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Abstract

Beam search is commonly used to help maintain tractabilifglige search spaces at the expense
of completeness and optimality. Here we study supervisathieg of linear ranking functions for
controlling beam search. The goal is to learn ranking fumgtithat allow for beam search to per-
form nearly as well as unconstrained search, and hence gaiputational efficiency without seri-
ously sacrificing optimality. In this paper, we develop theizal aspects of this learning problem
and investigate the application of this framework to leagrin the context of automated planning.
We first study the computational complexity of the learnimghjfem, showing that even for expo-
nentially large search spaces the general consistencyepndab in NP. We also identify tractable
and intractable subclasses of the learning problem, givisight into the problem structure. Next,
we analyze the convergence of recently proposed and modifikike learning algorithms, where
we introduce several notions of problem margin that implgwewvgence for the various algorithms.
Finally, we present empirical results in automated plagnimhere ranking functions are learned
to guide beam search in a number of benchmark planning demahe results show that our ap-
proach is often able to outperform an existing state-ofahiglanning heuristic as well as a recent
approach to learning such heuristics.

Keywords: beam search, speedup learning, automated planning,wstdatlassification

1. Introduction

Throughout artificial intelligence and computer science, heuristic sémaecfundamental approach
to solving complex problems. Unfortunately, when the heuristic is not acarmugh, memory and
time constraints make pure heuristic search impractical. One common way to attemmgnteain
tractability of heuristic search is through a pruning technique known am bearch. At each search
step, beam search maintains a “beam” of the heuristicallythestes, pruning all other nodes from
the search queue. Due to this pruning, beam search is not guaranteeddomplete nor optimal.
However, if the heuristic is good enough to keep a good solution path in #m,liken the solution
will be found quickly.
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The goal of this paper is to study the problem of learning heuristics, é&imgrfunctions, that
allow beam search to quickly find solutions, without seriously sacrificingrgity compared to
unconstrained search. We consider this problem for the case of larg@ang functions, where each
search node is associated with a feature vectbfv) and nodes are ranked accordingnof (v)
wherew is a weight vector. Each instance in our training set corresponds tachsgzace that is
labeled by a set of target solutions, each solution being a (satisficingjrpaththe initial node to
a goal node. Given a training set, our learning objective is to select &ntwagtorw such that a
beam search of a specified beam width always maintains one of the tathstip the beam until
finally reaching a goal node. Suchnaeffectively represents a ranking function that allows beam
search to efficiently solve all of the training instances, and ideally nevelsgmoblems for which
the training set is representative.

Recent work (Daur@a Il and Marcu, 2005) has considered the problem of learning beancls
ranking functions in the context of structured classification. Structuessification is the problem
of learning a mapping from structured inputs (e.g., sentences) to strdatuteuts (e.g., syntactic
parses) and there has been much recent work that extends traditamsification algorithms to this
setting including conditional random fields (Lafferty et al., 2001), theegalized Perceptron algo-
rithm (Collins, 2002), and margin optimization (Taskar et al., 2003). Theogmh of Daurg I
and Marcu (2005) differs from prior approaches in that it explicitly \destructured classification
as a search problem, where given an inguhe problem of labeling by a structured output is
treated as searching through an exponentially large set of candidatesougpr example, in part-
of-speech tagging wherds a sequence of words agds a sequence of word tags, each node in the
search space is a pdi,y') wherey is a partial labeling of the words ix Learning corresponds
to inducing a ranking function that quickly guides the search to the sead#(r y*) wherey* is
the desired output. This framework, knownlaarning as search optimization (LaS@as demon-
strated highly competitive performance on a number of structured classifigaoblems.

This paper builds on the LaSO framework and makes two key contributiorss, \Wwe analyze
the learning problem theoretically, in terms of its computational complexity andaimeeogyence
properties of various learning algorithms. Secondly, this paper proadesmpirical evaluation
in the context of automated planning, a problem that is qualitatively veryrdiffdrom structured
classification.

Our complexity analysis considers a number of subclasses of the gbraratsearch learning
problem. First, we provide an upper bound on the complexity of the gepashlem by showing
that even for exponentially large search spaces, which are the noregriBistency problem (i.e.,
finding aw that solves all training instances) remains in NP. Next, we identify severalactable
and intractable subclasses of the beam-search learning problem. tintggdyesome of these sub-
classes resemble more traditional “learning to rank” problems (AgarvaaRaith, 2005) with clear
analogies to applications.

Our convergence analysis studies convergence properties ofpperestyle online learning
algorithms. In prior work, Daug Il and Marcu (2005) proposed a notion of linear separability for
this learning problem and proved convergence of the algorithm for linseparable data. However,
here we show that result to be inaccurate for subtle reasons and gbwenter example. We then
propose new notions of problem margin and show that convergendeecguaranteed for revised
versions of the algorithm given positive margins. For the case wherénigagiata is ambiguous,
that is, where many good solutions to a search problem are not includezitargiet solution set, we
also give sufficient conditions on the minimum beam width to guarantee genves. This result
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also provides a formal characterization of the intuition that the learninglggrobhould become
easier as the beam width increases, by showing that the mistake boueds#ecwith increasing
beam width.

While the LaSO framework has been empirically evaluated in structured datasisifi, with
impressive results, its utility in other types of search problems has not eardtrated. Here
we consider the application of a LaSO-style algorithm to automated plannirigh veha problem
that is qualitatively very different compared to structured classificatitve. flanning problems we
consider are most naturally viewed as goal-finding problems, where weseareh for a short path
to a goal node in an exponentially large graph. Rather, structured dassifi is most naturally
viewed as an optimization problem, where we must search for a structujext titat optimizes an
objective function. While the two problem classes are related they diffeagmfigant ways. For
example, the search problems studied in structured classification typicatyahswgle or small
number of solution paths, whereas in automated planning there are oftge alanber of equally
good solutions, which can contribute to ambiguous training data. Furtherthersize of the search
spaces encountered in automated planning are usually much larger tharciarstl classification,
because of the larger depths and branching factors. These difésresise the empirical question
of whether a LaSO-style approach will be effective in automated planning.

To evaluate this question we incorporated a LaSO-style learning mechandsafanward state-
space search planner in order to learn domain-specific heuristicekimgdunctions, from training
examples. For a given planning domain, the training examples given to eneieaclude solution
plans to a set of planning problems from the domain. The learned rankiatjda for a domain
can then be used to guide beam search in order to solve new test proldemthé same domain.
We evaluate this approach on a number of benchmark planning domainsamdhst our learned
ranking functions are often able to outperform both a state-of-thesartth-independent planning
heuristic and the heuristics learned by another recently proposed lganm@ohanism based on
linear regression.

The remainder of this paper proceeds as follows. In Section 2, we imteooiur formal setup
of the beam-search learning problem and then, in Section 3, study the taiiopal complexity
of this learning problem. In Section 4, we describe two online learning mé&rharfollowed by
their convergence analysis. In Section 5, we apply the learning problamamated planning and
present the experimental results. Finally Section 6 concludes and ssi§gese directions.

2. Problem Setup

In this section, we first describe two different beam search paradigresidth-first beam search
and best-first beam search. We then introduce the learning problemsélsitidy in these two
paradigms, followed by an illustrative example from automated planning. Fimalgescribe how
our formulation, which was motivated by automated planning, relates to stedatiassification.

2.1 Beam Search

We first define breadth-first and best-first beam search, the tvealigans considered in this work.

A search spads a tuple(l,s(-), f(-),<), wherel is the initial search nods,is a successor function
from search nodes to finite sets of search nodes, a feature function from search nodesnto
dimensional real-valued vectors, afads a total preference ordering on search nodes. We think of
f as defining properties of search nodes that are useful for evaluhéirgelative goodness ard
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as defining a canonical ordering on nodes, for example, lexicographithis work, we usef to
define a linear ranking functiow- f (v) on nodes where is anm-dimensional weight vector, and
nodes with larger values are considered to be higher ranked, or nedegrpd. Since a given may
assign two nodes the same rank, we s break ties such thatis ranked higher thax given

w- (V) =w- f(v) andV < v, arriving at a total rank ordering on search nodes. We denote this total
rank ordering as(V,v|w, <), or justr(V,v) whenw and< are clear from context, indicating that

is ranked higher thav!.

Given a search spa&= (l,s(+), f(-), <), a weight vectow, and a beam widtb, breadth-first
beam searctimply conducts breadth-first search, but at each search depth érlgtheb highest
ranked nodes according to More formally, breadth-first beam search generates a urtigae
trajectory(Bo, By, . . .) as follows,

e Bp = {l} is the initial beam;

e Cj;1 = BreadthExpand(Bj,s(-)) = Uyeg, S(V) is the depthj + 1 candidate setf the depthj
beam;

e Bj;1is the unique set df highest ranked nodes @y, according to the total ordering

Note that for anyj, |Cj| < cband|B;| < b, wherec is the maximum number of children of any
search node.

Best-first beam searégalmost identical to breadth-first beam search except that we repkace th
functionBreadthExpand with BestExpandBj,s(-)) = B;Us(v*) —v*, wherev* is the unique high-
est ranking node iB;. Thus, instead of expanding all nodes in the beam at each searchesép,
first search is more conservative and only expands the single bestKote that unlike breadth-first
search this can result in beams that contain search nodes from diffieqaths of the search space
relative tol.

2.2 Learning Problems

Our learning problems provide training sets of pdif§,R) }, where the§ = (Ii,s (-), fi(:), <i) are
search spaces constrained such that dablas the same dimension. As described in more detalil
below, theP, encode sets ofarget search pathbat describe desirable search paths through the
corresponding search spaces. Roughly speaking the learning ¢&dsn a ranking function that
can produce a beam trajectory of a specified width for each search g contains at least one
of the corresponding target paths in the training data. For example, in ttext@f automated
planning, theS would correspond to planning problems from a particular domain, encdbdang
state space and available actions, andRheould encode optimal or satisficing plans for those
problems. A successfully learned ranking function would be able to guittidyat least one of the
target solution plans for each training problem and ideally new targetgmsh

We represent each set of target search paths as a sedgead® o,P 1,...,P q) of sets of
search nodes whef ; contains target nodes at degtlandP, o = {I;}. Itis useful to think about
R4 as encoding thgoal nodesf thei'th search space. We will refer to the maximum dipéany
target node se ; as thetarget widthof B, which will be referred to in our complexity analysis.
The generality of this representation for target paths allows for pathalbigigets where certain
nodes do not lead to the goal. In order to arrive at convergencks,esa rule out such possibilities
by assuming that the training setdead-end freeThat is, for alli and j < d eachv € B ; has at
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least one child node € R, j;1. Note that in almost all real problems this property will be naturally
satisfied. For our complexity analysis, we will not need to assume any &pecfzerties of the
target search path3.

Intuitively, for a dead-end free training set, ed&hrepresents a layered directed graph with at
least one path from each target node to a goal no&g,inThus, the training set specifies not only a
set of goals for each search space but also gives possible solutientpahe goals. For simplicity,
we assume that all target solution paths have depblt all results easily generalize to non-uniform
depths.

For breadth-first beam search we specify a learning problem bygg@viraining set and a beam
width ({(S,R)},b). The objective is to find a weight vecter that generates a beam trajectory
containing at least one of the target paths for each training instance. fistonally, we are interested
in the consistency problem:

Definition 1 (Breadth-First Consistency) Given the input{(S,R)},b) where b is a positive in-
teger and P= (P o,R 1,...,R ), the breadth-first consistency problem asks us to decide whether
there exists a weight vector w such that for eaght® corresponding beam trajecto{; o, B 1,. . .,

Bi.a), produced using w with a beam width of b, satisfies®R, j # 0 for each j?

A weight vector that demonstrates a “yes” answer is guaranteed to allogathkfirst beam search
of width b to uncover at least one goal node (i.e., a nodg j) within d beam expansions for all
training instances.

Unlike the case of breadth-first beam search, the length of the beantdrgjesquired by best-
first beam search to reach a goal node can be greater than theddeipthe target paths. This is
because best-first beam search, does not necessarily increasexiheim depth of search nodes in
the beam at each search step. Thus, in addition to specifying a beam avitlike fearning problem,
we also specify a maximum number of search steps, or horfizdye objective is to find a weight
vector that allows a best-first beam search to find a goal node wite@arch steps, while always
keeping some node from the target paths in the beam.

