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Abstract

Judea Pearl’s Causal Model is a rich framework that providesdeep insight into the nature of causal
relations. As yet, however, the Pearl Causal Model (PCM) hashad a lesser impact on economics or
econometrics than on other disciplines. This may be due in part to the fact that the PCM is not as
well suited to analyzing structures that exhibit features of central interest to economists and econo-
metricians: optimization, equilibrium, and learning. We offer the settable systems framework as
an extension of the PCM that permits causal discourse in systems embodying optimization, equi-
librium, and learning. Because these are common features ofphysical, natural, or social systems,
our framework may prove generally useful for machine learning. Important features distinguish-
ing the settable system framework from the PCM are its countable dimensionality and the use of
partitioning and partition-specific response functions toaccommodate the behavior of optimizing
and interacting agents and to eliminate the requirement of aunique fixed point for the system.
Refinements of the PCM include the settable systems treatment of attributes, the causal role of ex-
ogenous variables, and the dual role of variables as causes and responses. A series of closely related
machine learning examples and examples from game theory andmachine learning with feedback
demonstrates some limitations of the PCM and motivates the distinguishing features of settable
systems.

Keywords: causal models, game theory, machine learning, recursive estimation, simultaneous
equations

1. Introduction

Judea Pearl’s work on causality, especially as embodied in his landmark book Causality(Pearl,
2000), represents a rich framework in which to understand, analyze, and explain causal relations.
This framework has been adopted and applied in a broad array of disciplines, but so far it has had a
lesser impact in economics. This may be due in part to the fact that the Pearl causal model (PCM)
is not as explicit about or well suited to analyzing structures that exhibit features of central interest
to economists and econometricians: optimization, equilibrium, and learning. Here, we offer the
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settable systems framework as an extension of the PCM that permits causal discourse in systems
embodying these features.

Because optimization, equilibrium, and learning are features not only of economic systems, but
also of physical, natural, or social systems more generally, our extendedframework may prove use-
ful elsewhere, especially in areas where empirical analysis, whether observational or experimental,
has a central role to play. In particular, settable systems offer a number ofadvantages relative to
the PCM for machine learning. To show this, we provide a detailed examination of the features and
limitations of the PCM relevant to machine learning. This examination provides keyinsight into the
PCM and helps to motivate features of the settable systems framework we propose.

Roughly speaking, a settable system is a mathematical framework describing an environment
in which multiple agents interact under uncertainty. In particular, the settable systems framework
is explicit about the principles underlying how agents make decisions, the equilibria (if any) result-
ing from agents’ decisions, and learning from repeated interactions. Because it is explicit about
agents’ decision making, the settable systems framework extends the PCM by providing a decision-
theoretic foundation for causal analysis (see, e.g., Heckerman and Shachter, 1995) in the spirit of
influence diagrams (Howard and Matheson, 1984). However, unlike influence diagrams, the settable
systems framework preserves the spirit of the PCM and its appealing features for empirical analysis,
including its use of response functions and the causal notions that these support.

As Koller and Milch (2003, pp. 189-190) note in motivating their study of multi-agent influence
diagrams (MAIDs), “influence diagrams [. . . ] have been investigated almost entirely in a single-
agent setting.” The settable systems framework also permits the study of multiple agent interactions.
Nevertheless, a number of settable systems features distinguishes them from MAIDs, as we discuss
in Section 6.4. Among other things, settable systems permit causal discourse insystems with multi-
agent interactions.

Some features of settable systems are entirely unavailable in the PCM. These include (1) ac-
commodating an infinite number of agents; and (2) the absence of a unique fixed point requirement.
Other features of settable systems rigorously formalize and refine or extend related PCM features,
thereby permitting a more explicit causal discourse. These features include (3) the notion of at-
tributes, (4) definitions of interventions and direct effects, (5) the dualrole of variables as causes
and responses, and (6) the causal role of exogenous variables.

For instance, for a given system, the PCM’s common treatment of attributes and background
variables rules out a causal role for background variables. Specifically, this rules out structurally
exogenous causes, whether observed or unobserved. This also limits the role of attributes in char-
acterizing systems of interest. Because the status of a variable in the PCM is relative to the analysis
and is entirely up to the researcher, a background variable may be treatedas an endogenous vari-
able in an alternative system if deemed sensible by the researcher, thereby permitting it to have
a causal role. Nevertheless, the PCM is silent about how to distinguish between attributes, back-
ground variables, and endogenous variables. In contrast, in settable systems one or more governing
principles, such as optimization or equilibrium, provide a formal and explicit way to distinguish be-
tween structurally exogenous and endogenous variables, permitting explicitly causal roles not only
for endogenous but also for exogenous variables. Attributes are unambiguously defined as constants
(numbers, sets, functions) associated with the system units that define fundamental aspects of the
decision problem represented by the settable system.

The Rubin treatment effect approach to causal inference (e.g., as formalized by Holland, 1986)
also relates to settable systems. We leave a careful study of the relations between these two ap-
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proaches to other work in order to keep a sharp and manageable focus for this paper. Thus, our
goal here is to compare and contrast our approach with the PCM, which, along with structural equa-
tion systems in econometrics, comprise the frameworks that primarily motivate settable systems.
Nevertheless, some brief discussion of the relation of settable systems to Rubin’s treatment effect
approach is clearly warranted. In our view, the main feature that distinguishes settable systems (and
the PCM) from the Rubin model is the explicit representation of the full causal structure. This has
significant implications for the selection of covariates and for providing primitive conditions that
deliver unconfoundedness conditions as consequences in settable systems, rather than introducing
these as maintained assumptions in the Rubin model. Explicit representation of thefull causal struc-
ture also has important implications for the analysis of “simultaneous” systems and mutually causal
relations, which are typically suppressed in the Rubin approach. Finally, the allowance for a count-
able number of system units, the partitioning device of settable systems, and settable systems’ more
thorough exploitation of attributes also represent useful differences with Rubin’s model.

The plan of this paper is as follows. In Section 2, we give a succinct statement of the elements
of the PCM and of a generalization due to Halpern (2000) relevant for motivating and developing
our settable systems extension.

Section 3 contains a series of closely related machine learning examples in which we examine
the features and limitations of the PCM. These in turn help motivate features of the settable sys-
tems framework. Our examples involve least squares-based machine learning algorithms for simple
artificial neural networks useful for making predictions. We consider learning algorithms with and
without weight clamping and network structures with and without hidden units.Because learning
is based on principles of optimization (least squares), our discussion relates to decision problems
generally.

Our examples in Section 3 show that although the PCM applies to key aspects ofmachine
learning, it also fails to apply to important classes of problems. One source of these limitations
is the PCM’s unique fixed point requirement. Although Halpern’s (2000) generalization does not
impose this requirement, it has other limitations. We contrast these with settable systems, where
there is no fixed point requirement, but where fixed points may help determinesystem outcomes.
The feature of settable systems delivering this flexibility is partitioning, an analog of the submodel
and do operator devices of the PCM.

The examples of Section 3 do not involve randomness. We introduce randomness in Section 4,
using our machine learning examples to discuss heuristic aspects of stochastic settable systems. We
compare and contrast these with aspects of Pearl’s probabilistic causal model. An interesting feature
of stochastic settable systems is that attributes can determine the governing probability measure.
In contrast, attributes are random variables in the PCM. Straightforward notions of counterfactuals,
interventions, direct causes, direct effects, and total effects emergenaturally from stochastic settable
systems.

Section 5 integrates the features of settable systems motivated by our examplesto provide a
rigorous formal definition of stochastic settable systems.

In Section 6 we use a series of examples from game theory to show how settable systems ap-
ply to groups of interacting and strategically competitive decision-making agents. Game theoretic
structures have broad empirical relevance; they also present interesting opportunities for distributed
and emergent computation of important quantities, such as prices. The decision-making agents may
be consumers, firms, or government entities; they may also be biological systems or artificial intel-
ligences, as in automated trading systems. Our demonstrations thus provide foundations for causal
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analysis of systems where optimization and equilibrium mechanisms both operate todetermine sys-
tem outcomes. We relate our results to multi-agent influence diagrams (Koller and Milch, 2003) in
Section 6.4.

In Section 7 we close the loop by considering examples from a general class of machine learning
algorithms with feedback introduced by Kushner and Clark (1978) and extended by Chen and White
(1998). These systems contain not only learning methods involving possiblyhidden states, such
as the Kalman filter (Kalman, 1960) and recurrent neural networks (e.g.,Elman, 1990; Jordan,
1992; Kuan, Hornik, and White, 1994), but also systems of groups of strategically interacting and
learning decision makers, as shown by Chen and White (1998). These systems exhibit optimization,
equilibrium, and learning and map directly to settable systems, providing foundations for causal
analysis in such systems.

Section 8 contains a summary and a discussion of research relying on the foundations provided
here as well as discussion of directions for future work. An Appendix contains supplementary
material; specifically, we give a formal definition of nonstochastic settable systems.

In a recent review of Pearl’s book for economists and econometricians,Neuberg (2003) ex-
presses a variety of reservations and concerns. Nevertheless, Neuberg (2003, p. 685) recommends
that “econometricians should readCausalityand start contributing to the cross-disciplinary discus-
sion of the subject that Pearl has begun. Hopefully mutual enlightenment will be the effect of our
reading and talking about the book among ourselves and with the Bayesian causal network thinkers.”
By examining aspects of what can and cannot be accommodated within Pearl’s framework, and by
proposing settable systems as an extension of this framework designed to accommodate features of
central interest to economists, namely optimization, equilibrium, and learning, weoffer this paper
as part of this dialogue.

2. Pearl’s Causal Model

Pearl’s definition of acausal model(Pearl, 2000, Def. 7.1.1, p. 203) provides a formal statement of
the elements essential to causal reasoning. According to this definition, a causal model is a triple
M := (u,v, f ), whereu := {u1, ...,um} is a collection of “background” variables determined outside
the model,v := {v1, ...,vn} is a collection of “endogenous” variables determined within the model,
and f := { f1, ..., fn} is a collection of “structural” functions that specify how each endogenous
variable is determined by the other variables of the model, so thatvi = fi(v(i),u), i = 1, ...,n. Here
v(i) denotes the vector containing every element ofv exceptvi . The integersm andn are finite. We
refer to the elements ofu andv as system “units.”

Finally, the definition requires thatf yields a unique fixed point for eachu, so that there exists
a unique collectiong := {g1, ...,gn} such that for eachu,

vi = gi(u) = fi(g(i)(u),u), i = 1, ...,n.

The unique fixed point requirement is a crucial aspect of the PCM, as thisensures existence of
thepotential response function(Pearl, 2000, Def. 7.1.4). This provides the foundation for discourse
about causal relations between endogenous variables; this discourseis not possible in the PCM
otherwise. A variant of the PCM analyzed by Halpern (2000) does not require a fixed point, but if
any exist, there may be multiple collections of functionsg yielding a fixed point. We refer to such
a model as a Generalized Pearl Causal Model (GPCM). We note that GPCMs do not possess an
analog of the potential response function, due to the lack of a unique fixedpoint.
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In presenting the elements of the PCM, we have adapted Pearl’s original notation somewhat
to facilitate the discussion to follow, but all essential elements of the definition are present and
complete.

3. Machine Learning, the PCM, and Settable Systems

We now consider how machine learning can be viewed in the context of the PCM. We consider
machine learning examples that fundamentally involve optimization, a feature of abroad range of
physical, natural, and social systems.1 Specifically, optimization lies at the heart of most decision
problems, as these problems typically involve deciding which of a range of possible options deliv-
ers the best expected outcome given the available information. When machinelearning is based on
optimization, it represents a prototypical decision problem. As we show, certain important aspects
of machine learning map directly to the PCM. This permits us to investigate which causal ques-
tions are meaningful for machine learning within the PCM, and it motivates the modifications and
refinements that lead to settable systems and the more extensive causal discourse possible there.

3.1 A Least-Squares Learning Example

Our first example considers predicting a random variableY using a single random predictorX and
an artificial neural network. In particular, we study the causal consequences for the optimal network
weights of interventions to certain parameters of the joint distribution of the randomly generatedX
andY.

More specifically, the output of an artificial neural network having a simplelinear architecture
is given by

f (X;α,β) = α+βX.

We suppose thatY andX are randomly generated according to a joint distributionFγ indexed by
a vector of parametersγ belonging to the parameter spaceΓ. We thus viewγ as a variable whose
values may range overΓ. For clarity, we suppose thatγ is not influenced by our prediction (e.g., a
weather forecast or an economic growth forecast).

We evaluate network performance in terms of expected squared predictionerror loss,

L(α,β,γ) : = Eγ([Y− f (X;α,β)]2)

=
Z

[y− f (x;α,β)]2dFγ(x,y),

whereEγ(·) denotes expectation taken with respect to the distributionFγ. Our goal is to obtain the
best possible predictions according to this criterion. Accordingly, we seek loss-minimizing network
weights, which solve the optimization problem

min
α,β

L(α,β,γ).

This makes it explicit that the governing principle in this example is optimization.
Under mild conditions, least squares-based machine learning algorithms converge to the optimal

weights as the size of the training data set grows. For clarity, we work for now with the optimal
network weights.

1. The great mathematician Leonhard Euler once wrote, “nothing at all takes place in the Universe in which some rule
of maximum or minimum does not appear” (as quoted in Marsden and Tromba, 2003).
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For our linear network, the first order conditions necessary for an optimum are

(∂/∂α)L(α,β,γ) = −2Eγ([Y−α−βX]) = 0,

(∂/∂β)L(α,β,γ) = −2Eγ(X[Y−α−βX]) = 0.

LettingµX := Eγ(X), µY := Eγ(Y), µXX := Eγ(X2), andµXY := Eγ(XY), we can conveniently param-
eterizeFγ in terms of the momentsγ := (µX,µY,µXX,µXY). (This parameterization need not uniquely
determineFγ; that is, there may be multiple distributionsFγ for a givenγ. Nevertheless, thisγ is the
only aspect of the distribution that matters here.) We can then express the first order conditions
equivalently as

µY −α−βµX = 0,

µXY−αµX −βµXX = 0.

