Journal of Machine Learning Research 10 (2009) 1447-1468 bm8ted 7/07; Revised 3/09; Published 7/09

Classification with Gaussians and Convex Loss

Dao-Hong Xiang DAOHONGXIANG @GMAIL .COM
Ding-Xuan Zhou MAZHOU@CITYU.EDU.HK
Department of Mathematics

City University of Hong Kong

Tat Chee Avenue, Kowloon, Hong Kong, China

Editor: John Shawe-Taylor

Abstract

This paper considers binary classification algorithms geed from Tikhonov regularization
schemes associated with general convex loss functions aythg Gaussian kernels. Our main
goal is to provide fast convergence rates for the excesdansfication error. Allowing varying
Gaussian kernels in the algorithms improves learning naegsured by regularization error and
sample error. Special structures of Gaussian kernels enahiio construct, by a nice approxima-
tion scheme with a Fourier analysis technique, uniformlyrmted regularizing functions achieving
polynomial decays of the regularization error under a Smbemoothness condition. The sample
error is estimated by using a projection operator and a bightd for the covering numbers of re-
producing kernel Hilbert spaces generated by Gaussiarlseerfihe convexity of the general loss
function plays a very important role in our analysis.

Keywords: reproducing kernel Hilbert space, binary classificaticanearal convex loss, varying
Gaussian kernels, covering number, approximation

1. Introduction

In this paper we study binary classification algorithms generated from Adkhoegularization
schemes associated with general convex loss functions and varyisgi@akernels.

Let X be a compact subset 8" (input space) andf = {1, -1} (representing the two classes).
Classification algorithms produd®nary classifiersC : X — Y. The misclassification error is used
to measure the prediction power of a classifierlf p is a probability distribution oz := X x Y,
then themisclassification erroof C is defined by

R(C) = Prob{C(x) #y} = [ Py # COoMdpx.

Herepyx is the marginal distribution gb on X andP(y|x) is the conditional distribution at € X.
The classifier minimizing the misclassification error is called the Bayesfgidad is given by

Fo(X) = 1, if Ply=1x) >P(y=—1/x),
Y7 -1, otherwise.

The performance of a classifier can be measured by tlexcess misclassification erreR (C) —

R(fe).
The classifiers considered here are induced by real-valued fundtiods— R asC; = sgn(f)
which is defined by sgif)(x) = 1 if f(x) > 0 and sgif)(x) = —1 otherwise. The real-valued
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functions are generated from Tikhonov regularization schemes atsbuwidth general convex loss
functions and varying Gaussian kernels.

Definition 1 We say thatp: R — R, is a classifying loss (function) if it is convex, differentiable at
0 with ¢(0) < 0, and the smallest zero gfis 1.

Examples of classifying loss functions include the least-squarepgi$s = (1 —t)?, the hinge
lossgn(t) = (1—t)+ = max{1—t,0} for support vector machine (SVM) algorithms, and theorm
SVM loss with 1< r < o defined by (t) = (gn(t))".

The Gaussian kernalith varianceo > 0 is the function orX x X given by

g _ _ |X_ X/|2
Ke(x,X) = exp{ 562 } 1)
It defines (Aronszajn, 1950) a reproducing kernel Hilbert spREEHS) 7.

With the losspand Gaussian kern&l°, theTikhonov regularization schenedefined (Wahba,
1990; Evgeniou et al., 2000; Cristianini and Shawe-Taylor, 2000) wétnaplez = {(x;,yi)} ", €

Z™M as the solutiorfz = fé”“ to the following minimization problem

fz=argmin{ 5 o0 () + M 1%} @

HereA is a positive constant called tinegularization parameterThroughout the paper we assume
that the sample is drawn independently according to the distributgon

The purpose of this paper is to estimate the excess misclassificatiorRgon fz)) — R (fc)
asm — oo, Convergence rates will be derived under the choice of the parameters

A=Am)=m", o=cm=N\N=mW¥ (3)

for somey,{ > 0 and conditions on the distributigmand the losgp. This has been done for the
SVM in Steinwart and Scovel (2007) with the logs Here we consider the error analysis with a
general loss functiop (De Vito et al., 2004).

Let us demonstrate our main results by stating learning rates for the leasedgssp = @s.
The rates will be proved in Section 4. They are given by means of a Keyh@ise condition
(Tsybakov, 2004) and a function smoothness condition stated in termsbofescspaces. Since
@As(yf(x)) = (L—yf(x))? = (y— f(x))? for y € Y, a minimizer of [, @s(yf(x))dp is theregression
functiondefined by

)= [ ydp(yD) =Ply=10)—Ply=-1)),  xeX. @

Definition 2 Let0 < g < . We say thap satisfies the Tsybakov noise condition with exponent q if
there exists a constant;C- 0 such that

px ({x € X : [fo(x)| < Cqt}) <t9, vt > 0. (5)
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Note that (5) always holds far= 0 with Cq = 1. So setting the indeg = 0 in (5) is the same
as removing the Tsybakov noise condition. The agsec means|fy(x)| > Cq for almost every
X € (X, px).

Recall the Sobolev spad¢3(R") with indexs > 0 consisting of all functions i?(R") with

NI

the semi-norm f |psgn) = {(ZH)*”fRn €% f(E)\ZdE} finite wheref is the Fourier transform of
f defined forf € LY(R") asf (&) = fpn f(x)e X% dx.

Theorem 1 Let @ = @s. Assume (5) for some [0, ] and dd%f € L%(X). If for some s> 0, f,
equals the restriction onto X of some function ifi(R") N L*(R"), then by takings = A% with

0<(< @s andA=m s , for any0 < & < 1, with confidencd — o, we have

(g+1)s
(q+2)(s+2n+2)’

~ 2 ,
R(sgn(fz)) — R (fe) < Cp,s,q,nm_els log 3 with 65 = (6)

whereCNZpﬁqq’n is a constant independent of mar

When Tsybakov noise condition (5) is not assumed, we can still use dimebby setting) = 0
and obtain learning rate (6) withs = WSW‘.