Definition 2 (Best-First Consistency) Given the input{(S,R)}, b, h), where b and h are positive
integers and P= (R o,...,P 4), the best-first consistency problem asks us to decide whether there
is a weight vector w that produces for eachaSbeam trajectory(B;o,...,Bjx) of beam width b,
such that k< h, B kNP g # 0 (i.e., B x contains a goal node), and each Hor j < k contains at
least one node ian R.,?

Again, a weight vector that demonstrates a “yes” answer is guarantegidwoa best-first beam
search of widthb to find a goal node iin search steps for all training instances.

2.2.1 EXAMPLE FROM AUTOMATED PLANNING.

Figure 1, shows a pictorial example of a single training example from an atgdmanning prob-
lem. The planning domain in this example is Blocksworld where individual prnobievolve trans-
forming an initial configuration of blocks to a goal configuration using simpteas such as pick-
ing up, putting down, and stacking the various blocks. The figure shaesiech spacg§ where
each node corresponds to a configuration of blocks and the arcstendican it is possible to take an
action that transitions from one configuration to another. The figure tepia highlighted nodes,
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two target paths. The labBl would encode these target paths by a sequenegP, o,R 1,...,P 4)
whereR, ; contains the set of all highlighted target nodes at dgpth solution weight vector, for
this training example, would be required to keep at least one of the highlighted im the beam
until uncovering the goal node.

stack(B, D) stack(C, A),

tack(C, D) stack(B, A)

Figure 1: An example from automated planning.

2.2.2 EXAMPLE FROM STRUCTURED CLASSIFICATION

Daune lll and Marcu (2005) considered learning ranking functions to cbiveeam search in the
context of structured classification. Structured classification involvesitepa function that maps
structured inputs to structured outputg. As an example, consider part-of-speech tagging where
the inputs correspond to English sentences and the correct outpusdotence is the sequence of
part-of-speech tags for the words in the sentence. Figure 2 showB&oame Il and Marcu (2005)
formulated a single instance of part-of-speech tagging as a seardemrobach search node is a
pair (x,y') wherex is the input sentence and is a partial labeling of the words ix by part-of-
speech tags. The arcs in this space correspond to search stepsehatdads in the sentence in

a left-to-right order by extending in all possible ways by one element. The leaves, or terminal
nodes, of this space correspond to all possible complete labelings®@iven a ranking function
and a beam width, Daumlll and Marcu (2005) return a predicted output foby conducting a
beam search until a terminal node becomes the highest ranked node igathe dnd then return
the output component of that terminal node. This approach to making poedicuggests that the
learning objective should require that we learn a ranking function stttk goal terminal node,

is the first terminal node to become highest ranked in the beam. In the figere,isha single goal
terminal nodgx,y) wherey is the correct labeling of and there is a unique target path to this goal.

From the above example, we see that there is a difference between thiadeatrjective used
by Daune Il and Marcu (2005) for structured classification and the learnirjgablie under our
formulation, which was motivated by automated planning. In particular, cundtation does not
force the goal node to be the highest ranked node in the final beamathet only requires that
a goal node appear somewhere in the final beam. While these formulatioeasr ajite different,
it turns out that they are polynomially reducible to one another, which weepiro Appendix A.
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= (The cat ran) ((the cat ran),(- - -))

X
y = (article noun verb)

the cat ran), (article - -

the cat ran), (article verb - the cat ran), (article noun -
the cat ran), (article noun verb) (the cat ran), (article noun noun)

Goal Node (X, y)

Tha

(the cat ran), (verb - -)

./
il

Terminal Node (x, y’)

Figure 2: An example from structured classification.

Thus, all of the results in this paper apply equally well to the structuredifilzetion formulation
of Daune Il and Marcu (2005).

3. Computational Complexity

In this section, we study the computational complexity of the above consigheolblems. We first
focus on breadth-first beam search, and then give the corresgadneist-first results at the end of
this section. It is important to note that the size of the search spaces willltygiesexponential in
the encoding size of the learning problem. For example, in automated plastdandard languages
such as PDDL (McDermott, 1998) are used to compactly encode planribteprs that are po-
tentially exponentially large, in terms of the number of states, with respect to0bd Bncoding
size. Throughout this section we measure complexity in terms of the problerdieg size, not the
potentially exponentially larger search space size. All discussions in ttlisepply to general
search spaces and are not tied to a particular language for descehint) space such as PDDL.

Our complexity analysis will consider various sub-classes of the brdamdtitonsistency prob-
lem, where the sub-classes will be defined by placing constraints on theifadlproblem param-
eters:n - the number of training instances - the depth of target solution paths; the maximum
number of children of any search nodle the maximum target width of aryf as defined in Section
2.2, andb - the beam width. Figure 3 gives a pictorial depiction of these key probleranpe-
ters. Throughout the complexity analysis we will restrict our attention tolprolclasses where the
maximum number of children and beam widttb are polynomial in the problem size, which are
necessary conditions to ensure that each beam search step reglyirgslynomial time and space.
We will also assume that all feature functions can be evaluated in polynomiairtithe problem
size.

Note that restricting the number of childremay rule out the use of certain search space encod-
ings for some problems. For example, in a multi-agent planning scenarie,dhean exponential
number of joint actions to consider from each state, and thus an expdmantiaer of children.
However, here it is possible to re-encode the search space by iingré&@es depth of the search tree,
so that each joint action is encoded by a sequence of steps wheregesntis@lects an action in
turn followed by all of them executing the selected actions. The resultinglsspace has only a
polynomial number of children and thus satisfies our assumption, thougbdbheed search depth
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has increased. This form of re-encoding from a search space witmentially many children to
one with polynomially many children can be done whenever the actions in thealrgpace have
a compact, factored encoding, which is typically the case in practice.

Ein g0

Figure 3: The key problem parametens: the number of training instances; the depth of target
solution pathsb - the beam width. Not depicted in the figure ace: maximum number
of children of any nodg, - the maximum target width of any example.

3.1 Hardness Upper Bounds

We first show an upper bound on the complexity of breadth-first consigtiey proving that the
general problem is in NP even for exponentially large search spaces.

Observe that given a weight vecterand beam widthp, we can easily generate a unique depth
d beam trajectory for each training instance. Our upper bound is baseohsidering the inverse
problem of checking whether a set of hypothesized beam trajectonie$ooeach training instance,
could have been generated by some weight vector. The algof#stirajectoriesn Figure 4
efficiently carries out this check. The main idea is to observe that for aascls spacé& it is
possible to efficiently check whether there is a weight vector that startinganittamB could
generate a beaB after one step of breadth-first beam search. This can be done btywtiing an
appropriate set of linear constraints on the weight vestthat are required to genera®efrom B.
In particular, we first generate the set of candidate n@diesm B by unioning all children of nodes
in B. Clearly we must hav&' C C in order for there to be a solution weight vector. If this is the
case then we create a linear constraint for each pair of nagessuch thau € B andve C— B/,
which forcesu to be preferred te:

w- f(u) >w-f(v)

wherew = (W, Ws,...,Wn) are the constraint variables arid-) = (fi(-), f2(-),..., fm(:)) is the
vector of feature functions. Note thatufis more preferred thamin the total preference ordering,
then we only need to require that f(u) > w- f(v). The overall algorithniTestTrajectoriesimply
creates this set of constraints for each consecutive pair of beamshirbeam trajectory and then
tests to see whether there isvdhat satisfies all of the constraints.

Lemma 3 Given a set of search spac€S} and a corresponding set of width b beam trajectories

{(Bi,,.--,Bid)}, the algorithmTestTrajectoriefFigure 4) decides in polynomial time whether there
exists a weight vector w that can generéBgo, ..., Bjq4) in S for all i.
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Proof It is straightforward to show that satisfies the constraints generated@stTrajectories

iff for eachi, j, r(V,v| <i,w) leads beam search to generBtg,1 from B; ;. The linear program
containsm variables and at mosidcl? constraints. Since we are assuming that the maximum
number of children of a nodeis polynomial in the size of the learning problem, the size of the
linear program is also polynomial and thus can be solved in polynomial timec{iyran, 1979)1

This lemma shows that sets of beam trajectories can be used as efficiestkable certificates for
breadth-first consistency, which leads to an upper bound on the prsldemplexity.

Theorem 4 Breadth-first consistency is in NP.

Proof Given a learning problen{(S,R)},b) our certificates correspond to sets of beam trajec-
tories{(Bio,...,Biq)} each of size at mod(ndb) which is polynomial in the problem size. The
certificate can then be checked in polynomial time to see if for éadBi o,...,Bjq) contains a
target solution path encoded B as required by Definition 1. If it is consistent then according to
Lemma 3 we can efficiently decide whether there g that can generatgB; o, ...,Biq)}. [ |

This result suggests an enumeration-based decision procedure&althiifirst consistency as
given in Figure 4. In that procedure, the functiBnumerate creates a list of all possible combi-
nations of beam trajectories for the training data. Thus, each element dikthssa list of beam
trajectories, one for each training example, where a beam trajectory is sinsplyuence of sets of
nodes that are selected from the given search space. For eachratathuembination of beam tra-
jectories, the functiotsConsistentchecks whether the beam trajectory for each example contains
a target path for that example and if $estTrajectoriesvill be called to determine whether there
exists a weight vector that could produce those trajectories. The follogWweg us the worst case
complexity of this algorithm in terms of the key problem parameters.

Theorem 5 The procedureExhaustiveAlgorithrm(Figure 4) decides breadth-first consistency and
returns a solution weight vector if there is a solution in timé(O+ poly(m)) (cb)").

Proof We first bound the number of certificates. Breadth-first beam seapands nodes in the
current beam, resulting in at maginodes, from whiclp nodes are selected for the next beam. Enu-
merating these possible choices oddevels and trajectories, one for each training instance, we
can bound the number of certificates @y (cb)*"). For each certificate the enumeration process
checks consistency with the target pafRs in time O(tbdn) and then call§estTrajectories/hich
runs in time polym, ndct#). The total time complexity then ® ((tbdn+ poly(m, ndct?)) (cb)Pd")

= O((t + poly(m)) (cb)bdn). u

Not surprisingly the complexity is exponential in the beam wiktharget path deptd, and
number of training instancas However, it is polynomial in the maximum number of children
and the maximum target width Thus, breadth-first consistency can be solved in polynomial time
for any problem class whefg d, andn are constants. Of course, for most problems these constants
would be too large for this result to be of practical interest. This leads toubstipn of whether we
can do better than the exhaustive algorithm for restricted problem cldssest least one problem
class we can.
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ExhaustiveAlgorithm ({(S,R)},b)
I = Enumerate({(S,R)},b)
/I enumerates all possible sets of beam trajectories
for each{(Bio...,Biqd)} €T
if IsConsistent({R },{(Bio...,Biq)}) then
w= TestTrajectories{S},{(Bio,...,Bid)})
if w = false then
return w

return false

TestTrajectories({S},{(Bio,...,Bid)})
s = <|i73(')7 fi(')7<i>
construct a linear programming problér® as below
the variables arev = {w1,Wo, ..., Wm}
for (i,j) €{4,...,n} x{1,...,d}
Ci j =BreadthExpand(B; j_1,s(-))

if Bi,j C G then
for eachuc B jandve G ;- B
if v<juthen
add a constrainy- fi(u) > w- fj(v
elseadd a constraint - f; (u) w- fi(V)

else return false
w = LPSolver(P)
if LP is solvedthen
return w
return false

Figure 4: The exhaustive algorithm for breadth-first consistency.

Theorem 6 The class of breadth-first consistency problems whetelband t= 1 is solvable in
polynomial time.

Proof Given a learning probleni{(S,R)},b) whereR = (R ,...,P 4), t = 1 implies that each
R,j contains exactly one node. Since the beam wimth 1, then the only way that a beam trajec-
tory (Bio,...,Biq) can satisfy the conditioB; ; NP, ; # 0 for anyi, j, is for B j = B ;. Thus there
is exactly one beam trajectory for each training example, equal to the teaggttory, and using
Lemma 3 we can check for a solution weight vector for these trajectoriedyingraial time. W

This problem class, as depicted in Figure 5, corresponds to the case @dwh training instance
is labeled by exactly a single solution path and we are asked to fimthat leads a greedy hill-
climbing search, or reactive policy, to follow those paths. This is a commoniteasetting, for
example, when attempting to learn reactive control policies based on deatmmstrof target poli-
cies, perhaps from an expert, as in Khardon (1999).
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&N N

Figure 5: A tractable class of breadth-first consistency, whetel andt = 1.

