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Abstract

We show that the Brier game of prediction is mixable and fireldptimal learning rate and sub-
stitution function for it. The resulting prediction algtimin is applied to predict results of football
and tennis matches, with well-known bookmakers playing tie of experts. The theoretical per-
formance guarantee is not excessively loose on the foathtdlset and is rather tight on the tennis
data set.
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1. Introduction

The paradigm of prediction with expert advice was introduced in the latesl@®e, e.g., DeSantis
et al., 1988, Littlestone and Warmuth, 1994, Cesa-Bianchi et al., 1997has been applied to
various loss functions; see Cesa-Bianchi and Lugosi (2006) fecant book-length review. An
especially important class of loss functions is that of “mixable” ones, fachvthe learner’s loss
can be made as small as the best expert's loss plus a constant (depemdivegnumber of ex-
perts). It is known (Haussler et al., 1998; Vovk, 1998) that the optimidit&e constant is attained
by the “strong aggregating algorithm” proposed in Vovk (1990) (we useatljective “strong” to
distinguish it from the “weak aggregating algorithm” of Kalnishkan and Mgug008).

There are several important loss functions that have been shown to akelenand for which the
optimal additive constant has been found. The prime examples in the chs®pf observations
are the log loss function and the square loss function. The log loss fupettorse mixability
is obvious, has been explored extensively, along with its important deradi@ns, the Kullback-
Leibler divergence and Cover’s loss function (see, e.g., the revievoby, 2001, Section 2.5).

In this paper we concentrate on the square loss function. In the binaey ita mixability
was demonstrated in Vovk (1990). There are two natural directions inhvthis result could be
generalized:

Regression: observations are real numbers (square-loss regression is a stanolalem in statis-
tics).
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Classification: observations take values in a finite set (this leads to the “Brier game”, tdfinede
shortly, a standard way of measuring the quality of predictions in meteora@ndyother
applied fields: see, e.g., Dawid, 1986).

The mixability of the square loss function in the case of observations belpngia bounded in-

terval of real numbers was demonstrated in Haussler et al. (1998¥skaet al.’s algorithm was
simplified in Vovk (2001). Surprisingly, the case of square-loss noariinlassification has never
been analysed in the framework of prediction with expert advice. Theogerof this paper is to
fill this gap. Its short conference version (Vovk and Zhdanov, 20@®peared in the ICML 2008
proceedings.

2. Prediction Algorithm and Loss Bound

A game of prediction consists of three components: the observation Spalee decision spade,
and the loss function : Q x ' — R. In this paper we are interested in the followiBger game
(Brier, 1950):Q is a finite and non-empty sdt,:= P(Q) is the set of all probability measures on

Q, and
Mw,y) = %(v{o}—éw{o}>2,

oc
whered, € P(Q) is the probability measure concentrateduat d,{w} = 1 andd,{o} = 0 for
0 # w. (For example, iQ = {1,2,3}, w=1,y{1} =1/2,y{2} = 1/4, andy{3} = 1/4, A\(w,y) =
(1/2—1)?+(1/4-0)2+(1/4—0)>=3/8.)

The game of prediction is being played repeatedly by a learner havingssitcdecisions made

by a pool of experts, which leads to the following prediction protocol:

Protocol 1 Prediction with expert advice
Lo:=0.
Lk:=0,k=1,...,K.
forN=1,2,... do
Expertk announcesl, € I, k=1,...,K.
Learner announceg € I".
Reality announceay € Q.
Ln := Ln—1+ A(oN, YN)-
LK =LK +A(on, V), k=1,... K.
end for

At each step of Protocol 1 Learner is giviérexperts’ advice and is required to come up with his
own decisionLy is his cumulative loss over the firlslt steps, andi.h is thekth expert’s cumulative
loss over the firsN steps. In the case of the Brier game, the decisions are probability ftsdoas
the next observation.

An optimal (in the sense of Theorem 1 below) strategy for Learner inigired with expert
advice for the Brier game is given by the strong aggregating algorithmX(geeithm 1). For each
expertk, the algorithm maintains its weight, constantly slashing the weights of less successful
experts. Its description uses the notation= maxt, 0).

The algorithm will be derived in Section 5. The following result (to be pcbire Section 4)
gives a performance guarantee for it that cannot be improved bythay grediction algorithm.
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Algorithm 1 Strong aggregating algorithm for the Brier game

ws=1,k=1,...,K.

forN=1,2,... do
Read the Experts’ predictiony§, k=1,...,K.
SetGy(w) == —InTK  wk_ e 2O weq.
Solvey yeco(s—Gn(w)) ™ =2inseR.
Setyn{w} = (s—Gn(w)) /2, we Q.
Output predictionyy € P(Q).
Read observatiomy.
WKI = Wklile*)\(wl\hyh).

end for

Theorem 1 Using Algorithm 1 as Learner’s strategy in Protocol 1 for the Brier gamargntees
that

Ly < min LK +InK 1
N = k=1.,!..,K N (1)
forallN=1,2,.... If A<InK, Learner does not have a strategy guaranteeing
Ly < min LK +A 2
NS min N T (2)

.....

forallN=1,2,....

3. Experimental Results

In our first empirical study of Algorithm 1 we use historical data about988ttches in various
English football league competitions, namely: the Premier League (the pinofatie English
football system), the Football League Championship, Football LeagugFanthall League Two,
the Football Conference. Our data, provided by Football-Data, caver deasons, 2005/2006,
2006/2007, 2007/2008, and 2008/2009. The matches are sorted/fulatdy then by league, and
then by the name of the home team. In the terminology of our prediction protoeautcome of
each match is the observation, taking one of three possible values, “horhedvaw”, or “away
win”; we will encode the possible values as 1, 2, and 3.

For each match we have forecasts made by a range of bookmakerso¥éesipht bookmakers
for which we have enough data over a long period of time, namely Bet36&V#Ar, Gamebookers,
Interwetten, Ladbrokes, Sportingbet, Stan James, and VC Bet. (An@diserss mentioned above
were chosen because the forecasts of these bookmakers are avarlétden.)

