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Abstract

Judea Pearl’'s Causal Model is a rich framework that provildep insight into the nature of causal
relations. As yet, however, the Pearl Causal Model (PCMMaaka lesser impact on economics or
econometrics than on other disciplines. This may be duerintpahe fact that the PCM is not as
well suited to analyzing structures that exhibit featuresamtral interest to economists and econo-
metricians: optimization, equilibrium, and learning. Wigeo the settable systems framework as
an extension of the PCM that permits causal discourse irssembodying optimization, equi-
librium, and learning. Because these are common featurpbyaiical, natural, or social systems,
our framework may prove generally useful for machine leggnilmportant features distinguish-
ing the settable system framework from the PCM are its cduetdimensionality and the use of
partitioning and partition-specific response functionsteommodate the behavior of optimizing
and interacting agents and to eliminate the requirement wiique fixed point for the system.
Refinements of the PCM include the settable systems treawhattributes, the causal role of ex-
ogenous variables, and the dual role of variables as candessponses. A series of closely related
machine learning examples and examples from game theorynacHine learning with feedback
demonstrates some limitations of the PCM and motivates igtenduishing features of settable
systems.

Keywords: causal models, game theory, machine learning, recursti@ation, simultaneous
equations

1. Introduction

Judea Pearl’s work on causality, especially as embodied in his landmakkGrgsality (Pearl,
2000), represents a rich framework in which to understand, analgpgegxplain causal relations.
This framework has been adopted and applied in a broad array of dissipkint so far it has had a
lesser impact in economics. This may be due in part to the fact that the Baadlenodel (PCM)
is not as explicit about or well suited to analyzing structures that exhifitifes of central interest
to economists and econometricians: optimization, equilibrium, and learning., ttereffer the
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settable systems framework as an extension of the PCM that permits cagsairsésin systems
embodying these features.

Because optimization, equilibrium, and learning are features not only abetic systems, but
also of physical, natural, or social systems more generally, our extéradedwork may prove use-
ful elsewhere, especially in areas where empirical analysis, whetlenational or experimental,
has a central role to play. In particular, settable systems offer a numlaglvahtages relative to
the PCM for machine learning. To show this, we provide a detailed examindttbe teatures and
limitations of the PCM relevant to machine learning. This examination providemkight into the
PCM and helps to motivate features of the settable systems framework wesprop

Roughly speaking, a settable system is a mathematical framework descnibenyieonment
in which multiple agents interact under uncertainty. In particular, the settgblerss framework
is explicit about the principles underlying how agents make decisions, thibeia (if any) result-
ing from agents’ decisions, and learning from repeated interactionsauBe it is explicit about
agents’ decision making, the settable systems framework extends the PGbVimling a decision-
theoretic foundation for causal analysis (see, e.g., Heckerman awctit€hal995) in the spirit of
influence diagrams (Howard and Matheson, 1984). However, unlikeeimie diagrams, the settable
systems framework preserves the spirit of the PCM and its appealingds&tuiempirical analysis,
including its use of response functions and the causal notions that thgsers

As Koller and Milch (2003, pp. 189-190) note in motivating their study of mujiesat influence
diagrams (MAIDs), “influence diagrams [...] have been investigated stleatirely in a single-
agent setting.” The settable systems framework also permits the study of mujigpieiateractions.
Nevertheless, a number of settable systems features distinguishes theMAl®s, as we discuss
in Section 6.4. Among other things, settable systems permit causal discosystams with multi-
agent interactions.

Some features of settable systems are entirely unavailable in the PCM. Thkegkifl) ac-
commodating an infinite number of agents; and (2) the absence of a unigdefiint requirement.
Other features of settable systems rigorously formalize and refine ordepdlated PCM features,
thereby permitting a more explicit causal discourse. These features én@)dhe notion of at-
tributes, (4) definitions of interventions and direct effects, (5) the dulal of variables as causes
and responses, and (6) the causal role of exogenous variables.

For instance, for a given system, the PCM’'s common treatment of attributiebaakground
variables rules out a causal role for background variables. Spalyifithis rules out structurally
exogenous causes, whether observed or unobserved. This also lenitdettof attributes in char-
acterizing systems of interest. Because the status of a variable in the PQitiier® the analysis
and is entirely up to the researcher, a background variable may be tesatedendogenous vari
able in an alternative system if deemed sensible by the researcher,ytipershitting it to have
a causal role. Nevertheless, the PCM is silent about how to distinguiste&etattributes, back-
ground variables, and endogenous variables. In contrast, in setyatdens one or more governing
principles, such as optimization or equilibrium, provide a formal and expligittealistinguish be-
tween structurally exogenous and endogenous variables, permittingitiphwsal roles not only
for endogenous but also for exogenous variables. Attributes amshigaously defined as constants
(numbers, sets, functions) associated with the system units that defateental aspects of the
decision problem represented by the settable system.

The Rubin treatment effect approach to causal inference (e.g.,raalfped by Holland, 1986)
also relates to settable systems. We leave a careful study of the relatioreebdtvese two ap-
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proaches to other work in order to keep a sharp and manageable @wdiésfpaper. Thus, our
goal here is to compare and contrast our approach with the PCM, whocig, &ith structural equa-
tion systems in econometrics, comprise the frameworks that primarily motivatblsefiestems.
Nevertheless, some brief discussion of the relation of settable systemsitusRrdatment effect
approach is clearly warranted. In our view, the main feature that distingsisettable systems (and
the PCM) from the Rubin model is the explicit representation of the full daigacture. This has
significant implications for the selection of covariates and for providing psmitionditions that
deliver unconfoundedness conditions as consequences in settaf@msyrather than introducing
these as maintained assumptions in the Rubin model. Explicit representatioriudf t@esal struc-
ture also has important implications for the analysis of “simultaneous” systetimaatually causal
relations, which are typically suppressed in the Rubin approach. Finalgllihwance for a count-
able number of system units, the partitioning device of settable systems ttaidessystems’ more
thorough exploitation of attributes also represent useful differentdesRubin’s model.

The plan of this paper is as follows. In Section 2, we give a succinct statevhthe elements
of the PCM and of a generalization due to Halpern (2000) relevant fovatitg and developing
our settable systems extension.

Section 3 contains a series of closely related machine learning examples mweexamine
the features and limitations of the PCM. These in turn help motivate features settable sys-
tems framework. Our examples involve least squares-based machinadesigorithms for simple
artificial neural networks useful for making predictions. We considemieg algorithms with and
without weight clamping and network structures with and without hidden uBi&gause learning
is based on principles of optimization (least squares), our discussidagétadecision problems
generally.

Our examples in Section 3 show that although the PCM applies to key aspetiachine
learning, it also fails to apply to important classes of problems. One sotfittege limitations
is the PCM’s unique fixed point requirement. Although Halpern’s (20@®egalization does not
impose this requirement, it has other limitations. We contrast these with settatdensysvhere
there is no fixed point requirement, but where fixed points may help detesygtem outcomes.
The feature of settable systems delivering this flexibility is partitioning, an gratlthe submodel
and do operator devices of the PCM.

The examples of Section 3 do not involve randomness. We introducemanass in Section 4,
using our machine learning examples to discuss heuristic aspects of simshtable systems. We
compare and contrast these with aspects of Pearl’s probabilistic caudall rAa interesting feature
of stochastic settable systems is that attributes can determine the goverriadilityo measure.
In contrast, attributes are random variables in the PCM. Straightforvaiahs of counterfactuals,
interventions, direct causes, direct effects, and total effects ematgeally from stochastic settable
systems.

Section 5 integrates the features of settable systems motivated by our exéonpieside a
rigorous formal definition of stochastic settable systems.

In Section 6 we use a series of examples from game theory to show howessiiatems ap-
ply to groups of interacting and strategically competitive decision-making agématsme theoretic
structures have broad empirical relevance; they also present intgrepportunities for distributed
and emergent computation of important quantities, such as prices. Thimdeuisking agents may
be consumers, firms, or government entities; they may also be biologitaisysr artificial intel-
ligences, as in automated trading systems. Our demonstrations thus pravidations for causal
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analysis of systems where optimization and equilibrium mechanisms both opedatetimine sys-
tem outcomes. We relate our results to multi-agent influence diagrams (Kalldvidah, 2003) in
Section 6.4.

In Section 7 we close the loop by considering examples from a generalflagchine learning
algorithms with feedback introduced by Kushner and Clark (1978) atathd®d by Chen and White
(1998). These systems contain not only learning methods involving possdilen states, such
as the Kalman filter (Kalman, 1960) and recurrent neural networks @man, 1990; Jordan,
1992; Kuan, Hornik, and White, 1994), but also systems of groupsategically interacting and
learning decision makers, as shown by Chen and White (1998). Theteersyexhibit optimization,
equilibrium, and learning and map directly to settable systems, providing féanddor causal
analysis in such systems.

Section 8 contains a summary and a discussion of research relying onuttaafmns provided
here as well as discussion of directions for future work. An Appendixtains supplementary
material; specifically, we give a formal definition of nonstochastic settalsies)s.

In a recent review of Pearl's book for economists and econometricasberg (2003) ex-
presses a variety of reservations and concerns. Nevertheledseiy42003, p. 685) recommends
that “econometricians should re@@usalityand start contributing to the cross-disciplinary discus-
sion of the subject that Pearl has begun. Hopefully mutual enlightenmktevihe effect of our
reading and talking about the book among ourselves and with the Bayasisal oetwork thinkers.”
By examining aspects of what can and cannot be accommodated withirsPesariework, and by
proposing settable systems as an extension of this framework designetdtoracdate features of
central interest to economists, hamely optimization, equilibrium, and learningffercthis paper
as part of this dialogue.

2. Pearl’'s Causal Model

Pearl’s definition of aausal mode{Pearl, 2000, Def. 7.1.1, p. 203) provides a formal statement of
the elements essential to causal reasoning. According to this definitionsal caodel is a triple
M = (u,v, ), whereu := {uy,...,un} is a collection of “background” variables determined outside
the modely := {vi,...,vn} is a collection of “endogenous” variables determined within the model,
and f := {fq,..., fa} is a collection of “structural” functions that specify how each endogsnou
variable is determined by the other variables of the model, sosthaff(v(;),u), i=1,...,n. Here
V(i) denotes the vector containing every element ekcepty;. The integersnandn are finite. We
refer to the elements afandv as system “units.”

Finally, the definition requires thdtyields a unique fixed point for eaeh so that there exists
a unique collectioy := {gs, ...,gn} such that for each,

Vi = gi(u) = fi(gg(u),u), i=1..n

The unique fixed point requirement is a crucial aspect of the PCM, aerbigres existence of
thepotential response functigiPearl, 2000, Def. 7.1.4). This provides the foundation for discourse
about causal relations between endogenous variables; this diséeursepossible in the PCM
otherwise. A variant of the PCM analyzed by Halpern (2000) doesetptire a fixed point, but if
any exist, there may be multiple collections of functigngelding a fixed point. We refer to such
a model as a Generalized Pearl Causal Model (GPCM). We note thaMi&EE not possess an
analog of the potential response function, due to the lack of a uniquegdoiad
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In presenting the elements of the PCM, we have adapted Pearl’'s origitsgiomosomewhat
to facilitate the discussion to follow, but all essential elements of the definitierpeasent and
complete.

3. Machine Learning, the PCM, and Settable Systems

We now consider how machine learning can be viewed in the context of thé € consider
machine learning examples that fundamentally involve optimization, a featurbrobd range of
physical, natural, and social systet&pecifically, optimization lies at the heart of most decision
problems, as these problems typically involve deciding which of a rangessilge options deliv-
ers the best expected outcome given the available information. When méedninieg is based on
optimization, it represents a prototypical decision problem. As we shotgicemportant aspects
of machine learning map directly to the PCM. This permits us to investigate whicalcques-
tions are meaningful for machine learning within the PCM, and it motivates thédfigaitbns and
refinements that lead to settable systems and the more extensive causakdigpussible there.

3.1 A Least-Squares Learning Example

Our first example considers predicting a random varigblesing a single random predict¥rand
an artificial neural network. In particular, we study the causal carsszes for the optimal network
weights of interventions to certain parameters of the joint distribution of thdoraly generateX
andy.
More specifically, the output of an artificial neural network having a siripear architecture
is given by
f(X;a,B) =a+BX.

We suppose that and X are randomly generated according to a joint distributtpindexed by
a vector of parametergbelonging to the parameter spaceWe thus viewy as a variable whose
values may range ovér. For clarity, we suppose thatis not influenced by our prediction (e.g., a
weather forecast or an economic growth forecast).

We evaluate network performance in terms of expected squared prediotozioss,

L(“aB:V) : :Ey([Y—f(X,CX,B)}Z)
= /[y— f(x o, B)JPdFy(x.y),

whereE,(-) denotes expectation taken with respect to the distribujorOur goal is to obtain the
best possible predictions according to this criterion. Accordingly, wik Iess-minimizing network
weights, which solve the optimization problem

minL(a,B,Y).
G,B

This makes it explicit that the governing principle in this example is optimization.

Under mild conditions, least squares-based machine learning algorithresgemo the optimal
weights as the size of the training data set grows. For clarity, we workdwrwith the optimal
network weights.

