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Abstract

Support vector machines are a powerful machine learningntdogy, but the training process
involves a dense quadratic optimization problem and is edatjpnally challenging. A parallel
implementation of linear Support Vector Machine trainirag bbeen developed, using a combination
of MPI and OpenMP. Using an interior point method for the mitation and a reformulation that
avoids the dense Hessian matrix, the structure of the aumchesystem matrix is exploited to
partition data and computations amongst parallel processfticiently. The new implementation
has been applied to solve problems from the PASCAL Challemgkarge-scale Learning. We
show that our approach is competitive, and is able to solgblpms in the Challenge many times
faster than other parallel approaches. We also demonghi@téhe hybrid version performs more
efficiently than the version using pure MPI.

Keywords: linear SVM training, hybrid parallelism, largescale leéag) interior point method

1. Introduction

Support vector machines (SVMs) are powerful machine learning tegbésifipr classification and
regression. They were developed by Vapnik (1998), and are lmassthtistical learning theory.
They have been applied to a wide range of applications, with excellerts;eand so they have
received significant interest.

Like many machine learning techniques, SVMs involve a training stage, whermachine
learns a pattern in the data fromtraining data setand a separate test or validation stage where
the ability of the machine to correctly predict labels is evaluated using a pslyionseenest data
set This process allows parameters to be adjusted towards optimal valuesguwdiliing against
overfitting.

The training stage for Support Vector Machines involves at its core sedeonvex quadratic
optimization problem (QP). Solving this optimization problem is computationally expengi-
marily due to the dense Hessian matrix. Solving the QP with a general-purpbselr would
result in the time taken to scale cubically with the number of data poi(is®{). Such a complex-
ity result means that, in practise, the SVM training problem cannot be solveeéteral purpose
optimization solvers.
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Several schemes have been developed where a solution is built by sals@tgience of small-
scale problems, where only a few data points dative set are considered at a time. Examples
include decomposition (Osuna et al., 1997) and sequential minimal optimizataity (®99), and
state-of-the-art software use these techniques. Active-set teesnigork well when the data is
clearly separable by a hyperplane, so that the separation into activ@arattive variables is clear.
With noisy data, however, finding a good separating hyperplane betihhedwo classes is not so
clear, and the performance of these algorithms deteriorates (Woodseébadzio, 2007).

In addition, the active set techniques used by standard softwaresamtiafly sequential—they
choose a small subset of variables to form the active set at each iteratidrthis selection is
based upon the results of the previous iteration. It is not clear how téeatiicimplement such an
algorithm in parallel, due to the large number of iterations required and trendepcies between
each iteration and the next.

Few approaches have been developed for training SVMs in parallehuyléple-core comput-
ers are becoming the norm, and data sets are becoming ever larger. taliderthat of the 44
submissions to compete in the PASCAL Challenge on Large-scale LearromgégBburg et al.,
2008), only 3 entries were parallel methods.

Parallelization schemes so far proposed have involved splitting the trainiagodgive smaller,
separable optimization sub-problems which can be distributed amongst tresgoos. Dong et al.
(2003) used a block-diagonal approximation of the kernel matrix to @é@rtdlependent optimization
problems. The resulting SVMs were used to filter out samples that were lik¢lprbe support
vectors. A SVM was then trained on the remaining samples, using the stesetétalgorithm.
Collobert et al. (2002) proposed a mixture of multiple SVMs where single S\ trained on
subsets of the training set and a neural network is used to assign saniféerémt subsets.

Another approach is to use a variation of the standard SVM algorithm thattrtsuited to a
parallel architecture. Tveit and Engum (2003) developed an exaallglamplementation of the
Proximal SVM (Fung and Mangasarian, 2001), which classifies pointaskigning them to the
closest of two parallel planes. Compared to the standard SVM formulatiesjrigle constraint is
removed and the result is an unconstrained QP; this is substantially diffesenthe linear SVM
task set in the PASCAL Challenge.

There have only been a few parallel methods in the literature which train dasth8VM on
the whole of the data set. We briefly survey the methods of Zanghirati amai Z2003), Graf et al.
(2005), Durdanovic et al. (2007) and Chang et al. (2008).

