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Abstract

Support vector machines are a powerful machine learning technology, but the training process
involves a dense quadratic optimization problem and is computationally challenging. A parallel
implementation of linear Support Vector Machine training has been developed, using a combination
of MPI and OpenMP. Using an interior point method for the optimization and a reformulation that
avoids the dense Hessian matrix, the structure of the augmented system matrix is exploited to
partition data and computations amongst parallel processors efficiently. The new implementation
has been applied to solve problems from the PASCAL Challengeon Large-scale Learning. We
show that our approach is competitive, and is able to solve problems in the Challenge many times
faster than other parallel approaches. We also demonstratethat the hybrid version performs more
efficiently than the version using pure MPI.
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1. Introduction

Support vector machines (SVMs) are powerful machine learning techniques for classification and
regression. They were developed by Vapnik (1998), and are basedon statistical learning theory.
They have been applied to a wide range of applications, with excellent results, and so they have
received significant interest.

Like many machine learning techniques, SVMs involve a training stage, wherethe machine
learns a pattern in the data from atraining data set, and a separate test or validation stage where
the ability of the machine to correctly predict labels is evaluated using a previously unseentest data
set. This process allows parameters to be adjusted towards optimal values, whileguarding against
overfitting.

The training stage for Support Vector Machines involves at its core a dense convex quadratic
optimization problem (QP). Solving this optimization problem is computationally expensive, pri-
marily due to the dense Hessian matrix. Solving the QP with a general-purpose QP solver would
result in the time taken to scale cubically with the number of data points (O(n3)). Such a complex-
ity result means that, in practise, the SVM training problem cannot be solved by general purpose
optimization solvers.
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Several schemes have been developed where a solution is built by solvinga sequence of small-
scale problems, where only a few data points (anactive set) are considered at a time. Examples
include decomposition (Osuna et al., 1997) and sequential minimal optimization (Platt, 1999), and
state-of-the-art software use these techniques. Active-set techniques work well when the data is
clearly separable by a hyperplane, so that the separation into active andnon-active variables is clear.
With noisy data, however, finding a good separating hyperplane betweenthe two classes is not so
clear, and the performance of these algorithms deteriorates (Woodsend and Gondzio, 2007).

In addition, the active set techniques used by standard software are essentially sequential—they
choose a small subset of variables to form the active set at each iteration, and this selection is
based upon the results of the previous iteration. It is not clear how to efficiently implement such an
algorithm in parallel, due to the large number of iterations required and the dependencies between
each iteration and the next.

Few approaches have been developed for training SVMs in parallel, yetmultiple-core comput-
ers are becoming the norm, and data sets are becoming ever larger. It is notable that of the 44
submissions to compete in the PASCAL Challenge on Large-scale Learning (Sonnenburg et al.,
2008), only 3 entries were parallel methods.

Parallelization schemes so far proposed have involved splitting the training data to give smaller,
separable optimization sub-problems which can be distributed amongst the processors. Dong et al.
(2003) used a block-diagonal approximation of the kernel matrix to derive independent optimization
problems. The resulting SVMs were used to filter out samples that were likely not to be support
vectors. A SVM was then trained on the remaining samples, using the standardserial algorithm.
Collobert et al. (2002) proposed a mixture of multiple SVMs where single SVMs are trained on
subsets of the training set and a neural network is used to assign samples todifferent subsets.

Another approach is to use a variation of the standard SVM algorithm that is better suited to a
parallel architecture. Tveit and Engum (2003) developed an exact parallel implementation of the
Proximal SVM (Fung and Mangasarian, 2001), which classifies points byassigning them to the
closest of two parallel planes. Compared to the standard SVM formulation, the single constraint is
removed and the result is an unconstrained QP; this is substantially different from the linear SVM
task set in the PASCAL Challenge.

There have only been a few parallel methods in the literature which train a standard SVM on
the whole of the data set. We briefly survey the methods of Zanghirati and Zanni (2003), Graf et al.
(2005), Durdanovic et al. (2007) and Chang et al. (2008).

The algorithm of Zanghirati and Zanni (2003) decomposes the SVM training problem into a
sequence of smaller, though still dense, QP sub-problems. Zanghirati and Zanni implement the
inner solver using a technique called variable projection method, which is ableto work efficiently on
relatively large dense inner problems, and is suitable for implementing in parallel. The performance
of the inner QP solver was improved in Zanni et al. (2006).

