all nodes in a search space contain thesame
goal component. The feature functionf ((ω,g)) = (f1((ω,g)), . . . , fm((ω,g))) can be any function
over world states and goals. The particular functions we use in this work are describe later in this
section. Finally, the preference ordering< is simply the default ordering used by the planner FF,
which is the planner our implementation is based on.

5.2.3 TRAINING DATA GENERATION

The LaSO-style algorithms learn from target solution paths, which requiresthat we generate solu-
tion plans for all of the training problems. To do this, for each training problem, we selected the
shortest plan out of those found by running the planner FF and beam search with various large beam

1. The results in Yoon et al. (2006) indicated that their linear regression learning method was effective in Optical
Telescope. Our implementation of linear regression, however, was unable to solve any of the problems. After
investigating this difference, we found that it is due to a subtle difference inthe way that ties are broken during
forward state-space search, indicating that the linear regression method was not particularly robust in this domain.

1597

XU, FERN AND YOON

widths guided by FF’s relaxed-plan heuristic. The resulting plans are totallyordered sequences of
actions and one could simply label each training problem by its correspondingsequence of actions.
However, in many cases, it is possible to produce equivalent plans by permuting the order of certain
actions in the totally ordered plans. That is, there are usually many other equivalent totally ordered
plans. Thus, including only the single plan found via the above approach inthe training data results
in significant ambiguity in the sense described in Section 4.4.

In order to help reduce the ambiguity it is desirable to try to include as many equivalent plans
as possible as part of the target plan set for a particular problem. To do this, instead of using just
a single totally ordered solution plan in the training data for each problem, we transform each such
totally ordered plan into a partial-order plan, which contains the same set of actions but only in-
cludes action-ordering constraints that appear to be necessary. Finding minimal partial-order plans
from total-order plans is an NP-hard problem and hence we use the heuristic algorithm described
in Veloso et al. (1991). For each training problem, the resulting partial-order plan provides an im-
plicit representation for a potentially exponentially large set of solution trajectories. By using these
partial-order plans as the labels for our training problems we can significantly reduce the ambiguity
in the training data. In preliminary experiments, the performance of our learning algorithms im-
proved in a number of domains when using training data that included the partial-order plans rather
than the original total-order plans.

5.2.4 HEURISTIC REPRESENTATION ANDDOMAIN FEATURES

We consider learning heuristic functions that are represented as weighted linear combinations of
features, that is,H(v) = Σiwi · fi(v) wherev is a search node,fi is a feature of search nodes, andwi is
the weight of featurefi . One of the challenges with this representation is to define a generic feature
space from which features can be selected for each domain. This spacemust be rich enough to
capture important properties of a wide range of planning domains, but alsobe amenable to searching
for those properties. For this purpose we will draw on prior work Yoon et al. (2008) that defined
such a feature space using a first-order language.

Each feature in the above space is defined by a taxonomic class expression, which represents a
set of constants/objects in the planning domain. For example, a simple taxonomic class expression
for the Blocksworld planning domain isclear, which represents the set of blocks that are currently
clear, that is, the set of blocksx such thatclear(x) ∈ ω where the current search node isv = (ω,g).
The respective feature value represented by a class expression is equals to the cardinality of the class
expression when evaluated at a search node. For example, if we letf1 be the feature represented
by the class expressionclear then f1((ω,g)) is simply the number of clear blocks inω. So in the
example states from Section 5.1.1,f1(v0) = f1((ω0,g)) = 4 and f1(v1) = f1((ω1,g)) = 3. A more
complex example for this problem isclear∩gclear, which represents the set of blocks that are clear
in both the current state and the goal, that is, the set containing any blockx such thatclear(x) ∈ ω
andclear(x) ∈ g. If f2 represents the feature corresponding to this expression then in the example
states from 5.1.1 we get thatf2(v0) = 2 and f2(v1) = 2.

Since our work in this paper is focused on weight learning, we refer to Yoon et al. (2008) for the
full definition of the taxonomic feature language. Here we simply use a set oftaxonomic features
that have been automatically learned in prior work (Yoon et al., 2008) and tune their weights. In
our experiments, this prior work gave us 15 features in Blocksworld, 35 features in Pipesworld, 11
features in Pipesworld-with-tankage, 54 features in PSR, 19 features inPhilosopher, 22 features in

1598

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

DriverLog, 3 features in Depot and 3 features in FreeCell. In all cases, we include FF’s relaxed-
plan-length heuristic as an additional feature.