Wheng tends to infinity, the power indeds in (6) has the Iimits+273n+2 which can be very close
to 1 for larges. So the learning rate can I mé—1) for arbitrarily smalle > 0 whenq ands are
large enough. To be more specific, fok® < 1, whenqg > s —2ands> (2n+2)(q+ 2)W
we havefg > 1—¢.

Remark 1 We show that the power ind8y for learning rate (6) can bé& — € for arbitrarily small
€ > 0. This result is new for scheme (2) associated wits @s and a single Gaussian kernel
with changing variance = o(m). The same learning rates are achieved in the literature in two
different settings: one is for the same least square regularization schesoeiated with a single
fixed Gaussian kernel, but under the much stronger condition théed in the range of powers
of an integral operator associated with a fixed Gaussian kernel, requifjng C* (Zhang, 2004;
De Vito et al., 2005; Smale and Zhou, 2007). The other setting is to allowl#exdpiances of
Gaussians in (2), see Ying and Zhou (2007) and Wu et al. (2007).

When the decision boundafy € X : f5(x) = 0} has measure zero ar?@é € L2(X), the smooth-
ness condition for an extension gfimplies (5) for some ¢ 0. In general, noise condition (5) does
not require smoothness of ih domains away from the decision boundary.

Note that ag — —oo, the hinge lossp, for the SVM studied in Steinwart and Scovel (2007)
increases slowlyq)n( O(|t|), while the least-square logg in Theorem 1 increases moderately
with @s(t) = O([t|?). D|ff|culty arises for the error analysis with a general Ipsgheng(t) increases
fast such ag = @ with very larger or theexponential-hinge losse introduce in this paper as

el t—1 ift<1
. 1-t — ’ -7
Qen(t) = max{e 1,0 { 0, otherwise.

The reason is random variables of fom= @(yf(x)) with (x,y) =z € (Z,p) are involved and
large normg| f || = (x) would lead to large bounds f@r We shall use special properties of Gaussian
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kernels and construct functiorfig) which are uniformly bounded and have powerful approximation
ability (see (9) and (10) below). With this construction, we can do the asalgl for the general
loss @ by dealing with uniformly bounded random variables in an error decomposajproach
(see (13) below). In particular, explicit learning rates will be given iotea 4 for ther-norm SVM
loss@ (Theorem 4) and the exponential-hinge Igeg (Theorem 5). Comparing with Theorem 1,
we shall provide at the end of Section 4 an approximation theory viewpotheteffect of various
loss functions for learning algorithm (2): the exponential-hinge loss tiae advantages overs
and@, ther-norm SVM lossp may have worse performance whex 2.

We list key notations used in the paper in a table given in Appendix B.

2. Two Special Properties of Gaussians and Key Bounds

The novelty in our approach for genegahnd kernel¥K® arises from two special properties of the
Gaussian kernels with changing variar@e- 0: nice approximation scheme and low capacity of
the RKHS, described in Sections 2.1 and 2.3.

2.1 Regularizing Functions Generated by Gaussians

A data-free limit of (2) is a functior’f;,./x defined in terms of thgeneralization errorE® as

fon == arg In(Z%(f) + Al 1| ). where*(1) = [ @ly1(0) dp. ™

This is the regularizing function used in the literature (De Vito et al., 2005, 3808; Zhang, 2004).
It works well for the error analysis when the lagscreases slowly or moderately (as> —o) such
as@= @, or Qs.

In this paper we consider a general lggsWhen(t) increases fast (as— —), applying
the regularizing functiorﬁ,yk in the error analysis (described in Section 2.2) may lead to a random
variable(p(yﬂ;,;\(x)) of large bound.

The first novelty of this paper is to construct a functiign, (which plays the role of a regular-
izing function in an error decomposition approach discussed in subs@c#iphy special approxi-
mation ability of Gaussian kernels. The constructed function has two ademt@n one hand, itis
uniformly bounded (with respect to bothando) so that the random variablgy f; » (x)) involved
in the error analysis is bounded. On the other hand, it plays the same r@g asachieving nice
bounds for the approximation error. The construction of the explicitappration scheme fof; »
is done under a Sobolev smoothness condition of a measurable fufiftiomimizing £, that is,
fora. e.x e X,

fp () = argmin /Y P(yt) dp(y[x) = argmin{g(t)P(y = 1|x) + @(~1)P(y = —1[x)}.

Theorem 2 Assume that for somes0,

fd = f7|x for somefg € HS(R™) NL™(R") andddi))(( € L2(X). (8)

Then we can find functiond; ) € H5: 0 < 0 < 1,A > 0} such that
Ifoalll=) < B, 9)
D(0,) = E¥(fop) — E(F) + Al fonlll, < B(c*+Ac™) (10)
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forO<o<1,A>0, whereB > 1is a constant independent ofor A.

Theorem 2 will be proved in Appendix A in a more general form as TheoBewhere the
constanB is given explicitly.

Remark 2 A usual assumption in the literature (Zhang, 2004) for deriving learninggas that
forsomed <B<land G >0,

DA) = min{E®(f) — E°(f9) LAl |2,V <CeAP  vA >0 11
(>fe%{(> (fo) A5} <Cg (11)

This is hardly satisfied for a single fixed idue to the analyticity of the Gaussian kernel (Smale and
Zhou, 2003; Cucker and Zhou, 2007). When we choose a changinss@n kernel witks = AS for
some( > 0, decay (11) of the approximation error is valid in many cases (as shiowheorem 2).
Under assumption (11), one has the bound

= = ~ B
Hoalliox) < Hfoallsg </ DA)/A < /CA 2.