1. The great mathematician Leonhard Euler once wrote, “nothing akel falace in the Universe in which some rule
of maximum or minimum does not appear” (as quoted in Marsden armddap2003).
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For our linear network, the first order conditions necessary for imam are

(0/60()L(0(, B?y) = _2Ey([Y —a— BX]) =0,
(0/0B)L(a,B,y) = —2Ey(X[Y—a—pX])=0.

Letting px := Ey(X), vy :=Ey(Y), Ixx == Ey(X?), anduxy := E/(XY), we can conveniently param-
eterizer, in terms of the momentg:= (lx, by, Uxx, Uxy)- (This parameterization need not uniquely
determiner; that is, there may be multiple distributioRgfor a giveny. Nevertheless, thigis the
only aspect of the distribution that matters here.) We can then expressstherfier conditions
equivalently as

IJY_G_B“'X = 07
Hxy —Opx —Buxx = 0.

Now consider how this system fits into Pearl’s causal model. Pearl’s medeires a system
of equations in which the left-hand side variables are structurally deterrhintrek right-hand side
variables. The first order conditions are not in this form, but, provigeg— 1 > 0, they can be
transformed to this form by solving jointly far and3 :

o' = Hy — [Hxx — HE] T (Hxy — BxHy ) bx,
B* = [ixx—K&] (v — Hxhty)- (1)

We write (o*, 3*) to distinguish optimized values from generic valiesp).

This representation demonstrates that the PCM applies directly to this machimeadegarob-
lem. The equations in (1) form a system in which the background (or tstraity exogenous”)
variablesu := (ug,up, Uz, Us) = (Hx, v, Uxx, Mxy) =: Y determine the endogenous variables=
(v1,v2) = (a*,B*). The structural functiongfy, f,) are defined by

fi(u) = up—[us—ud] H(us—ustp)uy,
folu) = [us—ud] L(us—ugup).

We observe that by the conventions of the PCM, the background vesialale not have formal
status as causes, as we further discuss below.

In discussing the PCM, Pearl (2000, p. 203) notes that the backdjnariables are often un-
observable, but this is not a formal requirement of the PCM. In our elamg may view they
variables as either observable or unobservable, depending on ttextcoRor example, suppose
we are given a linear least-squares learning machine as a black boxnowettkat it is a learning
machine, but we don't know of what kind. To attempt to determine what isentsid black box,
we can conduct computer experiments in which weydetvarious known values and observe the
resulting values ofa*, 3*). In this casey is observable.

Alternatively, we may have a least-squares learning machine that we applatgety of data
sets obeying the distributidf, for differing unknown values of. In each casey is unobservable,
but we can generate as much data as we want Fpm

Intermediate cases are also possible, in which some elemgngs@known and others are not.
For example, in the multiple data set example, we could have knowledge ofracsoibofy, for
example, we might knowi .
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3.2 Learning with Clamping

Next, we study the effects on one of the optimal network weights of interventio the other
weight. For this, we consider the optimal network weights that arise whemmtie other of the
network weights is clamped, that is, set to an arbitrary fixed value. Sgalgificonsider

minL(a,B,y) and ngirt(a,B,v)

Clamping is useful in “nested” or multi-stage optimization, as
minL(a,B,y) = min[minL(a,pB,y)] and
a,p p ~a

miL?L(a, By = nz]in [mBin L(a,B,Y)].

See, for example, Sergeyev and Grishagin (2001). Clamping is a cérdtate of a variety of
powerful machine learning algorithms, for example, the restricted Boltzmanohire(e.g., Ackley
et al., 1985; Hinton and Sejnowski, 1986; Hinton et al., 2006; Hinton amakBatdinov, 2006).
Learning in stages is particularly useful in cases involving complex optimizgtias in the EM
algorithm (Dempster, Laird, and Rubin, 1977).

The first order condition necessary for xelamped optimum migL(a,B,y) is

0.

(a/aG)L(G, va) = _ZEV([Y —a-— BX])
Equivalently,uy — a — Bux = 0. Solving for the optimabt weight gives
0" = py — Bx. 2)

We use the tilde notation to distinguish between the optimal weights with clamping ajairtihe
optimal weights obtained above.
Similarly, the first order condition necessary for thielamped optimum migiL(a,B,y) is

(9/0B)L(a1,B.y) = —2E/(X]Y —a — BX]) = 0.
Equivalently,uxy — apx — Buxx = 0. Givenpxx > 0, the optimal weight with clamping is
B = b (xy — apix). 3)
Writing Equations (2) and (3) as a system, we have
G =p —PBux B = K (ixy — ax). 4)

This resembles a structural system in the form of the PCM, except treﬁhandfi* appear on the
left, instead ofr and. This difference is significant; we address this shortly.

Nevertheless, suppose for the moment that we ignore this differencenadify the system
above to conform to the PCM by replaciag andp* with a andf3 :

a=p —PBux B = Hxx(Hxy — Opx). (5)
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We takeu =y as above, but in keeping with our conforming modification, we now takesn) =
(a,B). The structural functions become

fiuve) =up—vaur  fa(u,v1) = uz(ug —vauy).

This system falls into the PCM, with consequent causal status fwovided there is a unique fixed
point for eachu.

Unfortunately, this fixed point requirement fails here. As is apparem fhe equations in (5),
the only necessary restriction aris thatus = pxx > 0. This is the requirement that is not equal
to 0 with probability one. Nevertheless, it is readily verified that even with #sfriction, the fixed
point requirement fails for alh such that

> >
Uz — U] = kxx — b = 0.

This is the condition thaX = px with probability one, andi can take any value, not just zero.
When this condition holds, there is an uncountable infinity of fixed point saistio the equations
in (5). Stated another way, the solution to the system is set-valued in this ctenwras

Because of the lack of a fixed point, the PCM does not apply and theredninot provide causal
meaning for such a system. The inability of the PCM to apply to this simple exampleatfimea
learning with clamping is an unfortunate limitation. Because Halpern’s (2000}Ns does not
require a unique fixed point, it does apply here. Nevertheless, the fatle potential response
function in the GPCM prevents the desired causal discourse.

3.3 Settable Systems and Learning with Clamping

We now consider how these issues can be addressed. Our intent istopEss this example while
preserving the spirit of the PCM. This motivates and helps illustrate vareaiaries of our settable
systems framework.

3.3.1 STTABLE VARIABLES

We begin by taking seriously the difference in roles betwgef) and(&*,f&*) appearing in the
equations in (4). In the simplest sense, the difference is(tifa*) and(a,B) appear on differ-

ent sides of the equal sign&x, ) appears on the right and*, 3*) on the left. In the PCM, this
difference is fundamentally significant, in that causal relations are asymmeth structurally de-

termined (endogenous) variables on the left and all other variables oiglieln settable systems,
we formalize these dual roles by definiggttable variableas mappingst with a dual aspect:

X1(0) : =a*, Xxi1(1):=aq,
X%(0) 1 =B, (1) =B (6)

We call the 0- 1 argument of the settable variablggshe “role indicator.” When this is 0, the value
of the variable is that determined by its structural equation. We call thesesvalsponses In
contrast, when the role indicator is 1, the value is not determined by its s&letyuration, but is
instead set to one of its admissible values. We call these vakiiags We require that a setting
hasmore than onedmissible value. That is, settings are variable.

Formally distinguishing between responses and settings makes explicit theldsaplayed by
variables in a causal system, entirely in the spirit of the PCM. Settable variageesent a formal
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implementation, alternative to that of the “do operator” in the PCM, of the “wipingj operation
first proposed by Strotz and Wold (1960) and later used by Fishef{197

Once we make explicit the dual roles of the system variables, severalitsdmecome appar-
ent. First, the equal sign no longer has to serve in an asymmetric mannermakés possible
implicit representations of causal relations in settable systems that are eitharssiitlg in the
PCM, because the required closed-form expressions do not exib@atosire possible in the PCM
only under restrictions permitting application of the implicit function theorem. Suglicit repre-
sentations are often natural for responses satisfying first ordeitmo s arising from optimization.
To illustrate, consider how explicit representation of the dual roles desywvariables modifies
the learning with clamping system. The first order condition necessarydttamped optimum
ming L(a,B,y) is now

By —a* —Bux = 0.

a*
That for thea-clamped optimum migiL(a, B,y) is now

bxy — Oikx — B*Hxx = O.
The structural system thus has the implicit representation

Hxy —Opx —B*pxx = O. (8)

3.3.2 ETTABLE SYSTEMS AND THE ROLE OF FIXED POINTS

A second benefit of making explicit the dual roles of the system variablésatsunique fixed
points do not have a crucial role to play in settable systems. This enableslispémse with the
unique fixed point requirement prohibiting the PCM from encompassintpacming with clamping
example. This is not to say that fixed points have no role to play. Insteddpthas removed from
the structural representation of the system and, to the extent relevamgtep according to the
governing principle, for example, optimization or equilibrium. We discuss thitbéu below.

To illustrate, consider the learning with clamping system above where theralaal of the
system variables are made explicit. Now there is no necessity of findingdagfoiet for Equations
(7) and (8). Each equation stands on its own, representing its assadeigued optimum.

The simplest case is that far. For everyuy, by, andp, there is a unique solution,

0" = py —Bux = T1(B,Y)-

We callry theresponse functiofor X;.
Next considef*. Provideduyxx > 0, Equation (8) determines a unique value [Bér

B = ki (Hxy — Ollix).

But what happens wheau, x = 0? This further impliesix = pxy = 0. Consequentlyanyvalue will
do forB* as any value o* delivers the best possible prediction. To arrive at a unique valtﬂe*for
we can apply criteria supplemental to predictive optimality. For example, we h@gse a value
that has the simplest representation. This reduces the viable ch0|ﬁé$t{)0 1}, as either of
these requires only one bit to represent. Finally, by seleﬁfn@ {0}, so that we seﬁ* =0 when
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bxx = 0, we achieve a predictiorf,(X;a, fi*) = qa, that requires the fewest operations to compute.
Formally, this gives .

B* = LpocopHxx (Mxy — apix) =: F2(a,y),
where %, -0 is the indicator function taking the value one wheix > 0, and zero otherwise. We
call /> the response function for,.

This example demonstrates that even when structural equations confdortimg PCM (i.e.,
Equation 5) do not have a fixed point, we can find unique respons¢idoador each settable
variable of the analogous settable system. We do this by applying the gayg@mirciple for the
system (e.g., optimization), supplemented when necessary by furthepaippe principles (e.qg.,
parsimony of memory and computation).

Applying the settable variable representation in the equations in (6), we @btatiable vari-
ables representation for our learning with clamping example:

X1(0) =1(X2(1),y),  X2(0) =2(Xa(1),y).

So far, the variablg has not been given status as a settable variable. Although it does ot hav
a dual aspect, it can be set to any of several admissible values (tHosemit does have the aspect
of a setting. Accordingly, we can defimg(1) :=y. To ensure thaky is a well-defined settable
variable, we must also specify a value f&§(0). By convention, we simply pui((0) := Xp(1).
We call Xy fundamentakettable variables. As these are determined outside the system, they are
structurally exogenous.

We can now give an explicit settable system representation for ournpresample, that is, a
representation solely in terms of settable variables:

X1(0) =T1(X2(1),X%(1))  X2(0) = 2(Xa1(1),Xo(1)).

3.4 Causes and Effects: Settable Systems and the PCM

This section introduces causal notions appropriate to settable systems.

3.4.1 DRECT CAUSALITY

We begin by considering our learning with clamping example, where

& =f1(By), B =raay)

In particular, consider the equati(ﬁ}ﬁ = f(a,y). In settable systems, settings are variable, that is,
they can take any of a range of admissible values. We view this as sufficientiow them with
potential causal status. Thus, we @atndy potential causesf B*.

We say that a given element @fi,y) does not directly causg* if T(a,y) defines a function
constant in the given element for all admissible values of the other eleme(dsyf Otherwise,
that element is airect causeof 3*. According to this definitionjy does not directly causg”,
whereasux, Uxx, Uxy, anda are direct causes @ .

3.4.2 INTERVENTIONS AND DIRECT EFFECTS INSETTABLE SYSTEMS

In settable systems, antervention to a settable variablis a pair of distinct admissible setting
values. In our clamped learning example, ¢at and a, be different admissible values far.
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Thena; — az := (03,02) is an intervention tax, or, more formally, taX;. Similarly, (a1,y1) —
(az,y2) := ((a1,y1), (02,¥2)) is an intervention tda,y) (i.e., to (X1, Xp)). Thedirect effecton a
given settable variable of a specified intervention is the response difierarising from the in-
tervention. In our clamped learning example, the direct effeckpof the interventior; — a»
is

Afp(ag,az;y) = Tfa(d2,y) —f2(ag,y)
- 1{“xx>0}“)_()l((al—a2)ux.

We emphasize that interventions are always well defined, as settingssagbehave more than
one admissible value. Indeed, a key reason that we require settings toideler is precisely to
ensure that interventions to settable variables are always meaningful.