5.3 Experimental Results

For each domain, we use LaSO-BR to learn weights with a learning rate of 0.01for beam widths 1,
10, 50, and 100 and we will denote LaSO-BR run with beam widthb by LaSO-BRb. The maximum
number of LaSO-BR iterations was set to 5000. In the evaluation procedure, we set a time cut-off of
30 CPU minutes per problem and considered a problem to be unsolved if a solution was not found
within the cut-off.

In preliminary work, we also tried to apply LaSO-BST to our problems. However, this turned
out to be an impractical approach due to the large potential search depths of these problems. In par-
ticular, we found that in many cases LaSO-BST would become stuck processing training examples,
in the sense that it would neither update the weights nor make progress with respect to following
the target trajectories. This typically occurred because LaSO-BST wouldmaintain an early target
node in the beam and thus not trigger a weight update, but at the same time would not progress to
include deeper nodes on the target trajectories and instead explore pathsoff the target trajectories.
To help remedy this behavior, we experimented with a variant of LaSO-BST that forces progress
along the target trajectories after a specified number of search steps. For the Blocksworld planning
domain and preliminary experiments in the other domains, we found that the results tended to im-
prove compared to the original LaSO-BST, but still were not competitive withLaSO-BR. Thus for
the experiments reported below we focus on LaSO-BR.

Note that the experiments in Daumé III and Marcu (2005) for structured classification produced
good results using an algorithm very similar to LaSO-BST. There, however, the search spaces have
small maximum depths (e.g., the length of a sentence), which apparently helpedto avoid the prob-
lem we experienced here.

5.3.1 TRAINING TIME

Figure 11 gives the average training time required by LaSO-BR per iterationin each of our domains
for four different beam widths. Note that Pipesworld was the only domain for which LaSO-BR
converged to a consistent weight vector using a learning beam width 100.For all other training
sets LaSO-BR never converged and thus terminated after 5000 iterations.The training time varies
widely across the domains and depends on various factors including: number of features, number
of actions, number of state predicates, and the number and length of targettrajectories per training
example. As expected the training times increase with the training beam width across the domains.
It is difficult, however, to predict the relative times between different domains due to the complicated
interactions among the above factors. Note that while these training times can besignificant in many
domains, the cost of training needs to only be paid once and then it is amortorized over all future
problems. Furthermore, as we can observe later in the experimental results, a small beam width of
10 typically performs as well as larger widths.

5.3.2 DESCRIPTION OFTABLES

Before presenting our results we will first provide an overview of the information contained in our
results tables. Figure 12 compares the performance of LaSO-BR10 to three other algorithms,

1599

XU, FERN AND YOON

Domain b = 1 b = 10 b = 50 b = 100
Blocksworld 3 15 66 128
Pipesworld 1 4 13 24

Pipesworld-with-tankage 3 17 76 149
PSR 53 127 403 690

Philosopher 3 24 121 260
DriverLog 1 5 22 44

Depots 5 32 160 320
FreeCell 10 68 315 654

Figure 11: The average training time required by LaSO-BR per iteration forall training instances
(seconds).

• LEN : beam search using FF’s relaxed plan length heuristic

• U : beam search using a heuristic with uniform weights for all features

• LR : beam search using the heuristic learned from linear regression following the approach in
Yoon et al. (2006).

We selected LaSO-BR10 here because its performance is on par or better than other training beam
widths. Note that in practice one could select the best beam width to use via cross-validation with a
validation set of problems.

There is one table for each of our domains and each column in the tables is labeled by the
algorithm used to generate the results. The rows correspond to the beam width used to generate
the results on the testing problems, with the last row corresponding to using full best-first search
(BFS) with an infinite beam width, which is the native search procedure used by FF. The columns
are divided into three sets. The first four data columns labeled “Problems solved” give the number
of problems solved using the testing beam width corresponding to the row, where a problem is
considered solved if a solution is found within 30 minutes. The second set ofcolumns labeled
“Median plan length” gives the median length of solutions to the planning problems that were
solved. The last 4 columns labeled “Median runtime ” give the median runtime of each solver on
the problems it solved. So, for example, the table shows that the heuristic learned via LaSO-BR10

solves 26 Blocksworld test problems with a median solution length of 139 and a median runtime
of 58.8 seconds using a testing beam width of 50, and solved 19 problems witha median solution
length of 142 and a median runtime of 20.9 seconds using BFS.

Figure 13 is similar in structure to Figure 12 but compares the performance ofheuristics learned
using LaSO-BR with a variety of training beam widths and evaluated using a variety of testing beam
widths. Only the number of problems solved and the median length of solutions that are found are
considered here. For example, the upper left-most data point gives the number of problems solved
using a learning beam width of 1 and a testing beam width of 1, while the first entry in the last
column gives the median plan length of solved problems when learning with beamwidth 100 and
testing with beam width 1.