Hence a natural bound for the random variatqb@n(yﬂm(x)) would beexp{ /CB)\%} which in-

creases exponentially fast as— 0 (polynomially fast with degreglz_—ﬁ) for = @ whenr is very
large). This shows difficulty in choosirngJ\ and demonstrates novelty in choosing the functipn f
from Theorem 2 for the error analysis with a general Igss

Wheno = A¢ for some 0< < £, (10) of Theorem 2 tells us that the functidp, yields
an approximation order similar to (11) while (9) ensures the uniform balmetes ofp(y f5 (X)),
better than the functioﬁj,)\ for the error decomposition described below.

2.2 Error Decomposition and Projection Operator

The excess misclassification er®(sgn(f)) — R (fc) for the classifier sgif) can be bounded by
means of thexcess generalization errdP(f)) — £?(fg) according to some comparison theorems
(Zhang, 2004; Chen et al., 2004, Bartlett et al., 2006). For exampl@stproved in Zhang (2004)
that for@ = @, and any measurable functidn X — R, we have

R(sgr(f)) — R (o) < E™(f) — EN(To).

For a classifying lospwith ¢’ (0) > 0, it was proved in Chen et al. (2004) and Bartlett et al. (2006)
that for somegy, > 0,

R (sgr()) — R (fo) < co/ EO(1) — EO(£). (12)

For the least square loss apdsatisfying the Tsybakov noise condition, a comparison theorem
improving (12) will be given in Section 4 and will be used to prove Theorem 1

Classifiers in this paper are obtained by taking signs of real-valued fasct®nce the smallest
zero of @ is 1, we can takefd(x) € [~1,1] for eachx € X, which we shall assume throughout
the paper. We may improve the error estimates (Chen et al., 2004) by repiadires off by
projections ontd—1,1].
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Definition 3 The projection operatort on the space of functions on X is defined by

1 if f(x)>1,
T[(f)(X){ -1 if f(x) < -1,
f(x) if —1<f(x)<1

Trivially sgn(ti(f)) = sgn(f). Then we can use (12) with= T1( f;) to bound the excess misclas-
sification errorg (sgn(f,)) — R (fc) by means of the excess generalization eB8(r( f,)) — £9(f)
which in turn can be estimated by an error decomposition technique (Wu and Z806). Define
theempirical errorassociated with the losgas

fﬁp(f):;i(p(yif(xi)) for f : X — R.

Then we have the following error decomposition which will be proved in Se@&io

Lemma 1 Let@be a classifying loss; be defined by (2) and, § € #;. Then
EXM(f;)) — E¥(TS) < D(0,A) +Sz(fop) — S2(T(F2)), (13)
where the quantitys, () is defined for fe C(X) by
Sa(1) = [E2() = Z2(1)] - [E(F) — £2(19)].

When we use the regularizing functidg, given in Theorem 2, the bound (10) deals with
D(0,A), the first term of (13). The uniform bound (9) fdf; [/ =x) ensures that the second
term S;(fs ) of (13), which can be expressed ész{ilé(zi) — E(§) with the random variable
&(2) = p(yfoa (X)) — @(yf3(x)), can be easily handled. The crucial remaining teg(m( f,)) of (13)
involves the set of function§f;},czm and can be treated by various empirical process techniques
such as Rademacher average and entropy integral. Here we usediadtyspé the Gaussians that
the RKHS has low capacity, hence the last term of (13) can be estimatadrdffiand simply by
means of covering numbers.

2.3 Applying Tight Bounds for Covering Numbers

The second novelty of this paper is to make full use of the special low itagaoperty of the
Gaussian kernels that a tight bound for covering numbers of the unibfthlé RKHS 7 leads to
nice estimates for the last tersa(i( f;)) of (13) for the error analysis.

Definition 4 For a subset S of X) andn > 0, the covering numbeh(/(S n) is the minimal integer
| € N such that there exist | disks with radigscovering S

The covering numbers of unit balls of classical function spaces haye well studied in the
literature (Edmunds and Triebel, 1996). As an example, ¥ake[0,1]" ands > 0. The covering
numbers of the unit baB; (C3(X)) of the spac€3(X) has the asymptotic behavior

c’sﬁ)"/s < log A\ (B1(C¥(X)).n) < cg’ﬁ)“/s, (14)
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where the positive constarts andc are independent of@ n < 1. In particular, since a Gaussian
kernelK? is C*, an embedding result from Zhou (2003) tells us that16(B,n) < C¢(; 1)n/s(1)2n
wheres > 0 can be arbitrarily large but the const&jtdepends os. HereB; = By 5 = {f cHy:

|| f]l4, <1} is the unit ball of#; and is regarded as a compact subs&t(@f). A crucial improved

bound for the covering number 8 was given in Zhou (2002) With%)”/S replaced b)(log%)”+1
as follows.

Proposition 1 There exists a constanyC 0 depending only on X and n such that

1
logA((B1,1) < co((|09 It OZ(M)) V0<n<10<o<Ll (15)

The constan€, can be taken a&l24n)"2 whenX = [0,1]". Bound (15) is almost sharp in the
sense that for son&) > 0 given in Zhou (2003),

09 2((B.n) = Cp((log )"+ ).

O-n

The logarithmic tem(log%)”+l appearing in the tight bound (15) is better than the polyno-

mial term (n)”/s in (14). This enables us to derive efficient error bounds for the algorit?)
involving Gaussian kernels, by a simple covering number argument wittioert empirical process
techniques or iteration techniques used in Steinwart and Scovel (20087AVa et al. (2007). To
demonstrate explicitly why tight bound (15) helps, we state the following regudth is needed for
estimating confidence and will be proved in Appendix B.

Lemma 2 LetO <t<land G > 0. Let0O< d < 1 andA,o take form (3) with somg > 0 and

0<C <z n+l) Denotes*(m, A, 0,8/2) as the smallest positive numbesatisfying
) me2 T o)
1- By, —— )expq — >1——. (16)
< F’qL 2C1+§<p(—1)z»:1*T 2

Then we have

o 5
e (mA\,0,0/2) < sz_%&m 0g

:, a7)

where G is the constant independent of ino or d.

