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Abstract

The accuracy ok-nearest neighbor (kNN) classification depends signifigaott the metric used
to compute distances between different examples. In thpempave show how to learn a Maha-
lanobis distance metric for KNN classification from labeteéamples. The Mahalanobis metric
can equivalently be viewed as a global linear transformaticthe input space that precedes kNN
classification using Euclidean distances. In our approtoehmetric is trained with the goal that
thek-nearest neighbors always belong to the same class whitepea from different classes are
separated by a large margin. As in support vector machinésl$h the margin criterion leads to a
convex optimization based on the hinge loss. Unlike legrimrSVMs, however, our approach re-
quires no modification or extension for problems in multiwfag opposed to binary) classification.
In our framework, the Mahalanobis distance metric is oletdias the solution to a semidefinite
program. On several data sets of varying size and difficwiyfind that metrics trained in this
way lead to significant improvements in KNN classificatioonfetimes these results can be further
improved by clustering the training examples and learnimgndividual metric within each cluster.
We show how to learn and combine these local metrics in a fjoinéegrated manner.

Keywords: convex optimization, semi-definite programming, Mahalzisalistance, metric learn-
ing, multi-class classification, support vector machines

1. Introduction

One of the oldest and simplest methods for pattern classification lstlearest neighbors (KNN)
rule (Cover and Hart, 1967). The kNN rule classifies each unlabelathghe by the majority
label of itsk-nearest neighbors in the training set. Despite its simplicity, the kNN rule ofedasy
competitive results and in certain domains, when cleverly combined with pramwlkdge, it has
significantly advanced the state-of-the-art (Belongie et al., 2002; Sietaid 1993).

By the very nature of its decision rule, the performance of KNN classificatépends crucially
on the way that distances are computed between different examples. Mitmior knowledge
is available, most implementations of kNN compute simple Euclidean distancem{agdhe ex-
amples are represented as vector inputs). Unfortunately, Euclideancdist@nore any statistical
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regularities that might be estimated from a large training set of labeled exartgdadly, one would
like to adapt the distance metric to the application at hand. Suppose, for lexdnap we are using
kNN to classify images of faces by age and gender. It can hardly be djptimse the same distance
metric for age and gender classification, even if in both tasks, distaneesm@puted between the
same sets of extracted features (e.g., pixels, color histograms).

Motivated by these issues, a number of researchers have demonsiedtkNN classification
can be greatly improved by learning an appropriate distance metric fromedbdeamples (Chopra
et al., 2005; Goldberger et al., 2005; Shalev-Shwartz et al., 200ft&het al., 2002). This is
the so-called problem afistance metric learningRecently, it has been shown that even a simple
linear transformation of the input features can lead to significant improvisritekiNN classification
(Goldberger et al., 2005; Shalev-Shwartz et al., 2004). Our work uild novel direction on the
success of these previous approaches.

In this paper, we show how to learn a Mahalanobis distance metric for KNfsifitation. The
algorithm that we propose was described at a high level in earlier wodinrger et al., 2006)
and later extended in terms of scalability and accuracy (Weinberger ad8@8). Intuitively, the
algorithm is based on the simple observation that the kNN decision rule widabyriclassify an ex-
ample if itsk-nearest neighbors share the same label. The algorithm attempts to incesiasmtier
of training examples with this property by learning a linear transformation oinimet space that
precedes kNN classification using Euclidean distances. The lineardrarafon is derived by min-
imizing a loss function that consists of two terms. The first term penalizes déstggnces between
examples in the same class that are desirddresarest neighbors, while the second term penalizes
small distances between examples with non-matching labels. Minimizing these teldssalinear
transformation of the input space that increases the number of trainingpie@whose-nearest
neighbors have matching labels. The Euclidean distances in the transfgpaezican equivalently
be viewed as Mahalanobis distances in the original space. We exploit thiskce to cast the
problem of distance metric learning as a problem in convex optimization.

Our approach is largely inspired by recent work on neighborhood ooemt analysis (Gold-
berger et al., 2005) and metric learning in energy-based models (Chopta 2005). Despite
similar goals, however, our method differs significantly in the proposed ogtiniz We formulate
the problem of distance metric learning as an instance of semidefinite progrgmhhias, the op-
timization is convex, and its global minimum can be efficiently computed. There lbesn other
studies in distance metric learning based on eigenvalue problems (Shehta2@02; De Bie et al.,
2003) and semidefinite programming (Globerson and Roweis, 2006; Shhleartz et al., 2004;
Xing etal., 2002). These previous approaches, however, esseattaltypt to learn distance metrics
that cluster togetheall similarly labeled inputs, even those that are katearest neighbors. This
objective is far more difficult to achieve than what we propose. Monedveoes not leverage the
full power of KNN classification, whose accuracy does not requireathaimilarly labeled inputs
be tightly clustered.

There are many parallels between our method and classification by sweptwt machines
(SVMs)—most notably, a convex objective function based on the hinge évsl the potential to
work in nonlinear feature spaces by using the “kernel trick”. In lighthefse parallels, we describe
our approach atarge margin nearest neighbdtMNN) classification. Our framework can be
viewed as the logical counterpart to SVMs in which kNN classification reysléinear classification.

Our framework contrasts with classification by SVMs, however, in one initriggrespect: it
requires no modification for multiclass problems. Extensions of SVMs to multipfadgdems typi-
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cally involve combining the results of many binary classifiers, or they requiditional machinery
that is elegant but non-trivial (Crammer and Singer, 2001). In botascéee training time scales at
least linearly in the number of classes. By contrast, our framework hagpiizit dependence on
the number of classes.

We also show how to extend our framework to learn multiple Mahalanobis meach, of
them associated with a different class label and/or region of the inpoésfde multiple metrics
are trained simultaneously by minimizing a single loss function. While the loss functioples
metrics in different parts of the input space, the optimization remains an iestdreemidefinite
programming. The globally integrated training of local distance metrics distingsiigur approach
from earlier work on discriminant adaptive kNN classification (Hastie abdhirani, 1996)

Our paper is organized as follows. Section 2 introduces the geneldéprof distance metric
learning forkNN classification and reviews previous approaches that motivated alr ection 3
describes our model for LMNN classification and formulates the requipdidh@ation as an in-
stance of semidefinite programming. Section 4 presents experimental resgkseral data sets.
Section 5 discusses several extensions to LMNN classification, includnagjveere-estimation of
target neighbors, locally adaptive Mahalanobis metrics in different jpértise input space, and
“kernelization” of the basic algorithm. Section 6 describes faster implemengdtonraining and
testing in LMNN classification using ball trees. Section 7 concludes by sumingudar main con-
tributions and sketching several directions of ongoing research. Fiaglhendix A describes the
special-purpose solver that we implemented for large scale problems in LolgNification.

2. Background

In this section, we introduce the general problem of distance metric legigention 2.1) and review
a number of previously studied approaches. Broadly speaking, tippseaghes fall into three
categories: eigenvector methods based on second-order statistiitsi(8e2), convex optimizations
over the space of positive semidefinite matrices (section 2.3), and fully\dsge algorithms that
directly attempt to optimiz&NN classification error (section 2.4) .

2.1 Distance Metric Learning

We begin by reviewing some basic terminology. A mapghgX x X — (4 over a vector spack
is called ametric if for all vectorsVvX;,Xj, X € X, it satisfies the properties:

1. D(X,%;) + D(Xj,%) > D(X,X) (triangular inequality).
2. D(X,X;) > 0 (non-negativity).

3. D(X,Xj) = D(X},%) (symmetry).

4. D(X,Xj) =0 < % =X (distinguishability).

Strictly speaking, if a mapping satisfies the first three properties but ndotigh, it is called a
pseudometric However, to simplify the discussion in what follows, we will often refer teymdo-
metrics as metrics, pointing out the distinction only when necessary.

We obtain a family of metrics ovek by computing Euclidean distances after performing a
linear transformatioX’ = LX. These metrics compute squared distances as:

DL (%, %)) = [IL(% —%))13, (1)
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where the linear transformation in Eq. (1) is parameterized by the matrix is simple to show
that Eq. (1) defines a valid metriclif is full rank and a valid pseudometric otherwise.

It is common to express squared distances under the metric in Eq. (1) in téthes sgquare
matrix:

M=LTL. (2)

Any matrixM formed in this way from a real-valued mattixis guaranteed to be positive semidefi-
nite (i.e., to have no negative eigenvalues). In terms of the midtriwe denote squared distances by

D (%, %) = (% = %)) "M (% — %)), ®3)

and we refer to pseudometrics of this form Mahalanobis metrics. Originally, this term was
used to describe the quadratic forms in Gaussian distributions, where the Mattayed the role
of the inverse covariance matrix. Here we alldMvto denote any positive semidefinite matrix.
The distances in Eq. (1) and Eg. (3) can be viewed as generalizatidhsctiflean distances. In
particular, Euclidean distances are recovered by setling be equal to the identity matrix.

A Mahalanobis distance metric can be parameterized in terms of the rhatrixhe matrixM .
Note that the matrix. uniquely defines the matriM, while the matrixM definesL up to rotation
(which does not affect the computation of distances). This equivakunggests two different ap-
proaches to distance metric learning. In particular, we can either estimataitiaresformation.,
or we can estimate a positive semidefinite malfix Note that in the first approach, the optimiza-
tion is unconstrained, while in the second approach, it is important to enfbecconstraint that
the matrixM is positive semidefinite. Though generally more complicated to solve a comstrain
optimization, this second approach has certain advantages that we érplieg sections.

Many researchers have proposed ways to estimate Mahalanobis disktnics for the purpose
of computing distances kNN classification. In particular, lef(X;,y;)}{' ; denote a training set of
n labeled examples with input € 09 and discrete (but not necessarily binary) class lapets
{1,2,...,C}. ForkNN classification, one seeks a linear transformation such that neargisbaes
computed from the distances in Eq. (1) share the same class labels. \We sevieral previous
approaches to this problem in the following section.

2.2 Eigenvector Methods

Eigenvector methods have been widely used to discover informative lirmrefarmations of the
input space. As discussed in section 2.1, these linear transformatiobg e@ggwed as inducing a
Mahalanobis distance metric. Popular eigenvector methods for lineamopessing are principal
component analysis, linear discriminant analysis, and relevant compamaysis. These methods
differ in the way that they use labeled or unlabeled data to derive lineaftramations of the input
space. These methods can also be “kernelized” to work in a nonlingardespace (Nller et al.,
2001; Schlkopf et al., 1998; Tsang et al., 2005), though we do not discussfeutiulations here.

