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Abstract
We consider regularized support vector machines (SVMs) andshow that they are precisely equiva-
lent to a new robust optimization formulation. We show that this equivalence of robust optimization
and regularization has implications for both algorithms, and analysis. In terms of algorithms, the
equivalence suggests more general SVM-like algorithms forclassification that explicitly build in
protection to noise, and at the same time control overfitting. On the analysis front, the equiva-
lence of robustness and regularization provides a robust optimization interpretation for the success
of regularized SVMs. We use this new robustness interpretation of SVMs to give a new proof of
consistency of (kernelized) SVMs, thus establishing robustness as thereasonregularized SVMs
generalize well.
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1. Introduction

Support Vector Machines (SVMs for short) originated in Boser et al. (1992) and can be traced back
to as early as Vapnik and Lerner (1963) and Vapnik and Chervonenkis(1974). They continue to be
one of the most successful algorithms for classification. SVMs address the classification problem by
finding the hyperplane in the feature space that achieves maximum sample margin when the training
samples are separable, which leads to minimizing the norm of the classifier. When the samples are
not separable, a penalty term that approximates the total training error is considered (Bennett and
Mangasarian, 1992; Cortes and Vapnik, 1995). It is well known that minimizing the training error
itself can lead to poor classification performance for new unlabeled data; that is, such an approach
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may have poor generalization error because of, essentially, overfitting (Vapnik and Chervonenkis,
1991). A variety of modifications have been proposed to handle this, one of the most popular
methods being that of minimizing a combination of the training-error and a regularization term. The
latter is typically chosen as a norm of the classifier. The resulting regularized classifier performs
better on new data. This phenomenon is often interpreted from a statistical learning theory view:
the regularization term restricts the complexity of the classifier, hence the deviation of the testing
error and the training error is controlled (see Smola et al., 1998; Evgeniouet al., 2000; Bartlett and
Mendelson, 2002; Koltchinskii and Panchenko, 2002; Bartlett et al., 2005, and references therein).

In this paper we consider a different setup, assuming that the training dataare generated by
the true underlying distribution, but some non-i.i.d. (potentially adversarial) disturbance is then
added to the samples we observe. We follow a robust optimization (see El Ghaoui and Lebret,
1997; Ben-Tal and Nemirovski, 1999; Bertsimas and Sim, 2004, and references therein) approach,
that is, minimizing the worst possible empirical error under such disturbances. The use of robust
optimization in classification is not new (e.g., Shivaswamy et al., 2006; Bhattacharyya et al., 2004b;
Lanckriet et al., 2003), in whichbox-typeuncertainty sets were considered. Moreover, there has
not been an explicit connection to the regularized classifier, although at ahigh-level it is known that
regularization and robust optimization are related (e.g., El Ghaoui and Lebret, 1997; Anthony and
Bartlett, 1999). The main contribution in this paper is solving the robust classification problem for
a class of non-box-typed uncertainty sets, and providing a linkage between robust classification and
the standard regularization scheme of SVMs. In particular, our contributions include the following:

• We solve the robust SVM formulation for a class of non-box-type uncertainty sets. This per-
mits finer control of the adversarial disturbance, restricting it to satisfy aggregate constraints
across data points, therefore reducing the possibility of highly correlateddisturbance.

• We show that the standard regularized SVM classifier is a special case ofour robust clas-
sification, thus explicitly relating robustness and regularization. This provides an alternative
explanation to the success of regularization, and also suggests new physically motivated ways
to construct regularization terms.

• We relate our robust formulation to several probabilistic formulations. We consider a chance-
constrained classifier (that is, a classifier with probabilistic constraints on misclassification)
and show that our robust formulation can approximate it far less conservatively than previous
robust formulations could possibly do. We also consider a Bayesian setup, and show that this
can be used to provide a principled means of selecting the regularization coefficient without
cross-validation.

• We show that the robustness perspective, stemming from a non-i.i.d. analysis, can be useful
in the standard learning (i.i.d.) setup, by using it to prove consistency for standard SVM
classification,without using VC-dimension or stability arguments. This result implies that
generalization ability is a direct result of robustness to local disturbances; it therefore suggests
a new justification for good performance, and consequently allows us to construct learning
algorithms that generalize well by robustifying non-consistent algorithms.
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1.1 Robustness and Regularization

We comment here on the explicit equivalence of robustness and regularization. We briefly explain
how this observation is different from previous work and why it is interesting. Previous works on
robust classification (e.g., Lanckriet et al., 2003; Bhattacharyya et al.,2004a,b; Shivaswamy et al.,
2006; Trafalis and Gilbert, 2007) consider robustifyingregularizedclassifications.1 That is, they
propose modifications to standard regularized classifications so that the new formulations are robust
to input uncertainty. Furthermore, box-type uncertainty—a setup where the joint uncertainty is the
Cartesian product of uncertainty in each input (see Section 2 for detailedformulation)—is consid-
ered, which leads to penalty terms on eachconstraintof the resulting formulation. The objective
of these works was not to relate robustness and the standard regularization term that appears in the
objective function. Indeed, research on classifier regularization mainly considers its effect on bound-
ing the complexity of the function class (e.g., Smola et al., 1998; Evgeniou et al.,2000; Bartlett and
Mendelson, 2002; Koltchinskii and Panchenko, 2002; Bartlett et al., 2005). Thus, although certain
equivalence relationships between robustness and regularization havebeen established for problems
other than classification (El Ghaoui and Lebret, 1997; Ben-Tal and Nemirovski, 1999; Bishop, 1995;
Xu et al., 2009), the explicit equivalence between robustness and regularization in the SVM setup
is novel.

The connection of robustness and regularization in the SVM context is important for the follow-
ing reasons. First, it gives an alternative and potentially powerful explanation of the generalization
ability of the regularization term. In the standard machine learning view, the regularization term
bounds the complexity of the class of classifiers. The robust view of regularization regards the test-
ing samples as a perturbed copy of the training samples. Therefore, whenthe total perturbation is
given or bounded, the regularization term bounds the gap between the classification errors of the
SVM on these two sets of samples. In contrast to the standard PAC approach, this bound depends
neither on how rich the class of candidate classifiers is, nor on an assumption that all samples are
picked in an i.i.d. manner.

Second, this connection suggests novel approaches to designing goodclassification algorithms,
in particular, designing the regularization term. In the PAC structural-risk minimization approach,
regularization is chosen to minimize a bound on the generalization error basedon the training error
and a complexity term. This approach is known to often be too pessimistic (Kearns et al., 1997),
especially for problems with more structure. The robust approach offers another avenue. Since
both noise and robustness are physical processes, a close investigation of the application and noise
characteristics at hand, can provide insights into how to properly robustify, and therefore regularize
the classifier. For example, it is known that normalizing the samples so that the variance among all
features is roughly the same (a process commonly used to eliminate the scaling freedom of individ-
ual features) often leads to good generalization performance. From therobustness perspective, this
has the interpretation that the noise is anisotropic (ellipsoidal) rather than spherical, and hence an
appropriate robustification must be designed to fit this anisotropy.

We also show that using the robust optimization viewpoint, we obtain some probabilistic results
that go beyond the PAC setup. In Section 3 we bound the probability that a noisy training sample is
correctly labeled. Such a bound considers the behavior ofcorruptedsamples and is hence different
from the known PAC bounds. This is helpful when the training samples and the testing samples are

1. Lanckriet et al. (2003) is perhaps the only exception, where a regularization term is added to the covariance estimation
rather than to the objective function.
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drawn from different distributions, or some adversary manipulates the samples to prevent them from
being correctly labeled (e.g., spam senders change their patterns from timeto time to avoid being
labeled and filtered). Finally, this connection of robustification and regularization also provides us
with new proof techniques as well (see Section 5).

