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Abstract

We consider regularized support vector machines (SVMs)xaod that they are precisely equiva-
lent to a new robust optimization formulation. We show thé equivalence of robust optimization
and regularization has implications for both algorithmsj analysis. In terms of algorithms, the
equivalence suggests more general SVM-like algorithmslfassification that explicitly build in
protection to noise, and at the same time control overfitti@m the analysis front, the equiva-
lence of robustness and regularization provides a robushization interpretation for the success
of regularized SVMs. We use this new robustness interpogtaf SVMs to give a new proof of
consistency of (kernelized) SVMs, thus establishing rtiess as theeasonregularized SVMs
generalize well.

Keywords: robustness, regularization, generalization, kernelpsttpsector machine

1. Introduction

Support Vector Machines (SVMs for short) originated in Boser et 892) and can be traced back
to as early as Vapnik and Lerner (1963) and Vapnik and Chervonétrel). They continue to be
one of the most successful algorithms for classification. SVMs addres&t$sification problem by
finding the hyperplane in the feature space that achieves maximum sampie wizeg the training
samples are separable, which leads to minimizing the norm of the classifien tsamples are
not separable, a penalty term that approximates the total training erransgleced (Bennett and
Mangasarian, 1992; Cortes and Vapnik, 1995). It is well known thatmiiing the training error
itself can lead to poor classification performance for new unlabeled datastisuch an approach
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may have poor generalization error because of, essentially, overfittapmik and Chervonenkis,
1991). A variety of modifications have been proposed to handle this, btieeanost popular
methods being that of minimizing a combination of the training-error and a rézatian term. The
latter is typically chosen as a norm of the classifier. The resulting regullaciassifier performs
better on new data. This phenomenon is often interpreted from a statistig@hip#heory view:
the regularization term restricts the complexity of the classifier, hence thatidevof the testing
error and the training error is controlled (see Smola et al., 1998; Evgenay 2000; Bartlett and
Mendelson, 2002; Koltchinskii and Panchenko, 2002; Bartlett et 05 28nd references therein).

In this paper we consider a different setup, assuming that the trainingaoagenerated by
the true underlying distribution, but some non-i.i.d. (potentially adversariatutbance is then
added to the samples we observe. We follow a robust optimization (see BuGdrad Lebret,
1997; Ben-Tal and Nemirovski, 1999; Bertsimas and Sim, 2004, ancerefes therein) approach,
that is, minimizing the worst possible empirical error under such disturlsaritee use of robust
optimization in classification is not new (e.g., Shivaswamy et al., 2006; Bhattachet al., 2004b;
Lanckriet et al., 2003), in whicbox-typeuncertainty sets were considered. Moreover, there has
not been an explicit connection to the regularized classifier, althoughighdevel it is known that
regularization and robust optimization are related (e.g., El Ghaoui anet, d997; Anthony and
Bartlett, 1999). The main contribution in this paper is solving the robust cleatsifn problem for
a class of non-box-typed uncertainty sets, and providing a linkage beti@bust classification and
the standard regularization scheme of SVMs. In particular, our contritsuith@tude the following:

e We solve the robust SVM formulation for a class of non-box-type unicgytaets. This per-
mits finer control of the adversarial disturbance, restricting it to satisfiyegate constraints
across data points, therefore reducing the possibility of highly corretestéarbance.

e We show that the standard regularized SVM classifier is a special caas obbust clas-
sification, thus explicitly relating robustness and regularization. This peswaah alternative
explanation to the success of regularization, and also suggests nasgtifyaotivated ways
to construct regularization terms.

e We relate our robust formulation to several probabilistic formulations. Weidena chance-
constrained classifier (that is, a classifier with probabilistic constraints orlasssfication)
and show that our robust formulation can approximate it far less camtsealy than previous
robust formulations could possibly do. We also consider a Bayesian, setdighow that this
can be used to provide a principled means of selecting the regularizatifficieoé¢ without
cross-validation.

e We show that the robustness perspective, stemming from a non-i.i.d. ispabys be useful
in the standard learning (i.i.d.) setup, by using it to prove consistency fodatd SVM
classification without using VC-dimension or stability argumentBhis result implies that
generalization ability is a direct result of robustness to local disturbaittiesrefore suggests
a new justification for good performance, and consequently allows usnisircat learning
algorithms that generalize well by robustifying non-consistent algorithms.
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1.1 Robustness and Regularization

We comment here on the explicit equivalence of robustness and regtilamiz\We briefly explain
how this observation is different from previous work and why it is inténgs Previous works on
robust classification (e.g., Lanckriet et al., 2003; Bhattacharyya éQfl4a,b; Shivaswamy et al.,
2006; Trafalis and Gilbert, 2007) consider robustifyiegularizedclassifications. That is, they
propose modifications to standard regularized classifications so thattferneulations are robust
to input uncertainty. Furthermore, box-type uncertainty—a setup wheritiit uncertainty is the
Cartesian product of uncertainty in each input (see Section 2 for defarnealation)—is consid-
ered, which leads to penalty terms on eaonstraintof the resulting formulation. The objective
of these works was not to relate robustness and the standard regidarteam that appears in the
objective functionindeed, research on classifier regularization mainly considers itt effédbound-
ing the complexity of the function class (e.g., Smola et al., 1998; Evgeniou 208D, Bartlett and
Mendelson, 2002; Koltchinskii and Panchenko, 2002; Bartlett et 205R0Thus, although certain
equivalence relationships between robustness and regularizatiobdwwvestablished for problems
other than classification (El Ghaoui and Lebret, 1997; Ben-Tal amitggski, 1999; Bishop, 1995;
Xu et al., 2009), the explicit equivalence between robustness anthregtion in the SVM setup
is novel.

The connection of robustness and regularization in the SVM context is tergdor the follow-
ing reasons. First, it gives an alternative and potentially powerful egfilzn of the generalization
ability of the regularization term. In the standard machine learning view, thdanézation term
bounds the complexity of the class of classifiers. The robust view ofaggation regards the test-
ing samples as a perturbed copy of the training samples. Therefore tidé&stal perturbation is
given or bounded, the regularization term bounds the gap between #s#ficktion errors of the
SVM on these two sets of samples. In contrast to the standard PAC apptoiacbound depends
neither on how rich the class of candidate classifiers is, nor on an assarttgicall samples are
picked in an i.i.d. manner.

