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Abstract

In classification, semisupervised learning usually ingsla large amount of unlabeled data with
only a small number of labeled data. This imposes a grealeritg in that it is difficult to achieve
good classification performance through labeled data albm&everage unlabeled data for enhanc-
ing classification, this article introduces a large margimisupervised learning method within the
framework of regularization, based on an efficient marggs limr unlabeled data, which seeks effi-
cient extraction of the information from unlabeled datadstimating the Bayes decision boundary
for classification. For implementation, an iterative sckemderived through conditional expec-
tations. Finally, theoretical and numerical analyses arelacted, in addition to an application to
gene function prediction. They suggest that the proposettiodesnables to recover the perfor-
mance of its supervised counterpart based on completerdettes of convergence, when possible.

Keywords: difference convex programming, classification, nonconw@ximization, regulariza-
tion, support vectors

1. Introduction

Semisupervised learning occurs in classification, where only a small nuhladéeled data is avail-
able with a large amount of unlabeled data, because of the difficulty of lgbétirartificial intelli-
gence, one central issue is how to integrate human'’s intelligence with macpineessing capacity.
This occurs, for instance, in webpage classification and spam emaitidetechere webpages and
emails are automatically collected, yet require labeling manually or classificatiergerts. The
reader may refer to Blum and Mitchell (1998), Amini and Gallinari (20@B)j Balcan et al. (2005)
for more details. In genomics applications, functions of many genes in iseggigenomes remain
unknown, and are predicted using available biological information, see afa Pan (2005). In
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situations as such, the primary goal is to leverage unlabeled data to emqmadiive performance
of classification (Zhu, 2005).

In semisupervised learning, labeled déta,yi)" ; } are sampled from an unknown distribution
P(x,y), together with an independent unlabeled san{;xyéTZWH from its marginal distribution
g(x). Here labely; € {—1,1}, xi = (X1, -+ ,Xd) iS and-dimensional inputn; < n, andn=n;+n,
is the combined size of labeled and unlabeled samples.

Two types of approaches—distributional and margin-based, havebeeosed in the literature.
The distributional approach includes, among others, co-training (Bluhiaichell, 1998), the EM
method (Nigam et al., 1998), the bootstrap method (Collins and Singer,,1888%sian random
fields (Zhu, Ghahramani and Lafferty, 2003), and structure learmindels (Ando and Zhang,
2005). The distributional approach relies on an assumption relating tleepelasability given input
p(x) = P(Y = 1|X = x) to q(x) for an improvement to occur. However, the assumption of this sort
is often not verifiable or met in practice.

A margin approach uses the concept of regularized separation. ltdexllransductive SVM
(TSVM; Vapnik, 1998; Chapelle and Zien, 2005; Wang, Shen and B@@/), and a large mar-
gin method of Wang and Shen (2007). These methods use the notationaohtsmp to borrow
information from unlabeled data to enhance classification, which relies otlubtering assump-
tion (Chapelle and Zien, 2005) that the clustering boundary can precpelpximate the Bayes
decision boundary which is the focus of classification.

This article develops a large margin semisupervised learning method, whicloe@xisact the
information from unlabeled data for estimating the Bayes decision boundhiy.isTachieved by
constructing an efficient loss for unlabeled data with regard to recatistnuof the Bayes decision
boundary and by incorporating some knowledge from an estimape @his permits efficient use
of unlabeled data for accurate estimation of the Bayes decision boundargnhancing the clas-
sification performance based on labeled data alone. The proposed metmgdboth the grouping
(clustering) structure of unlabeled data and the smoothness structuris afesigned to recover the
classification performance based on complete data without missing labelspossble.

The proposed method has been implemented through an iterative schentecarhie thought
of as an analogy of Fisher’s efficient scoring method (Fisher, 1946hat is, given a consistent
initial classifier, an iterative improvement can be obtained through the cotetr loss function.
Numerical analysis indicates that the proposed method performs well aigaigsal state-of-the-
art semisupervised methods, including TSVM and Wang and Shen (2008&je Wang and Shen
(2007) compares favorably against several smooth and clusteriad bamisupervised methods.

A novel statistical learning theory fdr-loss is developed to provide an insight into the proposed
method. The theory reveals that thelearning classifier's generalization performance based on
complete data can be recovered by its semisupervised counterparbinasedmplete data in rates
of convergence, when some regularity assumptions are satisfied. Torg #iso says that the
least favorable situation for a semisupervised problem occurs at p@atp(x) = 0 or 1 because
little information can be provided by these points for reconstructing the clzesifn boundary
as discussed in Section 2.3. This is in contrast to the fact that the leasalffessituation for a
supervised problem occurs nggx) = 0.5. In conclusion, this semisupervised method achieves the
desired objective of delivering higher generalization performance.

This article also examines one novel application in gene function predictibichvihas been
a primary focus of biomedical research. In gene function prediction,o@itay gene expression
profiles can be used to predict gene functions, because genegdgharsame function tend to co-
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express, see Zhou, Kao and Wong (2002). Unfortunately, bioloflioations of many discovered
genes remain unknown at present. For example, about 1/3 to 1/2 of teg ipghe genome of bac-
teriumE. coli have unknown functions. Therefore, gene function prediction is aal aj#plication
for semisupervised methods and also employed in this article as a real nurexaicgple.

This article is organized in six sections. Section 2 introduces the propogbtdanesection 3
develops an iterative algorithm for implementation. Section 4 presents someicalne@amples,
together with an application to gene function prediction. Section 5 developar@ing theory.
Section 6 contains a discussion, and the appendix is devoted to techoiat. pr

2. Methodology

In this section, we present our proposed efficient large margin sennigsge learning method as
well its connection to other existing popular methodologies.

2.1 Large Margin Classification

Consider large margin classification with labeled d(acxayi)ir":l. In linear classification, given a

class of candidate decision functiofis a cost function
n
C3 LW (x)+3(7) (1)
1=

is minimized overf € F = { f(x) = W] x+ws 0 = (1,x")w; } to yield the minimizerf leading to
classifier signf). HereJ(f) is the reciprocal of the geometric margin of various form with the usual
L, marginJ(f) = ||W¢||?/2 to be discussed in further detail, ab@) is a margin loss defined by
functional margire = yf(x), andC > 0 is a regularization parameter. In nonlinear classification, a
kernelK(-,-) is introduced for flexible representationfsx) = 3 ; oK (x,%) + b. For this reason,
it is referred to as kernel-based learning, where the reproducimglkidilbert spaces (RKHS) are
useful, see Gu (2000) and Wahba (1990).

Different margin losses correspond to different learning methodolollasgin losses include,
among others, the hinge lok$z) = (1—z), for SVM with its variantL(z) = (1—2)9 for q > 1;
see Lin (2002); thep-lossesl(z) = W(z), with Y(z) = 1—sign(z) if z>1orz< 0, and 21— 2)
otherwise, see Shen et al. (2003), the logistic W& = log(1+ e ?), see Zhu and Hastie (2005);
then-hinge losd.(z) = (n — z).- for nu-SVM (Scldlkopf et al., 2000) withn > 0 being optimized;
the sigmoid los$.(z) = 1 —tanhcz); see Mason, Baxter, Bartlett and Frean (2000). A margin loss
L(z) is said to be large margin if(z) is non-increasing iz, penalizing small margin values. In this
article, we fixL(z) = Y(2).

2.2 Loss Construction for Unlabeled Data

In classification, the optimal Bayes rule is defined fay= sign(fs) with f5(x) = P(Y =1|X =
X) —0.5 being a global minimizer of the generalization ei@#(f) = EI(Y # sign(f(X))), which is
usually estimated by labeled data througdh) in (1). In absence of sufficient labeled data, the focus
is on how to improve (1) by using additional unlabeled data. For this, wertmhs margin loss)
to measure the performance of estimatingior classification through unlabeled data. Specifically,
we seek the best loss$ from a class of candidate losses of foinf), which minimizes thd.,-
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distance between the target classification lo§sf) and T(f). The expression of this lods is
givenin Lemma 1.