2.4 Key Bounds

We are in a position to present our key bounds for the excess gengoalizaror £9(1(f;)) —

£9(f7) which will be used to get rates for the excess misclassification &rsgn(f,)) — R (fc).
To achieve tight bounds, we need the following definition.

Definition 5 A variancing power = 1y, of the pair(@,p) is a number in [0,1] such that for any
B > 1, there exists some constant€ Ca( ) > 0 satisfying

e{ [oy00) - ey} <[z -zi9] vix-[BB. s
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Remark 3 For o= @s, we can take = 1, see Evgeniou et al. (2000) and Cucker and Zhou (2007).
For o= @,, we can take = 0, and an improved powar= % if the Tsybakov noise condition (5) is
satisfied (Steinwart and Scovel, 2007; Wu and Zhou, 2005). In gengp depends on the strong
convexity ofp and noise conditions fqp.

Theorem 3 Leto = A% andA = m™ for some0 < { < % and0 <y < Wlu) If (8) is valid for
some s> 0, then for any0 < & < 1, with confidencd — d we have

E9((1,)) — £9(1) < Cm ®log s (19)
where 1 N
0— min{s(y,y(l—nl),zf_(:H}, (20)

andC is a constant independent of m ahd

Theorem 3 will be proved in the next section and the conglaill be given explicitly.

3. Error Analysis

In this section we derive the key error bounds stated in Theorem 3 by éstintize right-hand side
of (13) in Lemma 1 (which is proved here).

3.1 Proof of Lemma 1

Write the regularized excess generalization error as
9T fz)) - E°(§) + M f2ll3, = { £°(n(f2)) - (i 2)) }
+{ [E2(12) + M 1203, | - [£2(Top) + Mol | }
+{E(fop) — E(for) } + { E%(for) - E2E) + Al fon 12, }-

Since is convex and its smallest zero is 1, we find a special property of the fimjexperator
that(ym(f)(x)) < @(yf(x)) for any functionf onX. HenceZ? (i(f)) < £7(f). This in connection

with the definition offz tells us that the second term on the right-hand side above is at most zero. By
subtracting and adding®(fg) in the first and third terms we s&&®(11( fz)) — £?(f3) is bounded

as in (13). This proves Lemma 1. |

Let us turn to estimat&?(i(fz)) — £9(f5) by (13). We first bound( 5, ), the term involving
fg . It can be written ag}ﬁ "1 &(z) — E(§) with & the random variable ofZ, p) given by§(z) =

Py For(X) — Ay f3(x).

Lemma 3 Lett =Tqp and §; € #; satisfy (9). For any) < & < 1, with confidencd — g, the term
Sz(fs) of (13) can be bounded as

2 1
Safor) < 2(|0lc_gg +Ca)log m =7 + E9(fgp) — (1.
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Proof Consider the random variadéz) = @(y f5 1 (X)) — @(y f3(x)) on(Z,p). It satisfies—@(—1) <
& < Hcp”c[_g.g]. Hencel —E(§)| < 2”(P||C[_§,|§}- We apply the one side Bernstein inequality and
know that '

me2

1 m
Profer{ i 8,500 B0 =2 <0 g gl agm) 7

Herea?(§) is the variance of. Solving the quadratic equation feby setting the above probability
bound to b&/2, we see that with confidence at least &/2,

£z 4”@%{53“095 2mo?(g)log
mZ 3m m '

Using (18) involving the variancing power= 14, in Definition 5, we haves?(€) < E(&?) <
Ci(E(&))". This in connection with Young’s inequality implies

\/2mo?(€)log £ \/2 log 6Cl

Therefore, with confidence at leastB/2,

2log2Cyy 2
W@ (9 7 Teg),

4H<P||c[ 51095  /210g2C1 o
m le 3m ( m ) +EQ®).
SinceE (&) = E9(fs2) — E%(fg), our conclusion follows. [ |

The sample error term-S,(T(f)) in (13) can be expressed g<€,dp — = ™, &,(z) with
&:(2) = ayf(x)) — @(yfg(x)). However,&; is not a single random variable sinzds a random
sample itself. This is the essential difficulty. Here we use the specialty of Ipacitg of the RKHS
Hg and overcome the difficulty by a simple covering number argument over ataafl wheref,
lies.

Lemma 4 For anyA > 0andz € Z™, there holds

2]l < v/ O(0)/A.

The proof follows easily by taking = 0 in the definition off, as in De Vito et al. (2005), De
Vito et al. (2004) and Hardin et al. (2004).

Let & be a random variable adwith meanu > 0 and variance? < cU forsome 0K 1 <2 and
c>0. If |§ — | < B almost surely for somB > 0, then the one-side Bernstein inequality implies

H— n%Zin;lE(Zi)
VI
Applying this probability inequality to random variables of tyfe) = @(y(1tf)(x)) — (p(yf,gp(x))

and using a standard argument (Wu et al., 2007; Yao, 2008; Ying, 20@vcovering numbers for
the ball{ f € #H5 : || f|| 5, <+/®0)/A} of the RKHS, we find the following bound.

me*t } ve>0.

Pro m{ - -
Bez 2(c+ 1Bl )

> 51‘5} < exp{ -
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Lemma5 Lett = 14, satisfy (18) withB beingl. For anye > 0, we have

ProQEzm{ sup [£9(n( 1)) — Z9()] - [£Z(n(f)) — £2(Fg)] _ 4817%}
1156 <+/®0) /A \/(Z¢(n(f)) — E9(f)) T+ &
\/XS mSZ—T
> 1-8(en ) o - g

Recall the definition o€*(m,A,0,6/2) in Lemma 2. It satisfies (16) which means that the
probability in Lemma 5 is bounded by—lg from below where = €*(m,\,0,6/2).

Proposition 2 Let ;) € H; satisfy (9). For any < & < 1, with confidence at leadt— 6, we have
2
E9(1(f,)) — E9(f5) < 4D(0,\) +40e* (M A, 0,8/2) +4(llollci_gg +C1)log 8m‘z%r.