A probability forecast for the next observation is essentially a ve@@rp,, ps) consisting of
positive numbers summing to 1. The bookmakers do not announce thesensutitbctly; instead,
they quote three betting odds,, a, andaz. Each numbeg; > 1 is the total amount which the
bookmaker undertakes to pay out to a client betting on outdopa unit stake in the event that
i happens (if the bookmaker wishes to return the stake to the bettor, it sheuttlbded ing;
i.e., the odds are announced according to the “continental” rather thatititireal” system). The
inverse value la;, i € {1,2,3}, can be interpreted as the bookmaker’s quoted probability for the
observation. The bookmaker’s quoted probabilities are usually slightly (because obtheetition
with other bookmakers) in his favour: the sunel+ 1/a; + 1/az exceeds 1 by the amount called
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the overround(at most 015 in the vast majority of cases). We use Victor Khutsishvili's (2009)
formula

pi=a "' =123 (3)
for computing the bookmaker’s probability forecasts, where0 is chosen such that[er a;er
agV = 1. Such a value of exists and is unique since the functiaflVJragVJr agV continuously
and strictly decreases from 3 to 0 wshanges from O teo. In practice, we usually have> 1
asa;'+a,t+a3' > 1 (i.e., the overround is positive). The method of bisection was more than
sufficient for us to solve[y+ a2_V+ agV = 1 with satisfactory accuracy. Khutsishvili's argument
for (3) is outlined in Appendix B.

Typical values ofy in (3) are close to 1, and the differenge 1 reflects the bookmaker’s target
profit margin. In this respegt— 1 is similar to the overround; indeed, the approximate value of the
overround isly—1) z?zlafllna; assuming that the overround is small and none; @$ too close
to 0. The coefficient of proportionalitzﬁzlai‘llna; can be interpreted as the entropy of the quoted
betting odds.

The results of applying Algorithm 1 to the football data, with 8 experts andsSipte observa-
tions, are shown in Figure 1. L&k, be the cumulative loss of Expektk = 1,...,8, over the first
N matches andly be the corresponding number for Algorithm 1 (i.e., we essentially continue to
use the notation of Theorem 1). The dashed line corresponding totBxgleows the excess loss
N — Lh — Ly of Expertk over Algorithm 1. The excess loss can be negative, but from the &irst p
of Theorem 1 (Equation (1)) we know that it cannot be less th&ém8; this lower bound is also
shown in Figure 1. Finally, the thick line (the positive part of ihaxis) is drawn for comparison:
this is the excess loss of Algorithm 1 over itself. We can see that at each rhontene the algo-
rithm’s cumulative loss is fairly close to the cumulative loss of the best exgettidt time; the best
expert keeps changing over time).

Figure 2 shows the distribution of the bookmakers’ overrounds. We eathat in most cases
overrounds are betweend® and 015, but there are also occasional extreme values, near zero or in
excess of (B.

Figure 3 shows the results of another empirical study, involving data ablaugge number of
tennis tournaments in 2004, 2005, 2006, and 2007, with the total numberntdfiesal0,087. The
tournaments include, for example, Australian Open, French Open, U8, @pd Wimbledon; the
data is provided by Tennis-Data. The matches are sorted by date, themrbgrtent, and then by
the winner's name. The data contain information about the winner of eaclhmattthe betting
odds of 4 bookmakers for his/her win and for the opponent’s win. Toerenow there are two
possible observations (player 1's win and player 2's win). There @ue hookmakers: Bet365,
Centrebet, Expekt, and Pinnacle Sports. The results in Figure 3 asnpedsn the same way as in
Figure 1.

Typical values of the overround are belowl 0as shown in Figure 4 (analogous to Figure 2).

In both Figure 1 and Figure 3 the cumulative loss of Algorithm 1 is close to theuative loss
of the best expert. The theoretical bound is not hopelessly loose féoaheall data and is rather
tight for the tennis data. The pictures look almost the same when Algorithm 1lis@ppthe more
realistic manner where the experts’ weights are not updated over the matches that are played
simultaneously.

Our second empirical study (Figure 3) is about binary prediction, arnlesalgorithm of Vovk
(1990) could have also been used (and would have given similar rest#sincluded it since we
are not aware of any empirical studies even for the binary case.
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Figure 1: The difference between the cumulative loss of each of thel@miers (experts) and of
Algorithm 1 on the football data. The theoretical lower bounbh8 from Theorem 1 is
also shown.

For comparison with several other popular prediction algorithms, seentipp€. The data
used for producing all the figures and tables in this section and in Appéhdan be downloaded
fromhttp://vovk. net/1 CM.2008.

4. Proof of Theorem 1

This proof will use some basic notions of elementary differential geometpeaally those con-
nected with the Gauss-Kronecker curvature of surfaces. (Thefusevature in this kind of results
is standard: see, e.g., Vovk, 1990, and Haussler et al., 1998.) Alitaeisthat we will need can
be found in, for example, Thorpe (1979).

A vector f € R? (understood to be a functioh: Q — R) is asuperpredictiorif there isy € I
such that, for alto € Q, A(w,y) < f(w); the setx of all superpredictions is theuperprediction set
For eachearning raten > 0, let®,, : R® — (0,0)® be the homeomorphism defined by

On(f):we Qe @ f R (4)

The image®, (%) of the superprediction set will be called theexponential superprediction set
is known that

In
NT—, N=12...,

can be guaranteed if and only if theexponential superprediction set is convex (part “if” forlall

and part “only if” forK — o are proved in Vovk, 1998; part “only if” for aK is proved by Chris

Watkins, and the details can be found in Appendix A). Comparing this withrnd)2) we can see
that we are required to prove that
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Figure 2: The overround distribution histogram for the football data, with Bins of equal size
between the minimum and maximum values of the overround.

e Oy (%) is convex whem < 1,
e ®,(2) is not convex whem > 1.

Define then-exponential superprediction surfade be the part of the boundary of thg
exponential superprediction sé () lying inside (0,00)?. The idea of the proof is to check that,
for alln < 1, the Gauss-Kronecker curvature of this surface is nowhere vagidiven when this is
done, however, there is still uncertainty as to in which direction the suisdmalging (towards the
origin or away from it). The standard argument (as in Thorpe, 1978pt@h 12, Theorem 6) based
on the continuity of the smallest principal curvature shows thaftlegponential superprediction
set is bulging away from the origin for small enoughindeed, since it is true at some point, it is
true everywhere on the surface. By the continuity ithis is also true for allj < 1. Now, since the
n-exponential superprediction set is convex fomg# 1, it is also convex fon = 1.