3.2 Hardness Lower Bounds

Unfortunately, outside of the above problem classes it appears tlaatth+&rst consistency is com-
putationally hard even under strict restrictions. In particular, the followlmge results show that
if any one ofb, d, or n are not bounded then the consistency problem is hard even when the othe
problem parameters are small constants.

First, we show that the problem class whare d =t = 1 butb > 1 is NP-complete. That s, a
single training instance involving a depth one search space is sufficremafdness. This problem
class, resembles more traditional ranking problems and has a nice anatbgwpplication domain
of web-page ranking, where the depth 1 leaves of our search spaesmond to possibly relevant
web-pages for a particular query. One of those pages is marked agagage, for example, the
page that a user eventually went to. The learning problem is then to findgatwector that will
cause for the target page to be ranked among the figges. Our result shows that this problem is
NP-complete and hence will be exponentiabinnlessP = NP.

Theorem 7 The class of breadth-first consistency problems whetelnd =1,t =1, and b> 1is
NP-complete.

Proof Our reduction is from the Minimum Disagreement problem for linear binargsdiars,
which was proven to be NP-complete by Hoffgen et al. (1995). The itgpthiis problem is a train-
ing setT = {x{,--- XX, -+, %, } of positive and negativen-dimensional vectors and a positive
integerk. A weight vectorw classifies a vector as positive iff- x > 0 and otherwise as negative.
The Minimum Disagreement problem is to decide whether there exists a weictt that commits
no more thark misclassification.

Given a Minimum Disagreement problem we construct an insta(&eP;),b) of the breadth-
first consistency problem as follows. Assume without loss of gener8lity (1,s(:), (), <).
Let s(1) = {do, 0, - ,Gry+r,}. FOr eachi € {1,---,r1}, define f(q) = —x" € R™. For each
i€{l,---,ra},definef(qr,) =% € R™ Definef(qg) =0 R™, P = ({l},{qo}) andb = k+ 1.
Define the total ordering: to be a total ordering in whicty < qo for everyi=1,....r; andqo < g
foreveryi =r;+1,...,r1+r2.We claim that there exists a linear classifier with at nkastisclas-
sifications if and only if there exists a solution to the corresponding consisfgnblem.

First, suppose there exists a linear classifiex > 0 with at mostk misclassifications. Using
the weight vectow, we have

e W-f(qo) =0;
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o fori=1---ry:
if w-xt >0,w-f(qg)
if w-xt <0,w-f(g)=w-(-x")>0;

I
g
X
=
A
e

e fori=ri+1,...,r1+r2:
if w-x~ >0,w-f(q) =w-x >0;
if w-x~ <O0,w-f(q) =w-x <O0.

Fori=1,---,r1+ry, the nodeg in the consistency problem is ranked lower thogrif and only

if its corresponding example in the Minimum Disagreement problem is labeleeotiyr is ranked
higher thang if and only if its corresponding example in the Minimum Disagreement problem is
labeled incorrectly. Therefore, there are at mlosibdes which are ranked higher thgn With
beam widthb = k+- 1, the beanB; ; is guaranteed to contain nodg indicating thatv is a solution

to the consistency problem.

On the other hand, suppose there exists a solutiém the consistency problem. There are at
mostb — 1 = k nodes that are ranked higher thgn That is, at least; +ro — k nodes are ranked
lower thango. Fori=1,...,r1, g is ranked lower thamy if and only if w- f(q) < w- f(do).
Fori=r1+1,...,r1+rp2, g is ranked lower thamy if and only if w- f(g;) < w- f(qg). Since
w- f(go) =0, we have

o fori=1---ry:
w-f(g) <0=w-(—x") <0=w-x">0;

e fori=ri+1,....r1+ry2:
w-f(g) <0=w-x <0=w-x <O0.

Therefore, using the linear classifigrx > 0, at least; +r, — k nodes are labeled correctly, that is,
it makes at mosk misclassifications.

Since the time required to construct the instai&, P1),b) from T,k is polynomial in the size
of T,k, we conclude that the consistency problem is NP-Complete even restriated iod =1
andt = 1. |

The next result shows that if we do not bound the number of training iossanthen the prob-
lem remains hard even when the target path depth and beam width ard¢ceqoal Interestingly,
this subclass of breadth-first consistency corresponds to the multildgoeing problem as defined
in Jin and Ghahramani (2002). In multi-label learning each training instzantee viewed as a bag
of mdimensional vectors, some of which are labeled as positive, which irootext correspond to
the target nodes. The learning goal is to fina that for each bag, ranks one of the positive vectors
as best.

Theorem 8 The class of breadth-first consistency problems wheteldb=1, c=6,t = 3, and
n > 1is NP-complete.

Proof The proof is by reduction from 3-SAT (Garey and Johnson, 1978ichnis the following.

“Given a set U of boolean variables, a collection Q of clauses over U shaheach clause
g € Q has|g| = 3, decide whether there a satisfying truth assignment for C
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LetU = {ug,...,un}, Q={q11V gi2V t1s,...,qm V an2 V Onz} be an instance of the 3-SAT
problem. Hereg;j = u or —u for someu € U. We construct fromJ, Q an instanc€{(S,R)},b)
of the breadth-first consistency problem as follows. For each clgyseqi; V gis, let s(li) =
{pi1, -, pist P ={li},{pi1, pi2 pi3}), b=1, and the total ordering; is defined so thap; ; <;
pik for j =1,2,3 andk = 4,5,6. Lete € {0,1}™ denote a vector of zeros except a 1 in the
K'th component. For each=1,...,n, j = 1,23, if gjj = ux for somek then fi(p; ;) = e and
fi(pi,j+3) = —&/2, otherwise ifgj; = —ux for somek then fi(p; ;) = —e& and fi(pi j13) = &/2.
We claim that there exists a satisfying truth assignment if and only if there exggikition to the
corresponding consistency problem.

First, suppose that there exists a satisfying truth assignmentwketws,---,wn), where
wg = 1 if ug is true, andwy = —1 if uy is false in the truth assignment. For edchk 1,...,n,
j=1,...,3, we have:

e if g;j is true, then
K fi(pm) =1 andw- fi(pi7j+3) =-1/2;

o if g is false, then
w- fi(pij) = —1 andw- fi(pi j+3) = 1/2.

Note that for each clausg; Vv g2 V gi3, at least one of the literals is true. Thus, for every set of
nodes{pi 1, pi 2, Pi.3}, at least one of the nodes will have the highest rank value equal teulting
in Bi 1 = {v} wherev € {pi 1, pi2, pi3}. By the definition, the weight vectav is a solution to the
consistency problem.

On the other hand, suppose that there exists a solutien(wy,...,Wn) to the consistency
problem. Assume the beam trajectory for eaish({l; }, {vi}). Thenv, = p; j for somej € {1,2,3},
and for thisi and j, g;j = uk or —u for somek. Let uk be true ifg;; = ux and be false if}j; = —ux.
As long as there is no contradiction in this assignment, this is a satisfying trigimast because
at least one ofqi1, Giz, gz} is true for eveny, that is, every clause is true.

Now we will prove that there is no contradiction in this assignment, that is, anghle is
assigned either true or false, but not both. Note that for any n@dép; 1, pi 2, pi 3}, there always
exists a nod® € {pi4,..., pis} such that:

e w-fi(v) <0< w- fi(V) > 0;
e w-fi(v) >0<w- fi(V) <O0;
e w-fi(v)=0<w- fj(V)=0.

Then because of the total orderiagwe defined, the node = p; j appearing in the beam trajectory,
must hasv- fi(v;) > 0. Assume without loss of generality theat = uy, thenuy is assigned to be true.
Although —ux might appear in other clauses, for examlg; = -, its corresponding nodgy j
can never appear in the beam trajectory becaude(pr j) =w- (—&) = —w-e& = —w- fi(pi ;) <O.
Therefore uk will never be assigned false. A similar proof can be given for the cagg ef —u.
Since the time required to construct the instafig&, P)},b) from U, Q is polynomial in the

size ofU, Q, we conclude that the consistency problem is NP-Complete for the cdse bfb =1,
c=6andt =3.

[ |
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Finally, we show that when the depthis unbounded the consistency problem remains hard even
whenb=n=1.

Theorem 9 The class of breadth-first consistency problems wherelnb=1, c=6,t = 3, and
d > 1is NP-complete.

Proof Assumex= ({(S,R)|i=1,...,n},b), where§ = (l;,s(-), fi(-),<;) andR, = ({li},R 1), is
an instance of the consistency problem with= 1, b =1, c = 6 andt = 3. We can construct an
instancey of the consistency problem with=1,b=1,c= 6, andt = 3. Lety = ((S;,P1),b) where
S = (11,5(), f(-),<), andPy = ({l11},P11,P21,...,R.1). We defines(), f(-), < as below.

o S(I1) =s1(l1), f(l1) = f1(l1);

o foreachi=1,....n-1
we s(li), f(v) = fi(v) ands(v) = s+a(liv1);
V(V,\/> € SI(II)i <(Vv\/) =< (Va\/);

o Wes(ln), f(V) = fo(V);

V(% V) € sa(ln), <(WV) =<n (LV).

Obviously, a weight vectow is a solution for the instanceif and only if w is a solution for the

constructed instance |

b n d c t Complexity

poly | >1 | >1|poly | >1 NP
K K K [poly| >1 P
1 |>1]|>1|poly| 1 P

poly | 1 1 | poly| 1 | NP-Complete
1 [ >1] 1 6 3 | NP-Complete
1 1 |>1] 6 3 | NP-Complete

Figure 6: Complexity results for breadth-first consistency. Each rovesponds to a sub-class of
the problem and indicates the computational complekitindicates a constant value and
“poly” indicates that the quantity must be polynomially related to the problem size.

Figure 6 summarizes our main complexity results from this section for breadtledinsistency.
For best-first beam search, most of these results can be carriedRmell that for best-first con-
sistency the problem specifies a search horizan addition to a beam width. Using a similar
approach as above we can show that best-first consistency is in Nifiagghath is polynomial
in the problem size, which is a reasonable assumption. Similarly, one carddktpolynomial
time result for fixedb, n, andd. The remaining results in the table can be directly transferred to
best-first search, since in each case eitherl ord = 1 and best-first beam search is equivalent to
breadth-first beam search in either of these cases.
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4. Convergence of Online Updates

In the previous section, we identified a limited set of tractable problem classksaw that even
very restricted classes remain NP-hard. We also saw that some of thidsgasses had interesting
application relevance. Thus, it is desirable to consider efficient leaméwhanisms that work well
in practice. Below we describe two such algorithms based on online peynagidates.

4.1 Online Perceptron Updates

Figure 7 gives the LaSO-BR algorithm for learning ranking functiondfeadth-first beam search.

It resembles théearning as search optimization (LaS&lgorithm for best-first search by Daérfll

and Marcu (2005). LaSO-BR iterates through all training instari§e®) and for each one con-
ducts a beam search of the specified width. After generating the gldggtam for thdth training
instance, if at least one of the target node®inpare in the beam then no weight update occurs.
Rather, if none of the target nodesRyy are in the beam then a search error is flagged and weights
are updated according to the following perceptron-style rule,

W=w+a- <ZV*€PI-JOC FV)  Yves f(V)>
|P.jNC| b
where O< a < 1 s a learning rate paramet&js the current beam ar@is the candidate set from
which B was generated (i.e., the beam expansion of the previous beam). For simgdliwitiation,
here we assume thétis a feature function for all training instances. Intuitively this weight update
moves the weights in the direction of the average feature function of tangetrhat appear i@,
and away from the average feature function of non-target nodes lretra. This has the effect of
increasing the rank of target node<drand decreasing the rank of non-targets in the beam. Ideally,
this will cause at least one of the target nodes to become preferredretmuemain on the beam
next time through the search. Note that the use of averages over tatheba-target nodes is
important so as to account for the different sizes of these sets of naétes each weight update,
the beam is reset to contain only the set of target nod€sand the beam search then continues.
Importantly, on each iteration, the processing of each training instancearargeed to terminate in
d search steps.