In the cascade algorithm introduced by Graf et al. (2005), the SVMs arelayered. The support
vectors given by the SVMs of one layer are combined to form the training sets of the next layer.
The support vectors of the final layer are re-inserted into the training sets of the first layer at the
next iteration, until the global KKT conditions are met. The authors show thatthis feedback loop
corresponds to standard SVM training.

The algorithm of Durdanovic et al. (2007), implemented in the Milde software,is a parallel
implementation of the sequential minimal optimization. The objective function of the dual form
(see Equation 3 below) is expressed in terms of partial gradients. Variables are selected to enter

1938



HYBRID PARALLEL SVM TRAINING

the working set, based on the steepest descent direction, and whether the variables are free to move
within their box constraints. A second working set method considers pairwise contributions. Very
large data sets can be split across processors. When a variablezi enters the working set, the owner
processor broadcasts the corresponding data vectorxi . All nodes calculate kernel functions and
update their portion of the gradient vector. Although many of the operationswithin an iteration are
parallelizable, a very large number of sequential outer iterations are still required. The authors use
a hybrid approach to parallelization similar to ours described below, involvinga multi-core BLAS
library, but its use is limited to Layer 1 and 2 operations.

Another family of approaches to QP optimization are based on interior point method (IPM)
technology, which works by delaying the split between active and inactivevariables for as long as
possible. IPMs generally work well on large-scale problems, largely because the number of itera-
tions tends to grow very slowly with the problem dimension. Unfortunately eachiteration requires
the solving of a large system of linear equations. A straight-forward implementation of the stan-
dard SVM dual formulation has a per iteration complexity ofO(n3), and would be unusable for
anything but the smallest problems. Several sequential implementations of IPMs for support vector
machines address this difficulty (Ferris and Munson, 2003; Fine and Scheinberg, 2002; Woodsend
and Gondzio, 2007). Returning to parallel implementations, Chang et al. (2008) use parallel IPM
technology for the optimizer, and avoid the problem of inverting the dense Hessian matrix by gen-
erating a low-rank approximation of the kernel matrix using partial Choleskydecomposition with
pivoting. The dense Hessian matrix can then be efficiently inverted implicitly using the low-rank
approximation and the Sherman-Morrison-Woodbury (SMW) formula. Moreover, a large part of
the calculations at each iteration can be distributed amongst the processorseffectively. The SMW
formula has been widely used in interior point methods; however, sometimes it runs into numeri-
cal difficulties. Fine and Scheinberg (2002) constructed data sets where an SMW-based algorithm
required many more iterations to terminate, and in some cases stalled before achieving an accurate
solution. They also showed that this situation arises in real-world data sets.

Most of the previous approaches (Durdanovic et al. 2007 is the exception) have considered the
parallel computer system as a cluster of independent processors, communicating through a message
passing scheme such as MPI (MPI-Forum, 1995). Advances in technology have resulted in systems
where several processing cores have access to a single memory space, and such symmetric multi-
processing (SMP) architectures are becoming prevalent. OpenMP (OpenMP Architecture Review
Board, 2008) has proven to work effectively on shared memory systems, while MPI can be used for
message passing between nodes. It can also be used to communicate between processors within an
SMP node, but it is not immediately clear that this is the most efficient technique.

Most high performance computing systems are now clusters of SMP nodes.On such hybrid
systems, a combination of message passing between SMP nodes and sharedmemory techniques
inside each node could potentially offer the best parallelization performancefrom the architecture,
although previous investigations have revealed mixed results (Smith and Bull, 2001; Rabenseifner
and Wellein, 2003). A standard approach to combining the two schemes involves OpenMP paral-
lelization inside each MPI process, while communication between the MPI processes is made only
outside of the OpenMP regions. Rabenseifner and Wellein (2003) referto this style as “master-
only”.