1600

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

Blocksworld
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 13 0 11 24 3318 - 938 499 12.3 - 3.4 4.5
10 22 0 19 24 449 - 120 293 15.9 - 9.9 25.1
50 20 0 19 26 228 - 64 139 37.5 - 10.4 58.8
100 19 0 20 24 110 - 67 144 52.0 - 42.8 110.3
500 17 0 23 17 80 - 74 96 74.2 - 379.1 133.2
BFS 5 0 13 19 80 - 76 142 3.7 - 18.0 20.9

Pipesworld
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 11 13 8 16 114 651 2476 2853 0.6 3.2 21.7 17.8
10 17 17 21 23 112 360 194 222 15.6 13.2 10.2 15.8
50 18 19 21 26 34 167 89 80 9.4 42.8 25.5 27.8
100 18 16 21 24 32 39 60 62 19.7 12.0 23.3 39.3
500 21 18 21 25 30 33 31 53 62.9 58.3 101.8 95.1
BFS 15 7 7 15 44 54 42 54 35.5 1.1 3.1 1.3

Pipesworld-with-tankage
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 6 4 2 7 119 416 1678 291 8.0 18.2 92.1 8.4
10 6 8 9 8 68 603 399 117 70.2 256.5 125.6 33.4
50 6 5 6 11 61 111 94 122 358.4 281.4 186.1 116.3
100 5 4 5 8 54 105 43 55 482.4 279.4 255.5 190.6
500 5 6 4 10 42 97 41 76 938.5 586.1 210.7 492.0
BFS 5 3 2 3 59 60 126 100 431.2 17.1 935.7 22.0

PSR
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 0 0 0 0 - - - - - - - -
10 1 20 13 13 516 157 151 193 840.1 367.9 186.6 492.4
50 13 17 16 10 99 109 99 97 685.3 658.2 890.4 802.4
100 13 15 13 6 103 89 89 85 999.4 1121.9 1215.0 643.1
500 4 4 2 1 55 59 48 39 1035.6 1157.6 689.1 423.9
BFS 13 0 21 21 89 - 131 141 686.7 - 290.8 526.0

Philosopher
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 0 33 33 33 - 363 363 363 - 12.5 18.1 13.3
10 0 33 33 11 - 363 363 1154 - 121.3 171.0 101.3
50 0 6 23 13 - 215 308 1579 - 77.6 387.4 825.1
100 0 16 18 6 - 292 281 1076 - 489.0 507.6 911.1
500 0 7 7 2 - 220 220 745 - 792.3 844.6 1280.7
BFS 0 33 33 0 - 363 363 - - 9.5 329.8 -

DriverLog
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 0 0 0 8 - - - 6801 - - - 364.2
10 3 0 0 12 789 - - 1439 967.8 - - 781.3
50 4 8 0 12 108 177 - 541 1199.3 457.6 - 998.5
100 1 11 0 11 98 147 - 275 1398.9 737.9 - 1131.6
500 0 3 0 1 - 86 - 94 - 1780.2 - 1237.1
BFS 6 2 0 1 162 181 - 138 1249.7 555.5 - 125.4

Depots
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 1 1 2 3 462 790 411 790 3.9 6.5 3.8 6.7
10 4 1 4 6 195 28 981 3295 38.7 2.4 93.1 594.8
50 3 4 5 6 25 511 51 467 22.4 912.8 17.3 156.0
100 4 7 3 7 232 157 26 207 554.9 669.4 45.6 189.9
500 5 4 6 11 38 62 39 53 274.2 351.2 422.7 477.8
BFS 2 2 3 2 46 48 33 48 292.4 809.3 14.2 386.8

FreeCell
Problems solved Median plan length Median runtime (seconds)

b LEN U LR LaSO-BR10 LEN U LR LaSO-BR10 LEN U LR LaSO-BR10
1 5 7 4 9 96 120 146 123 12.2 21.5 13.8 14.0
10 20 22 19 21 82 117 243 89 99.7 165.2 305.2 91.9
50 23 24 12 19 65 73 102 66 456.2 503.4 619.0 367.9
100 20 18 7 21 65 63 70 65 723.5 720.9 673.4 796.1
500 3 3 2 4 53 55 59 55 1400.0 1418.8 1518.5 1431.8
BFS 23 20 12 20 78 87 111 97 102.1 77.9 238.4 92.3

Figure 12: Experimental results for different planners. For each domain, we show the number of
solved problems, the median plan length and median runtime of the solved problems. A
dash in the table indicates that the planner was unable to solve any of the problems.