We need to point out that there are several different definitions of robustness in the literature. In
this paper, as well as the aforementioned robust classification papers, robustness is mainly under-
stood from a Robust Optimization (RO) perspective, where a min-max optimization is performed
over all possible disturbances. An alternative interpretation of robustness stems from the rich lit-
erature on robust statistics (e.g., Huber, 1981; Hampel et al., 1986; Rousseeuw and Leroy, 1987;
Maronna et al., 2006), which studies how an estimator or algorithm behavesunder a small pertur-
bation of the statistics model. For example, theinfluence functionapproach, proposed in Hampel
(1974) and Hampel et al. (1986), measures the impact of an infinitesimal amount of contamination
of the original distribution on the quantity of interest. Based on this notion of robustness, Christ-
mann and Steinwart (2004) showed that many kernel classification algorithms, including SVM, are
robust in the sense of having a finite Influence Function. A similar result for regression algorithms
is shown in Christmann and Steinwart (2007) for smooth loss functions, andin Christmann and Van
Messem (2008) for non-smooth loss functions where a relaxed versionof the Influence Function is
applied. In the machine learning literature, another widely used notion closelyrelated to robustness
is thestability, where an algorithm is required to be robust (in the sense that the output function does
not change significantly) under a specific perturbation: deleting one sample from the training set. It
is now well known that a stable algorithm such as SVM has desirable generalization properties, and
is statistically consistent under mild technical conditions; see for example Bousquet and Elisseeff
(2002), Kutin and Niyogi (2002), Poggio et al. (2004) and Mukherjeeet al. (2006) for details. One
main difference between RO and other robustness notions is that the formeris constructive rather
than analytical. That is, in contrast to robust statistics or the stability approach that measures the
robustness of agivenalgorithm, RO canrobustifyan algorithm: it converts a given algorithm to
a robust one. For example, as we show in this paper, the RO version of a naive empirical-error
minimization is the well known SVM. As a constructive process, the RO approach also leads to
additional flexibility in algorithm design, especially when the nature of the perturbation is known
or can be well estimated.

1.2 Structure of the Paper

This paper is organized as follows. In Section 2 we investigate the correlated disturbance case, and
show the equivalence between the robust classification and the regularization process. We develop
the connections to probabilistic formulations in Section 3. The kernelized version is investigated
in Section 4. Finally, in Section 5, we consider the standard statistical learningsetup where all
samples are i.i.d. draws and provide a novel proof of consistency of SVMbased on robustness
analysis. The analysis shows that duplicate copies of iid draws tend to be “similar” to each other
in the sense that with high probability the total difference is small, and hence robustification that
aims to control performance loss for small perturbations can help mitigate overfitting even though
no explicit perturbation exists.
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1.3 Notation

Capital letters are used to denote matrices, and boldface letters are used to denote column vectors.
For a given norm‖ · ‖, we use‖ · ‖∗ to denote its dual norm, that is,‖z‖∗ , sup{z⊤x|‖x‖ ≤ 1}. For
a vectorx and a positive semi-definite matrixC of the same dimension,‖x‖C denotes

√
x⊤Cx. We

useδ to denote disturbance affecting the samples. We use superscriptr to denote the true value
for an uncertain variable, so thatδr

i is the true (but unknown) noise of theith sample. The set of
non-negative scalars is denoted byR

+. The set of integers from 1 ton is denoted by[1 : n].

2. Robust Classification and Regularization

We consider the standard binary classification problem, where we are given a finite number of
training samples{xi ,yi}m

i=1 ⊆ R
n ×{−1,+1}, and must find a linear classifier, specified by the

functionhw,b(x) = sgn(〈w, x〉+b). For the standard regularized classifier, the parameters(w,b) are
obtained by solving the following convex optimization problem:

min
w,b,ξ

: r(w,b)+
m

∑
i=1

ξi

s.t. : ξi ≥
[

1−yi(〈w,xi〉+b)]

ξi ≥ 0,

wherer(w,b) is a regularization term. This is equivalent to

min
w,b

{

r(w,b)+
m

∑
i=1

max
[

1−yi(〈w,xi〉+b),0
]

}

.

Previous robust classification work (Shivaswamy et al., 2006; Bhattacharyya et al., 2004a,b; Bhat-
tacharyya, 2004; Trafalis and Gilbert, 2007) considers the classification problem where the input
are subject to (unknown) disturbances~δ = (δ1, . . . ,δm) and essentially solves the following min-
max problem:

min
w,b

max
~δ∈Nbox

{

r(w,b)+
m

∑
i=1

max
[

1−yi(〈w, xi −δi〉+b),0
]

}

, (1)

for a box-type uncertainty setNbox. That is, letNi denote the projection ofNbox onto theδi com-
ponent, thenNbox = N1 × ·· · ×Nm (note thatNi need not be a “box”). Effectively, this allows
simultaneous worst-case disturbances across many samples, and leads to overly conservative solu-
tions. The goal of this paper is to obtain a robust formulation where the disturbances{δi} may be
meaningfully taken to be correlated, that is, to solve for a non-box-typeN :

min
w,b

max
~δ∈N

{

r(w,b)+
m

∑
i=1

max
[

1−yi(〈w,xi −δi〉+b),0
]

}

. (2)

We briefly explain here the four reasons that motivate this “robust to perturbation” setup and in par-
ticular the min-max form of (1) and (2). First, it can explicitly incorporate prior problem knowledge
of local invariance (e.g., Teo et al., 2008). For example, in vision tasks, adesirable classifier should
provide a consistent answer if an input image slightly changes. Second, there are situations where
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some adversarial opponents (e.g., spam senders) will manipulate the testing samples to avoid being
correctly classified, and the robustness toward such manipulation should be taken into consideration
in the training process (e.g., Globerson and Roweis, 2006). Or alternatively, the training samples
and the testing samples can be obtained from different processes and hence the standard i.i.d. as-
sumption is violated (e.g., Bi and Zhang, 2004). For example in real-time applications, the newly
generated samples are often less accurate due to time constraints. Finally, formulations based on
chance-constraints (e.g., Bhattacharyya et al., 2004b; Shivaswamy etal., 2006) are mathematically
equivalent to such a min-max formulation.

We define explicitly the correlated disturbance (or uncertainty) which we study below.

Definition 1 A setN0 ⊆ R
n is called anAtomic Uncertainty Setif

(I) 0∈N0;

(II) For any w0 ∈ R
n : sup

δ∈N0

[w⊤
0 δ] = sup

δ′∈N0

[−w⊤
0 δ′] < +∞.

We use “sup” here because the maximal value is not necessary attained sinceN0 may not be a
closed set. The second condition of Atomic Uncertainty set basically says that the uncertainty set is
bounded and symmetric. In particular, all norm balls and ellipsoids centeredat the origin are atomic
uncertainty sets, while an arbitrary polytope might not be an atomic uncertaintyset.

Definition 2 LetN0 be an atomic uncertainty set. A setN ⊆R
n×m is called aSublinear Aggregated

Uncertainty SetofN0, if
N − ⊆N ⊆N +,

where: N − ,

m
[

t=1

N −
t ; N −

t , {(δ1, · · · ,δm)|δt ∈N0; δi 6=t = 0}.

N + , {(α1δ1, · · · ,αmδm)|
m

∑
i=1

αi = 1; αi ≥ 0, δi ∈N0, i = 1, · · · ,m}.