2.2.1 RINCIPAL COMPONENTANALYSIS

We briefly review principal component analysis (PCA) (Jolliffe, 1986)Ha context of distance
metric learning. Essentially, PCA computes the linear transformaiien LX; that projects the
training inputs {X }{_; into a variance-maximizing subspace. The variance of the projected inputs
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can be written in terms of the covariance matrix:

c=1 > (4 (%)

n.

wherefl= %Zi X; denotes the sample mean. The linear transformatignchosen to maximize the
variance of the projected inputs, subject to the constrainttlikfines a projection matrix. In terms
of the input covariance matrix, the required optimization is given by:

mLaxTr(LTCL) subjecttoiLL " =1. (4)

The optimization in Eq. (4) has a closed-form solution; the standard ctomesguates the rows
of L with the leading eigenvectors of the covariance matrix. i§ a rectangular matrix, the linear
transformation projects the inputs into a lower dimensional subspateislé square matrix, then
the transformation does not reduce the dimensionality, but this solution sti#sé&s rotate and

re-order the input coordinates by their respective variances.

Note that PCA operates in an unsupervised setting without using the clasds tdliraining
inputs to derive informative linear projections. Nevertheless, PCA stilthetain useful properties
as a form of linear preprocessing fkiN classification. For example, PCA can be used for “de-
noising”: projecting out the components of the bottom eigenvectors ofthrceskNN error rate.
PCA can also be used to accelerate neighbor nearest computations iddsagsets. The linear
preprocessing from PCA can significantly reduce the amount of computaitioer by explicitly
reducing the dimensionality of the inputs, or simply by re-ordering the inpoitdioates in terms
of their variance (as discussed further in section 6).

2.2.2 UNEAR DISCRIMINANT ANALYSIS

We briefly review linear discriminant analysis (LDA) (Fisher, 1936) in thetext of distance metric
learning. LetQ. denote the set of indices of examples in tke class (withy; = ¢). Essentially,
LDA computes the linear projectiofy — LX; that maximizes the amount of between-class variance
relative to the amount of within-class variance. These variances areuwtedifstom the between-
class and within-class covariance matrices, defined by:

R ©)
Cc:l ’

Co = 1S S H—f)F—o)T

" nc:lie%c 7

wherefi; denotes the sample mean of tffeclass; we also assume that the data is globally centered.
The linear transformatioh is chosen to maximize the ratio of between-class to within-class vari-
ance, subject to the constraint thatefines a projection matrix. In terms of the above covariance
matrices, the required optimization is given by:

L TCpL .
max Tr | ——>— | subjecttolLL " =1. 6
i (LTCWL> ol ©

The optimization in Eqg. (6) has a closed-form solution; the standard ctowesguates the rows
of L with the leading eigenvectors Gf,'Cy,.
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LDA is widely used as a form of linear preprocessing for pattern claasific. Unlike PCA,
LDA operates in a supervised setting and uses the class labels of the inget$viinformative
linear projections. Note that the between-class covariance n@grix Eq. (5) has at most rang,
where C is the number of classes. Thus, updolinear projections can be extracted from the
eigenvalue problem in LDA. Because these projections are based ondseler statistics, they
work well to separate classes whose conditional densities are multivargaissi@n. When this
assumption does not hold, however, LDA may extract spurious feafunegare not well suited to
kNN classification.

2.2.3 RELEVANT COMPONENTANALYSIS

Finally, we briefly review relevant component analysis (RCA) (Shentl £2002; Bar-Hillel et al.,
2006) in the context of distance metric learning. RCA is intermediate betweénaR@ LDA

in its use of labeled data. Specifically, RCA makes use of so-called “chtinkfermation, or
subclass membership assignments. A chunklet is essentially a subsetsd.dmauts in the same
chunklet belong to the same class, but inputs in different chunklets doeteissarily belong to
different classes. Essentially, RCA computes the linear projeg&tienLX; that “whitens” the data
with respect to the averaged within-chunklet covariance matrix. In péaticket Q, denote the
set of indices of examples in thh chunklet, and lefiy denote the mean of these examples. The
averaged within-chunklet covariance matrix is given by:

1 L
=-3 %(x—m(x—m?

Cw=
NS

RCA uses the linear transformatig@n— L X with L = C\,—vl/z. This transformation acts to normalize

the within-chunklet variance. An unintended side effect of this transition may be to amplify
noisy directions in the data. Thus, itis recommended to de-noise the datatlyd?@e computing
the within-chunklet covariance matrix.

2.3 Convex Optimization

Recall that the goal of distance metric learning can be stated in two ways:riodd@mear trans-
formation% — LX or, equivalently, to learn a Mahalanobis metkic= LL ". It is possible to
formulate certain types of distance metric learning as convex optimizationst@/eone of pos-
itive semidefinite matriceM. In this section, we review two previous approaches based on this
idea.

2.3.1 MAHALANOBIS METRIC FORCLUSTERING

A convex objective function for distance metric learning was first pregdsy Xing et al. (2002).
The goal of this work was to learn a Mahalanobis metric for clustering (Mi@) side-information.
MMC shares a similar goal as LDA: nhamely, to minimize the distances between sinalaghed in-
puts while maximizing the distances between differently labeled inputs. MMQsliifen LDA in

its formulation of distance metric learning as an convex optimization problemrticyar, whereas
LDA solves the eigenvalue problem in Eqg. (6) to compute the linear transfiamia, MMC solves

a convex optimization over the matrM = L "L that directly represents the Mahalanobix metric
itself.
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To state the optimization for MMC, it is helpful to introduce further notation. nfrtbe class
labelsy;, we define then x n binary association matrix with elemengs =1 if y; =y; andy;j =0
otherwise. In terms of this notation, MMC attempts to maximize the distances betw@srop
inputs with different labelsy{; = 0), while constraining the sum over squared distances of pairs of
similarly labeled inputsy(; = 1). In particular, MMC solves the following optimization:

Maximize ¥; (1 —VYij)/Dwm (%,X;) subject to:
(D) i i Dm (%,%;) < 1
2)M>0.

The first constraint is required to make the problem feasible and boutiteedecond constraint
enforces thaM is a positive semidefinite matrix. The overall optimization is convex. The square
root in the objective function ensures that MMC leads to generally difteesults than LDA.

MMC was designed to improve the performance of iterative clustering algmsittuch ak-
means. In these algorithms, clusters are generally modeled as normal odahufigiributions.
MMC builds on this assumption by attempting to minimize distances between all pairsilairky
labeled inputs; this objective is only sensible for unimodal clusters. Forahson, however, MMC
is not especially appropriate as a form of distance metric learnirig\Nfdirclassification. One of the
major strengths okNN classification is its non-parametric framework. Thus a different oljecti
for distance metric learning is needed to preserve this strendgdNMfclassification—namely, that
it does not implicitly make parametric (or other limiting) assumptions about the ingtitditions.

2.3.2 ONLINE LEARNING OF MAHALANOBIS DISTANCES

Convex optimizations over the cone of positive semidefinite matrices have edsogooposed for
perceptron-like approaches to distance metric learning. The Pseudo@eline Learning Algo-
rithm (POLA) (Shalev-Shwartz et al., 2004) combines ideas from coop¢ixnization and large
margin classification. Like LDA and MMC, POLA attempts to learn a metric that khrilistances
between similarly labeled inputs and expands distances between differdmlgdanputs. POLA
differs from LDA and MMC, however, in explicitly encouraging a finite marthat separates dif-
ferently labeled inputs. POLA was also conceived in an online setting.

The online version of POLA works as follows. At tinhethe learning environment presents a
tuple (%, %,¥:), where the binary labse} indicates whether the two inpufs andX; belong to the
same ¥; = 1) or different { = —1) classes. From streaming tuples of this form, POLA attempts to
learn a Mahalanobis metrM and a scalar thresholidsuch that similarly labeled inputs asémost
a distance ob — 1 apart, while differently labeled inputs aatleasta distance ob+ 1 apart. These
constraints can be expressed by the single inequality:

Wb (% %)™ (% -%)| =1 (7)

The distance metridl and threshold are updated after each tupi®,{;, y;) to correct any violation
of this inequality. In particular, the update computes a positive semidefinite nvitiivat satisfies
(7). The required optimization can be performed by an alternating projealgamithm, similar to
the one described in appendix A. The algorithm extends naturally to prob@maore than two
classes.
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POLA can also be implemented on a data set of fixed size. In this setting, p&ifuts are
repeatedly processed until no pair violates its margin constraints by moredhenconstarft > O.
Moreover, as in perceptron learning, the number of iterations over thesdecan be bounded above
(Shalev-Shwartz et al., 2004).

In many ways, POLA exhibits the same strengths and weaknesses as MiCalBorithms
are based on convex optimizations that do not have spurious local minimaheGather hand,
both algorithms make implicit assumptions about the distributions of inputs andlateds. The
margin constraints enforced by POLA are designed to learn a distance nretgcwhich all pairs
of similarly labeled inputs are closer than all pairs of differently labeled infthis type of learning
may often be unrealizable, however, even in situations wkigh classification is able to succeed.
For this reason, a different framework is required to learn distance mé&drikNN classification.

2.4 Neighborhood Component Analysis

Recently, Goldberger et al. (2005) considered how to learn a Mahialdidtance metric especially
for kNN classification. They proposed a novel supervised learning algotittown asNeigh-
borhood Component Analys{BICA). The algorithm computes the expected leave-one-out clas-
sification error from a stochastic variant kRN classification. The stochastic classifier uses a
Mahalanobis distance metric parameterized by the linear transformatiobX in Egs. (1-3). The
algorithm attempts to estimate the linear transformadtidinat minimizes the expected classification
error when distances are computed in this way.

The stochastic classifier in NCA is used to label queries by the majority voteaoby training
examples, but not necessarily tkaearest neighbors. In particular, for each query, the reference
examples in the training set are drawn from a softmax probability distributidrfatiars nearby
examples over faraway ones. The probability of drawkpas a reference example féris given

by:

exp(—||Lx—Lx;||? e
bij = { STy 7] (8)
0 ifi=j.

Note that there is no free parameéitdor the number of nearest neighbors in this stochastic classifier.
Instead, the scale &f determines the size of neighborhoods from which nearby training examples
are sampled. On average, though, this sampling procedure yields simillds @sa deterministic
kNN classifier (for some value &) with the same Mahalanobis distance metric.

Under the softmax sampling scheme in Eq. (8), it is simple to compute the expemteeblee-
out classification error on the training examples. As in section 2.3.1, weedgfém x n binary
matrix with elementgy;; = 1 if y; = y; andyjj = 0 otherwise. The expected error computes the
fraction of training examples that are (on average) misclassified:

1
enca=1——7% Pij¥ij- (9)
]

The error in Eq. (9) is a continuous, differentiable function of the lineamgformatiorL. used to
compute Mahalanobis distances in Eq. (8).