Now consider how this system fits into Pearl’s causal model. Pearl’s model requires a system
of equations in which the left-hand side variables are structurally determinedby the right-hand side
variables. The first order conditions are not in this form, but, providedµXX −µ2

X > 0, they can be
transformed to this form by solving jointly forα andβ :

α∗ = µY − [µXX−µ2
X]−1(µXY−µXµY)µX,

β∗ = [µXX−µ2
X]−1(µXY−µXµY). (1)

We write(α∗,β∗) to distinguish optimized values from generic values(α,β).
This representation demonstrates that the PCM applies directly to this machine learning prob-

lem. The equations in (1) form a system in which the background (or “structurally exogenous”)
variablesu := (u1,u2,u3,u4) = (µX,µY,µXX,µXY) =: γ determine the endogenous variablesv :=
(v1,v2) = (α∗,β∗). The structural functions( f1, f2) are defined by

f1(u) = u2− [u3−u2
1]
−1(u4−u1u2)u1,

f2(u) = [u3−u2
1]
−1(u4−u1u2).

We observe that by the conventions of the PCM, the background variables u do not have formal
status as causes, as we further discuss below.

In discussing the PCM, Pearl (2000, p. 203) notes that the background variables are often un-
observable, but this is not a formal requirement of the PCM. In our example, we may view theγ
variables as either observable or unobservable, depending on the context. For example, suppose
we are given a linear least-squares learning machine as a black box: we know that it is a learning
machine, but we don’t know of what kind. To attempt to determine what is inside the black box,
we can conduct computer experiments in which we setγ to various known values and observe the
resulting values of(α∗,β∗). In this case,γ is observable.

Alternatively, we may have a least-squares learning machine that we apply toa variety of data
sets obeying the distributionFγ for differing unknown values ofγ. In each case,γ is unobservable,
but we can generate as much data as we want fromFγ.

Intermediate cases are also possible, in which some elements ofγ are known and others are not.
For example, in the multiple data set example, we could have knowledge of a subvector ofγ, for
example, we might knowµX.
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3.2 Learning with Clamping

Next, we study the effects on one of the optimal network weights of interventions to the other
weight. For this, we consider the optimal network weights that arise when oneor the other of the
network weights is clamped, that is, set to an arbitrary fixed value. Specifically, consider

min
α

L(α,β,γ) and min
β

L(α,β,γ).

Clamping is useful in “nested” or multi-stage optimization, as

min
α,β

L(α,β,γ) = min
β

[min
α

L(α,β,γ)] and

min
α,β

L(α,β,γ) = min
α

[min
β

L(α,β,γ)].

See, for example, Sergeyev and Grishagin (2001). Clamping is a centralfeature of a variety of
powerful machine learning algorithms, for example, the restricted Boltzmann machine (e.g., Ackley
et al., 1985; Hinton and Sejnowski, 1986; Hinton et al., 2006; Hinton and Salakhutdinov, 2006).
Learning in stages is particularly useful in cases involving complex optimizations, as in the EM
algorithm (Dempster, Laird, and Rubin, 1977).

The first order condition necessary for theβ-clamped optimum minα L(α,β,γ) is

(∂/∂α)L(α,β,γ) = −2Eγ([Y−α−βX]) = 0.

Equivalently,µY −α−βµX = 0. Solving for the optimalα weight gives

α̃∗ = µY −βµX. (2)

We use the tilde notation to distinguish between the optimal weights with clamping and thejointly
optimal weights obtained above.

Similarly, the first order condition necessary for theα-clamped optimum minβ L(α,β,γ) is

(∂/∂β)L(α,β,γ) = −2Eγ(X[Y−α−βX]) = 0.

Equivalently,µXY−αµX −βµXX = 0. GivenµXX > 0, the optimal weight with clamping is

β̃∗ = µ−1
XX(µXY−αµX). (3)

Writing Equations (2) and (3) as a system, we have

α̃∗ = µY −βµX β̃∗ = µ−1
XX(µXY−αµX). (4)

This resembles a structural system in the form of the PCM, except that here α̃∗ andβ̃∗ appear on the
left, instead ofα andβ. This difference is significant; we address this shortly.

Nevertheless, suppose for the moment that we ignore this difference andmodify the system
above to conform to the PCM by replacingα̃∗ andβ̃∗ with α andβ :

α = µY −βµX β = µ−1
XX(µXY−αµX). (5)
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We takeu = γ as above, but in keeping with our conforming modification, we now take(v1,v2) =
(α,β). The structural functions become

f̃1(u,v2) = u2−v2u1 f̃2(u,v1) = u−1
3 (u4−v1u1).

This system falls into the PCM, with consequent causal status forv, provided there is a unique fixed
point for eachu.

Unfortunately, this fixed point requirement fails here. As is apparent from the equations in (5),
the only necessary restriction onu is thatu3 = µXX > 0. This is the requirement thatX is not equal
to 0 with probability one. Nevertheless, it is readily verified that even with this restriction, the fixed
point requirement fails for allu such that

u3−u2
1 = µXX−µ2

X = 0.

This is the condition thatX = µX with probability one, andµX can take any value, not just zero.
When this condition holds, there is an uncountable infinity of fixed point solutions to the equations
in (5). Stated another way, the solution to the system is set-valued in this circumstance.

Because of the lack of a fixed point, the PCM does not apply and therefore cannot provide causal
meaning for such a system. The inability of the PCM to apply to this simple example of machine
learning with clamping is an unfortunate limitation. Because Halpern’s (2000) GPCM does not
require a unique fixed point, it does apply here. Nevertheless, the lack of the potential response
function in the GPCM prevents the desired causal discourse.

3.3 Settable Systems and Learning with Clamping

We now consider how these issues can be addressed. Our intent is to encompass this example while
preserving the spirit of the PCM. This motivates and helps illustrate various features of our settable
systems framework.

3.3.1 SETTABLE VARIABLES

We begin by taking seriously the difference in roles between(α,β) and(α̃∗, β̃∗) appearing in the
equations in (4). In the simplest sense, the difference is that(α̃∗, β̃∗) and(α,β) appear on differ-
ent sides of the equal signs:(α,β) appears on the right and(α̃∗, β̃∗) on the left. In the PCM, this
difference is fundamentally significant, in that causal relations are asymmetric, with structurally de-
termined (endogenous) variables on the left and all other variables on theright. In settable systems,
we formalize these dual roles by definingsettable variablesas mappingsX with a dual aspect:

X1(0) : = α̃∗, X1(1) := α,

X2(0) : = β̃∗, X2(1) := β. (6)

We call the 0−1 argument of the settable variablesX the “role indicator.” When this is 0, the value
of the variable is that determined by its structural equation. We call these values responses. In
contrast, when the role indicator is 1, the value is not determined by its structural equation, but is
instead set to one of its admissible values. We call these valuessettings. We require that a setting
hasmore than oneadmissible value. That is, settings are variable.

Formally distinguishing between responses and settings makes explicit the dual roles played by
variables in a causal system, entirely in the spirit of the PCM. Settable variables represent a formal
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implementation, alternative to that of the “do operator” in the PCM, of the “wipingout” operation
first proposed by Strotz and Wold (1960) and later used by Fisher (1970).

Once we make explicit the dual roles of the system variables, several benefits become appar-
ent. First, the equal sign no longer has to serve in an asymmetric manner. Thismakes possible
implicit representations of causal relations in settable systems that are either not possible in the
PCM, because the required closed-form expressions do not exist; orthat are possible in the PCM
only under restrictions permitting application of the implicit function theorem. Suchimplicit repre-
sentations are often natural for responses satisfying first order conditions arising from optimization.
To illustrate, consider how explicit representation of the dual roles of system variables modifies
the learning with clamping system. The first order condition necessary for the β-clamped optimum
minα L(α,β,γ) is now

µY − α̃∗−βµX = 0.

That for theα-clamped optimum minβ L(α,β,γ) is now

µXY−αµX − β̃∗µXX = 0.

The structural system thus has the implicit representation

µY − α̃∗−βµX = 0, (7)

µXY−αµX − β̃∗µXX = 0. (8)

3.3.2 SETTABLE SYSTEMS AND THE ROLE OF FIXED POINTS

A second benefit of making explicit the dual roles of the system variables isthat unique fixed
points do not have a crucial role to play in settable systems. This enables us todispense with the
unique fixed point requirement prohibiting the PCM from encompassing ourlearning with clamping
example. This is not to say that fixed points have no role to play. Instead, that role is removed from
the structural representation of the system and, to the extent relevant, operates according to the
governing principle, for example, optimization or equilibrium. We discuss this further below.

To illustrate, consider the learning with clamping system above where the dualroles of the
system variables are made explicit. Now there is no necessity of finding a fixed point for Equations
(7) and (8). Each equation stands on its own, representing its associatedclamped optimum.

The simplest case is that forα̃∗. For everyµX,µY, andβ, there is a unique solution,

α̃∗ = µY −βµX =: r̃1(β,γ).

We call r̃1 theresponse functionfor X1.

Next consider̃β∗. ProvidedµXX > 0, Equation (8) determines a unique value forβ̃∗,

β̃∗ = µ−1
XX(µXY−αµX).

But what happens whenµXX = 0? This further impliesµX = µXY = 0. Consequently,anyvalue will
do for β̃∗, as any value of̃β∗ delivers the best possible prediction. To arrive at a unique value forβ̃∗,
we can apply criteria supplemental to predictive optimality. For example, we may choose a value
that has the simplest representation. This reduces the viable choices toβ̃∗ ∈ {0,1}, as either of
these requires only one bit to represent. Finally, by selectingβ̃∗ ∈ {0}, so that we set̃β∗ = 0 when
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µXX = 0, we achieve a prediction,f (X;α, β̃∗) = α, that requires the fewest operations to compute.
Formally, this gives

β̃∗ = 1{µXX>0}µ
−1
XX(µXY−αµX) =: r̃2(α,γ),

where 1{µXX>0} is the indicator function taking the value one whenµXX > 0, and zero otherwise. We
call r̃2 the response function forX2.

This example demonstrates that even when structural equations conformingto the PCM (i.e.,
Equation 5) do not have a fixed point, we can find unique response functions for each settable
variable of the analogous settable system. We do this by applying the governing principle for the
system (e.g., optimization), supplemented when necessary by further appropriate principles (e.g.,
parsimony of memory and computation).

Applying the settable variable representation in the equations in (6), we obtaina settable vari-
ables representation for our learning with clamping example:

X1(0) = r̃1(X2(1),γ), X2(0) = r̃2(X1(1),γ).

So far, the variableγ has not been given status as a settable variable. Although it does not have
a dual aspect, it can be set to any of several admissible values (those inΓ), so it does have the aspect
of a setting. Accordingly, we can defineX0(1) := γ. To ensure thatX0 is a well-defined settable
variable, we must also specify a value forX0(0). By convention, we simply putX0(0) := X0(1).
We callX0 fundamentalsettable variables. As these are determined outside the system, they are
structurally exogenous.

We can now give an explicit settable system representation for our present example, that is, a
representation solely in terms of settable variables:

X1(0) = r̃1(X2(1),X0(1)) X2(0) = r̃2(X1(1),X0(1)).

3.4 Causes and Effects: Settable Systems and the PCM

This section introduces causal notions appropriate to settable systems.

3.4.1 DIRECT CAUSALITY

We begin by considering our learning with clamping example, where

α̃∗ = r̃1(β,γ), β̃∗ = r̃2(α,γ).

In particular, consider the equationβ̃∗ = r̃2(α,γ). In settable systems, settings are variable, that is,
they can take any of a range of admissible values. We view this as sufficientto endow them with
potential causal status. Thus, we callα andγ potential causesof β̃∗.

We say that a given element of(α,γ) does not directly causẽβ∗ if r̃2(α,γ) defines a function
constant in the given element for all admissible values of the other elements of(α,γ). Otherwise,
that element is adirect causeof β̃∗. According to this definition,µY does not directly causẽβ∗,
whereasµX,µXX,µXY, andα are direct causes ofβ̃∗.

3.4.2 INTERVENTIONS AND DIRECT EFFECTS INSETTABLE SYSTEMS

In settable systems, anintervention to a settable variableis a pair of distinct admissible setting
values. In our clamped learning example, letα1 and α2 be different admissible values forα.
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Thenα1 → α2 := (α1,α2) is an intervention toα, or, more formally, toX1. Similarly, (α1,γ1) →
(α2,γ2) := ((α1,γ1),(α2,γ2)) is an intervention to(α,γ) (i.e., to (X1,X0)). Thedirect effecton a
given settable variable of a specified intervention is the response difference arising from the in-
tervention. In our clamped learning example, the direct effect onX2 of the interventionα1 → α2

is

∆r̃2(α1,α2;γ) : = r̃2(α2,γ)− r̃2(α1,γ)
= 1{µXX>0}µ

−1
XX(α1−α2)µX.

We emphasize that interventions are always well defined, as settings necessarily have more than
one admissible value. Indeed, a key reason that we require settings to be variable is precisely to
ensure that interventions to settable variables are always meaningful.

PCM notions related to the settable systems notion of intervention are the do operator and the
“effect of action” defined in definition 7.1.3 of Pearl (2000); these specify a submodel associated
with a given realizationx for a given subset of the endogenous variablesv.

3.4.3 EXOGENOUS ANDENDOGENOUSCAUSES

The notion of causality just defined contrasts in an interesting way with that formally given in the
PCM. We have just seen thatγ can serve in the settable system as a direct cause ofβ̃∗. Above, we
saw thatγ corresponds to background variablesu in the PCM. In the PCM, the formal concept of
submodeland thedo operatornecessary to define causal relations are meaningful only for endoge-
nous variablesv. None of these concepts are defined foru; that is,u is not subject to counterfactual
variation in the PCM.2 Consequently,u does not have formal causal status in the PCM as defined in
Pearl (2000, Chap. 7).

In the PCM,u thus has four explicit distinguishing features: it is(i) a vector of variables that
(ii) are determined outside the system,(iii ) determine the endogenous variables, and(iv) are not
subject to counterfactual variation. An optional but common feature ofu is: (v) it is unobservable.
As a result, background variables cannot act as causes in the PCM; in particular, for a given system,
the PCM formally rules out structurally exogenous unobserved causes.