The algorithm of Zanghirati and Zanni (2003) decomposes the SVM tguimioblem into a
sequence of smaller, though still dense, QP sub-problems. Zanghida#ami implement the
inner solver using a technique called variable projection method, which iscalvtark efficiently on
relatively large dense inner problems, and is suitable for implementing in pafdikperformance
of the inner QP solver was improved in Zanni et al. (2006).

In the cascade algorithm introduced by Graf et al. (2005), the SVMkgesed. The support
vectors given by the SVMs of one layer are combined to form the trainitegaehe next layer.
The support vectors of the final layer are re-inserted into the trainitsgo$ehe first layer at the
next iteration, until the global KKT conditions are met. The authors showtltimfeedback loop
corresponds to standard SVM training.

The algorithm of Durdanovic et al. (2007), implemented in the Milde softwiare, parallel
implementation of the sequential minimal optimization. The objective function of théfdum
(see Equation 3 below) is expressed in terms of partial gradients. Varialdeselected to enter
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the working set, based on the steepest descent direction, and whetkearidbles are free to move
within their box constraints. A second working set method considers paisaistributions. Very
large data sets can be split across processors. When a variabters the working set, the owner
processor broadcasts the corresponding data vectohll nodes calculate kernel functions and
update their portion of the gradient vector. Although many of the operatwths an iteration are
parallelizable, a very large number of sequential outer iterations are gtiiiregl. The authors use
a hybrid approach to parallelization similar to ours described below, involvimmilti-core BLAS
library, but its use is limited to Layer 1 and 2 operations.

Another family of approaches to QP optimization are based on interior pointoché€tRM)
technology, which works by delaying the split between active and inacéisiables for as long as
possible. IPMs generally work well on large-scale problems, largelguserthe number of itera-
tions tends to grow very slowly with the problem dimension. Unfortunately éecdtion requires
the solving of a large system of linear equations. A straight-forward impl&tien of the stan-
dard SVM dual formulation has a per iteration complexity@?), and would be unusable for
anything but the smallest problems. Several sequential implementations sffti?Bupport vector
machines address this difficulty (Ferris and Munson, 2003; Fine angir8rg, 2002; Woodsend
and Gondzio, 2007). Returning to parallel implementations, Chang et &8)Y26e parallel IPM
technology for the optimizer, and avoid the problem of inverting the denssi&lematrix by gen-
erating a low-rank approximation of the kernel matrix using partial Choleglgpmposition with
pivoting. The dense Hessian matrix can then be efficiently inverted implicithgubia low-rank
approximation and the Sherman-Morrison-Woodbury (SMW) formula. edeer, a large part of
the calculations at each iteration can be distributed amongst the procefieotisely. The SMW
formula has been widely used in interior point methods; however, sometimassiinto numeri-
cal difficulties. Fine and Scheinberg (2002) constructed data set®wheBMW-based algorithm
required many more iterations to terminate, and in some cases stalled befierérachn accurate
solution. They also showed that this situation arises in real-world data sets.

Most of the previous approaches (Durdanovic et al. 2007 is the ggogpave considered the
parallel computer system as a cluster of independent processors, oaratmg through a message
passing scheme such as MPI (MPI-Forum, 1995). Advances in tedynloéwe resulted in systems
where several processing cores have access to a single memoryahseich symmetric multi-
processing (SMP) architectures are becoming prevalent. OpenMPBpArchitecture Review
Board, 2008) has proven to work effectively on shared memory systenile MPI can be used for
message passing between nodes. It can also be used to communicate Ipebwessors within an
SMP node, but it is not immediately clear that this is the most efficient technique.

Most high performance computing systems are now clusters of SMP n@tesuch hybrid
systems, a combination of message passing between SMP nodes andnsbara@y techniques
inside each node could potentially offer the best parallelization perfornfemroethe architecture,
although previous investigations have revealed mixed results (Smith and 8adl; Rabenseifner
and Wellein, 2003). A standard approach to combining the two schemesesvOlpenMP paral-
lelization inside each MPI process, while communication between the MPIgzesés made only
outside of the OpenMP regions. Rabenseifner and Wellein (2003) teetbis style as “master-
only”.