Lemma 1 (Optimal loss) For any margin loss(k),
argming (L(Y (X)) — T (£(X)))? = E(L(Y f(X))|X = x) = U(f(x)),
T

(X)) + (L — p(x))L(—f(x)) and px) = P(Y = 1]X = x). Moreover,

where U(f(x)) = p(xL(f
= argming ¢ EL(Y f(X)).

argming. ¢ EU(f(X))

Based on Lemma 1, we defitig f) to be g{x)L(f(x)) + (1— p(x))L(—f(x)) by replacingp in
U(f) by p. CIearIy,U(f) approximates the ideal lo&s( f) for reconstructing the Bayes decision
function fs when g'is a good estimate op, as suggested by Corollary 5. This is analogous to
construction of the efficient scores for Fisher’s scoring method: Emapestimate can be obtained
iteratively through an efficient score function, provided that a consigtéial estimate is supplied,
see McCullagh and Nelder (1983) for more details. Through (approxipatetimal lossU (f),
an iterative improvement of estimation accuracy is achieved by starting withsistent estimate
p of p, which, for instance, can be obtained through SVM or TSVM. lﬁ()f), its optimality is
established through its closeness¢f) in Corollary 5, where our iterative method basedibn
is shown to yield an iterative improvement in terms of the classification accuemyvering the
generalization error rate of its supervised counterpart based on derdgla ultimately.

As a technical remark, we note that the explicit relationship betweand f is usually un-
available in practice. As a result, several large margin classifiers susiWMsand(-learning do
not directly yield an estimate gf given f. Thereforep needs to be either assumed or estimated.
For instance, the methods of Wahba (1999) and Platt (1999) assumanagbac form ofp so that
an estimated yields an estimateg, whereas Wang, Shen and Liu (2008) estimategiven f
nonparametrically.

The preceding discussion leads to our proposed cost function:

:C(nllzllL(yif(Xi))—knul i 0(f(x,~))> +J(f). 2)
i= j=n+1

Minimization of (2) with respect td € F gives our estimated decision functiérior classification.

2.3 Connection with Clustering Assumption

We now intuitively explain advantages f(f) over a popular large margin lo¢s|f|) = (1—
[f(X)])+ (Vapnik, 1998; Wang and Shen, 2007), and its connection with the diugtassumption
(Chapelle and Zien, 2005) that assumes closeness between the clémsiéind grouping (cluster-
ing) boundaries.

First,U(f) has an optimality property, as discussed in Section 2.2, which leads to befter pe
mance as suggested by Theorem 3. Second, it has a higher discrimpmatieeover its counterpart
L(|f|). To see this aspect, note that f|) = inf,U (f) by Lemma 1 of Wang and Shen (2007). This
says that (| f]) is a version ofJ (f) in the least favorable situation where unknopis estimated
by sign( f), completely ignoring the magnitude pf As displayed in Figure 1) (f) corresponds to
an “asymmetric” hat function or the solid line, whereadsf |) corresponds to a “symmetric” one or
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the dashed line. By comparisdi( f) enables not only to identify the clustering boundary through
the hat function ak(| f|) does but also to discriminafex) from — f (x) through an estimatep|(X).
That is,U(f) has a smaller value fof(x) > 0 than for—f(x) < 0 whenp > 0.5, and vice versa,

wheread (| f|) is in-discriminative with regard to the sign 6fx).

- LD
— U(f)

U(f(x))

f(x)
Figure 1: Plots of (| f(x)|) andU (f(x)).

To reinforce the second point in the foregoing discussion, we examiaepecific example
with two possible clustering boundaries as described in Figure 3 of Zm,'BIZ(IFhereL](f) favors
one clustering boundary for classification if a consisterg provided, whereak(|f|) fails to dis-
criminate these two. More details are deferred to Section 4.1, where the sidexat@ple 2 of this
nature is studied.

In conclusion,U(f) yields a more efficient loss for a semisupervised problem as it uses the
clustering information from the unlabeled datd 45 |) does, in addition to guidance about labeling
throughp'to gain a higher discriminative power.

3. Computation

In this section, we implement the proposed semisupervised method throughatimdtecheme as
well as a nonconvex optimization technique.

3.1 Iterative Scheme

Effectiveness of) depends largely on the accuracymih 'estimatingp. Given an estimatp@, (2)
yields an estimaté(Y), which leads to a new estimapt!)"throughAlgorithm 0 below. TheptV is
expected to be more accurate th#f for p because additional information from unlabeled data has
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been used in estimation ¢fY throughp!® and additional smoothness structure has been used in
Algorithm 0 in estimation ofp(?) given f, Specifically, an improvement in the process frpf®
to f( and that fromf® to p!) are assured by Assumptions B and D in Section 5.1, respectively,
which are a more general version of the clustering assumption and a sresetwsumption gd.
In other words, the marginal information from unlabeled data has beectig#ly incorporated in
each iteration oAlgorithm 1 for improving estimation accuracy dfand p.
Detailed implementation of the preceding scheme as well as the conditionabpitylestima-
tion are summarized as follows.
Algorithm 0: (Conditional probability estimation; Wang, Shen and Liu, 2008)
Step 1.Specifymand initializergy = (t —1)/m, fort =1,... m+1.
Step 2.Train weighted margin cIassifielfA& by solving

minCn1<1 k) ZLyI (%)) + Tg Z L(yi f( ))>+J(f)7

feF =1

with 1 — 1¢ associated with positive instances apdssociated with negative instances.

Step 3 Estimate labels af by sign( fr; (x)).

Step 4. Sort S|gr{fm( )} t=1,...,m+1, to computert’ = max{Tg : S|gn(fTli =1}, M=
min {15 : sign(fr (x)) = —1}. The estimated class probabilityigx) = (1t +m)

Algorithm 1: (Efficient semisupervised learning)

Step 1.(Initialization) Given any initial classifier siqn'f(o)), computept® throughAlgorithm 0.
Specify precision tolerance level

Step 2. (lteration) At iterationk+ 1; k = 0,1, ---, minimizes(f) in (2) for f&+D with U = U®
defined byp™= p® there. This is achieved through sequential QP for yhi®ss. Details for
sequential QP are deferred to Section 3.2. Comptfte" throughAIgorithm 0, based on complete
data with unknown labels imputed by sidi)). Definept**1) = max p®) "+1>) whenfk+d) >
0 and mir{p¥, pk+1) otherwise.

Step 3. (Stopplng rule) Terminate whelg(f 1) — s(f®)| < g|s(f®)|. The final solutionfc is
(<) with K the number of iterations to terminationAdgorithm 1.

Theorem 2 (Monotonicity) $fi“‘>) is non-increasing in k. As a consequenégjorithm 1 con-
verges to a stationary poini $)) in that § f¥) > s(f(*)). Moreover,Algorithm 1 terminates
finitely.

Algorithm 1 differs from the EM algorithm and its variant MM algorithm (Hunter and Leng
2000) in that little marginal information has been used in these algorithms asdargiZhang and
Oles (2000) Algorithm 1 also differs from Yarowsky's algorithm (Yarowsky, 1995; AbneQ02)
in that Yarowsky’s algorithm solely relies on the strength of the estimptéghoéring the potential
information from the clustering assumption.

There are several important aspect\gorithm 1. First, lossL(-) in (2) may not be a likeli-
hood regardless of if labeling missingness occurs at random. Sectir@lyonotonicity property,
as established in Theorem 2, is assured by construpfifig) to satisfy(pk+2) — pk) fk+1) > g,
as opposed to the property of likelihood in the EM algorithm. Most importantlystheothness
and clustering assumptions have been used in estimptiaigd thus semisupervised learning. This
is in contrast to the EM, where only likelihood is used in estimapng a supervised manner.
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Finally, we note that irStep 2of Algorithm 1, given p¥/, minimization in (2) involves non-
convex minimization whety(-) is Y-loss. Next we shall discuss how to solve (2) foftY through
difference convex (DC) programming for nonconvex minimization.