Proof Applying Lemma 3, we know that there is a subgeof Z™ with measure at Ieast—l% such
that forz € Vy,

2
Salfar) < 2(9l;_g g +Cu)log sm 77 + D(G ).

By Lemma 5 and Lemma 4, takirgg= €*(m,A,0,8/2), we see that there exists another subset
of Z™ with measure at least-13 such that foz € V5,

S = [EO(L) — £~ () - TS
< alema0.3/2)"/[Eom ) - 219+ e (m 0,572
< (1- %)42%8*(m,7\, 0.5/2)+ %[Zq’(n( £,)) — E9(19)] + 4" (m A, 0,5/2).

Here we have used the elementary inequalia+b < \/a+ v'b and Young’s inequality.
Adding the above two bounds and observing that 0< 1 implieslf—i/2 < 2 we know from
Lemma 1 that foz € V1N V>,

2
LO(1(f,)) — E(f§) < 4D(0,)) + 40" (A, 0,5/2) +4(/|¢llc_g g+ C1) Iogsm*TfT.
Since the measure ® NV is at least 1- &, our conclusion holds true. [ |

Now we are in a position to prove Theorem 3.

3.2 Proof of Theorem 3

From condition (8) and the parameter foama= A% with 0 < Z < % we know by Theorem 2 that
D(0,\) < BAMMSLIT0C)
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Putting bound (17) foe*(m,A,0,6/2) from Lemma 2 into Proposition 2, we see from the
parameter formh = m~Y that with confidence at least-19,

TO(M(T,)) — EO(f) < ABAMMLIN | goc,mE |Og§
2 ~ 2
+4(||(P||q_§7§] +Cy)log Sm_TET <Cm® IogS.

Here®0 is given by (20) and is the constant independentmfandd given by
C = 4B+ 40C, + 4( ||(DHC[7§,§] +C).
This proves (19) and hence Theorem 3. |

4. Deriving Learning Rates

In this section we apply Theorem 3 to derive learning rates with variousuossons. For the least
square loss, to prove Theorem 1 we need the following comparison thewoygroving (12).

Proposition 3 If @ = @s and p satisfies noise condition (5) for some=q0, |, then for every
measurable function fX — R, we have

R(SQT)) — R (fe) < 2Cq ™ { £ (1) — E9(fy)}
Proof DenoteX; = {x& X :sgn(f)(x) # fc(x)}. Itis known thatR (sgn(f)) — R (fc) = Jx, [ fo(X)|dpx.
See, for example, Equation (9.14) of Cucker and Zhou (2007).

2
When g < «, taket = <||f —folliz, /q) ™ > 0. We separate the s¥ into two parts,

one with | f,(x)| < Cqt and the other withfo(x)| > Cqt where|fo(X)| < |fo(X)|?/(Cqt) < |f(X) —
fo(X)|2/(Cqt). We find from (5) that

., fe01dox

IN

_ 2
/{xexf: \fp<x)\sw}cqtdpx +/{xexf: [10.001>Cot} |00 — fo(x)|%/(Cat)dpx
Catpx ({x € X : [fo(X)| < Cot}) + IIf = follF; /(Cat)

29+2

Ct¥ 4111 = ol /(Cot) = 2a (I = ol /Ca) ™

IN

IN

This gives the desired bound for the case « since|| f — prng = E(f) —EP(fp).

Wheng = =, noise condition (5) mean$,(x)| > Cq and hencef,(x)| < | f,(x)|?/Cq for almost
everyx € (X,px). So [y, |fo(¥)|dpx < fx, [f(X) — fo(X)|?/Codpx = ||f — prE%x /Cq Which is what
we want. |

Now we can derive learning rates with the least square loss.
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4.1 Proof of Theorem 1
The assumptions oﬁ%x and f, verify condition (8). Then by Theorem 2 with = @s, we find
functionsf; , satisfying (9) and (10) for & 0 <1,A>0.

The choices = A¢ with 0 < { < 71, < £ andA = m™Y with y = m tell us that O< y <
m. Therefore all conditions of Theorem 3 are valid. Moreover, a stigoéthe least square
lossist = 1in (18). So by Theorem 3, for any<0& < 1, with confidence % 9, (19) holds with

: 1-ng 2(n+1) S
0= 1- - .
mm{s+2n+2’«s+2n+2y s+2n+2} st2n+2

This bound for the excess generalization erBH(i(f,)) — E?(fJ) together with Proposition 3
yields the desired bound (6) for the excess misclassification éfegn(f;)) — R (fc) with the

~ — 9 _g+1
constanC, s qn = 2Cq #2Ca2, The proof of Theorem 1 is complete. [ |
Let us derive learning rates with thenorm SVM lossp= @ (1 < r < o) for which we have
(Chen et al., 2004)

(L+ £p00) Y108 — (1 fy(x)) 0D

B0 =00 = (7,0 T (= Ty o

X € X. (21)

Theorem 4 Letg= ¢ W|th 1<r <o, Assume (8) for somexo Takeo = A with 0 < { < 735
andA =m~ VW|thy_ m forl<r<2andy= W for 2 < r < . Then for any
0 < 0 < 1, with confidencd — &, we have

~ 2 S, ifl<r<2
Mwmm—xmhxmw%wsxmmF:Z&%? > o (22)
A1y N es<h<®
Proof The convexity ofp: gives the variancing power (Bartlett et al., 2006) as
_ 1 ifl<r<2,
T=Tap= 2 if2<r<o.
Takeo = )\Z with 0 < 7 < 1. < I and choose\ = m™Y with y = W;M We see that

O<y< zz(n+1) Hence all condltlons of Theorem 3 are valid and we conclude that jod am < 1,
with confidence -9, (19) holds with = (Z_T)ﬁ This bound for the excess generalization er-
ror together with comparison relation (12) causedpb{0) = r(r — 1) > 0 yields the desired bound