Figure 8 gives the LaSO-BST algorithm for learning in best-first bearchewhich is a slight
modification of the original LaSO algorithm. The main difference compared totigeal LaSO
is in the weight update equation, a change that appears necessauy éongergence analysis. The
algorithm is similar to LaSO-BR except that a best-first beam search isicted) which means that
termination for each training instance is not guaranteed to be witkteps. Rather, the number of
search steps for a single training instance remains unbounded withthdrfassumptions, which
we will address later in this section. In particular, there is no bound on th#euof search
steps between weight updates for a given training example. This difietmtween LaSO-BR and
LaSO-BST was of great practical importance in our automated plannidgaign. In particular,
LaSO-BST typically did not produce useful learning results due to thetfatthe number of search
steps between weight updates was extremely large. Note that in the caseired classification,
Daun® Ill and Marcu (2005) did not experience this difficulty due to the beaikdepth nature of
their search spaces.
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LaSO-BR ({(S,R)},b)
w« 0
repeatuntil wis unchangedr a large number of iterations
for everyi
Update-BR(S, P, b, w)
return w

Update-BR (S, R, b,w)
s = (li,s(:),f(-),<;) andR = (R,...,P.q)
B« {l;} // initial beam
for j=1,...,d
C < BreadthExpand(B,s(-))
for everyve C
H(v) < w- f(v) // compute heuristic value of
OrderC according tdH and the total ordering;
B < the firstb nodes inC
if BOPR,j = 0then

W W0 - ZV*EH‘jﬁCf(V*) _ ZVEBf(V)>

|P,jNC] b
B—PR;NC
return

Figure 7: The LaSO-BR online algorithm for breadth-first beam search

4.2 Previous Result and Counter Example

Adjusting to our terminology, Dau&lll and Marcu (2005) defined a training set tollbear separa-
bleiff there is a weight vector that solves the corresponding consistetygm. Also for linearly

separable data they defined a notion of margin of a weight vector, whidlefereto here as the
search marginThe formal definition of search margin is given below.

Definition 10 (Search Margin) The search margin of a weight vector w for a linearly separable
training set is defined ag= ming- v, (w- f(v*) —w- f(v)), where the sef(v*,v)} contains any
pair where V is a target node and v is a non-target node that was compared duringgidi® search
guided by w.

Daure Il and Marcu (2005) state that the existence of with positive search margin, which
implies linear separability, implies convergence of the original LaSO algoriftenafinite number
of weight updates. On further investigation, we have found that a pesidarch margin is not suf-
ficient to guarantee convergence for LaSO, LaSO-BR, or LaSO-BfTitively, the key difficulty
is that our learning problem contains hidden state in the form of the desiged trajectory. Given
the beam trajectory of a consistent weight vector one can compute thetsyeigt likewise given
consistent weights one can compute the beam trajectory. However, wgé/aneneither to begin
with and our approach can be viewed as an online EM-style algorithm, whiinates between
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LaSO-BST ({(S,P)},b)
w0
repeatuntil wis unchangedr a large number of iterations
for everyi
Update-BST(S, R, b, w)
return w

Update-BST(S,R,b,w)
I1's =(li,s(:),f(-),<i) andR = (R,...,P.q)
B « {li} // initial beam
P= PL’QUP,’zU...UPhd
while BNRg=0
C «— BestExpandB,s())
for everyve C
H(v) < w- f(v) // compute heuristic value of
OrderC according taH and the total ordering;
B « the firstb nodes inC

if BAP=0then
W — VX+G . (Zv*e‘g%ccf‘(w) _ Z\/EBbf(V)>
B—PnNC
return

Figure 8: Online algorithm for best-first beam search.

updating weights given the current beam and recomputing the beam thiwarpdated weights.
Just as traditional EM is quite prone to local minima, so are the LaSO algorithnenera, and
in particular even when there is a positive search margin as demonstratedfatidlving counter
example. Note that the standard Perceptron algorithm for classificationrgatoes not run into
this problem since there is no hidden state involved.

Counter Example 1 We give a training set for which the existence of a weight vector with pos-
itive search margin does not guarantee convergence to a solution wegghdr for LaSO-BR
or LaSO-BST. Consider a problem that consists of a single training instanih search space
shown in Figure 9, preference ordering€B < F < E < D < H < G, and single target path
P=({A},{B}.{E}).

First we will consider using breadth-first beam search with a beam witlth-0 2. Using the
weight vector w= [y, ] the resulting beam trajectory will be (note that higher values of (v) are
better):

{A}L{B,C},{E,F}.

The search margin of w, which is only sensitive to pairs of target andta@et nodes that were
compared during the search, is equal to,

y=w-f(B)—w- f(C)=w-f(E)—w- f(F)

1587



XU, FERN AND YOON

>

Q f(A) =D

(®) c (D)
FB)=(D f(C)—(O,l)/ YDHO’O)

© ©® @ &

FEY=LY fF)=0DH f(G)=0D) fH)=1D

Figure 9: Counter example for convergence under positive seargfirmar

which is positive. We now show that the existence of w does not imply geneerunder perceptron
updates.

Consider simulating LaSO-BR starting from=w0. The first search step gives the befiih B}
according to the given preference ordering. Since B is on the target patontinue expanding to
the next level where we get the new be@H }. None of the nodes are on the target path so we
update the weights as follows:

W = W+ f(E)—05[f(G)+ f(H)]
\A/+[17 1] - [17 1]
w.

This shows that {xdoes not change and we have converged to the weight vecteBywhich is not
a solution to the problem.

For the case of best-first beam search, the performance is similar. nGha weight vector
w = [y,Y], the resulting beam search with beam width 2 will generate the beam sefjuenc

{A},{B,.C} {E.C}
which is consistent with the target trajectory. From this we can see that vahm@ssitive search
margin of:
y=w-f(B)—w- f(C)=w-f(E)—w- f(C).
However, if we follow the perceptron algorithm when started with the weigliov@/ = 0 we can
again show that the algorithm does not converge to a solution weight véctparticular, the first
search step gives the begd,B} and since B is on the target path, we do not update the weights

and generate a new beafs,H} by expanding the node D. At this point there are no target nodes
in the beam and the weights are updated as follows

W = W+ f(B)—05[f(G)+ f(H)]
= V\/‘l‘[l,l]_[]vl]
= w
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showing that the algorithm has converged to=n0, which is not a solution to the problem.

Thus, we have shown that a positive search margin does not guaramtgergence for either
LaSO-BR or LaSO-BST. This counter example also applies to the origa&Dlalgorithm, which
is quite similar to LaSO-BST.

4.3 Convergence Under Stronger Notions of Margin

Given that linear separability, or equivalently a positive search margmatisufficient to guarantee
convergence we consider a stronger notion of marginjatiel margin which measures by how
much the target nodes are ranked above (or below) other non-tades at the same search level.

Definition 11 (Level Margin) The level margin of a weight vector w for a training set is defined as
Y= mingy v, (W- f(v*) —w- f(v)), where the sef(v*,v)} contains any pair such that Vs a target
node at some depth j and v can be reached in j search steps from the $eitiadh node—that is,

v* and v are at the same level.

For breadth-first beam search, a positive level margimfonplies a positive search margin, but not
necessarily vice versa, showing that level margin is a strictly strongermotiseparability. The
following result shows that a positive level margin is sufficient to guamotsvergence of LaSO-
BR. Throughout we will leR be a constant such that for all training instances, for all nedesd

v, |[f(v) = f(V)]| <R The proof of this result follows similar lines as the Perceptron convemen
proof for standard classification problems Rosenblatt (1962).

Theorem 12 Given a dead-end free training set such that there exists a weight veatithvevel
marginy > 0 and||w|| = 1, LaSO-BR will converge with a consistent weight vector after making no
more than(R/y)? weight updates.

Proof First note that the dead-end free property of the training data can deaiskow that unless
the current weight vector is a solution it will eventually trigger a “meaningiufight update (one
where the candidate set contains target nodes).

Let wK be the weights before tHéth mistake is made. Them! = 0. Suppose thi'th mistake
is made for the training dat&,R), whenBN R j = 0. Here,R ; is the j'th element oR, B is the
beam generated at depitior § andC is the candidate set from whidhis selected. Note th&t is
generated by expanding all nodes in the previous beam and at least thegn is inP, j_;. With
the dead-end free property, we are guaranteedthatP, ; NC # 0. The occurrence of the mistake
indicates thatyv* € P jNC,v € B, w¥- f(v*) < wX. f(v), which lets us derive an upper bound for
w32,

vak+1||2 — ||V\)(—|- 2veC f(V*) _ 2veB f(V) ”2

| b
= [[WK|[2+ || Zv*e|ccllf| (V) zvesbf (V) 2
—|-2vvk.(zv"€’<é/7(v*) _ EveE:)f(V))
< w2+ | 2oy ) gueafl)
< WP+ R
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where the first equality follows from the definition of the perceptron-tgdale, the first inequality
follows becauseX- (f(v*) — f(v)) < 0 for allv* € C’,v € B, and the second inequality follows from
the definition ofR. Using this upper-bound we get by induction that

k2 < kR,

Suppose there is a weight vectersuch that|w|| = 1 andw has a positive level margin, then
we can derive a lower bound far- w2,

w- W = wewK Fw (ZV*GC/ FOv)  Swes f(V))

IC| b
— W, ZV*EC’W' f(V*) o ZVEBW' f(v)
= SR b

>w- WK+

This inequality follows from the definition of the level margiof the weight vectow.
By induction, we get thatv- w "1 > ky. Combining this result with the above upper bound on
[w<t|| and the fact thafw|| = 1 we get that

w-wktl y R2
L2 e = ViR TR
Without the dead-end free property, LaSO-BR might generate a cdadidathat contains no
target nodes, which would allow for a mistake that does not result in a twepglate. However, for
a dead-end free training set, it is guaranteed that the weights will be ddfiatel only if a mistake
is made. Thus, the mistake bound is equal to the bound on the weight updates. |

Note that for the example search space in Figure 9 there is no weight weittioa positive
level margin since the final layer contains target and non-target natte&lentical weight vectors.
Thus, the non-convergence of LaSO-BR on that example is consistérthe above result. Unlike
LaSO-BR, LaSO-BST and LaSO do not have such a guarantee siiickg¢ams can contain nodes
from multiple levels. This is demonstrated by the following counter example.

Counter Example 2 We give a training set for which the existence of a w with positive level margin
does not guarantee convergence for LaSO-BST. Consider a singimg@xample with the search
space in Figure 10, single target path=P({A},{B},{E}), and preference ordering € B < E <
F<G<D.

Given the weight vector w [2y,V], the level margin of w is equal p However, starting with
w = 0 and running LaSO-BST the first search step gives the &am}. Since B is on the target
path, we get the new beaf®, F } by expanding the node D. This beam does not contain a target
node, which triggers the following weight update:

w = w4+ f(B)-[f(F)+f(G)]/2
= W +[1,0—[1,0]
= w.
Since W does not change the algorithm has converged ‘te=\@, which is not a solution to this

problem. This shows that a positive level margin is not sufficient to gii@eathe convergence of
LaSO-BST. The same can be shown for the original LaSO.
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e f(A)=(0,0)

'(B) =(10) (C) = (0,0)/@<D) =D
G ®  ©

FE) =) FE)=L0)  f(G)=(10)

Figure 10: Counter example to convergence under positive level margin.

In order to guarantee convergence of LaSO-BST, we require ansgn@nger notion of margin,
global margin which measures the rank difference between any target node andoartarget
node, regardless of search space level.

Definition 13 (Global Margin) The global margin of a weight vector w for a training set is defined
asy = mingy- v (w- f(v*) —w- f(v)), where the sef(v*,v)} contains any pair such that'vs any
target node and v is any non-target node in the search space.

Note that ifw has a positive global margin then it has a positive level margin. The cemver
not necessarily true. The global margin is similar to the common definitions of masgit to
characterize the convergence of linear perceptron classifiers (fH\viR62).

To ensure convergence of LaSO-BST we also assume that the spaces sre all finite trees.
This avoids the possibility of infinite best-first beam trajectories that nexmirate at a goal node.
Tree structures are quite common in practice and it is often easy to tranaffinite search space
into a tree. The structured classification experiments of Ballhand Marcu (2005) and our own
automated experiments both involve tree structured spaces.

Theorem 14 Given a dead-end free training set of finite tree search spaces sucth#ratexists a
weight vector w with global margip> 0 and ||w|| = 1, LaSO-BST will converge with a consistent
weight vector after making no more théR/y)? weight updates.