3.2 Nonconvex Minimization

This section develops a nonconvex minimization method based on DC prograrAniagd Tao,
1997) for (2) with they-loss, which was previously employed in Liu, Shen and Wong (2005) for
supervisedp-learning. As a technical remark, we note that DC programming has a hagiteho
locate are-global minimizer (An and Tao, 1997), although it can not guarantee lijipbln fact,
when combined with the method of branch-and-bound, it yields a global mininsize Liu et al.
(2005). For a computational consideration, we shall use the DC prograjratgorithm without
seeking an exact global minimizer.

Key to DC programming is decomposing the cost funcgoh) in (2) with L(z) = () into a
difference of two convex functions as follows:

s(f) = su(f) —s(f); (3)
si(f) = c(nl-ljlwl(yif(m))mgl Y O (F(x))) +3(F);

j=n+1

w(f) = COv S wtnto0) 3 0H).

j=n+1

whereUg (f(x7)) = X ()Wt (F(x7)) + (1= p¥ () (— £ (x))); t = 1,2, Y1 = 2(1—2). and
W2 = 2(—2);. Herey; andy, are obtained through a convex decompositionpcf Y — Wy as
displayed in Figure 2.

With these decompositions, we treat (2) with thdoss andp= p¥) by solving a sequence of
quadratic problems describedAdgorithm 2.
Algorithm 2: (Sequential QP)
Step 1.(Initialization) Set initial f **19 to be the solution of mipsy(f). Specify precision toler-
ance levek as inAlgorithm 1.
Step 2 (Iteration) At iteratiorl + 1, computef k1141 by solving

mfin(sl(f)—<wf,DSQ(f(k+l"))>), (4)

whereOs,( <1 is a gradient vector af(f) atWzg -
Step 3.(Stopping rule) Terminate wheg( fkt11+1)) —g(fk+1D)| < g|g( fk+11))|,
Then the estimaté*™Y is the best solution amongf**%); | =0,1, - .

In (4), gradientds,( f(k+1)) is defined as the sum of partial derivativespbver each observa-
tion, with Oy,(2) = 0 if z> 0 andOY,(2) = —2 otherwise. By the definition dfis;(f<+1)) and
convexity OfSQ(f(k+l’|>), (4) gives a sequence of non-increasing upper envelops of [B¢hvean
be solved via their dual forms.

The speed of convergence Aligorithm 2 is super-linear, following the proof of Theorem 3 in
Liu et al. (2005). This means that the number of iterations requiredlfgrithm 2 to achieve the
precisione is o(log(1/¢)).
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Figure 2: Plot ofs, Y1 andy, for the DC decomposition af = Y1 — Y. Solid, dotted and dashed
lines represeny, Y1 andy,, respectively.

4. Numerical Comparison

This section examines effectiveness of the proposed method throughicainezamples. A test
error, averaged over 100 independent simulation replications, is useddsure a classifier’'s gen-
eralization performance. For simulation comparison, the amount of improveshenr method
over sigr ]?(0)) is defined as the percent of improvement in terms of the Bayesian regret

(T (Before) — Bayesg — (T (After) — Bayes
T (Before) — Bayes

: (5)

whereT (Before), T(After), andBayesdenote the test errors of sigi?), the proposed method
based on initial classifier sigﬁ<°>), and the Bayes error. The Bayes error is the ideal performance
and serves as a benchmark for comparison, which can be computedhefdistribution is known.

For benchmark examples, the amount of improvement ove(fs(i@r)l is defined as

T (Before) — T (After)

T(Before ’ (6)

which actually underestimates the amount of improvement in absence of klymwé the Bayes
error.

Numerical analyses are conducted in R2.1.1. In linear learidiig,y) = (x,y); in Gaussian
kernel learningK(x,y) = exp(—”xg—g’”z), whereo is set to be the median distance between posi-
tive and negative classes to reduce computational cost for turfingee Jaakkola, Diekhans and
Haussler (1999).
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4.1 Simulations and Benchmarks

Two simulated and five benchmark data sets are examined, based on fetofstee-art classifiers
sign(f©)’s. They are SVM (with labeled data alone), TSVM (TSY&f; Wang, Shen and Pan,
2007) , and the methods of Wang and Shen (2007) with the hinge loss (BF&wwith they-
loss (SPSI), where SSVM and SPSI compare favorably against thepetdors. Corresponding
to these methods, our method, with= n'/2 ande = 103, yields four semisupervised classifiers
denoted as ESVM, ETSVM, ESSVM and ESPSI.

4.1.1 SMULATED EXAMPLES

Examples 1 and 2 are taken from Wang and Shen (2007), where 2@Dandbeled instances are
randomly selected for training and testing. For training, 190 out 200 insseare randomly chosen
for removing their labels. Here the Bayes errors are 0.162 and 0.Gf&atvely.

4.1.2 BENCHMARKS

Six benchmark examples include Wisconsin breast cancer (WBC), Pinsndiabetes (PIMA),
HEART, MUSHROOM, Spam email (SPAM) and Brain computer interfacel{BThe first five
datasets are available in the UCI Machine Learning Repository (Blake amd, N1998) and the
last one can be found in Chapelle et al. (2006). WBC discriminates a bbrégist tissue from
a malignant one through 9 diagnostic characteristics; PIMA differentiateseen positive and
negative cases for female diabetic patients of Pima Indian heritage baghiological or diag-
nostic attributes; HEART concerns diagnosis status of the heart disaesese &dn 13 clinic attributes;
MUSHROOM separates an edible mushroom from a poisonous one th2@ugjblogical records;
SPAM identifies spam emails using 57 frequency attributes of a text, sucbcasgehcies of partic-
ular words and characters; BCI concerns the difference of braineématpen imagining left-hand
and right-hand movements, based on 117 autoregressive model pasdittettover human’s elec-
troencephalography.

Instances in WBC, PIMA, HEART, and MUSHROOM are randomly dividet itwo halves
with 10 labeled and 190 unlabeled instances for training, and the remainthfpd@esting. In-
stances in SPAM are randomly divided into halves with 20 labeled and 380ealethinstances
for training, and the remaining instances for testing. Twelve splits for B@é l@ready given
at http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html, with 10 labelezb@nehlabeled
instances while no instance for testing. An averaged error rate ovenldigaled set is used in BCI
example to approximate the test error.

In each example, the smallest test errors of all methods in comparisonrapaitea over 61
grid points{10-3+¥/10, k = 0,---,60} for tuningC in (2) through a grid search. The results are
summarized in Tables 1-2.