Note that the differentiability of Eq. (9) depends on the stochastic neigbbdrassignment
of the NCA decision rule. By contrast, the leave-one-out error of archénéstic KNN classifier is
neither continuous nor differentiable in the parameters of the distance nfedridistance metric
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learning, the differentiability of Eq. (9) is a key advantage of stochastghberhood assignment,
making it possible to minimize this error measure by gradient descent. It weuilduzh more
difficult to minimize the leave-one-out error of its deterministic counterpart.

The objective function for NCA differs in one important respect froneotlgorithms reviewed
in this section. Though continuous and differentiable with respect to tlzerders of the distance
metric, Eq. (9) is not convex, nor can it be minimized using eigenvector methblaus, the op-
timization in NCA can suffer from spurious local minima. In practice, the resflthe learning
algorithm depend on the initialization of the distance metric.

The linear transformation in NCA can also be used to project the inputs intoea tbmensional
Euclidean space. Egs. (8-9) remain valid wiers a rectangular as opposed to square matrix.
Lower dimensional projections learned by NCA can be used to visualize stascture and/or to
accelerat&NN search.

Recently, Globerson and Roweis (2006) proposed a related modehka®wWletric Learning
by Collapsing Classes (MLCC). The goal of MLCC is to find a distance metat (like LDA)
shrinks the within-class variance while maintaining the separation betweeredificlasses. MLCC
uses a similar rule as NCA for stochastic classification, so as to yield a difiigoé objective
function. Compared to NCA, MLCC has both advantages and disadvantaigdistance metric
learning. The main advantage is that distance metric learning in MLCC canrimeiltded as a
convex optimization over the space of positive semidefinite matrices. The maidvdigage is
that MLCC implicitly assumes that the examples in each class have a unimodalutigtribin
this sense, MLCC shares the same basic strengths and weaknessesnetttbds described in
section 2.3.

3. Model

The model we propose for distance metric learning builds on the algorithriesvex)in section 2.
In common with all of them, we attempt to learn a Mahalanobis distance metric of tireifo
Egs. (1-3). Other key aspects of our model build on the particular shemg individual ap-
proaches. As in MMC (see section 2.3.1), we formulate the parameter estinratom model
as a convex optimization over the space of positive semidefinite matrices. A3LA Bsee sec-
tion 2.3.2), we attempt to maximize the margin by which the model correctly classifieketh
examples in the training set. Finally, as in NCA (see section 2.4), our modelomasived specif-
ically to learn a Mahalanobis distance metric that improves the accurakNfclassification.
Indeed, the three essential ingredients of our model are (i) its convexXuastion, (ii) its goal
of margin maximization, and (iii) the constraints on the distance metric imposed byaekNN
classification.

3.1 Intuition and Terminology

Our model is based on two simple intuitions (and idealizations) for rdtNistclassification: first,
that each training inpu%; should share the same lahglas itsk nearest neighbors; second, that
training inputs with different labels should be widely separated. We attemparo ¢éelinear trans-
formation of the input space such that the training inputs satisfy theserpespeln fact, these
objectives are neatly balanced by two competing terms in our model’s lossdiun&pecifically,
one term penalizes large distances between nearby inputs with the samevhileethe other term
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penalizes small distances between inputs with different labels. To makisethese relative no-
tions of “large” and “small”, however, we first need to introduce some t@minology.

Learning in our framework requires auxiliary information beyond the Igtoef each inpug; in
the training set. Recall that the goal of learning is to estimate a distance metdacwhith each
input X hask nearest neighbors that share its same |gpeWe facilitate this goal by identifying
target neighborgor each inpu; at the outset of learning. The target neighborg; @fre those that
we desire to be closest #; in particular, we attempt to learn a linear transformation of the input
space such that the resulting nearest neighboXsare indeed its target neighbors. We emphasize
that target neighbors are fixed a priori and do not change during #neihg process. This step
significantly simplifies the learning process by specifying a priori which sifgilabeled inputs to
cluster together. In many applications, there may be prior knowledge diaayinformation (e.g.,

a similarity graph) that naturally identifies target neighbors. In the abssréor knowledge, the
simplest prescription is to compute th@earest neighbors with the same class label, as determined
by Euclidean distance. This was done for all the experiments in this papars&\the notatiop~~ i

to indicate that inpug; is a target neighbor of inp. Note that this relation is not symmetrigsi

does not implyi ~ j.

ForkNN classification to succeed, the target neighbors of each ¥ystibuld be closer than all
differently labeled inputs. In particular, for each inpiitwe can imagine the target neighbors as
establishing a perimeter that differently labeled inputs should not invadeeféfeto the differently
labeled inputs in the training set that invade this perimetenpestorsthe goal of learning (roughly
speaking) is to minimize the number of impostors.

In fact, to increase the robustnesskdfN classification, we adopt an even more stringent goal
for learning—namely to maintain a large (finite) distance between impostors argetimeters
established by target neighbors. By maintainimgaaginof safety around theNN decision bound-
aries, we ensure that the model is robust to small amounts of noise in thedraipints. This
robustness criterion also gives rise to the name of our apprdagle margin nearest neighbor
(LMNN) classification.

In mathematical terms, impostors are defined by a simple inequality. For arkjnyith labely;
and target neighbot;, an impostor is any inpu with labely; #Y; such that

LR =) < L (% — %)+ 1. (10)

In other words, an imposto§ is any differently labeled input that invades the perimeter plus unit
margin defined by any target neighbgrof the inputX;.

Figure 1 illustrates the main idea behind LMNN classification. Before learaibgining input
has both target neighbors and impostors in its local neighborhood. Dieangjing, the impostors
are pushed outside the perimeter established by the target neighborsleAfténg, there exists
a finite margin between the perimeter and the impostors. The figure shows #tieddescenario
wherekNN classification errors in the original input space are corrected byiteaan appropriate
linear transformation.

3.2 Loss Function

With the intuition and terminology from the previous section, we can now cartsdrioss function
for LMNN classification. The loss function consists of two terms, one whidk # pull target
neighbors closer together, and another which agsishdifferently labeled examples further apart.
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Figure 1: Schematic illustration of one input’s neighborhood before traithéfy versus after train-
ing (right). The distance metric is optimized so that: (i)kts 3 target neighbors lie within
a smaller radius after training; (ii) differently labeled inputs lie outside this smaltbus
by some finite margin. Arrows indicate the gradients on distances arisingdifterent
terms in the cost function.

These two terms have competing effects, since the firstis reduced bkisbrine distances between
examples while the second is generally reduced by magnifying them. We slisacis term in turn.

The first term in the loss function penalizes large distances between gaghaimd its target
neighbors. In terms of the linear transformatiorof the input space, the sum of these squared
distances is given by:

gpul(L) = [IL(%—%))]1% (11)
J~l

The gradient of this term generates a pulling force that attracts targeibuegyin the linearly
transformed input space. It is important that Eq. (11) only penalizes tiggances between inputs
and theirtarget neighborsin particular, it does not penalize large distances between all similarly
labeled inputs. We purposefully do not penalize the latter because sekbid classification does
not require that all similarly labeled inputs be tightly clustered. Our appréadistinguished
in this way from many previous approaches to distance metric learning;esters2. By only
penalizing large distances between neighbors, we build models that levbeafyll power of KNN
classification.

The second term in the loss function penalizes small distances betweeertliféabeled exam-
ples. In particular, the term penalizes violations of the inequality in Eq. [I@%implify notation,
we introduce a new indicator variabjg=1 if and only ify; =y;, andy; =0 otherwise. In terms of
this notation, the second term of the loss funcggnis given by:

gpust(L) = ) Z(l—yil) (1L & =) 2= IL (R —==)117], (12)

i)]~i

where the ternmjz],. = max(z 0) denotes the standard hinge loss. The hinge loss monitors the in-
equality in Eq. (10). If the inequality does not hold (i.e., the infjutes a safe distance away from
%), then its hinge loss has a negative argument and makes no contributionotcetia$ loss func-
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tion. The (sub-)gradient of Eq. (12) generates a pushing forcedpats imposters away from the
perimeter established by each exampke'earest (similarly labeled) neighbors; see Fig. 1.

The choice of unit margin is an arbitrary convention that sets the scalegftindar transforma-
tion L (which enters every other term in the loss function). If a magi#0 was enforced instead
of the unit margin, the loss function would be minimized by the same linear tranafimn up to an
overall scale factot/c.

Finally, we combine the two terng,(L) andepyusHL ) into a single loss function for distance
metric learning. The two terms can have competing effects—to attract taighboes on one hand,
to repel impostors on the other. A weighting parameter|0, 1] balances these goals:

(L) = (1-Wepun(L) + Hepusi(L ). (13)

Generally, the parametgrcan be tuned via cross validation, though in our experience, the results
from minimizing the loss function in Eq. (13) did not depend sensitively on #iaevof . In
practice, the valug = 0.5 worked well.

The competing terms in Eq. (13) are analogous to those in the loss functieaioing in SVMs
(Schdlkopf and Smola, 2002). In both loss functions, one term penalizes tihe ofcthe “parame-
ter” vector (i.e., the weight vector of the maximum margin hyperplane, or tharlinensformation
in the distance metric), while the other incurs the hinge loss. Just as the hiisga BVMs is only
triggered by examples near the decision boundary, the hinge loss inEds (@nly triggered by
differently labeled examples that invade each other’s neighborhoauth.|&ss functions in SVMs
and LMNN can be rewritten to depend on the input vectors only throughitiresr products. Work-
ing with the inner product matrix directly allows the application of kieenel trick see section 5.3.
Finally, as in SVMs, we can formulate the minimization of the loss function in EQ.442 convex
optimization. This last point will be developed further in section 3.4.

Our framework for distance metric learning provides an alternative to thiereapproach of
NCA (Goldberger et al., 2005) described in section 2.4. We briefly coenbartwo approaches at
a high level. Both LMNN and NCA are designed to learn a Mahalanobis distaretric over the
input space that improvadd\N classification at test time. Though test examples are not available
during training, the learning algorithms for LMNN and NCA are based onitrgim “simulated”
test conditions. Neither approach directly minimizes the leave-one-out éordkNN classification
over the training set. The leave-one-out error is a piecewise constiambi-smooth function of the
linear transformatioh , making it difficult to minimize directly. NCA uses stochastic neighborhood
assignment to construct a smooth loss function, thus circumventing this probMNN uses the
hinge loss to construct an upper bound on the leave-one-out errkiNfd classification; this up-
per bound is continuous and similarly well behaved for standard graléesgd methods. In NCA,
it is not necessary to select a fixed numkesf target neighbors in advance of the optimization.
Because the objective function for NCA is not convex, however, thelisitiaditions for the Maha-
lanobis metric implicitly favor the preservation of certain neighborhoods otrears. By contrast,
in LMNN, the target neighborhoods must be explicitly specified. A potentiehatage of LMNN
is that the required optimization can be formulated as an instance of semidefogtamming.
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3-NN Test Error:
MCC RCA Input 6.9%
LMNN 3.7%
? RCA 27.6%
NCA 3.3%
MCC 18.3%
LDA 49.0%

Figure 2: A toy data set for distance metric learning, witk- 2000 data points sampled from
a bi-modal distribution. Within each mode, examples from two classes are disttib
in alternating vertical stripes. The figure shows the dominant axis extragtsdveral
different algorithms for distance metric learning. Only NCA and LMNN resltie 1-NN
classification error on this data set; the other algorithms actually increasertineog
focusing on global versus local distances.