In this paper, we propose a parallel linear SVM algorithm that adopts this hybrid approach to
parallelization. It trains the SVM using the full data set, using an interior pointmethod to give
efficient optimization, and Cholesky decomposition to give good numerical stability. MPI is used to
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communicate between clusters, while within clusters we take advantage of the availability of highly
efficient OpenMP-based BLAS implementations. Data is distributed evenly amongst the proces-
sors. Our approach directly tackles the most computationally expensive part of the optimization,
namely the inversion of the dense Hessian matrix, through providing an efficient implicit inverse
representation. By exploiting the structure of the problem, we show how this can be parallelized
with excellent parallel efficiency. The resulting implementation is significantly faster at SVM train-
ing than active set methods, and it allows SVMs to be trained on data sets that would be impossible
to fit within the memory of a single processor.

The structure of the rest of this paper is as follows. Section 2 gives an outline of interior point
method for optimizing quadratic programs. Section 3 provides a short description of support vector
machines and the formulation we use. Then in Section 4 we describe our approach to training linear
SVMs, exploiting the structure of the QP and accessing memory efficiently. Numerical performance
results are given in Section 5. Section 6 contains some concluding remarks.

We now briefly describe the notation used in this paper.xi is the attribute vector for theith data
point, and it consists of the observation values directly. There aren observations in the training set,
andm attributes in each vectorxi . X is them×n matrix whose columns are the attribute vectorsxi

associated with each point. The classification label for each data point is denoted byyi ∈ {−1,1}.
The variablesw∈ R

m andz∈ R
n are used for the primal variables (“weights”) and dual variables

(α in SVM literature) respectively, andw0 ∈ R for the bias of the hyperplane. Scalars and column
vectors are denoted using lower case letters, while upper case letters denote matrices.D,S,U,V,Y
andZ are the diagonal matrices of the corresponding lower case vectors.

2. Interior Point Methods

Interior point methods represent state-of-the-art techniques for solving linear, quadratic and non-
linear optimization programmes. In this section the key issues of implementation for QPs are dis-
cussed very briefly; for more details, see Wright (1997).

For the purposes of this paper, we need a method to solve the box and equality-constrained
convex quadratic problem

min
z

1
2

zTQz+cTz

s.t. Az= b

0≤ z≤ u,

whereu is a vector of upper bounds, and the constraint matrixA is assumed to have full row rank.
Dual feasibility requires thatATλ + s− v−Qz= c, whereλ is the Lagrange multiplier associated
with the linear constraintAz= b ands,v > 0 are the Lagrange multipliers associated with the lower
and upper bounds ofz respectively.

At each iteration, an interior point method makes a damped Newton step towardssatisfying the
primal feasibility, dual feasibility and complementarity product conditions,

ZSe= µe

(U −Z)Ve= µe,

for a givenµ> 0. e is the vector of all ones. We follow a common practice in interior point literature
and denote with a capital letter(Z,S,U,V) a diagonal matrix with elements of the corresponding
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vector(z,s,u,v) on the diagonal. The algorithm decreasesµ before making another iteration, and
continues until both infeasibilities and the duality gap (which is proportional toµ) fall below re-
quired tolerances.

The Newton system to be solved at each iteration can be transformed into theaugmented system
equations:

[

−(Q+Θ−1) AT

A 0

][

∆z
∆λ

]

=

[

rc

rb

]

, (1)

where∆z,∆λ are components of the Newton direction in the primal and dual spaces respectively,
Θ−1 ≡Z−1S+(U−Z)−1V, andrc andrb are appropriately defined residuals. If the block(Q+Θ−1)
is diagonal, an efficient method to solve such a system is to form the Schur complementC = A(Q+
Θ−1)−1 AT , solve the smaller systemC∆λ = rb +A(Q+Θ−1)−1 rc for ∆λ, and back-substitute into
(1) to calculate∆z. Unfortunately, as we shall see in the next section, for the case of SVM training
the Hessian matrixQ is a completely dense matrix.

3. Support Vector Machines

In this section we briefly outline the standard SVM binary classification primal and dual formu-
lations, and summarise how they can be reformulated as a separable QP (formore details, see
Woodsend and Gondzio, 2007).

A Support vector machine (SVM) is a classification learning machine that learns a mapping
between the features and the target label of a set of data points known asthe training set, and
then uses a hyperplanewTx+ w0 = 0 to separate the data set and predict the class of further data
points. The labels are the binary values “yes” or “no”, which we represent using the values+1 and
−1. The objective is based on thestructural risk minimizationprinciple, which aims to minimize
the risk functional with respect to both the empirical risk (the quality of the approximation to the
given data, by minimising the misclassification error) and maximize the confidenceinterval (the
complexity of the approximating function, by maximising the separation margin) (Vapnik, 1998).