PCM notions related to the settable systems notion of intervention are the duarpserd the
“effect of action” defined in definition 7.1.3 of Pearl (2000); thesec#pea submodel associated
with a given realizatiox for a given subset of the endogenous varialles

3.4.3 EXOGENOUS ANDENDOGENOUSCAUSES

The notion of causality just defined contrasts in an interesting way with thatity given in the
PCM. We have just seen thatan serve in the settable system as a direct caué @ébove, we
saw thaty corresponds to background variables the PCM. In the PCM, the formal concept of
submodehnd thedo operatornecessary to define causal relations are meaningful only for endoge-
nous variables. None of these concepts are definedupthat is,u is not subject to counterfactual
variation in the PCM. Consequently, does not have formal causal status in the PCM as defined in
Pearl (2000, Chap. 7).

In the PCM,u thus has four explicit distinguishing features: it(i$ a vector of variables that
(ii) are determined outside the systeiii,) determine the endogenous variables, &g are not
subject to counterfactual variation. An optional but common featuteisif (v) it is unobservable.

As a result, background variables cannot act as causes in the PCMtioufar, for a given system,
the PCM formally rules out structurally exogenous unobserved causes.

In settable systems, we drop requirem@nj for structurally exogenous variables. Thus, we
allow for observed structurally exogenous causes such as a treatfietdrest in a controlled
experiment, which is typically directly set (and observed) by the resear@e also allow for un-
observable structurally exogenous causes, ensuring a causalivekribat is not relative to the
capabilities of the observer, as is appropriate to the macroscopic, reamugu mechanical systems
that are the strict focus of our attention here. Unobserved commonscaresearticularly relevant
for the analysis of confounding, that is, the existence of hidden ceelssibns that may prevent the
identification of causal effects of interest (see Pearl, 2000, Cha3.8)3Also, unobserved struc-
turally exogenous causes are central to errors-in-variables modele arstructurally exogenous
cause of interest cannot be observed. Instead, one observeisamof this cause contaminated by
measurement error. These models are the subject of a vast literaturtisiticstand econometrics
(see, e.g., van Huffel and Lemmerling, 2002, and the referenceg.there

Dropping (iv) in settable systems creates no difficulties in defining causal relations, at dire
causality is a property solely of the response function on its domain. Mergby requiring that
settings have more than one admissible value, we ensure that these donddis ableast two

2. We are grateful to two of the referees for emphasizing this.
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points, making possible the interventions supporting definitions of effecettiabde systems. We
will return to this point shortly.

In the PCM, endogenous variables are usually observable, althoughribiformally required.
Structurally endogenous settable variabtesiay also be observable or not.

Fortunately, the PCM treats a variable as a background variable or agemulis variable rel-
ative to the analysis. If the effects of a variable are of interest, it cawineected to an endogenous
variable in an alternative PCM. Nevertheless, the PCM does not providargce on whether to
treat a variable as a background variable or an endogenous oneleEigfon is entirely left to the
researcher’s discretion. For example, the “disturbances” in the Memkd®CM “represent back-
ground variables that the investigator chooses not to include in the arigBsés|, 2000, p. 68), but
the PCM does not specify how an investigator chooses to include varialtless analysis. Nor is it
clear that background variables are necessary to the analysis in tipdaes. For example, Dawid
(2002, p. 183) states that “when the additional variables are pure mdtbaifiations, introduced
merely so as to reproduce the desired probabilistic structure of the donr&iblea, there seems
absolutely no good reason to include them in the model.”

Settable systems permit but do not require background variables. Fuatitkof particular
significance, in a settable system a governing principle such as optimizatwitdes a formal
way to distinguish between fundamental settable variables (exogenaaisieay and other settable
variables (endogenous variables). In particular, the decision protdgermines if a variable is
exogenous or endogenous. For instance, in our clamped learning lexahgoptimal network
weightsd* andp* minimize the loss functioh(a, 3,y). On the other hand, although the elements
of y are variables, our learning example does not specify a decision prabétrdetermines how
these are generated. This distinction endows the variaiilesdp* with the status of endogenous
variables and the elementsyolvith the status of structurally exogenous variables.

Thus, carefully and explicitly specifying the decision problems and gawgrprinciples in
settable systems provides a systematic way to distinguish between exoged@msiagenous vari-
ables. This formalizes and extends the distinctions between the PCM endsgamd exogenous
variables.

The PCM has been fruitfully applied in the sciences (e.qg., Shipley, 20@)etheless, because
the PCM is agnostic concerning the status of variables, two researchgmsnmpoy two possibly
inconsistent PCMs to study the same scientific phenomena. To resolve soosistencies, one
may use the fact that under suitable assumptions, causal relations imply afhpidgstable condi-
tional independence relations among system variables (Pearl, 2008k@hd White, 2008b). This
yields procedures for falsifying causal structures that are inconsiafiéh data. Such procedures
at best identify a class of observationally equivalent causal modelgsetution of inconsistencies
by this means is not guaranteed. On the other hand, specifying the dgmistdems underlying
the phenomena of interest may, among other things, offer guidance ascto @ifleither) model is
more suitable to the analysis. The settable systems framework provides tuafiom necessary
for this in the context of optimally interacting agents under uncertainty. We agipithat agents
and their decision problems may be defined in such a way as to apply eveystogblor biological
systems not usually thought of in these terms; any system involving optimizigg lgast energy,
maximum entropy) and/or equilibrium falls into this framework.
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3.5 Unclamped Learning and Settable Systems

Now consider how our original unclamped learning example is represanied settable systems.
We begin by recognizing that the solution to a given optimization problem nedoenunique, but
is in general a set. When the solution depends on other variables, the sadutiogeneral a cor-
respondence, not a function (see, e.g., Berge, 1963). Thus, ieetiag solution to the unclamped
learning problem as

(A*(y),B*(y)) :=arg %ﬂL(a, B,Y),

whereA*(y) andB*(y) define correspondences.
Due to the linear network architecture, we can explicitly represéqg) andB*(y) as

AY(Y) = {0 [ixx — BRI (0 — by ) + (Kxy — Kby )bx = O},
B(y) = {B:[Mxx—H&IB— (Hxy — Hxky) = 0}.
Whenuxx — 1 > 0, A*(y) andB*(y) each have a unique element, namely

O = py— [xx — K& (kxy — Bx By ) Ex,
B = [uxx— k&) H(ixy — Hxky).

Whenuxx — 14 = 0, we can select a unique value from eachAd{y) andB*(y). Choosing the
simplest representation and the simplest computation of the prediction gieldgy andf3* = 0.
We thus represent optimal weights using response functicaisdr, as

*

at = ra(Y) = hy — L ooy o — BRI (kxy — Bxby )b,
B = ra(y) =120 Mxx — L&) (xy — Ex by )-

These response functions do represent fixed points of the equatiBjs iFhis illustrates the role
that fixed points can play in determining the response functions. Obsenweyer, that we do not
require auniquefixed point.

Applying the settable system definition of direct causality, we have thatem gilement of,
sayy;, does not directly cause* (resp. *) if r1(y) (resp.rz(y)) defines a function constant in
for all admissible values of the other elementy.oDtherwise, that element is a direct caus@&df
(resp.B*). Here, each element gfdirectly causes bott* andf3*.

In this example, we have the settable system representation

X1(0) =ri(X(1),  X2(0) =ra(Xo(1)),

whereXp(0) := Xo(1) :=vy,X1(1) ;== a, X2(1) := B as before, but now; (0) := a* andX2(0) := B*.

Finally, we note that the system outputs of the clamped and unclamped systemstaally
consistentin the sense that if we plug the responses of the unclamped system intsploase
functions(f1,f,) of the clamped system as settings, we obtain clamped responses that réfpticate
responses of the unclamped system. That is, puftff@) = X;'(0) and X3 (1) = X;'(0), where we
now employ the superscriptsandu to clearly distinguish clamped and unclamped system settable
variables, we have

X(0) =1(X3(0), Xo(1),  X5(0) = F2(X7'(0), Xo(1)),

as some simple algebra will verify. This mutual consistency is ensured byotlergng principle
of optimization.
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3.6 Partitioning in Settable Systems

In the PCM, the role of submodels (Pearl, 2000, Def. 7.1.2) is to specifgtwéndogenous vari-
ables are subject to manipulation; the do operator specifies which valuesthipulated variables
take. In settable systems, submodels and the do operator are absemth®less, settable systems
do have an analog of submodels, but instead of specifying which vasiatdeo be manipulated, a
settable system specifies which system variables are free to respondothéh& In our learning
examples, settable systems specify which variables are unclamped. Irsbakéimple, both vari-
ables are unclamped. In the second example, the variables are comgiderat a time, and each
variable is unclamped in turn.

3.6.1 RARTITIONING

A formal mathematical implementation of these specifications is achievedrtitioning. Partition-

ing operates on an index seivhose elements are in one-to-one correspondence to the structurally
endogenous (non-fundamental) settable variables. In our learnimgpées, there are two such
variables, so the index set can be chosen té be{1,2}.

Let I be any set with a countable number of elements. A partifids a collection of subsets
Mq1,M5,... of I that are mutually exclusivd¥; N My = @,a # b) and exhaustivel, My, = I). Ex-
amples are thelementary partition®:= {M%,...,M5}, whereNg := {1},N5 := {2}, ..., and the
global partition9 := {N9}, wheren? := 1.

When I = {1,2}, these are the only two possible partitiof$? = {M{,M5}, whereM$ = {1}
andn$ = {2}; andn9 = {N9}, wheren§ = {1,2}.

We interpret the partition elements as specifying which of the system vareiglgsintly free to
respond to the remaining variables of the system, according to the goveritinigple of the system
(e.g., optimization). In our machine learning examples With {1, 2}, the elemenf1§ = {1} of the
elementary partitio® specifies that variable 1 (i.€;,") is free to respond to all other variables of
the system (i.e(B,y)), wheread1$ = {2} specifies that variable 2 (i.€8}) is free to respond to all
other variables of the system (i.€q,y)). The elemenil? = {1,2} of the global partition specifies
that variables 1 and 2 (i.e(a*, %)) are jointly free to respond to all other variables of the system
(i.e.,y).

In settable systems, response functions are partition specific.l'\¥jtve have

0" =Fi(B,y), B =ra(a,y);

with M9, we have
o =r1(y), B =ra(y)

for the response functior{§;, ) and(r1,r2) defined above. This implies that the settable variables
and the resulting causal relations gaatition specific

We note that the distinction between the response functitng,;) and(rq,r2) is not due to
additional constraints imposed on the optimization problem per se. Insteatistimetion follows
from whether learning occurs with or without clamping and hence on wheth®t alpha and beta
respond jointly. Thus, different optimization problems yield different egponding partitions and
response functions.

These partitioning concepts and principles extend to systems with any nuinstenaurally
endogenous variables. We discuss further examples below.
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Figure 1: PCM Directed Acyclic Graphs

3.6.2 FETTABLE SYSTEM CAUSAL GRAPHS

Given the applicability of the PCM to the unclamped learning example, this systeartassociated
PCM directed acyclic graph (DAG). The particular representation of laiglgdepends on whether
or not the background variables are observable or not. Figure &féjtd the case of observahyle
and Figure 1(b) that of unobservalylelhe solid arrows in Figure 1(a) indicate that the background
variables are observable, whereas the dashed arrows in Figurendiggte that the background
variables are not observable.

In interpreting these graphs, note that the arrows, whether solid oedastpresent the func-
tional relationships present. They do not, however, representlaaleszons, as in the PCM these
are defined to hold only between endogenous variables, and no dimbwse endogenous variables
here. Pearl (2000) often uses the term “influence” to refer to situaitiwnssing functional depen-
dence, but not causal dependence. In this sense, the arrowsarDh€s represent “influences.”

In contrast, due to the lack of a fixed point, the PCM does not apply to thatgawith clamping
example. Necessarily, the PCM cannot supply a causal graph.

In settable systems, partitions play a key role in constructing causal disgihepresent direct
causality relations. To see how, consider our clamped learning examptg uirié.e., Xo 2(1)) does
not directly caus@* (X2(0)), whereasix, kxx, Kxy, anda (Xo,1(1), Xo.3(1), Xo,4(1), andX1(1)) are
direct causes o8* (X2(0)). We can succinctly and unambiguously state these causal relations in
terms of settable variables by saying thgb does not directly caus&, whereasXy 1, Xo 3, X0.4,
and.Xj are direct causes of,.

For each blocKy, of a partition = {IMp}, we construct a settable system causal graph by
letting nodes correspond to settable variables. If one settable variabtfydoauses another, we
draw an arrow from the node representing the cause to that represémimesponding settable
variable. Note that in contrast to the DAGs for the PCM, we represeniratitccausal links as solid
arrows, letting dashed nodes represent unobservable settabldegri@be motivation for this is
that unobservability is a property of the settable variable (the node), atitks between nodes.

Figures 2(a) and 2(b) depict the causal graphs for our clampedrngaxample. There are two
causal graphs, as the clamped learning example expresses the elepenidon® = {{1},{2}}.
For purposes of illustration, we depict the case in whithunobserved.
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(a)

Figure 2: Block-specific Settable System Causal Graphs for the Elemétaetition
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Figure 3: Settable System Superimposed Causal Graph for the Elemeatttip®

For convenience, we may superimpose settable system causal grappstinposing Fig-
ures 2(a) and 2(b) gives Figure 3. This is a cyclic graph. Neverthelbs cyclicality does not
represent true simultaneity; it is instead an artifact of the superimposition.