As suggested in Tables 1-2, ESVM, ETSVM, ESSVM and ESPSI perfarmvorse than their
counterparts in almost all examples, except ESVM in SPAM where therpeafce is slightly
worse but indistinguishable from its counterpart. The amount of improvemewever, varies over
examples and different types of classifiers. In linear learning, the irepments of the proposed
method are from 1.0% to 51.7% over its counterparts, except in SPAM vE#®&vM performs
slightly worse than SVM; in kernel learning, the improvements range frof @d023.2% over its
counterparts. Overall, large improvement occurs for less accurate tididifiers when they are
sufficiently accurate. However, if the initial classifier is too accurate, tterial for an improve-
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Data

Example 1  Example 2 WBC PIMA HEART  MUSHROOM SPAM BCl
Size  1000x 2 1000x 2 682x 9 768x 8 303x 13 8124x 22 4601x 57  400x 117
SVM  .345(.0081) .333(.0129) .053(.0071) .328(.0002) (aWB5)  .232(.0135)  .216(.0097)  .479(.0059)
ESVM .281(.0143) .297(.0177) .031(.0007) .320(.0059) 4(ZW66)  .172(.0084)  .217(.0178)  .474(.0052)
Improv. 35.0% 14.8% 41.5% 2.4% 24.6% 25.9% -0.5% 1.0%
TSUVM  .220(.0103) .203(.0088) .037(.0024) .314(.0086) O0(a0082) 206(.113) 196(.0132)  .479(.0054)
ETSVM  .190(.0074) .147(.0131) .029(.0009) .309(.0063) 11(W062)  .153(.0054)  .179(.0101)  .474(.0076)
Improv. 51.7% 49.1% 21.6% 1.6% 21.9% 25.7% 8.7% 1.0%
SSVM  .188(.0084) .129(.0031) .032(.0025) .307(.0054) O(DD74)  .186(.0095)  .191(.0114) .479(.0071)
ESSVM  .182(.0065) .124(.0034) .028(.0006) .293(.0029) 05(D059)  .162(.0054)  .169(.0107)  .474(.0041)
Improv. 23.1% 12.5% 12.5% 4.6% 14.6% 11.8% 11.5% 1.0%
SPSI  .184(.0084) .128(.0084) .029(.0022) .291(.0032) 2(PB67)  .184(.0095)  .189(.0107) .476(.0068)
ESPSI  .182(.0065) .123(.0029) .027(.0006) .284(.0026)81(.0052)  .137(.0067)  .167(.0107)  .471(.0046)
Improv. 9.1% 12.8% 6.9% 2.4% 22.0% 25.5% 11.6% 1.1%
SVM. .164(.0084) .115(.0032) .027(.0020) .238(.0011) .170&1)  .041(.0018)  .095(.0022) .173(.0042)
Table 1;

Linear learning. Averaged test errors as well as estimatedastb@dors (in parenthesis)
of ESVM, ETSVM, ESSVM, ESPSI, and their initial counterpartsand testargples, in
the simulated and benchmark examples. SMiédnotes the performance of SVM with
complete labeled data. Here the amount of improvement is defined in (5) or (6).

Data Example 1  Example 2 WBC PIMA HEART  MUSHROOM SPAM BEI
Size  1000x 2 1000x 2 682x 9 768x 8 303x 13 8124x 22 4601x 57  400x 117
SVM  .385(.0099) .347(.0119) .047(.0038) .353(.0089) (3m4)  .217(.0135)  .226(.0108) .488(.0073)
ESVM .368(.0077) .322(.0109) .039(.0067) .335(.0035) 8(3W07)  .187(.0118)  .212(.0104) .482(.0076)
Improv. 7.6% 9.7% 17.0% 5.1% 6.9% 13.8% 6.2% 1.2%
TSYM  .232(.0122) .205(.0091) .037(.0015) .330(.0107) 1(aBL13)  .185(.0080)  .192(.0110) .484(.0087)
ETSVM  .216(.0090) .187(.0084) .030(.0005) .304(.0028) 63(0094)  .171(.0093)  .181(.0106)  .484(.0086)
Improv. 22.9% 15.5% 18.9% 7.9% 6.4% 7.6% 5.7% 0.0%
SSVM  .201(.0072) .175(.0092) .030(.0005) .304(.0044) 6(Z®D63)  .173(.0126)  .189(.0120) .479(.0080)
ESSVM  .201(.0072) .170(.0083) .030(.0005) .304(.0042) 23(D054)  .147(.0105)  .170(.0103) .476(.0085)
Improv. 0.0% 5.8% 0.0% 0.0% 1.3% 15.0% 10.1% 0.6%
SPSI.200(.0069) .175(.0092) .030(.0005) .295(.0037) 5(PD57)  .164(.0123)  .189(.0112) .475(.0072)
ESPSI .198(.0072) .169(.0082) .030(.0005) .294(.0033)15(.2054)  .126(.0083)  .169(.0091)  .475(.0081)
Improv. 1.0% 7.0% 0.0% 0.3% 0.0% 23.2% 10.6% 0.0%
SVMc  .196(.0015) .151(.0021) .030(.0004) .254(.0013) .1®&1)  .021(.0014)  .099(.0018) .280(.0045)
Table 2;

Gaussian kernel learning. Averaged test errors as wefitimsaged standard errors (in
parenthesis) of ESVM, ETSVM, ESSVM, ESPSI, and their initial couratggin the sim-
ulated and benchmark examples. Here the amount of improvement is defi(iEdan

(6).

ment becomes small or null, such as the cases of SSVM and SPSI with Gakessial in PIMA.
If the initial classifier is too poor, then no improvement may occur. This is the fra@ ESVM with
linear kernel in SPAM, where ESVM performs worse than SVM with= 10 labeled data alone.
This suggests that a better initial estimate should be used together with unldated
In summary, we recommend SPSI to be an initial classifierf fBrbased on its overall perfor-
mance across all the examples. Moreover, ESPSI nearly recovelask#ication performance of
its counterpart SVM with complete labeled data in the two simulated examples, VWBEBEART.

4.2 Gene Function Prediction Through Expression Profiles

This section applies the proposed method to predict gene functions thgemghdata in Hughes
et al. (2000), consisting of expression profiles of a total of 6316 g&areyeast Scerevisiaefrom

1. The error rate is computed on the unlabeled data and averaged eler splits.
2. This error rate is approximated by the 10-fold cross validation.
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300 microarray experiments. In this case almost half of the genes hamewnlkunctions although
gene expression profiles are available for almost the entire yeast genome

Our specific focus is predicting functional categories defined by theSviéPmultifunctional
classification scheme (Mewes et al., 2002). For simplicity, we examine twaidnat categories,
namely “transcriptional control” and “mitochondrion”, with 334 and 346 @tated genes, respec-
tively. The goal is to predict gene functional categories for genestated within these two cate-
gories by training our semisupervised classifier on expression profiggenes, where some genes
are treated as if their functions are unknown to mimic the semisupervisedriscenaomplete
dataset. At present, detection of novel class is not permitted in our formylattich remains to
be an open research question.

For the purpose of evaluation, we divide the entire dataset into two setmhty and testing.
The training set involves a random samplenof= 20 labeled andy, = 380 unlabeled gene profiles,
while the testing set contains 280 remaining profiles.

SVM TSVM SSVM SPSI
I .298(.0066) .303(.0087) .270(.0075) .272(.0063)
Linear E .278(.0069) .272(.0080) .261(.0052) .252(.0112)
Improv. 6.7% 14.0% 3.3% 7.4%
I .290(.0081) .287(.0027) .284(.0111) .283(.0063)
Gaussian E .279(.0085) .279(.0076) .275(.0086) .256(.0082)
Improv. 3.8% 2.8% 3.2% 9.5%

Table 3: Averaged test errors as well as estimated standard errorar@ntipesis) of ESVM,
ETSVM, ESSVM, ESPSI, and their initial counterparts, over 100 pairsaihing and
testing samples, in gene function prediction. Hestands for an initial classifieE stands
for our proposed method with the initial method, and the amount of improvemeset is
fined in (6).

As indicated in Table 3, ESVM, ETSVM, ESSVM and ESPSI all improve ptedi@ccuracy
of their initial counterparts in linear learning and Gaussian kernel learirappears that ESPSI
performs best. Most importantly, it demonstrates predictive power of thpoged method for
predicting which of the two categories a gene belongs to.

5. Statistical Learning Theory

In the literature, several theories have been developed to underswamdotiiem of semisuper-
vised learning, including Rigollet (2007) and Singh, Nowak and Zhu §0®oth the theories

rely on a different clustering assumption that homogeneous labels amaeg®ver local clusters.
Based on the original clustering assumption, as well as a smoothness teauompthe condi-
tional probabilityp(x), this section develops a novel statistical learning theory. Specifically,-finite
sample and asymptotical upper bounds of the generalization error arectier ESPSIfc defined

by the Y-loss in Algorithm 1. The generalization accuracy is measured by the Bayesian regret
e(fc, f5) = GE(fc) — GE(f5) > 0 with GE(f) defined in Section 2.2.
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5.1 Statistical Learning Theory

The error bounds of( f}, f5) are expressed in terms of complexity of the candidate clasthe
sample sizen, tuning parametek = (nC)‘l, the error rate of the initial classifié){]o), and the
maximum number of iteratioK in Algorithm 1. The results imply that ESPSI, without knowing
labels of the unlabeled data, enables to recover the classification acofiradearning based on
complete data under regularity conditions.