In this paper, we propose a parallel linear SVM algorithm that adopts thischgpproach to
parallelization. It trains the SVM using the full data set, using an interior poigihod to give
efficient optimization, and Cholesky decomposition to give good numeridailistaMPlI is used to
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communicate between clusters, while within clusters we take advantage o&ilebaiy of highly
efficient OpenMP-based BLAS implementations. Data is distributed evenly gshtime proces-
sors. Our approach directly tackles the most computationally expengivefgae optimization,
namely the inversion of the dense Hessian matrix, through providing aregffimplicit inverse
representation. By exploiting the structure of the problem, we show how dhide parallelized
with excellent parallel efficiency. The resulting implementation is significansifefeat SVM train-
ing than active set methods, and it allows SVMs to be trained on data setsthldtlve impossible
to fit within the memory of a single processor.

The structure of the rest of this paper is as follows. Section 2 gives tlineaf interior point
method for optimizing quadratic programs. Section 3 provides a shortipéscrof support vector
machines and the formulation we use. Then in Section 4 we describe ocoaapfto training linear
SVMs, exploiting the structure of the QP and accessing memory efficientmeRaal performance
results are given in Section 5. Section 6 contains some concluding remarks.

We now briefly describe the notation used in this pageis the attribute vector for thé data
point, and it consists of the observation values directly. Thera ateservations in the training set,
andm attributes in each vectog. X is them x n matrix whose columns are the attribute vectqrs
associated with each point. The classification label for each data poimasedebyy; € {—1,1}.
The variablesv € R™ andz € R" are used for the primal variables (“weights”) and dual variables
(o in SVM literature) respectively, andp € R for the bias of the hyperplane. Scalars and column
vectors are denoted using lower case letters, while upper case lettets deatricesD,SU,V,Y
andZ are the diagonal matrices of the corresponding lower case vectors.

2. Interior Point Methods

Interior point methods represent state-of-the-art techniques fongdinear, quadratic and non-
linear optimization programmes. In this section the key issues of implementatiorP®af@ dis-
cussed very briefly; for more details, see Wright (1997).

For the purposes of this paper, we need a method to solve the box ariyecpastrained
convex quadratic problem

. 1
min  ZzZ'Qz+c'z
z 2
s.t. Az=b
0<z<u,
whereu is a vector of upper bounds, and the constraint matrix assumed to have full row rank.
Dual feasibility requires thaA"™ A +s—v— Qz= ¢, whereA is the Lagrange multiplier associated
with the linear constraimddz= b ands,v > 0 are the Lagrange multipliers associated with the lower
and upper bounds afrespectively.
At each iteration, an interior point method makes a damped Newton step tosedisiging the
primal feasibility, dual feasibility and complementarity product conditions,
ZSe=pe
(U—-2Z)Ve=pe

for a givenu > 0. eis the vector of all ones. We follow a common practice in interior point literature
and denote with a capital lett¢Z, S U,V ) a diagonal matrix with elements of the corresponding
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vector(z s,u,v) on the diagonal. The algorithm decreaggsefore making another iteration, and
continues until both infeasibilities and the duality gap (which is proportional tiall below re-
quired tolerances.

The Newton system to be solved at each iteration can be transformed imtoghmented system

equations
—(Q+0 Yy AT [ az] [re
IR @

whereAz, AN are components of the Newton direction in the primal and dual spacestigspe
0 1=7"1S+ (U -2)~1V, andr; andr, are appropriately defined residuals. If the blgk-©~1)

is diagonal, an efficient method to solve such a system is to form the SchulesoemC = A(Q+
O 1)~1AT, solve the smaller syste@A\ = rp+A(Q+ O 1)~1r for A\, and back-substitute into
(1) to calculatehz. Unfortunately, as we shall see in the next section, for the case of S&MMrig
the Hessian matriQ is a completely dense matrix.

3. Support Vector Machines

In this section we briefly outline the standard SVM binary classification primdldual formu-
lations, and summarise how they can be reformulated as a separable QRoftodetails, see
Woodsend and Gondzio, 2007).