In settable systems, we drop requirement(iv) for structurally exogenous variables. Thus, we
allow for observed structurally exogenous causes such as a treatment of interest in a controlled
experiment, which is typically directly set (and observed) by the researcher. We also allow for un-
observable structurally exogenous causes, ensuring a causal framework that is not relative to the
capabilities of the observer, as is appropriate to the macroscopic, non-quantum mechanical systems
that are the strict focus of our attention here. Unobserved common causes are particularly relevant
for the analysis of confounding, that is, the existence of hidden causalrelations that may prevent the
identification of causal effects of interest (see Pearl, 2000, Chap. 3.3-3.5). Also, unobserved struc-
turally exogenous causes are central to errors-in-variables models where a structurally exogenous
cause of interest cannot be observed. Instead, one observes an version of this cause contaminated by
measurement error. These models are the subject of a vast literature in statistics and econometrics
(see, e.g., van Huffel and Lemmerling, 2002, and the references there).

Dropping(iv) in settable systems creates no difficulties in defining causal relations, as direct
causality is a property solely of the response function on its domain. Moreover, by requiring that
settings have more than one admissible value, we ensure that these domains contain at least two

2. We are grateful to two of the referees for emphasizing this.

1769



WHITE AND CHALAK

points, making possible the interventions supporting definitions of effects in settable systems. We
will return to this point shortly.

In the PCM, endogenous variables are usually observable, although thisis not formally required.
Structurally endogenous settable variablesX may also be observable or not.

Fortunately, the PCM treats a variable as a background variable or an endogenous variable rel-
ative to the analysis. If the effects of a variable are of interest, it can be converted to an endogenous
variable in an alternative PCM. Nevertheless, the PCM does not provide guidance on whether to
treat a variable as a background variable or an endogenous one. Thisdecision is entirely left to the
researcher’s discretion. For example, the “disturbances” in the Markovian PCM “represent back-
ground variables that the investigator chooses not to include in the analysis” (Pearl, 2000, p. 68), but
the PCM does not specify how an investigator chooses to include variablesin the analysis. Nor is it
clear that background variables are necessary to the analysis in the first place. For example, Dawid
(2002, p. 183) states that “when the additional variables are pure mathematical fictions, introduced
merely so as to reproduce the desired probabilistic structure of the domain variables, there seems
absolutely no good reason to include them in the model.”

Settable systems permit but do not require background variables. Further, and of particular
significance, in a settable system a governing principle such as optimization provides a formal
way to distinguish between fundamental settable variables (exogenous variables) and other settable
variables (endogenous variables). In particular, the decision problemdetermines if a variable is
exogenous or endogenous. For instance, in our clamped learning example, the optimal network
weightsα̃∗ andβ̃∗ minimize the loss functionL(α,β,γ). On the other hand, although the elements
of γ are variables, our learning example does not specify a decision problemthat determines how
these are generated. This distinction endows the variablesα̃∗ andβ̃∗ with the status of endogenous
variables and the elements ofγ with the status of structurally exogenous variables.

Thus, carefully and explicitly specifying the decision problems and governing principles in
settable systems provides a systematic way to distinguish between exogenous and endogenous vari-
ables. This formalizes and extends the distinctions between the PCM endogenous and exogenous
variables.

The PCM has been fruitfully applied in the sciences (e.g., Shipley, 2000). Nevertheless, because
the PCM is agnostic concerning the status of variables, two researchers may employ two possibly
inconsistent PCMs to study the same scientific phenomena. To resolve such inconsistencies, one
may use the fact that under suitable assumptions, causal relations imply empirically testable condi-
tional independence relations among system variables (Pearl, 2000; Chalak and White, 2008b). This
yields procedures for falsifying causal structures that are inconsistent with data. Such procedures
at best identify a class of observationally equivalent causal models, soresolution of inconsistencies
by this means is not guaranteed. On the other hand, specifying the decisionproblems underlying
the phenomena of interest may, among other things, offer guidance as to which (if either) model is
more suitable to the analysis. The settable systems framework provides the foundation necessary
for this in the context of optimally interacting agents under uncertainty. We emphasize that agents
and their decision problems may be defined in such a way as to apply even to physical or biological
systems not usually thought of in these terms; any system involving optimizing (e.g., least energy,
maximum entropy) and/or equilibrium falls into this framework.
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3.5 Unclamped Learning and Settable Systems

Now consider how our original unclamped learning example is representedusing settable systems.
We begin by recognizing that the solution to a given optimization problem need not be unique, but
is in general a set. When the solution depends on other variables, the solution is in general a cor-
respondence, not a function (see, e.g., Berge, 1963). Thus, we write the solution to the unclamped
learning problem as

(A∗(γ),B∗(γ)) := argmin
α,β

L(α,β,γ),

whereA
∗(γ) andB

∗(γ) define correspondences.
Due to the linear network architecture, we can explicitly representA

∗(γ) andB
∗(γ) as

A
∗(γ) = {α : [µXX−µ2

X](α−µY)+(µXY−µXµY)µX = 0},

B
∗(γ) = {β : [µXX−µ2

X]β− (µXY−µXµY) = 0}.

WhenµXX−µ2
X > 0, A

∗(γ) andB
∗(γ) each have a unique element, namely

α∗ = µY − [µXX−µ2
X]−1(µXY−µXµY)µX,

β∗ = [µXX−µ2
X]−1(µXY−µXµY).

WhenµXX − µ2
X = 0, we can select a unique value from each ofA

∗(γ) andB
∗(γ). Choosing the

simplest representation and the simplest computation of the prediction yieldsα∗ = µY andβ∗ = 0.
We thus represent optimal weights using response functionsr1 andr2 as

α∗ = r1(γ) := µY −1{µXX−µ2
X>0}[µXX−µ2

X]−1(µXY−µXµY)µX,

β∗ = r2(γ) := 1{µXX−µ2
X>0}[µXX−µ2

X]−1(µXY−µXµY).

These response functions do represent fixed points of the equations in(5). This illustrates the role
that fixed points can play in determining the response functions. Observe,however, that we do not
require auniquefixed point.

Applying the settable system definition of direct causality, we have that a given element ofγ,
sayγi , does not directly causeα∗ (resp. β∗) if r1(γ) (resp. r2(γ)) defines a function constant inγi

for all admissible values of the other elements ofγ. Otherwise, that element is a direct cause ofα∗

(resp.β∗). Here, each element ofγ directly causes bothα∗ andβ∗.
In this example, we have the settable system representation

X1(0) = r1(X0(1)), X2(0) = r2(X0(1)),

whereX0(0) := X0(1) := γ,X1(1) := α,X2(1) := β as before, but nowX1(0) := α∗ andX2(0) := β∗.
Finally, we note that the system outputs of the clamped and unclamped systems are mutually

consistent, in the sense that if we plug the responses of the unclamped system into the response
functions(r̃1, r̃2) of the clamped system as settings, we obtain clamped responses that replicatethe
responses of the unclamped system. That is, puttingX c

1 (1) = X u
1 (0) andX c

2 (1) = X u
2 (0), where we

now employ the superscriptsc andu to clearly distinguish clamped and unclamped system settable
variables, we have

X u
1 (0) = r̃1(X

u
2 (0),X0(1)), X u

2 (0) = r̃2(X
u
1 (0),X0(1)),

as some simple algebra will verify. This mutual consistency is ensured by the governing principle
of optimization.
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3.6 Partitioning in Settable Systems

In the PCM, the role of submodels (Pearl, 2000, Def. 7.1.2) is to specify which endogenous vari-
ables are subject to manipulation; the do operator specifies which values themanipulated variables
take. In settable systems, submodels and the do operator are absent. Nevertheless, settable systems
do have an analog of submodels, but instead of specifying which variables are to be manipulated, a
settable system specifies which system variables are free to respond to theothers. In our learning
examples, settable systems specify which variables are unclamped. In our first example, both vari-
ables are unclamped. In the second example, the variables are considered one at a time, and each
variable is unclamped in turn.

3.6.1 PARTITIONING

A formal mathematical implementation of these specifications is achieved bypartitioning. Partition-
ing operates on an index setI whose elements are in one-to-one correspondence to the structurally
endogenous (non-fundamental) settable variables. In our learning examples, there are two such
variables, so the index set can be chosen to beI = {1,2}.

Let I be any set with a countable number of elements. A partitionΠ is a collection of subsets
Π1,Π2, ... of I that are mutually exclusive (Πa∩Πb = ∅,a 6= b) and exhaustive (∪b Πb = I ). Ex-
amples are theelementary partition, Πe := {Πe

1, ...,Π
e
n}, whereΠe

1 := {1},Πe
2 := {2}, ..., and the

global partitionΠg := {Πg
1}, whereΠg

1 := I .
WhenI = {1,2}, these are the only two possible partitions:Πe = {Πe

1,Π
e
2}, whereΠe

1 = {1}
andΠe

2 = {2}; andΠg = {Πg
1}, whereΠg

1 = {1,2}.
We interpret the partition elements as specifying which of the system variablesare jointly free to

respond to the remaining variables of the system, according to the governingprinciple of the system
(e.g., optimization). In our machine learning examples withI = {1,2}, the elementΠe

1 = {1} of the
elementary partitionΠe specifies that variable 1 (i.e.,α̃∗) is free to respond to all other variables of
the system (i.e.,(β,γ)), whereasΠe

2 = {2} specifies that variable 2 (i.e.,β̃∗) is free to respond to all
other variables of the system (i.e.,(α,γ)). The elementΠg

1 = {1,2} of the global partition specifies
that variables 1 and 2 (i.e.,(α∗,β∗)) are jointly free to respond to all other variables of the system
(i.e.,γ).

In settable systems, response functions are partition specific. WithΠe, we have

α̃∗ = r̃1(β,γ), β̃∗ = r̃2(α,γ);

with Πg, we have
α∗ = r1(γ), β∗ = r2(γ)

for the response functions(r̃1, r̃2) and(r1, r2) defined above. This implies that the settable variables
and the resulting causal relations arepartition specific.

We note that the distinction between the response functions(r̃1, r̃2) and (r1, r2) is not due to
additional constraints imposed on the optimization problem per se. Instead, thedistinction follows
from whether learning occurs with or without clamping and hence on whether or not alpha and beta
respond jointly. Thus, different optimization problems yield different corresponding partitions and
response functions.

These partitioning concepts and principles extend to systems with any number of structurally
endogenous variables. We discuss further examples below.
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 X  Y  XX  XY  X  Y  XX  XY 

!* "* !* "*

(a) (b) 

Figure 1: PCM Directed Acyclic Graphs

3.6.2 SETTABLE SYSTEM CAUSAL GRAPHS

Given the applicability of the PCM to the unclamped learning example, this system has an associated
PCM directed acyclic graph (DAG). The particular representation of this graph depends on whether
or not the background variables are observable or not. Figure 1(a) depicts the case of observableγ
and Figure 1(b) that of unobservableγ. The solid arrows in Figure 1(a) indicate that the background
variables are observable, whereas the dashed arrows in Figure 1(b)indicate that the background
variables are not observable.

In interpreting these graphs, note that the arrows, whether solid or dashed, represent the func-
tional relationships present. They do not, however, represent causal relations, as in the PCM these
are defined to hold only between endogenous variables, and no arrowslink the endogenous variables
here. Pearl (2000) often uses the term “influence” to refer to situationsinvolving functional depen-
dence, but not causal dependence. In this sense, the arrows in these DAGs represent “influences.”

In contrast, due to the lack of a fixed point, the PCM does not apply to the learning with clamping
example. Necessarily, the PCM cannot supply a causal graph.

In settable systems, partitions play a key role in constructing causal graphsthat represent direct
causality relations. To see how, consider our clamped learning example. Here,µY (i.e.,X0,2(1)) does
not directly causẽβ∗ (X2(0)), whereasµX,µXX,µXY, andα (X0,1(1),X0,3(1),X0,4(1), andX1(1)) are
direct causes of̃β∗ (X2(0)). We can succinctly and unambiguously state these causal relations in
terms of settable variables by saying thatX0,2 does not directly causeX2, whereasX0,1,X0,3,X0,4,
andX1 are direct causes ofX2.

For each blockΠb of a partitionΠ = {Πb}, we construct a settable system causal graph by
letting nodes correspond to settable variables. If one settable variable directly causes another, we
draw an arrow from the node representing the cause to that representing the responding settable
variable. Note that in contrast to the DAGs for the PCM, we represent all direct causal links as solid
arrows, letting dashed nodes represent unobservable settable variables. The motivation for this is
that unobservability is a property of the settable variable (the node), not the links between nodes.

Figures 2(a) and 2(b) depict the causal graphs for our clamped learning example. There are two
causal graphs, as the clamped learning example expresses the elementarypartitionΠe = {{1},{2}}.
For purposes of illustration, we depict the case in whichγ is unobserved.
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(a)

 0,4 0,3 0,2 0,1

 1  2

(b) 

 0,4 0,3 0,2 0,1

 1  2

Figure 2: Block-specific Settable System Causal Graphs for the Elementary Partition

 0,4 0,3 0,2 0,1

 1  2

Figure 3: Settable System Superimposed Causal Graph for the Elementary Partition

For convenience, we may superimpose settable system causal graphs. Superimposing Fig-
ures 2(a) and 2(b) gives Figure 3. This is a cyclic graph. Nevertheless, this cyclicality does not
represent true simultaneity; it is instead an artifact of the superimposition.

The settable system causal graph for the global partitionΠg = {{1,2}} representing unclamped
learning is depicted in Figure 4. Observe that this reproduces the connectivity of Figure 1. Note
that in Figure 4, the nodes represent settable variables and the arrows represent direct causes. In
Figure 1, the nodes represent background or endogenous variables and the arrows represent non-
causal “influences.”

We emphasize that the causal graphs associated with settable systems are not necessary to the
analysis. Rather, they are sometimes helpful in succinctly representing andstudying causal rela-
tions.

 0,4 0,3 0,2 0,1

 1  2

Figure 4: Settable System Causal Graph for the Global Partition
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3.7 Further Examples Motivating Settable System Features

We now introduce two further features of settable systems, countable dimension and attributes, using
examples involving machine learning algorithms and networks with hidden units. This provides
further interesting contrasts between settable systems and the PCM.