The settable system causal graph for the global partiiie- {{1,2}} representing unclamped
learning is depicted in Figure 4. Observe that this reproduces the doityeaf Figure 1. Note
that in Figure 4, the nodes represent settable variables and the agpresent direct causes. In
Figure 1, the nodes represent background or endogenous varatiethe arrows represent non-
causal “influences.”

We emphasize that the causal graphs associated with settable systemisrareessary to the
analysis. Rather, they are sometimes helpful in succinctly representingtashygng causal rela-
tions.

,"\\ ,"\\ ,"\\ ,"\\
' ' ' '

VA Y A v Az A !
. ’ ’ / %
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Figure 4: Settable System Causal Graph for the Global Partition
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3.7 Further Examples Motivating Settable System Features

We now introduce two further features of settable systems, countable dimamsi@ttributes, using
examples involving machine learning algorithms and networks with hidden unitis pfovides
further interesting contrasts between settable systems and the PCM.

3.7.1 A MACHINE LEARNING ALGORITHM AND COUNTABLE DIMENSIONALITY

So far, we have restricted attention to the optimal network weights for linedrdgaares machine
learning. Now consider the machine learning algorithm itself. For this, let

b0 = fiy,0 = Pixxo = Pxyo = Go = Bo =0,

and perform the recursion

Ien = fxno1+ nil(xn — Pn-1)
Pyn = ﬂyn—l*‘ngl(Yn“ﬂyn—l)
Poxn = Pxn-1+ nfl(Xﬁ — Phoxn—1)
Pyn = fxyn-1+ nfl(XnYn — Pxyn-1) 9)
Bn = 1{ﬂxxnfﬂ§‘n>0} [ﬂxx,n - ﬁ)z(,n]il(ﬂxyn - ﬁx,nﬂy,n)

On = ﬂy,n_l’jnﬁx,n, n=12...

Variables determined outside the system are the observed data sequea¢gs xz, ...) andy :=
(Y1,Y2, ...). Variables determined within the system ﬁfe::(l:lx,Oan,l’g By = (Pyos Py -n), Pxxi=
(Poox0s Poox 1 ---) s Pixy i= (QXWJ’ Py 1, ---), 0 = (G, 04, ...), andP := (Bo, B1, ...). Under mild conditions,
&, converges ta* andf, converges t@*.

We now ask whether this system falls into the PCM. The answer is no, etteulBCM requires
the dimensions of the background and endogenous variables to be fiereethdse dimensions are
countably infinite. The PCM does not apply. (As a referee notes, hmwavcountably infinite
version of the PCM has recently been discussed by Eichler and Did€l@z).2

In contrast, settable systems encompass this learning system by permittingjgtbke s@riables
to be of countably infinite dimension. The definitions of direct causality andakien of partition-
ing operate identically in either the finite or the countably infinite case. Settatiensy generally
accommodate any recursive learning algorithm involving data sequehadsitoary length.

3.7.2 LEARNING WITH A HIDDEN UNIT NETWORK AND ATTRIBUTES

To motivate the next feature of settable systems, we return to considerieffeobeon an optimal
network weight of interventions to distributional parametgr&nd another network weight. Now,
however, we modify the prediction function to be that defined by

fOXa,B) = o @(BX).

This is a single hidden layer feedforward network with a single hidden awiinlg the activation
function @. For concreteness, lgtbe the standard normal density. This activation function often
appears in radial basis function networks. For clarity, we considerasingle inputX, a single
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input-to-hidden weighB, and a single hidden-to-output weight This elementary structure suffices
to make our key points and keeps our notation simple.
Now the expected squared prediction error is

L(a, B, @) := Ey([Y — o (BX)]?).

Here,yreverts to representing the general parameter inddxinthe choicey:= (px, by, Uxx; Hxy)
considered above is no longer appropriate, due to the nonlinearity in mebutput induced by
@. Further, note the presence of the hidden unit activation fungiionthe argument list oE. We
make this explicit, a@ certainly helps determine prediction performance, and it has a key role to
play in our subsequent discussion.

Now consider the clamped optimization problems corresponding to the elempattitipn®.
This yields solutions

A*(B,y:@) : = argminL(a.B.v.¢).
[s{SN

B*(oy:@) : =argminl(a,B,y;¢).
BeB

We ensure the existence of compact-valued correspondéﬁ(:ﬁs/; [0) andﬁj(a,y; @) by (among
other things) takingd andB to be compact subsets &. Elementsi* of A*(B,y,@) andp* of
B*(a,y; @) satisfy the necessary first order conditions

Ey([o(BX)]?)a" - E(@(BX)Y) = 0,
Ey(DO(B"X)Y) — aE,[De(B"X)e(B"X)] = O,

whereD@denotes the first derivative of tigfunction. We caution that although these relations nec-
essarily hold for elements &*(B,w [0) and@*(a,y; @), not all (a, B) values jointly satisfying these
implicit equations are members éif*(B,y; o) and@*(q,y; @). Some solutions to these equations
may be local minima, inflection points, or (local) maxima.

The PCM does not apply here, due (among other things) to the abseaemigfue fixed point.
Nevertheless, settable systems do apply, using a principled selection ohtﬂe‘mm&*(ﬁ,wp)
and@*(a,y; @), respectively. We write these selections

" =hB,y9), B =aye).

The feature distinguishing this example from our earlier examples is the ramgean the re-
sponse functions of the hidden unit activation functipnlhe key feature ofp is that it takes one
and only one value@ is the standard normal density. It is therefore not a variable. Constgue
it cannot be a setting, and it is distinct from any of the other objects we r@wiously examined.
We define arattributeto be any object specified a priori that helps determine responses hait is n
variable. We associate attributes with the system units. Any attribute of thersygsédf is asystem
attribute we formally associate system attributes to each system unit. éese, system attribute.
Because a unit’'s associated attributes are constant, they are not solgecnhterfactual variation.
Nevertheless, attributes may differ across units.

One generally useful attribute is the attributeiagdntity. This is a label assigned to each unit
of a given system that can take only the assigned value, and whoseas/ahared by no other unit
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of the system. The identity attribute is required by settable systems, as the iddrditydee those
explicitly used in the partitioning operation. The identity attribute is also a feafutred®CM, as
background and endogenous variables are distinct types of objadt®lements of each distinct
type have identifying subscripts.

When attributes beyond identity are present, they need not be distinssagrits. For example,
the quantityn appearing in several of the response functions in the learning algoritEguation
(9) is an attribute shared by those units.

We emphasize that attributes are relative to the particular structural systésgmehow ab-
solute. Some objects may be taken as attributes solely for conveniencexargple, one might
consider several different possible activation functions and attempdiio ke best one for a given
problem. In such systems, the hidden unit activation is no longer an attribuie én endogenous
variable. In other cases, it may be more convenient to treat the activatotidn as hard-wired,
in which case the activation function is an attribute. Indeed, any hardhaspect of the system is
properly an attribute. Convenience may even dictate treating as attributessabjat are in prin-
ciple variable, but whose degree of variation is small relative to that of @ysem variables of
interest.

Other system aspects are more inherently attributes. Because of theanfenthl role and
their invariance, such attributes are easily taken for granted and thdeaked. Our least-squares
learning example is a case in point. Specifically, the loss function itself is pyogewed as an
attribute.

A useful way to appreciate this is to consider the loss functions

Lp(@,B) = [ ly—FOxB)PdR(xy), p>0.

In our examples so far, we always tage= 2, soL = L. Different choices are possible, yielding
different loss functions. A leading example is the choice 1. Whereasp = 2 yields forecasts
that approximate the conditional meanYofyiven X, p = 1 yields forecasts that approximate the
conditional median of givenX.

Becaus@is a constant specified a priori and becapbelps determine the optimal responges,
is an attribute. When the forecaster’s goal is explicitly to provide a fotdxzes®d on the conditional
mean, it makes little sense to consider valuep afther than 2because no other value gfis
guaranteed to generally deliver an approximation to the conditional exjpectaPut somewhat
differently, it may not make much sense to attempt to endogenaa choose an “optimal” value
of p from some set of admissible values because the result of choosingdiffeiues forp is to
modify the very goal of the learning exercise. Nor can one escapedtwibutes by endogenizing
p; as long as there is some optimality criterion at work, this criterion is propersttaibute of the
system.

Another important example of inherent attributes is provided by the S$etisat specify the
admissible values taken by the settilj$1) and responseg;(0). These are properly specified
a priori; they take one and only one value for each undnd they play a fundamental role in
determining system responses.

Because attributes in settable systems are fixed a priori for a given unitiake values in
a (non-empty) degenerate set. Accordingly, attributes cannot be setiimgighus can never be
potential causes, much less direct causes. This formal distinction beaiteéeates and potential
causes is unambiguous in settable systems.
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3.7.3 ATRIBUTES IN THEPCM

In contrast, a somewhat ambiguous situation prevails in the PCM. Viewing &tsilais a subset
of those objects having no causal status, Pearl (2000, p. 98) statestttiaites can be treated
as elements ofi, the background variablés This overlooks the key property we wish to assign
to attributes: for a given unit, they are fixed, not variable. Such objeats ¢hnnot belong ta

if one takes the word “variable” at face value. In our view, assigningbatis tou misses the
opportunity to make an important distinction between invariant aspects of shensyinits on the
one hand and counterfactual variation admissible for the system unitsvatuthe other. Among
other things, assigning attributes adnterferes with assigning natural causal roles to structurally
exogenous variables.

Further, just as for endogenous and exogenous variables, the BEhdt provide guidance
about how to select attributes. In contrast, settable systems clearly idettiiyites as invariant
features of the system units that embody fundamental aspects of the dgxisibem represented
by the settable system.

Below, we will further distinguish attributes from variables when we disstshastic settable
systems.

3.8 A Comparative Review of PCM and Settable System Features

At this point, it is helpful to take stock of the features of settable systems thatave so far
introduced and contrast these with corresponding features of the PCM.

(1) Settable systems explicitly represent the dual roles of the variablésiofusal systems us-
ing settable variables. These dual roles are present but implicit in the BEtthble variables can
be responses, or they can be set to given values (settings). Thategpliiesentation of these dual
roles in settable systems makes possible implicitly defined structural relatiomsaiaiot be repre-
sentable in the PCM. Further, these implicit structural relations may involvesmmndences rather
than functions. Principled selections from these correspondencesuyiigjde response functions
in settable systems.

(2) In settable systems, all variables of the system, structurally exogeneunslogenous, have
causal status, in that they can be potential causes or direct causgerfFoo assumptions are
made as to the observability of system variables: structurally exogendablearmay be either
observable or unobservable; the same is true for structurally endegj@adables. In particular,
this permits settable systems to admit unobserved causes and results inaatisak that are not
relative to an observer. In contrast, the PCM admits causal status orgyndmgenous variables.
For the PCM, structurally exogenous unobserved causes are ruledilbiough the PCM does
permit treating background variables as endogenous variables in #lteragstems, it is silent
as to how to distinguish between exogenous and endogenous variabiethe ©ther hand, the
governing principles in settable systems provide a formal and explicit meardistinguishing
between endogenous and exogenous variables.

(3) Settable systems admit straightforward definitions of interventions aeck @iffects. These
notions, while present, are less direct in the formal PCM.

(4) In settable systems, partitioning permits specification of different mutuaiigistent ver-
sions of a given structural system in which different groups of vég&gare jointly free to respond to
the other variables of the system. In particular, system variables camiesjiher singly or jointly

3. This possibility is also suggested by two referees.
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to the other variables of the system, as illustrated by our examples of leartingrwithout clamp-
ing. Similar exercises are possible in the PCM using submodels and the daarpbut the PCM
requirement of a unique fixed point limits its applicability. Specifically, we sawl#&ning with
clamping falls outside the PCM. Halpern’s (2000) GPCM does apply to systkras, but causal
discourse is problematic, due to the absence of the potential resporseriuin settable systems,
fixed points are not required, and causal notions obtain without reguin@ potential response
function. This permits settable systems to provide causal meaning in our esashjgarning with
or without clamping.

(5) Settable systems can have a countable infinity of units, whereas the &ftivies a finite
number of units.

(6) In settable systems, attributes are a priori constants associated withitththat help deter-
mine responses. In the PCM, attributes are not necessarily linked to teensysits. Further, they
are treated not as constants, but as background variables, resuftivtgimtial ambiguity. The PCM
is silent as to how to distinguish between attributes and variables.

Some features of settable systems, such as relaxing the assumption offixaidy®ints (point
4) and accommodating an infinity of agents (point 5), are entirely unavailakitee PCM. The
remaining settable systems features above rigorously formalize and extesifthe related PCM
features and thus permit more explicit causal inference.

4. Stochastic Settable Systems: Heuristics

Inthe PCM, randomness does not formally appear until definition 7oto®4ébilistic causal modgl
Nevertheless, Pearl’'s (2000) definitions 7.1.1 through 7 datgal modelsubmodeleffect of ac-
tion, potential responsendcounterfactugl explicitly refer to “realizations’paor x of endogenous
variablesPAor X. These references make sense onBAfandX are interpreted as random vectors.
Althoughu is not explicitly called a realization, the language of definition 7.1.1 furtheyesitg that
uis viewed as a realization of random background variakleg;his becomes explicit in definition
7.1.6, where PCM background variabléecome governed by a probability measBrRandom-
ness of endogenous variables is then induced by their dependekkelorthis sense, definitions
7.1.1 through 7.1.5 do not have fully defined content until definition 7.1.6lwves the meaning
of U,V,PA andX. Nevertheless, definitions 7.1.1 through 7.1.5 are perfectly meaningful, simply
viewing the referenced variables as real numbers.