A Support vector machine (SVM) is a classification learning machine thatdemmapping
between the features and the target label of a set of data points knothe taining set and
then uses a hyperplan® x+wp = 0 to separate the data set and predict the class of further data
points. The labels are the binary values “yes” or “no”, which we regressing the values 1 and
—1. The objective is based on t&uctural risk minimizatiorprinciple, which aims to minimize
the risk functional with respect to both the empirical risk (the quality of the@pmation to the
given data, by minimising the misclassification error) and maximize the confidetergal (the
complexity of the approximating function, by maximising the separation margimpnika1998).

For alinear kerne the attributes in the vector for theith data point are the observation values
directly, while for anon-linear kernethe observation values are transformed by means of a (possibly
infinite dimensional) non-linear mappirig;

Concentrating on the linear SVM classifier, and using a 2-norm for therpigne weightsv
and a 1-norm for the misclassification errrs R", the QP that forms the core of training the SVM
takes the form:

min }wTer 1e' ¢
WWo,E 2
st.  Y(XTw4wpe) >e—¢
w,wofree & >0,

(2)

wheret is a positive constant that parameterizes the problem.

Due to the convex nature of the problem, a Lagrangian function assoeiétted2) can be
formulated, and the solution will be at the saddle point. Partially differentiatiag-ttgrangian
function gives relationships between the primal variablesap and§) and the dual variablez €
R") at optimality, and substituting these relationships back into the Lagrangiatidargives the
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standard dual problem formulation
. 1
min ézTYXTXYz— e'z
st.  y'z=0 (3)
0<z<te

However, using one of the optimality relationshipg= XY z we can rewrite the quadratic
objective in terms ofv. Consequently, we can state the classification problem (3) as a separable

QP:

. 1
min “ww—-e'z

w,z 2
st. w-XYz=0 (4)
y'z=0

wfree 0<z<Tte

The Hessian is simplified to the diagonal matgix diag< [ gm } ) whereen=(1,1,...,1) ¢ R™,
n
while the constraint matrix becomes:
| Im XY (MH-1)  (m+n)
A= [ 0 ] eR ) (5)

As described in Section 2, the Schur complement,
C=AQ+0 H)1AT

[ Im+XYOYXT —XYOy c RMHL)x(m+1)
- —T@ZYXT yT@Zy )

can be formed efficiently from such matrices and used to determine the Nstgfmrlrhe operation

of building the matrixC is of orderO(n(m-1)?), while inverting the resulting matrix is an operation
of order O((m+1)3). The formulation (4) is the basis of our parallel algorithm, where building
matrixC is split between the processors. This approach is efficientifm (as was true with all the
Challenge data sets), since buildi@ds the most expensive operation, but it would not be suitable
for data sets with a large number of features amg- n.

4. Implementing the QP for Parallel Computation

To apply (4) to truly large-scale data sets, it is necessary to employ linegsralgperations that
exploit the block structure of the formulation (Gondzio and Sarkissiar3;280ndzio and Grothey,
2007). Between clusters, the emphasis is on partitioning the linear algednatiops to minimize
interdependencies between processors. Within clusters, the emphasacessing memory in the
most efficient manner.

The approach described below was implemented using the OOPS interios@went (Gondzio
and Grothey, 20073.We should note here that, as the parallel track of the Challenge was focuse
on shared memory algorithms, our submission to the Challenge used only thigjtexshdescribed
in Section 4.2.

1. Our implementation is available for academic uskttat//www.maths.ed.ac.uk/ERGO/software.html
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4.1 Linear Algebra Operations Between Nodes

_Q o @—l AT

We use the augmented system malttix= A 0

corresponding to system (4), where

Q= diag[ e(‘)“ } , © was described in Section 2 ads given by Equation (5). This results

having a symmetric bordered block diagonal structure. We can bieato blocks:

FHy AT T
Ho Al
H= :
Hp A;
| AL A ... Ay 0]
whereH; = —(Q; + @(1) are actually diagonal and; result from partitioning the data set evenly

across the processors. Due to the “arrow-head” structurélof block-based Cholesky decompo-
sition of the matrixd = LDLT will be guaranteed to have the structure:

L1 D1 L LA,
Lp Dp Ly LA
La, .- La, Lc Dc B

Exploiting this structure allows us to compute the blotk®; andLy, in parallel. Terms that
form the Schur complement can be calculated in parallel but must then beregtland the cor-
responding block&c and Dc computed serially. This requires the exchange of matrices of size
(m+1) x (m+ 1) between processors.