Let us now check that the Gauss-Kronecker curvature ofjtagponential superprediction sur-
face is always positive whem < 1 and is sometimes negative whgn- 1 (the rest of the proof, an
elaboration of the above argument, will be easy).rBet |Q|; without loss of generality we assume
Q={1,...,n}.

A convenient parametric representation of thexponential superprediction surface is

e (L= U+ +UF)

X1
Xo e N(Uf+(U—1)%+-+uf)
L= : ; (5)
Xn—1 e N+ +(Un-1-1)*+Uf)
Xn e—n(u§+‘~~+uﬁ71+(un—l)2)
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Figure 3: The difference between the cumulative loss of each of the Kntade@rs and of Algo-

rithm 1 on the tennis data. Now the theoretical bound is4.

whereu, ..., u,_1 are the coordinates on the surfagg,. .., u,_1 € (0,1) subject tou; + - -

1, andu, is a shorthand for £ u; — - -- — uy_1. The derivative of (5) inu; is
X R A N A A W (TR N
Xo (Un — Uy )@ MU+ (U= 12Ul ) (Up — U ) €PNt
0
ouy 2, 2.2 .
Xn_1 (Un— ul)e—n(u1+u2+~-+(un,1—1) +ud) (Un — ul)e2nun71
Xn (un —Up — ]_)e—rl(U§+u§+~~~+uﬁ,1+(un—1)2) (Un — U — 1)e2nun

the derivative inu, is

X1 (Up — Up)eX
5 X2 (Un — Up + 1)eX%2
W u : ,
g Xn_1 (U — Up) €21
Xn (Un — Up — 1)€?thn
and so on, up to
X1 (Un — Un_1)eP4
X2 (Un - Un_]_)eznuz
0 .
du 1 O . )
" Xn—1 (Un —Up-1 + 1)e2r|unfl
Xn (Up— Up_1 — 1)€?thn

all coefficients of proportionality being equal and positive.
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Figure 4: The overround distribution histogram for the tennis data.

A normal vector to the surface can be found as

€1 €h-1 €n
5. (Un—ug + 1) ... (U — Uy ) €21 (Up — Uy — 1)€2Nth
(Un—Un_l)eznul (Un— Un_1+ 1)6’2nu”*1 (Un—Un_l—l)ezrlun

whereg is theith vector in the standard basis Rf and|-| stands for the determinant (the matrix
contains both scalars and vectors, but its determinant can still be compingdhe standard rules).
The coefficient in front o, is the(n— 1) x (n— 1) determinant

(Up—up)€?M2 ... (U — Uy ) €21 (Un — Uy — 1)€?thn
(Un—Up+ 1)t ... (Up — Up)€PNtn-1 (Up — Up — 1)e?1tn
(Un - Unfl)ezr]UZ v (Un - Unfl + 1)ezr]u”71 (Un - Unfl - 1)ezr]uh
Un— Up Un —Ug Up—u;—1
0 g2t Up—Uz+1 --- Up — Up Up—Up—1
Uh—Un—1 -+ Up—Up—1+1 Uy—Up—1—1
11 1 u—-u -1 11 1 up—u—-1
2 1 1 u—u-1 10 - 0 Up — U
—gu|l 2 1 U—w—-1|_g2ui0 1 0 U; — Ug
11 -~ 2 U—Up1-1 0 0 --- 1 u—un1
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=e M (=) (U —up — 1) + (=)™ (up — up)
+ (=D (U —Ug) 4+ (=)™ (U — Uy 1))
= e M(—1)"((Uz+Uz+-++ +Un) — (N— L)ug — 1)
= —e M (—1)"nu O ue ™ (6)

(with a positive coefficient of proportionalitg?, in the firstd; the third equality follows from the
expansion of the determinant along the last column and then along thewist ro

Similarly, the coefficient in front o§ is proportional (with the same coefficient of proportion-
ality) to uie™4 for i = 2,...,n—1; indeed, theln— 1) x (n— 1) determinant representing the
coefficient in front ofg can be reduced to the form analogous to (6) by movingttheow to the
top.

The coefficient in front o&, is proportional to

Up—Up+1 Un — U Un — Ug Un — U
Un — Uy Upy—u+1 - Un — Up Un— Up
S : . : :

Up—Up—2 Up—Up2 -+ Up—Uyp2+1 Un — Un—2

Ur—Un—1  Up—Up-1 - Un — Un—1 Up—Un—1+1
1 o --- 0 Un — U 1 0 --- 0 u—u
0 N Un— U 01 .- 0 uU—Ww

— @ 2| : Do : : —g 2t |: . . : :
0 0 1 Un—Unfz 0 0 N l Un—Unfz
-1 -1 -+ -1 Up—Uup_1+1 0O 0 - 0 NUn

= Nupe 2Nt

(with the coefficient of proportionalitg?(—1)"1).
The Gauss-Kronecker curvature at the point with coordin@ates. ., u,—1) is proportional (with
a positive coefficient of proportionality, possibly depending on the ptint)

az"
0U1

T (7)
Oup_1

ZT

(Thorpe, 1979, Chapter 12, Theorem 5, witstanding for transposition).
A straightforward calculation allows us to rewrite determinant (7) (ignoriegokbsitive coeffi-
cient((—1)""tne®M)" as

(1—2nuy)e 2 0 0 (2nUp — 1)e~ 21t

0 (1-2nup)e 22 ... 0 (2nup — 1)e~ 21t

0 0 o (1=2nUp_1)e M1 (2nuy — 1)e 2t
uleer]ul UZeonuz . un_leonun,l uneer]un
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1-2nu; 0 0 nu,—1
0 1-2nuy; --- 0 nu,—1

Ei S : 5
0 0 o 1-2nUp-1 2nup—1

Uz uz Un—1 Un

=u(1-2nu)(1—2nu3z)--- (1—2nup) + Uz(1—2nuy)(1—2nu3) --- (1 —2nuy) + - - -
+Un(1—2nup)(1—2nup)---(1—2nup-1) (8)

(with a positive coefficient of proportionality; to avoid calculation of theifpas of various per-
mutations, the reader might prefer to prove the last equality by inductionespanding the last
determinant along the first column). Our next goal is to show that the Iggession in (8) is
positive whem < 1 but can be negative whep> 1.