The Sublinear Aggregated Uncertainty definition models the case where the disturbances on each
sample are treated identically, but their aggregate behavior across multiple samples is controlled.
Some interesting examples include

(1) {(δ1, · · · ,δm)|
m

∑
i=1

‖δi‖ ≤ c};

(2) {(δ1, · · · ,δm)|∃t ∈ [1 : m]; ‖δt‖ ≤ c; δi = 0,∀i 6= t};

(3) {(δ1, · · · ,δm)|
m

∑
i=1

√

c‖δi‖ ≤ c}.

All these examples have the same atomic uncertainty setN0 =
{

δ
∣

∣‖δ‖ ≤ c
}

. Figure 1 provides an
illustration of a sublinear aggregated uncertainty set forn = 1 andm= 2, that is, the training set
consists of two univariate samples.

The following theorem is the main result of this section, which reveals that standard norm reg-
ularized SVM is the solution of a (non-regularized) robust optimization. It isa special case of
Proposition 4 by takingN0 as the dual-norm ball{δ|‖δ‖∗ ≤ c} for an arbitrary norm‖ · ‖ and
r(w,b) ≡ 0.
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a.N − b. N + c. N d. Box uncertainty

Figure 1: Illustration of a Sublinear Aggregated Uncertainty SetN .

Theorem 3 Let T ,

{

(δ1, · · ·δm)|∑m
i=1‖δi‖∗ ≤ c

}

. Suppose that the training sample{xi ,yi}m
i=1

are non-separable. Then the following two optimization problems on(w,b) are equivalent2

min : max
(δ1,··· ,δm)∈T

m

∑
i=1

max
[

1−yi
(

〈w, xi −δi〉+b
)

,0
]

,

min : c‖w‖+
m

∑
i=1

max
[

1−yi
(

〈w, xi〉+b
)

,0
]

.

(3)

Proposition 4 Assume{xi ,yi}m
i=1 are non-separable, r(·) : R

n+1 → R is an arbitrary function,N
is a Sublinear Aggregated Uncertainty set with corresponding atomic uncertainty setN0. Then the
following min-max problem

min
w,b

sup
(δ1,··· ,δm)∈N

{

r(w,b)+
m

∑
i=1

max
[

1−yi(〈w,xi −δi〉+b), 0
]

}

(4)

is equivalent to the following optimization problem onw,b,ξ:

min : r(w,b)+ sup
δ∈N0

(w⊤δ)+
m

∑
i=1

ξi ,

s.t. : ξi ≥ 1− [yi(〈w, xi〉+b)], i = 1, . . . ,m;

ξi ≥ 0, i = 1, . . . ,m.

(5)

Furthermore, the minimization of Problem (5) is attainable when r(·, ·) is lower semi-continuous.

Proof Define:

v(w,b) , sup
δ∈N0

(w⊤δ)+
m

∑
i=1

max
[

1−yi(〈w,xi〉+b), 0
]

.

2. The optimization equivalence for the linear case was observed independently by Bertsimas and Fertis (2008).
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Recall thatN −⊆N ⊆N+ by definition. Hence, fixing any(ŵ, b̂)∈R
n+1, the following inequalities

hold:

sup
(δ1,··· ,δm)∈N −

m

∑
i=1

max
[

1−yi(〈ŵ,xi −δi〉+ b̂), 0
]

≤ sup
(δ1,··· ,δm)∈N

m

∑
i=1

max
[

1−yi(〈ŵ,xi −δi〉+ b̂), 0
]

≤ sup
(δ1,··· ,δm)∈N +

m

∑
i=1

max
[

1−yi(〈ŵ,xi −δi〉+ b̂), 0
]

.

To prove the theorem, we first show thatv(ŵ, b̂) is no larger than the leftmost expression and then
showv(ŵ, b̂) is no smaller than the rightmost expression.

Step 1: We prove that

v(ŵ, b̂) ≤ sup
(δ1,··· ,δm)∈N −

m

∑
i=1

max
[

1−yi(〈ŵ,xi −δi〉+ b̂), 0
]

. (6)

Since the samples{xi , yi}m
i=1 are not separable, there existst ∈ [1 : m] such that

yt(〈ŵ,xt〉+ b̂) < 0. (7)

Hence,

sup
(δ1,··· ,δm)∈N −

t

m

∑
i=1

max
[

1−yi(〈ŵ,xi −δi〉+ b̂), 0
]

= ∑
i 6=t

max
[

1−yi(〈ŵ,xi〉+ b̂), 0
]

+ sup
δt∈N0

max
[

1−yt(〈ŵ,xt −δt〉+ b̂), 0
]

= ∑
i 6=t

max
[

1−yi(〈ŵ,xi〉+ b̂), 0
]

+max
[

1−yt(〈ŵ,xt〉+ b̂)+ sup
δt∈N0

(ytŵ⊤δt), 0
]

= ∑
i 6=t

max
[

1−yi(〈ŵ,xi〉+ b̂), 0
]

+max
[

1−yt(〈ŵ,xt〉+ b̂), 0
]

+ sup
δt∈N0

(ytŵ⊤δt)

= sup
δ∈N0

(ŵ⊤δ)+
m

∑
i=1

max
[

1−yi(〈ŵ,xi〉+ b̂),0
]

= v(ŵ, b̂).

The third equality holds because of Inequality (7) and supδt∈N0
(ytŵ⊤δt) being non-negative (recall

0∈N0). SinceN −
t ⊆N −, Inequality (6) follows.

Step 2: Next we prove that

sup
(δ1,··· ,δm)∈N +

m

∑
i=1

max
[

1−yi(〈ŵ,xi −δi〉+ b̂), 0
]

≤ v(ŵ, b̂). (8)
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Notice that by the definition ofN + we have

sup
(δ1,··· ,δm)∈N +

m

∑
i=1

max
[

1−yi(〈ŵ,xi −δi〉+ b̂), 0
]

= sup
∑m

i=1 αi=1;αi≥0;δ̂i∈N0

m

∑
i=1

max
[

1−yi(〈ŵ,xi −αi δ̂i〉+ b̂), 0
]

= sup
∑m

i=1 αi=1;αi≥0;

m

∑
i=1

max
[

sup
δ̂i∈N0

(

1−yi(〈ŵ,xi −αi δ̂i〉+ b̂)
)

, 0
]

.

(9)

Now, for anyi ∈ [1 : m], the following holds,

max
[

sup
δ̂i∈N0

(

1−yi(〈ŵ, xi −αi δ̂i〉+ b̂)
)

, 0
]

=max
[

1−yi(〈ŵ,xi〉+ b̂)+αi sup
δ̂i∈N0

(ŵ⊤δ̂i), 0
]

≤max
[

1−yi(〈ŵ,xi〉+ b̂), 0
]

+αi sup
δ̂i∈N0

(ŵ⊤δ̂i).

Therefore, Equation (9) is upper bounded by

m

∑
i=1

max
[

1−yi(〈ŵ,xi〉+ b̂), 0
]

+ sup
∑m

i=1 αi=1;αi≥0;

m

∑
i=1

αi sup
δ̂i∈N0

(ŵ⊤δ̂i)

= sup
δ∈N0

(ŵ⊤δ)+
m

∑
i=1

max
[

1−yi(〈ŵ,xi〉+ b̂),0
]

= v(ŵ, b̂),

hence Inequality (8) holds.
Step 3: Combining the two steps and addingr(w,b) on both sides leads to:∀(w,b) ∈ R

n+1,

sup
(δ1,··· ,δm)∈N

m

∑
i=1

max
[

1−yi(〈w,xi −δi〉+b), 0
]

+ r(w,b) = v(w,b)+ r(w,b).