Second, this connection suggests novel approaches to designinglgssification algorithms,
in particular, designing the regularization term. In the PAC structural-risk miaioiz approach,
regularization is chosen to minimize a bound on the generalization error baskd training error
and a complexity term. This approach is known to often be too pessimistic (Keaal., 1997),
especially for problems with more structure. The robust approachsadieother avenue. Since
both noise and robustness are physical processes, a close investigdtie application and noise
characteristics at hand, can provide insights into how to properly rofuestifl therefore regularize
the classifier. For example, it is known that normalizing the samples so thaartia@ee among all
features is roughly the same (a process commonly used to eliminate the sadidgrr of individ-
ual features) often leads to good generalization performance. Froralihistness perspective, this
has the interpretation that the noise is anisotropic (ellipsoidal) rather thanicgihand hence an
appropriate robustification must be designed to fit this anisotropy.

We also show that using the robust optimization viewpoint, we obtain somelplistia results
that go beyond the PAC setup. In Section 3 we bound the probability thaswytmaining sample is
correctly labeled. Such a bound considers the behavicowtiptedsamples and is hence different
from the known PAC bounds. This is helpful when the training samples an$ting samples are

1. Lanckriet et al. (2003) is perhaps the only exception, where danézation term is added to the covariance estimation
rather than to the objective function.
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drawn from different distributions, or some adversary manipulates thplsea to prevent them from
being correctly labeled (e.g., spam senders change their patterns frofotirme to avoid being
labeled and filtered). Finally, this connection of robustification and regaléon also provides us
with new proof techniques as well (see Section 5).

We need to point out that there are several different definitions efstolss in the literature. In
this paper, as well as the aforementioned robust classification papleustmess is mainly under-
stood from a Robust Optimization (RO) perspective, where a min-max optimmzatigerformed
over all possible disturbances. An alternative interpretation of robsststems from the rich lit-
erature on robust statistics (e.g., Huber, 1981; Hampel et al., 198&sBeuw and Leroy, 1987,
Maronna et al., 2006), which studies how an estimator or algorithm behiades a small pertur-
bation of the statistics model. For example, thiduence functiorapproach, proposed in Hampel
(1974) and Hampel et al. (1986), measures the impact of an infinitesimalrdmibcontamination
of the original distribution on the quantity of interest. Based on this notion lmistmess, Christ-
mann and Steinwart (2004) showed that many kernel classification algsrithcluding SVM, are
robust in the sense of having a finite Influence Function. A similar resutefgression algorithms
is shown in Christmann and Steinwart (2007) for smooth loss functiongna®ickistmann and Van
Messem (2008) for non-smooth loss functions where a relaxed vesstbe Influence Function is
applied. In the machine learning literature, another widely used notion cladeted to robustness
is thestability, where an algorithm is required to be robust (in the sense that the outymtitth does
not change significantly) under a specific perturbation: deleting oneledrom the training set. It
is now well known that a stable algorithm such as SVM has desirable deadcn properties, and
is statistically consistent under mild technical conditions; see for examplegBetiand Elisseeff
(2002), Kutin and Niyogi (2002), Poggio et al. (2004) and Mukheegeal. (2006) for details. One
main difference between RO and other robustness notions is that the figrowrstructive rather
than analytical. That is, in contrast to robust statistics or the stability agptbat measures the
robustness of givenalgorithm, RO canmobustifyan algorithm: it converts a given algorithm to
a robust one. For example, as we show in this paper, the RO versionae empirical-error
minimization is the well known SVM. As a constructive process, the RO appratso leads to
additional flexibility in algorithm design, especially when the nature of the gaation is known
or can be well estimated.

1.2 Structure of the Paper

This paper is organized as follows. In Section 2 we investigate the codelsteirbance case, and
show the equivalence between the robust classification and the regtitariprocess. We develop
the connections to probabilistic formulations in Section 3. The kernelizedweisinvestigated
in Section 4. Finally, in Section 5, we consider the standard statistical leaseing where all
samples are i.i.d. draws and provide a novel proof of consistency of 8&#&d on robustness
analysis. The analysis shows that duplicate copies of iid draws tend tarbiafs to each other
in the sense that with high probability the total difference is small, and helesstification that
aims to control performance loss for small perturbations can help mitigatétorgreven though
no explicit perturbation exists.
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1.3 Notation

Capital letters are used to denote matrices, and boldface letters are usgte cblumn vectors.
For a given nornj| - ||, we use]| - ||* to denote its dual norm, that iz||* = sup{z'x|||x|| < 1}. For
a vectorx and a positive semi-definite matixof the same dimensiorjx||c denotesv'x'Cx. We
used to denote disturbance affecting the samples. We use supenstatenote the true value
for an uncertain variable, so thal is the true (but unknown) noise of th# sample. The set of
non-negative scalars is denotedby. The set of integers from 1 tois denoted byl : n].

2. Robust Classification and Regularization

We consider the standard binary classification problem, where we aga gifinite number of
training samplegx;,y; H"; € R" x {—1,4+1}, and must find a linear classifier, specified by the
functionh™:P(x) = sgn((w, x) + b). For the standard regularized classifier, the paraméteits) are
obtained by solving the following convex optimization problem:

m
min : r(w,b)+ i
min (w,b) ;E.

st &> [1-yi((w,X)+Db)]
&i >0,

wherer (w, b) is a regularization term. This is equivalent to

rxip{r(w, b) +imax[l—yi(<w,xi> +b),0] } .

Previous robust classification work (Shivaswamy et al., 2006; Bhattggh et al., 2004a,b; Bhat-
tacharyya, 2004; Trafalis and Gilbert, 2007) considers the classificatmblem where the input
are subject to (unknown) disturbana®s- (91,...,0m) and essentially solves the following min-
max problem:

for a box-type uncertainty set;.,. That is, letAf denote the projection af\;., onto thed; com-
ponent, them\g,, = Ai X -+ X N (note thatAj need not be a “box”). Effectively, this allows
simultaneous worst-case disturbances across many samples, and leagt$/toanservative solu-
tions. The goal of this paper is to obtain a robust formulation where the biistoes{d;} may be
meaningfully taken to be correlated, that is, to solve for a non-box-ype

min[nax{r(w, b) + imax[l—y((w,xi —&)+b),0] } : (2)
Wb Zear i=

We briefly explain here the four reasons that motivate this “robust tonbation” setup and in par-
ticular the min-max form of (1) and (2). First, it can explicitly incorporate ppmblem knowledge

of local invariance (e.g., Teo et al., 2008). For example, in vision taskssiaable classifier should
provide a consistent answer if an input image slightly changes. Secand,dte situations where
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some adversarial opponents (e.g., spam senders) will manipulate the tastipigsto avoid being
correctly classified, and the robustness toward such manipulation shetakldn into consideration
in the training process (e.g., Globerson and Roweis, 2006). Or altezlyatiie training samples
and the testing samples can be obtained from different processesrasglthe standard i.i.d. as-
sumption is violated (e.g., Bi and Zhang, 2004). For example in real-time appfisathe newly
generated samples are often less accurate due to time constraints. Fimallyatmns based on
chance-constraints (e.g., Bhattacharyya et al., 2004b; Shivaswaahy 2006) are mathematically
equivalent to such a min-max formulation.
We define explicitly the correlated disturbance (or uncertainty) which waydialow.