1601

XU, FERN AND YOON

5.3.3 PERFORMANCEACROSSTESTING BEAM WIDTHS

From Figure 12, in general, for all algorithms (learning and non-learning) we see that as the testing
beam width begins to increase the number of solved problems and runtime increase and solution
lengths improve. However, at some point as the beam width continues to increase the number
of solved problems typically decreases. This behavior is typical for beamsearch, since as the
testing beam width increases there is a greater chance of not pruning a solution trajectory, but the
computational time and memory demands increase. Thus, for a fixed time cut-offwe expect a
decrease in performance as the beam width becomes large.

The median runtime typically increases as the test beam width increases, because more search
nodes need to be evaluated. However, it is not always the case. The number of search nodes that
are going to be evaluated also depends on the plan length. For example, whileusing LEN in the
Depots planning domain, the median runtime of beam width 50 is smaller than that of beam width
10, because the median plan length improves from 195 to 25. Also note that it isnot necessarily true
that the plan lengths are strictly non-increasing with testing beam width. With large testing beam
widths the number of candidates for the next beam increases, making it more likely for the heuristic
to get confused by “bad” states. This is also one possible reason why performance tends to decrease
with larger testing beam widths.

5.3.4 LASO-BR10 VERSUSNO LEARNING

From Figure 12, we see that compared to LEN, the heuristic learned by LaSO-BR10 tends to signif-
icantly improve the performance of beam search, especially for small beamwidths. For example, in
Blocksworld with beam width 1, LaSO-BR10 solves almost twice as many problems as LEN. The
median plan length has also been reduced significantly for beam width 1. As the beam width in-
creases the gap between LaSO-BR10 and LEN decreases but LaSO-BR10 still solves more problems
with comparable solution quality. In Pipesworld, LaSO-BR10 has the best performance gap with
beam width 50, solving 8 more problems than LEN. As the beam width increases, again the perfor-
mance gap decreases, but LaSO-BR10 consistently solves more problems than LEN. In this domain,
the median plan lengths of LEN tend to be better, though a direct comparison ofthese lengths is
not exactly fair since LaSO-BR10 solves more problems, which are often the harder problems that
result in longer plans. The trends with respect to number of solved problems are similar in other
domains, with the exception of PSR and FreeCell. In PSR, LEN solves slightly more problems than
LaSO-BR10 at large beam widths. In FreeCell, LaSO-BR10 is better than LEN for most case except
for beam width 50.

These results show that LaSO-BR10 is able to learn heuristics that significantly improve on
the state-of-the-art heuristic LEN when using beam search. In general, the best performance was
achieved for small beam widths close to those used for training, which is beneficial in terms of
time and memory efficiency. Note that in practice one could use a validation set of problems in
order to select the best combination of training beam width and testing beam width for a given
domain. This is particularly natural in our current setting where our goal isto perform well relative
to problems drawn from a given problem generator, in which case we caneasily draw both training
and evaluation problem sets.

1602

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

5.3.5 COMPARING LASO-BR10 WITH L INEAR REGRESSION

To compare with prior passive heuristic learning work we learned weights using linear regression
following the approach of Yoon et al. (2006). To our knowledge this is theonly previous system that
addresses the heuristic learning problem in the context of forward state-space search in automated
planning. In these experiments we used the linear regression tool availableunder Weka. The results
for the resulting learned linear-regression heuristics are shown in the columns labeled LR in Figure
12.

For Blocksworld, LR solves fewer problems than LaSO-BR10 with beam widths smaller than
500 but solves more problems than LaSO-BR10 with beam width 500. The median plan length
tends to favor LR except for the smallest beam widthb= 1. For Pipesworld, DriverLog and Depots,
LaSO-BR10 always solves more problems than LR, with plan length again favoring LR to varying
degrees. In Pipesworld-with-tankage, LaSO-BR10 is better than LR for most case except for beam
width 10, solving one less problem. In PSR and Philosopher, LR outperformsLaSO-BR10 but
LaSO-BR10 achieves a comparable performance with small beam widths. In FreeCell, LaSO-BR10

always solves more problems than LR with improved plan length.
These results indicate that error-driven learning can significantly improve over prior passive

learning (here regression) in a number of domains. Indeed, there appears to be utility in integrating
the learning process directly in the search procedure. However, the results also indicate that in some
cases our current error-driven training method can fail to convergeto a good solution in cases where
regression happens to work well.