For alinear kernel, the attributes in the vectorxi for the ith data point are the observation values
directly, while for anon-linear kernelthe observation values are transformed by means of a (possibly
infinite dimensional) non-linear mappingΦ.

Concentrating on the linear SVM classifier, and using a 2-norm for the hyperplane weightsw
and a 1-norm for the misclassification errorsξ ∈R

n, the QP that forms the core of training the SVM
takes the form:

min
w,w0,ξ

1
2

wTw+ τeTξ

s.t. Y(XTw+w0e) ≥ e−ξ
w,w0 free, ξ ≥ 0,

(2)

whereτ is a positive constant that parameterizes the problem.

Due to the convex nature of the problem, a Lagrangian function associatedwith (2) can be
formulated, and the solution will be at the saddle point. Partially differentiating the Lagrangian
function gives relationships between the primal variables (w, w0 andξ) and the dual variables (z∈
R

n) at optimality, and substituting these relationships back into the Lagrangian function gives the
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standard dual problem formulation

min
z

1
2

zTYXTXYz−eTz

s.t. yTz= 0

0≤ z≤ τe.

(3)

However, using one of the optimality relationships,w = XYz, we can rewrite the quadratic
objective in terms ofw. Consequently, we can state the classification problem (3) as a separable
QP:

min
w,z

1
2

wTw−eTz

s.t. w−XYz= 0

yTz= 0

wfree, 0≤ z≤ τe.

(4)

The Hessian is simplified to the diagonal matrixQ= diag

([

em

0n

])

whereem = (1,1, . . . ,1)∈R
m,

while the constraint matrix becomes:

A =

[

Im −XY
0 yT

]

∈ R
(m+1)×(m+n)

. (5)

As described in Section 2, the Schur complement,

C≡ A(Q+Θ−1)−1AT

=

[

Im+XYΘzYXT −XYΘzy
−yTΘzYXT yTΘzy

]

∈ R
(m+1)×(m+1)

,

can be formed efficiently from such matrices and used to determine the Newtonstep. The operation
of building the matrixC is of orderO(n(m+1)2), while inverting the resulting matrix is an operation
of orderO((m+ 1)3). The formulation (4) is the basis of our parallel algorithm, where building
matrixC is split between the processors. This approach is efficient ifn≫ m (as was true with all the
Challenge data sets), since buildingC is the most expensive operation, but it would not be suitable
for data sets with a large number of features andm≫ n.

4. Implementing the QP for Parallel Computation

To apply (4) to truly large-scale data sets, it is necessary to employ linear algebra operations that
exploit the block structure of the formulation (Gondzio and Sarkissian, 2003; Gondzio and Grothey,
2007). Between clusters, the emphasis is on partitioning the linear algebra operations to minimize
interdependencies between processors. Within clusters, the emphasis is on accessing memory in the
most efficient manner.

The approach described below was implemented using the OOPS interior pointsolver (Gondzio
and Grothey, 2007).1 We should note here that, as the parallel track of the Challenge was focused
on shared memory algorithms, our submission to the Challenge used only the techniques described
in Section 4.2.

1. Our implementation is available for academic use athttp://www.maths.ed.ac.uk/ERGO/software.html .
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4.1 Linear Algebra Operations Between Nodes

We use the augmented system matrixH =

[

−Q−Θ−1 AT

A 0

]

corresponding to system (4), where

Q = diag

[

em

0

]

, Θ was described in Section 2 andA is given by Equation (5). This results inH

having a symmetric bordered block diagonal structure. We can breakH into blocks:

H =















H1 AT
1

H2 AT
2

.. .
...

Hp AT
p

A1 A2 . . . Ap 0















,

whereHi = −(Qi + Θ−1
i ) are actually diagonal andAi result from partitioning the data set evenly

across thep processors. Due to the “arrow-head” structure ofH, a block-based Cholesky decompo-
sition of the matrixH = LDLT will be guaranteed to have the structure:

H =











L1
.. .

Lp

LA1 . . . LAp LC





















D1
.. .

Dp

DC





















LT
1 LT

A1
.. .

...
LT

p LT
Ap

LT
C











.