Definition 1 A setA\p C R" is called anAtomic Uncertainty Seif

() 0eNo;

(1) Foranywg € R": sup[w{ 8] = sup[—wg&] < 4.
S deng

We use “sup” here because the maximal value is not necessary attaiced\gimay not be a
closed set. The second condition of Atomic Uncertainty set basically sayhéhancertainty set is
bounded and symmetric. In particular, all norm balls and ellipsoids ceraitthd origin are atomic
uncertainty sets, while an arbitrary polytope might not be an atomic uncersatty

Definition 2 LetAgp be an atomic uncertainty set. A sgtC R"*™Mis called aSublinear Aggregated
Uncertainty Sebf Ap, if

N CNCAT,
where: AL £ (JA G £ {(81,0m)|& € Ab: S = O}
t=1

m
NJré{(alal)"' ;Gm6m)| ziai :1; of 207 6i 6%7|:17 7m}'
i=

The Sublinear Aggregated Uncertainty definition models the case wherésthebdnces on each
sample are treated identically, but their aggregate behavior across multigdesas controlled.
Some interesting examples include

D) (@l 5 18] <ok
(2) {(d1,---,0m)|Fte[l:m]; ||&] <c; & =0,Vi#t};

@) {(Gw- ,6m>|__§l¢c||6iu <.

All these examples have the same atomic uncertaintp\get {6| |8]| < c}. Figure 1 provides an
illustration of a sublinear aggregated uncertainty senfer 1 andm = 2, that is, the training set
consists of two univariate samples.

The following theorem is the main result of this section, which reveals thadatdmorm reg-
ularized SVM is the solution of a (non-regularized) robust optimization. # &pecial case of
Proposition 4 by taking\p as the dual-norm bal{d|||||* < c} for an arbitrary norm|| - | and
r(w,b)=0.
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a. N~ b. A(T

Figure 1: lllustration of a Sublinear Aggregated Uncertainty get

d. Box uncertainty

Theorem 3 Let T £ {(61,---6m)| S8 < c}. Suppose that the training sampfg;,y; }";
are non-separable. Then the following two optimization problem&wob) are equivalertt

m
min : (élﬂgn))(gi;max[l —Yi({w, xi — &) +b),0],

m 3)
min:  cfjw|| +21max[l—yi ((w, %) +b),0].

Proposition 4 Assume(x;,y}™, are non-separable, () : R™ — R is an arbitrary function,\'
is a Sublinear Aggregated Uncertainty set with corresponding atomicrtaigty setAp. Then the
following min-max problem

T}ip@fgﬂge% {r(w, b) + iZmlmax[l— yi((w,Xi — &) +b), 0] } (4)

is equivalent to the following optimization problemwrb, &:

min: r(w,b)+ sup(w'd) +i§i,

deNy
st.: & >1-[yvi((w,xi)+b)], i=1....m ®)
&>0, i=1....m

Furthermore, the minimization of Problem (5) is attainable wheny is lower semi-continuous.
Proof Define:

v(w,b) £ glj\z(wTB) + imax[l —¥i((w,x;) +b), 0].

2. The optimization equivalence for the linear case was observed indepity by Bertsimas and Fertis (2008).
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Recall that\(~ C AL C N* by definition. Hence, fixing angi, b) € R, the following inequalities
hold:

sup Zlmaxl yi((W,x; — &) +b), 0]
(01 6m€Nf|

< sup Zlmaxl yi (W, x; — &) +b), 0]
(81, Sm) ENCi

< sup Zlmaxl yi( (W, % — &) +b), 0].
(81, ,0m)EN T i

To prove the theorem, we first show thatv, b) is no larger than the leftmost expression and then
showv(W, b) is no smaller than the rightmost expression.

Step 1: We prove that

V(W,b) < sup Zimaxl Yi (W, x; — &) +b), 0]. (6)
(81, ,0m)EN i

Since the samplefx;, y; 1, are not separable, there exists [1 : m| such that

A~

yt(<W7Xt> =+ b) < 0. (7)

Hence,

sup S’ max [1—yi((W, % — &) +D), 0]
(81, D)~ IS

= ;max 1—vyi((W,x) +b), 0] + sup max|1—y;((W,x; — &) +b), 0]
iZt &N

= Zmax[l—Yi((\?V,xi)JrB), 0] + max[1—y;((W, %) +b) + sup(yw'&), 0]
It &END
= ;max[l_yi(<waxi> +b), 0] +max[1—y;((W, %) +b), 0] + sup(y'&)
*END

= sup(W'd) + Zmax [1—yi((W,x;) +b),0] = v(W,b).
deND

The third equality holds because of Inequality (7) andﬁt%%(yt\fvTét) being non-negative (recall
0 € Ap). Since;” C A, Inequality (6) follows.

Step 2: Next we prove that

sup Zlmaxl yi (W, x; — &) +b), 0] < v(W,b). (8)
(81, ,0m) N+
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Notice that by the definition o\ we have

sup Zlmaxl yi (W, x; — &) +b), 0]
(1,++,8m) EACT

= sup Zimax[l—Yi«WMi—Gi8i>+6)70] 9)
S ai=1;0;>0;5 €N i=
m ~ A
= sup max| sup (1—yi((W,x; —0;&) +b)), 0].
Tin10i=1;0i>0;i= Sieng

Now, for anyi € [1 : m], the following holds,

max| sup (1—yi((W, x; — ;&) +b)), 0]
5i€%
=max[1-yi((W,x)+b) +a; sup(W'&), 0]
&Ny
gmax[l—yi(<\iv,xi>+6) 0] +q sup(w Té.)
SenG