Taking the infimum on both sides establishes the equivalence of Problem (4)and Problem (5).
Observe that supδ∈N0

w⊤δ is a supremum over a class of affine functions, and hence is lower semi-
continuous. Thereforev(·, ·) is also lower semi-continuous. Thus the minimum can be achieved for
Problem (5), and Problem (4) by equivalence, whenr(·) is lower semi-continuous.

Before concluding this section we briefly comment on the meaning of Theorem3 and Propo-
sition 4. On one hand, they explain the widely known fact that the regularized classifier tends
to be more robust (see for example, Christmann and Steinwart, 2004, 2007; Christmann and Van
Messem, 2008; Trafalis and Gilbert, 2007). On the other hand, this observation also suggests that
the appropriate way to regularize should come from a disturbance-robustness perspective. The
above equivalence implies that standard regularization essentially assumesthat the disturbance is
spherical; if this is not true, robustness may yield a better regularization-likealgorithm. To find a
more effective regularization term, a closer investigation of the data variationis desirable, partic-
ularly if some a-priori knowledge of the data-variation is known. For example, consider an image
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classification problem. Suppose it is known that these pictures are taken under significantly varying
background light. Therefore, for a given sample (picture), the perturbation on each feature (pixel) is
large. However, the perturbations across different features are almost identical since they are under
the same background light. This can be represented by the following Atomic uncertainty set

N0 = {δ|‖δ‖2 ≤ c1, ‖δ− (
1
n

n

∑
t=1

δt)1‖2 ≤ c2},

wherec2 ≪ c1. By Proposition 4, this leads to the following regularization term

f (w) = max :w⊤δ
s.t.‖δ‖2 ≤ c1

‖(I − 1
n

11⊤)δ‖2 ≤ c2.

Notice this is a second order cone programming which has a dual form

min : c1v1 +c2v2

s.t. u1 +(I − 1
n

11⊤)u2 = w

‖ui‖2 ≤ vi , i = 1,2.

Substituting it to (5), the resulting classification problem is a second order cone program, which can
be efficiently solved (Boyd and Vandenberghe, 2004).

3. Probabilistic Interpretations

Although Problem (4) is formulated without any probabilistic assumptions, in thissection, we
briefly explain two approaches to construct the uncertainty set and equivalently tune the regular-
ization parameterc based on probabilistic information.

The first approach is to use Problem (4) to approximate an upper bound for a chance-constrained
classifier. Suppose the disturbance(δr

1, · · ·δr
m) follows a joint probability measureµ. Then the

chance-constrained classifier is given by the following minimization problem given a confidence
level η ∈ [0, 1],

min
w,b,l

: l

s.t. : µ
{ m

∑
i=1

max
[

1−yi(〈w, xi −δr
i 〉+b),0

]

≤ l
}

≥ 1−η. (10)

The formulations in Shivaswamy et al. (2006), Lanckriet et al. (2003) and Bhattacharyya et al.
(2004a) assume uncorrelated noise and require all constraints to be satisfied with high probability
simultaneously. They find a vector[ξ1, · · · ,ξm]⊤ where eachξi is theη-quantile of the hinge-loss
for samplexr

i . In contrast, our formulation above minimizes theη-quantile of the average (or
equivalently the sum of) empirical error. When controlling this average quantity is of more interest,
the box-type noise formulation will be overly conservative.

Problem (10) is generally intractable. However, we can approximate it as follows. Let

c∗ , inf{α|µ(∑
i

‖δi‖∗ ≤ α) ≥ 1−η}.
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Notice thatc∗ is easily simulated givenµ. Then for any(w,b), with probability no less than 1−η,
the following holds,

m

∑
i=1

max
[

1−yi(〈w, xi −δr
i 〉+b),0

]

≤ max
∑i ‖δi‖∗≤c∗

m

∑
i=1

max
[

1−yi(〈w, xi −δi〉+b),0
]

.

Thus (10) is upper bounded by (3) withc = c∗. This gives an additional probabilistic robustness
property of the standard regularized classifier. Notice that following a similar approach but with
the constraint-wise robust setup, that is, the box uncertainty set, would lead to considerably more
pessimistic approximations of the chance constraint.

The second approach considers a Bayesian setup. Suppose the total disturbancecr , ∑m
i=1‖δr

i ‖∗
follows a prior distributionρ(·). This can model for example the case that the training sample set is
a mixture of several data sets where the disturbance magnitude of each setis known. Such a setup
leads to the following classifier which minimizes the Bayesian (robust) error:

min
w,b

:
Z

{

max
∑‖δi‖∗≤c

m

∑
i=1

max
[

1−yi
(

〈w, xi −δi〉+b
)

,0
]

}

dρ(c). (11)

By Theorem 3, the Bayes classifier (11) is equivalent to

min
w,b

:
Z

{

c‖w‖+
m

∑
i=1

max
[

1−yi
(

〈w, xi〉+b
)

,0
]

}

dρ(c),

which can be further simplified as

min
w,b

: c‖w‖+
m

∑
i=1

max
[

1−yi
(

〈w, xi〉+b
)

,0
]

,

wherec,
R

cdρ(c). This thus provides us a justifiable parameter tuning method different from cross
validation: simply using the expected value ofcr . We note that it is the equivalence of Theorem 3
that makes this possible, since it is difficult to imagine a setting where one would have a prior on
regularization coefficients.

4. Kernelization

The previous results can be easily generalized to the kernelized setting, which we discuss in detail
in this section. In particular, similar to the linear classification case, we give a new interpretation of
the standard kernelized SVM as the min-max empirical hinge-loss solution, where the disturbance
is assumed to lie in the feature space. We then relate this to the (more intuitively appealing) setup
where the disturbance lies in the sample space. We use this relationship in Section 5 to prove a
consistency result for kernelized SVMs.

The kernelized SVM formulation considers a linear classifier in the feature spaceH , a Hilbert
space containing the range of some feature mappingΦ(·). The standard formulation is as follows,

min
w,b

: r(w,b)+
m

∑
i=1

ξi

s.t. : ξi ≥
[

1−yi(〈w,Φ(xi)〉+b)],

ξi ≥ 0.
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It has been proved in Schölkopf and Smola (2002) that if we takef (〈w,w〉) for some increasing
function f (·) as the regularization termr(w,b), then the optimal solution has a representationw∗ =

∑m
i=1 αiΦ(xi), which can further be solved without knowing explicitly the feature mapping,but by

evaluating a kernel functionk(x,x′) , 〈Φ(x), Φ(x′)〉 only. This is the well-known “kernel trick”.
The definitions of Atomic Uncertainty Set and Sublinear Aggregated Uncertainty Set in the fea-

ture space are identical to Definition 1 and 2, withR
n replaced byH . The following theorem is a

feature-space counterpart of Proposition 4. The proof follows froma similar argument to Proposi-
tion 4, that is, for any fixed(w,b) the worst-case empirical error equals the empirical error plus a
penalty term supδ∈N0

(

〈w, δ〉
)

, and hence the details are omitted.

Theorem 5 Assume{Φ(xi),yi}m
i=1 are not linearly separable, r(·) : H ×R → R is an arbitrary

function,N ⊆ H m is a Sublinear Aggregated Uncertainty set with corresponding atomic uncer-
tainty setN0 ⊆H . Then the following min-max problem

min
w,b

sup
(δ1,··· ,δm)∈N

{

r(w,b)+
m

∑
i=1

max
[

1−yi(〈w,Φ(xi)−δi〉+b), 0
]

}

is equivalent to

min : r(w,b)+ sup
δ∈N0

(〈w, δ〉)+
m

∑
i=1

ξi ,

s.t. : ξi ≥ 1−yi
(

〈w, Φ(xi)〉+b
)

, i = 1, · · · ,m;

ξi ≥ 0, i = 1, · · · ,m.