The proof is similar to that of Theorem 12 except that the derivation of therlbound makes use
of the global margin and we must verify that the restriction to finite tree sesprabes guarantees
that each iteration of LaSO-BST will terminate with a goal node being readedvere unable to
show convergence for the original LaSO algorithm even under thergmns of this theorem.

In summary, this section has introduced three different notions of marggmcls margin, level
margin, and global margin. Both algorithms converge for a positive globajimavhich implies a
positive search margin and a positive level margin. For LaSO-BR, hiutat®O-BST, convergence
is guaranteed for a positive level margin, which implies a positive searchimarhis shows that
LaSO-BR converges under a strictly weaker notion of margin than LaSD+Rle to the fact that
the ranking decisions of breadth-first search are restricted to nodes same level of the search
space, as opposed to best-first search. This suggests that it mapefasier to define effective
feature spaces for the breadth-first paradigm. Finally, a positivelseaargin corresponds exactly
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to linear separability, but is not enough to guarantee convergencétier algorithm. This is in
contrast to results for linear classifier learning, where linear separainijiiies convergence of
perceptron updates.

4.4 Convergence for Ambiguous Training Data

Here we study convergence for linearly inseparable training datapdneskility is often the result
of training-data ambiguity, in the sense that many “good” solution paths drmciaded as tar-
get paths. For example, this is common in automated planning where there oaanbdnearly)
optimal solutions, many of which are inherently identical (e.g., differing in tlteeiongs of un-
related actions). It is usually impractical to include all solutions in the trainirig, d@hich can
make it infeasible to learn a ranking function that strictly prefers the taagbsmver the inherently
identical paths not included as targets. In these situations, the abovesnotiorargin will all be
negative. Here we consider the notiontefam marginhat allows for some amount of ambiguity,
or inseparability.

For each instancéS, R), whereS = (I;,s(-), f(-),<;) andR = (R 1,R2,...,R q), let D;; be
the set of nodes that can be reached search steps fromy. That is,Djj is the set of all possible
non-target nodes that could be in be&m. A beam margin is a tripl¢b’,d1,8,) whereb/' is a
non-negative integer, arid, 5, > 0.

Definition 15 (Beam Margin) A weight vector w has beam marg(l’,d;,8,) on a training set
{(S,R)}, ifforeach i there is a set [ C Djj such thaiDj;| < b’ and

W' e R j,ve Djj—Djj, w-f(v)—w-f(v) > & and,

W e PR j,veDj, 6 >w-f(v)—w-f(v)>—&.

A weight vectoiw has beam margifty, 81, 8,) if at each search depth it ranks the target nodes better
than most other non-target nodes (thosBiin— D{j) by a margin of at leasi;, and ranks at most
non-target nodes (thosemj) better than the target nodes by a margin no greaterdhavhenever
this condition is satisfied we are guaranteed that a beam search oftwidth guided byw will
solve all of the training problems. The case whire- 0 corresponds to the level margin, where
the data is separable. By allowilg> 0 we can consider cases where there is no “dominating”
weight vector that ranks all targets better than all non-targets at the seshellbe following result
shows that for a large enough beam width, which is dependent on therbaggin, LaSO-BR will
converge to a consistent solution.

Theorem 16 Given a dead-end free training set, if there exists a weight vector w with besagin
(b',81,8) and ||w|| = 1, then for any beam width b (1+,/31)b’ = b*, LaSO-BR will converge
with a consistent weight vector after making no more th@f5;)? (1- b*b—l)*2 weight updates.

Proof LetwK be the weights before tHéth mistake is made, so thaf = 0. Suppose that tHéth
mistake is made wheBN PR j = 0 whereB is the beam generated at degtlfor the ith training
instance. We can derive the upper boundwft1||? < kR as in the proof of Theorem 12.

Next we derive a lower bound om- WK1, Denote byB' C B the set of nodes in the beam such
thatd, > w- (f(v*) — f(v)) > —&; and letC’ = B j N C. By the definition of beam margin, we have
|B'| <Db.
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By induction, we get thawv- w<+1 > k! . Combining this result with the above upper
bound on|wk*1|| and the fact thaftw|| = 1 we get that m > VkE2D% The mistake
bound follows by noting that > b* and algebra.

Similar to Theorem 12, the dead-end free property of the training sehgigas that the mistake
bound is equal to the bound on the weight updates. |

b—/)8,—b/'&,
b

Note that when there is a positive level margin (iké 5 0), the mistake bound here reduces to
(R/31)?, which does not depend on the beam width and matches the result foalsiepdata. This
is also the behavior whem>> b*.

An interesting aspect of this result is that the mistake bound depends oedimevidth. Rather,
all of our previous convergence results were independent of the ivédth and held even for beam
width b = 1. Thus, those previous results did not provide any formalization of thé&iorthat
the learning problem will often become easier as the beam width increassgyivalently as the
amount of search increases. Indeed, in the extreme case of exhaestich, no learning is needed
at all, whereas fob = 1 the ranking function has little room for error.

To get a sense for the dependence on the beam width consider two extises®e As noted
above, for very large beam widths such that > b*, the bound becomedR/3;)%. On the other
extreme, if we assum® = 0, and we use the smallest possible beam width allowed by the theorem
b =20 + 1, then the bound becomé&b + 1)R/3;)?, which is a factor of 2b/ + 1)2 larger than
whenb >> b/. This shows that as we increasdi.e., the amount of search), the mistake bound
decreases, suggesting that learning becomes easier, agreeing withrintuitio

It is also possible to define an analog to the beam margin for best first $emch. However,
in order to guarantee convergence, the conditions on ambiguity woulddtieedo the global state
space, rather than local to each level of the search space.

5. Application to Automated Planning

In this section, we present an empirical evaluation of beam-search Igannine context of auto-
mated planning. We first give related background, followed by the teahdé&tails regarding our
application to automated planning. Then, we present the experimental results
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5.1 Background

Here we give background related to automated planning, the problenroingdo plan, and prior
related work in the area of learning to plan.

5.1.1 AUTOMATED PLANNING

Planning is a subfield of artificial intelligence that studies algorithms for setgstguences of
actions in order to achieve goals. In this work, we consider planning denaaith planning prob-
lems described using the STRIPS fragment of the planning domain descigtiguage (PDDL)
(McDermott, 1998), which we now outline.

A planning domain® defines a set of possible actioAsand a set of world state®’ in terms
of a set of predicate symbolR, action typesy, and constant€. A state fact is the application
of a predicate to the appropriate number of constants, with a state beingfestate facts. Each
actiona € A4 consists of: 1) an action name, which is an action type applied to the appeopria
number of constants, 2) a set of precondition state fact&aRr8) two sets of state facts Ada)
and De(a) representing the add and delete effects respectively. An aet®applicable to a world
statew iff Pre(a) C w, and the application of an (applicable) act®to w results in the new state
' = (w\ Del(a)) UAdd(a). That is, the application of an action adds the facts in the add list to the
state and deletes facts in the delete list.

Given a planning domain, a planning problem is a tufeA,g), whereA C 4 is a set of
actions,w € W is the initial state, and is a set of state facts representing the goal. A solution
plan for a planning problem is a sequence of acti@s. .., &), where the sequential application
of the sequence starting in stabdeads to a goal state’ whereg C «'. In this paper, we will view
planning problems as directed graphs where the vertices representatdtthe edges represent
possible state transitions. Planning then reduces to graph search fr faopa the initial state to
goal.

Figure 1 shows an example of the search space corresponding tdenpfodom the Blocksworld
planning domain. Here, the initial state is described by the facts

wp = {clear(A),clear(B),clear(C),clear(D),ontablgA),
ontablgB), ontabl€C),ontablgD),armempty.

An example action from the domain sckupA) with the following definition:

Pre(pickupA)) = {clear(A),ontabldA),armempty
Add(pickupgA)) = {holding/A)}
Del(pickupA)) = {clear(A),ontablgA),armempty.

Note that the precondition of this action is satisfiedognand hence can be applied frang, which
would result in the new state

wy = {holding(A), clear(B),clear(C), clear(D),ontabl&B), ontabl€C),ontableD)}.

If the goal of the planning problem = {on(C,D),on(B,A),clear(C),clear(B)}, then one solu-
tion for the problem, as shown in Figure 1, is the action sequguickupB), stackB, A), pickugC),
stackC,D)).
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There has been much recent progress in automated planning. One of shsuncessful ap-
proaches, and the one most relevant to this paper, is to solve plannibigmpsousing forward
state-space search guided by powerful domain-independent plaraunigtics. A number of recent
state-of-the-art planners have followed this approach including H8RgtBand Geffner, 1999), FF
(Hoffmann and Nebel, 2001), and AltAlt (Nguyen et al., 2002) to namegjdsiv.

5.1.2 LEARNING TO PLAN

It is common for planning systems to be asked to solve many problems frontieufardomain.
For example, the bi-annual international planning competition is organizethdra number of
planning domains and includes many problems of varying difficulty from eachmain. Given that
problems from the same domain share significant structure, it is naturaldgpattelearn from past
experience in a domain in order to solve future problems from the same domegnefficiently.
However, most state-of-the-art planning systems do not have anyearcing capability and rather
solve each problem from the domain as if it were the first problem eveuetered by the planner.
The goal of our work is to develop the capability for a planner to learn dosacific knowledge
in order to improve performance in a target domain of interest.

More specifically, we focus on developing learning capabilities within the sinfgoiehighly
successful, framework of heuristic state-space search planninggd@aliis to learn heuristics, or
ranking functions, that can quickly solve problems using beam searchavgthall beam width.
Given a representative training set of problems from a planning domairgpproach first solves
the problems using potentially expensive search (e.g., using a large bietin), yuided by an
existing heuristic. These solutions are then used to learn a heuristic thgtiickna small width
beam search to the same solutions. The hope is that the learned heuristiewijeheralize and
allow for the quick solution of new problems that could not be practically sbbhefore learning.

5.1.3 RRIORWORK

There has been a long history of work on learning-to-plan, originatimggat back to the original
STRIPS planner (Fikes et al., 1972), which learned triangle tables oromé#tat could later be
exploited by the planner. For a collection and survey of work on learnidg planning see Minton
(1993) and Zimmerman and Kambhampati (2003).

A number of learning-to-plan systems have been based on the explahatied{earning (EBL)
paradigm, for example, Minton et al. (1989) among many others. EBL is actied learning
approach, in the sense that the learned knowledge is provably cdbespite the relatively large
effortinvested in EBL research, the best approaches typically didorstistently lead to significant
gains, and even hurt performance in many cases. A primary way thatBEBburt performance is
by learning too many, overly specific control rules, which results in thenglaspending too much
time simply evaluating the rules at the cost of reducing the number of seadels nonsidered. This
problem is commonly referred to as the EBL utility problem (Minton, 1988).

Partly in response to the difficulties associated with EBL-based appradtisee have been a
number of systems based on inductive learning, sometimes combined with BBlinductive ap-
proach involves applying statistical learning mechanisms in order to find corpatterns that can
distinguish between good and bad search decisions. Unlike EBL, theeteaomtrol knowledge
typical does not have guarantees of correctness, however, thdddge is typically more gen-
eral and hence more effective in practice. Some representative exaaf@ach systems include
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learning for partial-order planning (Estlin and Mooney, 1996), learfdmglanning as satisfiabil-
ity (Huang et al., 2000), and learning for the Prodigy means-ends frarkeiiler et al., 2002).
While these systems typically showed better scalability than their EBL countgriyee evaluations
were typically conducted on only a small number of planning domains and/dk remnaber of test
problems. There is no empirical evidence that such systems are robusfheto compete against
state-of-the-art non-learning planners across a wide range of demain

More recently there have been several learning-to-plan systemsdmatisglidea of learning re-
active policies for planning domains (Khardon, 1999; Martin and Gef2@00; Yoon et al., 2002).
These approaches use statistical learning techniques to learn policfasctions, that map any
state-goal pair from a given domain to an appropriate action. Givendrgaative policy for a do-
main, problems can be solved quickly, without search, by iterative applicatitne policy. Despite
its simplicity, this approach has demonstrated considerable success. étpihmse approaches
have still not demonstrated the robustness necessary to outperforrofstia¢eart non-learning
planners across a wide range of domains.