The settable systems discussed so far are entirely non-stochastic: thgssettthresponses
defined in Section 3 are real numbers, not random variables. Nelesghge can connect causal
and stochastic structures in settable systems by viewing settings and esspgn®alizations of
random variables, in much the same spirit as the PCM. In this section we sisome specifics of
this connection.

4.1 Introducing Randomness into Settable Systems

First, instead of only the background variablegepresenting realizations of random variables, in
settable systemall settings represent realizations of random variables governed byderlymn

ing probability measure. For example, in our hidden unit clamped learningmga(a, 3,y) are
realizations of random variabl€#, B,C) governed by a probability measuReon an underlying
measurable spad€, ¥ ). The randomness of the responses is induced by their dependenee on th
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settings. Thus, in the hidden unit clamped learning example, we have raegponses

A*=F1(B,C;q), B*=7(AC;9).

Second, the underlying probability measure for settable systems canddepehe attribute
vector, call ita, of the system. Whereas in the PCM attributes are “lumped together” with other
background variables, and may therefore be random, this is not permitsedtaile systems. In
settable systems, attributes are specified a priori and take one and onigloe@. Because of its
a priori status, this value is non-random.

It follows that the probability measure governing the settable system cadéeeith bya. This is
not an empty possibility; it has clear practical value. One context in whiclpthigical value arises
is when attention focuses only on the units of some subsystem of a largemsyBor example,
consider the least squares machine learning algorithm of the equationsangd3ocus attention on
the subsystem
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Note that we have modified the notation to reflect the fact that the setdpgdy, Myx, and Myy
are now random variables. These generate realizagign$lyn, focn, andixy,n under a probability
measureP,, which is that induced by the probability measure governing the randonafental
settings{ (X1, Y1),..., (Xn,Yn) }. Note the explicit dependence of the probability meadren the
attributen. The fact that this probability measure can depend on attributes undesgsbeir nature
as a priori constants in settable systems.

4.2 Some Formal Properties of Stochastic Settable Systems

Given attributes, we let(Q, ¥, P,) denote the complete probability space on which the settings and
responses are defined. Hefkis a set (the “universe”) whose elemeni$ndex possible outcomes
(“possibilities”); F is ac—field of measurable subsets @Qfwhose elements represent events; and
P is a probability measure (indexed by on the measurable spaf@, ¥) that assigns a number
Pa(F) to each evenfe € 7. See, for example, White (2001, Chap. 3) for an introductory discassio
of measurable spaces and probability spaces.

We decompose asw := (wy, ws), With wy € Qr, s € Qs, so thatQ = Q, x Qs. As we discuss
next, this enables distinct componentsato underlie responsesx) and settingsd). This facili-
tates straightforward and rigorous definitions of counterfactuals amyémtttons. These notions in
turn support a definition of direct effect.

To motivate the foundations for defining counterfactuals, again cortsid@idden unit clamped
learning example. Formally, the random settiri§sB,C) are measurable functiods: Qs — R,
B:Qs— R,andC: Qs — R™ me N. Letting ws belong toQs, we take the setting values to be the
realizations

a = Alws) =: X(w,1),
B = B(ws) =:X2(w,1),
y = C(ws) = Xo(w,1)
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Observe that the settings depend only ondeomponent ofo. We make this explicit inrA(ws),
B(ws), andC(ws), but leave this implicit in writingXp(w, 1), X3 (w, 1), and X2(w, 1) for notational
convenience.

The responses are determined similarly:

A(w) =
B'(w) =

1(B(0ds),C(ws), wr; @) = 1 (N2(w, 1), Xo(w, 1), wr; @) =: X1 (w,0),
2(A(0ds),C(0s), wr; @) = F2(Xa(w, 1), Xo(0, 1), 6x; @) =: Xo(w, 0).

RN

Note that we now make explicit the possibility that the response functions npndairectly on
wy. This dependence was absent in all our previous examples but is oétfr insapplications, as
this dependence permits responses to embody an aspect of “purehmaess. From now on, we
will include wy as an explicit argument of the response functions.

In the deterministic systems previously considered, we viewed the funddreetitag Xp(1)
as a primitive object and adopted the convention M#0) := Xp(1). Once settings and responses
depend orw, it becomes necessary to modify our conventions regarding the funddreetiédle
variablesXyp, as Xp is no longer determined outside the system. The role of the system primitive
is now played byw, the primary setting We represent this as the settable variable defined by
X (0,0) := X, (w,1) := w. We now viewXp(w,0) as a response tas and we takexp(-,1) :=

In the current stochastic framework, the feature that distingui¥hdsom other settable vari-
ables is that the respon&g(w, 0) depends only o, whereas responses of other settable variables
can depend directly on other settings and®nGiven the availability ofX,, there is no guarantee or
requirement that such a settable varialijeexists. Nevertheless, suélmdamental stochastic set-
table variablesXp are often an important and useful feature in applications, as our machimnénig
examples demonstrate.

The definition of direct causality in stochastic settable systems is closely paoaheat in the
non-stochastic case. Specifically, consider the partifioa {IMy}, and suppose belongs to the
partition elemenfly,. Let X, (w, 1) denote setting values for the settable variables whose indexes
do not belong td 1y, together with the setting&(w,1). Then the respons& (w,0) is given by

Xi(w,0) = ri(x(b)((,o, 1),ux;8) = ri(z(b),oor;a),

wherer; is the associated response functiafis the attribute vector, and for convenience we write
Zip) := Xp)(0s,1). Then we say thak; does not directly caus# if ri(zp), wy;a) defines a function
constant in the elemeaf of (z,,wr) for all values of the other elements (y,, vy ). Otherwise,
we say thatX; directly causesy;. Thus,X, can directly cause;; for this, takezj = wy. If Xp(w,0)
does not define a constant functionwaf we also say thak, directly causes(p. As always, direct
causality is relative to the specified partition.

4.3 Counterfactuals, Interventions, and Direct Effects

We now have the foundation necessary to specify “counterfactuaks.b&gin by defining what
is meant by “factual.” Suppose for now that all setting and responsevapart fronw, are ob-
servable. Specifically, suppose we have realizations of setting vglygsand response value
a* = F1(B,y,wy; ), and thatw is such thafl = B(ws), y = C(w), andd* = A*(w), where

A’ (W) = F1(B(ws), C(0xs), r; ).
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Then we say thata*,3,y) arefactual and thatw = (uwx,ws) is factual Otherwise, we say that
(6*,B,y) andw arecounterfactual Specifically, if the realizatio(d*, 3,y) does not obtain, then we
say that(G*, 3,y) is counterfactual, whereas if we have the realizati@risp, y), butwis such that
B # B(w), y # C(ws), or &* # A*(w) then we say thab is counterfactual.

There need not be a unique factaakince it is possible that multiple's yield the same real-
izations of random variables; this creates no logical or conceptualutiiis. Also, we need not
observe all settings and responses; an observable subset of thebe faatual or counterfactual.
To the extent that a givew generates realizations compatible with factual observables, it may also
be viewed as factual to that degree. @&menerating realizations incompatible with factual observ-
ables is necessarily counterfactual.

In non-stochastic settable systems, we defined an intervention to a settaaldevas a pair
of distinct admissible setting values for that settable variable. For example, a; := (01,02).

In stochastic settable systems, we express interventions similarly. Speciticgly consider the
partition = {My}, and supposebelongs to the partition elemeR, so that

Xi(0,0) = ri(Xp)(w,1),0x; @) = ri(Zp), wr; ).

Then arnintervention(zy,) 1,0r 1) — (Zp) 2, &,2) iS @ pair((zp) 1, wx.1), (Zp),2, Wr2)) whose elements
are admissible and distinct.

Interventions necessarily involve counterfactuals: at most, only onegetimbe factual; and
for an intervention to be well defined, the other setting value must be distinetnaté that the
notion of counterfactuals is helpful mainly for describing interventions. dAldh our definitions of
causality, interventions, or, as we see next, direct effects implicitly invaluaterfactuals, they do
not formally require this notion.

Thedirect effect onX; of the interventior(zp, 1,0 1) — (Zp),2,Wr2) is the associated response
difference

ri(Zp),2, W 2;@) —ri(Z(p) 1, x1;8)-
Our definitions of interventions and direct effects peroateris paribusnterventions and direct
effects. For these, only some finite number (e.g., one) of the settingssdiégween(zy, 1, 0.1)
and(zy, 2, 0x2); the other elements are “held constant.”

Under suitable conditions (specifically, that the settings(-,1) are an “onto” function), the
interventiong(zp) 1, x,1) — ()2, Wx,2) can be equivalently represented gaianary intervention

W — W = (W, ) = ((Wr1,01), (W 2,02)).

That is, primary interventions are paife;, o) of elements of. This representation is ensured
by specifying thato = (u, ws), permittinguy andws to be variation free (i.eqy can vary without
inducing any necessary variationds, and vice versa).

Primary interventions yield a definition édtal effectas a response difference. In our hidden
unit clamped learning example, the total effectanof w; — wy is

A.Xl((x)l,(x)z,O) . :.Xl((x)z,O)—Xl((x)l,O)
= F1(B(ws2),C(ws2), Wy 2; @) — F1(B(ws 1), C(ws 1), Wr1; Q).

This is also the direct effect oy of (Z(1)(ws1),0r1) — (Z(1)(0s2), wx 2). We emphasize that these
effects are, as always, relative to the governing partition. The tow@tteffoove is relative to the
elementary partition, corresponding to clamped learning.
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4.4 Review of Stochastic Settable System Features

In stochastic settable systems, all settings are governed by the undenginabjity measure,
whereas in the PCM, only the background variables are subject tomavattation. Because of their
status as a priori constants, attributes can index the settable systemiltsolvedasure. Stochastic
settable systems distinguish between primary settings and, when they existimfemtal settable
variables. Responses may contain an element of pure randomnessruth&s of stochastic set-
table systems also supports straightforward rigorous definitions of disetes, counterfactuals,
interventions, direct effects, and total effects.

5. Stochastic Settable Systems: A Formal Definition

In Sections 3 and 4, we motivated the features of settable systems usingsaofetosely related
machine learning examples. Here we integrate these features to providecasiformal definition
of a stochastic settable systeil := {(A,a), (Q, F,Pa), (M, XM}

To give a concise definition, we first introduce some convenient notafienwrite the positive
integers aiN™; we also writeN* = N* U {co}. Whenn = «, we interprei = 1,...,nasi = 1,2, ....
We also writeN := {0} UNT, andN = NU {e}. Whenm = 0, we interpretk = 1,...,m as being
omitted; thus, whem = 0, terms likex " ;A or x! ;Sgk are ignored. The notatiorf#denotes the
number of elements (the cardinality) of the Biet

Definition 1 (Stochastic Settable System).et ne N*, and let theunit attribute spacé be a non-
empty setFor eachuniti =1, ....n, let aunit attributeg; be a fixed element of Auch that aincludes
a component oadmissible settingS;, a multi-element Borel-measurable subseRof

Let me N. For each k= 1,...,m, let afundamental unit attributag x be a fixed element of, A
such that g includes a component afdmissible fundamental settin§gx, a multi-element Borel-
measurable subset &. Write & := (ag1,...,80m) and a:= (ag, a1, ...,an) € A = (X ,A) X
(x,A), thejoint attribute space

Let (Qr, %) and (Qs, Fs) be measurable spaces such tixtand Qg each contain at least two
elements, and I€iQ, 7, P,) be a complete probability space, whée= Q, x Qs, F := % ® Fs,
and R is a probability measure indexed by A.

For each k=1,...,m, let afundamental responag : Qs — Sok be a measurable function and
let the correspondinfundamental settinge % := Yo k. Write fundamental settings and responses
as %= (Z2o1,...,Zom) and ¥ = Zo. _

LetMn = {MNy} be a partition of{1,...,n}, with B:=#1 € N let ¢, := #p,, and leta determine
the multi-element Borel measurable s@@)) (@) C xj¢n,Sj xgL1Sok, b= 1,...,B. Suppose there
exist measurable functions callsettings Zi"' : Qs — §j,i = 1,...,n, measurable functions called
responsesy : Q — S;,i = 1,...,n, and measurable functions callgaint response functions,

ry(-:a) : xien,Si x S (@) x Qr = R b=1,...,B,

such that
iy (Y (), 2} (ws), 0r;8) =0, b=1,...,B,

for eachw:= (o, ws) € Qr x Q(”b)(a), Q(”b)(a) = {ws: Z(”b)(ws) € S(”b) (@)}, where %')) is the vector
containing Z', j ¢ My and Y[E] is the vector containing;¥,i € My. Write

X5 (w,0)  =Yo(ax), Xg'(w;1) 1= Zo(ws),
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A (@0) 1 =Y"(w), X(w1):=Z"(w),i=1,..n,

so that thefundamental settable variablgg' and settable variablex, i = 1,...,n are mappings
such that:

X' Qx{0,1} — x;Sox and X1 : Qx {0,1} —S;, i=1,...,n.