If n>1,setus =uy:=1/2anduz =--- =u,:=0. The last expression in (8) becomes negative.
It will remain negative ifu; andu, are sufficiently close to/2 andus, .. .,u, are sufficiently close
to 0.

It remains to consider the cage< 1. Sett; :=1—2nu;, i =1,...,n; the constraints on theare

“1l<l-2n<t<l, i=1,...,n,

B 9)
t1+---+th=n-2n>n-2.
Our goal is to prove
(1—ty)totz---th+---+ (L —th)tata- - - th_1 > 0,
that is,
Dtz th+-- -4+ tito- - thoy > nty - - -ty (20)
This reduces to 1 1
—4--4+—>n (12)
1:1 1:n
ifty---th > 0,and to
1 1
— 44+ —<n (12)
t1 tn

if t;---t, < 0. The remaining case is where some of thare zero; for concreteness, tgt= 0.
By (9) we have; +---+th_1 > n—2, and so all ofy, . ..,t,_1 are positive; this shows that (10) is
indeed true.
Let us prove (11). Sincg---t, > 0, all ofty,...,t, are positive (if two of them were negative,
the sumt; + - - - +t, would be less than — 2; cf. (9)). Therefore,
E+~-+1 >14---+1=n.
12} th —
ntimes
To establish (10) it remains to prove (12). Suppose, without loss ofrgktyethatt; > O,
t, > 0,...,th_1 > 0, andt, < 0. We will prove a slightly stronger statement allowing ..,t,_» to
take value 1 and removing the lower boundt@rSince the functiom € (0,1] — 1/t is convex, we
can also assume, without loss of generatity; --- =t,_» = 1. Thent,_1+t, > 0, and so
1 1

—+-<0;
tnfl tn
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therefore,

1 1 1 1

—t o+t —+—+-<n-2<n

t1 th2 tha n

Finally, let us check that the positivity of the Gauss-Kronecker curedtaplies the convexity

of then-exponential superprediction set in the cgs€ 1, and the lack of positivity of the Gauss-
Kronecker curvature implies the lack of convexity of tieexponential superprediction set in the
casen > 1. Then-exponential superprediction surface will be oriented by choosing dineal

vector field directed towards the origin. This can be done since

X1 e2NuL upe~ 2N
1ol s zoEn™ s | (13)
Xn ezr]Un une—Zr]un

with both coefficients of proportionality positive (cf. (5) and the bottom aofhe first determinant
in (8)), and the sign of the scalar product of the two vectors on the rightHsides in (13) does
not depend on the poiift, ..., u,—1). Namely, we také—1)"Z as the normal vector field directed
towards the origin. The Gauss-Kronecker curvature will not charggeaster the re-orientation: if
nis even, the new orientation coincides with the old, and forwtlte Gauss-Kronecker curvature
does not depend on the orientation.

In the casen > 1, the Gauss-Kronecker curvature is negative at some point, and sp the
exponential superprediction set is not convex (Thorpe, 1979,t€h4g, Theorem 1 and its proof).

It remains to consider the cage< 1. Because of the continuity of theexponential superpre-
diction surface im we can and will assume, without loss of generality, that 1.

Let us first check that the smallest principal curvatyre ki (us, ..., un—1,n) of then-exponential
superprediction surface is always positive (among the argumekisveé list not only the coordi-
natesus, ..., uUn_1 Of a point on the surface (5) but also the learning rate(0,1)). At least at some
(ug,...,un—1,n) the value ok; (uy,...,uyn_1,n) is positive: take a sufficiently smaijland the point
on the surface (5) with coordinatas=--- = u,_1 = 1/n; a simple calculation shows that this point
will be a point of local maximum fok; + - - - + x,. Therefore, for al(uy,...,un_1,n) the value of
kKi(us,...,un—1,n) is positive: ifk; had different signs at two points in the set

{(u,...,un—1,n) |ur € (0,1),...,Up-1 € (0,1),u1 + -+ Un-1 < 1,n € (0,1) }, (14)

we could connect these points by a continuous curve lying completely inBidedt some point
on the curvek; would be zero, in contradiction to the positivity of the Gauss-Kroneckerature
Ky« Ko

Now it is easy to show that thg-exponential superprediction set is convex. Suppose there
are two pointsA andB on then-exponential superprediction surface such that the intéAd)|
contains points outside thp-exponential superprediction set. The intersection of the plahB,
whereQ is the origin, with they-exponential superprediction surface is a planar curve; the cuevatur
of this curve at some point betwegrandB will be negative (remember that the curve is oriented by
directing the normal vector field towards the origin), contradicting the pdgitf k; at that point.

5. Derivation of the Prediction Algorithm

To achieve the loss bound (1) in Theorem 1 Learner can use, assisicearlier, the strong aggre-
gating algorithm (see, e.g., Vovk, 2001, Section 2.1, (15)) with 1. In this section we will find
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a substitution function for the strong aggregating algorithm for the Brier gaitiien < 1, which
is the only component of the algorithm not described explicitly in Vovk (20@Wir substitution
function will not require that its input, the generalized prediction, shoulddraputed from the
normalized distributior(vx/‘)E:1 on the experts; this is a valuable feature for generalizations to an
infinite number of experts (as demonstrated in, e.g., Vovk, 2001, Appénii)x

Suppose that we are given a generalized predidtign. .,I,)T computed by the aggregating
pseudo-algorithm from a normalized distribution on the experts. Slace., )T is a superpredic-
tion (remember that we are assumimer 1), we are only required to find a permitted prediction

A (U —1)2+ud+-- +u2
)\.2 _ u§+(uZ—1.)2+--~+uﬁ as)
)\.n u§+u§+~-:+(un—1)2
(cf. (5)) satisfying
M <l An<ln (16)

Now suppose we are given a generalized predictian. ..,L,)" computed by the aggregating
pseudo-algorithm from an unnormalized distribution on the experts; in othets, we are given

L1 l1+cC

Ln In+c

for somec € R. To find (15) satisfying (16) we can first find the largést R such that(L; —
t,...,Ln—t)T is still a superprediction and then find (15) satisfying

Sincet > ¢, itis clear thatAq, ..., A,)" will also satisfy the required (16).