H=LDL] =Di=-(Q+&b) L= ©)

Ly =AL D =AH?, ()
p

C=- ZAi HA (8)

= LcDelL. 9)

Matrix C is a dense matrix of relatively small sigen+ 1) x (m+ 1), and the Cholesky decom-
positionC = LcDcL{ is performed in the normal way on a single processor. It is possible that a
coarse-grained parallel implementation of Cholesky decomposition cowddbgitter performance
(Luecke et al., 1992), but we did not include this in our implementation as the tkee ta perform
the decomposition is negligible compared to compu@ng

Once the representatidth = LDLT above is known, we can use it to compute the solution of

the systenH [ 2)2\ ] = [ ;; ] through back-substitutionAZ, AN andAN” are vectors used for
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intermediate calculations, with the same dimensionszandAA.

p
DN =LY (ro— Y Lafc), (10)
|
AN =DgaN, (11)
M\ =LcTAN, (12)
AZ = D; g, (13)
Az = AZ — LA AN (14)

For the formation of DLT, Equations (6) and (7) can be calculated on each processor individu-
ally. Outer products (8) are then calculated, and the results gathered simgle master processor
to form C; this requires each processor to transfer approximééﬂw 1)? elements. The master
processor performs the Cholesky decompositio@ (8). Each processor needs to calculatg,,
which again can be performed without any inter-processor communicatidrthe results are gath-
ered onto the master processor. The master processor then perforcadctiiations in Equations
(10), (11) and (12) of the back-substitution. Vecfoyr is broadcast to all processors for them to
calculate Equations (13) and (14) locally.

4.2 Linear Algebra Operations Within Nodes

Within each node, the bulk of operations are due to the contribution of gacegso\H, *AT to
the calculation of the Schur complement in (8), and to a lesser extent théatiaowf L, in (7).

The standard technology for dense linear algebra operations is the Bbva8y. Much of
the effort to produce highly efficient implementations of BLAS Layer 3 (matmitrix operations)
have concentrated on the routine GEMM, for good reasc@mstom et al. (1998) showed that it is
possible to develop an entire BLAS Layer 3 implementation based on a highly optGEMM
routine and a small amount of BLAS Layer 1 and Layer 2 routines. Thegirogeh focused on
efficiently organizing the accessing of memory, both through structuringdtee for locality and
through ordering operations within the algorithm. Matrices are partitionecpismels(block rows
or block columns) and further partitioned into blocks of a size that fits in tbegssor’s cache,
where access times to the data are much shorter. Herrero (2006) basgbthrese concepts further,
showing that it is possible to develop an implementation offering competitivenpeahce without
the need for hand-optimized routines.

Goto and van de Geijn (2008) have shown that another limiting factor is tleegs®f looking
up mappings in the page table between virtual and physical addressemofyné more efficient
approach ensures that the mappings for all the required data resideTinatigation Look-aside
Buffer, effectively a cache for the page table. In practice, the bagtofachieving this is to recast
the matrix-matrix multiplications as a sum of panel-panel multiplications, repackiciy ganel
into a contiguous buffer. This is the approach implemented in GotoBLAS, tharyilused in our
implementation.

To perform GEMMC := AB—+ C, the algorithm described in Goto and van de Geijn (2008)
divides the matrices into panels and uses three optimized components.

1. Divide matrixB into block row panels. Each pan), contains all the columns we need, but
fewer rows than the original matrB. As required, pacB, into a contiguous buffer.
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2. Divide matrixA into block column panelé,p, so that the inner dimensions Af, and By,
match. Further dividé into blocksA;p. As required, pack blocR, into a contiguous buffer,
so that by the end it is transposed and in the L2 cache.