Therefore, Equation (9) is upper bounded by

m

m
zimax[l—yi(<\fv,xi>+b),0] +  sup 210(' sup(W' &)
i= Yt 0i=1;0i>0;i SEND

— sup(W'3) + Zlmax [1—yi((W, xi) +b), 0] — V(W,b),
deNo

hence Inequality (8) holds.
Step 3: Combining the two steps and addifg, b) on both sides leads t&/(w, b) € R"1,

sup Zlmaxl Yi (W, x; — &) +b), 0] +r(w,b) = v(w,b) +r(w,b).
(B, Sm) €N

Taking the infimum on both sides establishes the equivalence of Probleem@4pProblem (5).
Observe that syp,, W' 3 is a supremum over a class of affine functions, and hence is lower semi-
continuous. Thereforg(-,-) is also lower semi-continuous. Thus the minimum can be achieved for
Problem (5), and Problem (4) by equivalence, whehis lower semi-continuous. |

Before concluding this section we briefly comment on the meaning of The8rand Propo-
sition 4. On one hand, they explain the widely known fact that the reguthctassifier tends
to be more robust (see for example, Christmann and Steinwart, 2004, QAfigtmann and Van
Messem, 2008; Trafalis and Gilbert, 2007). On the other hand, thiswatigar also suggests that
the appropriate way to regularize should come from a disturbancetnasssperspective. The
above equivalence implies that standard regularization essentially asthahése disturbance is
spherical; if this is not true, robustness may yield a better regularizatiomligagithm. To find a
more effective regularization term, a closer investigation of the data variatidesirable, partic-
ularly if some a-priori knowledge of the data-variation is known. For eXengonsider an image
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classification problem. Suppose it is known that these pictures are talensignificantly varying
background light. Therefore, for a given sample (picture), the deation on each feature (pixel) is
large. However, the perturbations across different features arestidemtical since they are under
the same background light. This can be represented by the following Atoroéctamty set

1 n
No = {9][[8]]2 < 1, 15— ( Zl&)le < G2},
=

wherec, < c;. By Proposition 4, this leads to the following regularization term

f(w) = max:w'd
s.t. ”6”2 <C

(- 1115 <
Notice this is a second order cone programming which has a dual form
min : c1vy + CoVo
st up+ (1 — %11T)uz =w
luill2 < wvi, 1 =1,2.

Substituting it to (5), the resulting classification problem is a second ordermmgram, which can
be efficiently solved (Boyd and Vandenberghe, 2004).

3. Probabilistic Interpretations

Although Problem (4) is formulated without any probabilistic assumptions, insidision, we
briefly explain two approaches to construct the uncertainty set ansadepily tune the regular-
ization parametec based on probabilistic information.

The first approach is to use Problem (4) to approximate an upper bouadkance-constrained
classifier. Suppose the disturban@3, - --&,) follows a joint probability measurg. Then the
chance-constrained classifier is given by the following minimization probligenga confidence
leveln € [0, 1],

min: |
w,b,|

st.: u{ _imax[l—)/iﬂw, X —&)+b),0] < I} >1-n. (10)

The formulations in Shivaswamy et al. (2006), Lanckriet et al. (200@8) Bhattacharyya et al.
(2004a) assume uncorrelated noise and require all constraints to Biedatish high probability
simultaneously They find a vectofé,,--- ,&m| " where eacl; is then-quantile of the hinge-loss
for samplex{. In contrast, our formulation above minimizes thequantile of the average (or
equivalently the sum of) empirical error. When controlling this averagety is of more interest,
the box-type noise formulation will be overly conservative.

Problem (10) is generally intractable. However, we can approximate dllag/g. Let

¢ Lint{alu(Y 13" <o) > 1-n}.
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Notice thatc" is easily simulated givep. Then for any(w,b), with probability no less than 4 n,
the following holds,

_imax[l—yi«w, Xi — &) +b),0]

m
< Hrgﬂaé@ iZlmax[l yi((w, i — &) +b), 0]
Thus (10) is upper bounded by (3) with= c*. This gives an additional probabilistic robustness
property of the standard regularized classifier. Notice that following a simgaroach but with

the constraint-wise robust setup, that is, the box uncertainty set, woulddezonsiderably more
pessimistic approximations of the chance constraint.

The second approach considers a Bayesian setup. Suppose thistotbbdcee” = 5, |5 ||*
follows a prior distributiorp(-). This can model for example the case that the training sample set is
a mixture of several data sets where the disturbance magnitude of eaglks@vn. Such a setup
leads to the following classifier which minimizes the Bayesian (robust) error:

min : /{ max imax[l—y((w,xi—6i)+b),0]}dp(c). (11)

w.b YlIGif*<c
By Theorem 3, the Bayes classifier (11) is equivalent to

m
rer,it?: /{c]w||+i;max[1—yi(<w,xi>+b),0]}dp(c),
which can be further simplified as
m
an,il?: CHWH+i;max[1—yi((w,xi)+b),0],

wherec = [ cdp(c). This thus provides us a justifiable parameter tuning method different frass c
validation: simply using the expected valuedbf We note that it is the equivalence of Theorem 3
that makes this possible, since it is difficult to imagine a setting where one wau@aprior on
regularization coefficients.

4. Kernelization

The previous results can be easily generalized to the kernelized settiiody, wih discuss in detail
in this section. In particular, similar to the linear classification case, we giesvdmierpretation of
the standard kernelized SVM as the min-max empirical hinge-loss solutiomewhee disturbance
is assumed to lie in the feature space. We then relate this to the (more intuitivelgliagp setup
where the disturbance lies in the sample space. We use this relationship imSetdiprove a
consistency result for kernelized SVMs.
The kernelized SVM formulation considers a linear classifier in the feapaees{, a Hilbert

space containing the range of some feature mapping The standard formulation is as follows,

min : r(w,b)+i§i

w,b

st.r &> [1-yi((w,®(x)) +b)],
& > 0.
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It has been proved in Sotkopf and Smola (2002) that if we takig (w,w)) for some increasing
function f(-) as the regularization ternfw, b), then the optimal solution has a representatitnr-
S, ai®(x;), which can further be solved without knowing explicitly the feature mappig by
evaluating a kernel functiok(x, x’) £ (®(x), ®(x')) only. This is the well-known “kernel trick”.

The definitions of Atomic Uncertainty Set and Sublinear Aggregated Uringriget in the fea-
ture space are identical to Definition 1 and 2, withreplaced by#. The following theorem is a
feature-space counterpart of Proposition 4. The proof follows fasimilar argument to Proposi-
tion 4, that is, for any fixedw, b) the worst-case empirical error equals the empirical error plus a
penalty term sup.,. ((w, 3)), and hence the details are omitted.

Theorem 5 Assume{®(x;),y; }", are not linearly separable, () : H x R — R is an arbitrary
function, Al € #™ is a Sublinear Aggregated Uncertainty set with corresponding atomicrunce
tainty set\p C . Then the following min-max problem

min  sup {r(w,b)+imax[l—)ﬁ((w,cb(xi)—6i>+b)70]}
WD (8, Bm)eN i=

is equivalent to

min: r(w,b)+ sup({w, o)) +i€i,

. . (12)
st.i & >1-yi((w, ®(x))+b), i=1---.m
EiZOa |:177m

Furthermore, the minimization of Problem (12) is attainable when yis lower semi-continuous.