5.3.6 EFFECTS OFLEARNING BEAM WIDTH

Figure 13 compares the performance of LaSO-BR with different learningbeam widths. For most
domains, the performance doesn’t change much as the learning beam widthchanges. Even with
learning beam width 1, LaSO-BR can often achieve performance on par with larger learning beam
widths. For example, in Blocksworld, LaSO-BR1 results in the best performance at most testing
beam widths except for beam width 500. For the other domains, LaSO-BR10 typically is close to the
performance of the best learning beam width. In a number of cases we see that LaSO-BR10 performs
significantly better than LaSO-BR100, which suggests that learning with smaller beam widths can
have some practical advantages. One reason for this might be due to the additional ambiguity
in the weight updates when using larger beam widths. In particular, the weight update equations
involve averages of all target and non-target nodes in the beams. The effect of this averaging is to
effectively mix the feature vectors of large numbers of search nodes together. In many cases there
will be a wide variety of non-target nodes in the beam, and this mixing can increase the difficulty of
uncovering key patterns, which we conjecture might increase the requirements on training iterations
and examples. In cases where the features are rich enough to supportsuccessful beam search with
small width, it is then likely that learning with smaller widths will be better given a fixed number of
iterations and examples. Note that the feature space we have used in this work has been previously
demonstrated (Fern et al., 2006) to be particularly well suited to Blocksworld, which is perhaps one
reason thatb = 1 performed so well in that domain.

Finally note that contrary to what we originally expected it is not typically the case that the best
performance for a particular testing beam width is achieved when learning with that same beam
width. Rather the relationship between learning and testing beam widths is quite variable. Note
that for most domains LaSO-BR never converged to a consistent weight vector in our experiments,

1603

XU, FERN AND YOON

indicating that either the features were not powerful enough for consistency or the learning beam
widths and/or number of iterations needed to be increased. In such cases, there is no clear technical
reason to expect the best testing beam width to match the learning beam width. Thus, in general,
we suggest the use of validation sets to select the best pair of learning andtesting beam widths for
a particular domain. Note that the lack of relationship between learning and test beam width is in
contrast to that observed in Daumé III and Marcu (2005) for structured classification, where there
appeared to be a small advantage to training and testing using the same width.

5.3.7 BEST FIRST SEARCH RESULTS

While our heuristic was learned for the purpose of controlling beam search we conducted one more
experiment in each domain where we used the heuristics to guide Best First Search (BFS). We
include these results primarily because BFS was the search procedure used to evaluate LR in Yoon
et al. (2006) and is the native search strategy used by FF.2 These results are shown in the bottom
row of each table in Figure 12 and 13.

In Blocksworld, Pipesworld, PSR, LaSO-BR10 was as good or better than the other three al-
gorithms. Especially in Blocksworld, LaSO-BR10 solves 19 problems while LEN only solves 5
problems. In Philosopher, neither LEN nor LaSO-BR10 solves any problem. LEN is the best in
Pipesworld-with-tankage, DriverLog and FreeCell, and LR works best in Depots. But for Pipesworld-
with-tankage, Depots and FreeCell, the performance of LaSO-BR10 is very close to the best planner.

These results indicate that the advantage of error-driven learning over regression is not just
restricted to beam search, but appears to extend to other search approaches. That is, by learning
in the context of beam search it is possible to extract problem solving information that is useful in
other contexts.

5.3.8 PLAN LENGTH

LaSO-BR can significantly improve success rate at small beam widths, whichis one of our main
goals. However, the plan lengths at small widths are quite suboptimal, which is typical of beam
search. Ideally we would like to obtain these success rates without paying aprice in plan length.
We are currently investigating ways to improve LaSO-BR in this direction. However, we note that
typically one of the primary difficulties of automated planning is to simply find a path to the goal.
After finding such a path, if it is significantly sub-optimal, incomplete plan analysis or plan rewriting
rules can be used to significantly prune the plan, for example, see Ambite et al. (2000). Thus, despite
the long plan lengths, the improved success rate of LaSO-BR at small beam widths could provide a
good starting point for a fast plan length optimization.

6. Summary and Future Work

This paper presented a detailed study of the problem of learning ranking functions for beam search
with an application to automated planning. On the theoretical side we first studiedthe computational
complexity of this learning problem, highlighting the main dimensions of complexity by identifying
core tractable and intractable subclasses. Next, we studied the convergence of recent online learning
algorithms for this problem. The results clarified convergence issues, correcting and extending

2. FF actually uses two search strategies. In the first state it uses an incomplete strategy called enforced hill climbing.
If that initial search does not find a solution then a best-first search is conducted.