3.3 Local Versus Global Distances

We emphasize that the loss function for LMNN classification only penalizgs lfistances between
target neighbors as opposed to all examples in the same class. The togtdatgig. 2 illustrates
the potential advantages of this approach. The data was generatedflingan=2000 data points
from two classes in a zebra striped pattern; additionally, the data for &essweas generated in two
sets of stripes displaced by a large horizontal offset. As a result, thisefkteas the property that
within-class variance is much larger in the horizontal direction than the viediregtion; however,
local class membership is much more reliably predicted by examples that abg irethe vertical
direction.

Algorithms such as LMNN and NCA perform very differently on this datatkah algorithms
such as LDA, RCA, and MCC. In particular, LMNN and NCA adapt to thealatriped structure
in the data set and learn distance metrics that significantly redude\tiesrror rate. By contrast,
LDA, RCA, and MCC attempt to shrink distances between all examples in the skas® and
actually increase th&NN error rate as a result. Though this data set is especially contrived, it
illustrates in general the problems posed by classes with multimodal suppointciasses violate a
basic assumption behind metric learning algorithms that attempt to shrink glotzalats between
all similarly labeled examples.

1. This is the number of training examples thatuld havebeen mislabeled biyNN classification if their label was in
fact unknown.
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3.4 Convex Optimization

The loss function in Eg. (13) is not convex in the matrix elements of the lineasforemationL .
To minimize this loss function, one straightforward approach is gradiemededn the elements
of L. However, such an approach is prone to being trapped in local minimarebhés of this
form of gradient descent will depend in general on the initial estimatds.fdhus they may not be
reproducible across different problems and applications.

We can overcome these difficulties by reformulating the optimization of Eq.ad8) instance
of semidefinite programming (Boyd and Vandenberghe, 2004). A semitdefirogram (SDP) is
a linear program that incorporates an additional constraint on a symmetrix mhose elements
are linear in the unknown variables. This additional constraint requieesntiitrix to be positive
semidefinite, or in other words, to only have nonnegative eigenvaluess. nfdtrix constraint is
nonlinear but convex, so that the overall optimization remains convexe®xést provably efficient
algorithms to solve SDPs (with polynomial time convergence guarantees).

We begin by reformulating Eq. (13) as an optimization over positive semidefimtgices.
Specifically, as described in Eq. (2), we work in terms of the new varisble L "L. With this
change of variable, we can rewrite the squared distances that appeer limss function using
Eq. (3). Recall thathy (X;,X;) denotes the squared distance with respect to the Mahalanobis met-
ric M. As shown in section 2.1, this distance is equivalent to the Euclidean dissdterethe
mapping¥X — L¥;. Substituting Eq. (3) into Eq. (13), we obtain the loss function:

E(M)=(1-1) 7 Du(X) + Y 3 (L) (14 D) DA (1)

i, J~i i,]~i

With this substitution, the loss function is now expressed over positive semitdefiatricesM = 0,
as opposed to real-valued matrides Note that the constrai¥l > 0 must be added to the opti-
mization to ensure that we learn a well-defined pseudometric.

The loss function in Eq. (14) is a piecewise linear, convex function ofldraents in the matrix
M. In particular, the first term in the loss function (penalizing large distabeggeen target neigh-
bors) is linear in the elements bf, while the second term (penalizing impostors) is derived from
the convex hinge loss. To formulate the optimization of Eq. (14) as an SDRVeo, we need to
convert it into a more standard form.

An SDP is obtained by introducing slack variables which mimic the effect ofithgeeHoss. In
particular, we introduce nonnegative slack variaigs } for all triplets of target neighborg ¢~ i)
and impostorg;. The slack variablé&;; >0 is used to measure the amount by which the large margin
inequality in Eq. (10) is violated. Using the slack variables to monitor these magations, we
obtain the SDP:

Minimize (1— ) 3 jui (X — %) "M (X — X)) + K3 j~is (1— yir)&iji subject to:
D) E=%)"ME—-%X)— % —X)ME—-%) > 1-&j
(2)&j >0
3)M >=0.

While SDPs in this form can be solved by standard solver packages;alypoepose solvers
tend to scale poorly in the number of constraints. For this work, we implementeam special-
purpose solver, exploiting the fact that most of the slack varigl@gs never attain positive values.
The slack variable$g;; } are sparse because most inptitandx; are well separated relative to the
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distance betweeR and any of its target neighbors. Such triplets do not incur a positive hinge
loss, resulting in very fevactive constraints in the SDP. Thus, a great speedup can be achieved
by solving an SDP that only monitors a fraction of the margin constraints, tsieg the resulting
solution as a starting point for the actual SDP of interest.

Our solver was based on a combination of sub-gradient descent in lgothatiniced. andM,
the latter used mainly to verify that we had reached the global minimum. We prbjgotiates iM
back onto the positive semidefinite cone after each step. Alternating proj@tgorithms provably
converge (Vandenberghe and Boyd, 1996), and in this case our imptietioe? worked much faster
than generic solvers. For a more detailed description of the solver pleasg@pendix A.

3.5 Energy Based Classification

The matrixM that minimizes the loss function in Eq. (14) can be used as a Mahalanobiscdistan
metric for kNN classification. However, it is also possible to use the loss function dirastly
so-called “energy-based” classifier. This use is inspired by prewviauk on energy-based models
(Chopra et al., 2005).

Energy-based classification of a test example is done by consideringnt edra training ex-
ample and computing the loss function in Eq. (14) for every possible Yabkel particular, for a test
example with hypothetical labey;, we locatek (similarly labeled) target neighbors (as determined
by Euclidean distance % or other a priori considerations) and then compute both terms in Eq. (14)
given the already estimated Mahalanobis mettic For the first term, we accumulate the squared
distances to thé& target neighbors af;.. For the second term, we accumulate the hinge loss over
all impostors (i.e., differently labeled examples) that invade the perimetend®pas determined
by its target neighbors; we also accumulate the hinge loss for differentjeldexamples whose
perimeters are invaded I%. Finally, the test example is classified by the hypothetical label that
minimizes the combination of these terms:

o= argmiryt{(l—u)z Dha (%, %)) +H Y (1=Yn) [14+Dw (%, %)) — D (%, %))

j~ot j~t

ey <1—yit>[1+@M@,zj>—@m<z,x>]+}. (15)

i, ]~

Note that the relatioj~~t in this criterion depends on the valueyef As shown in Fig. 3, energy-
based classification with this assignment rule generally leads to further ieypemts in test error
rates. Often these improvements are significantly beyond those alreadyeatby adopting the
Mahalanobis distance metiid for kNN classification.

4. Results

We evaluated LMNN classification on nine data sets of varying size andultifficSome of these
data sets were derived from collections of images, speech, and texingigkty high dimensional
inputs. In these cases, we used PCA to reduce the dimensionality of the bgfate training
LMNN classifiers. Pre-processing the inputs with PCA helped to reduggutation time and
avoid overfitting. Table 1 compares the different data sets in detail.

2. A matlab implementation is currently availablehat p: / / www. wei nber ger web. net / Downl oads/ LM\N. ht i .
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Figure 3: Training and test results on the five largest data sets, pesgeaatin different ways, and

using different variants ddNN classification. We compared principal component analysis
(pca), linear discriminant analysis (Ida), relevant component analygsiy (arge margin
nearest neighbor classification (Imnn), Imnn with multiple passes (mp-Imnn), Inthn w
multiple metrics (mm-Imnn), multi-class support vector machines (svm), Imnn classifica
tion with the energy based decision rule (Imnn (energy)). All variations ohlmza and

Ida were applied after pre-processing with pca for general noisetiedu See text and
Table 1 for details. The Imnn results consistently outperform pca and IdamiLittiple
metrics version of Imnn (mm-Imnn) is comparable with multiclass svm on most data sets
(with 20news and yaleFaces as only exceptions).

Experimental results were obtained by averaging over multiple runs ommapdyenerated
70/30 splits of each data set. This procedure was followed with two exceptionsveraging was
done for the Isolet and MNIST data sets, which have pre-defined tggiest splits. For all exper-
iments reported in this paper, the number of target neighbaras set tck= 3, and the weighting
parametepin Egs. (14-15) was set {0=0.5. Though we experimented with different settings, the
results from LMNN classification appeared fairly insensitive to the valfiisese parameters.

The main results on the five largest data sets are shown in Fig. 3. (SeelTabla complete
listing of results, including those for various extensions of LMNN clasgificadescribed in sec-
tion 5.) All training error rates reported are leave-one-out estimatesrebk lies among different
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classes from th&NN decision rule, we repeatedly reduced the neighborhood size, ultimédsly ¢
sifying (if necessary) by just the=1 nearest neighbor. We begin by reporting overall trends, then
discuss the results on individual data sets in more detail.

The first general trend is that LMNN classification using Mahalanobis rista consistently
improves onkNN classification using Euclidean distances. In general, the Mahalanoliiksne
learned by semidefinite programming led to significant improvemerNhhclassification, both in
training and testing.

A second general trend is that the energy-based decision rule dabdnilsection 3.5 leads
to further improvements over the (already improved) results fikbiN classification using Maha-
lanobis distances. In particular, better performance was observedsiohtibe large data sets. The
results are shown in Fig. 3.

A third general trend is that LMNN classification works better with PCA tharALBhen
some form of dimensionality reduction is required for preprocessingle Tabhows the results of
LMNN classification on inputs whose dimensionality was reduced by LDA. Wirtéeprocessing
by LDA helps on some data sets (e.g., wine, yale faces), it generally leadsge results than pre-
processing by PCA. On some data sets, moreover, it leads to drasticadlg vesults (e.g., olivetti
faces, MNIST). Consequently we used PCA as a pre-processinfps@psubsequent experiments
throughout this paper.

A fourth general trend is that LMNN classification yields larger improvementtarger data
sets. Though we do not have a formal analysis that accounts for treésvalisn, we can provide
the following intuitive explanation. One crucial aspect of the optimization in INVidassification
is the choice of theéarget neighborsin all of our experiments, we chose the target neighbors based
on Euclidean distance in the input space (after dimensionality reduction BydPCDA). This
choice was a simple heuristic used in the absence of prior knowledge.vidulee quality of this
choice presumably depends on the sample density of the data set. In paristie sample density
increases, we suspect that more reliable discriminative signals can beddesm target neighbors
chosen in this way. The experimental results bear this out.