For some widely used feature mappings (e.g., RKHS of a Gaussian kqi®éX),),yi} ", are
always separable. In this case, the worst-case empirical error mbag equal to the empirical error
plus a penalty term syp,, ((w, 6>). However, it is easy to show that for atw, b), the latter is an
upper bound of the former.

The next corollary is the feature-space counterpart of Theorenh8&re)l - || ,, stands for the
RKHS norm, that is, foz € #, ||z||,; = \/(z, ). Noticing that the RKHS norm is self dual, we
find that the proof is identical to that of Theorem 3, and hence omit it.

Corollary 6 LetT, = {(61, - Om) | S 18|l < c}. If {P(x;),yi}", are non-separable, then the
following two optimization problems g, b) are equivalent

min : (617.%%)(€Tj{i;max[l —¥i ((w, ®(x) — &) +b),0],
min : c||w\ﬂ+imax[lyi(<w, ®(xi)) +b),0]. (13)

Equation (13) is a variant form of the standard SVM that has a squafétSRorm regularization
term, and it can be shown that the two formulations are equivalent up tgicigeof tradeoff param-
eterc, since both the empirical hinge-loss and the RKHS norm are convexefbiney Corollary 6
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essentially means that the standard kernelized SVM is implicitly a robust clagsifiBout regu-
larization) with disturbance in the feature-space, and the sum of the magyoittite disturbance is
bounded.

Disturbance in the feature-space is less intuitive than disturbance in théesspage, and the
next lemma relates these two different notions.

Lemma 7 Suppose there existsC R", p > 0, and a continuous non-decreasing functionif™ —
R™* satisfying 10) = O, such that

K(x,%) + KX, ') = 2k(x,X) < f(|[x=X[[5), VXX € X,[[x=X[2<p
then
[®(R+8) — D) [lor <1/ F(13]5), VIdl2<p, X,%+5€ X.

In the appendix, we prove a result that provides a tighter relationshipekatdisturbance in the
feature space and disturbance in the sample space, for RBF kernels.
Proof Expanding the RKHS norm yields

[P (X+8) = D(X)|| 5

=V (®(%+3) — P(X), P(X+8) — D(X))

=V(®(%+3), P(X+3)) + (P(X), P(X)) — 2(P(X+8), D(X))
= /K(%+8,%+8) + k(% %) — 2K (X +5, %)
2
2

<\ 115 +3-%13) =/ 1(15]B)

where the inequality follows from the assumption. |

+
+

Lemma 7 essentially says that under certain conditions, robustness intilre fgaace is a stronger
requirement that robustness in the sample space. Therefore, a aldbsifiachieves robustness
in the feature space (the SVM for example) also achieves robustnesssartipge space. Notice
that the condition of Lemma 7 is rather weak. In particular, it holds for amficoousk(-,-) and
boundedx.

In the next section we consider a more foundational property of robssin the sample space:
we show that a classifier that is robust in the sample space is asymptoticadlgtean As a conse-
guence of this result for linear classifiers, the above results imply thestensy for a broad class
of kernelized SVMs.

5. Consistency of Regularization

In this section we explore a fundamental connection between learningohodtness, by using
robustness properties to re-prove the statistical consistency of the Glaesifier, and then the
kernelized SVM. Indeed, our proof mirrors the consistency proofifioim Steinwart (2005), with
the key difference thatre replace metric entropy, VC-dimension, and stability conditions usegl, ther
with a robustness condition

Thus far we have considered the setup where the training-samplesangted by certain set-
inclusive disturbances. We now turn to the standard statistical learning, $stassuming that all
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training samples and testing samples are generated i.i.d. according to avahkrobability P,
that is, there does not exist explicit disturbance.

Letx C R" be bounded, and suppose the training sampley;);* ; are generated i.i.d. accord-
ing to an unknown distributiof® supported byX x {—1, +1}. The next theorem shows that our
robust classifier setup and equivalently regularized SVM asymptotically miegaia upper-bound
of the expected classification error and hinge loss.

Theorem 8 Denote K= maxecx ||X|2. Then there exists a random sequefiggc} such that:
1. Ve > 0, limy_»Ymc = 0 almost surely, and the convergence is uniforn;jn

2. the following bounds on the Bayes loss and the hinge loss hold uniformll fov,&):

1 m
Exy)~p(Lytsgriw,x)+b)) < Yme +Cllwll2+ — _ZlmaX[l— yi((w, xi) +b),0];
1=
E(ny)N]P)(maX(l_y“Wv X> + b)7 0)) <

1 m
Vine(L+ K[[Wilz-+[60) +cliwllz+ 7 5 max[1=yi((w, xi) +5),0]
i=

Proof We briefly explain the basic idea of the proof before going to the technatalld. We con-
sider the testing sample set as a perturbed copy of the training sample seteasare the magni-
tude of the perturbation. For testing samples that have “small” perturbaticivs|,+

r—ln Sy max[l —Vi({w, ;) +b), 0] upper-bounds their total loss by Theorem 3. Therefore, we only
need to show that the ratio of testing samples having “large” perturbationsislraito prove the
theorem.

Now we present the detailed proof. Given & 0, we call a testing sample’,y’) and a training
sample(x,y) asample paiif y=y and||x — x||2 < c. We say a set of training samples and a set of
testing samples forrhpairings if there exist sample pairs with no data reused. Givarraining
samples andhtesting samples, we udéy, c to denote the largest number of pairings. To prove this
theorem, we need to establish the following lemma.

Lemma9 Given a c> 0, My c/m— 1 almost surely as m+ +oo, uniformly w.r.t.IP.

Proof We make a partition o x {—1, +1} = UtTilXi such thatx; either has the fornfoy, ag +
c/y/N) x [02,d24C//N)--- X [Ap,0n+C/+/N) X {+1} Or [01,01+C/y/N) X [A2,02+C/y/N) -+ X
[0n, 0n+¢/4/n) x {—1} (recalln is the dimension ofX). That is, each partition is the Cartesian
product of a rectangular cell i and a singleton if—1, +1}. Notice that if a training sample and
a testing sample fall intdt, they can form a pairing.