1604

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

Blocksworld
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 27 24 18 13 840 499 92 314
10 27 24 20 19 206 293 96 150
50 27 26 23 24 180 139 72 82
100 25 24 23 23 236 144 72 86
500 23 17 19 24 122 96 62 77
BFS 21 19 18 17 116 142 73 124

Pipesworld
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 16 16 21 15 1803 2853 1403 6958
10 25 23 23 21 227 222 179 270
50 25 26 25 22 74 80 119 75
100 27 24 23 22 146 62 104 47
500 23 25 20 21 60 53 61 37
BFS 14 15 13 8 59 54 103 42

Pipesworld-with-tankage
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 5 7 2 7 55 291 197 300
10 8 8 8 10 103 117 68 77
50 9 11 8 9 48 122 37 42
100 8 8 10 10 53 55 122 55
500 9 10 5 10 30 76 39 96
BFS 6 3 4 6 48 100 70 63

PSR
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 0 0 0 0 - - - -
10 12 13 3 14 182 193 550 205
50 6 10 16 17 75 97 126 129
100 3 6 10 13 82 85 113 86
500 2 1 4 4 61 39 58 64
BFS 19 21 3 25 164 141 170 142

Philosopher
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 6 33 33 0 589 363 363 -
10 19 11 1 1 319 1154 451 1618
50 13 13 2 2 297 1579 1023 855
100 9 6 5 1 253 1076 255 1250
500 4 2 2 0 226 745 253 -
BFS 0 0 0 0 - - - -

DriverLog
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 0 8 0 3 - 6801 - 4329
10 5 12 2 7 1227 1439 1061 435
50 0 12 1 1 - 541 129 136
100 0 11 0 1 - 275 - 98
500 0 1 0 0 - 94 - -
BFS 1 1 0 2 154 138 - 332

Depots
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 4 3 2 2 1526 790 588 588
10 5 6 7 6 3259 3295 2042 715
50 2 6 7 3 517 467 707 392
100 4 7 6 5 43 207 147 54
500 6 11 11 5 47 53 53 38
BFS 4 2 2 2 106 48 48 48

FreeCell
Problems solved Median plan length

b LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100 LaSO-BR1 LaSO-BR10 LaSO-BR50 LaSO-BR100
1 7 9 5 5 132 123 125 133
10 23 21 23 19 89 89 85 71
50 25 19 24 24 69 66 68 68
100 24 21 22 28 68 65 65 72
500 19 4 21 19 61 55 62 61
BFS 23 20 27 25 104 97 104 104

Figure 13: Experimental results for various learning beam widths. For each domain, we show the
number of solved problems and the median plan length of the solved problems. Adash
in the table indicates that the planner was unable to solve any of the problems.

1605

XU, FERN AND YOON

previous results. This included an analysis of convergence given ambiguous training data, giving a
result that highlights the trade-off between the amount of allowed search and the difficulty of the
resulting learning problem. Our experiments in the domain of automated planning showed that the
approach has benefits compared to existing learning and non-learning state-space search planners.
These results complement the positive empirical results in structured classification (Dauḿe III and
Marcu, 2005) showing the general utility of the method.

In future work, we plan to extend the algorithms described here to allow for feature induction
and more robust parameter estimation. We are also interested in studying learning in the context
of search for other search strategies such as best-first and k-best-first search. In our initial inves-
tigations, we have found that the LaSO-style approach for these strategies has great difficulty in
automated planning due to the very large depths of the search spaces, which makes it difficult to
“assign credit” to search errors. This suggests that a key aspect of future work is to understand
general credit-assignment mechanisms in the context of error-driven learning for search. Another
important direction is to consider the application of these methods to new problemdomains, in
particular we are interested in more complex planning domains that include concurrency, durative
actions, and uncertainty. It will also be interesting to consider learning beam-search heuristics for
other search-based formulations of planning such as partial-order planning where the search is con-
ducted directly in the space of partial-order plans.

Acknowledgments

Some of the material in this paper was first published at ICML-2007 (Xu andFern, 2007) and
IJCAI-07 (Xu et al., 2007).

Appendix A. Relation to Structured Classification

This Appendix assumes that the reader is familiar with the material in Section 3. The learning
framework introduced in Section 2.2 is motivated by automated planning, with the objective of
finding a goal node. It is important to note that the learning objective does not place a constraint on
the rank of a goal node in the final beam compared to non-goal nodes, but rather only requires that
there exists some goal node in the final beam. This is a natural formulation forautomated planning
where when solving test problems it is easy to test each beam to determine whether a goal node has
been uncovered and to return a solution trajectory if one has. Thus, the exact ordering of the goal
node in the final beam is not important with respect to finding solutions to planning problems.

In contrast, as described in the example at the end of Section 2.2, the formulation of structured
classification as a search problem appears to require that we do pay attention to the rank of the goal
nodes in the final beam. In particular, the formulation of Daumé III and Marcu (2005) requires the
goal node to not only be contained in the final beam, but to be ranked higherthan any other terminal
node in the beam.