We first introduce some notations. Letz) = Y(z) be they-loss. Define the margin loss
Vr(f,Z) for unequal cost classification to I8a(y)L(yf(x)), with cost 0< 1t < 1 for the positive
class andS;(y) = 1—mif y =1, andm otherwise. Letey, (f, fr)E(Vr(f,Z) —Vn(fr,Z)) > 0 for
f € F with respect to unequal corat wherefr(x) = sign( fr(x)) = argmirk EV(f,Z) is the Bayes
rule, with f(x) = p(x) — Tt
Assumption A: (Approximation) For anyte (0,1), there exist some positive sequersse— 0 as
n— oo andf;; € ¥ such thaey, (fr, fr) < sn.

Assumption A is an analog of that of Shen et al. (2003), which ensuregni®ayes rulef
can be well approximated by elementsfin
Assumption B. (Conversion) For anyt€ (0,1), there exist constants a, Br < o, 0 < { < oo,

a > 0;i=0,1,2, such that for any sufficiently smal> 0,

sup  e(f,fs) < apd”, (7)
{teFev(f.f5)<8)
sup_ |[[sign(f) —sign(fp)[1 < aidPr, (8)
{feF ey (f,fn)<d}
sup  Var(Ve(f,2) —Vu(fr,2)) < adc. (9)

{feF eu(f,fr)<d}

Assumption B describes local smoothness of the Bayesian re(rets) in terms of a first-
moment function|| sign( ) — sign(fx)||1 and a second-moment function Ve(f,Z) —Vn(fr, Z))
relative toey, (f, fr) with respect to unequal cost Here the degrees of smoothness are defined by
exponentst, B and{. Note that (7) and (9) are related to the “no noise assumption” of Tsybako
(2004); and (8) has been used in Wang et al. (2008) for quantifyiagtior rate of probability
estimation, which plays a key role in controlling the error rate of ESPSI. irwliity, denotef 5
and inf.05{Br} asP andy respectively, wher@ quantifies the clustering assumption through the
degree to which the positive and negative clusters are distinguishatdfensasures the conversion
rate between the classification and probability estimation accuracies.

For Assumption C, we define a complexity measure—tthenetric entropy with bracketing,
describing the cardinality of . Given anye > 0, denote{(f!, f')}R_; as ane-bracketing function
set of ¥ if for any f € 7, there exists ansuch thatf! < f < fYand|/f — f¥|.<&r=1,--- R
Then thelL,-metric entropy with bracketinglg(€, 7 ) is defined as the logarithm of the cardinality
of the smallest-bracketing function set off. See Kolmogorov and Tihomirov (1959) for more
details.

Define¥ (k) = {L(f,2)—L(f;,2): f € F,I(f) <Kk} to be a space defined by candidate decision
functions, withJ(f) = 3| f||Z. LetJ: = maxJ(f;),1). In (11), we specify an entropy integral to
establish a relationship between the complexityf@k) and convergence speegfor the Bayesian
regret.
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Assumption C. (Complexity) For some constardas> 0;i = 3,--- ,5 andep > 0,

supp(en, k) < agn'’?, (10)
k>2

1/2
a3

where@(g, k) = [ w, F (K))dw/M, andM = M(g, A, k) = min(e? +A(k/2—1)J%, 1).
Assumption D.(Smoothness of(x)) There exist some constantsi) < 1,d > 0 andag > 0 such
that[|Al (p) |« < a6 for j = 0,1,--,d, and|A%(p(x1)) — A%(p(xe))| < as[x1 — x|} +d/m for any
|IX1 — X2||1 < & with some sufficiently smald > 0, whereAl is the j-th order difference operator
andmis defined as ilgorithm O .

Assumption D specifies the degree of smoothness of the conditional dp(sity
Assumption E. (Degree of least favorable situation) There exist some constant & c and
a7 > 0 such thaP (X : min(p(X),1— p(X)) <d) < ay8® for any sufficiently smalb > 0.

Assumption E describes the behaviongk) near 0 and 1, corresponding to the least favorable
situation, as described in Section 2.3.

Mmin(ll)/z 1/2
Hg'™"(

Theorem 3 In addition to Assumptions A-E, let the precision parameter njéﬁgy] and & =
min(max(e2, 16s,),1). Then for ESPSfc, there exist some positive constangsaag such that

P(e( ]‘AC7F5) > alomax(éﬁ“, (allpnégo))Z(xmax(l,BK)D <

P75, ) = 2200n(81")7) + 35K expi —agm (\J5) ™42 0
3.5K exp(—agn()\\];ﬂr)maﬂll—i)) +2Kpn min(1,B)

Here B= (0+1)(din)By ag = max(1, 2% +2a(2y“+*l)”<ﬂm andp, > 0is any real number
= 2T max0.1-p)e)(dn 1) ML= ) 1 Pn y

satisfying a1pnd2 < 4AJ;.

Theorem 3 provides a finite-sample probability bound for the Bayesiaatne(gfc, f?;), where
the parametelB measures the level of difficulty of a semisupervised problem, with small v&lBe o
indicating more difficulty. Note that the value Bfis proportional to those af, 3, y, d, n and®,
as defined in Assumptions A-E. In fact,  andy quantify the local smoothness of the Bayesian
regrete(f, f5), andd, n and6 describe the smoothnessfx) as well as its behavior near 0 and 1.
Next, by lettingn, ny tending infinity, we obtain the rates of convergence of ESPSI in terms of
the error rated?® of its supervised counterpatt-learning based on complete data, and the initial

error rated’, B, and the maximum numbé of iteration.
Corollary 4 Under the assumptions of Theorem 3, ggn— oo,
le(fc, fs)| = Op<max(6ﬁ“, (prdY)2 maX(lBK)))’
Ele(fe, fs)] = O(max(éﬁo‘,(pnéﬁ,o))zo‘ma%laBK))}

provided that the initial classifier converges in thaé@(f(g,o), {5) > 2a11pn(6,(10))2) — 0, with any

slow varying sequencg, — « and pnéﬁo) — 0, and the tuning parametex is chosen such that

n(AJ;)MaX1.2-8) and n (AJ%)™™1-2-0) are bounded away from 0.
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Note that there are two important cases defined by the valBeWhenB > 1, ESPSI achieves
the convergence ratg® of its supervised counterpaptlearning based on complete data, c.f., The-
orem 1 of (Shen and Wang, 2007). Wher< 1, ESPSI performs no worse than its initial classifier
becausdd)20max1B8) (5920 Therefore, it is critical to compute the value Bf For instance,
if the two classes are perfectly separated and located very densely vaiieative regions, then
B = o and our method recovers the rét&; if the two classes are completely indistinguishable,

thenB = 0 and our method yields the ra(té(qo))z.

For the optimality claimed in Section 2.2, we show thaf ) is sufficiently close tdJ ( f) so that
optimality of U (f) can be translated intd (f). As a result, minimization off (f) over f mimics
that ofU (f).

Corollary 5 (Optimality) Under the assumptions of Corollary 4, asm — o,
TSU})HU (F)=U(f)1 = op<max(5ﬁv7 (pn5r<10>)symax<1,BK>))7
€

whereU (f) is estimated Yf) loss with p estimated based dg.

To argue that the approximation error rateLb(ff) to U(f) is sufficiently small, note thafc
obtained from minimizing (2) recovers the classification error rate of itsrsigsel counterpart
based on complete data, as suggested by Corollary 4. Otherwise, appooxienation precision
could impede the error rate of ESPSI.