Finally, we compare our results to those of competing methods. We take multiS\dds
(Crammer and Singer, 2001) as providing a fair representation of theoftdte-art. On each data
set (except MNIST), we trained multi-class SVMs using linear, polynonmd RBF kernels and
chose the best kernel with cross validation. On MNIST, we used a ooregeneous polynomial
kernel of degree four, which gave us our best results, as alsoteega LeCun et al. (1995). The
results of the energy-based LMNN classifier are very close to thosatef af-the-art multi-class
SVMs: better on some data sets, worse on others. However, consisteové@ment over multi-
class SVMs was obtained by a multiple-metric variant of LMNN, discusseddtiose5.2. This
multi-metric extension outperformed SVMs on three of the five large data set$iig. 3. On the
only data set with a large performance difference, 20-newsgroupsniiti-class SVMs benefited
from training in the originald = 20000 dimensional input space, whereas the LMNN classifiers
were trained only on the input’s leadinb= 200 principal components. Based on these results, in
section 7, we suggest some applications that seem patrticularly well suitddiN®! [classification,
though poorly suited to SVMs. These are applications with moderate input donality, but large
numbers of classes.

To compare with previous work, we also evaluated RCA (Shental et al2)200A (Fisher,
1936) and NCA (Goldberger et al., 2005) on the same data sets. For NCR@A, we used the
code provided by the authors; however, the NCA code ran out of meorotlie larger data sets.
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Table 1 shows the results of all algorithms on small and larger data sets. Lddiiérforms these
other methods for distance metric learning on the four largest data setsmdérunning times,
RCA is by far the fastest method (since its projections can be computed ird dimse), while
NCA is the slowest, mainly due to ti@(n?) normalization of its softmax probability distributions.
Although the optimization in LMNN naively scales &%n?), in practice it can be accelerated by
various efficiency measures: Appendix A discusses our semidefinigegonming solver in detail.
We did also include the results of MCC (Xing et al., 2002); however, the grdvided by the
authors could only handle a few of the small data sets. As shown in Tablethpse data sets it
resulted in classification rates generally higher than NCA.

The results of experiments on particular data sets provide additional iivsighiie performance
of LMNN classification versus competing methods. We give a more detailettieweof these
experiments in what follows.

4.1 Small Data Sets with Few Classes

The wine, iris, and bal data sets are small in size, with less than 500 trairdngpées. Each of these
data sets has three classes. The data sets are available from the U@ieMagzrning Repository.
On data sets of this size, a distance metric can be learned in a matter of se€bed®sults in
Table 1 were averaged over 100 experiments with different randg®@07€plits of each data set.

On these data sets, LMNN classification improves on kNN classification witlckdéan dis-
tance metric. These results could potentially be improved further with betterunesaagainst
overfitting (such as regularization). Table 1 also compares the resutid NN classification to
other competing methods. Here, the results are somewhat variable; canm&l€A, RCA, LDA,
and multiclass SVMs, LMNN fares better in some cases, worse in others. \Wé/meport these
results to facilitate direct comparisons with previously published work. Kewéhe small size of
these data sets makes it difficult to assess the significance of these fdsuésver, these data sets
do not represent the regime in which we expect LMNN classification to bé use$ul.

4.2 Face Recognition

The Olivetti face recognition data $atontains 400 grayscale images of 40 subjects in 10 differ-
ent poses. We downsampled the images to« 3. pixels and used PCA to further reduce the
dimensionality, projecting the images into the subspace spanned by the @rsigghfaces (Turk
and Pentland, 1991). Training and test sets were created by randampyirsgr 7 images of each
subject for training and 3 images for testing. The task involved 40-wagifitzstion—essentially,
recognizing a face from an unseen pose. Table 1 shows the improveduents LMNN classi-
fication. Fig. 4 illustrates the improvements more graphically by showing how th& nearest
neighbors change as a result of learning a Mahalanobis metric. (Althoegilgbrithm operated
on downsampled, projected images, for clarity the figure shows the origiagks.)

The (extended) Yale face data set contains 2414 frontal images of 38 subjects. For each
subject, there are 64 images taken under extreme illumination conditions. (Aulejscts are
represented with fewer images.) As for the Olivetti data set, we premeddlse images by down-
sampling and projecting them onto their leading 200 principal componentediice the impact of
the very high variance in illumination, we followed the standard practice oadistg the leading 5

3. Available atht t p: / / www. i cs. uci . edu/ $\ si nnl ear n/ ML.Reposi tory. htni .
4. Available atht t p: / / www. uk. r esear ch. att. com f acedat abase. ht nl .
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eigenvectors. Results from LMNN classification were averaged oveuri®of 70'30 splits. Each

split was obtained by randomly selecting 45 images of each subject for rainoh 19 images for
testing. This protocol ensured that the training examples were evenly disttilacross the rela-
tively large number of classes. To guard against overfitting, we empkyatidation set consisting
of 30% of the training data and stopped the training early when the lowesifidason error on the
validation set was reached. On this data set, Fig. 3 shows that the LMNN rmetperforms the

Euclidean metric and even improves on multiclass SVMs. (Particularly eféeotivthis data set,
though, is the simple strategy of LDA.)

" J * %
. ! F I =
Test Image: ﬁ i | r-.-. T‘f— -
Correct class member that [ i . i
became one of the 3-NN | - = - A T
under the learned h:"-.-* =, e “ ' e L¥
T o =

Mahalanobis metric.

Impostor under Euclidean = '1 |
3-NN, that was moved out of § = n o t_ J—_— L
the neighborhood under the _ - = I v : 4 i.x

learned Mahalanobis metric.

Figure 4: Test images from the Olivetti face recognition datatsgtrow). The middle row shows
images from the same class that were among the 3-NN under the learnethividdis
metric (after training) but not among the original 3-NN under the Euclidedricr{before
training). The bottom row shows impostors under the Euclidean metric that mer
longer inside the local neighborhoods under the Mahalanobis metric.

4.3 Spoken Letter Recognition

The Isolet data set from the UCI Machine Learning Repository contd38 @xamples and 26
classes corresponding to letters of the alphabet. We reduced the inputstbmedity (originally at
617) by projecting the data onto its leading 172 principal components—ariouwgcount for 95%
of its total variance. On this data set, Dietterich and Bakiri report test estes of 42% using
nonlinear backpropagation networks with 26 output units (one per dass33% using nonlinear
backpropagation networks with a 30-bit error correcting code (Diettamd Bakiri, 1995). LMNN
with energy-based classification obtains a test error ratedé63

4.4 Letter Recognition

The letter recognition data set was also taken from the UCI Machine LegiRepository. It con-
tains randomly distorted images of the 26 letters in the English alphabet in 2fediffents. The
features consist of 16 attributes, such as height, width, correlationsesfamd others.lt is inter-

5. Full details on the data set can be found fttp://www.ics. uci.edu/$\sinsn earn/ dat abases/
| etter-recognition/letter-recognition. names.
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esting that LMNN with energy-based classification significantly outperfatinar variants okNN
classification on this data set.
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Figure 5: Images from the MNIST data set, along with nearest neighlefoseband after training.

4.5 Text Categorization

The 20-newsgroups data set consists of posted articles from 20 meypsg with roughly 1000
articles per newsgroup. We used the 18828-version of the d&tansehich cross-postings are
removed and some headers stripped out. The data set was tokenizedhesiambow package
(McCallum, 1996). Each article was initially represented by a word-coeetov for the 20,000 most
common words in the vocabulary. These word-count vectors were éuerced in dimensionality
by projecting them onto their leading 200 principal components. The resiiig.iB were obtained
by averaging over 10 runs with 70/30 splits for training and test data. @&hktrbsult for LMMN
on this data set improved significantly ouédN classification using Euclidean distances and PCA
(with 14.98% versus 48.57% and 18.22% test error rates). LMNN wasidatmed by multiclass
SVM (Crammer and Singer, 2001), which obtained a 8.0% test error raig adinear kernel and
20000 dimensional inputs.

4.6 Handwritten Digit Recognition

The MNIST data set of handwritten didfiteas been extensively benchmarked (LeCun et al., 1995).
We deskewed the original 288 grayscale images, then reduced their dimensionality by projecting
them onto their leading 164 principal components (enough to capture 93ke afata’s overall

6. Available atht t p: // peopl e. csai | . mi t. edu/jrenni e/ 20Newsgr oups/ .
7. Results vary from previous work (Weinberger et al., 2006) duéfferent pre-processing.
8. Available atht t p: // yann. | ecun. com exdb/ mi st/ .
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Benchmark test error rates

statistics mnist letters 20news isolet yFaces bal oFaces wine iris
# inputs 70000 20000 18827 7797 2414 535 400 152 128
# features 784 16 20000 617 8064 4 200 13 4
# reduced dimensions 164 16 200 172 300 4 200 13 4
# training examples 60000 14000 13179 6238 1690 375 280 106 90
# testing examples 10000 6000 5648 1559 724 161 120 46 38
# classes 10 26 20 26 38 3 40 3 3
# of train/test splits 1 10 10 1 10 100 100 100 100
% validation 0 0 0 0 30 0 30 0 30
kNN
Euclidean 2.12 4.68 48.57 8.98 29.19 18.33 6.03 25.00 4.87
PCA 2.43 4.68 18.22 8.60 10.79 18.33 2.80 25.00 4.87
LDA 6.16 4.63 16.15 5.90 4.80 10.82 10.01 2.17 4.00
RCA 5.93 4.34 16.06 5.71 4.83 12.31 10.02 2.28 3.71
MCC N/A N/A N/A N/A N/A 15.66 15.91 30.96 3.55
NCA N/A N/A N/A N/A N/A 5.33 2.60 28.67 4.32
LMNN
PCA 1.72 3.60 14.98 4.36 5.90 11.16 3.28 8.72 4.37
LDA 6.16 3.61 16.98 5.84 5.08 10.84 40.72 2.11 3.79
LMNN (energy) 1.37 2.67 22.09 3.40 10.11 9.14 3.16 7.67 3.68
LMNN (multiple passes) 1.69 2.80 13.83 4.30 5.52 5.86 4.83 7.59 4.26
LMNN (multiple metrics) 1.18 3.06 12.82 4.04 4.05 10.72 3.11 8.72 4.66
solver statistics
CPU time (1M) 3h 25m 2m 70m 20m 8m 6s 66s 14s 2s
CPU time (MM) 8h 43m 14m 74m 84m 14m 8s 149s 16s 5s
# active constraints (1M) | 540037 135715 676482 64396 86994 41522 3843 10194 574
# active constraints (MM) 305114 18588 @ 101803 135832 30135 31717 70 748 1548
multiclass SVM 1.20 3.21 8.04 3.40 15.22 1.92 1.90 22.24 3.45
larger data sets smaller data sets

Table 1: Results and statistics from all experiments. The data sets are lspitadest to small-
est from left to right. The table shows data statistics and error rates fiftenedt vari-
ants of LMNN training (single-pass, multi-pass, multi-metric), testkigl decision rule,
energy-based classification), and preprocessing (PCA, LDAuIResom RCA, NCA
and multiclass support vector machines (SVMs) are also provided foramsop. See
section 5 for discussion of multi-pass and multi-metric LMNN training.
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relative classification error with multiple runs of LMNN
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mnist (60K) letters (14K) 20news (13K) isolet (7K) yalefaces (1.7K)

Figure 6: The relative change of the 3-NN classification error after multipie of LMNN over a
single run of LMNN.

variance). Energy-based LMNN classification yielded a test erromtatel%, cutting the baseline
kNN error rate by over one-third. Other comparable benchmarks (LeCaln 1995) (not exploiting
additional prior knowledge) include multilayer neural nets at 1.6% and S¥iME2%. Fig. 5
shows some digits whose nearest neighbor changed as a result afdefmom a mismatch using
Euclidean distances to a match using Mahalanobis distances. Table 1 tha¢#te LMNN error
can be further reduced by learning a different distance metric fordigitclass. This is discussed
further in section 5.2.