Since our formulation of the beam-search learning problem does not constrain the ranking of
goal nodes relative to other nodes, it is not immediately clear how our formulation relates to struc-
tured classification. It turns out that these two formulations are polynomially equivalent, meaning
that there is a polynomial reduction from each problem to the other. Thus, itis possible to compile
away the explicit requirement that goal nodes have the highest rank in thefinal beam.

1606

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

Below we adapt the definitions of the learning problems in Section 2.2 for structured classi-
fication. First, we introduce the notion of terminal node, which can be thought of as a possible
solution to be returned by a structured classification algorithm, for example, afull parse tree for
a sentence. We will denote the set of all terminal nodes asT and will assume a polynomial time
test for determining whether a node is in this set. Note that some terminal nodes correspond to
target solutions and others do not. When using beam search for structured classification the search
is halted whenever a terminal node becomes highest ranked in the beam andthe path leading to
that terminal node is returned as the solution. Thus, successful learningmust ensure both that no
non-target terminal node ever becomes ranked first in any beam and also that eventually a target
terminal node does become ranked first. This motivation leads to the following definitions for the
breadth-first and best-first structured classification problems. Below,given the context of a weight
vectorw, we will denote the highest ranked node relative tow in a beamB by B(1).

Definition 17 (Breadth-First Structured Classification) Given the input〈{〈Si ,Pi〉},b〉, where b
is a positive integer and Pi = (Pi,0, . . . ,Pi,d), the breadth-first structured classification problem asks
us to decide whether there is a weight vector w such that for each Si , the corresponding beam
trajectory(Bi,0, . . . ,Bi,d), produced using w with a beam width of b, satisfies Bi, j ∩Pi, j 6= /0 for each

j, B(1)
i,d ∈ Pi,d, and B(1)

i, j /∈ T for j < d?

Definition 18 (Best-First Structured Classification) Given the input〈{〈Si ,Pi〉},b〉, where b is a
positive integer and Pi = (Pi,0, . . . ,Pi,d), the best-first structured classification problem asks us to
decide whether there is a weight vector w that produces for each Si a beam trajectory(Bi,0, . . . ,Bi,k)

of beam width b, such that k≤ h, each Bi, j for j < k contains at least one node in
S

j Pi, j , B(1)
i,k ∈Pi,d,

and B(1)
i, j /∈ T for j < k?

We prove that these problems are polynomially equivalent to breadth-firstand best-first consis-
tency by showing that they are NP-complete. Since Section 3 proves that theconsistency problems
are also NP-complete we immediately get equivalence.

Theorem 19 Breadth-first structured classification is NP-complete.

Proof We can prove that the problem is in NP, following the structure of the proof of Theorem 4.
Each certificate corresponds to a set of beam trajectories and has a sizethat is polynomial in the
problem size. The certificate can be checked in polynomial time to see if for each i, it satisfies the
conditions defined in Definition 17. From Lemma 3 in Section 3 we can then use thealgorithm
TestTrajectoriesin Figure 4 to decide whether there is a weight vector that generates the certificate
in polynomial time. To show hardness we reduce from breadth-first consistency for the class of
problems whereb = 1, d = 1, c = 6, t = 3, andn≥ 1, which from Figure 6 is NP-complete. Since
for this class the search spaces have depth 1 and the beam width is 1 it is easy to see that for any
problem in this class, a weight vector is a solution to the consistency problem ifand only if it is a
solution to the structured classification problem. This shows that breadth-first structured classifica-
tion is NP-hard and thus NP-complete.

Using an almost identical proof we can prove the same result for best-first structured classifica-
tion.

Theorem 20 Best-first structured classification is NP-complete.

1607

XU, FERN AND YOON

References

Shivani Agarwal and Dan Roth. Learnability of bipartite ranking functions. In Proceedings of the
Conference on Learning Theory, 2005.

Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Using genetic programming to learn and improve
control knowledge.Artificial Intelligence, 141(1-2):29–56, 2002.

Jośe Luis Ambite, Craig A. Knoblock, and Steven Minton. Learning plan rewritingrules. In
Proceeding of Artificial Intelligence Planning Systems, pages 3–12, 2000.

Blai Bonet and Héctor Geffner. Planning as heuristic search: New results. InProceedings of the
European Conference on Planning, pages 360–372, 1999.

Michael Collins. Discriminative training methods for hidden markov models: Theory and experi-
ments with the perceptron algorithm. InProceedings of the Conference on Empirical Methods in
Natural Language Processing, 2002.

Hal Dauḿe III and Daniel Marcu. Learning as search optimization: Approximate large margin
methods for structured prediction. InProceedings of the International Conference on Machine
Learning, 2005.

Tara A. Estlin and Rymond J. Mooney. Multi-strategy learning of search control for partial-order
planning. InProceedings of the Thirteenth National Conference on Artificial Intelligence, pages
843–848, 1996.