In conclusion, ESPSI, without knowing label values of unlabeled insnenables to recon-
struct the classification and estimation performancg-¢éarning based on complete data in rates
of convergence, when possible.

5.2 Theoretical Example

We now apply Corollary 4 to linear and kernel learning examples to deeimerglization errors rates
for ESPSI in terms of the Bayesian regret. In all cases, ESPSI (ne&ahygves the generalization
error rates of-learning for complete data when unlabeled data provides useful infomaitiol
yields no worse performance then its initial classifier otherwise.

Consider a learning example in whigh= (X1, X2) are independent, following marginal dis-
tribution g(x) = 3 (k1 + 1)[x%* for x € [~1,1] for k1 > 0. GivenX =1, P(Y = 1|X = X) = p(x) =

2sign(x.1)[x1/¥2 + 2 with K, > 0. Note thatfy(x) is x4 — sign(ri— 2)(3|2n— 1])% , which in turn
yields the vertical line as the decision boundary for classification with walempstrt. The value
of kj; i = 1,2 describe the behavior of the marginal distribution around the origin, atdfhhe
conditional distributiorp(x) in the neighborhood of /2, respectively.

For illustration, Figure 3 displays the marginal and conditional densities tinerdata distribu-
tion with K1 = 2 andk, = 1. It is evident that the clustering assumptidxsgumption B) is met
since the neighborhood dfs(x) has low density as showed in the left panel of Figure 3, and the
smoothness assumptioAgsumption D) and the boundedness assumptiompof) (Assumption
E) are met as well sincp(x) is a hyperplane bounded §9.1,0.9) as showed in the right panel of

Figure 3. Technical details of verifying assumptions are deferred teAqtix B.
5.2.1 UNEAR LEARNING

Here it is natural to consider linear learning in which candidate decisioctins are linear in
F={f(x) = (Lx)w:we R3,x= (x1,X2) € R?}.
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2

~

Figure 3: Plots of the marginal and conditional densities from the data disbmbuith k; = 2 and
Ko =1.

For ESPSIfc, we choos&*SE,0> = n(l logny, the convergence rate of supervised lingdearning,
pn — o to be an arbitrarily slow sequence a@d= O((logn)~1). An application of Corollary 4

yields thatE|e( fc, f 5)| = O(max(n~Llogn, (n; (logn;)2)maX128))) ‘with B = ﬁﬁ)jm When
B > 1, equivalentlyk; + 1 > (14 /3)k», this rate reduces t@(n~*logn) whenK is sufficiently

large. Otherwise, the rate @(n, *logn;).

The fast raten—tlogn is achieved when; is large butk, is relatively small. Interestingly,
largek; value implies that(x) has a low density arourd= 0, corresponding to the low density
separation assumption in Chapelle and Zien (2005) for a semisupervisgiémr whereas large
K1 value and smalk; value indicate thap(x) has a small probability to be close to the decision
boundaryp(x) = 1/2 for a supervised problem.

5.2.2 KERNEL LEARNING

Consider a flexible representation defined by a Gaussian kernel, Wheréx € ®2: f (x)ws o+
S Wi kKOG X) - wp = (Wg,- - ,wf,n)T € R"} by the representation theorem of RKHS, see

Wahba (1990). HerK(x,z) = exp(—%) is the Gaussian kernel.

Similarly, we chooseSE,o) = n(l(logn|)3 to be the convergence rate of supervigetearning

with Gaussian kernep, — o to be an arbitrarily slow sequence ae- O((logn)~2). By Corollary
4, Ele(fc, f5)| = O(max((n *(logn )3)m@(1.28%) 'n-1(logn)3)) = O(n~(logn)3) whenky + 1 >
2K2(1+K2) andK is sufficiently large, an@(n; *(logn)%) otherwise. Again, large; and small
K, lead to the fast rate.
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6. Summary

This article introduces a large margin semisupervised learning method thaoutgrative scheme
based on an efficient loss for unlabeled data. In contrast to most medhsdsiing a relationship
between the conditional and the marginal distributions, the proposed methgietelabeled and
unlabeled data through using the clustering structure of unlabeled datellesswhe smoothness
structure of the estimatga The theoretical and numerical results suggest that the method compares
favorably against top competitors, and achieves the desired goalarfategcting the classification
performance of its supervised counterpart on complete labeled data.

With regard to tuning paramet€; further investigation is necessary. One critical issue is how
to use unlabeled data to enhance the accuracy of estimating the generaéiraticso that adaptive
tuning is possible.
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Appendix A. Technical Proofs

Proof of Lemma 1: Let U(f(x)) = E(L(Y f(X))|X = x). By orthogonality, E(L(Y (X))
T(F(X)))? = E(L(Y f00) = U (1)) + E(U(1(X)) = T(f(x)))?, implying thatU (f(x)) mini-
mizesE(L(Y f(X)) —T(f(X)))2 over anyT. Then the proof follows from the fact thEL(Y f(X)) =
E(E(L(Y f(X))[X)). )
Proof of Theorem 2: For clarity, we writes( f ) ass(f, ) n this proof. Then it suffices to show that
s(f®, p)) > s(fk+tD) pk+D)y First,s(fK, pk)) > g( fk+1) f)( k) sincef &+ minimizess(f, p)).
Thens(f<D), pl) — s(flkrt), plktt)) — Z, n1(PY — pkD) (L (FE D (x5)) = L(=f* D (xy))),
which is nonnegative by the definition pf<tb.
Proof of Theorem 3: The proof involves two steps. 1Btep 1, given f (K, we derive a probability
upper bound for| p® — p||1, wherep™ is obtained fromAlgorithm 0. In Step 2 based on the
result ofStep 1, the difference between the tail probablllty@}a‘(f (et 1) f}) and that ofe( ﬂ(Tk), fr)
is bounded through a large deviation inequality of Wang and Shen (2RG¥0,1,---. This in
turn results in a faster rate f@(f (fet2) ,5), thuse(fc, f5). In this proof, we denote labeled and
unlabeled samples by(X;,Y,)}" , and{X,}J n+1 t0 indicate that they are all random variables.
Step. 1 First we bound the probablllty of the percentage of wrongly labeled uhﬂdhmstances
byS|gr(f )bythetall probability ok (f, f5). For this purpose, defir@s = {sign(f®(x i) #
sign(fs(X;j));n +1< j <n}to be the set of unlabeled data that are wrongly labeled by sﬁ@m
with ny = #{D¢} belng its cardinality. According to Markov’s inequality, the fact tIEe(Pf)
| sign( f1) —sign(fs)||1, and (8), we have

n
P(2 > ay(anp2(sl)2)

IN

P(H sign(f®)) —sign( )1 > al(anpn(ér(]k))z)p)
+P (58 > o sign(f%+Y) — sign(f)1)
P(evs(F®, f5) > asipn(8i')?) +p,?. (11)

IN
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Next we bound the tail probability dfp® — p||; based on “complete” data consisting of un-
labeled data assigned by s(gH<) An application of similar treatment to that in the proof of
Theorem 3 of Wang et al. (2008) leads to

P(11p% - pil1 >8%ad" ™ (@n1pndh)) <

) (12)
P(3j : || sign(f¥) — sign(fr, )[11 > 82 ™ (awzpndn)?),

with 1 = i /[(a12pnd0)~PY]. By (8), it suffices to boun@(e\,n(ﬂﬁf), ﬂrj) > 8a§(a11pn6,(1k))2‘3) for
all mj in what follows.