More closely related is work by La Rosa et al. (2007), which uses alwased reasoning ap-
proach to obtained an improved heuristic for forward state-spacehsdtig likely that our weight
learning approach could be combined with their system to harness thetbenéivth approaches.
The most closely related approach to our work is based on extendingribistate-space search
planners by learning improved heuristics (Yoon et al., 2006), an apprwhich is among the state-
of-the-art among learning-based planners. That work focused amwng the relaxed plan length
heuristic used by the state-of-the-art planner FF (Hoffmann and N2B@1,). Note that FF con-
sists of two stages: an incomplete local search and a complete best fickt. dagparticular, Yoon
et al. (2006) applied linear regression to learn an approximation of thereliife between FF's
heuristic and the observed distances-to-goal of states in the training glaagrimary contribu-
tion of the work was to define a generic knowledge representation fiuréssand a features-search
procedure that allowed learning of good regression functions aaromsge of planning domains.
While the approach showed promising results, the learning mechanism hasbemof potential
shortcomings. Most importantly, the mechanism does not consider the aearah performance
of the heuristic during learning. That is, learning is based purely onoappating the observed
distances-to-goal in the training data. Even if the learned heuristic pesfpoorly on the training
data when used for search, the learner makes no attempt to correctitigitié response.

A primary motivation for this paper is to develop a heuristic learning mechaniatrigimore
tightly integrated with the search process. Our LaSO-style algorithms farifgabeam-search
ranking functions do exactly that. Our learning approach can be viesvedar-driven in the sense
that it directly attempts to correct errors as they arise in the search proatger than attempting to
precisely model the distance-to-goal. In many areas of machine learngigesor-driven methods
have been observed to outperform their traditional passive courtergde experimental results
presented here agree with that observation in a number of planning domains

5.2 Experimental Setup

We present experiments in eight STRIPS domains: Blocksworld, PipkEkwRipesworld-with-
tankage, PSR, Philosopher, DriverLog, Depots and FreeCell. Allesfetlilomains with the excep-
tion of Blocksworld were taken from the 3rd and 4th international plannimypetitions (IPC3 and
IPC4). With only two exceptions, this is the same set of domains used to evtdieapproach of
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Yoon et al. (2006), which is the only prior work that we are aware ofdarning heuristics to im-
prove forward state-space search in automated planning. The ddéebetween our set of domains
and theirs is that we include Blocksworld, while they did not, and we do ndidecthe Optical
Telegraph domain, while they did. Our reason for not showing resul®tical Telegraph is that
none of the systems we evaluated were able to solve any of the problems.

5.2.1 DOMAIN PROBLEM SETS

For each domain we needed to create a set of training problems and tesbiepmws@n which the
learned heuristics would be trained and evaluated. In Blocksworld,ailgms were generated us-
ing the BWSTATES generator (Slaney and &éux, 2001), which produces random Blocksworld
problems. Thirty problems with 10 or 20 blocks were used as training dad&3@problems with
20, 30, or 40 blocks were used for testing. For DriverLog, DepotsFaeeCell, the first 20 prob-
lems are taken from IPC3 and we generated 30 more problems of varyfiogltjfto arrive at a
set of 50 problems, roughly ordered by difficulty. For each domain, segl the first 15 problems
for training and the remaining 35 for testing. The other four domains arekalhtimom IPC4. Each
domain includes 50 or 48 problems, roughly ordered by difficulty. In easle, we used the first 15
problems for training and the remaining problems for testing.

5.2.2 SARCH SPACE DEFINITION

We now describe the mapping between the planning problem describedtiorSed.1 and the
general search spaces described in Section 2, which were the badésfoibing our algorithms.
Recall that a general search space is a tupk&-), f(-), <) giving the initial state, successor func-
tion, feature function, and preference ordering respectively. Icdinéext of planning each search
node is a state-goal pdiw, g), wherew can be thought of as the current world states the current
goal, and both are represented as sets of facts. Note that it is importambdies contain both state
and goal information, rather than just state information, since the evaluatidirig of a search
node depends on how goeodlis with respect to the particular gogl The initial search nodkis
equal to(wyp, ), wherewy is the initial state of the planning problem agds the problem’s goal.
The successor functimaps a search node, g) to the set of all nodes of the forfy, g) where

W is a state that can be reached franvia the application of some action whose preconditions are
satisfied inw. Note that according to this definition all nodes in a search space contasarie
goal component. The feature functiéf(w,g)) = (f1((w,9)),..., fm((®w,9))) can be any function
over world states and goals. The particular functions we use in this weréescribe later in this
section. Finally, the preference orderirgis simply the default ordering used by the planner FF,
which is the planner our implementation is based on.

5.2.3 TRAINING DATA GENERATION

The LaSO-style algorithms learn from target solution paths, which reqthieésve generate solu-
tion plans for all of the training problems. To do this, for each training prablee selected the
shortest plan out of those found by running the planner FF and besnchsgith various large beam

1. The results in Yoon et al. (2006) indicated that their linear regressammifgy method was effective in Optical
Telescope. Our implementation of linear regression, however, wasleut@ solve any of the problems. After
investigating this difference, we found that it is due to a subtle differen¢berway that ties are broken during
forward state-space search, indicating that the linear regressionaneétsonot particularly robust in this domain.
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widths guided by FF’s relaxed-plan heuristic. The resulting plans are tatalgred sequences of
actions and one could simply label each training problem by its corresposedugnce of actions.
However, in many cases, it is possible to produce equivalent plangimutieg the order of certain
actions in the totally ordered plans. That is, there are usually many othieaksmu totally ordered
plans. Thus, including only the single plan found via the above approdble inaining data results
in significant ambiguity in the sense described in Section 4.4.

In order to help reduce the ambiguity it is desirable to try to include as manyadeni plans
as possible as part of the target plan set for a particular problem. Tasjaontstead of using just
a single totally ordered solution plan in the training data for each problem, wafdran each such
totally ordered plan into a partial-order plan, which contains the same setiohs but only in-
cludes action-ordering constraints that appear to be necessary. d-imafirmal partial-order plans
from total-order plans is an NP-hard problem and hence we use thistieatgorithm described
in Veloso et al. (1991). For each training problem, the resulting partiargrthn provides an im-
plicit representation for a potentially exponentially large set of solution t@jes. By using these
partial-order plans as the labels for our training problems we can sigrlficaduce the ambiguity
in the training data. In preliminary experiments, the performance of ouritepaigorithms im-
proved in a number of domains when using training data that included thelqmaidé plans rather
than the original total-order plans.

5.2.4 HEURISTIC REPRESENTATION ANDDOMAIN FEATURES

We consider learning heuristic functions that are represented as weigigar combinations of
features, thatidil (v) = Zijw; - fj(v) wherev is a search nodd; is a feature of search nodes, amds

the weight of featurd;. One of the challenges with this representation is to define a generic feature
space from which features can be selected for each domain. This spestée rich enough to
capture important properties of a wide range of planning domains, but@ksmenable to searching

for those properties. For this purpose we will draw on prior work Yobal e(2008) that defined
such a feature space using a first-order language.

Each feature in the above space is defined by a taxonomic class expyegsich represents a
set of constants/objects in the planning domain. For example, a simple taxorassi@xpression
for the Blocksworld planning domain @ear, which represents the set of blocks that are currently
clear, that is, the set of blockssuch thatlear(x) € wwhere the current search noderis: (w,g).

The respective feature value represented by a class expressiols tthe cardinality of the class
expression when evaluated at a search node. For example, if iigbetthe feature represented
by the class expressiariear then f1((w,g)) is simply the number of clear blocks . So in the
example states from Section 5.1f1(vg) = f1((wo,9)) =4 andfi(v1) = f1((w,9)) = 3. A more
complex example for this problemdsearn gclear, which represents the set of blocks that are clear
in both the current state and the goal, that is, the set containing anyso&ath thatlear(x) € w
andclear(x) € g. If f, represents the feature corresponding to this expression then in thelexamp
states from 5.1.1 we get thét(vp) = 2 andf(vy) = 2.

Since our work in this paper is focused on weight learning, we refer tmd al. (2008) for the
full definition of the taxonomic feature language. Here we simply use a gakohomic features
that have been automatically learned in prior work (Yoon et al., 2008) areltheir weights. In
our experiments, this prior work gave us 15 features in Blocksworlde8fufes in Pipesworld, 11
features in Pipesworld-with-tankage, 54 features in PSR, 19 featuRdslosopher, 22 features in
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DriverLog, 3 features in Depot and 3 features in FreeCell. In allase include FF's relaxed-
plan-length heuristic as an additional feature.

5.3 Experimental Results

For each domain, we use LaSO-BR to learn weights with a learning rate ofdd.béam widths 1,
10, 50, and 100 and we will denote LaSO-BR run with beam wldily LaSO-BR,. The maximum
number of LaSO-BR iterations was set to 5000. In the evaluation proegdarset a time cut-off of
30 CPU minutes per problem and considered a problem to be unsolvediitiisevas not found
within the cut-off.

In preliminary work, we also tried to apply LaSO-BST to our problems. Hawethis turned
out to be an impractical approach due to the large potential search défites@problems. In par-
ticular, we found that in many cases LaSO-BST would become stuck gingdsaining examples,
in the sense that it would neither update the weights nor make progress sp#cteo following
the target trajectories. This typically occurred because LaSO-BST woaidtain an early target
node in the beam and thus not trigger a weight update, but at the same tiftensbprogress to
include deeper nodes on the target trajectories and instead explorefidtiestarget trajectories.
To help remedy this behavior, we experimented with a variant of LaSO-B&Tfdhces progress
along the target trajectories after a specified number of search stegheMIocksworld planning
domain and preliminary experiments in the other domains, we found that tHesreswded to im-
prove compared to the original LaSO-BST, but still were not competitive Wat®BO-BR. Thus for
the experiments reported below we focus on LaSO-BR.

Note that the experiments in Da@émil and Marcu (2005) for structured classification produced
good results using an algorithm very similar to LaSO-BST. There, howthesearch spaces have
small maximum depths (e.g., the length of a sentence), which apparently helpeaid the prob-
lem we experienced here.

5.3.1 TRAINING TIME

Figure 11 gives the average training time required by LaSO-BR per iteliat@ach of our domains
for four different beam widths. Note that Pipesworld was the only domairwhich LaSO-BR
converged to a consistent weight vector using a learning beam width A@Oall other training
sets LaSO-BR never converged and thus terminated after 5000 iteraflomstaining time varies
widely across the domains and depends on various factors including:enwhfeatures, number
of actions, number of state predicates, and the number and length ofttajgetories per training
example. As expected the training times increase with the training beam widsalbeodomains.
Itis difficult, however, to predict the relative times between different dasdue to the complicated
interactions among the above factors. Note that while these training times sgmlifieant in many
domains, the cost of training needs to only be paid once and then it is amedtaner all future
problems. Furthermore, as we can observe later in the experimental rassrtgll beam width of
10 typically performs as well as larger widths.

5.3.2 DESCRIPTION OFTABLES

Before presenting our results we will first provide an overview of therimfation contained in our
results tables. Figure 12 compares the performance of LaS{gBRhree other algorithms,
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Domain b=1|b=10| b=50| b=100
Blocksworld 3 15 66 128
Pipesworld 1 4 13 24
Pipesworld-with-tankage 3 17 76 149
PSR 53 127 403 690
Philosopher 3 24 121 260
DriverLog 1 5 22 44
Depots 5 32 160 320
FreeCell 10 68 315 654

Figure 11: The average training time required by LaSO-BR per iteratioalftraining instances
(seconds).

e LEN : beam search using FF’s relaxed plan length heuristic
e U : beam search using a heuristic with uniform weights for all features

e LR : beam search using the heuristic learned from linear regressiowioidhe approach in
Yoon et al. (2006).

We selected LaSO-Bf3 here because its performance is on par or better than other training beam
widths. Note that in practice one could select the best beam width to usegs\alidation with a
validation set of problems.

There is one table for each of our domains and each column in the tables ledlddyethe
algorithm used to generate the results. The rows correspond to the bed#mused to generate
the results on the testing problems, with the last row corresponding to udinzeft-first search
(BFS) with an infinite beam width, which is the native search procedure lms&F. The columns
are divided into three sets. The first four data columns labeled “Probleweds give the number
of problems solved using the testing beam width corresponding to the rogrevéhproblem is
considered solved if a solution is found within 30 minutes. The second sailomns labeled
“Median plan length” gives the median length of solutions to the planning probldat were
solved. The last 4 columns labeled “Median runtime ” give the median runtimaabf golver on
the problems it solved. So, for example, the table shows that the heuristiedean LaSO-BR
solves 26 Blocksworld test problems with a median solution length of 139 andlemmeintime
of 58.8 seconds using a testing beam width of 50, and solved 19 problema wmigldian solution
length of 142 and a median runtime of 20.9 seconds using BFS.