3.7.1 A MACHINE LEARNING ALGORITHM AND COUNTABLE DIMENSIONALITY

So far, we have restricted attention to the optimal network weights for linear least-squares machine
learning. Now consider the machine learning algorithm itself. For this, let

µ̂x,0 = µ̂y,0 = µ̂xx,0 = µ̂xy,0 = α̂0 = β̂0 = 0,

and perform the recursion

µ̂x,n = µ̂x,n−1 +n−1(xn− µ̂x,n−1)

µ̂y,n = µ̂y,n−1 +n−1(yn− µ̂y,n−1)

µ̂xx,n = µ̂xx,n−1 +n−1(x2
n− µ̂xx,n−1)

µ̂xy,n = µ̂xy,n−1 +n−1(xnyn− µ̂xy,n−1) (9)

β̂n = 1{µ̂xx,n−µ̂2
x,n>0}[µ̂xx,n− µ̂2

x,n]
−1(µ̂xy,n− µ̂x,nµ̂y,n)

α̂n = µ̂y,n− β̂nµ̂x,n, n = 1,2, ....

Variables determined outside the system are the observed data sequencesx := (x1,x2, ...) andy :=
(y1,y2, ...). Variables determined within the system are ˆµx := (µ̂x,0, µ̂x,1, ...), µ̂y := (µ̂y,0, µ̂y,1, ...), µ̂xx :=
(µ̂xx,0, µ̂xx,1, ...), µ̂xy := (µ̂xy,0, µ̂xy,1, ...), α̂ = (α̂0, α̂1, ...), andβ̂ := (β̂0, β̂1, ...). Under mild conditions,
α̂n converges toα∗ andβ̂n converges toβ∗.

We now ask whether this system falls into the PCM. The answer is no, because the PCM requires
the dimensions of the background and endogenous variables to be finite. Here these dimensions are
countably infinite. The PCM does not apply. (As a referee notes, however, a countably infinite
version of the PCM has recently been discussed by Eichler and Didelez, 2007).

In contrast, settable systems encompass this learning system by permitting the settable variables
to be of countably infinite dimension. The definitions of direct causality and thenotion of partition-
ing operate identically in either the finite or the countably infinite case. Settable systems generally
accommodate any recursive learning algorithm involving data sequences of arbitrary length.

3.7.2 LEARNING WITH A HIDDEN UNIT NETWORK AND ATTRIBUTES

To motivate the next feature of settable systems, we return to considering theeffect on an optimal
network weight of interventions to distributional parameters,γ, and another network weight. Now,
however, we modify the prediction function to be that defined by

f (X;α,β) = α φ(βX).

This is a single hidden layer feedforward network with a single hidden unit having the activation
function φ. For concreteness, letφ be the standard normal density. This activation function often
appears in radial basis function networks. For clarity, we consider onlya single inputX, a single
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input-to-hidden weightβ, and a single hidden-to-output weightα. This elementary structure suffices
to make our key points and keeps our notation simple.

Now the expected squared prediction error is

L(α,β,γ;φ) := Eγ([Y−α φ(βX)]2).

Here,γ reverts to representing the general parameter indexingFγ. The choiceγ := (µX,µY,µXX,µXY)
considered above is no longer appropriate, due to the nonlinearity in network output induced by
φ. Further, note the presence of the hidden unit activation functionφ in the argument list ofL. We
make this explicit, asφ certainly helps determine prediction performance, and it has a key role to
play in our subsequent discussion.

Now consider the clamped optimization problems corresponding to the elementarypartitionΠe.
This yields solutions

Ã
∗(β,γ;φ) : = argmin

α∈A

L(α,β,γ;φ),

B̃
∗(α,γ;φ) : = argmin

β∈B

L(α,β,γ;φ).

We ensure the existence of compact-valued correspondencesÃ
∗(β,γ;φ) andB̃

∗(α,γ;φ) by (among
other things) takingA andB to be compact subsets ofR. Elementsα̃∗ of Ã

∗(β,γ;φ) and β̃∗ of
B̃
∗(α,γ;φ) satisfy the necessary first order conditions

Eγ([φ(βX)]2)α̃∗−Eγ(φ(βX)Y) = 0,

Eγ(Dφ(β̃∗X)Y)−αEγ[Dφ(β̃∗X)φ(β̃∗X)] = 0,

whereDφ denotes the first derivative of theφ function. We caution that although these relations nec-
essarily hold for elements of̃A∗(β,γ;φ) andB̃

∗(α,γ;φ), not all (α,β) values jointly satisfying these
implicit equations are members of̃A

∗(β,γ;φ) and B̃
∗(α,γ;φ). Some solutions to these equations

may be local minima, inflection points, or (local) maxima.
The PCM does not apply here, due (among other things) to the absence ofa unique fixed point.

Nevertheless, settable systems do apply, using a principled selection of elements fromÃ
∗(β,γ;φ)

andB̃
∗(α,γ;φ), respectively. We write these selections

α̃∗ = r̃1(β,γ;φ), β̃∗ = r̃2(α,γ;φ).

The feature distinguishing this example from our earlier examples is the appearance in the re-
sponse functions of the hidden unit activation functionφ. The key feature ofφ is that it takes one
and only one value:φ is the standard normal density. It is therefore not a variable. Consequently,
it cannot be a setting, and it is distinct from any of the other objects we havepreviously examined.
We define anattribute to be any object specified a priori that helps determine responses but is not
variable. We associate attributes with the system units. Any attribute of the system itself is asystem
attribute; we formally associate system attributes to each system unit. Here,φ is a system attribute.
Because a unit’s associated attributes are constant, they are not subjectto counterfactual variation.
Nevertheless, attributes may differ across units.

One generally useful attribute is the attribute ofidentity. This is a label assigned to each unit
of a given system that can take only the assigned value, and whose valueis shared by no other unit
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of the system. The identity attribute is required by settable systems, as the identity labels are those
explicitly used in the partitioning operation. The identity attribute is also a feature of the PCM, as
background and endogenous variables are distinct types of objects, and elements of each distinct
type have identifying subscripts.

When attributes beyond identity are present, they need not be distinct across units. For example,
the quantityn appearing in several of the response functions in the learning algorithm of Equation
(9) is an attribute shared by those units.

We emphasize that attributes are relative to the particular structural system, not somehow ab-
solute. Some objects may be taken as attributes solely for convenience. For example, one might
consider several different possible activation functions and attempt to learn the best one for a given
problem. In such systems, the hidden unit activation is no longer an attribute but is an endogenous
variable. In other cases, it may be more convenient to treat the activation function as hard-wired,
in which case the activation function is an attribute. Indeed, any hard-wired aspect of the system is
properly an attribute. Convenience may even dictate treating as attributes objects that are in prin-
ciple variable, but whose degree of variation is small relative to that of other system variables of
interest.

Other system aspects are more inherently attributes. Because of their fundamental role and
their invariance, such attributes are easily taken for granted and thus overlooked. Our least-squares
learning example is a case in point. Specifically, the loss function itself is properly viewed as an
attribute.

A useful way to appreciate this is to consider the loss functions

Lp(α,β,γ) :=
Z

|y− f (x;α,β)|pdFγ(x,y), p > 0.

In our examples so far, we always takep = 2, soL = L2. Different choices are possible, yielding
different loss functions. A leading example is the choicep = 1. Whereasp = 2 yields forecasts
that approximate the conditional mean ofY given X, p = 1 yields forecasts that approximate the
conditional median ofY givenX.

Becausep is a constant specified a priori and becausep helps determine the optimal responses,p
is an attribute. When the forecaster’s goal is explicitly to provide a forecast based on the conditional
mean, it makes little sense to consider values ofp other than 2, because no other value ofp is
guaranteed to generally deliver an approximation to the conditional expectation. Put somewhat
differently, it may not make much sense to attempt to endogenizep and choose an “optimal” value
of p from some set of admissible values because the result of choosing different values forp is to
modify the very goal of the learning exercise. Nor can one escape fromattributes by endogenizing
p; as long as there is some optimality criterion at work, this criterion is properly anattribute of the
system.

Another important example of inherent attributes is provided by the setsSi that specify the
admissible values taken by the settingsXi(1) and responsesXi(0). These are properly specified
a priori; they take one and only one value for each uniti; and they play a fundamental role in
determining system responses.

Because attributes in settable systems are fixed a priori for a given unit, they take values in
a (non-empty) degenerate set. Accordingly, attributes cannot be settings,and thus can never be
potential causes, much less direct causes. This formal distinction betweenattributes and potential
causes is unambiguous in settable systems.
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3.7.3 ATTRIBUTES IN THE PCM

In contrast, a somewhat ambiguous situation prevails in the PCM. Viewing attributes as a subset
of those objects having no causal status, Pearl (2000, p. 98) states that attributes can be treated
as elements ofu, the background variables.3 This overlooks the key property we wish to assign
to attributes: for a given unit, they are fixed, not variable. Such objects thus cannot belong tou
if one takes the word “variable” at face value. In our view, assigning attributes tou misses the
opportunity to make an important distinction between invariant aspects of the system units on the
one hand and counterfactual variation admissible for the system unit values on the other. Among
other things, assigning attributes tou interferes with assigning natural causal roles to structurally
exogenous variables.

Further, just as for endogenous and exogenous variables, the PCM does not provide guidance
about how to select attributes. In contrast, settable systems clearly identify attributes as invariant
features of the system units that embody fundamental aspects of the decision problem represented
by the settable system.

Below, we will further distinguish attributes from variables when we discussstochastic settable
systems.

3.8 A Comparative Review of PCM and Settable System Features

At this point, it is helpful to take stock of the features of settable systems that we have so far
introduced and contrast these with corresponding features of the PCM.

(1) Settable systems explicitly represent the dual roles of the variables of structural systems us-
ing settable variables. These dual roles are present but implicit in the PCM.Settable variables can
be responses, or they can be set to given values (settings). The explicit representation of these dual
roles in settable systems makes possible implicitly defined structural relations thatmay not be repre-
sentable in the PCM. Further, these implicit structural relations may involve correspondences rather
than functions. Principled selections from these correspondences yieldunique response functions
in settable systems.

(2) In settable systems, all variables of the system, structurally exogenousor endogenous, have
causal status, in that they can be potential causes or direct causes. Further, no assumptions are
made as to the observability of system variables: structurally exogenous variables may be either
observable or unobservable; the same is true for structurally endogenous variables. In particular,
this permits settable systems to admit unobserved causes and results in causalrelations that are not
relative to an observer. In contrast, the PCM admits causal status only forendogenous variables.
For the PCM, structurally exogenous unobserved causes are ruled out. Although the PCM does
permit treating background variables as endogenous variables in alternative systems, it is silent
as to how to distinguish between exogenous and endogenous variables. On the other hand, the
governing principles in settable systems provide a formal and explicit means for distinguishing
between endogenous and exogenous variables.

(3) Settable systems admit straightforward definitions of interventions and direct effects. These
notions, while present, are less direct in the formal PCM.

(4) In settable systems, partitioning permits specification of different mutually consistent ver-
sions of a given structural system in which different groups of variables are jointly free to respond to
the other variables of the system. In particular, system variables can respond either singly or jointly

3. This possibility is also suggested by two referees.

1778



SETTABLE SYSTEMS

to the other variables of the system, as illustrated by our examples of learning with or without clamp-
ing. Similar exercises are possible in the PCM using submodels and the do operator, but the PCM
requirement of a unique fixed point limits its applicability. Specifically, we saw that learning with
clamping falls outside the PCM. Halpern’s (2000) GPCM does apply to such systems, but causal
discourse is problematic, due to the absence of the potential response function. In settable systems,
fixed points are not required, and causal notions obtain without requiring the potential response
function. This permits settable systems to provide causal meaning in our examples of learning with
or without clamping.

(5) Settable systems can have a countable infinity of units, whereas the PCM requires a finite
number of units.

(6) In settable systems, attributes are a priori constants associated with the units that help deter-
mine responses. In the PCM, attributes are not necessarily linked to the system units. Further, they
are treated not as constants, but as background variables, resulting inpotential ambiguity. The PCM
is silent as to how to distinguish between attributes and variables.

Some features of settable systems, such as relaxing the assumption of uniquefixed points (point
4) and accommodating an infinity of agents (point 5), are entirely unavailablein the PCM. The
remaining settable systems features above rigorously formalize and extend or refine related PCM
features and thus permit more explicit causal inference.

4. Stochastic Settable Systems: Heuristics

In the PCM, randomness does not formally appear until definition 7.1.6 (probabilistic causal model).
Nevertheless, Pearl’s (2000) definitions 7.1.1 through 7.1.5 (causal model, submodel, effect of ac-
tion, potential response,andcounterfactual) explicitly refer to “realizations”paor x of endogenous
variablesPAor X. These references make sense only ifPAandX are interpreted as random vectors.
Althoughu is not explicitly called a realization, the language of definition 7.1.1 further suggests that
u is viewed as a realization of random background variables,U . This becomes explicit in definition
7.1.6, where PCM background variablesU become governed by a probability measureP. Random-
ness of endogenous variables is then induced by their dependence onU . In this sense, definitions
7.1.1 through 7.1.5 do not have fully defined content until definition 7.1.6 resolves the meaning
of U,V,PA, andX. Nevertheless, definitions 7.1.1 through 7.1.5 are perfectly meaningful, simply
viewing the referenced variables as real numbers.

The settable systems discussed so far are entirely non-stochastic: the settings and responses
defined in Section 3 are real numbers, not random variables. Nevertheless, we can connect causal
and stochastic structures in settable systems by viewing settings and responses as realizations of
random variables, in much the same spirit as the PCM. In this section we discuss some specifics of
this connection.

4.1 Introducing Randomness into Settable Systems

First, instead of only the background variablesu representing realizations of random variables, in
settable systemsall settings represent realizations of random variables governed by an underly-
ing probability measure. For example, in our hidden unit clamped learning example, (α,β,γ) are
realizations of random variables(A,B,C) governed by a probability measureP on an underlying
measurable space(Ω,F ). The randomness of the responses is induced by their dependence on the
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settings. Thus, in the hidden unit clamped learning example, we have randomresponses

Ã∗ = r̃1(B,C;φ), B̃∗ = r̃2(A,C;φ).

Second, the underlying probability measure for settable systems can depend on the attribute
vector, call ita, of the system. Whereas in the PCM attributes are “lumped together” with other
background variables, and may therefore be random, this is not permitted insettable systems. In
settable systems, attributes are specified a priori and take one and only onevalue,a. Because of its
a priori status, this value is non-random.