(22) for the excess misclassification error with the consEapnt= cq, VC. The proof of Theorem 4
is complete. [ |

Wheng = @, a simple computation shows that the functirgn's given by

. Log i s, if — (€~ 1)/(€+1) < fp(x) < (€@~ 1)/(E+1),
fo" () =1 1, if f5(x) > (€2 y@+n (23)
-1 it fo(x) < (&~ 1)/(€+1).
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Theorem 5 Let @ = @ Assume (8) for some>s 0. Takeo = A% with 0 < T < Fs and A =

m D . Then for any0 < & < 1, with confidencd — &, we have

- 2 s
_ < —0Ben = ; - >
R (sgn(fz)) — R (fc) < Cpenm “e'log 5 with  Ben dsianta (24)
Proof Taket =0 ando =A% with 0 < { < Fs < =. Choosex = mY withy = W in The-
orem 3. We see that for any<00 < 1, with confldence -5, (19) holds with® = 55— This

bound together with comparison relation (12) againggg0) = e > 0) yields the deswed bound
(24) with Cy en = g, V/C. This proves Theorem 5. ]

Remark 4 When s< =, the extension condition of stated in Theorem 1 implies assumption (8)

of f§¥ required in Theorem 4. In fact, the extension of the functiiroftoR" can be defined by

taking values of the extended function gfirf (21). After composing with the function- t*/('=%)
on R, smoothness of functions in the Sobolev spatésitept for s< ; 1 . When < 1, the same

condition for §, implies assumption (8) oﬁ’@F needed for Theorem 5, as seen from expression (23).
It is possible to refine learning rates (22) and (24) by improving congparrelation (12) when
Tsybakov noise condition (5) is satisfied. We omit the discussion here.
Error analysis withg = ¢ was done in Chen et al. (2004) under assumption (11). Our learning
rates in Theorem 4 are new since our assumption on Sobolev smooihimessker. The learning
rates for@ = @ in Theorem 5 are also new.

We are in a position to get from Theorems 1, 4 and 5 some theoretical clude affect
of various loss functions for learning algorithm (2). We know from Smalé Ahou (2003) that
when @ = @s the approximation error and hence learning rates can essentially betehiaed
by regularities of the functiorf,. So here we give some comparisons under the same regularity

assumption (8) for the functioh‘)p with somes > 0. Under this assumption (removing the Tsybakov
noise condition by takingj= 0 in Theorem 1), the learning rates derived in Theorems 1, 4 and 5
for 9= @s, @&, Gen take the same formg (sgn(f,)) — R (fc) = O(m® Iog%) with the power index®

very close, all lying in the rang[em, m]. However, the indes in regularity assumption

(8) for the functionfﬁ‘,p might vary dramatically, leading to varying power indgsor the learning
rates.
Note that the functiorfﬁ‘,P with @ = @, @n depends explicitly on the regression functifycor-

responding the least-square loss. The dependence of the furﬁ&?omn fy has an advantage of
ignoring any irregularity appearing in the domain whefgx)| > (€2 — 1)/(€? +1). This can be
seen from the following example whefg has a singularity at 0 Whl|ép(peh 1lisC®.

Example 1 LetX=[-1,1],0<a < 114 andp be the distribution given bygk = 2dx and f(x) =

1- %]x]“ which means B/ = 1|x) = 1— —\x\o‘ It is well known that the functiofx|? lies in the
Sobolev space #X) if and only if s< o + 3 5. So regularity assumption (8) is satisfied fg
if and only if s< a+ 3 2. Then from Theorem 1, we see the learning rRtesgn(f;)) — R (fe) =

O(m=%slog%) with 9|S = 55 arbitrarily close to 552 < 3. However, for the exponential-hinge

0SSP, We have which follows from expression and the definiti x >
I h "= 1 which foll f (23)dhdf oixf=1—¢|x|®
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1-1>(#-1)/(€+1)on X. Therefore, regularity assumption (8) is satisfied for an arbitrarily
large s and Theorem 5 yields the learning r&gsgn(f;)) — R (fc) = O(m %nlog %) with Bep, arbi-
trarily close to%. Thus for learning algorithm (2), the exponential-hinge loss has somaraalyes
over@s (and@ as shown in the next example).

The dependence of the functidﬁ* on f, involves a power functioo — ul/ (=1 which might
cause irregularity. This is demonstrated by the following example where thelarity of the
function f, at 0 is worsened for the functioff® whenr is large.

Example 2 Let X andp be as in Example 1. Whep= @ with r > 2, the function ,f* in (21) equals
1/(r-1 1/(r-1
(2= 31X — ()Y

f(x) = '
p (X (2_%‘X‘a)l/(rfl)+(%|X|g)1/(r71)

Regularity assumption (8) is satisfied farif and only if s< % + % Then Theorem 4 yields the
learning rate R (sgn(f;)) — R(fc) = O(m ¥ log) with 8 = zgg—7y77y arbitrarily close to

%. This power index is always less than thatpafor @en. It shows that the losg has

worse performance thaps and @qh, at least for some distributions.

5. Further Discussion

Let us discuss further generalizations and connections briefly heree détails will be provided in
our future study.

The first extension is to a manifold setting. Xfis a connected compa€t® submanifold of
R" without boundary and its dimension @< n, then the covering number estimate (15) holds
with n replaced by the manifold dimensi@h Proposition 2 and Lemma 2 are still valid with
replaced byd. Learning rates in Theorems 1, 4 and 5 can be improved wittplaced byd if
approximation error estimates similar to Theorem 2 can be established in the lchasttong. One
can use ideas for convolution type approximation schemé¥'dRan, et al., 2008) to define higher
order operators on manifolds and then get estimates for the regularizathon e

The second connection is to multi-kernel regularization schemes (Wu e0@¥; Argyriou et
al., 2006; Chapelle et al., 2002) defined as

m
9 =arg,min min {5 a0y 00) + 15 )
In this scheme the variance parameids chosen automatically while the learning rate derived in
Ying and Zhou (2007) is at moﬁ(m*l/e). It would be interesting to investigate how to choose the
parametep in (2).