(12)

Furthermore, the minimization of Problem (12) is attainable when r(·, ·) is lower semi-continuous.

For some widely used feature mappings (e.g., RKHS of a Gaussian kernel),{Φ(xi),yi}m
i=1 are

always separable. In this case, the worst-case empirical error may notbe equal to the empirical error
plus a penalty term supδ∈N0

(

〈w, δ〉
)

. However, it is easy to show that for any(w,b), the latter is an
upper bound of the former.

The next corollary is the feature-space counterpart of Theorem 3, where‖ · ‖H stands for the
RKHS norm, that is, forz ∈ H , ‖z‖H =

√

〈z, z〉. Noticing that the RKHS norm is self dual, we
find that the proof is identical to that of Theorem 3, and hence omit it.

Corollary 6 LetTH ,

{

(δ1, · · ·δm)|∑m
i=1‖δi‖H ≤ c

}

. If {Φ(xi),yi}m
i=1 are non-separable, then the

following two optimization problems on(w,b) are equivalent

min : max
(δ1,··· ,δm)∈TH

m

∑
i=1

max
[

1−yi
(

〈w, Φ(xi)−δi〉+b
)

,0
]

,

min : c‖w‖H +
m

∑
i=1

max
[

1−yi
(

〈w, Φ(xi)〉+b
)

,0
]

. (13)

Equation (13) is a variant form of the standard SVM that has a squared RKHS norm regularization
term, and it can be shown that the two formulations are equivalent up to changing of tradeoff param-
eterc, since both the empirical hinge-loss and the RKHS norm are convex. Therefore, Corollary 6
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essentially means that the standard kernelized SVM is implicitly a robust classifier (without regu-
larization) with disturbance in the feature-space, and the sum of the magnitude of the disturbance is
bounded.

Disturbance in the feature-space is less intuitive than disturbance in the sample space, and the
next lemma relates these two different notions.

Lemma 7 Suppose there existsX ⊆R
n, ρ > 0, and a continuous non-decreasing function f: R

+ →
R

+ satisfying f(0) = 0, such that

k(x,x)+k(x′,x′)−2k(x,x′) ≤ f (‖x−x′‖2
2), ∀x,x′ ∈ X ,‖x−x′‖2 ≤ ρ

then

‖Φ(x̂+δ)−Φ(x̂)‖H ≤
√

f (‖δ‖2
2), ∀‖δ‖2 ≤ ρ, x̂, x̂+δ ∈ X .

In the appendix, we prove a result that provides a tighter relationship between disturbance in the
feature space and disturbance in the sample space, for RBF kernels.
Proof Expanding the RKHS norm yields

‖Φ(x̂+δ)−Φ(x̂)‖H
=

√

〈Φ(x̂+δ)−Φ(x̂), Φ(x̂+δ)−Φ(x̂)〉
=

√

〈Φ(x̂+δ), Φ(x̂+δ)〉+ 〈Φ(x̂), Φ(x̂)〉−2〈Φ(x̂+δ), Φ(x̂)〉

=
√

k
(

x̂+δ, x̂+δ
)

+k
(

x̂, x̂
)

−2k
(

x̂+δ, x̂
)

≤
√

f (‖x̂+δ− x̂‖2
2) =

√

f (‖δ‖2
2),

where the inequality follows from the assumption.

Lemma 7 essentially says that under certain conditions, robustness in the feature space is a stronger
requirement that robustness in the sample space. Therefore, a classifier that achieves robustness
in the feature space (the SVM for example) also achieves robustness in thesample space. Notice
that the condition of Lemma 7 is rather weak. In particular, it holds for any continuousk(·, ·) and
boundedX .

In the next section we consider a more foundational property of robustness in the sample space:
we show that a classifier that is robust in the sample space is asymptotically consistent. As a conse-
quence of this result for linear classifiers, the above results imply the consistency for a broad class
of kernelized SVMs.

5. Consistency of Regularization

In this section we explore a fundamental connection between learning and robustness, by using
robustness properties to re-prove the statistical consistency of the linearclassifier, and then the
kernelized SVM. Indeed, our proof mirrors the consistency proof found in Steinwart (2005), with
the key difference thatwe replace metric entropy, VC-dimension, and stability conditions used there,
with a robustness condition.

Thus far we have considered the setup where the training-samples are corrupted by certain set-
inclusive disturbances. We now turn to the standard statistical learning setup, by assuming that all
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training samples and testing samples are generated i.i.d. according to a (unknown) probabilityP,
that is, there does not exist explicit disturbance.

LetX ⊆ R
n be bounded, and suppose the training samples(xi ,yi)

∞
i=1 are generated i.i.d. accord-

ing to an unknown distributionP supported byX ×{−1, +1}. The next theorem shows that our
robust classifier setup and equivalently regularized SVM asymptotically minimizes an upper-bound
of the expected classification error and hinge loss.

Theorem 8 Denote K, maxx∈X ‖x‖2. Then there exists a random sequence{γm,c} such that:

1. ∀c > 0, limm→∞ γm,c = 0 almost surely, and the convergence is uniform inP;

2. the following bounds on the Bayes loss and the hinge loss hold uniformly for all (w,b):

E(x,y)∼P(1y6=sgn(〈w,x〉+b)) ≤ γm,c +c‖w‖2 +
1
m

m

∑
i=1

max
[

1−yi(〈w, xi〉+b),0
]

;

E(x,y)∼P

(

max(1−y(〈w, x〉+b), 0)
)

≤

γm,c(1+K‖w‖2 + |b|)+c‖w‖2 +
1
m

m

∑
i=1

max
[

1−yi(〈w, xi〉+b),0
]

.

Proof We briefly explain the basic idea of the proof before going to the technical details. We con-
sider the testing sample set as a perturbed copy of the training sample set, andmeasure the magni-
tude of the perturbation. For testing samples that have “small” perturbations,c‖w‖2+
1
m ∑m

i=1max
[

1−yi(〈w, xi〉+b),0
]

upper-bounds their total loss by Theorem 3. Therefore, we only
need to show that the ratio of testing samples having “large” perturbations diminishes to prove the
theorem.

Now we present the detailed proof. Given ac> 0, we call a testing sample(x′,y′) and a training
sample(x,y) asample pairif y = y′ and‖x−x′‖2 ≤ c. We say a set of training samples and a set of
testing samples forml pairings if there existl sample pairs with no data reused. Givenm training
samples andm testing samples, we useMm,c to denote the largest number of pairings. To prove this
theorem, we need to establish the following lemma.

Lemma 9 Given a c> 0, Mm,c/m→ 1 almost surely as m→ +∞, uniformly w.r.t.P.

Proof We make a partition ofX ×{−1, +1} =
STc

t=1Xt such thatXt either has the form[α1,α1 +
c/
√

n)× [α2,α2 +c/
√

n) · · ·× [αn,αn +c/
√

n)×{+1} or [α1,α1 +c/
√

n)× [α2,α2 +c/
√

n) · · ·×
[αn,αn + c/

√
n)×{−1} (recall n is the dimension ofX ). That is, each partition is the Cartesian

product of a rectangular cell inX and a singleton in{−1, +1}. Notice that if a training sample and
a testing sample fall intoXt , they can form a pairing.