We introduce some notations to be used.\Lgt, Z) = Vi(f,Z) +AJ(f), andZ; = (X}, Yj) with
Y; = sign(f®(X;)); n +1 < j < n. Define a scaled empirical proceBg(Vi(f7:,Z) —Vr(f,Z)) =

0 Sico, + Sigoy ) (Yl f7:20) —Vnl( £.2) ~E(Unl £5,20) —Un(f, 2)) ) = EnlVe( £5,2) ~ Vi £, 2)).
By the definition off and (11),

P (o (. ) 2 )

IN

n
(1 )
n

1 ~ ~
P (sup_ 3 V(15,2 ~Vin(1.2) 2 0. M < ay(anpd(eh))°)

Ne &

IN

P(e\(s(f<k>7 fs) > allpn(&k))z) +onP 1, (13)

whereNe = {f € F : ey (f, fr) > 82}, 8 = 8a2(a11pnd) %, Iy = P*<sup\, En(Vi(f, Z) —
Vi(£,2)) 2 infig O(F, 1), 5 < ay(a01p3(8h)2)P ), andD(f, 1) = ¥ Bieo, (Va(,20) ~Vn(1.2)) +

n:]nf Ei¢Df (\7n(f7zi> —\7rr( fﬁazi))-
To boundly, we partitionN into a union ofAs; with

Ast = {f67:25*16§§a/n(f,f_)<2562,2t’1\];“[§J(f)<2tJ;};
Ao = {feF: 2518 <ey(f,fn) <2%82,3(f) < I},

forst=1,2,---. Thenitsuffices to bound the corresponding probability over égechToward this
end, we need to bound the first and second moments(df Z) —Vi( f:,Z) over f € Ag;. Without
loss of generality, assume tha4< 82 < 1,J(f) > 1, and thusl;, = max(J(f7),1) = I(f7).

For the first moment, note that(f, f;) > ey (f, ;) — fr FEM(f,2) —Vn(f;,2) +Vr(f,2) -
Vi(T5,Z)] > ey, (f, f) — 47 with Vi f,2) = Sy(—y)L(—y (X )) Using the assumption thaka( f::
< 62, and Assumptions A and B, we abtain

)

nfO(1 ) > M(st) = (251~ 1/2)8 + A2 - DI(17),

iAr:fD(f,f;‘[) > (251-3/4)8% > M(s,0) = 25352
0
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For the second moment, by Assumptions A and B padf,Z) — Vy(fr, 2)| < 2 for any 0<
1< 1, we have, for ang,t = 1,2,--- and some constaag > 0,

supVar(Vn(f,Z) —Vn(fr,2))

Ast

sup2 ") (Var(Vi(£.2) Vi, 2)) + Var(Va £5.2) ~Vi( . 2))) +
Ast n

2 (Var(Vi( £,2) Vi . 2)) + Var(Vi £7,2) ~ Vi .2)))

< 2aM(s,t)% + 8ay (ar1p2(8)2)P + 4s, < agM(s,t)M"0) = \A(s t).

IN

Note thatl; <1, + I3 with

(29

o = 3 PY(SUPEN(V( f.2) —V(F,2)) > M(s.t),ne/n < an(aa1p3(30")%)P);
s,t:1 Ast

Iy = ZP* supEn (Vi(F2,2) —Vi(£,2)) > M(s,0),n¢ /N < ay (ag1p2(80)2)P).

Then we bound, and |3z separately using Lemma 1 of Wang et al. (2007). Forwe verify
conditions (8)-(10) there. Note thgljl’,\(,fé)_t) Hé/z(w, F(2"))dw/M(s,t) is non-increasing irs and
M(s,t), we have

am(1,t)min(1.0)/2

/av(St) 1/2(W T(Zt))dw/M(s t) < /a

HE/2(w, F (2))dw/M(L,t),
M(st)

M(Lt)

which is bounded byp(e2,2') with a = 2a4e andeZ < 82. Then Assumption C implies (8)-(10)
there withe = 1/2, the choices oM(s,t) andv(s,t) and some constang > 0;i = 3,4. It then
follows that for some constant9¢& < 1,

& (1—E)n(M(s1)?
2 = s,tz_f’exp<2<4<v<s,t>>2+2M<s,t>/3>)
< T 3exp—agn(M(st)™A20)
st=1
< i 3exp(—agn(25 182+ A(2" 1 — 1)3p)mL2-0)
st=1

< Bexpg—agn(AJ:)Ma12-0)) /(1 — exp(—agn(AJ;)MaXL2=0)))2,

Similarly I3 < 3exp —agn(AJ:)MX(1.2-0)) /(1 — exp(—agn(AJ:)M1.2-4)))2 Combining the bounds
for I;; i = 2,3, we havd; < 3.5exp —agn(AJ:)"™1.2-0)) Consequently, by (8), (12) and (13)

P(118% - plls > 8% *(anpndn)) <

A (14)
P(evs(fE, 5) = a11pn(81")2) + pr® + 3.5 expl —agn(Ady) " -20),
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Step 2: To begin, note tth(e\[S(f%k+l), fg)> allpn(éﬁk”))Z) < I4+ 15 with

lg = P(G\/,s(f( 1 f5)>a11pn( ) | p®) pH1<8yaly+1(allpn5$]k))5\’)7
s = P(Hﬁ( —pllr> 8 2y+l(a110n5( ))BV>

whereay 100 (85 )2 (alz(allpnéﬁk))%)% anday, = 2ay """ (4a,)- 6. By (14), it
suffices to bound,.

Forl4, we need some notations. Let the ideal cost functiodidié, z) + U 5(f (X)), the ideal ver-
sion of (2), where/s(f,z) = $L(yf(x)), andU 5(f(x)) = 3(p(X)L(f(x)) + (1 — p(X))L(—f(x))) is
the ideal loss for unlabeled data. Denote ) ( (x)) = 1(p® (x)L(f(x))+ (1=pN (x))L(—f(x)))
an estimate df) 5( f (x)) atStepk. So the cost function in (2) can be written\&$f,z) =W(f,z) +
AJ(f) with W(f,z) =V5(f,z)+U 5(f(x)). For simplicity, we denote a weighted empirical pro-
cess byEn(W(f5,2) —W(f,2) =n 5, (Vs(f5,2) —Vs(f,Z) —E(Vs(f5,2) —Vs(f,2))) +
Nt 3T 1 (Us(f5(X)) —Us(f (X)) —E(Us(f5(X)) —Us(f(X)))).

By the definition off ; flkerd) , we have
< c Gk
s <P(sum 3 (Vs(f5,2) ~Vs(f.2)) 0t 5 (05(F504)-
Ny i= j=nr+1

08 (X)) +AQ(F5) =3(F)) = 0, |5 — pll1 < 8 (auapndn”) ).

whereN, = {f € F :ey.(f, f5) > a1300(80")2}. Thenly < lg+ l7 with

n
lg = F>(supn;1 S D(f.X)>
N j=n+1
y(d+n) (2y+1)(d+r]) min(1,B)

8¥hay T poaug(f, 15) "W (aupn(@H )2 ),

o = P(SUPEW(15,2) ~WI(1,2)) 2 inf EQW(1,2) ~W(13,2)
Ny k
(2y+1)(d+n) - max0L
—8¥Ha, T pnfevs (1, 13)) " (aqapn (812 M),

A (K) /s ~ (K N
whereD(f,X;) = U (f5(X))) ~ 0 (F(X)) —Us(5(X;)) +Us((X))).
Forle, we note that

ED(f,X)] = %Ellﬁ“‘)(x)*D(X)HL(f.’é(X))*L(f(X))*L(*f.’E(X)HL(*f(X))\
< %Illﬁ(")—plle(IL(f.’é(X))—L(f(X))\+|L(—f.’%(X))—L(—f(X))I)-

It thus suffices to boundp® — p|le and E(|L(f5(X)) — L(f(X))|+ |L(— (X)) — L(—f(X))])
separately.
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To bound||p — p||«, note thatEJ(f( )) is bounded for all; following the same argument
as in Lemma 5 of Wang and Shen (2007) By Sobolev’s interpolation the@helams, 1975),
1M < 1 and the fact thap® (x;) — P9 (xo)| < sup | e (x1) — Fiee® (x)| +d(m®) - for
any x; andx, based on the construction pf¢"with f}([t( - Ad(f( Ky, there exists a constanis
such that| p&9 ., < a3 and|ped (x1) — p*RD (x2)| < ags|xg — x2|1 +d(mX)~1 when|x; — xo| is
sufficiently small. Without loss of generality, we assuaig < ag. By Assumption D andn®) =