It follows that the probability measure governing the settable system can be indexed bya. This is
not an empty possibility; it has clear practical value. One context in which thispractical value arises
is when attention focuses only on the units of some subsystem of a larger system. For example,
consider the least squares machine learning algorithm of the equations in (9), and focus attention on
the subsystem

B̂ = 1{M̂xx−M̂2
x>0}[M̂xx− M̂2

x ]
−1(M̂xy− M̂xM̂y),

Â = M̂y− B̂M̂x.

Note that we have modified the notation to reflect the fact that the settingsM̂x,M̂y,M̂xx, andM̂xy

are now random variables. These generate realizations ˆµx,n, µ̂y,n, µ̂xx,n, andµ̂xy,n under a probability
measurePn, which is that induced by the probability measure governing the random fundamental
settings{(X1,Y1), ...,(Xn,Yn)}. Note the explicit dependence of the probability measurePn on the
attributen. The fact that this probability measure can depend on attributes underscores their nature
as a priori constants in settable systems.

4.2 Some Formal Properties of Stochastic Settable Systems

Given attributesa, we let(Ω,F ,Pa) denote the complete probability space on which the settings and
responses are defined. Here,Ω is a set (the “universe”) whose elementsω index possible outcomes
(“possibilities”);F is aσ−field of measurable subsets ofΩ whose elements represent events; and
Pa is a probability measure (indexed bya) on the measurable space(Ω,F ) that assigns a number
Pa(F) to each eventF ∈ F . See, for example, White (2001, Chap. 3) for an introductory discussion
of measurable spaces and probability spaces.

We decomposeω asω := (ωr ,ωs), with ωr ∈ Ωr ,ωs ∈ Ωs, so thatΩ = Ωr ×Ωs. As we discuss
next, this enables distinct components ofω to underlie responses (ωr ) and settings (ωs). This facili-
tates straightforward and rigorous definitions of counterfactuals and interventions. These notions in
turn support a definition of direct effect.

To motivate the foundations for defining counterfactuals, again considerthe hidden unit clamped
learning example. Formally, the random settings(A,B,C) are measurable functionsA : Ωs → R,
B : Ωs → R, andC : Ωs → R

m, m∈ N. Letting ωs belong toΩs, we take the setting values to be the
realizations

α = A(ωs) =: X1(ω,1),

β = B(ωs) =: X2(ω,1),

γ = C(ωs) =: X0(ω,1).
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Observe that the settings depend only on theωs component ofω. We make this explicit inA(ωs),
B(ωs), andC(ωs), but leave this implicit in writingX0(ω,1), X1(ω,1), andX2(ω,1) for notational
convenience.

The responses are determined similarly:

Ã∗(ω) = r̃1(B(ωs),C(ωs),ωr ;φ) = r̃1(X2(ω,1),X0(ω,1),ωr ;φ) =: X1(ω,0),

B̃∗(ω) = r̃2(A(ωs),C(ωs),ωr ;φ) = r̃2(X1(ω,1),X0(ω,1),ωr ;φ) =: X2(ω,0).

Note that we now make explicit the possibility that the response functions may depend directly on
ωr . This dependence was absent in all our previous examples but is often useful in applications, as
this dependence permits responses to embody an aspect of “pure” randomness. From now on, we
will include ωr as an explicit argument of the response functions.

In the deterministic systems previously considered, we viewed the fundamental settingX0(1)
as a primitive object and adopted the convention thatX0(0) := X0(1). Once settings and responses
depend onω, it becomes necessary to modify our conventions regarding the fundamental settable
variablesX0, asX0 is no longer determined outside the system. The role of the system primitive
is now played byω, the primary setting. We represent this as the settable variable defined by
X∗(ω,0) := X∗(ω,1) := ω. We now viewX0(ω,0) as a response toωs and we takeX0(·,1) :=
X0(·,0).

In the current stochastic framework, the feature that distinguishesX0 from other settable vari-
ables is that the responseX0(ω,0) depends only onωs, whereas responses of other settable variables
can depend directly on other settings and onωr . Given the availability ofX∗, there is no guarantee or
requirement that such a settable variableX0 exists. Nevertheless, suchfundamental stochastic set-
table variablesX0 are often an important and useful feature in applications, as our machine learning
examples demonstrate.

The definition of direct causality in stochastic settable systems is closely parallel to that in the
non-stochastic case. Specifically, consider the partitionΠ = {Πb}, and supposei belongs to the
partition elementΠb. Let X(b)(ω,1) denote setting values for the settable variables whose indexes
do not belong toΠb, together with the settingsX0(ω,1). Then the responseXi(ω,0) is given by

Xi(ω,0) := r i(X(b)(ω,1),ωr ;a) = r i(z(b),ωr ;a),

wherer i is the associated response function,a is the attribute vector, and for convenience we write
z(b) := X(b)(ωs,1). Then we say thatX j does not directly causeXi if r i(z(b),ωr ;a) defines a function
constant in the elementzj of (z(b),ωr) for all values of the other elements of(z(b),ωr). Otherwise,
we say thatX j directly causesXi . Thus,X∗ can directly causeXi ; for this, takezj = ωr . If X0(ω,0)
does not define a constant function ofωs, we also say thatX∗ directly causesX0. As always, direct
causality is relative to the specified partition.

4.3 Counterfactuals, Interventions, and Direct Effects

We now have the foundation necessary to specify “counterfactuals.” We begin by defining what
is meant by “factual.” Suppose for now that all setting and response values apart fromωr are ob-
servable. Specifically, suppose we have realizations of setting values(β,γ) and response value
α̃∗ = r̃1(β,γ,ωr ;φ), and thatω is such thatβ = B(ωs), γ = C(ωs), andα̃∗ = Ã∗(ω), where

Ã∗(ω) = r̃1(B(ωs),C(ωs),ωr ;φ).
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Then we say that(α̃∗,β,γ) are factual and thatω = (ωr ,ωs) is factual. Otherwise, we say that
(α̃∗,β,γ) andω arecounterfactual. Specifically, if the realization(α̃∗,β,γ) does not obtain, then we
say that(α̃∗,β,γ) is counterfactual, whereas if we have the realizations(α̃∗,β,γ), but ω is such that
β 6= B(ωs), γ 6= C(ωs), or α̃∗ 6= Ã∗(ω) then we say thatω is counterfactual.

There need not be a unique factualω since it is possible that multipleω’s yield the same real-
izations of random variables; this creates no logical or conceptual difficulties. Also, we need not
observe all settings and responses; an observable subset of these may be factual or counterfactual.
To the extent that a givenω generates realizations compatible with factual observables, it may also
be viewed as factual to that degree. Anω generating realizations incompatible with factual observ-
ables is necessarily counterfactual.

In non-stochastic settable systems, we defined an intervention to a settable variable as a pair
of distinct admissible setting values for that settable variable. For example,α1 → α2 := (α1,α2).
In stochastic settable systems, we express interventions similarly. Specifically, again consider the
partitionΠ = {Πb}, and supposei belongs to the partition elementΠb, so that

Xi(ω,0) := r i(X(b)(ω,1),ωr ;a) = r i(z(b),ωr ;a).

Then anintervention(z(b),1,ωr,1)→ (z(b),2,ωr,2) is a pair((z(b),1,ωr,1),(z(b),2,ωr,2)) whose elements
are admissible and distinct.

Interventions necessarily involve counterfactuals: at most, only one setting can be factual; and
for an intervention to be well defined, the other setting value must be distinct. We note that the
notion of counterfactuals is helpful mainly for describing interventions. Although our definitions of
causality, interventions, or, as we see next, direct effects implicitly involve counterfactuals, they do
not formally require this notion.

Thedirect effect onXi of the intervention(z(b),1,ωr,1) → (z(b),2,ωr,2) is the associated response
difference

r i(z(b),2,ωr,2;a)− r i(z(b),1,ωr,1;a).

Our definitions of interventions and direct effects permitceteris paribusinterventions and direct
effects. For these, only some finite number (e.g., one) of the settings differs between(z(b),1,ωr,1)
and(z(b),2,ωr,2); the other elements are “held constant.”

Under suitable conditions (specifically, that the settingsX(b)(·,1) are an “onto” function), the
interventions(z(b),1,ωr,1) → (z(b),2,ωr,2) can be equivalently represented as aprimary intervention

ω1 → ω2 := (ω1,ω2) = ((ωr,1,ωs,1),(ωr,2,ωs,2)).

That is, primary interventions are pairs(ω1,ω2) of elements ofΩ. This representation is ensured
by specifying thatω = (ωr ,ωs), permittingωr andωs to be variation free (i.e.,ωr can vary without
inducing any necessary variation inωs, and vice versa).

Primary interventions yield a definition oftotal effectas a response difference. In our hidden
unit clamped learning example, the total effect onX1 of ω1 → ω2 is

∆X1(ω1,ω2,0) : = X1(ω2,0)−X1(ω1,0)

= r̃1(B(ωs,2),C(ωs,2),ωr,2;φ)− r̃1(B(ωs,1),C(ωs,1),ωr,1;φ).

This is also the direct effect onX1 of (Z(1)(ωs,1),ωr,1)→ (Z(1)(ωs,2),ωr,2). We emphasize that these
effects are, as always, relative to the governing partition. The total effect above is relative to the
elementary partition, corresponding to clamped learning.
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4.4 Review of Stochastic Settable System Features

In stochastic settable systems, all settings are governed by the underlying probability measure,
whereas in the PCM, only the background variables are subject to random variation. Because of their
status as a priori constants, attributes can index the settable system probability measure. Stochastic
settable systems distinguish between primary settings and, when they exist, fundamental settable
variables. Responses may contain an element of pure randomness. The structure of stochastic set-
table systems also supports straightforward rigorous definitions of directcauses, counterfactuals,
interventions, direct effects, and total effects.

5. Stochastic Settable Systems: A Formal Definition

In Sections 3 and 4, we motivated the features of settable systems using a series of closely related
machine learning examples. Here we integrate these features to provide a rigorous formal definition
of a stochastic settable systemSΠ := {(A,a),(Ω,F ,Pa),(Π,XΠ)}.

To give a concise definition, we first introduce some convenient notation.We write the positive
integers asN+; we also writeN̄+ = N

+ ∪{∞}. Whenn = ∞, we interpreti = 1, ...,n asi = 1,2, ....
We also writeN := {0}∪N

+, andN̄ = N∪{∞}. Whenm= 0, we interpretk = 1, ...,m as being
omitted; thus, whenm= 0, terms like×m

k=1A or×m
k=1S0,k are ignored. The notation #Π denotes the

number of elements (the cardinality) of the setΠ.

Definition 1 (Stochastic Settable System)Let n∈ N̄
+, and let theunit attribute spaceA be a non-

empty set. For eachunit i = 1, ...,n, let aunit attributeai be a fixed element of A, such that ai includes
a component ofadmissible settingsSi , a multi-element Borel-measurable subset ofR.

Let m∈ N̄. For each k= 1, ...,m, let a fundamental unit attributea0,k be a fixed element of A,
such that a0,k includes a component ofadmissible fundamental settingsS0,k, a multi-element Borel-
measurable subset ofR. Write a0 := (a0,1, ...,a0,m) and a := (a0,a1, ...,an) ∈ A := (×m

k=1A)×
(×n

i=1A), the joint attribute space.
Let (Ωr ,Fr) and(Ωs,Fs) be measurable spaces such thatΩr andΩs each contain at least two

elements, and let(Ω,F ,Pa) be a complete probability space, whereΩ := Ωr ×Ωs, F := Fr ⊗Fs,
and Pa is a probability measure indexed bya∈ A.

For each k= 1, ...,m, let a fundamental responseY0,k : Ωs → S0,k be a measurable function and
let the correspondingfundamental settingbe Z0,k := Y0,k. Write fundamental settings and responses
as Z0 := (Z0,1, ...,Z0,m) and Y0 = Z0.

LetΠ = {Πb} be a partition of{1, ...,n}, with B := #Π ∈ N̄
+, let ℓb := #Πb, and leta determine

the multi-element Borel measurable setS
Π
(b)(a) ⊂ × j /∈Πb

S j ×
m
k=1S0,k, b = 1, ...,B. Suppose there

exist measurable functions calledsettings, ZΠ
i : Ωs → Si , i = 1, . . . ,n, measurable functions called

responses, YΠ
i : Ω → Si , i = 1, . . . ,n, and measurable functions calledjoint response functions,

rΠ
[b]( · ;a) : ×i∈ΠbSi ×S

Π
(b)(a)×Ωr → R

ℓb b = 1, ...,B,

such that
rΠ
[b](Y

Π
[b](ω),ZΠ

(b)(ωs),ωr ;a) = 0, b = 1, ...,B,

for eachω := (ωr ,ωs)∈ Ωr ×ΩΠ
(b)(a), ΩΠ

(b)(a) := {ωs : ZΠ
(b)(ωs)∈ S

Π
(b)(a)}, where ZΠ

(b) is the vector

containing ZΠ
j , j /∈ Πb and YΠ

[b] is the vector containing YΠi , i ∈ Πb. Write

XΠ
0 (ω;0) : = Y0(ωs), XΠ

0 (ω;1) := Z0(ωs),
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XΠ
i (ω;0) : = YΠ

i (ω), XΠ
i (ω;1) := ZΠ

i (ωs), i = 1, ...,n,

so that thefundamental settable variablesXΠ
0 and settable variablesXΠ

i , i = 1, ...,n are mappings
such that:

XΠ
0 : Ω×{0,1}→×m

k=1S0,k and XΠ
i : Ω×{0,1}→ Si , i = 1, ...,n.

Finally, write

XΠ := (XΠ
0 ,XΠ

1 , , ...,XΠ
n ).

ThenSΠ := {(A,a),(Ω,F ,Pa),(Π,XΠ)} is astochastic settable system.

A stochastic settable system consists ofunits i = 1, ...,n with unit attributes ai belonging to
unit attribute space A. Whenm > 0, the system has optionalfundamental units k= 1, ...,m with
fundamental unit attributesa0,k also belonging toA. Thejoint attributesa := (a0,1, ...,a0,m,a1, ...,an)
belong to thejoint attribute spaceA. By construction, the unit attributes include theadmissible
settingsSi for each unit (S0,k for any fundamental units).Si must contain at least two values,
necessary to ensuring that interventions are well defined.