Let Ntr
t andNte

t be the number of training samples and testing samples falling in thetth set, re-
spectively. Thus,(Ntr

1 , · · · ,Ntr
Tc

) and(Nte
1 , · · · ,Nte

Tc
) are multinomially distributed random vectors fol-

lowing a same distribution. Notice that for a multinomially distributed random vector(N1, · · · ,Nk)
with parametermand(p1, · · · , pk), the following holds (Bretegnolle-Huber-Carol inequality, see for
example Proposition A6.6 of van der Vaart and Wellner, 2000). For anyλ > 0,

P

( k

∑
i=1

∣

∣Ni −mpi
∣

∣) ≥ 2
√

mλ
)

≤ 2k exp(−2λ2).
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Hence we have

P

( Tc

∑
t=1

∣

∣Ntr
t −Nte

t

∣

∣ ≥ 4
√

mλ
)

≤ 2Tc+1exp(−2λ2),

=⇒ P

( 1
m

Tc

∑
t=1

∣

∣Ntr
t −Nte

t

∣

∣ ≥ λ
)

≤ 2Tc+1exp(
−mλ2

8
),

=⇒ P

(

Mm,c/m≤ 1−λ
)

≤ 2Tc+1exp(
−mλ2

8
). (14)

Observe that∑∞
m=12Tc+1exp(−mλ2

8 ) < +∞, hence by the Borel-Cantelli Lemma (see, for example,
Durrett, 2004), with probability one the event{Mm,c/m≤ 1−λ} only occurs finitely often asm→∞.
That is, liminfmMm,c/m≥ 1−λ almost surely. Sinceλ can be arbitrarily close to zero,Mm,c/m→ 1
almost surely. Observe that this convergence is uniform inP, sinceTc only depends onX .

Now we proceed to prove the theorem. Givenm training samples andm testing samples withMm,c

sample pairs, we notice that for these paired samples, both the total testing error and the total testing
hinge-loss is upper bounded by

max
(δ1,··· ,δm)∈N0×···×N0

m

∑
i=1

max
[

1−yi
(

〈w, xi −δi〉+b
)

,0
]

≤cm‖w‖2 +
m

∑
i=1

max
[

1−yi(〈w, xi〉+b), 0],

whereN0 = {δ |‖δ‖ ≤ c}. Hence the total classification error of them testing samples can be upper
bounded by

(m−Mm,c)+cm‖w‖2 +
m

∑
i=1

max
[

1−yi(〈w, xi〉+b), 0],

and since

max
x∈X

(1−y(〈w,x〉)) ≤ max
x∈X

{

1+ |b|+
√

〈x,x〉 · 〈w,w〉
}

= 1+ |b|+K‖w‖2,

the accumulated hinge-loss of the totalm testing samples is upper bounded by

(m−Mm,c)(1+K‖w‖2 + |b|)+cm‖w‖2 +
m

∑
i=1

max
[

1−yi(〈w, xi〉+b), 0].

Therefore, the average testing error is upper bounded by

1−Mm,c/m+c‖w‖2 +
1
m

n

∑
i=1

max
[

1−yi(〈w, xi〉+b), 0],

and the average hinge loss is upper bounded by

(1−Mm,c/m)(1+K‖w‖2 + |b|)+c‖w‖2 +
1
m

m

∑
i=1

max
[

1−yi(〈w, xi〉+b),0
]

.
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Let γm,c = 1−Mm,c/m. The proof follows sinceMm,c/m→ 1 almost surely for anyc > 0. Notice
by Inequality (14) we have

P

(

γm,c ≥ λ
)

≤ exp
(

−mλ2/8+(Tc +1) log2
)

, (15)

that is, the convergence is uniform inP.
We have shown that the average testing error is upper bounded. The final step is to show that

this implies that in fact the random variable given by the conditional expectation (conditioned on the
training sample) of the error is bounded almost surely as in the statement of thetheorem. To make
things precise, consider a fixedm, and letω1 ∈ Ω1 andω2 ∈ Ω2 generate them training samples
andm testing samples, respectively, and for shorthand letT m denote the random variable of the first
m training samples. Let us denote the probability measures for the training byρ1 and the testing
samples byρ2. By independence, the joint measure is given by the product of these two. We rely
on this property in what follows. Now fix aλ and ac > 0. In our new notation, Equation (15) now
reads:

Z

Ω1

Z

Ω2

1
{

γm,c(ω1,ω2) ≥ λ
}

dρ2(ω2)dρ1(ω1) = P

(

γm,c(ω1,ω2) ≥ λ
)

≤ exp
(

−mλ2/8+(Tc +1) log2
)

.

We now boundPω1(Eω2[γm,c(ω1,ω2) |T m] > λ), and then use Borel-Cantelli to show that this event
can happen only finitely often. We have:

Pω1(Eω2[γm,c(ω1,ω2) |T m] > λ)

=
Z

Ω1

1
{

Z

Ω2

γm,c(ω1,ω2)dρ2(ω2) > λ
}

dρ1(ω1)

≤
Z

Ω1

1
{

[

Z

Ω2

γm,c(ω1,ω2)1(γm,c(ω1,ω2) ≤ λ)dρ2(ω2)+

Z

Ω2

γm,c(ω1,ω2)1(γm,c(ω1,ω2) > λ)dρ2(ω2)
]

≥ 2λ
}

dρ1(ω1)

≤
Z

Ω1

1
{

[

Z

Ω2

λ1(λ(ω1,ω2) ≤ λ)dρ2(ω2)+

Z

Ω2

1(γm,c(ω1,ω2) > λ)dρ2(ω2)
]

≥ 2λ
}

dρ1(ω1)

≤
Z

Ω1

1
{

[

λ+
Z

Ω2

1(γm,c(ω1,ω2) > λ)dρ2(ω2)
]

≥ 2λ
}

dρ1(ω1)

=
Z

Ω1

1
{

Z

Ω2

1(γm,c(ω1,ω2) > λ)dρ2(ω2) ≥ λ
}

dρ1(ω1).

Here, the first equality holds because training and testing samples are independent, and hence the
joint measure is the product ofρ1 andρ2. The second inequality holds becauseγm,c(ω1,ω2) ≤ 1
everywhere. Further notice that

Z

Ω1

Z

Ω2

1
{

γm,c(ω1,ω2) ≥ λ
}

dρ2(ω2)dρ1(ω1)

≥
Z

Ω1

λ1
{

Z

Ω2

1
(

γm,c(ω1,ω2) ≥ λ
)

dρ(ω2) > λ
}

dρ1(ω1).
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Thus we have

P(Eω2(γm,c(ω1,ω2)) > λ) ≤ P

(

γm,c(ω1,ω2) ≥ λ
)

/λ ≤ exp
(

−mλ2/8+(Tc +1) log2
)

/λ.

For anyλ andc, summing up the right hand side overm= 1 to∞ is finite, hence the theorem follows
from the Borel-Cantelli lemma.

Remark 10 We note thatMm/m converges to 1 almost surely even ifX is not bounded. Indeed, to
see this, fixε > 0, and letX ′ ⊆ X be a bounded set such thatP(X ′) > 1− ε. Then, with probability
one,

#(unpaired samples inX ′)/m→ 0,

by Lemma 9. In addition,

max
(

#(training samples not inX ′), #(testing samples not inX ′)
)

/m→ ε.

Notice that

Mm ≥ m−#(unpaired samples inX ′)

−max
(

#(training samples not inX ′), #(testing samples not inX ′)
)

.

Hence
lim

m→∞
Mm/m≥ 1− ε,

almost surely. Sinceε is arbitrary, we haveMm/m→ 1 almost surely.

Next, we prove an analog of Theorem 8 for the kernelized case, and then show that these two
imply statistical consistency of linear and kernelized SVMs. Again, letX ⊆ R

n be bounded, and
suppose the training samples(xi ,yi)

∞
i=1 are generated i.i.d. according to an unknown distributionP

supported onX ×{−1, +1}.