Proposition 2 Define s R by the requirement
n

‘ZL(S— Li)+ =2 (18)

|
The unique solution to the optimization problemtmaxunder the constraints (17) witky, ..., An
as in (15) will be
u=-—— i=1...,n, (29)
t=s—1—-Us—-.-— U2 (20)
There exists a uniqugsatisfying (18) since the left-hand side of (18) is a continuous, incrgasin

(strictly increasing when positive) and unbounded above functian oifie substitution function is
given by (19).
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Proof of Proposition 2 Let us denote thg; andt defined by (19) and (20) ag andt, respectively.
To see that they satisfy the constraints (17), notice thaitlheonstraint can be spelt out as

W+ +W—20+1< LT,

which immediately follows from (19) and (20). As a by-product, we canthaethe inequality
becomes an equality, that is,

f=Li—1+20, 05— — T2, (21)
for all i with TG; > 0.
We can rewrite (17) as
t<L;—1+2uj—u—-- —U2
: (22)
t<Lp—1+2up—U—-- —U3

and our goal is to prove that these inequalities imptyt (unlessu; = Uy, ...,u, = Uy). Choosdj;
(necessarilyg; > 0 unlessu; = TUs,...,U, = Uy; in the latter case, however, we can, and will, also
choosel; > 0) for whichg; :=U; — u; is maximal. Then every value ofsatisfying (22) will also
satisfy

n
t<Li—142u-S u?
2,

n n n
=Li—1+20 —2¢ — ZUJ-Z—I-ZZ €jUj — z 812
=1 =1 =1
n n B
<Li—1+20— Zluf— le,-z <ft. (23)
1= 1=

The penultimate< in (23) follows from
n n
—& 4+ Z gjlj = Z (Sj —Si)Uj <0.
=1 =1
The last< in (23) follows from (21) and becomes when not allu; coincide withg;. [ |

The detailed description of the resulting prediction algorithm was given asriétign 1 in Sec-
tion 2. As discussed, that algorithm uses the generalized predigfjom) computed from unnor-
malized weights.

6. Conclusion

In this paper we only considered the simplest prediction problem for the Baime: competing
with a finite pool of experts. In the case of square-loss regressionpdssible to find efficient
closed-form prediction algorithms competitive with linear functions (see, €gsa-Bianchi and
Lugosi, 2006, Chapter 11). Such algorithms can often be “kernelizedbtain prediction algo-
rithms competitive with reproducing kernel Hilbert spaces of predictiorsruléhis would be an
appealing research programme in the case of the Brier game as well.
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Appendix A. Watkins’s Theorem

Watkins's theorem is stated in Vovk (1999, Theorem 8) not in sufficientegality: it presupposes
that the loss function is mixable. The proof, however, shows that thisrggan is irrelevant (it can
be made part of the conclusion), and the goal of this appendix is to ge#-eostained statement
of a suitable version of the theorem. (The reader will notice that the dapefahe new version is
essential only for our discussion in Section 4, not for Theorem 1 itself.)

In this appendix we will use a slightly more general notion of a game of predi¢€ol,A):
namely, the loss functioh : Q x ' — R is now allowed to take values in the extended real line
R :=RU{—,} (although the value-« will be later disallowed).

Partly following Vovk (1998), for eaciKk = 1,2, ... and eacla > 0 we consider the following
perfect-information gamé&k (a) (the “global game”) between two players, Learner and Environ-
ment. Environment is a team &f+ 1 players called Expert 1 to Expdftand Reality, who play
with Learner according to Protocol 1. Learner wins if, forMl= 1,2, ... and allk € {1,...,K},

Ln <LK +a; (24)

otherwise, Environment wins. It is possible that = « or L',f, = oo in (24); the interpretation of
inequalities involving infinities is natural.

For eachK we will be interested in the set of those> O for which Learner has a winning
strategy in the gamgk (a) (we will denote this by L— Gk (a)). It is obvious that

L— Gk(a)&ad >a=L — Gk(@);

therefore, for eacl there exists a uniquieorderline value @ such that L— Gk (a) holds when
a > ax and fails whera < ax. It is possible thatk = o (but remember that we are only interested
in finite values ofa).

These are our assumptions about the game of prediction (similar to thosekin1\@98):

e [ is a compact topological space;

e for eachw € Q, the functiony € I — A(w,y) is continuousTR is equipped with the standard
topology);

e there existy € I' such that, for alto € Q, A(w,y) < oo;

e the functionA is bounded below.
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We say that the game of predictiéf,I",A) is n-mixable wheren > 0, if
Vel yelac(0,1]35el Vwe Q: e M@0 > gem@n) 4 (1 —q)e @) (25)

In the case of finite, this condition says that the image of the superprediction set under the map-
ping ®,, (see (4)) is convex. The game of predictiomiiableif it is n-mixable for some) > 0.

It follows from Hardy et al. (1952, Theorem 92, applied to the meXhswith @(x) = ™)
that if the prediction game ig-mixable it will remainn’-mixable for any positivey’ < n. (For
another proof, see the end of the proof of Lemma 9 in Vovk, 1998.y)E&ke the supremum of the
n for which the prediction game ig-mixable (withn* := 0 when the game is not mixable). The
compactness df implies that the prediction gamerng-mixable.

Theorem 3 (Chris Watkins) Forany Ke {2,3,...},

InK
n*

In particular, ac < « if and only if the game is mixable.

The theorem does not say explicitly, but it is easy to check, thatdi (ax ): this follows both from
general considerations (cf. Lemma 3 in Vovk, 1998) and from the fadtttte strong aggregating
algorithm winsGk (ax ) = Gk (InK/n*).

Proof of Theorem 3 The proof will use some notions and notation used in the statement and proof
of Theorem 1 of Vovk (1998). Without loss of generality we can, and wadlsume that the loss
function satisfiea > 1 (add a suitable constant koif needed). Therefore, Assumption 4 of Vovk
(1998) (the only assumption in that paper not directly made here) is satisfiedew of the fact

that L — Gk(InK/n*), we only need to show that L Gk (a) does not hold foa < InK/n*. Fix
a<InK/n*.