5. Extensions

In this section, we investigate four extensions designed to improve LMNNifitaion. Section 5.1
examines the impact of multiple consecutive applications of LMNN on one datéSsetion 5.2
shows how to learn multiple (locally linear) metrics instead of a single global m&gaction 5.3
discusses how to “kernelize” the algorithm for LMNN classification andengs complementary
work by Torresani and Lee (2007). Finally, section 5.4 investigatessa@ULMNN as a method
for supervised dimensionality reduction.

5.1 Multi-pass LMNN

One potential weakness of LMNN is that target neighbors must be a gpedified. In the ab-
sence of prior knowledge, a default choice is to use Euclidean distemdesermine target nearest
neighbors. While the target nearest neighbors are fixed during lgahmmever, the actual nearest
neighbors may change as a result of the linear transformation of the ippcé.s These changes
suggest an iterative approach, in which the Mahalanobis distancesdearone application (or
“pass”) of LMNN are used to determine the target nearest neighborsubsequent run of the al-
gorithm. More formally, leL , be the transformation matrix obtained from bt pass of LMNN.
For the(p+1)™" pass, we can assign target neighbors using the Euclidean distance ritetrinea
linear transformatio®; — L pL p_1...L1LoX (With Lo =1).

To evaluate this approach, we performed multiple passes of LMNN on allataesgts from
Table 1. The paramet&mwas set tk = 3. Figure 6 shows the relative improvement&MNN classi-
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1 Metric:

2 Metrics:

3 Metrics:

1-nn error: 0%

1-nn error: 21%

1-nn error: 100%

Figure 7: A synthetic data set to illustrate the potential of multiple metrics. The datossists
of inputs sampled from two concentric circles, each of which defines ardiff class

membership. LMNN training was used to estimate one global metric, as well as multiple
local metrics.Left: a single linear metric cannot model the non-linear decision boundary.

The leave-one-out (LOO) error is 1009Middle: if the data set is divided into two
clusters (by k-means), and a local metric learned within each cluster,riraae drops

drastically. Right: the use of three metrics reduces the LOO-error on the training set to

zero. The principal directions of individual distance metrics are indidayeatrows.

fication error rates on the five largest data sets. (Here, a value of dicaties that multiple passes
of LMNN did not change the error rate, while a value less than one indieetésprovement.)
On these data sets, multiple passes of LMMN were generally helpful, someignégantly im-
proving the results. On smaller data sets, though, the multi-pass strategydsgeme to overfit.
Table 1 shows the absolute results on all data sets from multiple passes dfl KiMdllcated by
MP-LMNN).

A better strategy for choosing target neighbors remains an open quegtisraspect of LMNN
classification differs significantly from NCA, which does not require theice of target neighbors.
In fact, NCA also determines the effective neighborhood size as pdtt optimization. On the
other hand, the optimization in NCA is not convex; as such, the initial conditiopbcitly specify
a basin of attraction that determines the final result. In LMNN classificatientaityet neighbors
are fixed in order to obtain a convex optimization. This trade-off is remintscieather convex
relaxations of computationally hard problems in machine learning.

5.2 Multi-metric LMNN

On some data sets, a global linear transformation of the input space mag sidfibiently powerful
to improvekNN classification. Figure 7 shows an example of a synthetic data set fohalsingle
metric is not sufficient. The data set consists of inputs sampled from tweoticircles, each
of which defines a different class membership. Global linear transfornsatiannot improve the
accuracy of kNN classification of this data set. In general, highly nonlimedticlass decision
boundaries may not be well modeled by a single Mahalanobis distance metric.
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In these situations, one useful extension of LMNN is to learn multiple locally fivaasforma-
tions instead of a single global linear transformation. In this section, we bbewto learn different
Mahalanobis distance metrics for different examples in the input spaesd@h of learning locally
linear distance metrics for kNN classification is at least a decade old (Hasti€ilashirani, 1996).
It has also been explored more recently in the context of metric learnirggefor-supervised clus-
tering (Bilenko et al., 2004). The novelty of our approach lies in learniegeéhmetrics specifically
to maximize the margin of correct kNN classification. As a first step, we partitietraining data
into disjoint clusters using-means, spectral clustering (Shi and Malik, 2000), or label information.
(In our experience, the latter seems to work best.) We then learn a Mah&alistance metric for
each cluster. While the training procedure couples the distance metricsarediftlusters, the op-
timization remains a convex problem in semidefinite programming. The globally atéztraining
of local distance metrics also distinguishes our approach from earlidr (Mastie and Tibshirani,
1996).

Before developing this idea more formally, we first illustrate its potential in a &ding—
namely, on the data set in Fig. 7. For this data set, LMNN training was usetrmésone global
metric, as well as multiple local metrics (as described below). Cluster bdersdiathe input space
were determined by thiemeans algorithm. We measured the leave-one-out (LOO) training error
(with k =1 nearest neighbors) after learning one, two and three metrics. With drie,rtiee error
was 100%; with two metrics, it dropped to 21%; finally, with three metrics, it vamdsaltogether.
The figure illustrates how the multiple metrics adapt to the local structure of tke diecision
boundaries.

In order to learn different Mahalanobis metrics in different parts of thatispace, we minimize
a variation of the objective function in Eq. (14). We denote the differeritioseby M?*,... M€,
wherec is the number of clusters. If we partition the training examples by their clasks]ahen
c also coincides with the number of classes; this was done for the remainiegragpts in this
section. In this case, as the cluster that cont&ins indexed by its labey;, we can refer to its
metric asMY. We further define the cluster-dependent distance between two vEciody; as:

D%, %)) = (% — %) MY (% —%j). (16)

Note that this cluster-dependent measure of distéh(c?e, Xj) is not symmetric with respect to its
input arguments. In a slight abuse of terminology, however, we will coatiourefer to Eq. (16)
as a distance metric; the symmetry is not required for its ug®l i classification. To learn these
metrics from data, we solve a modified version of the original SDP:

Minimize (1— 1) ¥ jsi (% = %j) "MV (% = %) + U jni (1= Yi )&

subject to:
(1) (% —%) "M (X —X) — (% —%) "M (X —%j) > 1-&
(2)& >0

)M =0fori=1,....c

Note that all the matriceM' are learned simultaneously by solving a single SDP. This ap-
proach ensures the consistency of distance computations in differeérstu for example, the
distance from a test example to training examples with different labels. Thgramee learning
of different metrics is necessary to calibrate these distances on the saleigfstie metrics were
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learned independently, then the distances computed by different metnicsna be meaningfully
compared—obviously, a crucial requirementkdIN classification.

o twos

fours

Figure 8: Multiple local distance metrics learned for a data set consistirgnalitritten digitdour,
two, oneandzera

Fig. 8 illustrates the multiple metrics learned from an image data set of fouratitférand-
written digits: zerq ong four, andtwo. The plot shows the first two principal components of the
data. Only these principal components were used in training in order to yieddsily visualized
solution. The solution can be visualized by illustrating the metrics as ellipsoidgedrkthe class
means. The ellipsoids show the effect on a unit circle of each local lire@sformation learned by
LMNN. The line inside each ellipsoid indicates its principal axis.

We experimented with this multi-metric version of LMNN on all of the data sets frectian 4.
To avoid overfitting, we held out 30% of each data set’s training examplgsused them as a
validation set. We learned one metric per class. To speed up training, we indighie multi-metric
optimization by setting each class-dependent metric to the solution from LMNNifitation with
a single global distance metric. Table 1 reports the error rates and otwtsrérom all these
experiments (under “MM-LMNN?"). The training times for MM-LMNN include ftime required
to compute the initial metric settings from the optimization in Eq. (14).

Fig. 9 shows the relative improvement in 3-NN classification error rates fralti-metric
LMNN over standard LMNN on the five largest data sets. The multiple metrigantamproves
over standard LMNN on every data set. The best result occurs on i&Mhandwritten digits
data set, where MM-LMNN obtained a1B8% kNN classification error rate, slightly outperform-
ing multi-class SVMs. However, the improvement from multi-metric LMNN is not@sststently
observed when the energy-based decision rule is used for classificatio
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relative classification error with multiple metrics

standard LMNN
5 1.00 085 0.86 0.93"
; 0.80 0,69 073 0.69
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mnist (60K) letters (14K)  20news (13K) isolet (7K)  yalefaces (1.7K)

Figure 9: Relative improvement ki-NN classification error rates using multiple metrics over error
rates using a single metric.

5.3 Kernel Version

LMNN can also be extended by using kernel methods ¢&dpf and Smola, 2002) to work in
a nonlinear feature space, as opposed to the original input spaceid@éef learning a kernel
matrix has been explored in other contexts (Kwok and Tsang, 2003ktiahet al., 2004; Varma
and Ray, 2007), particularly large margin classification by support vetdéezhines. This idea for
LMNN has been investigated in detail by Torresani and Lee (2007).“Rérael trick” is used to
map the inputs into higher (possibly infinite) dimensional feature vectdr&;). To avoid the
computational cost of working directly with these feature vectors, theypmiseaccessed through
their inner products, which are pre-computed and stored in the kerneékmatr

Kij = CD(X;)TCD(YJ').