The probability space(Ω,F ,Pa) embodies the stochastic structure of the system. By represent-
ing theprimary settingsas elementsω := (ωr ,ωs) of Ω := Ωr ×Ωs, we provide explicit means for
variation-free interventions to primary setting valuesωr and the remaining setting values (viaωs).
By “variation-free”, we mean that we can consider interventions(ω1,ω2) = ((ωr,1,ωs),(ωr,2,ωs))
in which only theωr component differs or interventions(ω1,ω2) = ((ωr ,ωs,1),(ωr ,ωs,2)) in which
only theωs component differs. Requiring thatΩr andΩs each have at least two elements ensures
that interventions toωr andωs are well defined.

The probability measurePa is indexed by the attributesa and governs the joint distribution of
the random settings and responses.Pa may be determined by nature, determined by a researcher,
or determined in part by nature and in part by a researcher.Pa can embody any probabilistically
meaningful dependence or independence for events involvingωr and ωs. Completeness of the
probability space is a technical requirement ensuring that the collection of eventsF contains every
subset of any event havingPa−probability zero.

We call the random variablesZΠ
i (·) settingsand realizationsZΠ

i (ωs) setting values. By suitably
choosingΩs andZΠ

i , we also achieve variation-free interventions for the individual setting values.
Specifically, letΩs := (×m

k=1S0,k)× (×n
i=1Si), so thatΩs has typical elementωs := (z0,1, ...,z0,m,

z1, ...,zn). Further, letZ0,k(ωs) = z0,k andZΠ
i (ωs) = zi be the projection functions that select the

specified component ofωs. By construction, these functions are surjective (onto). That is, the range
ZΠ

i (Ωs) equals the co-domainSi , so that there is (at least) oneωs corresponding to each admissible
value inSi . With a suitable choice ofFs (e.g., that generated by the measurable finite dimensional
product cylinders), these choices forZ0,k andZΠ

i are also measurable, as required. (White (2001,
Section 3.3) provides relevant background and discussion.) Thus, different valuesωs,1 and ωs,2

can generate interventions referencing just a single settable variable, sothatZΠ
i (ωs,1) 6= ZΠ

i (ωs,2),
but ZΠ

j (ωs,1) = ZΠ
j (ωs,2) for j 6= i. Further, when surjectivity holds, it ensures that the primary

interventions(ωs,1,ωs,2) can represent every admissible intervention to the setting values.
When the system has fundamental units, these units havefundamental responses Y0,k; these are

random variables whose valuesY0,k(ωs) are determined solely byωs ∈ Ωs. By convention,funda-
mental settings Z0,k are random variables identical toY0,k. WhenY0,k is surjective, then so isZ0,k.
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Each elementΠb of the partitionΠ = {Πb} identifies a group of (non-fundamental) units. The
joint response function rΠ

[b] specifies how these identified units jointly and freely respond to given
jointly admissible setting values of all units not belonging toΠb.

The given values are setting valuesZΠ
j (ωs) for j not belonging toΠb, includingZ0(ωs) andωr ,

represented here by(ZΠ
(b)(ωs),ωr). The valuesZΠ

(b)(ωs) belong to the set ofjointly admissible setting

valuesS
Π
(b)(a), a subset of× j /∈Πb

S j ×
m
k=1S0,k. In the absence of constraints, we haveS

Π
(b)(a) =

× j /∈Πb
S j ×

m
k=1S0,k. Often, however, applications place joint restrictions on the admissible setting

values. For example, when the settings represent probabilities (as in the mixed strategy games
considered shortly), the constraint that probabilities add to one jointly restricts admissible setting
values. The constraints are encoded ina, and implemented bySΠ

(b)(a).

The response valuesareYΠ
[b](ω), the vector containing uniti’s response valueYΠ

i (ω) for eachi
in Πb, satisfying

rΠ
[b](Y

Π
[b](ω),ZΠ

(b)(ωs),ωr ;a) = 0. (10)

Note that we do not explicitly require thatYΠ
[b](ω) is the unique solution to the equations in (10). As

discussed in our machine learning examples, the governing principles of thesystem (e.g., optimiza-
tion and/or equilibrium) operate to deliver a selected system response satisfying these equations. By
including the governing principles (including appropriate selection operators) among the attributes
a, as is fully rigorous and proper, the presence ofa in the response function can ensure a unique
response value. Note that the response function depends on the full system attribute vectora, not
just the attributes associated with the units of the given blockb. This has been a common feature of
our examples. We call the random variablesYΠ

i (·) responses.
Our expression for the responses is in implicit form, as is appropriate for solutions of optimiza-

tion problems. Nevertheless, it is often convenient to abuse notation somewhat and write response
values explicitly as

YΠ
[b](ω) = rΠ

[b](Z
Π
(b)(ωs),ωr ;a).

Because the partition is exhaustive, the collection of response functionsrΠ := (rΠ
[1], ..., r

Π
[B]) pro-

vides a description of how each unit in the system responds when it is freeto do so in the company
of other specified freely responding units. In given circumstances, it may be that only one of these
sets of responses is factual; the others are then counterfactual.

Settable variablesXΠ
i : Ω×{0,1} → Si embody the dual aspects of settings and responses.

ResponsesXΠ
i ( · ,0) := YΠ

i are random variables taking values inSi in response to settings of
other settable variables of the system outside the block to whichi belongs, sayΠb. The settings
XΠ

i ( · ,1) := ZΠ
i are random variables taking values inSi whose realized values determine the

realized responses of other settable variables. The optional fundamental settable variablesXΠ
0 :

Ω×{0,1}→×m
k=1S0,k yield identical random responses and settings whose values drive responses

of other settable variables. We collect together all settable variables of the system by writingXΠ :=
(XΠ

0,1, ...,X
Π
0,m,XΠ

1 , ...,XΠ
n ). Observe thatXΠ actually depends ona through the response functions

rΠ, so it would be formally correct and more explicit to writeXΠ
a instead ofXΠ. We forego this for

notational simplicity, but this dependence should not be overlooked.
Our notation for the stochastic settable system,SΠ := {(A,a),(Ω,F ,Pa),(Π,XΠ)}, references

each component of the system in a way that expresses the hierarchy of these components. At the
lowest level is theattribute structure, (A,a); next comes thestochastic structure, (Ω,F ,Pa); resting
on these is thecausal structure, (Π,XΠ).
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6. Game Theory, Settable Systems, and the PCM

So far, our machine learning examples have shown how settable systems apply to decision problems
where optimization operates as a governing principle. We now discuss examples showing how set-
table systems apply to groups of interacting and strategically competitive decision-making agents.
In economics, these agents are usually viewed as consumers, firms, and/or government entities. Of
direct relevance to machine learning is that agents may also be artificial intelligences, as in auto-
mated trading systems. In addition to their empirical relevance (e.g., the analysisof FCC spectrum
auctions or U.S. Treasury Bill auctions), such environments present theopportunity for emergent
and distributed computation of otherwise difficult to compute quantities, like prices.

Game theory, the study of multi-agent decision problems, provides a rich formal framework
in which to understand and explain the behavior of interacting decision makers. Gibbons (1992)
provides an excellent introduction. By showing how the structures of gametheory map to settable
systems, we establish the foundations for causal analysis of such systems. A central feature of such
structures is that their outcomes are determined by suitable equilibrium mechanisms, specifically
Nash equilibriumand its refinements. Among other things, these mechanisms play a key role in
ensuring the mutual consistency of various partitions relevant to the analysis of a given game.

6.1 Pure-Strategy Games and Pure-Strategy Nash Equilibria

The simplest games are static games of complete information (Gibbons, 1992, Chap. 1). In these
games, each ofn players has:(i) a number of playable strategies (let playeri haveKi playable
strategies,si,1, ...,si,Ki ); and (ii) a utility (or “payoff”) function ui that describes the payoffπi to
that player when each player plays one of their given strategies. That is, πi = ui(s1, ...,sn), where
sj ∈ Sj := {sj,1, ...,sj,K j}, j = 1, ...,n. The players simultaneously choose their strategies; then each
receives the payoff specified by the collection of the jointly chosen strategies and the players’ payoff
functions. Such games are “static” because of the simultaneity of choice. They are “complete
information” games because the players’ possible strategies and payoff functions are known to all
players. (Thus, each player can assess the game from every other player’s viewpoint.) Ann-player
static game of complete information is formally represented in “normal form” asG = {S1, ...,Sn;
u1, ...,un}.

These games map directly and explicitly to the settable system framework. Specifically, the
players correspond to unitsi = 1, ...,n. The unit attributesai include the identity attributei, the
strategiesSi = Si available to playeri, and the player’s utility functionui : S1× ...× Sn → R. When
a strategy for playeri is set arbitrarily, we denote its value aszi ∈Si ; when playeri chooses a strategy
(a response) we represent its value asyi ∈ Si . For concreteness and without loss of generality, we
takeSi := {1, ...,Ki}. The players’ utility functions implicitly account for the possibility that strategy
1 for playeri may represent a different action than that of strategy 1 for playerj.

Each player seeks to maximize their payoff given the strategies of the others, so that

yi = re
i (z(i);a) = argmax

zi∈Si

ui(z1, ...,zn).

In economics, this goal-seeking behavior is called “rationality;” an equally fitting (or perhaps supe-
rior) term is “intelligence.” Thus, game theory analyzes rational or intelligent agents.

Here, we write the responsesre
i using the superscripte to denote that these response are those

for the elementary partition,Πe := {Πe
1, ...,Π

e
n} with Πe

i = {i}, as each response takes the strategies
of all other players as fixed.
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For convenience, we assume that for each player there is a unique utility-maximizing response,
but just as in our previous machine learning examples, we can generally make a principled selection
when the optimal decision is a set. Below, we discuss this further.

In game theory,re
i is called a “best-response” function. In settable systems, we refer generically

to functions likere
i as “response” functions, in part motivated by this usage. Because in game theory

the specific gameG under consideration is almost always clear, there is usually no need to explicitly
reflect its elements in the players’ best response functions. The explicit appearance of players’ joint
attributesa (which characterize the game) in the response functionsre

i ( · ;a) emphasizes their role
in determining player responses.

Now consider the PCM representation of this game. In the PCM, the attributes become back-
ground variablesu. The attributesai = (i,Si ,ui) do not map directly to PCM background variables,
asSi is a set andui is a function; the PCM requires the background variables to be real numbers.
Nevertheless, some simple modifications deliver a conforming representation: we can replaceSi

with the integers 1 throughKi andui with the vector of values taken byπi = ui(s1, ...,sn) as the
strategies range over all possible values. We collect these values togetheracross all players and
write them asu. Endogenous variablesv = {s1, ...,sn} represent player strategies, and the structural
functions f = { f1, ..., fn} represent the best response for agenti assi = fi(s(i),u), i = 1, ...,n.

The final condition required by the PCM is that there exists a unique fixed point, defined by
functionsgi such thatsi = s∗i := gi(u), i = 1, ...,n. When such a unique fixed point exists, it represents
apure-strategy Nash equilibrium(Nash, 1950). By definition this satisfies

ui(s
∗
1, ...,s

∗
i , ...,s

∗
n) ≥ ui(s

∗
1, ...,si, ...,s

∗
n) f or all si ∈ Si , i = 1, ...,n.

Gibbons (1992, p. 8) provides further discussion of pure-strategy Nash equilibrium.
Just as we saw in Section 3, the PCM faces difficulties arising from its requirement of a unique

fixed point. A first difficulty for the PCM is that there are important games forwhich a pure-strategy
Nash equilibrium does not exist; the PCM therefore has nothing to say about such games. A leading
example of such games is known asmatching pennies(Gibbons, 1992, p. 29). In this game, each of
two players has a penny that they can choose to display face up (heads)or face down (tails). If the
pennies match, player 2 gets both; otherwise player 1 gets both. This game applies to any situation
in which one player would like to outguess the other, as inpoker (bluffing), baseball(pitcher vs.
hitter), andbattle.

Given the interest attaching to such games, one would like to have an applicable causal model.
This need is met by the settable system framework. Because this framework imposes no fixed point
requirement, it applies regardless of the existence of a unique pure-strategy Nash equilibrium. For
games with no pure-strategy Nash equilibrium, the response functionsre

i (z(i);a) of the elementary
partitionΠe := {{1}, ...,{n}} readily provide complete information about the best response for all
counterfactual strategy combinations of the other players.

If a unique pure-strategy Nash equilibrium exists, it has settable system representation

s∗i = rg
i (a), i = 1, ...,n,

whererg
i is the response function for the global partition,Πg := {{1, ...,n}}. An interesting fea-

ture of these response functions is that they depend only on the attributesa; no fundamental or
even primary settings appear. Observe also that the Nash equilibrium condition ensures the mutual
consistency of the elementary and global partitions.
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When there is no pure strategy Nash equilibrium, as in the matching pennies game, there need
not exist a valid settable system for the global partition. This provides an interesting example in
which we have a well-defined settable system for the elementary partition, but not for the global
partition. In contrast, the PCM does not apply at all.

Another difficulty for the PCM is that the unique fixed point requirement prevents it from apply-
ing to games with multiple pure-strategy Nash equilibria. An example is the game known asbattle
of the sexes(Gibbons, 1992, p. 11). In this game, two players (Ralph and Alice) are trying to decide
on what to do on their next night out: attend a boxing match or attend an opera. Each would rather
spend the evening together than apart, but Ralph prefers boxing and Alice prefers the opera. With
the payoffs suitably arranged (symmetric), there is a unique best response for each player, given the
strategy of the other. Nevertheless, this game has two pure-strategy Nashequilibria: (i) both select
boxing; (ii) both select the opera. Thus, the PCM does not apply.

In contrast, the settable system framework does apply, as it does not impose a unique fixed
point requirement. The elementary partition describes each agent’s uniquebest response to a given
strategy of the other. Further, when multiple Nash equilibria exist, the global partition can yield a
well-defined settable system by selecting one of the possible equilibria. As Gibbons (1992, p. 12)
notes, “In some games with multiple Nash equilibria one equilibrium stands out as the compelling
solution to the game,” leading to the development of “conventions” that provide standard means for
selecting a unique equilibrium from the available possibilities.