Exploiting this structure allows us to compute the blocksLi ,Di andLAi in parallel. Terms that
form the Schur complement can be calculated in parallel but must then be gathered, and the cor-
responding blocksLC andDC computed serially. This requires the exchange of matrices of size
(m+1)× (m+1) between processors.

Hi = LiDiL
T
i ⇒ Di = −(Qi +Θ−1

i ),Li = I , (6)

LAi = AiL
−T
i D−1

i = AiH
−1
i , (7)

C = −
p

∑
i=1

AiH
−1
i AT

i , (8)

= LCDCLT
C. (9)

Matrix C is a dense matrix of relatively small size(m+1)× (m+1), and the Cholesky decom-
positionC = LCDCLT

C is performed in the normal way on a single processor. It is possible that a
coarse-grained parallel implementation of Cholesky decomposition could give better performance
(Luecke et al., 1992), but we did not include this in our implementation as the time taken to perform
the decomposition is negligible compared to computingC.

Once the representationH = LDLT above is known, we can use it to compute the solution of

the systemH

[

∆z
∆λ

]

=

[

rc

rb

]

through back-substitution.∆z′, ∆λ′ and∆λ′′ are vectors used for

1943



WOODSEND ANDGONDZIO

intermediate calculations, with the same dimensions as∆zand∆λ.

∆λ′′ = L−1
C (rb−

p

∑
i

LAi rci ), (10)

∆λ′ = D−1
C ∆λ′′

, (11)

∆λ = L−T
C ∆λ′

, (12)

∆z′i = D−1
i rci , (13)

∆zi = ∆z′i −LT
Ai

∆λ. (14)

For the formation ofLDLT , Equations (6) and (7) can be calculated on each processor individu-
ally. Outer products (8) are then calculated, and the results gathered ontoa single master processor
to formC; this requires each processor to transfer approximately1

2(m+ 1)2 elements. The master
processor performs the Cholesky decomposition ofC (9). Each processor needs to calculateLAi rci ,
which again can be performed without any inter-processor communication,and the results are gath-
ered onto the master processor. The master processor then performs thecalculations in Equations
(10), (11) and (12) of the back-substitution. Vector∆λ is broadcast to all processors for them to
calculate Equations (13) and (14) locally.

4.2 Linear Algebra Operations Within Nodes

Within each node, the bulk of operations are due to the contribution of each processorAiH
−1
i AT

i to
the calculation of the Schur complement in (8), and to a lesser extent the calculation ofLAi in (7).

The standard technology for dense linear algebra operations is the BLASlibrary. Much of
the effort to produce highly efficient implementations of BLAS Layer 3 (matrix-matrix operations)
have concentrated on the routine GEMM, for good reason: Kågstr̈om et al. (1998) showed that it is
possible to develop an entire BLAS Layer 3 implementation based on a highly optimized GEMM
routine and a small amount of BLAS Layer 1 and Layer 2 routines. Their approach focused on
efficiently organizing the accessing of memory, both through structuring thedata for locality and
through ordering operations within the algorithm. Matrices are partitioned intopanels(block rows
or block columns) and further partitioned into blocks of a size that fits in the processor’s cache,
where access times to the data are much shorter. Herrero (2006) has pursued these concepts further,
showing that it is possible to develop an implementation offering competitive performance without
the need for hand-optimized routines.

Goto and van de Geijn (2008) have shown that another limiting factor is the process of looking
up mappings in the page table between virtual and physical addresses of memory. A more efficient
approach ensures that the mappings for all the required data reside in theTranslation Look-aside
Buffer, effectively a cache for the page table. In practice, the best way of achieving this is to recast
the matrix-matrix multiplications as a sum of panel-panel multiplications, repacking each panel
into a contiguous buffer. This is the approach implemented in GotoBLAS, the library used in our
implementation.

To perform GEMMC := AB+C, the algorithm described in Goto and van de Geijn (2008)
divides the matrices into panels and uses three optimized components.

1. Divide matrixB into block row panels. Each panelBp�
contains all the columns we need, but

fewer rows than the original matrixB. As required, packBp�
into a contiguous buffer.
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2. Divide matrixA into block column panelsA
�p, so that the inner dimensions ofA

�p andBp�

match. Further divideA into blocksAip. As required, pack blockAip into a contiguous buffer,
so that by the end it is transposed and in the L2 cache.