Theorem 11 Denote K , maxx∈X k(x,x). Suppose there existsρ > 0 and a continuous
non-decreasing function f: R

+ → R
+ satisfying f(0) = 0, such that:

k(x,x)+k(x′,x′)−2k(x,x′) ≤ f (‖x−x′‖2
2), ∀x,x′ ∈ X ,‖x−x′‖2 ≤ ρ.

Then there exists a random sequence{γm,c} such that:

1. ∀c > 0, limm→∞ γm,c = 0 almost surely, and the convergence is uniform inP;

2. the following bounds on the Bayes loss and the hinge loss hold uniformly for all (w,b) ∈
H ×R

EP(1y6=sgn(〈w,Φ(x)〉+b)) ≤ γm,c +c‖w‖H +
1
m

m

∑
i=1

max
[

1−yi(〈w, Φ(xi)〉+b),0
]

,

E(x,y)∼P

(

max(1−y(〈w, Φ(x)〉+b), 0)
)

≤

γm,c(1+K‖w‖H + |b|)+c‖w‖H +
1
m

m

∑
i=1

max
[

1−yi(〈w, Φ(xi)〉+b),0
]

.

1501



XU, CARAMANIS AND MANNOR

Proof As in the proof of Theorem 8, we generate a set ofm testing samples andm training samples,
and then lower-bound the number of samples that can form asample pairin the feature-space; that
is, a pair consisting of a training sample(x,y) and a testing sample(x′,y′) such thaty = y′ and
‖Φ(x)−Φ(x′)‖H ≤ c. In contrast to the finite-dimensional sample space, the feature space may
be infinite dimensional, and thus our decomposition may have an infinite number of“bricks.” In
this case, our multinomial random variable argument used in the proof of Lemma9 breaks down.
Nevertheless, we are able to lower bound the number of sample pairs in the feature space by the
number of sample pairs in thesample space.

Define f−1(α) , max{β ≥ 0| f (β) ≤ α}. Since f (·) is continuous,f−1(α) > 0 for anyα > 0.
Now notice that by Lemma 7, if a testing samplex and a training samplex′ belong to a “brick”
with length of each side min(ρ/

√
n, f−1(c2)/

√
n) in thesample space(see the proof of Lemma 9),

‖Φ(x)−Φ(x′)‖H ≤ c. Hence the number ofsample pairsin the feature space is lower bounded
by the number of pairs of samples that fall in the same brick in the sample space.We can cover
X with finitely many (denoted asTc) such bricks sincef−1(c2) > 0. Then, a similar argument
as in Lemma 9 shows that the ratio of samples that form pairs in a brick converges to 1 asm
increases. Further notice that forM paired samples, the total testing error and hinge-loss are both
upper-bounded by

cM‖w‖H +
M

∑
i=1

max
[

1−yi(〈w, Φ(xi)〉+b),0
]

.

The rest of the proof is identical to Theorem 8. In particular, Inequality (15) still holds.

Note that the condition in Theorem 11 is satisfied by most commonly used kernels, for example,
homogeneous polynominal kernels and Gaussian radial basis functions.This condition requires
that the feature mapping is “smooth” and hence preserves “locality” of the disturbance, that is,
small disturbance in the sample space guarantees the corresponding disturbance in the feature space
is also small. It is easy to construct non-smooth kernel functions which do not generalize well. For
example, consider the following kernel:

k(x,x′) =

{

1 x = x′;
0 x 6= x′.

A standard RKHS regularized SVM using this kernel leads to a decision function

sign(
m

∑
i=1

αik(x,xi)+b),

which equals sign(b) and provides no meaningful prediction if the testing samplex is not one of the
training samples. Hence asm increases, the testing error remains as large as 50% regardless of the
tradeoff parameter used in the algorithm, while the training error can be made arbitrarily small by
fine-tuning the parameter.

5.1 Convergence to Bayes Risk

Next we relate the results of Theorem 8 and Theorem 11 to the standard consistency notion, that is,
convergence to the Bayes Risk (Steinwart, 2005). The key point of interest in our proof is the use of
a robustness condition in place of a VC-dimension or stability condition used in Steinwart (2005).
The proof in Steinwart (2005) has 4 main steps. They show: (i) there always exists a minimizer to
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the expected regularized (kernel) hinge loss; (ii) the expected regularized hinge loss of the minimizer
converges to the expected hinge loss as the regularizer goes to zero; (iii)if a sequence of functions
asymptotically have optimal expected hinge loss, then they also have optimal expected loss; and (iv)
the expected hinge loss of the minimizer of the regularizedtraining hinge loss concentrates around
the empirical regularized hinge loss. In Steinwart (2005), this final step,(iv), is accomplished using
concentration inequalities derived from VC-dimension considerations, and stability considerations.

Instead, we use our robustness-based results of Theorem 8 and Theorem 11 to replace these
approaches (Lemmas 3.21 and 3.22 in Steinwart 2005) in proving step (iv), and thus to establish the
main result.

Recall that a classifier is a rule that assigns to every training setT = {xi ,yi}m
i=1 a measurable

function fT . The risk of a measurable functionf : X → R is defined as

RP( f ) , P({x,y : signf (x) 6= y}).

The smallest achievable risk

RP , inf{RP( f )| f : X → Rmeasurable}

is called theBayes Riskof P. A classifier is said to be strongly uniformly consistent if for all
distributionsP onX × [−1,+1], the following holds almost surely.

lim
m→∞

RP( fT) = RP.

Without loss of generality, we only consider the kernel version. Recall adefinition from Stein-
wart (2005).

Definition 12 Let C(X ) be the set of all continuous functions defined on a compact metric space
X . Consider the mapping I: H →C(X ) defined by Iw , 〈w, Φ(·)〉. If I has a dense image, we call
the kerneluniversal.

Roughly speaking, if a kernel is universal, then the corresponding RKHS is rich enough to satisfy
the condition of step (ii) above.

Theorem 13 If a kernel satisfies the condition of Theorem 11, and is universal, then the Kernel
SVM with c↓ 0 sufficiently slowly is strongly uniformly consistent.

Proof We first introduce some notation, largely following Steinwart (2005). For some probability
measureµ and(w,b) ∈H ×R,

RL,µ((w,b)) , E(x,y)∼µ

{

max(0,1−y(〈w,Φ(x)〉+b))
}

,

is the expected hinge-loss under probabilityµ, and

Rc
L,µ((w,b)) , c‖w‖H +E(x,y)∼µ

{

max(0,1−y(〈w,Φ(x)〉+b))
}

is the regularized expected hinge-loss. HenceRL,P(·) andRc
L,P(·) are the expected hinge-loss and

regularized expected hinge-loss under the generating probabilityP. If µ is the empirical distribution
of m samples, we writeRL,m(·) andRc

L,m(·) respectively. NoticeRc
L,m(·) is the objective function of

the SVM. Denote its solution byfm,c, that is, the classifier we get by running SVM withm samples
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and parameterc. Further denote byfP,c ∈H ×R the minimizer ofRc
L,P(·). The existence of such a

minimizer is proved in Lemma 3.1 of Steinwart (2005) (step (i)). Let

RL,P , min
f measurable

Ex,y∼P

{

max
(

1−y f(x), 0
)

}

,

that is, the smallest achievable hinge-loss for all measurable functions.
The main content of our proof is to use Theorems 8 and 11 to prove step (iv) in Steinwart (2005).

In particular, we show: ifc ↓ 0 “slowly”, we have with probability one

lim
m→∞

RL,P( fm,c) = RL,P. (16)

To prove Equation (16), denote byw( f ) andb( f ) as the weight part and offset part of any classifier
f . Next, we bound the magnitude offm,c by usingRc

L,m( fm,c) ≤ Rc
L,m(0,0) ≤ 1, which leads to

‖w( fm,c)‖H ≤ 1/c

and
|b( fm,c)| ≤ 2+K‖w( fm,c)‖H ≤ 2+K/c.