An example is the classiccoordination game, in which there are two pure-strategy Nash equi-
libria, but one yields greater payoffs to both players. The convention is toselect the higher payoff
equilibrium. If such a convention exists, the global partition can specify the response functionsrg

i
to deliver this. In such cases, the global partition responses satisfy notonly a fixed-point property,
but also embody equilibrium selection.

Interestingly, battle of the sexes is not a game with such a convention, as both equilibria seem
equally compelling. A more elaborate version of this game, involving incomplete information, does
possess a unique equilibrium, however (Gibbons, 1992, pp. 152-154).

6.2 Mixed-Strategy Games and Mixed-Strategy Nash Equilibria

As just suggested, one can modify the character of a game’s equilibrium set by elaborating the game.
Specifically, consider “mixed-strategy” static games of complete information. Instead of optimally
choosing a pure strategy, each playerh now chooses a vector of probabilitiesph := (ph,1, ..., ph,Kh)
(a mixed strategy) over their available pure strategies, saySh := {1, ...,Kh}, so thatph, j is the prob-
ability that playerh plays strategyj ∈ Sh. For example, the probability vector(1,0...,0) for player
h represents playing the pure strategysh = 1.

Note that we have modified the notation for the player index fromi to h. This enables us to
continue to index units usingi. Here, the unitsi correspond toagent-decision pairs(h, j). The values
h and j become part of the unit attributes,ai . When referencingi, we may for convenience reference
the correspondingh, j, so, for example, we may writeai or ah, j , whichever is more convenient.

Each playerh now behaves rationally or intelligently by choosing mixed-strategy probabilities
to maximize their expected payoff given other players’ strategies,

π̄h = υh(pn) := ∑
sn∈Sn

uh(s
n)Pr(sn; pn),
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where for conciseness we now writesn := (s1, ...,sn), Sn := S1 × ...×Sn, and pn := (p1, ..., pn).
(Maximizing expected payoff is not the only possibility, but we focus on this case for concreteness.)
The strategies are chosen independently, so that Pr(sn; pn), the probability that the agents jointly
choose the configuration of strategiessn, is given by Pr(sn; pn) = ∏n

h=1 ph,sh.

It is a famous theorem of Nash (1950) that ifn is finite and ifKh is finite,h = 1, ...,n, then there
must exist at least one Nash equilibrium forG , possibly involving mixed strategies (e.g., Gibbons,
1992, p. 45).

We map mixed-strategy games to settable systems as follows. As mentioned above,units i are
agent-decision pairs(h, j), so that unit attributesai include the agent and decision designators,h
and j. Because settings and responses are now probabilities, unit attributes alsospecify admissible
settingsSh, j as a subset of[0,1]. We further discussah, j below.

For each agenth, there is aKh×1 vector of settings and responses. We denote the probabilities
of the mixed strategy for agenth aszh, j , j = 1, ...,Kh, when these are set, and asyh, j , j = 1, ...,Kh,
when these constitute the agent’s best response. Letzh be theKh×1 vector with elementszh, j , and
let yh be theKh×1 vector with elementsyh, j . Given all other player’s mixed strategiesz(h), agent
h’s best response is

yh = ra
h(z(h);a) = σh(arg max

zh∈Sh

υh(z1, ...,zn)),

where the maximization is taken over the simplexSh := {z∈ [0,1]Kh : ∑Kh
j=1zj = 1}. The operator

σh performs a measurable selection, discussed below.

Several aspects of this representation are notable. First, we write the response functionra
h to

denote that it is the response function for theagent partitionΠa := {Πa
h, h = 1, ...,n}, whereΠa

h =
{(h,1), ...,(h,Kh)}. In contrast, the elementary partition isΠe := {Πe

h, j , j = 1, ...,Kh; h = 1, ...,n},
with Πe

h, j := {(h, j)}. The response functionsre
h, j for the elementary partition describe the best re-

sponse for agenth’s strategyj given not only all other agents’ strategies, but also all other strategies
for agenth. The elementary partition is usually not of particular interest; the agent partition and the
global partition are typically the main objects of interest in this context.

The superscripta in ra
h and elsewhere to denote the agent partition creates no confusion with the

joint attributesa, as the former is always a superscript, and the latter never is.

Next, we note that the unit attributesah, j contain admissible valuesSh, j ⊂ [0,1], so that 0≤
zh, j ≤ 1. This is not enough to fully specify the admissible values for the vectorzh, however, as the
probabilities must add up to 1. This means thatzh must belong to the simplexSh. We enforce this
constraint by makingSh a component of each unit attributeah, j , j = 1, ...,Kh. Just as an attribute
common to all system units is a system attribute, any attribute common to a given subset of units is
an attribute of that subset. Thus,Sh is an attribute of agenth; agenth is that subset of the units with
agent designator equal toh.

An interesting feature of mixed-strategy games is that the set argmaxzh∈Sh υh(z1, ...,zn) can eas-
ily fail to have a unique element. This set thus defines the player’s best-response correspondence,
rather than simply giving a best-response function. We obtain a best-response function by apply-
ing a measurable selection operatorσh to the set of maximizers. The operatorσh is an attribute,
specifically of agenth; thus, we include it as a component of the unit attributesah, j , j = 1, ...,Kh.

By definition, the agent is indifferent between elements of the arg-max set; the choice of selec-
tion operator is not crucial. In fact, the selection may be random, implemented bylettingσh depend
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on ωr ∈ Ωr , so that one has

yh = ra
h(z(h),ωr ;a) = σh(arg max

zh∈Sh

υh(z1, ...,zn),ωr).

Now consider how this game maps to the PCM. Again, the attributes map to the background
variablesu, although now the attributes are, among other things, sets with a continuum of values
and correspondences. Mapping these to a vector of real numbers is problematic, so we simply
view u as a general vector whose elements may be numbers, sets, functions, or correspondences.
The endogenous variables are most appropriately represented asKh × 1 vectorsph such thatv =
{p1, ..., pn}. The elements off := { f1, ..., fn} are correspondingly vector-valued. These must satisfy
ph = fh(p(h),u) := σh(argmaxph∈Sh υh(p1, ..., pn)).

In order to apply the PCM, we require a unique fixed point. Even when a unique Nash equi-
librium exists, to obtain this as the fixed point requires choosing the selection operatorsσh so that
they specifically produce the Nash equilibrium response. In the usual situation, the properties off
determine whether or not a fixed point exists. Here, however, knowledge of the unique fixed point
is required to properly specifyσh, hencefh, an awkward reversal signaling that the PCM is not
well-suited to this application. Indeed, the selection cannot be random, a plausible response when
the player is indifferent between different strategies.

An interesting feature of this example is that when the PCM applies, it does so with vector-
valued units rather than the scalar-valued units formally treated by Pearl (2000) or Halpern (2000).
The PCM is thus necessarily silent about what happens when componentsof an agent’s strategy are
arbitrarily set. In contrast, settable systems apply to partitions both finer and coarser than the agent
partition. (The elements (sets of unit indexes) of a “coarser” partition areunions of the elements of
a “finer” partition. Thus, the agent partition is coarser than the elementary partition and finer than
the global partition.)

Unlike the case of pure-strategy games, there must always be at least one mixed-strategy Nash
equilibrium, so the PCM does not run into the difficulty that there may be no equilibrium. Neverthe-
less, mixed-strategy games can also have multiple Nash equilibria, so the PCM does not apply there.
For a given game, the GPCM does apply to the agent partition, but it does not incorporate equilib-
rium selection mechanisms. In contrast, the settable system framework permits causal analysis at
the level of the agent partition (as well as coarser or finer partitions); represents the unique Nash
equilibrium at the level of the global partition without requiring a selection operator when a unique
equilibrium exists; and otherwise represents the desired responses when a unique mixed-strategy
Nash equilibrium does not exist but conventions or other plausible selection mechanisms apply.

Static games of complete information are the beginning of a sequence of increasingly richer
games, including dynamic games of complete information, static games of incomplete information,
and dynamic games of incomplete information. Each of these games employs progressively stronger
equilibrium concepts that rule out implausible equilibria that would survive under equilibrium con-
cepts suitable for simpler games (Gibbons, 1992, p. 173). These implausibleequilibria all satisfy
fixed-point (simple Nash equilibrium) requirements.

The unique fixed point requirement of the PCM thus acts to severely limit its applicability in
game theory, due to the many opportunities for multiple Nash equilibria. Although GPCMs for-
mally apply, they cannot support discourse about causal relations between endogenous variables,
due to the lack of an analog of the potential response function. In contrast, by exploiting attributes
and partitioning, settable systems permit implementation of whichever stronger and/or more re-
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fined equilibria criteria are natural for a given game, together with any natural equilibrium selection
mechanism.

6.3 Infinitely Repeated Dynamic Games

Dynamic games are played sequentially. For example, two players can repeatedly playprisoner’s
dilemma. In infinitely repeated games, play proceeds indefinitely. Clearly, infinite repetition cannot
be handled in a finite system, so the PCM cannot apply.

In infinitely repeated dynamic games of complete and perfect information (seeGibbons, 1992,
Section 2.3.B), players play a given static game in “stages” or periodst = 1,2, .... The periodt
payoff to playerh is πh,t = uh,t(α1,t , ...,αn,t), whereuh,t is playerh’s payoff function for periodt,
whose arguments are the “actions”α j,t at time t of all n players. (The strategies of static games
correspond to the actions of dynamic games.) Information is “complete,” as each player knows the
others’ possible actions and payoff functions. Information is “perfect,” as at everyt, each player
knows the entire history of play up to that period.

Rational players act to maximize their average present discounted value ofpayoff,

π̄h = ūh(α1, ...,αn) := (1−δ)
∞

∑
t=1

δt−1uh,t(α1,t , ...,αn,t),

whereα j := {α j,t} denotes playerj ’s countable sequence of actions, and 0< δ < 1 is a “discount
rate” (common across players, for simplicity) that converts payoffsπh,t in period t to a value in
period 1 asδt−1πh,t . A player’s best response to any collective sequence of actions by theothers is
a solution to the problem

max
sh∈Sh

ūh(α1, ...,αn) sub ject toαh,t = sh,t(αt−1
1 , ...,αt−1

n ), t = 1,2, ...,

whereSh is playerh’s set of all admissible sequencessh := {sh,t} of “strategy functions”sh,t .
These represent playerh’s action in periodt as a function only of the prior histories of player
actions,αt−1

1 , ...,αt−1
n . (For t = 1, sh,t is a constant function.) Playerh’s best responses areα∗

h,t =

s∗h,t(α
t−1
1 , ...,α∗t−1

h , ...,αt−1
n ), t = 1,2, ..., wheres∗h := {s∗h,t} is a sequence of best response strategy

functions. (These need not be unique, sos∗h,t may be a correspondence. The player is indifferent
among the different possibilities.)

Such games generally have multiple Nash equilibria. Many of these are implausible, however,
as they involve non-credible threats; and credibility is central to all dynamic games (see Gibbons,
1992, p. 55). Non-credible equilibria can be eliminated by retaining only “subgame perfect” Nash
equilibria. These are Nash equilibria that solve not only the game beginning attime 1, but also the
same game beginning at any timet > 1 (Gibbons, 1992, pp. 94-95). A celebrated result by James
Friedman (1971) ensures the existence of one or more subgame perfectNash equilibria, providedδ
is close enough to one (see, e.g.. Gibbons, 1992, pp. 97-102). Significantly, such equilibria permit
tacit cooperation, yielding outcomes superior to what players can achieve in the static game played
at each stage.

We now map this game to settable systems. The unitsi now correspond toagent-time pairs(h, t).
As t = 1,2, ..., there is a countable infinity of units. Agent attributes include their admissible actions
and their payoff functions for each period. That is,ai (equivalentlyah,t) includes the admissible
sequence of functionsSh, the utility functionuh,t , and the discount factorδ. When player actions
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αh,t are set arbitrarily, the settable system represents them aszh,t . When players intelligently choose
their actions, they are denotedyh,t .

The agent partitionΠa := {Πa
h, h = 1, ...,n}, whereΠa

h := {(h,1),(h,2), ...}, represents agents’
best responses recursively as

yh,t = σh,t(s
∗
h,t(z

t−1
1 , ...,yt−1

h , ...,zt−1
n ),ωr), t = 1,2, ...;h = 1, ...,n,

whereσh,t is a measurable selection operator;s∗h,t is the agent’s best response correspondence, which

depends on the action histories of other agents,zt−1
(h) , and agenth’s history of prior best responses,

yt−1
h ; and the realizationωr determines random selections from the best response correspondence for

agenth in periodt. Recursive substitution for the elements of the historyyt−1
h yields a representation

in terms of an agent-partition response function,ra
h,t , namely

yh,t = ra
h,t(z

t−1
(h) ,ωr ;a), t = 1,2, ...;h = 1, ...,n.

The global partition represents whatever selection of the collection of subgame perfect Nash
equilibria is natural or compelling. Equilibrium agent responses are givenby the global-partition
response functionsrg

h,t as

yh,t = rg
h,t(ωr ;a) t = 1,2, ...;h = 1, ...,n.

Notably, this example exploits each feature of stochastic settable systems, including countable
dimension, attributes, partitioning, and pure randomness.

6.4 Settable Systems and Multi-Agent Influence Diagrams

Causal models other than the PCM are available in the machine learning literature. We focus here
on the PCM because of its prevalence and to maintain a sharp focus for this paper.

A framework particularly related to the preceding discussion is that of Kollerand Milch (2003)
(KM), who introduce multi-agent influence diagrams (MAIDs) to represent noncooperative games.
In particular, KM provide a graphical criterion for determining a notion of “strategic relevance.”
KM’s “relevance graphs” are related to causal graphs. By casting games in the settable system
framework, we can immediately construct causal graphs for games by applying the conventions of
Section 3.6.2.

The most immediate similarity between settable systems and MAIDs is that they are bothca-
pable of modeling environments in which multiple agents interact. In contrast, “influence diagrams
[. . . ] have been investigated almost entirely in a single-agent setting” (KM,2003, p. 189-190).
Nevertheless, several features of settable systems distinguish them fromMAIDs:

(i) A settable system is an explicit causal framework in which notions of partitioning, settings,
interventions, responses, and causality are formally defined. Furthermore, the interrelations between
these causal notions on the one hand and the notions of optimization, equilibrium, and learning on
the other are made precise. In contrast, there is no formal mention of causality in KM.