3. Considering each blockip in turn, perform the multiplicatioi€;, := AjpBp. + Ci., with By,
brought into the cache in column strips.

Additionally, it is possible in a multi-core system to coordinate the packinggpfoetween the
processors, avoiding redundancy and improving performance.

Similar techniques using panels and blocks can be applied to CholeskyiZatitor (Buttari
et al., 2009), but again these are not included in our implementation as tbeZation ofC is a
relatively small part of the algorithm.

Returning to the SVM training problem, by casting the main computation of ouritdgom
terms of matrix-matrix multiplications, we can take advantage of the above improveroe a
multi-threaded architecture:

1. Consider a subblock of the constraint matixconsisting of all rows and the number of
columns around the same sizems- 1. Call thisA;.

2. Calculatd_a, for this subblock, using (7). This involves Layer 1 operations, butetites be
vectorized by the compiler.

3. CalculateC := C+La AT using the GEMM algorithm described above.

The performance gain of this approach is investigated in the next section.

5. Performance

In this section we compare the hybrid OpenMP/MPI version of our softwdétfeone using only
MPI, and also our implementation against three other parallel SVM solveata &ts are taken
from the PASCAL Challenge on Large-scale Learning, and the sizesea are shown in Table
1. Due to memory restrictions, we reduced the number of samples in the FDN#di&lia sets.
Additionally, the DNA data set was modified from categories to binary feajumereasingn by a
factor of 4. The data sets were converted into a simple feature représemaSVM-light format.
The software was run on a cluster of quad-core 3GHz Intel Xeorepsmrs, each with 2GB RAM.
The GotoBLAS library was used for BLAS functions, with the number of @B threads set to 4,
to match the number of cores. We also used the LAM implementation of the MPMibrar

To compare the hybrid approach (using the techniques described inr&edtioand 4.2) with
pure MPI (using Section 4.1 only), we used the data sets alpha to zetaeduitsrare shown in
Figure 1. They consistently show that, although the pure MPI approadbgtter properties in terms
of parallel efficiency, the hybrid approach is always computationally reffigent. We believe this
is a result of the multi-core processor architecture. The cores areiassbwith relatively small
local cache memories, and such an architecture demands a fine-graiakeligsm where, to reduce
bus traffic, an operation is split into tasks that operate on small portioreg@{Buttari et al., 2009).
OpenMP is better suited to this fine-grained parallelism.

We made a comparison with other parallel software PGPDT (Zanni et ab),288VM (Chang
et al., 2008), and Milde (Durdanovic et al., 2007). All of them are ablatalfe nonlinear as well as
linear kernels, unlike our implementation. Using a linear kernel in each ttesegsults are shown

1945



WOODSEND ANDGONDZIO
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Figure 1: SVM training time with respect to the number of processors, fRAISCAL data sets (a)
alpha, (b) beta, (c) gamma, (d) delta, (e) epsilon and (f) zeta. Fordeaalset we trained
using two values of. The results show that, although the pure MPI approach shows
better parallel efficiency properties, the hybrid approach is alwaygatationally more
efficient.
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Table 1: PASCAL Challenge on Large-scale Learning data sets used jrajheés.

Data Set n m
Alpha 500000 50Q
Beta 500000 50
Gamma 500000 500
Delta 500000 500
Espilon 500000 200(
Zeta 500000 2000
FD 2560000 900
OCR 3500000 1156
DNA 6000000 800

Data Set #coresT OOPS PGPDT PSVM Milde
SRR
w10 by im0 G
Gamma 16 c1>.01 ig 7915 14%%51 ((%3;1741455))
Delta 16 (1,,01 32 9492 14181665 ((5874313211))
Epsilon 32 (1).01 ;Sg _ éggig ggggi;
a2 oul e sims (56059
2 00| s — (g9
e S el
ONA 98 oo eser e

Table 2: Comparison of parallel SVM training software on PASCAL data sEtees are in sec-
onds. In all cases except the DNA data set, the Milde software ran buiodigtrminate
within 24 hours of runtime, so the numbers in brackets show when it was withiafits
final objective value; — indicates that the software failed to load the problem.

in Table 2. With the exception of Milde (which has its own message passing impiatiosr), the

LAM implementation of the MPI library was used.