Finally, write
XM= X, x.
Thens™ := {(A,a),(Q, F,Pa), (M, XM} is astochastic settable system

A stochastic settable system consistauafts i= 1,...,n with unit attributes a belonging to
unit attribute space AWhenm > 0, the system has option&lindamental units k= 1,..., m with
fundamental unit attributes x also belonging té\. Thejoint attributesa:= (ag 1, ...,agm, a1, ..., an)
belong to thgoint attribute spaceA. By construction, the unit attributes include thdmissible
settingsS; for each unit §ox for any fundamental units).S; must contain at least two values,
necessary to ensuring that interventions are well defined.

The probability spacéQ, ¥ ,P;) embodies the stochastic structure of the system. By represent-
ing theprimary settingsas elements := (wy,ws) of Q := Q; x Qg, we provide explicit means for
variation-free interventions to primary setting valugsand the remaining setting values (vig).

By “variation-free”, we mean that we can consider interventi@og wy) = ((u 1, ws), (0,2, Ws))

in which only thewy component differs or interventiorisy, w,) = ((wy,ws 1), (Wr,Ws2)) in which
only thews component differs. Requiring th&;, and Qg each have at least two elements ensures
that interventions toy andws are well defined.

The probability measurg, is indexed by the attributessand governs the joint distribution of
the random settings and responsBs.may be determined by nature, determined by a researcher,
or determined in part by nature and in part by a researdhgcan embody any probabilistically
meaningful dependence or independence for events involwingnd ws. Completeness of the
probability space is a technical requirement ensuring that the collectiorenfsgf contains every
subset of any event havirigy—probability zero.

We call the random variableg!(-) settingsand realizationg () setting valuesBy suitably
choosingQs andZ", we also achieve variation-free interventions for the individual settingegalu
Specifically, letQs 1= (x;Sok) x (x{14Si), so thatQs has typical elementx := (zy1, ..., Zom,
z71,...,zy). Further, letZgy(ws) = 7ok and Zi"I (ws) = 7 be the projection functions that select the
specified component a@fs. By construction, these functions are surjective (onto). That is, trgeran
Z'(Qs) equals the co-domai$y, so that there is (at least) ong corresponding to each admissible
value inS;. With a suitable choice ofs (e.g., that generated by the measurable finite dimensional
product cylinders), these choices i andZ! are also measurable, as required. (White (2001,
Section 3.3) provides relevant background and discussion.) Thdieredif valuesws; and ws>
can generate interventions referencing just a single settable variatthegt@' (1) # Z (ws2),
but Z}" (Ws1) = Z}"(wﬂ) for j #i. Further, when surjectivity holds, it ensures that the primary
interventions(ws 1, Ws2) can represent every admissible intervention to the setting values.

When the system has fundamental units, these unitsfiadamental responsegy these are
random variables whose valu¥sy(ws) are determined solely bys € Qs. By convention funda-
mental settings g are random variables identical Ypx. WhenYy is surjective, then so &g k.
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Each elemenfl, of the partitionl = {Mp} identifies a group of (non-fundamental) units. The
joint response function'} specifies how these identified units jointly and freely respond to given
jointly admissible setting values of all units not belongindig

The given values are setting vaImE}%(ws) for j not belonging tdp, including Zp(ws) ando,
represented here kﬁi{g) (ws),0x). The valuesZ("'b) (ws) belong to the set gbintly admissible setting

valuesS'("b)(a), a subset ofx j¢n, Sj X' ;Sok. In the absence of constraints, we ha&l (a) =

X i¢n,Sj Xk1Sok. Often, however, applications place joint restrictions on the admissible setting
values. For example, when the settings represent probabilities (as in thd stiséegy games
considered shortly), the constraint that probabilities add to one jointlyigestrdmissible setting
values. The constraints are encoded,iand implemented bﬁ(”b)(a).

Theresponse valueareY[E] (w), the vector containing units response valu¥' (w) for eachi
in My, satisfying
r) (Yib) (@), Z(p) (@), 6x;@) = 0. (10)

Note that we do not explicitly require th‘ﬁﬂ] (w) is the unique solution to the equations in (10). As
discussed in our machine learning examples, the governing principles ®fstem (e.g., optimiza-
tion and/or equilibrium) operate to deliver a selected system responsgisgtibiese equations. By
including the governing principles (including appropriate selection opexaamong the attributes
a, as is fully rigorous and proper, the presenceadh the response function can ensure a unique
response value. Note that the response function depends on thestelfrsgittribute vectaa, not
just the attributes associated with the units of the given bbodtis has been a common feature of
our examples. We call the random variab¥gy -) responses.

Our expression for the responses is in implicit form, as is appropriat®fietians of optimiza-
tion problems. Nevertheless, it is often convenient to abuse notation s@hawndh write response
values explicitly as

Vb (@) = rig (Z(h) (), 6x; @)

Because the partition is exhaustive, the collection of response funcﬂoﬁs(rﬂ], v r{é]) pro-
vides a description of how each unit in the system responds when it itofcieso in the company
of other specified freely responding units. In given circumstances,)itoadhat only one of these
sets of responses is factual; the others are then counterfactual.

Settable variablest™ : Q x {0,1} — S; embody the dual aspects of settings and responses.
Responses('( - ,0) := Y/ are random variables taking valuesSnin response to settings of
other settable variables of the system outside the block to whiettongs, sayl,. The settings
X"( - ,1) :=Z" are random variables taking valuesSnwhose realized values determine the
realized responses of other settable variables. The optional fundarsettédle variablesq! :

Q x {0,1} — x" ;Sok yield identical random responses and settings whose values drivensesp
of other settable variables. We collect together all settable variables ofstesrsby writingx™ :=
(XN, X XD, ., X Observe that™ actually depends oa through the response functions
r™, so it would be formally correct and more explicit to writg! instead ofx™. We forego this for
notational simplicity, but this dependence should not be overlooked.

Our notation for the stochastic settable systgfh;= {(A,a),(Q, F,P,), (N, x™)}, references
each component of the system in a way that expresses the hierarclgsefdbmponents. At the
lowest level is thattribute structure (A, a); next comes thetochastic structurgQ, 7, P;); resting
on these is theausal structurg(, x™).
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6. Game Theory, Settable Systems, and the PCM

So far, our machine learning examples have shown how settable systegnoajgrision problems
where optimization operates as a governing principle. We now discuss ksasmowing how set-
table systems apply to groups of interacting and strategically competitive deaisiking agents.
In economics, these agents are usually viewed as consumers, firms,gmeéfoment entities. Of
direct relevance to machine learning is that agents may also be artificial inbeligeas in auto-
mated trading systems. In addition to their empirical relevance (e.g., the arafly=< spectrum
auctions or U.S. Treasury Bill auctions), such environments presemipih@rtunity for emergent
and distributed computation of otherwise difficult to compute quantities, likegrice

Game theory, the study of multi-agent decision problems, provides a rioafdramework
in which to understand and explain the behavior of interacting decision makibbons (1992)
provides an excellent introduction. By showing how the structures of dheuwry map to settable
systems, we establish the foundations for causal analysis of such systeerstral feature of such
structures is that their outcomes are determined by suitable equilibrium meuosasisecifically
Nash equilibriumand its refinements. Among other things, these mechanisms play a key role in
ensuring the mutual consistency of various partitions relevant to the @afysgiven game.

6.1 Pure-Strategy Games and Pure-Strategy Nash Equilibria

The simplest games are static games of complete information (Gibbons, 192, Jh In these
games, each af players has:(i) a number of playable strategies (let playdraveK; playable
strategiess 1,...,S k;); and(ii) a utility (or “payoff”) function u; that describes the payoff to
that player when each player plays one of their given strategies. Thatisui(sy,...,S), where
Sj € §j:={Sj.1,--,Sjk; }> | = 1,...,n. The players simultaneously choose their strategies; then each
receives the payoff specified by the collection of the jointly chosen stestagd the players’ payoff
functions. Such games are “static” because of the simultaneity of choicey dife “complete
information” games because the players’ possible strategies and pagcffoins are known to all
players. (Thus, each player can assess the game from every otymrgpléewpoint.) Ann-player
static game of complete information is formally represented in “normal formj as{S,...,Sy;
Ui, ..., Un}.

These games map directly and explicitly to the settable system framework. &alggithe
players correspond to units= 1,...,n. The unit attributesy, include the identity attributé, the
strategiesS; = S available to player, and the player’s utility functiom; : § x ...x §, — R. When
a strategy for playaris set arbitrarily, we denote its valueag S; when player chooses a strategy
(a response) we represent its valugyjas §. For concreteness and without loss of generality, we
takeS :={1,...,Ki}. The players’ utility functions implicitly account for the possibility that strategy
1 for playeri may represent a different action than that of strategy 1 for player

Each player seeks to maximize their payoff given the strategies of the atbeteat

Vi = 1f(Z);8) = argMani (21, .., z).

In economics, this goal-seeking behavior is called “rationality;” an equallydittin perhaps supe-
rior) term is “intelligence.” Thus, game theory analyzes rational or inteltiggents.

Here, we write the responseusing the superscrito denote that these response are those
for the elementary partitior]® := {M¢, ..., M5} with Mf = {i}, as each response takes the strategies
of all other players as fixed.
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For convenience, we assume that for each player there is a unique utikiyniniag response,
but just as in our previous machine learning examples, we can generaklyanmalkcipled selection
when the optimal decision is a set. Below, we discuss this further.

In game theory;? is called a “best-response” function. In settable systems, we referigaihe
to functions likerf as “response” functions, in part motivated by this usage. Becausene theeory
the specific gamé& under consideration is almost always clear, there is usually no needlicitexp
reflect its elements in the players’ best response functions. The expligtsance of players’ joint
attributesa (which characterize the game) in the response functipns; a) emphasizes their role
in determining player responses.

Now consider the PCM representation of this game. In the PCM, the attribetesne back-
ground variables.. The attributes; = (i, S, u;) do not map directly to PCM background variables,
as§ is a set andj; is a function; the PCM requires the background variables to be real mambe
Nevertheless, some simple modifications deliver a conforming representat@nan replacé
with the integers 1 througK; andu; with the vector of values taken by = ui(sy,...,s) as the
strategies range over all possible values. We collect these values togetbss all players and
write them asi. Endogenous variables= {si, ..., s} represent player strategies, and the structural
functionsf = {fy, ..., fa} represent the best response for agess = fi(s;),u), i=1,..,n.

The final condition required by the PCM is that there exists a unique fixed, ptefined by
functionsg; such that =s" :=gi(u), i =1, ...,n. When such a unique fixed point exists, it represents
apure-strategy Nash equilibriutiNash, 1950). By definition this satisfies

u(sy,...,S .S > u(s,...,S,...,sy) forallsieS,i=1..n
Gibbons (1992, p. 8) provides further discussion of pure-strategphquilibrium.

Just as we saw in Section 3, the PCM faces difficulties arising from its mgaint of a unique
fixed point. A first difficulty for the PCM is that there are important gameswvoich a pure-strategy
Nash equilibrium does not exist; the PCM therefore has nothing to say sibcitugames. A leading
example of such games is knownraatching penniefGibbons, 1992, p. 29). In this game, each of
two players has a penny that they can choose to display face up (leeddsg down (tails). If the
pennies match, player 2 gets both; otherwise player 1 gets both. This galies ap any situation
in which one player would like to outguess the other, apadker (bluffing), baseball(pitcher vs.
hitter), andbattle

Given the interest attaching to such games, one would like to have an appleaisal model.
This need is met by the settable system framework. Because this framewakdaspo fixed point
requirement, it applies regardless of the existence of a unique putegstidash equilibrium. For
games with no pure-strategy Nash equilibrium, the response funefitns; a) of the elementary
partition®:= {{1},...,{n}} readily provide complete information about the best response for all
counterfactual strategy combinations of the other players.

If a unique pure-strategy Nash equilibrium exists, it has settable systgpsentation

S*:rlg(a)’ i:l""7n’

wherer? is the response function for the global partitiéit? := {{1,...,n}}. An interesting fea-
ture of these response functions is that they depend only on the attrdgubesfundamental or
even primary settings appear. Observe also that the Nash equilibriurticorehsures the mutual
consistency of the elementary and global partitions.
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When there is no pure strategy Nash equilibrium, as in the matching penniesthaneeneed
not exist a valid settable system for the global partition. This provides aresiteg example in
which we have a well-defined settable system for the elementary partitionpbédrrthe global
partition. In contrast, the PCM does not apply at all.

Another difficulty for the PCM is that the unique fixed point requirement@ngs it from apply-
ing to games with multiple pure-strategy Nash equilibria. An example is the gamenkesivattie
of the sexefGibbons, 1992, p. 11). In this game, two players (Ralph and Alice) yiregtto decide
on what to do on their next night out: attend a boxing match or attend an.dpach would rather
spend the evening together than apart, but Ralph prefers boxing arephtiters the opera. With
the payoffs suitably arranged (symmetric), there is a unique best espameach player, given the
strategy of the other. Nevertheless, this game has two pure-strategyetjlaihria: (i) both select
boxing; (ii) both select the opera. Thus, the PCM does not apply.