Let Ni" andNf® be the number of training samples and testing samples falling iti"tset, re-
spectively. Thus(Ny',--- ,N{) and(N{®, - - - ,Ni%) are multinomially distributed random vectors fol-
lowing a same distribution. Notice that for a multinomially distributed random ve&tgr - - , Ny)
with parametemand(p, - - -, p«), the following holds (Bretegnolle-Huber-Carol inequality, see for
example Proposition A6.6 of van der Vaart and Wellner, 2000). Foiany,

P(i—ilNi —mp|) > 2\/ﬁ1>\) < 2Xexp(—2\?).
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Hence we have

= P

Te

P tr _ ngte >4 m}\ <2Tc+1 _2)\2’
(2NN = avim) < 27 e -22)
l Tc ; e _rn>\2

(2, NN 22) < 2% e ),

— P(Mmﬁc/mg 1—)\) < 2T°+1exp(_8m)\2). (14)

Observe thatzf;’]:lzTcHexp(‘Tmﬂ) < 400, hence by the Borel-Cantelli Lemma (see, for example,
Durrett, 2004), with probability one the evefily,c/m< 1—A} only occurs finitely often ag1— co.
That s, liminfy,Mpyc/m> 1— A almost surely. Sinck can be arbitrarily close to zerb|m/m— 1
almost surely. Observe that this convergence is uniforihy sBinceT. only depends orx. |

Now we proceed to prove the theorem. Givarraining samples anoh testing samples witMpm ¢
sample pairs, we notice that for these paired samples, both the total testingretithe total testing
hinge-loss is upper bounded by

m
max max[1— vy ((w, x; — &) +b),0
(617"'75m)€%><--~><%i; [ y'(< i i) ) ]

scm||w|rz+_§imax[1—yi<<w, x)+b), 0.

whereAp = {d]]|9]| < c}. Hence the total classification error of thigesting samples can be upper
bounded by

m
(M—Mmg) +cmlw||z + ZlmaX[l—yi(<w, Xi) +b), 0],
i=
and since

max1—y(w.x))) < max{ 1+[b|+ /) - (W) } = 1+ [b] + K| w2,

xeX

the accumulated hinge-loss of the tatatesting samples is upper bounded by
m
(M—Mmc)(1+K|[w][2+|b[) + cmj|jw||2+ ZmaX[l—yi«w, Xi)+b), 0.
i=
Therefore, the average testing error is upper bounded by
1 n
1—Mmc/m-+c||wi2+ o~ zimax[l—yi«w, xi)+b), 0],
i=
and the average hinge loss is upper bounded by
1 m
(1= Mo/ m) (L KW+ 1) + clwll-+ - 5 max{L—yi((w, ) +),0].
i=
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Let Ymc = 1—Mmc/m. The proof follows sincéMy,c/m — 1 almost surely for ang > 0. Notice
by Inequality (14) we have

P(¥me > A) < exp(—mA?/8-+ (T, + 1)log2). (15)

that is, the convergence is uniformifn

We have shown that the average testing error is upper bounded. Bhetép is to show that
this implies that in fact the random variable given by the conditional expent@tonditioned on the
training sample) of the error is bounded almost surely as in the statementtbéthrem. To make
things precise, consider a fixad and letw; € Q1 andw, € Q, generate then training samples
andmtesting samples, respectively, and for shorthand lBdenote the random variable of the first
m training samples. Let us denote the probability measures for the trainipg agd the testing
samples by,. By independence, the joint measure is given by the product of theseteaely
on this property in what follows. Now fix & and ac > 0. In our new notation, Equation (15) now
reads:

/Ql /Qz 1{Ymc(o,00) > A} dpa(wp)dpa(o) = P(Vm,c(wl,wz) > )\>

exp(—mA2/8+ (Te+1)log 2).

IN

We now bound, (Eqy, [Ymc(w1,u2) | 2™ > A), and then use Borel-Cantelli to show that this event
can happen only finitely often. We have:

Peoy (Eaoy [Yme(wr, 02) [ T > A)
= /1{/ Ym.c(wr, W) dp2(wy) > A} dp1(wr)

< [ / Yre(@1. 02) L(Yime (@1, @2) < A) dpa(cz) +
L Y1, 62)Lyme(01,22) > N) dpa((@2)] > 24 (o)
< /Q ] | MA@, 02) < A)dp(@) +
|, Lme(n, @2) > A)dpa(2)] > 24 Jdpa o)
S A [ a0me(en,00) > N dpaar)] = 2 fdpa(on)

_ /Q 1 1{ /Q Lme(w1,02) > 1) dp2(2) > M dps(cr).

IN

Here, the first equality holds because training and testing samples aremudep, and hence the
joint measure is the product pf andp;. The second inequality holds becayag:(wi, wp) < 1
everywhere. Further notice that

/Ql /Qz U Yme(wr, w2) > A} dpa(wp) dpa(wor)

> [ 2] [ 1(me(on.02) 2 ) do(wz) > A dpa (o).
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Thus we have
P(Eg, (Ymc(w1,62)) > A) < P(vm,c(wl,wz) > A) /A< exp(—rmz/8+ (Te+1)log 2) /A

For anyA andc, summing up the right hand side ovak= 1 to is finite, hence the theorem follows
from the Borel-Cantelli lemma. |

Remark 10 We note thaM,,/m converges to 1 almost surely everifis not bounded. Indeed, to
see this, fix > 0, and letX’ C X be a bounded set such thigtx’) > 1 —e¢. Then, with probability
one,

#(unpaired samples it{) /m— 0,

by Lemma 9. In addition,
max (#(training samples not ir’’), #(testing samples not i) /m— «.
Notice that

Mpm > m— #(unpaired samples i)
— max(#(training samples not ir’’), #(testing samples not in’)).

Hence
lim Myp/m>1—¢,
m—oo

almost surely. Sinceis arbitrary, we havéd,,/m— 1 almost surely.

Next, we prove an analog of Theorem 8 for the kernelized case, andstwsv that these two
imply statistical consistency of linear and kernelized SVMs. Againxlgt R" be bounded, and
suppose the training samples,y;);” ; are generated i.i.d. according to an unknown distribufion
supported oX x {—1, +1}.