Alan Fern, Sungwook Yoon, and Robert Givan. Approximate policy iteration with a policy language
bias: Solving relational markov decision processes.Journal of Artificial Intelligence Research,
25:85–118, 2006.

Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing generalized robot plans.
Artificial Intelligence Journal, 3(1–3):251–288, 1972.

Michael R. Garey and David S. Johnson, editors.Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

Klaus-Uwe Hoffgen, Hans-Ulrich Simon, and Kevin S. Van Horn. Robust trainability of single
neurons.Journal of Computer and System Sciences, 50(1):114–125, 1995.

Jorg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through heuristic
search.Journal of Artificial Intelligence Research, 14:263–302, 2001.

Yi-Cheng Huang, Bart Selman, and Henry Kautz. Learning declarativecontrol rules for constraint-
based planning. InProceedings of Seventeenth International Conference on Machine Learning,
pages 415–422, 2000.

Rong Jin and Zoubin Ghahramani. Learning with multiple labels. InProceedings of the Sixteenth
Annual Conference on Neural Information Processing Systems, 2002.

Leonid G. Khachiyan. A polynomial algorithm in linear programming.Soviet Mathematics Dok-
lady, 20(1):191–194, 1979.

1608

LEARNING L INEAR RANKING FUNCTIONS FORBEAM SEARCH WITH APPLICATION TO PLANNING

Roni Khardon. Learning action strategies for planning domains.Artificial Intelligence, 113(1-2):
125–148, 1999.

Tomás La Rosa, Angel Garcı́a Olaya, and Daniel Borrajo. Using cases utility for heuristic planning
improvement. InProceedings of the Seventh International Conference on Case Based Reasoning,
2007.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. InProceedings of the International Confer-
ence on Machine Learning, pages 282–289, 2001.

Mario Martin and Hector Geffner. Learning generalized policies in planning domains using con-
cept languages. InProceedings of Seventh International Conference on Principles of Knowledge
Representation and Reasoning, 2000.

Drew McDermott. PDDL- the planning domain definition language. InThe 1st International Plan-
ning Competition, 1998.

Steven Minton. Quantitative results concerning the utility of explanation-based learning. InPro-
ceedings of National Conference on Artificial Intelligence, 1988.

Steven Minton, editor.Machine Learning Methods for Planning. Morgan Kaufmann Publishers,
1993.

Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Daniel Kuokka, Oren Etzioni, and Yolanda
Gil. Explanation-based learning: A problem solving perspective.Artificial Intelligence, 40:
63–118, 1989.

Xuanlong Nguyen, Subbarao Kambhampati, and Romeo S. Nigenda. Planning graph as the basis
for deriving heuristics for plan synthesis by state space and CSP search. Artificial Intelligence,
135(1-2):73–123, 2002.

Albert B. Novikoff. On convergence proofs on perceptrons. InSymposium on the Mathematical
Theory of Automata, pages 615–622, 1962.

Frank Rosenblatt.Principles of Neurodynamics. Spartan, New York, 1962.

John Slaney and Sylvie Thiébaux. Blocks world revisited.Artificial Intelligence, 125:119–153,
2001.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. InNeural Infor-
mation Processing Systems Conference, 2003.

Manuela M. Veloso, M. Alicia Ṕerez, and Jamie G. Carbonell. Nonlinear planning with parallel
resource allocation. InWorkshop on Innovative Approaches to Planning, Scheduling and Control,
pages 207–212, 1991.

Yuehua Xu and Alan Fern. On learning linear ranking functions for beamsearch. InProceedings
of the Twentieth International Conference on Machine Learning, 2007.

1609

XU, FERN AND YOON

Yuehua Xu, Alan Fern, and Sungwook Yoon. Discriminative learning of beam-search heuristics for
planning. InProceedings of the International Joint Conference on Artificial Intelligence, 2007.

Sungwook Yoon, Alan Fern, and Robert Givan. Inductive policy selection for first-order MDPs. In
Proceedings of Eighteenth Conference in Uncertainty in Artificial Intelligence, 2002.

Sungwook Yoon, Alan Fern, and Robert Givan. Learning heuristic functions from relaxed plans. In
International Conference on Automated Planning and Scheduling (ICAPS), 2006.

Sungwook Yoon, Alan Fern, and Robert Givan. Learning control knowledge for forward search
planning.Journal of Machine Learning Research, 9:683–718, 2008.

Terry Zimmerman and Subbarao Kambhampati. Learning-assisted automated planning: Looking
back, taking stock, going forward.AI Magazine, 24(2)(2):73–96, 2003.

1610