We required an objective value accuracyeof 0.01, and chose two values forwithin the
range set in the Challenge, so we believe the training tasks are reptiegeritakeeping with the
evaluation method of the Challenge, the timings shown are for training andtdaahade time
spent reading the data. The PSVM algorithm includes an additional pahtdégky factorization
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Parallel Single processor

Data Set 1 OO0OPS OOPS LibLinear LaRank

n cores t n t n t n t
Alpha 3_01 500,000 16 gg 500,000 ﬁi 500,000 1‘1‘; 500,000 gi?j
Beta .| 500000 16 123 500,000 ‘i‘gj 500,000 15> | 500,000 ?g;g
Gamma . | 500000 16 57| 500000 a9|500000 (502500000 ,
Detta ¢ | 500000 16 4o |500,000 1or| 500000 22881500000
Epsilon 3.01 500,000 32 ;gg 210,000 23411 250,000 gég 500,000 gi?g
zeta - | 500000 32 %1 230000 Y7°) 250000 27| 500000
FD Loy| 2560000 48 311500000 'o0%| 500,000 53| 500000 153
OCR ¢ |3500000 32 13o0| 250000 57°| 250000  151|s500,000 200
DNA o, | 6000000 48 éggg 600,000 72| 600000 3% 600,000 igg

Table 3: Comparison of our SVM training software OOPS, in parallel and simgle processor,
with linear SVM software LibLinear and LaRank, again on PASCAL data. séises
for training are in seconds. For the parallel software OOPS, eacthedraccess to 2GB
memory. The single processor codes had access to 4 cores and 8GByraarddhe larger
data sets were reduced in size to fit. For LibLinear, brackets indicate ehia¢thtion limit
was reached. For LaRank, — indicates that the software did not termiitate 24 hours.

Data Set| OOPS LibLinear LaRank
Alpha 0.1345 0.1601 0.1606
Beta 0.4988 0.4988 0.5001

Gamma | 0.1174 0.1185 0.1187
Delta 0.1344 0.1346 0.1355
Epsilon | 0.0341 0.4935 0.4913
Zeta 0.0115 0.4931 0.4875
FD 0.2274 0.2654 0.3081
OCR 0.1595 0.1660 0.1681

Table 4. Accuracy measured using area under precision recall.clinese values are taken from
the test results tables of the Evaluation pages of the PASCAL Challengéavebs

procedure, which we also do not include in the training times. To make the gagguivalent,
the rank of the factorization was set to be the number of featuréhe Milde software includes
a number of termination criteria but not one based on the objective. Usingdefaalt criteria of

maximum gradient belowresulted in the software never terminating in all but one case within a 24
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hour runtime limit. To be closer to the spirit of the Challenge, we show the time takswathin
1% of the objective value at the end of 24 hours when the program watded prematurely,
although in many cases the output indicated that the method was not yetgiogve

The results show that our approach described in this paper and implenre@e@sS is typically
one to two orders of magnitude faster than the other parallel SVM solversingges reliably, and
training times are reasonably consistent for different valuas of

Unfortunately there were no other linear SVM implementations in the Parall&l dfdbe PAS-
CAL Challenge. Instead, we show in Table 3 training time results for two lingdM Sodes that
did participate in the PASCAL Challenge: LibLinear (Fan et al., 2008) whioh the linear SVM
track, and LaRank (Bordes et al., 2007) specialised for linear SVt 8odes ran serially, using
the memory of 4 processor cores (8GB RAM in total), although it should bedrtbat as we used
the GotoBLAS library when building LibLinear, it was able to use all fourge®sor cores during
BLAS operations. To make training possible, it was necessary to redesizin of the larger data
sets from the sizes given in Table 1; the number of samples used each tisheareas in Table 3.

The presentation of the results is slightly unusual in that training times aréraotly connected
to accuracy results against a test set. This is because labelled validatitestidata sets have not
been made publicly available. Performance statistics related to the preciselha@ve were
evaluated on the Challenge website, and so instead we reproduce in Thleleetsults from the
website for area under the precision recall curve results for the tessdi In general the precision
of our method is consistent with the best of the other linear SVM methods ttatipated.