Note how in Eqg. (14), the input are only accessed in terms of the distances in Eqg. (3). Torresani
and Lee (2007) considered Mahalanobis metrics of the fdrea 5, Aim®(X )P (Xm) ', where the
matrix A is constrained to be positive semidefinite. They showed that the gradiBat ¢£4) with
respect to the matriA can be written entirely in terms of the elements of the kernel matrix. Thus,
a “kernelized” version of LMNN can be implemented efficiently in the same vealgeanel PCA
(Scholkopf et al., 1998), without ever working directly in the high dimensionatiee space.
Torresani and Lee (2007) show that the kernelized version of LMEN lead to significant
further improvements, but at the cost of increased computation. Theageztecomputation is due
to the size of the matrix that must be learned in this setting: the matnixsO(n?) elements instead
of O(d?). (However, the kernel version could require less computation in applicattbieren < d.)
More details on the kernelized version of LMNN can be found in their paper

5.4 Dimensionality Reduction

Often it is useful to generate low dimensional representations of high diomethglata. These rep-
resentations can be used to visualize the data and/or to accelerate algoritbsestime complexity
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scales with the input dimensionality. In section 6, for example, we will investigateto accel-
erate thekNN search in LMNN classification by mapping the training data into a low dimenkiona
subspace.

Low dimensional representations of inputs can be derived from the lirmasformatiorx, —
LX in LMNN classification. This can be done in two ways. The first way is to ptdjeetrans-
formedinputs onto their leading principal components. Note that if the inputs are veldijeror to
optimizing Eq. (13), then these principal components are given simply by dkenkg eigenvectors
of the square matrik . Another way to derive low dimensional representations is to build this goal
explicitly into the optimization for LMNN classification. In particular, we can attetophinimize
Eqg. (13) with respect th (rather than with respect td = L "L) and constrair. to be rectangular
of sizer x d, wherer is the desired output dimensionality (presumed to be much smaller than the
input dimensionalityd). The optimization in terms df is not convex, but in practice (Torresani and
Lee, 2007), it does not appear to suffer from very poor local minimahé following section, we
use and compare both these methods to build efficient tree data structur®Nd classification.

6. Metric Trees

One inherent disadvantage kfIN search is its relatively high computational complexity at test
time. The simplest brute-force way to locate a test example’s nearest nesgblio compute its
distance to all the training examples. Such &eamplementation has a test time-complexity of
O(nd), wheren is the number of training examples, athds the input dimensionality.

One way to acceleratdNN search is to rotate the input space such that the coordinate axes are
aligned with the data’s principal components. Such a rotation sorts the inptdinates by de-
creasing variance; see Section 2.2.1. This ordering can be used syprmeacessary computations
in kNN search. In particular, for any test example, a nearest neighleoy gonsists of computing
the distance to each training example and comparing this distancekelibgest examples already
located. The distance computation to a particular training example can becabpae determin-
ing that it lies further away than theclosest examples already located. When the coordinate axes
are aligned with the principal components, this determination can often be rftadexamining
just a few of the leading, load-bearing dimensions. We have used this ogioniraour baseline
implementation okNN search.

Generally there are two major approaches to gain additional speed-bpdirdt approach is
to reduce the input dimensionality The Johnson-Lindenstrauss Lemma (Dasgupta and Gupta,
1999) states that points can be mapped into a space of dimensionﬁ)(ﬁf@) such that the
distances between any two points changes only by a fact(t 6fc). Thus we can often reduce
the dimensionality of the input data without distorting the nearest neighbdioreda (Note also
that forkNN classification, we may tolerate inexact nearest neighbor computatioreyifith not
lead to significant errors in classification.) The second approach td sypddIN search is to build
a sophisticated tree-based data structure for storing training examplek.aSlata structure can
reduce the nearest neighbor test time complexity in practi€gddogn) (Beygelzimer et al., 2006).
This latter method works best for low dimensional data. Fig. 10 compareseéirmimplementation
of kNN search versus one based on ball trees (Liu et al., 2005; Omohurg8id). Note how the
speed-up from the ball trees is magnified by dimensionality reduction of tlsinp
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3-NN Classification with Ball Tree Data Structure

O ball trees 3-NN
@ baseline 3-NN

Relative Speedup

10 15 20 25 30 35 40 45 50
Dimensionality

Figure 10: Relative speed-up for 3NN classification obtained fromréifiteorthogonal projections
of MNIST handwritten digits onto their leading principal components. Forglesper-
iments, thed = 784 dimensional inputs from the raw images were projected onto the
number of principal components shown on the x-axis. The figure compfarespeed-
ups when ball trees are used (blue) versus when ball trees areadbofrad) in the lower
dimensional space. Note how the gains from ball trees diminish with incredisiren-
sionality. All the NN computations in these experiments were accelerated bynglign
the coordinate axes along principal components, as described in section 6

In this section, we explore the use of ball trees for LMNN classificationdame:nsionality re-
duction. We find that ball trees can be used for both faster training atinigte$ LMNN classifiers.

6.1 Review of Ball Trees

Several authors have proposed tree-based data structures tougddd search. Examples are
kd-trees (Friedman et al., 1977), ball trees (Liu et al., 2005; Omohud®®7) and cover-trees
(Beygelzimer et al., 2006). All these data structures exploit the same idgeartttion the input
space data into hierarchically nested bounding regions. The boundiogsere set up to guarantee
that the distance from a test example to a training example inside the boungiiog iat least as
large as the distance from the test example’s to the region’s boundary, foin each test example,
the training examples inside the bounding region can be ruled driearest neighbors kftraining
examples have already been found that are closer than the regiomdaygu In this case, the
kNN search can proceed without explicitly computing the distances to trainiag@es in the
bounding region. This “pruning” of distance computations often leads tgréfisant speedup in
kNN computation time.

We experimented with ball trees (Liu et al., 2005), in which the bounding megime hyper-
spheres. Fig. 11 illustrates the basic idea behind ball trees. If & sktraining examples is
encapsulated inside a ball with centeand radiug, such thatvX € S: ||[X—¢| <, then for any
test example we can bound the distance to any training example inside the ball by the following
expression:

W% €S [|% —%[| > max(|% — &2 —r,0). (17)

Ball trees exploit this inequality to build a hierarchical data structure. Tkee steucture is based
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|7 — 2 -

Figure 11: The basic idea behind ball trees: for any training exakpiside the ball we can bound
the distance|% — X;||> from below using (17). If another training examplgoutsider
the ball is already known to be closer than this bound to the test examleen the
training examples inside the ball can be ruled out as nearest neighbors.

on recursively splitting the training examples into two disjoint sets. The setsnaapsulated by
hyperspheres (or “balls”) which may be partially overlapping. The trgisxamples are recursively
divided into smaller and smaller sets until no leaf set contains more than sodefipeel number
of examples.

From this hierarchical data structure, #hh@earest neighbors of a test example can be found by
a standard depth-first tree-based search. Recall that each noéetiegthas an associated hyper-
sphere that encloses the training examples stored by its descendankiNN'kBearch proceeds by
traversing the tree and computing a test example’s distance to the centeh ofoeke’s hypersphere.
The tree is traversed by greedily descending sub-trees in order ofistasice. Before descending
a subtree, however, Eq. (17) is checked to determine whether trainémgpéas in the subtree lie
further away than the currently estimatedearest neighbors. If this is true, the sub-tree is pruned
from the search without further computation. When a leaf node is reaaléae training examples
at the leaf node are compared to the currently estimateghrest neighbors, and the estimates are
updated as necessary. Note that ball trees support exact quetdiNeearch.

As pointed out earlier, and as illustrated by Fig. 10, ball trees yield thedaggns inkNN
search time for low dimensional data. When the data is high dimensional, trah segalagued
by the so-called “curse of dimensionality” (Indyk and Motwani, 1998)pamticular, the distances
between high dimensional points tend to be more uniform, thereby reducirgpguetunities for
pruning subtrees in the depth-first search.

6.2 Ball Trees for LMNN Training

The most computationally intensive part of LMNN training is computing the graditthe penalty
for margin violations in Eg. (12). The gradient computation requires eckearer all pairs of
differently labeled examples to determine if any of them are “impostors” &@a 3.1) that incur
margin violations. The solver described in appendix A reduces the nunilbeese searches by
maintaining an active list of previous margin violations. Nevertheless, thisissaalesO(n’d),
which is very computationally intensive for large data sets.

Ball trees can be used to further speed up the search for impostoia! Rag impostors were
defined in section 3.1. For any training examgleand for any similarly labeled exampg that
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19 Finding active hinge losses with ball trees
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Figure 12: The relative speed-up obtained using ball trees to searchafigin violations. The
speed-up was measured on the MNIST data set of handwritten digits, wiitsiop
varying dimensionality derived from PCA. Note how the gains from ballstdiminish
with increasing input dimensionality.

is one of its targek-nearest neighbors (with~ i), the impostors consist of all differently labeled
examples{ (with y; = 0) that satisfy Eqg. (10). Ball trees can be used to search for all training
examples that meet this criterion. As in their useKNIN search, many subtrees in the depth-first
search for impostors can be pruned: if for some ball the lower bounchdesebetween examples

is already greater than the right hand side of Eq. (10), then all the exasfoleed in the subtree
can be ruled out as impostors. Note that for each training exaxphee only need to search for
impostors among other training examp#ghat have a different class label (wigh = 0). Thus,

we build one ball tree data structure per class and perform a sepasath & impostors in each
class.

Fig. 12 shows the relative speed-up when ball trees are used to $earlargin violations
in LMNN classification. The figure shows results from experiments with thd 3MNmages of
handwritten digits. For these experiments, the images were projected infpasabsof varying
dimensionality using PCA. The gains from ball trees in this context are signifithough not as
dramatic as those in Fig. 10 for simN search. The lesser gains for LMNN classification can be
attributed to the minimum enforced margin of unit distance, which sometimes aabggsnumber
of sub-trees to be traversed. This effect is controlled by the relativaitoglg of the unit margin; it
can be partially offset by scaling the input data by a constant factoré#fining.

6.3 Ball Trees for LMNN Testing

Ball trees can also be used to accelek®t®l search at test time. We have observed earlier, though,
that the speed-up from ball trees diminishes quickly as the input dimensioiadityases; see
Fig. 10. If very fastkNN classification using ball trees is desired on a large data set, then often
it is necessary to work with a lower dimensional representation of the trag@xiagples.

The most commonly used methods for dimensionality reduction in ball treesratemapro-
jections and PCA. Neither of these methods, however, is especially gegresserve the accuracy
of kNN classification. There is an inherent trade-off between dimensionatityction and nearest
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3-NN classification after dimensionality reduction
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Figure 13: Graph okNN classification error (withkk = 3) on different low dimensional representa-
tions of the MNIST data set; see text for details. The speed-up from bak-is shown
at the top of the graph.

neighbor preservation. Nearest neighbor relationships can chamge tive training examples are
projected into a lower dimensional space, resulting in significantly widideclassification.