From Theorem 11 (note that the bound holds uniformly for all(w,b)), we have

RL,P( fm,c) ≤ γm,c[1+K‖w( fm,c)‖H + |b|]+Rc
L,m( fm,c)

≤ γm,c[3+2K/c]+Rc
L,m( fm,c)

≤ γm,c[3+2K/c]+Rc
L,m( fP,c)

= RL,P + γm,c[3+2K/c]+
{

Rc
L,m( fP,c)−Rc

L,P( fP,c)
}

+
{

Rc
L,P( fP,c)−RL,P

}

= RL,P + γm,c[3+2K/c]+
{

RL,m( fP,c)−RL,P( fP,c)
}

+
{

Rc
L,P( fP,c)−RL,P

}

.

The last inequality holds becausefm,c minimizesRc
L,m.

It is known (Steinwart, 2005, Proposition 3.2) (step (ii)) that if the kernelused is rich enough,
that is, universal, then

lim
c→0

Rc
L,P( fP,c) = RL,P.

For fixedc > 0, we have
lim

m→∞
RL,m( fP,c) = RL,P( fP,c),

almost surely due to the strong law of large numbers (notice thatfP,c is a fixed classifier), and
γm,c[3+2K/c] → 0 almost surely. Notice that neither convergence rate depends onP. Therefore, if
c ↓ 0 sufficiently slowly,3 we have almost surely

lim
m→∞

RL,P( fm,c) ≤ RL,P.

Now, for anym andc, we haveRL,P( fm,c) ≥ RL,P by definition. This implies that Equation (16)
holds almost surely, thus giving us step (iv).

Finally, Proposition 3.3. of Steinwart (2005) shows step (iii), namely, approximating hinge loss
is sufficient to guarantee approximation of the Bayes loss. Thus Equation (16) implies that the risk

3. For example, we can take{c(m)} be the smallest number satisfyingc(m) ≥ m−1/8 andTc(m) ≤ m1/8/ log2−1. In-

equality (15) thus leads to∑∞
m=1P(γm,c(m)/c(m)≥ m1/4)≤+∞ which implies uniform convergence ofγm,c(m)/c(m).
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of function fm,c converges to Bayes risk.

Before concluding this section, we remark that although we focus in this paper the hinge-loss
function and the RKHS norm regularizer, the robustness approach to establish consistency can be
generalized to other regularization schemes and loss functions. Indeed,throughout the proof we
only require that the regularized loss ( that is, the training loss plus the regularization penalty) is an
upper bound of the minimax error with respect to certain set-inclusive uncertainty. This is a property
satisfied by many classification algorithms even though an exact equivalence relationship similar to
the one presented in this paper may not exist. This suggests using the robustness view to derive
sharp sample complexity bounds for a broad class of algorithms (e.g., Steinwart and Christmann,
2008).

6. Concluding Remarks

This work considers the relationship between robust and regularized SVM classification. In partic-
ular, we prove that the standard norm-regularized SVM classifier is in fact the solution to a robust
classification setup, and thus known results about regularized classifiers extend to robust classifiers.
To the best of our knowledge, this is the first explicit such link between regularization and robustness
in pattern classification. The interpretation of this link is that norm-based regularization essentially
builds in a robustness to sample noise whose probability level sets are symmetricunit balls with
respect to the dual of the regularizing norm. It would be interesting to understand the performance
gains possible when the noise does not have such characteristics, and the robust setup is used in
place of regularization with appropriately defined uncertainty set.

Based on the robustness interpretation of the regularization term, we re-proved the consistency
of SVMs without direct appeal to notions of metric entropy, VC-dimension, or stability. Our proof
suggests that the ability to handle disturbance is crucial for an algorithm to achieve good general-
ization ability. In particular, for “smooth” feature mappings, the robustnessto disturbance in the
observation space is guaranteed and hence SVMs achieve consistency. On the other-hand, certain
“non-smooth” feature mappings fail to be consistent simply because for such kernels the robustness
in the feature-space (guaranteed by the regularization process) doesnot imply robustness in the
observation space.
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Appendix A.

In this appendix we show that for RBF kernels, it is possible to relate robustness in the feature space
and robustness in the sample space more directly.
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Theorem 14 Suppose the Kernel function has the form k(x,x′) = f (‖x− x′‖), with f : R
+ → R a

decreasing function. Denote byH the RKHS space of k(·, ·) and Φ(·) the corresponding feature
mapping. Then we have for anyx ∈ R

n, w ∈H and c> 0,

sup
‖δ‖≤c

〈w, Φ(x−δ)〉 = sup
‖δφ‖H≤

√
2 f (0)−2 f (c)

〈w, Φ(x)+δφ〉.

Proof We show that the left-hand-side is not larger than the right-hand-side, and vice versa.
First we show

sup
‖δ‖≤c

〈w, Φ(x−δ)〉 ≤ sup
‖δφ‖H≤

√
2 f (0)−2 f (c)

〈w, Φ(x)−δφ〉. (17)

We notice that for any‖δ‖ ≤ c, we have

〈w, Φ(x−δ)〉

=
〈

w, Φ(x)+
(

Φ(x−δ)−Φ(x)
)

〉

=〈w, Φ(x)〉+ 〈w, Φ(x−δ)−Φ(x)〉
≤〈w, Φ(x)〉+‖w‖H · ‖Φ(x−δ)−Φ(x)‖H
≤〈w, Φ(x)〉+‖w‖H

√

2 f (0)−2 f (c)

= sup
‖δφ‖H≤

√
2 f (0)−2 f (c)

〈w, Φ(x)−δφ〉.

Taking the supremum overδ establishes Inequality (17).
Next, we show the opposite inequality,

sup
‖δ‖≤c

〈w, Φ(x−δ)〉 ≥ sup
‖δφ‖H≤

√
2 f (0)−2 f (c)

〈w, Φ(x)−δφ〉. (18)

If f (c) = f (0), then Inequality 18 holds trivially, hence we only consider the case thatf (c) < f (0).
Notice that the inner product is a continuous function inH , hence for anyε > 0, there exists aδ′φ
such that

〈w, Φ(x)−δ′φ〉 > sup
‖δφ‖H≤

√
2 f (0)−2 f (c)

〈w, Φ(x)−δφ〉− ε; ‖δ′φ‖H <
√

2 f (0)−2 f (c).

Recall that the RKHS space is the completion of the feature mapping, thus thereexists a sequence
of {x′i} ∈ R

n such that
Φ(x′i) → Φ(x)−δ′φ, (19)

which is equivalent to
(

Φ(x′i)−Φ(x)
)

→−δ′φ.

This leads to

lim
i→∞

√

2 f (0)−2 f (‖x′i −x‖)

= lim
i→∞

‖Φ(x′i)−Φ(x)‖H
=‖δ′φ‖H <

√

2 f (0)−2 f (c).
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Since f is decreasing, we conclude that‖x′i −x‖ ≤ c holds except for a finite number ofi. By (19)
we have

〈w, Φ(x′i)〉 → 〈w, Φ(x)−δ′φ〉 > sup
‖δφ‖H≤

√
2 f (0)−2 f (c)

〈w, Φ(x)−δφ〉− ε,

which means
sup
‖δ‖≤c

〈w, Φ(x−δ)〉 ≥ sup
‖δφ‖H≤

√
2 f (0)−2 f (c)

〈w, Φ(x)−δφ〉− ε.

Sinceε is arbitrary, we establish Inequality (18).
Combining Inequality (17) and Inequality (18) proves the theorem.
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