In contrast, the settable system framework does apply, as it does noteirapasique fixed
point requirement. The elementary partition describes each agent’s ur@qtieesponse to a given
strategy of the other. Further, when multiple Nash equilibria exist, the glaétipn can yield a
well-defined settable system by selecting one of the possible equilibria. A®G1992, p. 12)
notes, “In some games with multiple Nash equilibria one equilibrium stands oué asihpelling
solution to the game,” leading to the development of “conventions” that peastahdard means for
selecting a unique equilibrium from the available possibilities.

An example is the classimoordination gamein which there are two pure-strategy Nash equi-
libria, but one yields greater payoffs to both players. The conventiondslert the higher payoff
equilibrium. If such a convention exists, the global partition can specifyebpanse functions’
to deliver this. In such cases, the global partition responses satisbnhoa fixed-point property,
but also embody equilibrium selection.

Interestingly, battle of the sexes is not a game with such a convention, asduilibréa seem
equally compelling. A more elaborate version of this game, involving incompletennation, does
possess a unique equilibrium, however (Gibbons, 1992, pp. 152-154)

6.2 Mixed-Strategy Games and Mixed-Strategy Nash Equilibria

As just suggested, one can modify the character of a game’s equilibridoy slaborating the game.
Specifically, consider “mixed-strategy” static games of complete informatitsiedd of optimally
choosing a pure strategy, each plaierow chooses a vector of probabilities := (pn 1, ..., Phk;)
(a mixed strategy) over their available pure strategiesSsay {1,...,Kn}, so thatpy, j is the prob-
ability that playerh plays strategyj € S,. For example, the probability vectét, O...,0) for player
h represents playing the pure strategy= 1.

Note that we have modified the notation for the player index fiamh. This enables us to
continue to index units usirigHere, the unit$ correspond tagent-decision pairgh, j). The values
handj become part of the unit attributess, When referencing, we may for convenience reference
the corresponding, j, so, for example, we may writg or a, j, whichever is more convenient.

Each playeh now behaves rationally or intelligently by choosing mixed-strategy probabilities
to maximize their expected payoff given other players’ strategies,

Th=up(p") = 5"Zguh(gq) Pr(s"; p"),

€
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where for conciseness we now wrgé:= (s,...,S), S': =5 x ... x §,, and p" := (p1, ..., Pn)-
(Maximizing expected payoff is not the only possibility, but we focus on thgedor concreteness.)
The strategies are chosen independently, so that;Pf), the probability that the agents jointly
choose the configuration of strateg&sis given by P(s"; p") = [1h_1 Ph.s,-

It is a famous theorem of Nash (1950) than i finite and ifKy, is finite,h = 1,...,n, then there
must exist at least one Nash equilibrium @y possibly involving mixed strategies (e.g., Gibbons,
1992, p. 45).

We map mixed-strategy games to settable systems as follows. As mentionedwabitsieare
agent-decision pairfh, j), so that unit attributes; include the agent and decision designatbrs,
and j. Because settings and responses are how probabilities, unit attributepatsy admissible
settingsSh,j as a subset dD, 1]. We further discusay ; below.

For each agert, there is &y, x 1 vector of settings and responses. We denote the probabilities
of the mixed strategy for agehtasz, j, j = 1,...,Kn, when these are set, andwas,j = 1,...,Kp,
when these constitute the agent’s best responsez, lbet theK, x 1 vector with elements, j, and
let yn be theKy, x 1 vector with elementgy, ;. Given all other player's mixed strategigg), agent
h’'s best response is

__pa . _
Yh =Tp(Zhy @) = 0h<argaiggh>oh(zl, o Zn)),

where the maximization is taken over the simp&x= {z < [0, 1] ZJ 1Zj = 1}. The operator
oh performs a measurable selection, discussed below.

Several aspects of this representation are notable. First, we write fhensesfunctiorry to
denote that it is the response function for ggent partitionN® := {MN3, h=1,...,n}, whereM{ =
{(h,1),...,(h,Kp)}. In contrast, the elementary partition := {1y ;, j =1,....Kh; h=1,...,n},
with M5 ; := {(h, j)}. The response functiong ; for the elementary partltlon descrlbe the best re-
sponse for agertts strategyj given not only all other agents’ strategies, but also all other strategies
for agenth. The elementary partition is usually not of particular interest; the agent paritid the
global partition are typically the main objects of interest in this context.

The superscriptin rf and elsewhere to denote the agent partition creates no confusion with the
joint attributesa, as the former is always a superscript, and the latter never is.

Next, we note that the unit attributeg ; contain admissible value$, j C [0,1], so that 0<
znj < 1. This is not enough to fully specify the admissible values for the vegtdrowever, as the
probabilities must add up to. This means that, must belong to the simple®,. We enforce this
constraint by makings, a component of each unit attribudg j, j = 1,...,Kx. Just as an attribute
common to all system units is a system attribute, any attribute common to a givest stibeits is
an attribute of that subset. Thui, is an attribute of agerit; agenth is that subset of the units with
agent designator equal o

An interesting feature of mixed-strategy games is that the set argsgan(z, ..., z,) can eas-
ily fail to have a unique element. This set thus defines the player's bgxines correspondence,
rather than simply giving a best-response function. We obtain a bestrsspunction by apply-
ing a measurable selection operatgrto the set of maximizers. The operamy is an attribute,
specifically of agenh; thus, we include it as a component of the unit attribates j = 1,..., K.

By definition, the agent is indifferent between elements of the arg-max sethttice of selec-
tion operator is not crucial. In fact, the selection may be random, implementetting o, depend
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onwy € Q,, so that one has
Yh = Ii(Zn), 0x; @) = oh(argzgggmh(zl, oy Zn), G)).

Now consider how this game maps to the PCM. Again, the attributes map to therdaicig
variablesu, although now the attributes are, among other things, sets with a continuunfuegva
and correspondences. Mapping these to a vector of real numbersbiempatic, so we simply
view u as a general vector whose elements may be numbers, sets, functioongespondences.
The endogenous variables are most appropriately representggxas vectorspy such thatv =
{p1,...,Pn}- The elements of :={ f4,..., f,} are correspondingly vector-valued. These must satisfy
Ph = fn(P(n), U) := On(argmadg,es, Un(P1,-.., Pn))-

In order to apply the PCM, we require a unique fixed point. Even whenguarNash equi-
librium exists, to obtain this as the fixed point requires choosing the seleqienatorsoy, so that
they specifically produce the Nash equilibrium response. In the usudiaitutne properties of
determine whether or not a fixed point exists. Here, however, knowletlthe unique fixed point
is required to properly specifg,, hencef, an awkward reversal signaling that the PCM is not
well-suited to this application. Indeed, the selection cannot be random, silpatesponse when
the player is indifferent between different strategies.

An interesting feature of this example is that when the PCM applies, it doestlsovector-
valued units rather than the scalar-valued units formally treated by P@af)ar Halpern (2000).
The PCM is thus necessarily silent about what happens when compofiantagent’s strategy are
arbitrarily set. In contrast, settable systems apply to partitions both finercamger than the agent
partition. (The elements (sets of unit indexes) of a “coarser” partitiomai@ns of the elements of
a “finer” partition. Thus, the agent partition is coarser than the elemengatiign and finer than
the global partition.)

Unlike the case of pure-strategy games, there must always be at leastixad-strategy Nash
equilibrium, so the PCM does not run into the difficulty that there may be no equitib Neverthe-
less, mixed-strategy games can also have multiple Nash equilibria, so the RiSMat@pply there.
For a given game, the GPCM does apply to the agent partition, but it db@scooporate equilib-
rium selection mechanisms. In contrast, the settable system framework peairstd analysis at
the level of the agent partition (as well as coarser or finer partitionpjesents the unique Nash
equilibrium at the level of the global partition without requiring a selectiorraipe when a unique
equilibrium exists; and otherwise represents the desired responsasawhéque mixed-strategy
Nash equilibrium does not exist but conventions or other plausible selengchanisms apply.

Static games of complete information are the beginning of a sequence ofsimgigaricher
games, including dynamic games of complete information, static games of incomjibetedtion,
and dynamic games of incomplete information. Each of these games employsgsiogly stronger
equilibrium concepts that rule out implausible equilibria that would survivdeeuequilibrium con-
cepts suitable for simpler games (Gibbons, 1992, p. 173). These implaegilléria all satisfy
fixed-point (simple Nash equilibrium) requirements.

The unique fixed point requirement of the PCM thus acts to severely limit itscappity in
game theory, due to the many opportunities for multiple Nash equilibria. AltholRGNG for-
mally apply, they cannot support discourse about causal relationgéetandogenous variables,
due to the lack of an analog of the potential response function. In cgritsaexploiting attributes
and partitioning, settable systems permit implementation of whichever strondér anore re-
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fined equilibria criteria are natural for a given game, together with anyaatquilibrium selection
mechanism.

6.3 Infinitely Repeated Dynamic Games

Dynamic games are played sequentially. For example, two players canadiygaay prisoner’s
dilemma In infinitely repeated games, play proceeds indefinitely. Clearly, infingtetition cannot
be handled in a finite system, so the PCM cannot apply.

In infinitely repeated dynamic games of complete and perfect informatiorQid®mns, 1992,
Section 2.3.B), players play a given static game in “stages” or petied4,?2,.... The periodt
payoff to playerh is Tht = unt(01t,...,0nt), Whereun; is playerh’s payoff function for period,
whose arguments are the “actiorsj; at timet of all n players. (The strategies of static games
correspond to the actions of dynamic games.) Information is “complete, clisptayer knows the
others’ possible actions and payoff functions. Information is “peffastat everyt, each player
knows the entire history of play up to that period.

Rational players act to maximize their average present discounted vgtagaif,

ﬁh = U_h(CX]_,...,(Xn) = (1_6) Zlét_luh,t(alla -~-,Gn,t),
=

wherea; := {aj} denotes playej’s countable sequence of actions, and 8 < 1 is a “discount
rate” (common across players, for simplicity) that converts paymffsin periodt to a value in
period 1 asét‘lmt. A player’s best response to any collective sequence of actions mhbes is
a solution to the problem

maxun(ay, ...,an) subject toans =she(ai .. aht), t=1,2,..,

S

where &, is playerh’s set of all admissible sequences:= {s\;} of “strategy functions”s;.
These represent playéis action in periodt as a function only of the prior histories of player
actions,a‘l‘l, .o (Fort = 1, s is a constant function.) Playéis best responses acg, =
%t(atl‘l, ...,a;t‘l, Lo t=12 ., wheres], := {%t} is a sequence of best response strategy
functions. (These need not be unique ssp may be a correspondence. The player is indifferent
among the different possibilities.) 7

Such games generally have multiple Nash equilibria. Many of these are impéausilvever,
as they involve non-credible threats; and credibility is central to all dynaaneeg (see Gibbons,
1992, p. 55). Non-credible equilibria can be eliminated by retaining onlgdame perfect” Nash
equilibria. These are Nash equilibria that solve not only the game beginniimgyeal, but also the
same game beginning at any timg 1 (Gibbons, 1992, pp. 94-95). A celebrated result by James
Friedman (1971) ensures the existence of one or more subgame p&ascequilibria, provided
is close enough to one (see, e.g.. Gibbons, 1992, pp. 97-102). Sagtlificsuch equilibria permit
tacit cooperationyielding outcomes superior to what players can achieve in the static gansslplay
at each stage.

We now map this game to settable systems. The uni® correspond tagent-time pairgh,t).
Ast =12, ..., there is a countable infinity of units. Agent attributes include their admissible action
and their payoff functions for each period. Thatas(equivalentlyan;) includes the admissible
sequence of functionS,, the utility functionun, and the discount factas. When player actions
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ant are set arbitrarily, the settable system represents them.a#/hen players intelligently choose
their actions, they are denotgg.

The agent partitiom® := {7, h=1,....n}, wherel{ := {(h,1), (h,2),...}, represents agents’
best responses recursively as

Yot = Ont(Shi (2 oVt Y o), t=1,2,.sh=1,..,n,

whereo is a measurable selection operagji;is the agent’s best response correspondence, which
depends on the action histories of other agez%ﬁ;ﬂ and agent’'s history of prior best responses,

yth‘l; and the realizationy determines random selections from the best response correspetfidenc
agenthin periodt. Recursive substitution for the elements of the hisyhffr yields a representation
in terms of an agent-partition response functig}, namely

Yht = rﬁ}t(z‘(ﬁ)l,w(;a), t=1,2,..;h=1,..,n

The global partition represents whatever selection of the collection ofasubgerfect Nash
equilibria is natural or compelling. Equilibrium agent responses are diyahe global-partition
response functiong, as

Yht = Fﬁjt(oof;a) t=1,2,..;h=1..n.

Notably, this example exploits each feature of stochastic settable systemdjrigatountable
dimension, attributes, partitioning, and pure randomness.

6.4 Settable Systems and Multi-Agent Influence Diagrams

Causal models other than the PCM are available in the machine learning literteifecus here
on the PCM because of its prevalence and to maintain a sharp focus foapes p

A framework particularly related to the preceding discussion is that of KatidrMilch (2003)
(KM), who introduce multi-agent influence diagrams (MAIDS) to représemcooperative games.
In particular, KM provide a graphical criterion for determining a notion stfdtegic relevance.”
KM'’s “relevance graphs” are related to causal graphs. By castingegdn the settable system
framework, we can immediately construct causal graphs for games byirapfhe conventions of
Section 3.6.2.