The last questions is about more general loss functions. In our analgsassume that the
convex losgp has a zero which excludes the logistic Iggs) = log(1+e'). One might generalize
our analysis to get some error bounds for the scheme with loss functionsuivitero by using a
general projection operatok, with levelM > 0 given by

M if f(x)>M,
TrM(f)(x){ -M if f(x) < —M,

f(x) if =M< f(x) <M.
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Appendix A. Approximation Scheme by Gaussians

This appendix provides a proof of Theorem 2 which is a corollary of tilewing more general

theorem. The approximation error is estimated by means of a convolution typmeaonstructed
by Gaussians with a Fourier analysis technique (Schaback and W200€ér,,Steinwart and Scovel,
2007; Steinwart et al. , 2006).

Theorem 6 Assume that for somess0, fg is the restriction of somé € HS(R") onto X, and the
. . d . . .
density function g= L exists and lies in £(X).
Q) If fg’ € L*(R"), then we can find a set of functiofi; € Hs}o<g<1.1>0 Such that

B, (25)
B(cS+Ao "), VO<o<1A>0, (26)

foalli=x)

<
D(o,\) <

whereB is a constant independent @for A.
(2) If for some r> 1and G, > O,

@ (1) <Coltt Wt >1. (27)

then we can find f; , € #s} such that

N

w

Q\
NIS

[forllox)y < ; (28)
D(o,\) < B(c5 2z +A0 "), VO<o<1A>0, (29)

whereB' is a constant independent afor A.

Proof Take some trigonometric polynomia(€) = y ;c;aje ') onR" with a finite subsed of Z"
such that for som€s > 0 depending only os andn, we have

_ kg2
2

e 7 &) —1 <Gy¢|* VEeR"

This can be done by choosing the coefficigatg jc; of & satisfying the linear system

2
40)=1 and D%e T4&E)(0)=0, acZ0<la|<s

SoJ and(aj)jcy depend only ors andn.

Define
1

V21O

o0 = ( )" i K“(x,y)zjajﬂgp(y—oj)dy, xR,

g
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We first estimatef fs — 3| 2(n)-

X2 ~
Define a functiork® onR" by k% (x) = (L)ne_%z, we know thake (£) = e~%

o andfo( )
KO (Y jeady ﬂ‘,"(- —aj)). This in connection with the fact that the Fourier transform‘gﬁ(ﬁ -
equalse 9% f9(&) implies

fol&) = () Y ae 4 i3e) = e 5 a(08) £2().
It follows that

- - I
1o — flogen) = (207", f(plleRn (2" [ e 5 &(0F) — 17/ F2(8) 2 dE

< (2m)7"CZ fn |0E|*] frgp( )|? d& < CZ0™(21) ™" [zn [E]%] fg’(g)|2 de.
That s,
1o — T ll2(n) < Csll o llsem 0™ (30)

Then we bound| ﬂ,H%(Rn). Here#;(R") is the RKHS generated by the Mercer kerkélx,y)
on R". By the inner product ints(IR"), we know that(K°(-,y),K(-,2)) 4 @) = K°(y,2). So we
have

. 2 . "
ch”ié(Rn) = (71 ) n/ K(y,2) Zjaj f(y—oj) dyzalfg’(z—cl) dz
V21O R"JRD s

led

By the elementary inequalityiv] < “23"2 and [pn K°(y,2) dz= (v/210)", we see that

: Ly Sy -0 +|f(z— o)
olfaen < (5g) 2 ¥lallal [ [ kw2 ; dydz
J

eJled

2n ~
5) 3 laullal(v2ro) | e
Jle

1
= (Um

That is,
1ol 3 (zn) < Call follLzem (V2T0) 2

whereC; := =3 jes|aj| is a constant depending only smndn.
Take fg ) = f0|x, the restriction off; ontoX. By basic facts about RKHS (Aronszajn, 1950),
we know thatf, ) = fs|x € Hy and

n

I fonllsg < Il follsgrny < CHI S ll2gen (vV2TI0) 2. (31)

Now we can derive the desired bounds.
(1) Whenfg € L*(R"), for anyx € R", we have

~ 1 \n _Ixy? ~ ~
B01< Y lal (=) [ & vl llieqamy = Clll Bleqen)
o001 < 3 a1l J5g) fo® Il = Ll Bl
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It follows that (25) holds true and
£9(1) — (1) < [ [ sup{|, (€)1 18] < max(CLl Bloqem: | oo } |
[ foa (%) — () |dp(y[x)g(x)dx
By the Schwarz inequality we see that
(o) — E%(f5) < sup{|@, (8)] : & < (Ce+ 1)l oqn H for — 20 19llLzx)-
This bound in connection with (30) and (31) implies (26) with the condBagiven by
B = max{Cy|{fllue(en), (CH )22 am) (2702,
sup{|@, (8)| : [&] < (C&+ )| fllLoan) YCs!| Follis(an) |9 2x) }

_ (2) without the conditiorrf}‘,p € L*(R"), we bound| fs[|L=(x) directly from the expression of
fs. Forx € R", we have

S 18 (J) L (<o} { [ [7-0 e}
S [812/70) 51 Bl

| fo(X)|

IN

It follows that | fg|L=(x) < CH(2v/T) 2| f || 2(zny0 2.
To derive the bound for the excess generalization error, we notioe(2@) that

E9fo) ~ E°(1) = [ [ (@10 () — 0y %)) dp(ydpx(x
< [ [ sup{1d. )1 &l < max(Ci2yTo) | iflzen: | oo } |
000 — (9 dp(yM)g(x

It we denoteCy = max{Cy, Coll {915 ColCH 2/ 2| ¥l 2(en) 2}, then

n(r n(r—1)

_nr-1) = .
E(for) — E¥(f3) <Co™ 2 |[for — fllox 19llzx) < CellgllizooCsll fo llsgnyo® 2

Therefore,
- n(r-1) & _
D(0,A) < CLgllzx) Cell Fllhsrn0% "7 +MCY? | T2 ) (V2TI0) .
This verifies (28) and (29) by taking
B = max{ CL2v'T) 2| lLe(en) CL 19l o) ol gy (CR2 2 (2702}

The proof of Theorem 6 is complete. |
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In our main results, only part (1) of Theorem 6, that is, Theorem 2 id.usenain assumption,
condition (8), gives the restrictioffy € HS(R") NL®(R"). When we do not know whethdf can
be extended to a uniformly bounded function®h we can use part (2) of Theorem 6. This might
be the case whep= @, as mentioned in the following.