3. Considering each blockAip in turn, perform the multiplicationCi� := AipBp�
+Ci�, with Bp�

brought into the cache in column strips.

Additionally, it is possible in a multi-core system to coordinate the packing ofBp�
between the

processors, avoiding redundancy and improving performance.
Similar techniques using panels and blocks can be applied to Cholesky factorization (Buttari

et al., 2009), but again these are not included in our implementation as the factorization ofC is a
relatively small part of the algorithm.

Returning to the SVM training problem, by casting the main computation of our algorithm in
terms of matrix-matrix multiplications, we can take advantage of the above improvements for a
multi-threaded architecture:

1. Consider a subblock of the constraint matrixA, consisting of all rows and the number of
columns around the same size asm+1. Call thisAi .

2. CalculateLAi for this subblock, using (7). This involves Layer 1 operations, but these can be
vectorized by the compiler.

3. CalculateC := C+LAi A
T
i using the GEMM algorithm described above.

The performance gain of this approach is investigated in the next section.

5. Performance

In this section we compare the hybrid OpenMP/MPI version of our softwarewith one using only
MPI, and also our implementation against three other parallel SVM solvers. Data sets are taken
from the PASCAL Challenge on Large-scale Learning, and the sizes we used are shown in Table
1. Due to memory restrictions, we reduced the number of samples in the FD and DNA data sets.
Additionally, the DNA data set was modified from categories to binary features, increasingm by a
factor of 4. The data sets were converted into a simple feature representation in SVM-light format.
The software was run on a cluster of quad-core 3GHz Intel Xeon processors, each with 2GB RAM.
The GotoBLAS library was used for BLAS functions, with the number of OpenMP threads set to 4,
to match the number of cores. We also used the LAM implementation of the MPI library.

To compare the hybrid approach (using the techniques described in Sections 4.1 and 4.2) with
pure MPI (using Section 4.1 only), we used the data sets alpha to zeta. The results are shown in
Figure 1. They consistently show that, although the pure MPI approach has better properties in terms
of parallel efficiency, the hybrid approach is always computationally moreefficient. We believe this
is a result of the multi-core processor architecture. The cores are associated with relatively small
local cache memories, and such an architecture demands a fine-grained parallelism where, to reduce
bus traffic, an operation is split into tasks that operate on small portions of data (Buttari et al., 2009).
OpenMP is better suited to this fine-grained parallelism.

We made a comparison with other parallel software PGPDT (Zanni et al., 2006), PSVM (Chang
et al., 2008), and Milde (Durdanovic et al., 2007). All of them are able to handle nonlinear as well as
linear kernels, unlike our implementation. Using a linear kernel in each case,the results are shown
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Figure 1: SVM training time with respect to the number of processors, for thePASCAL data sets (a)
alpha, (b) beta, (c) gamma, (d) delta, (e) epsilon and (f) zeta. For eachdata set we trained
using two values ofτ. The results show that, although the pure MPI approach shows
better parallel efficiency properties, the hybrid approach is always computationally more
efficient.
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Data Set n m
Alpha 500000 500
Beta 500000 500
Gamma 500000 500
Delta 500000 500
Espilon 500000 2000
Zeta 500000 2000
FD 2560000 900
OCR 3500000 1156
DNA 6000000 800

Table 1: PASCAL Challenge on Large-scale Learning data sets used in thispaper.

Data Set # cores τ OOPS PGPDT PSVM Milde

Alpha 16
1 39 3673 1684 (80611)
0.01 50 4269 4824 (85120)

Beta 16
1 120 5003 2390 (83407)
0.01 48 4738 4816 (84194)

Gamma 16
1 44 — 1685 (83715)
0.01 49 7915 4801 (84445)

Delta 16
1 40 — 1116 (57631)
0.01 46 9492 4865 (84421)

Epsilon 32
1 730 — 17436 (58488)
0.01 293 — 36319 (56984)

Zeta 32
1 544 — 14368 (22814)
0.01 297 — 37283 (68059)

FD 32
1 3199 — — (39227)
0.01 2152 — — (52408)

OCR 32
1 1361 — — (58307)
0.01 1330 — — (36523)

DNA 48
1 2668 — — —
0.01 6557 — — 14821

Table 2: Comparison of parallel SVM training software on PASCAL data sets. Times are in sec-
onds. In all cases except the DNA data set, the Milde software ran but didnot terminate
within 24 hours of runtime, so the numbers in brackets show when it was within 1% of its
final objective value; — indicates that the software failed to load the problem.

in Table 2. With the exception of Milde (which has its own message passing implementation), the
LAM implementation of the MPI library was used.