Figure 13 is similar in structure to Figure 12 but compares the performareudstics learned
using LaSO-BR with a variety of training beam widths and evaluated usindetyaf testing beam
widths. Only the number of problems solved and the median length of solutiareréhound are
considered here. For example, the upper left-most data point givesitiigen of problems solved
using a learning beam width of 1 and a testing beam width of 1, while the fitist enthe last
column gives the median plan length of solved problems when learning with tédtin 100 and
testing with beam width 1.
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Blocksworld
Problems solved Median plan length Median runtime (seconds)
b LEN U [R | LaSO-BRg | LEN U LR L[aSO-BRg | LEN U R LaSO-BRg
1 13 0 11 24 3318 - 938 499 12.3 - 3.4 45
10 22 0 19 24 449 - 120 293 15.9 - 9.9 25.1
50 20 0 19 26 228 - 64 139 37.5 - 10.4 58.8
100 19 0 20 24 110 - 67 144 52.0 - 42.8 110.3
500 17 0 23 17 80 - 74 96 74.2 - 379.1 133.2
BFS 5 0 13 19 80 - 76 142 3.7 - 18.0 20.9
Pipesworld
Problems solved Median plan length Median runtime (seconds)
b LEN U LR LaSO-BR|o LEN U LR LaSO-BRg LEN Y] LR LaSO-BRg
1 11 13 8 16 114 651 2476 2853 0.6 3.2 21.7 17.8
10 17 17 21 23 112 360 194 222 15.6 13.2 10.2 15.8
50 18 19 21 26 34 167 89 80 9.4 42.8 25.5 27.8
100 18 16 21 24 32 39 60 62 19.7 12.0 23.3 39.3
500 21 18 21 25 30 33 31 53 62.9 58.3 101.8 95.1
BFS 15 7 7 15 44 54 42 54 35.5 1.1 3.1 1.3
Pipesworld-with-tankage
Problems solved Median plan length Median runtime (seconds)
b LEN U [R | LaSO-BRgy | LEN U LR [aSO-BRg | LEN U R LaSO-BRg
1 6 4 2 7 119 416 1678 291 8.0 18.2 92.1 8.4
10 6 8 9 8 68 603 399 117 70.2 256.5 | 125.6 33.4
50 6 5 6 11 61 111 94 122 3584 | 281.4 | 186.1 116.3
100 5 4 5 8 54 105 43 55 482.4 279.4 255.5 190.6
500 5 6 4 10 42 97 41 76 938.5 586.1 210.7 492.0
BFS 5 3 2 3 59 60 126 100 431.2 17.1 935.7 22.0
PSR
Problems solved Median plan length Median runtime (seconds)
b LEN U LR LaSO-BRyg LEN U LR LaSO-BRg LEN U LR LaSO-BRyg
1 0 0 0 0 - - - - - - - -
10 1 20 13 13 516 157 151 193 840.1 367.9 186.6 492.4
50 13 17 16 10 99 109 99 97 685.3 658.2 890.4 802.4
100 13 15 13 6 103 89 89 85 999.4 1121.9 1215.0 643.1
500 4 4 2 1 55 59 48 39 1035.6 | 1157.6 689.1 423.9
BFS 13 0 21 21 89 - 131 141 686.7 - 290.8 526.0
Philosopher
Problems solved Median plan length Median runtime (seconds)
b LEN U LR | LaSO-BRg | LEN U LR LaSO-BRg | LEN U LR LaSO-BRg
1 0 33 33 33 - 363 | 363 363 - 12.5 18.1 13.3
10 0 33 33 11 - 363 363 1154 - 121.3 171.0 101.3
50 0 6 23 13 - 215 308 1579 - 77.6 387.4 825.1
100 0 16 18 6 - 292 | 281 1076 - 489.0 | 507.6 911.1
500 0 7 7 2 - 220 | 220 745 - 792.3 | 844.6 1280.7
BFS 0 33 33 0 - 363 | 363 - - 9.5 329.8 -
DriverLog
Problems solved Median plan length Median runtime (seconds)
b LEN U [R | LaSO-BRg | LEN U LR | LaSO-BRg LEN U [R | LaSO-BRg
1 0 0 0 8 - - - 6801 - - - 364.2
10 3 0 0 12 789 - - 1439 967.8 - - 781.3
50 4 8 0 12 108 177 - 541 1199.3 457.6 - 998.5
100 1 11 0 11 98 147 - 275 1398.9 737.9 - 1131.6
500 0 3 0 1 - 86 - 94 - 1780.2 - 1237.1
BFS 6 2 0 1 162 181 - 138 1249.7 555.5 - 125.4
Depots
Problems solved Median plan length Median runtime (seconds)
b LEN U LR LaSO-BR|g LEN U LR LaSO-BRg LEN U LR LaSO-BRo
1 1 1 2 3 462 790 411 790 3.9 6.5 3.8 6.7
10 4 1 4 6 195 28 981 3295 38.7 2.4 93.1 594.8
50 3 4 5 6 25 511 51 467 22.4 912.8 17.3 156.0
100 4 7 3 7 232 157 26 207 554.9 669.4 45.6 189.9
500 5 4 6 11 38 62 39 53 274.2 351.2 422.7 477.8
BFS 2 2 3 2 46 48 33 48 292.4 | 809.3 14.2 386.8
FreeCell
Problems solved Median plan length Median runtime (seconds)
b LEN U [R | LaSO-BRgy | LEN U [R | LaSO-BRyg LEN U LR LaSO-BRg
1 5 7 4 9 96 120 146 123 12.2 215 13.8 14.0
10 20 22 19 21 82 117 | 243 89 99.7 165.2 305.2 91.9
50 23 24 12 19 65 73 102 66 456.2 503.4 619.0 367.9
100 20 18 7 21 65 63 70 65 723.5 720.9 673.4 796.1
500 3 3 2 4 53 55 59 55 1400.0 1418.8 1518.5 1431.8
BFS 23 20 12 20 78 87 111 97 102.1 77.9 238.4 92.3

Figure 12: Experimental results for different planners. For each agme show the number of
solved problems, the median plan length and median runtime of the solved proBlems
dash in the table indicates that the planner was unable to solve any of therpsob
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5.3.3 EERFORMANCEACROSSTESTING BEAM WIDTHS

From Figure 12, in general, for all algorithms (learning and non-leajniuggsee that as the testing
beam width begins to increase the number of solved problems and runtimaseaed solution
lengths improve. However, at some point as the beam width continues t@sectee number
of solved problems typically decreases. This behavior is typical for b&sanch, since as the
testing beam width increases there is a greater chance of not prunihgfiarstrajectory, but the
computational time and memory demands increase. Thus, for a fixed time cueakpect a
decrease in performance as the beam width becomes large.

The median runtime typically increases as the test beam width increasessdecare search
nodes need to be evaluated. However, it is not always the case. Tigenof search nodes that
are going to be evaluated also depends on the plan length. For examplepsihgeLEN in the
Depots planning domain, the median runtime of beam width 50 is smaller than theamfwidth
10, because the median plan length improves from 195 to 25. Also note thabitriecessarily true
that the plan lengths are strictly non-increasing with testing beam width. Wita tegging beam
widths the number of candidates for the next beam increases, making it mayefdikthe heuristic
to get confused by “bad” states. This is also one possible reason wioyrmance tends to decrease
with larger testing beam widths.

5.3.4 LASO-BRjg VERSUSNO LEARNING

From Figure 12, we see that compared to LEN, the heuristic learned y-B&%g tends to signif-
icantly improve the performance of beam search, especially for small ivgtims. For example, in
Blocksworld with beam width 1, LaSO-BRR solves almost twice as many problems as LEN. The
median plan length has also been reduced significantly for beam width 1.eAset#im width in-
creases the gap between LaSO:1BBnd LEN decreases but LaSO-gfstill solves more problems
with comparable solution quality. In Pipesworld, LaSO4BRas the best performance gap with
beam width 50, solving 8 more problems than LEN. As the beam width increzgais the perfor-
mance gap decreases, but LaSOrB€dnsistently solves more problems than LEN. In this domain,
the median plan lengths of LEN tend to be better, though a direct comparisbes# lengths is
not exactly fair since LaSO-Bf3 solves more problems, which are often the harder problems that
result in longer plans. The trends with respect to number of solved pnsldee similar in other
domains, with the exception of PSR and FreeCell. In PSR, LEN solves slightly pnoblems than
LaSO-BRg at large beam widths. In FreeCell, LaSO-B#s better than LEN for most case except
for beam width 50.

These results show that LaSO-BRs able to learn heuristics that significantly improve on
the state-of-the-art heuristic LEN when using beam search. In dettezebest performance was
achieved for small beam widths close to those used for training, which efibiah in terms of
time and memory efficiency. Note that in practice one could use a validatiorf pedl@ems in
order to select the best combination of training beam width and testing beat feida given
domain. This is particularly natural in our current setting where our gdalgerform well relative
to problems drawn from a given problem generator, in which case weasily draw both training
and evaluation problem sets.
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5.3.5 GOMPARING LASO-BRjg WITH LINEAR REGRESSION

To compare with prior passive heuristic learning work we learned weiditg linear regression
following the approach of Yoon et al. (2006). To our knowledge this istilg previous system that
addresses the heuristic learning problem in the context of forwardsatee search in automated
planning. In these experiments we used the linear regression tool avaitatge\Weka. The results
for the resulting learned linear-regression heuristics are shown in blinees labeled LR in Figure
12.

For Blocksworld, LR solves fewer problems than LaSO:BRith beam widths smaller than
500 but solves more problems than LaSO:BRith beam width 500. The median plan length
tends to favor LR except for the smallest beam widlth 1. For Pipesworld, DriverLog and Depots,
LaSO-BR always solves more problems than LR, with plan length again favoring LRrjonea
degrees. In Pipesworld-with-tankage, LaSO:BR better than LR for most case except for beam
width 10, solving one less problem. In PSR and Philosopher, LR outperfba8®-BR but
LaSO-BR achieves a comparable performance with small beam widths. In FreeCa-B&, o
always solves more problems than LR with improved plan length.

These results indicate that error-driven learning can significantly ingposer prior passive
learning (here regression) in a number of domains. Indeed, theramsgpede utility in integrating
the learning process directly in the search procedure. However,dtksralso indicate that in some
cases our current error-driven training method can fail to converggood solution in cases where
regression happens to work well.

5.3.6 BFECTS OFLEARNING BEAM WIDTH

Figure 13 compares the performance of LaSO-BR with different leadméagn widths. For most
domains, the performance doesn’t change much as the learning beamchadites. Even with
learning beam width 1, LaSO-BR can often achieve performance onitratanger learning beam
widths. For example, in Blocksworld, LaSO-BResults in the best performance at most testing
beam widths except for beam width 500. For the other domains, LaSf@tibtcally is close to the
performance of the best learning beam width. In a number of case®wiesdd aSO-BR, performs
significantly better than LaSO-BR, which suggests that learning with smaller beam widths can
have some practical advantages. One reason for this might be due toditieradl ambiguity
in the weight updates when using larger beam widths. In particular, thehtwgiglate equations
involve averages of all target and non-target nodes in the beams.ffEhedd this averaging is to
effectively mix the feature vectors of large numbers of search nodesht®g In many cases there
will be a wide variety of non-target nodes in the beam, and this mixing caraserthe difficulty of
uncovering key patterns, which we conjecture might increase the reggrts on training iterations
and examples. In cases where the features are rich enough to ssygme$sful beam search with
small width, it is then likely that learning with smaller widths will be better given adimember of
iterations and examples. Note that the feature space we have used in thisasdreen previously
demonstrated (Fern et al., 2006) to be particularly well suited to Blocksyaehidh is perhaps one
reason thab = 1 performed so well in that domain.