The separation curve consists of the poife€3),c(B)/n) € [0,»)2, wherep :=e™ andn
ranges ovef0, | (see Vovk, 1998, Theorem 1). Since the two-fold convex mixture in €aB)be
replaced by any finite convex mixture (apply two-fold mixtures repeatesiyjingn := n* shows
that the point(1,1/n*) is Northeast of (actually belongs to) the separation curve. On the other
hand, the pointl,a/InK) is Southwest and outside of the separation curve (use Lemmas 8-12 of
Vovk, 1998). Therefore, E (i.e., Environment) has a winning strategydrgtimeg (1,a/InK). It
is easy to see from the proof of Theorem 1 in Vovk (1998) that the definiticthe gamej can be
modified, without changing the conclusion abai(tl,a/InK), by replacing the line

E chooses > 1 {size of the pod|
in the protocol on p. 153 of Vovk (1998) by

E choosesi* > 1 {lower bound on the size of the pgol

L chooses > n* {size of the pod)

(indeed, the proof in Section 6 of Vovk, 1998, only requires that thieoeilsl be sufficiently many
experts). Let* be the first move by Environment according to her winning strategy.

Now suppose L— Gk (a). From the fact that there exists Learner’s stratégwinning Gk (a)
we can deduce: there exists Learner’s strategwinning Gg2(2a) (we can split thé? experts into
K groups ofK, merge the experts’ decisions in each group withand finally merge the groups’
decisions withs;); there exists Learner’s strategy winning Gxs(3a) (we can split thek® experts
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Loss resulting from (3) Loss resulting from (26) Difference
5585.69 5588.20 2.52
5585.94 5586.67 0.72
5586.60 5587.37 0.77
5588.47 5590.65 2.18
5588.61 5589.92 1.31
5591.97 5593.48 1.52
5596.01 5601.85 5.84
5596.56 5598.02 1.46

Table 1. The bookmakers’ cumulative Brier losses over the football @éatatsen their probability
forecasts are computed using formula (3) and formula (26).

into K groups ofK?, merge the experts’ decisions in each group with and finally merge the
groups’ decisions with’;); and so on. When the numbKM of experts exceeds’, we obtain a
contradiction: Learner can guarantee

Ly < LK +ma

for all N and allK™ expertsk, and Environment can guarantee that

a
LN>L§+mRmme:Lh+ma

for someN andk. [ |

Appendix B. Khutsishvili's Theory

In the conference version of this paper (Vovk and Zhdanov, 2008a)sed

o= 1/a;
' 1/a1+1/a2+1/a3’

i=12,3, (26)

in place of (3). A natural way to compare formulas (3) and (26) is to coenpfa losses of the
probability forecasts found from the bookmakers’ betting odds usingtfarsulas. Using Khut-
sishvili's formula (3) consistently leads to smaller losses as measured by i#reldas function:
see Tables 1 and 2. The improvement of each bookmaker’s total lossheviyotball data set is
in the range 0.72-5.84; over the tennis data set the difference is in the ta?ig-11.64. These
differences are of the order of the differences in cumulative loss leetdiferent bookmakers, and
so the improvement is significant.

The goal of this appendix is to present, in a rudimentary form, Khutsishvigsrshbehind (3).
The theory is based on a very idealized model of a bookmaker, who isadsio compute the
betting oddsa for an event of probabilityp using a functionf,
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Loss resulting from (3) Loss resulting from (26) Difference
3935.32 3944.02 8.69
3943.83 3945.10 1.27
3945.70 3957.33 11.64
3953.83 3957.75 3.92

Table 2: The bookmakers’ cumulative Brier losses over the tennis dateheet their probability
forecasts are computed using formula (3) and formula (26).

Different bookmakers (and the same bookmaker at different times) sauditferent functiond .
Therefore, different bookmakers may quote different odds bectiey may use different and
because they may assign different probabilities to the same event.

The following simple corollary of Darboux’s theorem describes the spboesible functiond;
its interpretation will be discussed straight after the proof.

Theorem 4 (Victor Khutsishvili) Suppose a function :f(0,1) — (1, ) satisfies the condition

f(pa) = f(p)f(q) (27)

for all p,q € (0,1). There exists ¢ 0 such that fp) = p ¢ forall p € (0,1).

Proof Equation (27) is one of the four fundamental Cauchy equations, whicheaasily reduced
to each other. For example, introducing a new funcgoi0, o) — (0,) by g(u) :=In f(e™") and

new variablesy € (0,o) by x:= —Inp andy := —Inqg, we transform (27) to the most standard
Cauchy equatiog(x+Yy) = g(x) +9(y). By Darboux’s theorem (see, e.g., Atz1966, Section 2.1,
Theorem 1(b))g(x) = cxfor all x > 0, that is,f(p) = p~¢for all p € (0,1). [ |

The functionf is defined on0, 1) since we assume that in real life no bookmaker will assign a
subjective probability of exactly 0 or 1 to an event on which he accepts lbhetsuld be irrational
for the bookmaker to havé(p) < 1 for somep, sof : (0,1) — (1,0). To justify the requirement
(27), we assume that the bookmaker offers not only “single” but alsolitd” bets (Wikipedia,
2009). If there are two events with quoted o@dandb that the bookmaker considers independent,
his quoted odds on the conjunction of the two events withbef the probabilities of the two events
arep andg, respectively, the probability of their conjunction will ipg. Therefore, we have (27).

Theorem 4 provides a justification of Khutsishvili’'s formula (3): we jusuass that the book-
maker applies the same functidrto all three probabilitiep;, p2, andps. If f(p) = p~¢, we have
pi= afy, wherey = 1/c andi = 1,2, 3, andy can be found from the requiremept + p2 + ps = 1.

An important advantage of (3) over (26) is that (3) does not impose ppgrdimits on the
overround that the bookmaker may charge (Khutsishvili, 2009). If theegaas possible outcomes
(n= 3 for football andn = 2 for tennis) and the bookmaker usgp) = p~¢, the overround is

_ieﬁ‘l—lzipf—l
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and so continuously changes betweehandn— 1 asc ranges ovef0,») (in practice, the over-
round is usually positive, and so= (0,1)). Even forn = 2, the upper bound of 1 is too large to be
considered a limitation. The situation with (26) is very different: upper bownthe numerator of
(26) by 1 and replacing the denominator by &, whereo is the overround, we obtaip < ﬁlo for
alli, and sao < min; p7* — 1; this limitation ono is restrictive when one of thg is close to 1.