We required an objective value accuracy ofε = 0.01, and chose two values forτ within the
range set in the Challenge, so we believe the training tasks are representative. In keeping with the
evaluation method of the Challenge, the timings shown are for training and do not include time
spent reading the data. The PSVM algorithm includes an additional partial Cholesky factorization
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Parallel Single processor
Data Set τ OOPS OOPS LibLinear LaRank

n cores t n t n t n t

Alpha
1

500,000 16
39

500,000
122

500,000
147

500,000
3354

0.01 50 151 112 2474

Beta
1

500,000 16
120

500,000
394

500,000
135

500,000
6372

0.01 48 154 112 1880

Gamma
1

500,000 16
44

500,000
149

500,000
(8845)

500,000
—

0.01 49 163 348.33 20318

Delta
1

500,000 16
40

500,000
137

500,000
(13266)

500,000
—

0.01 46 134 429 —

Epsilon
1

500,000 32
730

210,000
951

250,000
316

500,000
5599

0.01 293 374 265 2410

Zeta
1

500,000 32
544

230,000
1115

250,000
278

500,000
—

0.01 297 449 248 —

FD
1

2,560,000 48
3199

500,000
1502

500,000
231

500,000
1537

0.01 2152 840 193 332

OCR
1

3,500,000 32
1361

250,000
275

250,000
181

500,000
5695

0.01 1330 297 121 4266

DNA
1

6,000,000 48
2668

600,000
175

600,000
144

600,000
300

0.01 6557 176 30 407

Table 3: Comparison of our SVM training software OOPS, in parallel and ona single processor,
with linear SVM software LibLinear and LaRank, again on PASCAL data sets. Times
for training are in seconds. For the parallel software OOPS, each corehad access to 2GB
memory. The single processor codes had access to 4 cores and 8GB memory, and the larger
data sets were reduced in size to fit. For LibLinear, brackets indicate that the iteration limit
was reached. For LaRank, — indicates that the software did not terminate within 24 hours.

Data Set OOPS LibLinear LaRank
Alpha 0.1345 0.1601 0.1606
Beta 0.4988 0.4988 0.5001
Gamma 0.1174 0.1185 0.1187
Delta 0.1344 0.1346 0.1355
Epsilon 0.0341 0.4935 0.4913
Zeta 0.0115 0.4931 0.4875
FD 0.2274 0.2654 0.3081
OCR 0.1595 0.1660 0.1681

Table 4: Accuracy measured using area under precision recall curve. These values are taken from
the test results tables of the Evaluation pages of the PASCAL Challenge website.

procedure, which we also do not include in the training times. To make the training equivalent,
the rank of the factorization was set to be the number of featuresm. The Milde software includes
a number of termination criteria but not one based on the objective. Using thedefault criteria of
maximum gradient belowε resulted in the software never terminating in all but one case within a 24
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hour runtime limit. To be closer to the spirit of the Challenge, we show the time taken tobe within
1% of the objective value at the end of 24 hours when the program was terminated prematurely,
although in many cases the output indicated that the method was not yet converging.

The results show that our approach described in this paper and implementedin OOPS is typically
one to two orders of magnitude faster than the other parallel SVM solvers, terminates reliably, and
training times are reasonably consistent for different values ofτ.

Unfortunately there were no other linear SVM implementations in the Parallel track of the PAS-
CAL Challenge. Instead, we show in Table 3 training time results for two linear SVM codes that
did participate in the PASCAL Challenge: LibLinear (Fan et al., 2008) which won the linear SVM
track, and LaRank (Bordes et al., 2007) specialised for linear SVMs. Both codes ran serially, using
the memory of 4 processor cores (8GB RAM in total), although it should be noted that as we used
the GotoBLAS library when building LibLinear, it was able to use all four processor cores during
BLAS operations. To make training possible, it was necessary to reduce the size of the larger data
sets from the sizes given in Table 1; the number of samples used each time areshown asn in Table 3.