In this section, we explore how the distance metric learned for LMNN claasditcan be used
for more effective dimensionality reduction in ball trees. In section 5.4, eseribed two different
ways to derive low dimensional representations for LMNN classificatione fiilst computed a
low-rank approximation to the (generally full rank) mattix the second directly learned a low-
rank rectangular matrik by optimizing the non-convex loss function in Eq. (13). For shorthand,
we refer to these approaches for dimensionality reduction as LMNN-S_kHWdN-R, denoting
whether a square (S) or rectangular (R) matrix is learned to minimize the LMdéNfanction.

Fig. 13 shows the results &NN classification from both these methods on the MNIST data set of
handwritten digits. For these experiments, the raw MNIST images (of size283 were projected
onto their 350 leading principal components before any training for LMNassification. Also
shown in the figure are the results from further dimensionality reductiorg B®A, as well as

the baselinkNN error rate in the original (high dimensional) input space. The squatexnia
LMNN-S was of size 35& 350, and for dimensionality reduction, the data was projected onto the
r leading eigenvectors of linear transformationThe rectangular matrix in LMNN-R was of size

r x 350, where varied from 15 to 50. The speed-up from ball trees is shown at the tiye gfraph.

The amount of speed-up depends significantly on the amount of dimehigioeduction, but very
little on the particular method of dimensionality reduction.

The results show that LMNN can be used effectively for dimensionalitycton. For example,
LMNN-R achieves &NN test error rate of 38% in 15 dimensions, only slightly higher than the
baseline error rate 0f.23% in the original input space. In this space, moreover, ball trees yield a
15x speedup over baselikBIN search. In 25 dimensions, the LMNN-R error rate drops further to
1.76% while still yielding a 5.7x speed-up. Of the three methods compared inFiggMNN-R is
the most effective. In fact, though working in many fewer dimensions, INVIRIobtains results very
close to the best results reported in section 4. It is interesting that LMNNgsedforms LMNN-S,
though (as expected) their results converge as the rectangular matrixNiINERIbecomes more
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square. These results show that aggressive dimensionality reduatidre @@mbined with highly
accuratekNN classification.

7. Discussion

In this paper, we have introduced a new framework for large margireseaeighbor (LMNN)
classification. From labeled training examples, we have shown how to Ieldiachalanobis dis-
tance metric fokNN classification. The required optimization was formulated as an instance of
semidefinite programming. Our framework makes no parametric assumptiangladstructure or
distribution of the data and scales naturally to problems with large number s&sla®n multiple
data sets, we have demonstrated that we can significantly improve the@cotikAIN classifica-
tion by learning a metric in this way. We have also shown that an alternativgyehased decision
rule typically leads to further improvements over traditiokldN classification.

Beyond the basic framework for LMNN classification, we describedrsduseful and comple-
mentary extensions. These included: iterative re-estimation of targeteigbsignments, globally
integrated learning of multiple locally linear metrics, kernel methods for LMNMNsifecation, low-
rank distance metrics for dimensionality reduction, and ball trees for mooéeeffigradient com-
putations (in training) anlNN search (in testing). These extensions can be adapted and combined
to meet the demands of particular applications. For example, to build a highlyaseclassifier
without regard to the actual computation at test time, our results suggesinton#iple locally
linear metrics. At the other extreme, to buildldN classifier that is as fast as possible at test time,
our results suggest to combine low-rank distance metrics with ball trees.

Taken as a whole, our results demonstrate the promise and widespréiadkaliy of LMNN
classification. Perhaps the greatest promise lies in problems with very largzens of classes, such
as face and identity recognition. The number of classes in these problarbe @athe hundreds,
thousands, or more. Nearest neighbor methods handle this regime magatently than other
leading methods, such as SVMs. The ideas behind LMNN classificatioralswbeen extended by
others in various ways (Torresani and Lee, 2007; Kumar et al., 200%)e appendix, we describe
a simple solver that scales well to problems with tens of thousands of exan¥pl&ATLAB
implementation of the algorithm is also freely available with this paper.

Future work will concentrate on several open problems. The improvddrpence with mul-
tiple metrics suggests that LMNN classification could benefit from even nuoaptiae transfor-
mations of the input space. It would also be useful to study LMMN classifican the semi-
supervised, transductive setting, where only a few labeled inputs ailatae for training but the
unlabeled test set is known in advance. Finally, for many real-world agifglits in computer vision
and information retrieval, the data sets can be much larger than the onesev&tidied. For very
large data sets, our current implementation for LMNN does not scale aasv&linpler eigenvector
methods such as PCA, LDA, and RCA. It remains an interesting challengal®IsMNN to even
larger data sets with millions or more training examples.
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Appendix A. Solver

We implemented our own special-purpose solver for large-scale problelohdNiN classification.
Our solver was designed to exploit the particular structure of the costidurin Eq. (13). The solver
iteratively re-estimates the Mahalanobis distance metric as it attempts to minimize thenctisn
for LMNN classification. The amount of computation is minimized by carefulkbkeeping from
one iteration to the next. The speed-ups from these optimizations enabledvastoomfortably
on data sets with up to=60,000 training examples.

Our solver implements an iterative sub-gradient projection method to optimiZ&4dn terms
of the positive semidefinite matriM . We refer to the Mahalanobis distance metric atthéeration
asM; and to its squared Mahalanobis distance in Eq. (3pasAt each iteration, the optimization
takes a step along the sub-gradient to reduce the loss function and diectg ; onto the feasible
set. In our case, the feasible set is the cone of all positive semidefinite esatricThe following
sections derive the gradient and describe the projectionfinto

It is worth emphasizing that although we can phrase the optimization of Egagla semidef-
inite program (by introducing nonnegative slack variables to model theeHoss), in practice our
large-scale solver works directly to minimize Eq. (14). The hinge lossesafigar in this loss
function are not differentiable at all points. Nevertheless, becaudeshdunction is convex, we
can compute its sub-gradient and use standard hill-climbing algorithms to find itsomm It
has been shown that such sub-gradient methods converge to thet softgion, provided that the
gradient step-size is sufficiently small (Boyd and Vandenberghe,)2004

A.1 Gradient Computation

The gradient computation can be done most efficiently by careful beegikg from one iteration

to the next. As simplifying notation, l&i; = (% —X;)(% —X;) ". Itis straightforward to express the
distances, as defined in Eqg. (3), in terms of this notation. In particulare #ftliteration, we have

Tx (%X, X;) = tr(MC;j ). Consequently, we can rewrite the loss function in Eq. (14) as:

e(My) = (1—u). Z_tr(MtCin—u_z (l—y”)[1+tr(MtCij)—tr(MtC”)]+ (18)

i)~ jatl

Note that Eq. (18) is piecewise linear with respedito Let us define a set of tripleX!, such that
(i,j,1) € A’ if and only if the indiceq(i, j,1) trigger the hinge loss in the second part of Eq. (18).
With this definition, we can write the gradie@t of ¢(M¢) as:
oe
Gi=y =11 > Cij+u > (Cij—Ci).

t i)~ (i,j.heat
Computing the gradient requires computing the outer produdds int thus scales quadratically in
the input dimensionality. As the s@f is potentially very large, a five computation of the gradient
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would be extremely expensive. However, we can exploit the fact thafrtdient contribution from
each active tripleti, j,|) does not depend on the degree of its margin violation. Thus, the changes
in the gradient from one iteration to the next are determined entirely by thereliifes between
the sets\f andA{,1. We can use this fact to derive an extremely efficient update that relaes th
gradientGy 1 at iterationt + 1 from the gradient; at iterationt. The update simply subtracts
the contributions from triples that are no longer active and adds the aatittnis of those that just
became active:

Gis1=Gi—p ) (Cj—Ci)+u (Cj—Ci). (19)

(i,j.)EN—AG+2 (i.i.h) €A1 -

For small gradient step sizes, the g¢tchanges very little from one iteration to the next. In this
case, computing the right hand side of Eq. (19) is extremely fast.

To accelerate the solver even further, we adopt an active set mettode.thit computing the
set ¢ at each iteration requires checking every trigliet,l) with j~-i for a potential margin
violation. This computation scales @nd? -+ kn?d), making it impractical for large data sets. To
avoid this computational burden, we exploit the fact that the great majortiypdds do not incur
margin violations: in particular, for each training example, only a very smedtifon of differently
labeled examples typically lie nearby in the input space. Consequentlyiuh agproximation is to
check only a subset of likely triples for margin violations per gradient cdatjmn. We initialize
the training procedure by checking all triples and maintaining an active ligtose with margin
violations; however, a full re-check is only made every 10-20 iteratidepending on fluctuations
of the set\{. For intermediate iterations, we only check for margin violations from amonggtho
active triples accumulated over previous iterations. When the optimizatioe@as; we verify that
the working set\{ does contain all active triples that incur margin violations. This final check is
needed to ensure convergence to the correct minimum. If the check istisiesl, the optimization
restarts with the newly expanded active set.

A.2 Projection

The minimization of Eq. (18) must enforce the constraint that the mistyiemains positive semi-
definite. To enforce this constraint, we proj&tt onto the cone of all positive semidefinite matrices
S, after each gradient step. This projection is computed from the diagonatizaftid;. Let
M = VAV denote the eigendecompositionMf, whereV is the orthonormal matrix of eigen-
vectors andA is the diagonal matrix of corresponding eigenvalues. We can furthemtgeuse
A=A"+AT, whereA™ =maxA,0) contains all the positive eigenvalues ald=min(A, 0) con-
tains all the negative eigenvalues. The projectiorivipf onto the cone of positive semidefinite
matrices is given by:

P5(My)=VAtVT. (20)

The projection effectively truncates any negative eigenvalues frorgrémtient step, setting them
equal to zero.
A.3 Algorithm

Our gradient projection algorithm combined the update rules for the gtaidi¢ty. (19) and the
projection in Eq. (20). A simplified pseudo-code implementation is shown in Algorl. We
denote the gradient step-size dy> 0. In practice, it worked best to start with a small value of
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o. Then, at each iteration, we increasedby a factor of 1.01 if the loss function decreased and
decreased by a factor of 0.5 if the loss function increased.

Algorithm 1 A simple gradient projection pseudo-code implementation.
1: Mo :=1 {Initialize with the identity matrix
2: t:=0{Initialize countef
3. N, Ap == {}{Initialize active sets
4: Go:= (1— W) 3 j~i Cij{Initialize gradien}
5. while (not convergedjio

6: if mod(t,someconstant=0 Vv (almost convergedyve usedsomeconstantlO} then
7 computei; ., 1 exactly
8: AN = A0 U Ag, 1{Update active sét
9: else
10: computeAt, 1 ~ A1 NAU{ Only search active skt
11: AN D = () {Keep active set untouchigd
12:  end if

18 Gri1:= Gt — MY jneng—ag. (Cii = Cit) T HE i jeng.,-ag (Cij —Cir)

14: My := Ps(M{ — aGi41){Take gradient step and project onto SDP done
5. t:=t+1

16: end while

17: OutputM;
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