An interesting phenomenon in racetrack betting, known since Griffith (1 ®l€hat favourites
are usually underbet while longshots are overbet (see, e.g., Srpabdr\Wolfers, 2007, for a
recent survey and analysis). Khutsishvili's formula (3) can be reghas a way of correcting this
“favourite-longshot bias”: whei; is large (the outcomeis a longshot), (3) slashes'd when
computingp; more than (26) does.

Appendix C. Comparison with Other Prediction Algorithms

Other popular algorithms for prediction with expert advice that could bd istead of Algorithm
1 in our empirical studies reported in Section 3 are, among others, the Wkigneage Algo-
rithm (WdAA, proposed by Kivinen and Warmuth, 1999), the weak aggafieg algorithm (WKAA,
proposed independently by Kalnishkan and Vyugin, 2008, and Ceswiid and Lugosi, 2006,
Theorem 2.3; we are using Kalnishkan and Vyugin's name), and theeHadgrithm (HA, pro-
posed by Freund and Schapire, 1997). In this appendix we pay masiaitéeo the WAAA since
neither WKAA nor HA satisfy bounds of the form (2). (The reader camstilt Vovk and Zhdanov,
2008b, for details of experiments with the latter two algorithms and formula &) for extracting
probabilities from the quoted betting odds.) We also briefly discuss threemawe algorithms.

The Weighted Average Algorithm is very similar to the strong aggregating ithgo(SAA)
used in this paper: the WdAA maintains the same weights for the experts as yald\the only
difference is that the WdAA merges the experts’ predictions by averabem according to their
weights, whereas the SAA uses a more complicated “minimax optimal” merging sdigiran
by (19) for the Brier game). The performance guarantee for the Wd#plied to the Brier game
is weaker than the optimal (1), but of course this does not mean that its eshpieidormance is
necessarily worse than that of the SAA (i.e., Algorithm 1). Figures 5 amd@ the performance of
this algorithm, in the same format as before (see Figures 1 and 3). Weegmaséor the football
data the maximal difference between the cumulative loss of the WdAA and thelative loss of
the best expert is slightly larger than that for Algorithm 1 but still well within tpéraal bound IrK
given by (1). For the tennis data the maximal difference is almost twice asdartpr Algorithm 1,
violating the optimal bound IK.

In its most basic form (Kivinen and Warmuth, 1999, the beginning of Se&)jpthe WdJAA
works in the following protocol. At each step each expert, Learner, Rewlity choose an ele-
ment of the unit ball inR", and the loss function is the squared distance between the decision
(Learner’s or an expert's move) and the observation (Reality’'s moMaks covers the Brier game
with Q = {1,...,n}, each observatiom € Q represented as the vect@,{1},...,0,{n}), and
each decisioly € P(Q) represented as the vectgf{1},...,y{n}). However, in the Brier game the
decision makers’ moves are known to belong to the simplex,...,us) € [0,00)"| S uj = 1},
and Reality’s move is known to be one of the vertices of this simplex. Therefg can optimize
the ball radius by considering the smallest ball containing the simplex rathretttbainit ball. This
is what we did for the results reported here (although the results reportieel conference version
of this paper, Vovk and Zhdanov, 2008a, are for the WdAA applied tauthieball in R"). The
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Figure 5: The difference between the cumulative loss of each of the Bntme@rs and of the
Weighted Average Algorithm (WdAA) on the football data. The chosenevaliithe
parametec = 1/n for the WdAA, ¢ := 16/3, minimizes its theoretical loss bound. The
theoretical lower bound-In8 ~ —2.0794 for Algorithm 1 is also shown (the theoretical
lower bound for the WdAA;-11.0904, can be extracted from Table 3 below).
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Figure 6: The difference between the cumulative loss of each of thekhtaders and of the WdAA
for ¢ := 4 on the tennis data.
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Algorithm Maximal difference| Theoretical bound
Algorithm 1 1.2318 2.0794
WdAA (c=16/3) 1.4076 11.0904
WdAA (c=1) 1.2255 none

Table 3: The maximal difference between the loss of each algorithm in thetex ket and the loss
of the best expert for the football data (second column); the theoreigEr bound on
this difference (third column).

radius of the smallest ball is

I 0.8165 ifn=3
R::\/l—ﬁ% 0.7071 ifn=2
1 if nis large

As described in Kivinen and Warmuth (1999), the WdAA is parameterized:byl/n instead of
n., and the optimal value afis ¢ = 8R?, leading to the guaranteed loss bound

Ly < min LK +8R%InK
k=1,...K
forall N=1,2,... (see Kivinen and Warmuth, 1999, Section 6). This is significantly looser tha
the bound (1) for Algorithm 1.

The values = 16/3 andc = 4 used in Figures 5 and 6, respectively, are obtained by minimizing
the WdAA's performance guarantee, but minimizing a loose bound mightenstibh a good idea.
Figure 7 shows the maximal difference

Ln(c)— min LK 2
o (L0~ L), @2)
whereLy(c) is the loss of the WdAA with parameteion the football data over the firlsk steps and
Lh is the analogous loss of thh expert, as a function @t Similarly, Figure 8 shows the maximal
difference
_ min Lk
N_1m%087<|"\'(c) m|n4LN> (29)

) eey

for the tennis data. And indeed, in both cases the valuzroinimizing the empirical loss is far
from the value minimizing the bound; as could be expected, the empirical optahe for the
WdAA is not so different from the optimal value for Algorithm 1. The followgitwo figures, 9 and
10, demonstrate that there is no such anomaly for Algorithm 1.

Figures 11 and 12 show the behaviour of the WdAA for the value of pamroe- 1, that is,
n =1, thatis optimal for Algorithm 1. They look remarkably similar to Figures 1 and$pectively.