Taking the results in Tables 3 and 4 together, it is clear that LibLinear in phatics a very
efficient implementation, even in the cases Alpha to Delta where it is working vatfuthdata set.
Table 4 clearly indicates that our approach consistently finds a high-gsaliit§ion to the separating
hyperplane, measured in terms of classification accuracy, wherehibldnear the quality of the
solution is lower. In many cases, the reduction in prediction accuracy issomyl. The results in
Table 4 for the Epsilon and Zeta data sets in particular show, howevefpttaime problems the
quality of the solution from OOPS can be substantially better.

6. Conclusions

In this paper, we have shown how to develop a hybrid parallel implementatibmear Support
Vector Machine training. The approach allows the entire data set to be aiséconsists of the
following steps:

1. Reformulating the problem to remove the dense Hessian matrix.

2. Using interior point method to solve the optimization problem in a predictable tinte, a
Cholesky decomposition to give good numerical stability of implicit inverses.

3. Exploiting the block structure of the augmented system matrix, to partition taede linear
algebra computations amongst parallel processing nodes efficiently.

4. Within SMP nodes, casting the main computations as matrix-matrix multiplication where

possible, partitioning the matrices to obtain better data locality, and using hididieef
BLAS implementation for a multi-threaded architecture.

The above steps were implemented in OOPS. Our results show that, fores| t@es hybrid imple-
mentation was faster than one using purely MPI, even though the MPI mdram better parallel
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efficiency. We used the hybrid implementation to solve very large problems tihe PASCAL
Challenge on Large-scale Learning, of up to a few million data samples. ®a giteblems the
approach described in this paper was highly competitive, and showeeMirabn data sets of this
size, training times in the order of minutes are possible.
In this paper we have focused on linear kernels. It is possible to exteriddhniques described
above to handle non-linear kernels, by approximating the positive seniidé&nnel matrix< with
a low-rank outer product representation such as partial CholestoritationLLT ~ K (Fine and
Scheinberg, 2002). This approach produces therficsiumns of the matribk (corresponding to
ther largest pivots) and leaves the other columns as zero, giving an ap@tion of the matrix
K of rankr. Extending the work of Fine and Scheinberg, the diag@hal R"*" of the residual
matrix (K — LLT) can be determined at no extra expense and included in a separable famula
for non-linear kernels: 1
: LT T, ol
rvnmlzn 2(W w+2z'Dz)—e'z

st.  w—(YDTz=0

—y'z=0

0<z<te

Chang et al. (2008) describe how to perform partial Cholesky decsitiqmoin a parallel en-
vironment. Data is segmented between the processors. All diagonal elemnentalculated to
determine pivot candidates. Then, for each ofrtbelumns, the largest diagonal element is located.
The corresponding pivot row df and the original features need to be known by all processors,
so this information is broadcast by the owner processor. With this informatibprocessors can
update the section of the new columnlofor which they are responsible, and also update corre-
sponding diagonal elements. Although the algorithm requires the prasdesoe synchronised at
each iteration, little of the data needs to be shared amongst the procéisedrstk of the commu-
nication between processors is limited to a vector of leng#nd a vector of at most length Note
that matrixK is known only implicitly, through the kernel function, and calculating its valuesis
expensive process. The algorithm therefore calculates each kedenetnt required to forrh only
once, giving a complexity 0(nr? + nmr) for the initial Cholesky factorization, an@(nr? +r2)
for each IPM iteration of our algorithm.

The method described in this paper requires all sample data to be loaded intoynemilahis
clearly has an impact on the size of problem that can be tackled. It is fos$sibmprove data
handling and increase the storage capacity somewhat, for instance staridgta compactly and
expanding sections into floating point numbers when needed by the BLéti@s (Durdanovic
et al., 2007), but the scaling is stild(nn?). The direction of our further research is to develop
methods that are able to safely ignore or remove data points from congidesia the algorithm
progresses. In conjunction with exploiting the structure of the optimizatidnigmoas described in
this paper, we believe this will offer further significant improvements to tlezail/training time.
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