The presentation of the results is slightly unusual in that training times are not directly connected
to accuracy results against a test set. This is because labelled validation and test data sets have not
been made publicly available. Performance statistics related to the precision recall curve were
evaluated on the Challenge website, and so instead we reproduce in Table 4the results from the
website for area under the precision recall curve results for the test data set. In general the precision
of our method is consistent with the best of the other linear SVM methods that participated.

Taking the results in Tables 3 and 4 together, it is clear that LibLinear in particular is a very
efficient implementation, even in the cases Alpha to Delta where it is working with the full data set.
Table 4 clearly indicates that our approach consistently finds a high-qualitysolution to the separating
hyperplane, measured in terms of classification accuracy, whereas forLibLinear the quality of the
solution is lower. In many cases, the reduction in prediction accuracy is onlysmall. The results in
Table 4 for the Epsilon and Zeta data sets in particular show, however, thatfor some problems the
quality of the solution from OOPS can be substantially better.

6. Conclusions

In this paper, we have shown how to develop a hybrid parallel implementation of linear Support
Vector Machine training. The approach allows the entire data set to be used, and consists of the
following steps:

1. Reformulating the problem to remove the dense Hessian matrix.

2. Using interior point method to solve the optimization problem in a predictable time, and
Cholesky decomposition to give good numerical stability of implicit inverses.

3. Exploiting the block structure of the augmented system matrix, to partition the data and linear
algebra computations amongst parallel processing nodes efficiently.

4. Within SMP nodes, casting the main computations as matrix-matrix multiplication where
possible, partitioning the matrices to obtain better data locality, and using highly efficient
BLAS implementation for a multi-threaded architecture.

The above steps were implemented in OOPS. Our results show that, for all cases, the hybrid imple-
mentation was faster than one using purely MPI, even though the MPI version had better parallel
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efficiency. We used the hybrid implementation to solve very large problems from the PASCAL
Challenge on Large-scale Learning, of up to a few million data samples. On these problems the
approach described in this paper was highly competitive, and showed thateven on data sets of this
size, training times in the order of minutes are possible.

In this paper we have focused on linear kernels. It is possible to extend the techniques described
above to handle non-linear kernels, by approximating the positive semidefinite kernel matrixK with
a low-rank outer product representation such as partial Cholesky factorizationLLT ≈ K (Fine and
Scheinberg, 2002). This approach produces the firstr columns of the matrixL (corresponding to
the r largest pivots) and leaves the other columns as zero, giving an approximation of the matrix
K of rank r. Extending the work of Fine and Scheinberg, the diagonalD ∈ R

n×n of the residual
matrix (K −LLT) can be determined at no extra expense and included in a separable formulation
for non-linear kernels:

min
w,z

1
2
(wTw+zTDz)−eTz

s.t. w− (YL)Tz= 0

−yTz= 0

0≤ z≤ τe.

Chang et al. (2008) describe how to perform partial Cholesky decomposition in a parallel en-
vironment. Data is segmented between the processors. All diagonal elementsare calculated to
determine pivot candidates. Then, for each of ther columns, the largest diagonal element is located.
The corresponding pivot row ofL and the original features need to be known by all processors,
so this information is broadcast by the owner processor. With this information, all processors can
update the section of the new column ofL for which they are responsible, and also update corre-
sponding diagonal elements. Although the algorithm requires the processors to be synchronised at
each iteration, little of the data needs to be shared amongst the processors:the bulk of the commu-
nication between processors is limited to a vector of lengthmand a vector of at most lengthr. Note
that matrixK is known only implicitly, through the kernel function, and calculating its values isan
expensive process. The algorithm therefore calculates each kernelelement required to formL only
once, giving a complexity ofO(nr2 + nmr) for the initial Cholesky factorization, andO(nr2 + r3)
for each IPM iteration of our algorithm.

The method described in this paper requires all sample data to be loaded into memory, and this
clearly has an impact on the size of problem that can be tackled. It is possible to improve data
handling and increase the storage capacity somewhat, for instance storingthe data compactly and
expanding sections into floating point numbers when needed by the BLAS routines (Durdanovic
et al., 2007), but the scaling is stillO(nm2). The direction of our further research is to develop
methods that are able to safely ignore or remove data points from consideration as the algorithm
progresses. In conjunction with exploiting the structure of the optimization problem as described in
this paper, we believe this will offer further significant improvements to the overall training time.
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