The most immediate similarity between settable systems and MAIDs is that they areaboth
pable of modeling environments in which multiple agents interact. In contrasyéimée diagrams
[...] have been investigated almost entirely in a single-agent setting” @3, p. 189-190).
Nevertheless, several features of settable systems distinguish therivl&dDs:

(i) A settable system is an explicit causal framework in which notions of partitpseettings,
interventions, responses, and causality are formally defined. Furtheerthe interrelations between
these causal notions on the one hand and the notions of optimization, eqoililamgal learning on
the other are made precise. In contrast, there is no formal mention ofitairsKM.

(ii) MAIDs build on the “chain rule for Bayesian Networks” (KM, definition 2[2,186). This is
equivalent to assuming a set of (conditional) independence relatiorigimychance and decision
variables and is necessary for the applicability of teedachability” graphical criterion. On the
other hand, settable systems permit but do not require any assumptiores jomtldistribution of
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settings and responses. In particular, responses may admit an asfpeoeaandomness” due to
their direct dependence on the primary variable.

(iii ) In KM, an agent’s utility is additive (KM, p. 189-190). Settable systems dampose this
requirement.

(iv) The KM algorithm for finding Nash equilibria outputs one Nash equilibrium. elests
an equilibrium arbitrarily if multiple equilibria are found. Further, the algorithammot produce
certain equilibria, such as a nonsubgame-perfect equilibrium (KM, 6). 2The settable system
framework can represent principled selections from all relevant Ngshibria.

We emphasize that the results in KM are very helpful for representingtanlying games. In
particular, under the MAID assumptions, the KM results permit an expliciesemtation of games
and can lead to computational savings.

7. Machine Learning, Optimization, and Equilibrium

A general learning algorithm introduced by Kushner and Clark (198) has the form

§t+1 = ét—i:)\tMt(ét,ét,ZtJrl), (11)
§1 = R(E,671,%u1), t=0,1,2,.. (12)

whereet andEt are random vectorszyt is a random scalaM; andR; are known vector functions,
gt— (Eo, ,Et) 61 := (o, ...,6:1), and; is an observable random vector. Initial valugs
and®g are random vectors independent{@f}. KC call this a Robbins and Monro (1951) (RM)
algorithm with feedback (RMF). Equation (11) is an RM procedure; Eqng12) supplies the
feedback. A main focus of interest is the convergence behavigrast — co.

Chen and White (1998) analyze a version of RMF where each vectcs taltees in a real
separable infinite-dimensional Hilbert space. We call this an HRMF algoritBetause of the
flexibility this affords, the HRMF supports nonparametric learning.

The RM procedure emerges whé&nhas dimension zero, §ﬂ3+1 = & +)\tMt(et,Zt+1)
0,1,2,.... This contains recursive least squares (e.g., back-propagaticoysigee maximum I|ke-
lihood, and recursive method of moments procedures (e.g., Ljung arefs®mon, 1983). The
estimated weights a: {¢i} is the data sequenck; is the “learning rate,” for example; = 1/t;
andM; determines the learning method (least squares, maximum likelihood, etc.). riytpey
feedback, the RMF accommodates the evolution of internal, possibly hiddes&tahus, Kalman
filter methods (Kalman, 1960) are a special case.

The RMF also describes learning in recurrent artificial neural netsvpARINS) (e.g., EIman,
1990; Jordan, 1992; Kuan, Hornik, and White, 1994). Here, thetisgguence i$; }; aftert input
observations, network weights abe and hidden unit activations afg. The learning function is
M;, the learning rate i&;, andR; determines hidden unit activations. The allowed randomnexss of
accommodates simulated annealing.

The RMF and HRMF contain systems with learning by one or more optimizing agéften
there are multiple agents, the system can embody convergence to equilibpeaifically, Chen
and White (1998) provide conditions ensuring system convergenice»as to Nash equilibria or
to “rational expectations” equilibria. As examples, Chen and White (198&3ider, among others,
a learning agent solvingstochastic dynamic programmimgoblem and the game fittitious play
with continuum strategie@n infinitely repeated dynamic game of incomplete information). The
applications of the (H)RMF are thus broad; further, the settable systamedvork contains both.
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The unitsi aretime-agent-generalized decision triple$, h, j). Specifically, at timet, agent
h has generalized decisions indexed joyGeneralized decisions akeowledge(or in Baye3|an
frameworksbeliefg denotedd; hk K=1,....kn, or generalized actionglenote n, £ = 1,...,¢h.
Generalized actions may fetions(as in Section 6.3) ostates as in the Kalman fiItering and
recurrent ANN examples. We wrifk := ( 1 Gt n) s Whereeth —(Gthl, ét,hkh)’takes values

in O, a subset oRk, andEt _(Etl, ,Et 0 Whereéth —(Ethl, ,Et,h,gh) takes values ixp, a
subset oR", h=1,....n

In addition to the time-agent-generalized decision indicabfs ), attributesa , ; include as
components the spac@s and=y and the functior; : Q; — R. They can also include the functions
Mt hk OF R p e, as appropriate We writé; := (M{ ,,..., Mt’m)’, with Mg b := (M¢n 1, ..., Menk,)’s and

R{ 1 Rn), With Rip = (Rip1,. R[7h7gh)//. The functionsM; hx may be a consequence of
an underlymg optlmlzatlon principle, as in our machine learning examples tib8&: The same
may be true of the functiori& p, ¢.

For the RMF, in Equations (11) and (12)js finite, as aré, and/,. Becausd takes a count-
able infinity of values, we require a countably infinite settable system. For RMFin may be
countably infinite; similarlyk, and/or¢;, may be countably infinite.

Equations (11) and (12) form a recursive or acyclic system. In systess, there is a natural
hierarchy of units, in whiclpredecessounits drivesuccessounits. The system evolves naturally
(i.e., without intervention) when the response values at a given leveédifiitarchy act as setting
values for successors. Stochastic settable systems are sufficientlyefexiermit this. That is,
given recursivity, for everyy, in Q;, there existaws in Qg such thatz;(ws) = Yi(wy, ws) for all
i. Whenw = (wy,ws) has this property, we calb canonical and we letQ. C Q denote the set
of canonical primary setting®. Response and setting values for a given unit thus coincide on
Qc, implementing the natural evolution. In the present examyle; andZ;  ; correspond to an
element of eitheB; or ét. Fundamental settings a«%@, éo, and{{;}, corresponding to elements of
)(0( +,1) == Xo( - 70)'

Substituting Equation (11) into Equation (12) yields response functionthédime partition
b= {nY, M, ...}, wheren} := {(b,h,k),k=1,...,ks; (b,h,0), ¢ = 1,....¢n;h=1,...,n}.

In the HRMF, agents’ generalized decisions take values in real sépanéibite-dimensional
Hilbert spaces, so generalized decisions are not just vector-vaheidyalues may be suitably well-
behaved functions. First, consider how a countably dimensioned settaansaccommodates
such objects when there is a single agent with a single action, a functiom, sindle knowledge
element, also a function. We represent such functions by a countaliter vdwose elements are
coefficients of terms in a suitable series representation, for example rieiFeeries. Further, this
same approach applies without exhausting the dimensionality of the settatdensgyen when
there is a countable infinity of agents, each having a countable infinity eflkdge elements and
actions, which are themselves elements of real separable infinite-dimdridideat spaces.

8. Summary and Concluding Remarks

This paper introduces settable systems, an extension of Pearl’'s (2084l enodel. Settable sys-
tems and the PCM share many common features. For example, in both frara¢h@xariables of

the system have a dual role (set or free), there are mechanismsddysmewhich variables are set
or free (submodels and the do operator in the PCM, partitioning in settaliéasg)s and attributes
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may be accommodated (as background variables in the PCM and as a pnistamts in settable
systems).

The key difference between the PCM and settable systems is the way tmeswodeatures
interrelate to one another. Although we point out a number of limitations of tthé iR@notivating
settable systems, settable systems strictly build on the percepts of the PCMidbtiisrio show
how modest reconfiguration and refinement of the elements of the PCNtleosisly enhance its
explanatory power.

As we demonstrate, the PCM encounters obstacles when we attempt to applgritaio ma-
chine learning examples. These limitations motivate particular features ofleetiabems. For
example, the unique fixed point requirement of the PCM is a significant limitatiike. Halpern's
(2000) GPCM, settable systems do not require the existence of a unigdepfiint. The structure
of settable systems nevertheless leads to natural notions of countdgfaatterventions, direct
causes, direct effects, and total effects. In contrast, the absétimepotential response function in
the GPCM precludes causal discourse.

Another appealing feature of settable systems relative to the PCM is its abilityvwapra
causal role for structurally exogenous variables. This capability dresesuse settable systems dis-
tinguish between attributes and fundamental settings. In contrast, the PCid foggther attributes
and background variables, so neither can play a causal role. Thei®€lMnt on whether to treat
variables as exogenous or endogenous and on how to specify attrilmgettable systems, the gov-
erning principles (e.g., optimization and equilibrium) provide explicit guidaocalistinguishing
exogenous variables and endogenous variables. Attributes are unadigdefined as constants
(numbers, functions, sets, etc.) associated with system units that defaleniental aspects of the
decision problem represented by the settable system.

Our examples in game theory (Section 6) and machine learning with feedbactian 7) fur-
ther show that settable systems apply directly to systems where learning aptifoizing agents
interact in a process where outcomes satisfy or converge to approgisitibria. Settable systems
thus provide rigorous foundations for causal analysis in these empinietlyant and computation-
ally important systems.

These foundations are only a first step in analyzing phenomena conéptosettable systems.
A patrticularly important research area is the study of general primitivelitons ensuring the
identification of specific causal effects of interest under varyingrapions about the observability
of causes of interest and other ancillary causes and under parti@itarns of causal relation.
In this context, identification means the equality of causally meaningful objeals, Expected
effects) with corresponding stochastically meaningful objects, that &ntgies expressible solely
as a functional of the joint distribution of observable random variabldseMitdentification holds, it
becomes possible to estimate various causal effects from data. Reckmtfwéhite (2006), White
and Chalak (2007), Schennach et al. (2008), Chalak and White 420&8d White and Kennedy
(2009) provides results for identification and estimation of causal efiectsr varying assumptions.

Key to ensuring identification of effects of interest in all of these studiespecific indepen-
dence or conditional independence conditions, for example, the coraiinatependence of causes
of interest from unobservable ancillary causes given other olddervariables (covariates). Chalak
and White (2008b) provide primitive conditions on recursive settable systeictures (in particu-
lar the response functions) that either ensure or rule out such indepes or conditional indepen-
dence relations. In pursuing this goal, notions of indirect and total tsfffcnon-primary causes
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emerge naturally and play key roles. These results also have direct impig&tiod-separation
andD-separation (e.g., Geiger, Verma, and Pearl, 1990; Pearl, 2000, {i7.)16

These studies by no means exhaust the opportunities for deepertandarg and application
of settable systems. For example, all of the studies of identification and estipeionentioned
are for recursive structures. Obtaining analogous results forexursive structures is of particular
interest.

At the outset, we offered this paper as part of a cross-disciplinary gliaétween the eco-
nomics/econometrics community and the machine learning community, with the hopaothat
communities might gain thereby. For economists, the benefits are clear asnsepnetions of
causal effects that apply broadly to economic structures and, in partitmldne powerful struc-
tures of game theory. These causal notions draw heavily on concepts laart of the PCM, but
surmount a number of limitations that may have held back economists’ accepifittte PCM.
For those in the machine learning community, one benefit is the extensionga centions to sys-
tems fundamentally involving optimization, equilibrium, and learning, features cantana broad
range of application domains relevant to machine learning. We also hopgéehatchine learning
community, which has so far paid only limited attention to game theory, may begin gideon
the possibilities it offers for understanding empirical phenomena anddgtitadited and emergent
computation.
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Appendix A.

For completeness, we provide a formal definition of a non-stochastic keestatiem.

Definition 2 (Nonstochastic Settable System).et ne N*, and let A be a non-empty s€br each
i=1,..,n, let g be a fixed element of, Auch that aincludes a componers;, a multi-element
Borel-measurable subset &f

Let me N. For each k= 1,...,m, let o be a fixed element of,ASuch that g includes a
componentSyy, a multi-element Borel-measurable subsetRof Write & = (ag1,...,a80,m) and
a:= (ag,ar,...,an) € A= (X1A) x (X[1A).

Foreachk=1,...m, let 7k € Sok, and put yx := zox. Write z := (21, ..., Zom) and yp := zo.

LetMn = {MNy} be a partition of{1,...,n}, with B:=#1 € N* let ¢, := #p,, and leta determine
the multi-element Borel measurable §§l§)(a) C Xj¢n,Sj Xi1Sok, b=1,...,B. Suppose there
exist measurable functions

rl[-tl)](‘;a) D XienySi X S'(_'b)(a) —R» b=1,..,B,
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and real vectors &} € Xien,Si such that for each'('g) € S(”b)(a),
202 =0 b=1..B.

Write X31(0) :=yo, XJ'(1) == 20, X"(0) := Y1, X(1) :=2",i =1,...,n,so thaty{' : {0,1} —
XM Soxand X : {0,1} — S;,i = 1,...,n. Finally, write

XM =odh XX,

Thens™ := {(A,a),(M,X™)} is anonstochastic settable system
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