Theorem 11 Denote K2 maxcxk(x,x). Suppose there exists > 0 and a continuous
non-decreasing function:fR*™ — R* satisfying f0) = O, such that:

k(x, %) +Kk(X',x') = 2k(x,x') < f(x=X5), ¥x,X €X,[[x=x]2<p.
Then there exists a random sequefiggc} such that:
1. Ve > 0, limy . Ymc = 0 almost surely, and the convergence is uniforn®jn

2. the following bounds on the Bayes loss and the hinge loss hold uniformlIyi fow.d)
H xR

1 m
Ep(Lyssgn w, o(x))+b)) < Yme + Cl[W|| 2 + E_Zmax[l—yi«W’ ®(xi)) +b),0],
i=
E(X.y)NP(maX(l_y(<W7 ¢(X)> + b)) 0)) <

vm,c<1+K||w|ﬂ+b|>+c||w|ﬂ+;imax[l—yi«w, P(x))+b),0].
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Proof Asin the proof of Theorem 8, we generate a sehdésting samples andtraining samples,
and then lower-bound the number of samples that can fasam@ple pairin the feature-space; that
is, a pair consisting of a training sample,y) and a testing sample<’,y') such thaty =y and
|P(x) — P(X)|l4 < c. Incontrast to the finite-dimensional sample space, the feature space may
be infinite dimensional, and thus our decomposition may have an infinite numbericks.” In
this case, our multinomial random variable argument used in the proof of Ledrim@aks down.
Nevertheless, we are able to lower bound the number of sample pairs iratheefgpace by the
number of sample pairs in tleample space

Define f 1(a) £ max{B > 0| f(B) < a}. Sincef(-) is continuous,f~*(a) > 0 for anya > 0.
Now notice that by Lemma 7, if a testing sampl@nd a training samplg’ belong to a “brick”
with length of each side m{p/\/n, f~1(c?)/,/n) in thesample spacésee the proof of Lemma 9),
|P(x) — P(X)|| 4 < c. Hence the number acfample pairsn the feature space is lower bounded
by the number of pairs of samples that fall in the same brick in the sample sy&cean cover
X with finitely many (denoted a3;) such bricks since ~1(¢?) > 0. Then, a similar argument
as in Lemma 9 shows that the ratio of samples that form pairs in a brick casvérgl asn
increases. Further notice that flgr paired samples, the total testing error and hinge-loss are both
upper-bounded by

M
CM\|W||5{+'Zlmax[l—yi(<w, (i) +b),0].

The rest of the proof is identical to Theorem 8. In particular, Inequaliy 6till holds. |

Note that the condition in Theorem 11 is satisfied by most commonly used keforeéxample,
homogeneous polynominal kernels and Gaussian radial basis funcfldris.condition requires
that the feature mapping is “smooth” and hence preserves “locality” of i$tardance, that is,
small disturbance in the sample space guarantees the correspondinigaeaiséuin the feature space
is also small. It is easy to construct non-smooth kernel functions whictotdgemeralize well. For
example, consider the following kernel:

1 x=x;

k(x,X) :{ 0 x#X.

A standard RKHS regularized SVM using this kernel leads to a decisiartitum
m
sign() aik(x,x;)+b),
2

which equals sigfb) and provides no meaningful prediction if the testing samp#enot one of the
training samples. Hence asincreases, the testing error remains as large as 50% regardless of the
tradeoff parameter used in the algorithm, while the training error can be mbitdeudly small by
fine-tuning the parameter.

5.1 Convergence to Bayes Risk

Next we relate the results of Theorem 8 and Theorem 11 to the standeidtemcy notion, that is,
convergence to the Bayes Risk (Steinwart, 2005). The key point o&stter our proof is the use of
a robustness condition in place of a VC-dimension or stability condition usetkinv@rt (2005).

The proof in Steinwart (2005) has 4 main steps. They show: (i) therayslexists a minimizer to
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the expected regularized (kernel) hinge loss; (ii) the expected regaddringe loss of the minimizer
converges to the expected hinge loss as the regularizer goes to zerba(@@quence of functions
asymptotically have optimal expected hinge loss, then they also have optineatedoss; and (iv)
the expected hinge loss of the minimizer of the regularizaitiing hinge loss concentrates around
the empirical regularized hinge loss. In Steinwart (2005), this final §i8pis accomplished using
concentration inequalities derived from VC-dimension consideratiomssiatility considerations.

Instead, we use our robustness-based results of Theorem 8 aackihl to replace these
approaches (Lemmas 3.21 and 3.22 in Steinwart 2005) in proving stepr{t/jhus to establish the
main result.

Recall that a classifier is a rule that assigns to every training set{x;,y;}|" ; a measurable
function fr. The risk of a measurable functidn X — R is defined as

Re(f) £ P({x,y:signf(x) #y}).
The smallest achievable risk
Rp = inf{Rp(f)|f : X — Rmeasurablp

is called theBayes Rislof P. A classifier is said to be strongly uniformly consistent if for all
distributionsP on X x [—1,+1], the following holds almost surely.

Iim Re(fr) = Re.

Without loss of generality, we only consider the kernel version. Readdffimition from Stein-
wart (2005).

Definition 12 Let C(X) be the set of all continuous functions defined on a compact metric space
X. Consider the mapping:1# — C(X) defined byWw £ (w, ®(-)). If | has a dense image, we call
the kerneluniversal

Roughly speaking, if a kernel is universal, then the corresponding®Is rich enough to satisfy
the condition of step (ii) above.

Theorem 13 If a kernel satisfies the condition of Theorem 11, and is universal, theiénnel
SVM with c| 0 sufficiently slowly is strongly uniformly consistent.

Proof We first introduce some notation, largely following Steinwart (2005). Baomnes probability
measurgirand(w,b) € H xR,

RLL((W, D)) £ Exy)~u{ max(0,1 - y({w, ®(x)) + b))},

is the expected hinge-loss under probabilitand

RE (W, b)) £ W[5 + Exy)pu{ max(0,1—y((w,®(x)) +b)) }

is the regularized expected hinge-loss. HeRcg(-) andRf ;;(-) are the expected hinge-loss and
regularized expected hinge-loss under the generating probahilifyu is the empirical distribution
of msamples, we writ&_m(-) andR; ,(-) respectively. NoticéR{ (-) is the objective function of
the SVM. Denote its solution b, ¢, that is, the classifier we get by running SVM withsamples
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and parametes. Further denote bypc € # x R the minimizer ofRf ;(-). The existence of such a
minimizer is proved in Lemma 3.1 of Steinwart (2005) (step (i)). Let

Rp=  min EXyN]p{max(l yf()O)},

f measurable

that is, the smallest achievable hinge-loss for all measurable functions.
The main content of our proof is to use Theorems 8 and 11 to prove sjép Steinwart (2005).
In particular, we show: i€ | 0 “slowly”, we have with probability one

Mw RL,]P’( fm,c) = KL,JP’- (16)

To prove Equation (16), denote kay f) andb( f) as the weight part and offset part of any classifier
f. Next, we bound the magnitude &f,c by usingRﬁ (fme) < Rf (0,0) <1, which leads to

IW(fme)llsr < 1/c

and
Ib(fme)| < 2+ K[w(fmc)lls < 2+K/c.