Precise numbers associated with the figures referred to above anemgiVables 3 and 4: the
second column gives the maximal differences (28) and (29), resplctihe third column gives the
theoretical upper bound on the maximal difference (i.e., the optimal valAérof2), if available).
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Figure 7: The maximal difference (28) for the WdAA as function of theapseterc on the football
data. The theoretical guarantee In8 for the maximal difference for Algoriths also
shown (the theoretical guarantee for the WdAA,QBD4, is given in Table 3).
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Figure 8: The maximal difference (29) for the WdAA as function of theapaterc on the tennis
data. The theoretical bound for the WdAA i$852 (see Table 4).
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Figure 9: The maximal difference ((28) within place ofc) for Algorithm 1 as function of the
parameten on the football data.
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Figure 10: The maximal difference ((29) within place ofc) for Algorithm 1 as function of the
parameten on the tennis data.
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Figure 11: The difference between the cumulative loss of each of theoBniskers and of the
WdAA on the football data foc = 1 (the value of parameter minimizing the theoretical
performance guarantee for Algorithm 1).
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Figure 12: The difference between the cumulative loss of each of theodntakers and of the
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Algorithm Maximal difference| Theoretical bound
Algorithm 1 1.1119 1.3863
WdAA (c=4) 2.0583 5.5452
WdAA (c=1) 1.1207 none

Table 4. The maximal difference between the loss of each algorithm in thetex ket and the loss
of the best expert for the tennis data (second column); the theoretigat bpund on this
difference (third column).

The following two algorithms, the weak aggregating algorithm (WkAA) and tkeed¢ algo-
rithm (HA), make increasingly weaker assumptions about the prediction gaing played. Al-
gorithm 1 computes the experts’ weights taking full account of the dedreenvexity of the loss
function and uses a minimax optimal substitution function. Not surprisingly, dsiéathe optimal
loss bound of the form (2). The WdAA computes the experts’ weights indheeswvay, but uses a
suboptimal substitution function; this naturally leads to a suboptimal loss badined/WVkAA “does
not know” that the loss function is strictly convex; it computes the expergsghts in a way that
leads to decent results for all convex functions. The WKAA uses the sabstitution function as
the WAAA, but this appears less important than the way it computes the weldgiig$A “knows”
even less: it does not even know that its and the experts’ performamgeasured using a loss
function. At each step the HA decides which expert it is going to follow,atritle end of the step it
is only told the losses suffered by all experts. Both WKAA and HA depena parameter, which is
denotedt in the case of WKAA an@ in the case of HA; the ranges of the parametersar€0, )
andp € [0,1). The loss bounds that we give below assume that the loss function tdies irathe
interval [O,L], in the case of the WKAA, and that the losses are chosen féoly, in the case of
HA, whereL is a known constant. In the case of the Brier loss functios,?2.

In the notation of (1), a simple loss bound for the WKAA is

Ly < k_TinKLh +2LvVNInK (30)
(Kalnishkan and Vyugin, 2008, Corollary 14); this is quite differentrirl) as the “regret term”
2Lv/NInK in (30) depends oiN. This bound is guaranteed for= v InK /L. Forc = v/8InK/L,
Cesa-Bianchi and Lugosi (2006, Theorem 2.3) prove the strorggerdh

.....

The performance of the WKAA on our data sets is significantly worse thdarothae WdAA
with ¢ = 1: the maximal difference (28)—(29) does not exced( far all reasonable values afin
the case of football but only for a very narrow rangecdfvhich is far from both Kalnishkan and
Vyugin’s vInK /2 and Cesa-Bianchi and Lugosi88InK /2) in the case of tennis. Moreover, the
WKAA violates the bound for Algorithm 1 for all reasonable valuex@n some natural subsets
of the football data set: for example, when prediction starts from the dg@96/2007) season.
Nothing similar happens for the WdAA with= 1 on our data sets.
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The loss bound for the HA is
LyIng+LInK
1-B

(Freund and Schapire, 1997, Theorem 2), whHelkg, stands for Learner’s expected loss (the HA
is a randomized algorithm) aridf; stands for mip_y .k L‘,ﬁ,. In the same framework, the strong
aggregating algorithm attains the stronger bound

ElLy < (31)

LyIng+LInK

K
KN g1

ELy < (32)

(Movk, 1998, Example 7). Of course, the SAA applied to the HA framewaskdescribed above,
with no loss function) is very different from Algorithm 1, which is the SAApéipd to the Brier
game; we refer to the former algorithm as SAA-HA. Figure 13 shows the odtibe right-hand
side of (32) to the right-hand side of (31) as functiorof
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Figure 13: The relative performance of the HA and SAA-HA for variousnbers of experts as
function of parametef.

The losses suffered by the HA and the SAA-HA on our data sets areclesg and violate
Algorithm 1’s regret term I for all values off3. It is interesting that, for both football and tennis
data, the loss of the HA is almost minimized by setting its param&ter O (the qualification
“almost” is necessary only in the case of the tennis data). The HA BvithO coincides with the
Follow the Leader Algorithm (FLA), which chooses the same decision asstgWwith the smallest
loss up to now) expert; if there are several best experts (which alreest happens after the first
step), their predictions are averaged with equal weights. Standard lesafsee, e.g., Cesa-Bianchi
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and Lugosi, 2006, Section 4.3) show that this algorithm (unlike its versitlovirohe Perturbed
Leader) can fail badly on some data sequences. Its empirical perfoearthe football data set is
not so bad: it violates the loss bound for Algorithm 1 only slightly; howeserthe tennis data set
the bound is violated badly.

The decent performance of the Follow the Leader Algorithm on the foodaddl set suggests
checking the empirical performance of other similarly naive algorithms, asche following two.
TheSimple Average Algorithidecision is defined as the arithmetic mean of the experts’ decisions
(with equal weights). Th@ayes Mixture Algorithm{BMA) is the strong aggregating algorithm
applied to the log loss function; this algorithm is in fact optimal, but not for tHerBoss function.
The BMA has a very simple description (Cesa-Bianchi and Lugosi, 2866tion 9.2), and was
studied from the point of view of prediction with expert advice already iSardis et al. (1988).

We have found that none of the three naive algorithms perform condyseorly, but they
always fail badly on some natural part of our data sets. The advanfabe more sophisticated
algorithms having strong performance guarantees is that there is noradraggastrophic perfor-
mance on any data set.
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