Finally note that contrary to what we originally expected it is not typically theedhat the best
performance for a particular testing beam width is achieved when learrithghat same beam
width. Rather the relationship between learning and testing beam widths is quitible. Note
that for most domains LaSO-BR never converged to a consistent weagtdnin our experiments,
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indicating that either the features were not powerful enough for demsig or the learning beam
widths and/or number of iterations needed to be increased. In such ttesess no clear technical
reason to expect the best testing beam width to match the learning beam whdis. iff general,
we suggest the use of validation sets to select the best pair of learnirigsdimgy beam widths for

a particular domain. Note that the lack of relationship between learning atnloet@s width is in
contrast to that observed in Daértl and Marcu (2005) for structured classification, where there
appeared to be a small advantage to training and testing using the same width.

5.3.7 BESTFIRST SEARCH RESULTS

While our heuristic was learned for the purpose of controlling beam lse@aconducted one more
experiment in each domain where we used the heuristics to guide Best EasthPBFS. We
include these results primarily because BFS was the search proceddrmwevaluate LR in Yoon
et al. (2006) and is the native search strategy used By TFfese results are shown in the bottom
row of each table in Figure 12 and 13.

In Blocksworld, Pipesworld, PSR, LaSO-BRRwas as good or better than the other three al-
gorithms. Especially in Blocksworld, LaSO-BiRsolves 19 problems while LEN only solves 5
problems. In Philosopher, neither LEN nor LaSO-BRolves any problem. LEN is the best in
Pipesworld-with-tankage, DriverLog and FreeCell, and LR worksibd3epots. But for Pipesworld-
with-tankage, Depots and FreeCell, the performance of LaS@rBRery close to the best planner.

These results indicate that the advantage of error-driven learningregeession is not just
restricted to beam search, but appears to extend to other searcla@mso That is, by learning
in the context of beam search it is possible to extract problem solvingniafibon that is useful in
other contexts.

5.3.8 R.AN LENGTH

LaSO-BR can significantly improve success rate at small beam widths, weharte of our main
goals. However, the plan lengths at small widths are quite suboptimal, whichitaltyf beam
search. Ideally we would like to obtain these success rates without payirigesin plan length.
We are currently investigating ways to improve LaSO-BR in this direction. Keweve note that
typically one of the primary difficulties of automated planning is to simply find a pathea@tal.
After finding such a path, if it is significantly sub-optimal, incomplete plan aigtyplan rewriting
rules can be used to significantly prune the plan, for example, see Ambit€2&G0). Thus, despite
the long plan lengths, the improved success rate of LaSO-BR at small bieiins would provide a
good starting point for a fast plan length optimization.

6. Summary and Future Work

This paper presented a detailed study of the problem of learning rankietidns for beam search
with an application to automated planning. On the theoretical side we first sthéiedmputational
complexity of this learning problem, highlighting the main dimensions of complexity étifying
core tractable and intractable subclasses. Next, we studied the coreegjeecent online learning
algorithms for this problem. The results clarified convergence issueectiog and extending

2. FF actually uses two search strategies. In the first state it uses arpietesirategy called enforced hill climbing.
If that initial search does not find a solution then a best-first searcmdunted.
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Blocksworld
Problems solved Median plan length
b [aSO-BR | LaSO-BRp | LaSO-BRy | LaSO-BRgy | LaSO-BR | LaSO-BRg | LaSO-BRg | LaSO-BRgg
1 27 24 18 13 840 499 92 314
10 27 24 20 19 206 293 96 150
50 27 26 23 24 180 139 72 82
100 25 24 23 23 236 144 72 86
500 23 17 19 24 122 96 62 77
BFS 21 19 18 17 116 142 73 124
Pipesworld
Problems solved Median plan length
b LaSO-BR. LaSO-BRyo LaSO-BRyg LaSO-BR oo LaSO-BR. LaSO-BRyo LaSO-BRyg LaSO-BR oo
1 16 16 21 15 1803 2853 1403 6958
10 25 23 23 21 227 222 179 270
50 25 26 25 22 74 80 119 75
100 27 24 23 22 146 62 104 47
500 23 25 20 21 60 53 61 37
BFS 14 15 13 8 59 54 103 42
Pipesworld-with-tankage
Problems solved Median plan length
b LaSO-BR. LaSO-BRp LaSO-BRy LaSO-BR g LaSO-BR. LaSO-BRp LaSO-BRy LaSO-BR g
1 5 7 2 7 55 291 197 300
10 8 8 8 10 103 117 68 77
50 9 11 8 9 48 122 37 42
100 8 8 10 10 53 55 122 55
500 9 10 5 10 30 76 39 96
BFS 6 3 4 6 48 100 70 63
PSR
Problems solved Median plan length
b [aSO-BR. | LaSO-BRg | LaSO-BRyp | LaSO-BRgg | LaSO-BR | LaSO-BRp | LaSO-BRyg | LaSO-BRigg
1 0 0 0 0 - - - -
10 12 13 3 14 182 193 550 205
50 6 10 16 17 75 97 126 129
100 3 6 10 13 82 85 113 86
500 2 1 4 4 61 39 58 64
BFS 19 21 3 25 164 141 170 142
Philosopher
Problems solved Median plan length
b [aSO-BR. | LaSO-BRg | LaSO-BRyp | LaSO-BRgg | LaSO-BR | LaSO-BRp | LaSO-BRyg | LaSO-BRio
1 6 33 33 0 589 363 363 -
10 19 11 1 1 319 1154 451 1618
50 13 13 2 2 297 1579 1023 855
100 9 6 5 1 253 1076 255 1250
500 4 2 2 0 226 745 253 -
BFS 0 0 0 0 - - - -
DriverLog
Problems solved Median plan length
b [aSO-BR | LaSO-BRp | LaSO-BRy | LaSO-BRgy | LaSO-BR | LaSO-BRg | LaSO-BRg | LaSO-BRgg
1 0 8 0 3 - 6801 - 4329
10 5 12 2 7 1227 1439 1061 435
50 0 12 1 1 - 541 129 136
100 0 11 0 1 - 275 - 98
500 0 1 0 0 - 94 - -
BFS 1 1 0 2 154 138 - 332
Depots
Problems solved Median plan length
b LaSO-BR. LaSO-BR|o LaSO-BRyg LaSO-BR oo LaSO-BR. LaSO-BR|o LaSO-BRyg LaSO-BR oo
1 4 3 2 2 1526 790 588 588
10 5 6 7 6 3259 3295 2042 715
50 2 6 7 3 517 467 707 392
100 4 7 6 5 43 207 147 54
500 6 11 11 5 47 53 53 38
BFS 4 2 2 2 106 48 48 48
FreeCell
Problems solved Median plan length
b LaSO-BR. LaSO-BRp LaSO-BRy LaSO-BR g LaSO-BR. LaSO-BRp LaSO-BRy LaSO-BR g
1 7 9 5 5 132 123 125 133
10 23 21 23 19 89 89 85 71
50 25 19 24 24 69 66 68 68
100 24 21 22 28 68 65 65 72
500 19 4 21 19 61 55 62 61
BFS 23 20 27 25 104 97 104 104

Figure 13: Experimental results for various learning beam widths. Fdr éamain, we show the
number of solved problems and the median plan length of the solved probledashA
in the table indicates that the planner was unable to solve any of the problems.
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previous results. This included an analysis of convergence given amisdraining data, giving a
result that highlights the trade-off between the amount of allowed seactkha difficulty of the
resulting learning problem. Our experiments in the domain of automated plarirongd that the
approach has benefits compared to existing learning and non-learnieégtaee search planners.
These results complement the positive empirical results in structured clatssifi(Daung 111 and
Marcu, 2005) showing the general utility of the method.

In future work, we plan to extend the algorithms described here to allowefdufe induction
and more robust parameter estimation. We are also interested in studyirigdgarthe context
of search for other search strategies such as best-first and kisbesearch. In our initial inves-
tigations, we have found that the LaSO-style approach for these stsatesgegreat difficulty in
automated planning due to the very large depths of the search spaceds,mdikes it difficult to
“assign credit” to search errors. This suggests that a key aspeotusé fwork is to understand
general credit-assignment mechanisms in the context of error-drigeming for search. Another
important direction is to consider the application of these methods to new pratderains, in
particular we are interested in more complex planning domains that includeroemcy durative
actions, and uncertainty. It will also be interesting to consider learningissarch heuristics for
other search-based formulations of planning such as partial-orderipdewwhere the search is con-
ducted directly in the space of partial-order plans.
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Appendix A. Relation to Structured Classification

This Appendix assumes that the reader is familiar with the material in Section &.le@ming
framework introduced in Section 2.2 is motivated by automated planning, withbjeetive of
finding a goal node. It is important to note that the learning objective dotgslace a constraint on
the rank of a goal node in the final beam compared to non-goal noatestber only requires that
there exists some goal node in the final beam. This is a natural formulatiantimmated planning
where when solving test problems it is easy to test each beam to determitteendogoal node has
been uncovered and to return a solution trajectory if one has. Thusxaleceadering of the goal
node in the final beam is not important with respect to finding solutions to iplgfqumoblems.

In contrast, as described in the example at the end of Section 2.2, the foomwafstructured
classification as a search problem appears to require that we do pdipatterihe rank of the goal
nodes in the final beam. In particular, the formulation of Dauthand Marcu (2005) requires the
goal node to not only be contained in the final beam, but to be ranked higreany other terminal
node in the beam.

Since our formulation of the beam-search learning problem does natraonthe ranking of
goal nodes relative to other nodes, it is not immediately clear how our fotimulelates to struc-
tured classification. It turns out that these two formulations are polynomiallivalent, meaning
that there is a polynomial reduction from each problem to the other. Thisgqdissible to compile
away the explicit requirement that goal nodes have the highest rank fimtéhéeam.
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Below we adapt the definitions of the learning problems in Section 2.2 fortgteatclassi-
fication. First, we introduce the notion of terminal node, which can be thooigas a possible
solution to be returned by a structured classification algorithm, for examiidl, parse tree for
a sentence. We will denote the set of all terminal node% and will assume a polynomial time
test for determining whether a node is in this set. Note that some terminal nodespond to
target solutions and others do not. When using beam search for strdiclassification the search
is halted whenever a terminal node becomes highest ranked in the beamegpath leading to
that terminal node is returned as the solution. Thus, successful leamisigensure both that no
non-target terminal node ever becomes ranked first in any beam anthatseventually a target
terminal node does become ranked first. This motivation leads to the followiingttbns for the
breadth-first and best-first structured classification problems. Beigen the context of a weight
vectorw, we will denote the highest ranked node relativevtim a bearrB by BV,

Definition 17 (Breadth-First Structured Classification) Given the input({(S,R)},b), where b

is a positive integer andiP= (R, o,..., R 4), the breadth-first structured classification problem asks
us to decide whether there is a weight vector w such that for eacth& corresponding beam
trajectory (B, .. .,Bid), produced using w with a beam width of b, satisfiesBP j # 0 for each

8 Bl(t,) €PRg, and E‘;lj) ¢ T for j <d?

Definition 18 (Best-First Structured Classification) Given the input{(S,R)},b), where b is a
positive integer andP= (R o,...,R 4), the best-first structured classification problem asks us to
decide whether there is a weight vector w that produces for epalb&am trajectoryB; o, . . ., Bj k)

of beam width b, such thatk h, each B; for j <k contains at least one nodeli P j, Bi(j() €P g,
and 3(11) ¢ T for j <k?

We prove that these problems are polynomially equivalent to breadtlafidsbest-first consis-
tency by showing that they are NP-complete. Since Section 3 proves ttairnhistency problems
are also NP-complete we immediately get equivalence.

Theorem 19 Breadth-first structured classification is NP-complete.

Proof We can prove that the problem is in NP, following the structure of the prb®heorem 4.
Each certificate corresponds to a set of beam trajectories and hasthatize polynomial in the
problem size. The certificate can be checked in polynomial time to see if dbri gid satisfies the
conditions defined in Definition 17. From Lemma 3 in Section 3 we can then usagbsthm
TestTrajectorieqn Figure 4 to decide whether there is a weight vector that generates tHeatr
in polynomial time. To show hardness we reduce from breadth-firstistensy for the class of
problems wherd=1,d =1,c=6,t =3, andn > 1, which from Figure 6 is NP-complete. Since
for this class the search spaces have depth 1 and the beam width is 1 it te eae that for any
problem in this class, a weight vector is a solution to the consistency problkema ibnly if it is a
solution to the structured classification problem. This shows that breasitistfinctured classifica-
tion is NP-hard and thus NP-complete. |

Using an almost identical proof we can prove the same result for bes$tfinstured classifica-
tion.

Theorem 20 Best-first structured classification is NP-complete.
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