From Theorem 11 (note that the bound holds uniformly fofllb)), we have

RUp(fme) < Yme[1+K[W(fmc)[lo + 0] +RE m( fme)
< Yme[3+2K/c] +RE (fme)
< Yme[3+2K/c]+ Rl n(fec)
= Rp+Vmc[3+2K/c+ {RE n(fpc) — pe)} + {REp(fec) — Rp}
= Rp+VYmc[3+2K/c]+ {Rum(frc) — rc)} + {Rp( m}

The last inequality holds becauggc minimizesR; .
It is known (Steinwart, 2005, Proposition 3.2) (step (ii)) that if the keussd is rich enough,
that is, universal, then

I|m RE fp, KL.IP’~

For fixedc > 0, we have
mm Rum(fec) = Rup(fpe),

almost surely due to the strong law of large numbers (notice fthais a fixed classifier), and
Ymc[3+4 2K /c] — 0 almost surely. Notice that neither convergence rate depenéls Dinerefore, if
c | 0 sufficiently slowly? we have almost surely

nLian RLP(fme) < Rp-

Now, for anym andc, we haveR_p(fmc) > R_p by definition. This implies that Equation (16)
holds almost surely, thus giving us step (iv).

Finally, Proposition 3.3. of Steinwart (2005) shows step (iii), namely,@pprating hinge loss
is sufficient to guarantee approximation of the Bayes loss. Thus Equatymiplies that the risk

3. For example, we can takKe(m)} be the smallest number satisfyingm) > m~1/8 andTe(m) < m%/8/log2—1. In-
equality (15) thus leads 7, P(Yim,c(m)/c(m) > m%/4) < 400 which implies uniform convergence Bhc(m)/c(m).

1504



ROBUSTNESS ANDREGULARIZATION OF SVMs

of function fr ¢ converges to Bayes risk. [ |

Before concluding this section, we remark that although we focus in thisrghp hinge-loss
function and the RKHS norm regularizer, the robustness approactiaiolisk consistency can be
generalized to other regularization schemes and loss functions. Intkeedghout the proof we
only require that the regularized loss ( that is, the training loss plus thé&arezation penalty) is an
upper bound of the minimax error with respect to certain set-inclusivertanety. This is a property
satisfied by many classification algorithms even though an exact equigakgationship similar to
the one presented in this paper may not exist. This suggests using thinesisugiew to derive
sharp sample complexity bounds for a broad class of algorithms (e.g., SteavdaChristmann,
2008).

6. Concluding Remarks

This work considers the relationship between robust and regularizbtickésification. In partic-
ular, we prove that the standard norm-regularized SVM classifier is trtHacsolution to a robust
classification setup, and thus known results about regularized classifiend to robust classifiers.
To the best of our knowledge, this is the first explicit such link betweenlagigation and robustness
in pattern classification. The interpretation of this link is that norm-basedareégation essentially
builds in a robustness to sample noise whose probability level sets are symuméttitialls with
respect to the dual of the regularizing norm. It would be interesting torstatel the performance
gains possible when the noise does not have such characteristics eamdbiist setup is used in
place of regularization with appropriately defined uncertainty set.

Based on the robustness interpretation of the regularization term, weveepthe consistency
of SVMs without direct appeal to notions of metric entropy, VC-dimensiorstability. Our proof
suggests that the ability to handle disturbance is crucial for an algorithimhtevacgood general-
ization ability. In particular, for “smooth” feature mappings, the robustnesfisturbance in the
observation space is guaranteed and hence SVMs achieve consisienttye other-hand, certain
“non-smooth” feature mappings fail to be consistent simply because ¢orlarnels the robustness
in the feature-space (guaranteed by the regularization processhdbéaaply robustness in the
observation space.
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Appendix A.

In this appendix we show that for RBF kernels, it is possible to relate tobss in the feature space
and robustness in the sample space more directly.
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Theorem 14 Suppose the Kernel function has the forfr,k’) = f(||x —x'||), with f :R* - R a
decreasing function. Denote b the RKHS space of(k-) and ®(-) the corresponding feature
mapping. Then we have for arye R", w € # and c¢> 0,

sup(w, d(x—9)) = sup (W, D(X) + d)-
3] <c (13l 5r<+/2F(0)—2f (c)

Proof We show that the left-hand-side is not larger than the right-hand-sidejiea versa.
First we show

sup(w, d(x—9)) < sup (W, ®(x) — ). 17)
l18ll<c 18|15 <+/2(0)—2f (c)
We notice that for any|d|| < c, we have
(W, d(x—9))
—(w, D(x) + (®(x~3) ~ D(x)) )

IN

X)

(w, ®(x)) + (w, ¢(X—5)— (X))

(W, (X)) + [[Wl| 7 - [B(X = 8) = D(X)[|
<(W, ®(x)) + [[wi[50/2F(0) — 2f(c)

= sup (W, ®(x) — ).

18]l e <+/2f(0)—2f (c)

Taking the supremum ovérestablishes Inequality (17).
Next, we show the opposite inequality,

sup(w, d(x—98)) > sup (W, ®(x) — ). (18)
l18ll<c 18/l <+/2F(0)—2f ()

If f(c)= f(0), then Inequality 18 holds trivially, hence we only consider the caseftftat< f(0).
Notice that the inner product is a continuous functiorin hence for ang > 0, there exists 529
such that

(W, D(x) — ) > sup (W, D(x) —8¢) — & [|8ylls < v/2f(0) —2f(c).
[[8ol|sr<+/2f (0)—2f ()

Recall that the RKHS space is the completion of the feature mapping, thusettist®a sequence
of {xi} € R" such that
D(X{) — D(X) — 6ﬁp, (19)

which is equivalent to

This leads to

I|m \/Zf f(lIx —x])
=}[‘;H¢( 1) =Pl

:||6ﬁp|]7{ < 4/2f(0) —2f(c).

1506



ROBUSTNESS ANDREGULARIZATION OF SVMs

Sincef is decreasing, we conclude thp¢ — x|| < c holds except for a finite number of By (19)
we have

(W, D(x))) — (W, D(x) — ) > sup (W, D(x) ) &,
[1836]| 2 <+/2f (0)—2f (c)
which means
sup (w, ®(x—§)) > sup (W, ®(x) — &) —.
lI8ll<c 18ll s <+/2F(0)—2f ()
Sincee is arbitrary, we establish Inequality (18).
Combining Inequality (17) and Inequality (18) proves the theorem. |
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