A geometric noise condition was introduced in Steinwart and Scovel (2005 condition
with exponentr > 0 means

2 an

/ fp<x>rexp{—t}dpx<x> —o(t%) (32)

where

infe w<oX—ul, if fo(x) >0,

inffp(u)zo\x— U|, if fp(X) <0,
Tx =
0, otherwise.

It does not assume smoothness of functions. An interesting result in &teenvd Scovel (2007) as-
serts that whep = ¢,, geometric noise condition (32) with exponent@ < o leads toD(o,\) <
B” (0% +Ac"). With this estimate, under Tsybakov noise condition (5), learning rateshare o
tained in Steinwart and Scovel (2007). For example, vxdnen%z, for an arbitrarily smalk > 0,
with confidence 1- 9,
2 2a(g+1)
R (sgr(T,)) — R (fo) <& <Iog g) ()= (33)

Since no Sobolev smoothness is assumedr‘fbh fc (Wahba, 1990), we need to use the regular-

izing function f~0,A defined by (7) and derive by some detailed computations that with conéidenc
1-5,

(g+1)an

~ 4 1 1\ Grzant @ D
R(sgr(fz)) = R(fe) < Conlog 5 (E) ‘

This rate is slightly worse than (33), though the estimate for the confidence lighsligptter. It
raises the question of improving Theorem 6 under various noise conditions

Appendix B. Role of Tight Bounds for Covering Numbers

In this appendix we prove Lemma 2 which shows a special role of the tighitthd) for covering
numbers concerning Gaussian kernels. In fact, we have the following georeral result.

Proposition 4 LetA > 1 be arbitrary. There*(m,A,0,8/2) defined by (16) satisfies

+ +

 /log2 4+ g-20D/-0 4 (logm)(MHD/@0  g-2nt1)
£ (mA,0,8/2) <Gy [ 2957 +(logm) o %0,
mz—= m VAmA

whereC; is the constant depending onC,1,¢, (—1),¢(—1),A and is given by

Co= maX{ML(—l)I, (4C1) 7, 2(4CoCy) 27 A, 2 ~1) (14 Co +c0An+l)} ,
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Proof Observe from (15) that as a function @@ +©), the logarithm of the middle term of (16) is

bounded by
h(e) ::CO<(IOgV(p(Oz|f()i(_l)|)n+l+ 1 ) —g(e),

whereg is the strictly increasing function o, «) defined by

B ms24
N 2C1 + %(p(—l)slfr.

g(e)

Set

5 _ VOOI¢,(-1) +(401(Iog§+c,z?nil>)+4cocl(mogm)”+l>zlt

VAP m

4o(-1) 2. Go N1
am <Iog6 + 52D +Co(Alogm) )

+

If 2¢(—1)B1" < 2Cy, then

m®B2T 2 Co
O(B) 2 45— 2 1005 + gy +Co(Blogm)™™.
If 29(—1)B1" > 2Cy, then
mB2T m 2 G 1
)= gqnym  Jo(n) ~ %8 g OO

Thus in either case we have
2 Co
9(B) > l0g 5 + 5+ Co(Alogm)™ .

On the other hand, sincd > 7W, we also see that | qo%‘%(_l” < Alogm. It fol-
lows that

h(B) < Co(Alogm)™! — Iogg —Co(Alogm)™t = Iogg.

But the functionh is strictly decreasing. Se*(m,A,0,8/2) < B. The the desired bound for
e*(m,\,0,0/2) follows with the constant,. The proof of Proposition 4 is complete. [ |

Now we can prove Lemma 2 by the special form\of.

B.1 Proof of Lemma 2

TakeA = % + 1 in Proposition 4. Then we know from the special form (3\@ndo that

L flogd  1\EEEL (gm0
e*(m,)\,o,é/Z)SCz{ () +((°gm) )T+ %0 L

mz— m m
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| notation | meaning | pages

R(C) misclassification error for a classifier 1447

fe Bayes rule which minimize®_ 1447

R(C)—R(fc) excess misclassification error 1447

Q loss function for classification 1448

o variance parameter for the Gaussian kernel 1448, 1449, 1458

A regularization parameter 1448, 1449, 1458

fz learning scheme (2) 1448

R(sgn(fz)) — R (fc) | excess misclassification error for classifier Sign | 1448, 1449, 1458

fo regression function 1448, 1449, 1457
EP(f) generalization error for a functioh 1450

fo minimizer of £¢ 1450

EO(f) — E9(fg) excess generalization error for a functibn 1451, 1452, 1454, 145
fon regularizing function constructed in Theorem 2 | 1450, 1452, 1454, 146
D(o,M) regularization error or approximation error 1450, 1452, 1456, 146
T="Tgp variancing power defined in Definition 5 1453, 1454, 1456, 145

o= =

Table 1: NOTATIONS
Observe the elementary inequality (Yao, 2008; Ye and Zhou, 2007)
exp{—cx} < (ei::)‘a‘x*a vx,c,a> 0.
Takingx = logm, a=n+1 andc = 2y{(n+ 1), we have

(Iogm)n+l§( 1 )n+1mZyZ(n+1)'

2eyC
Hence (17) holds true with the const&it= Cy(4+ 2,/(0)). The proof of Lemma 2 is complete.
|
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