[(a12nd0)) ~PY], we have
[18%9 (1) — P9 (xa) | — | MY (x2) - p(d) (x2)]|

<159 (0) — B () -+ [P (xa) — P xp)| < 23glx — X" + 20 (@a1pdy”) T
It then foIIows from Proposition 6 of Shen (1997) tHE™ — plle < 2 d+”*1|]p pH“im1
20 (auspnd) ¥ < 201 (@1l el 4
To boundE (|L(f5(X)) —L(f ( )+ IL(=15(X)) —L(=(X))]), we note that
EVs(f,Z) —Vs(f5,2)|
1
= SE(PX)IL(F5) = L))+ (21— p(X)|L(=F) = L(=f5)I)
0 .
> ES(IL(f5) —L(N)]+[L(=) = L(=f5)[) (min(p(X), 1 - p(X)) > )
1
> B(ES(IL(f5) —L(F)[+|L(= ) —L(=T5)]) — 2a75)
by Assumption E. Withd = ( (| (f5) = L(f)| +|L(—f) — L(—f.’g)|)/8a7)1/e, it yields that
E(IL(f5) —L(F)|+|L(~f )I) < (dar)"YO(ENs(f,2) —Vs(f5,2))”, where

f5
EVs(f,Z) - V5( Z)| <EVs(f, Z)—Vs({s,z)HE\V.s( 52)—Vs(fs5,2)]
< (S|gn(f)7é3|gn(f5)) E(Vs(f,2) ~Vs(fs,2)) +
P(sign(f5) # sign(fs)) + E(Vs(f5,2) —Vs(f5,2))
< (evs(f,T5)P+evs(f, f5) +sh+s0 < 4(eyg(f, f5)™NEP)

by Assumptions A and B. Therefore,

Bdsn) (BN min. max(0.1—
ED(f,X)| < 81, 17 (ey,(F, 15)) 5 (aqypn(85Y)2)

andlg < pgl by Markov's inequality.

To boundl;, we apply a similar treatment as in boundihgin Step 1to yield thatl; <
3.5exp—agn (\J%)™12-0)). Combining the upper bounds &f and l7, P(ey(ft™, fs) >
apn(3 ) < Plev(f¥ fs5) > aupa(dV)?) + 35exp—agn(AJy)m12-0) ¢
3.5exy —agh (AJg)"12-0) 1 o P4 51 terating this inequality yields that

ZB(d+r]+l)

~ — K+1_
P(evs(fe), fo) > (@ f™ (auspn)® ) o (317)%)
< P(e\/_s(f(So), f5)> allpn(éﬁ,o)f) +3.5K exp(—agn (AJs) M(12-0)) (15)

3.5K exp(—agn(AJ;) M 12-0) L Kp P+ Kppt,
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whereB = 2(1+m$<(+03(—d[$g))(sg+n+1)- Then the desired result follows from Assumption B and the fact

that&2 = 8a2(a110n0n" )2 > max(e2, 16s,) = 2 for anyk.

Proof of Corollary 4: It follows from Theorem 3 immediately and the proof is omitted.

Proof of Corollary 5: It follows from (14) and Corollary 4 that||pc — p|l1 =
Op<max(6ﬁy, (pnéﬁo))ma"(LmVBK))), wherept is the estimated probability through. The desired

results follows from the fact thailUc(f) —U (f)||1 < 4||pc — p||1.

Appendix B. Verification of Assumptions in Section 5.2

We now verify Assumptions A-E for the theoretical examples in Section 5.2.

B.1 Linear Learning

First, note tha(X1,Y) is independent oK, which implies thaES f;C) = E(E(S(f;C)|X2)) >
ESf&C) forany f € #, wherefg = argmire_,, ES(f;C) with = {x1 € R : f(x) = (L,x1) w:
we R2} C F andS(f;C) = C(L(Y (X)) +U(f(X)))+I(f).

Assumption A follows fromey, (17, fr) < 2P(Infr(X)| < 1) < (k1 +1)n"1 = s, with £ =nfy
Easily, (7) in Assumption B holds far = 1. To verify (8), direct calculation yields that there exist
some constantb; > 0 andb, > 0 such that for anyf € #1, we havee, (f, fn) > en(f, fr) =
bl((%(ZH— 1) 4 g)<utketl _ (%(Zn— 1))ktt*2+1) and E|sign( fr) — sign(f)| = bz((§(2n— 1)+

&1 — (5(2m— 1)) with wy = w, + (ev,€))7 ande = —*BEETVH® - o Thig jm-

plies (8) with =y = 1‘3;;_':'1'(2' For (9) in Assumption B, by the triangle inequality, Vee(f,2) —

Vr(£,2)) < 2ENn(f,Z) —Vu(fr, Z)| < 2(/\1+/\2) where/\l = E|ln(f,Z) — Vn(fr, 2)|E|SH(Y)|
|sign(f) — S'Qr(fn)’ < (21+K2(K1+1)K2) 1+K1+Kze\/ (f, fT[) HKﬁKZ ,andA\; =E(Vn(f,Z) —In(f,2)) =
E(Vi(f,Z) = Va( f, Z2)) 4+ E(In(fr, Z) — In(f,2)) < 2ey,(f, fr). Therefore (9) is met with{ =
k. For Assumption C, we defing (g, k) = ag(log(l/Ml/z))l/z/Ml/2 with M = M(g, A, k).
By Lemma 6 of Wang and Shen (2007), solving (10) yields- ('%9")%/2 whenC/J; ~ &,2n"1 ~
(logn)~1. Assumption D is satisfied witti = o andn = 0, and Assumption E is met with= o by
noting that migp(x),1— p(x)) > 1/10. In this caseB = mii';ﬁ@ and the desired result follows
from Corollary 4.

B.2 Kernel Learning

Similar to the linear case, we restrict our attention @ = {x1 € R : f(X1) = Wi o+
YroaWr kK (X1, %) 1 Wr = (Wr1,--- W) € R}

Note that¥; is rich for sufficiently largen in that for functionf; as defined in the linear ex-
ample, there exists & € 7 such that| f: — ||« < s, and hencey (f7, fr) < 2s,. Assump-
tion A is then met. Easily, (7) is satisfied for= 1. To verify (8), note that there exists con-
stantbz > 0 such that for smald > 0, P(|p(x) —1/2| > &) = 2P(0 < p(x) —1/2 < 8) =2P(0 <

1+K — — —
X(1) 56@ < b36%. Therefore,ey (f, fs5) > es(f, fs) > OE|sign(f) — sign(fs)|l (|p(x)| >

14Ky +Kp

d) > 27 1(4hs)~ 1+K1|]S|gn(f)—5|gr‘(f5)|\ Y with 8 = (|\S|gn(f)—S|gn(f5)H1/4b3)1+K1 This

implles B= 1+1K+1"+1K2 in (8). Similarly, we can verify that there exists a constnt- 0 such that
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P(Ip(X) — 0 > 8) = 2P(3(1— 3) < Xg) < $(1— 1 +5%)) < 8% whenrt> 1, which implies (8)

with y= % For (9), an application of the similar argument lead to 1. For Assumption C,

we definep (g,k) = ag(log(1/M*/?))3/2 /M2 with M = M(g, A, k). By Lemma 7 of Wang and Shen
(2007), solving (10) yields, = ((logn)®n~1)/2 whenC/J% ~ 5,2n1 ~ (logn)—3. Assumption D
is satisfied withd = 0 andn = 0, and Assumption E is met with= . Finally,B = 2K(21(+1-K+1K)2)’ and
the desired result follows from Corollary 4.
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