(ii) MAIDs build on the “chain rule for Bayesian Networks” (KM, definition 2.2,p. 186). This is
equivalent to assuming a set of (conditional) independence relations involving chance and decision
variables and is necessary for the applicability of the “s-reachability” graphical criterion. On the
other hand, settable systems permit but do not require any assumptions on the joint distribution of
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settings and responses. In particular, responses may admit an aspect of “pure randomness” due to
their direct dependence on the primary variable.

(iii ) In KM, an agent’s utility is additive (KM, p. 189-190). Settable systems do not impose this
requirement.

(iv) The KM algorithm for finding Nash equilibria outputs one Nash equilibrium. It selects
an equilibrium arbitrarily if multiple equilibria are found. Further, the algorithm cannot produce
certain equilibria, such as a nonsubgame-perfect equilibrium (KM, p. 216). The settable system
framework can represent principled selections from all relevant Nashequilibria.

We emphasize that the results in KM are very helpful for representing andstudying games. In
particular, under the MAID assumptions, the KM results permit an explicit representation of games
and can lead to computational savings.

7. Machine Learning, Optimization, and Equilibrium

A general learning algorithm introduced by Kushner and Clark (1978) (KC) has the form

θ̂t+1 = θ̂t +λtMt(ξ̂t , θ̂t ,ζt+1), (11)

ξ̂t+1 = Rt(ξ̂t , θ̂t+1,ζt+1), t = 0,1,2, ..., (12)

whereθ̂t andξ̂t are random vectors,λt is a random scalar,Mt andRt are known vector functions,
ξ̂t := (ξ̂0, ..., ξ̂t), θ̂t+1 := (θ̂0, ..., θ̂t+1), and ζt is an observable random vector. Initial valuesξ̂0

and θ̂0 are random vectors independent of{ζt}. KC call this a Robbins and Monro (1951) (RM)
algorithm with feedback (RMF). Equation (11) is an RM procedure; Equation (12) supplies the
feedback. A main focus of interest is the convergence behavior ofθ̂t ast → ∞.

Chen and White (1998) analyze a version of RMF where each vector takes values in a real
separable infinite-dimensional Hilbert space. We call this an HRMF algorithm.Because of the
flexibility this affords, the HRMF supports nonparametric learning.

The RM procedure emerges whenξ̂t has dimension zero, sôθt+1 = θ̂t + λtMt(θ̂t ,ζt+1), t =
0,1,2, .... This contains recursive least squares (e.g., back-propagation), recursive maximum like-
lihood, and recursive method of moments procedures (e.g., Ljung and Soderstrom, 1983). The
estimated weights arêθt ; {ζt} is the data sequence;λt is the “learning rate,” for example,λt = 1/t;
andMt determines the learning method (least squares, maximum likelihood, etc.). By permitting
feedback, the RMF accommodates the evolution of internal, possibly hidden statesξ̂t ; thus, Kalman
filter methods (Kalman, 1960) are a special case.

The RMF also describes learning in recurrent artificial neural networks (ANNs) (e.g., Elman,
1990; Jordan, 1992; Kuan, Hornik, and White, 1994). Here, the input sequence is{ζt}; aftert input
observations, network weights areθ̂t , and hidden unit activations areξ̂t . The learning function is
Mt , the learning rate isλt , andRt determines hidden unit activations. The allowed randomness ofλt

accommodates simulated annealing.
The RMF and HRMF contain systems with learning by one or more optimizing agents. When

there are multiple agents, the system can embody convergence to equilibrium. Specifically, Chen
and White (1998) provide conditions ensuring system convergence ast → ∞ to Nash equilibria or
to “rational expectations” equilibria. As examples, Chen and White (1998) consider, among others,
a learning agent solving astochastic dynamic programmingproblem and the game offictitious play
with continuum strategies(an infinitely repeated dynamic game of incomplete information). The
applications of the (H)RMF are thus broad; further, the settable systems framework contains both.
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The unitsi are time-agent-generalized decision triples, (t,h, j). Specifically, at timet, agent
h has generalized decisions indexed byj. Generalized decisions areknowledge(or in Bayesian
frameworks,beliefs) denoted̂θt,h,k, k = 1, ...,kh, or generalized actions, denoted̂ξt,h,ℓ, ℓ = 1, ..., ℓh.
Generalized actions may beactions(as in Section 6.3) orstates, as in the Kalman filtering and
recurrent ANN examples. We writêθt := (θ̂′

t,1, ..., θ̂′
t,n)

′, whereθ̂t,h := (θ̂t,h,1, ..., θ̂t,h,kh)
′ takes values

in Θh, a subset ofRkh, andξ̂t := (ξ̂′t,1, ..., ξ̂′t,n)′, whereξ̂t,h := (ξ̂t,h,1, ..., ξ̂t,h,ℓh)
′ takes values inΞh, a

subset ofRℓh, h = 1, ...,n.

In addition to the time-agent-generalized decision indicators(t,h, j), attributesat,h, j include as
components the spacesΘh andΞh and the functionλt : Ωr →R. They can also include the functions
Mt,h,k or Rt,h,ℓ, as appropriate. We writeMt := (M′

t,1, ...,M
′
t,n)

′, with Mt,h := (Mt,h,1, ...,Mt,h,kh)
′, and

Rt := (R′
t,1, ...,R

′
t,n)

′, with Rt,h := (Rt,h,1, ...,Rt,h,ℓh)
′. The functionsMt,h,k may be a consequence of

an underlying optimization principle, as in our machine learning examples of Section 3. The same
may be true of the functionsRt,h,ℓ.

For the RMF, in Equations (11) and (12),n is finite, as arekh andℓh. Becauset takes a count-
able infinity of values, we require a countably infinite settable system. For the HRMF, n may be
countably infinite; similarly,kh and/orℓh may be countably infinite.

Equations (11) and (12) form a recursive or acyclic system. In such systems, there is a natural
hierarchy of units, in whichpredecessorunits drivesuccessorunits. The system evolves naturally
(i.e., without intervention) when the response values at a given level of the hierarchy act as setting
values for successors. Stochastic settable systems are sufficiently flexible to permit this. That is,
given recursivity, for everyωr in Ωr , there existsωs in Ωs such thatZi(ωs) = Yi(ωr ,ωs) for all
i. Whenω = (ωr ,ωs) has this property, we callω canonical, and we letΩc ⊂ Ω denote the set
of canonical primary settingsω. Response and setting values for a given unit thus coincide on
Ωc, implementing the natural evolution. In the present example,Yt,h, j andZt,h, j correspond to an
element of either̂θt or ξ̂t . Fundamental settings areξ̂0, θ̂0, and{ζt}, corresponding to elements of
X0( · ,1) := X0( · ,0).

Substituting Equation (11) into Equation (12) yields response functions forthe time partition,
Πt := {Πt

1,Π
t
2, ...}, whereΠt

b := {(b,h,k),k = 1, ...,kh;(b,h, ℓ), ℓ = 1, ..., ℓh;h = 1, ...,n}.

In the HRMF, agents’ generalized decisions take values in real separable infinite-dimensional
Hilbert spaces, so generalized decisions are not just vector-valued;their values may be suitably well-
behaved functions. First, consider how a countably dimensioned settable system accommodates
such objects when there is a single agent with a single action, a function, anda single knowledge
element, also a function. We represent such functions by a countable vector whose elements are
coefficients of terms in a suitable series representation, for example, a Fourier series. Further, this
same approach applies without exhausting the dimensionality of the settable system, even when
there is a countable infinity of agents, each having a countable infinity of knowledge elements and
actions, which are themselves elements of real separable infinite-dimensional Hilbert spaces.

8. Summary and Concluding Remarks

This paper introduces settable systems, an extension of Pearl’s (2000) causal model. Settable sys-
tems and the PCM share many common features. For example, in both frameworks the variables of
the system have a dual role (set or free), there are mechanisms for specifying which variables are set
or free (submodels and the do operator in the PCM, partitioning in settable systems), and attributes
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may be accommodated (as background variables in the PCM and as a priori constants in settable
systems).

The key difference between the PCM and settable systems is the way these common features
interrelate to one another. Although we point out a number of limitations of the PCM in motivating
settable systems, settable systems strictly build on the percepts of the PCM. Our intent is to show
how modest reconfiguration and refinement of the elements of the PCM considerably enhance its
explanatory power.

As we demonstrate, the PCM encounters obstacles when we attempt to apply it tocertain ma-
chine learning examples. These limitations motivate particular features of settable systems. For
example, the unique fixed point requirement of the PCM is a significant limitation.Like Halpern’s
(2000) GPCM, settable systems do not require the existence of a unique fixed point. The structure
of settable systems nevertheless leads to natural notions of counterfactuals, interventions, direct
causes, direct effects, and total effects. In contrast, the absence of the potential response function in
the GPCM precludes causal discourse.

Another appealing feature of settable systems relative to the PCM is its ability to provide a
causal role for structurally exogenous variables. This capability arisesbecause settable systems dis-
tinguish between attributes and fundamental settings. In contrast, the PCM lumps together attributes
and background variables, so neither can play a causal role. The PCMis silent on whether to treat
variables as exogenous or endogenous and on how to specify attributes. In settable systems, the gov-
erning principles (e.g., optimization and equilibrium) provide explicit guidance for distinguishing
exogenous variables and endogenous variables. Attributes are unambiguously defined as constants
(numbers, functions, sets, etc.) associated with system units that define fundamental aspects of the
decision problem represented by the settable system.

Our examples in game theory (Section 6) and machine learning with feedback (Section 7) fur-
ther show that settable systems apply directly to systems where learning and/oroptimizing agents
interact in a process where outcomes satisfy or converge to appropriateequilibria. Settable systems
thus provide rigorous foundations for causal analysis in these empiricallyrelevant and computation-
ally important systems.

These foundations are only a first step in analyzing phenomena conforming to settable systems.
A particularly important research area is the study of general primitive conditions ensuring the
identification of specific causal effects of interest under varying assumptions about the observability
of causes of interest and other ancillary causes and under particular patterns of causal relation.
In this context, identification means the equality of causally meaningful objects (e.g., expected
effects) with corresponding stochastically meaningful objects, that is, quantities expressible solely
as a functional of the joint distribution of observable random variables. When identification holds, it
becomes possible to estimate various causal effects from data. Recent work of White (2006), White
and Chalak (2007), Schennach et al. (2008), Chalak and White (2008a), and White and Kennedy
(2009) provides results for identification and estimation of causal effectsunder varying assumptions.

Key to ensuring identification of effects of interest in all of these studies are specific indepen-
dence or conditional independence conditions, for example, the conditional independence of causes
of interest from unobservable ancillary causes given other observable variables (covariates). Chalak
and White (2008b) provide primitive conditions on recursive settable system structures (in particu-
lar the response functions) that either ensure or rule out such independence or conditional indepen-
dence relations. In pursuing this goal, notions of indirect and total effects of non-primary causes
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emerge naturally and play key roles. These results also have direct implications for d-separation
andD-separation (e.g., Geiger, Verma, and Pearl, 1990; Pearl, 2000, pp. 16-17).

These studies by no means exhaust the opportunities for deeper understanding and application
of settable systems. For example, all of the studies of identification and estimationjust mentioned
are for recursive structures. Obtaining analogous results for non-recursive structures is of particular
interest.

At the outset, we offered this paper as part of a cross-disciplinary dialog between the eco-
nomics/econometrics community and the machine learning community, with the hope thatboth
communities might gain thereby. For economists, the benefits are clear and precise notions of
causal effects that apply broadly to economic structures and, in particular, to the powerful struc-
tures of game theory. These causal notions draw heavily on concepts atthe heart of the PCM, but
surmount a number of limitations that may have held back economists’ acceptance of the PCM.
For those in the machine learning community, one benefit is the extension of causal notions to sys-
tems fundamentally involving optimization, equilibrium, and learning, features common to a broad
range of application domains relevant to machine learning. We also hope thatthe machine learning
community, which has so far paid only limited attention to game theory, may begin to consider
the possibilities it offers for understanding empirical phenomena and for distributed and emergent
computation.
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Appendix A.

For completeness, we provide a formal definition of a non-stochastic settable system.

Definition 2 (Nonstochastic Settable System)Let n∈ N̄
+, and let A be a non-empty set. For each

i = 1, ...,n, let ai be a fixed element of A, such that ai includes a componentSi , a multi-element
Borel-measurable subset ofR.

Let m∈ N̄. For each k= 1, ...,m, let a0,k be a fixed element of A, such that a0,k includes a
componentS0,k, a multi-element Borel-measurable subset ofR. Write a0 := (a0,1, ...,a0,m) and
a := (a0,a1, ...,an) ∈ A := (×m

k=1A)× (×n
i=1A).

For each k= 1, ...,m, let z0,k ∈ S0,k, and put y0,k := z0,k. Write z0 := (z0,1, ...,z0,m) and y0 := z0.

LetΠ = {Πb} be a partition of{1, ...,n}, with B := #Π ∈ N̄
+, let ℓb := #Πb, and leta determine

the multi-element Borel measurable setS
Π
(b)(a) ⊂ × j /∈Πb

S j ×
m
k=1S0,k, b = 1, ...,B. Suppose there

exist measurable functions

rΠ
[b]( · ;a) : ×i∈ΠbSi ×S

Π
(b)(a) → R

ℓb b = 1, ...,B,
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and real vectors yΠ[b] ∈ ×i∈ΠbSi such that for each zΠ(b) ∈ S
Π
(b)(a),

rΠ
[b](y

Π
[b],z

Π
(b);a) = 0, b = 1, ...,B.

WriteXΠ
0 (0) := y0, X

Π
0 (1) := z0, X

Π
i (0) := yΠ

i , XΠ
i (1) := zΠ

i , i = 1, ...,n, so thatXΠ
0 : {0,1}→

×m
k=1S0,k andXΠ

i : {0,1}→ Si , i = 1, ...,n. Finally, write

XΠ := (XΠ
0 ,XΠ

1 , , ...,XΠ
n ).

ThenSΠ := {(A,a),(Π,XΠ)} is anonstochastic settable system.
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