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Abstract

We show that the Brier game of prediction is mixable and find the optimal learning rate and sub-
stitution function for it. The resulting prediction algorithm is applied to predict results of football
and tennis matches, with well-known bookmakers playing therole of experts. The theoretical per-
formance guarantee is not excessively loose on the footballdata set and is rather tight on the tennis
data set.
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1. Introduction

The paradigm of prediction with expert advice was introduced in the late 1980s (see, e.g., DeSantis
et al., 1988, Littlestone and Warmuth, 1994, Cesa-Bianchi et al., 1997) and has been applied to
various loss functions; see Cesa-Bianchi and Lugosi (2006) for a recent book-length review. An
especially important class of loss functions is that of “mixable” ones, for which the learner’s loss
can be made as small as the best expert’s loss plus a constant (dependingon the number of ex-
perts). It is known (Haussler et al., 1998; Vovk, 1998) that the optimal additive constant is attained
by the “strong aggregating algorithm” proposed in Vovk (1990) (we use the adjective “strong” to
distinguish it from the “weak aggregating algorithm” of Kalnishkan and Vyugin, 2008).

There are several important loss functions that have been shown to be mixable and for which the
optimal additive constant has been found. The prime examples in the case ofbinary observations
are the log loss function and the square loss function. The log loss function, whose mixability
is obvious, has been explored extensively, along with its important generalizations, the Kullback-
Leibler divergence and Cover’s loss function (see, e.g., the review byVovk, 2001, Section 2.5).

In this paper we concentrate on the square loss function. In the binary case, its mixability
was demonstrated in Vovk (1990). There are two natural directions in which this result could be
generalized:

Regression: observations are real numbers (square-loss regression is a standard problem in statis-
tics).
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Classification: observations take values in a finite set (this leads to the “Brier game”, to be defined
shortly, a standard way of measuring the quality of predictions in meteorologyand other
applied fields: see, e.g., Dawid, 1986).

The mixability of the square loss function in the case of observations belonging to a bounded in-
terval of real numbers was demonstrated in Haussler et al. (1998); Haussler et al.’s algorithm was
simplified in Vovk (2001). Surprisingly, the case of square-loss non-binary classification has never
been analysed in the framework of prediction with expert advice. The purpose of this paper is to
fill this gap. Its short conference version (Vovk and Zhdanov, 2008a) appeared in the ICML 2008
proceedings.

2. Prediction Algorithm and Loss Bound

A game of prediction consists of three components: the observation spaceΩ, the decision spaceΓ,
and the loss functionλ : Ω×Γ → R. In this paper we are interested in the followingBrier game
(Brier, 1950):Ω is a finite and non-empty set,Γ := P (Ω) is the set of all probability measures on
Ω, and

λ(ω,γ) = ∑
o∈Ω

(γ{o}−δω{o})2 ,

whereδω ∈ P (Ω) is the probability measure concentrated atω: δω{ω} = 1 andδω{o} = 0 for
o 6= ω. (For example, ifΩ = {1,2,3}, ω = 1, γ{1} = 1/2, γ{2} = 1/4, andγ{3} = 1/4, λ(ω,γ) =
(1/2−1)2 +(1/4−0)2 +(1/4−0)2 = 3/8.)

The game of prediction is being played repeatedly by a learner having access to decisions made
by a pool of experts, which leads to the following prediction protocol:

Protocol 1Prediction with expert advice
L0 := 0.
Lk

0 := 0, k = 1, . . . ,K.
for N = 1,2, . . . do

Expertk announcesγk
N ∈ Γ, k = 1, . . . ,K.

Learner announcesγN ∈ Γ.
Reality announcesωN ∈ Ω.
LN := LN−1 +λ(ωN,γN).
Lk

N := Lk
N−1 +λ(ωN,γk

N), k = 1, . . . ,K.
end for

At each step of Protocol 1 Learner is givenK experts’ advice and is required to come up with his
own decision;LN is his cumulative loss over the firstN steps, andLk

N is thekth expert’s cumulative
loss over the firstN steps. In the case of the Brier game, the decisions are probability forecasts for
the next observation.

An optimal (in the sense of Theorem 1 below) strategy for Learner in prediction with expert
advice for the Brier game is given by the strong aggregating algorithm (seeAlgorithm 1). For each
expertk, the algorithm maintains its weightwk, constantly slashing the weights of less successful
experts. Its description uses the notationt+ := max(t,0).

The algorithm will be derived in Section 5. The following result (to be proved in Section 4)
gives a performance guarantee for it that cannot be improved by any other prediction algorithm.
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Algorithm 1 Strong aggregating algorithm for the Brier game

wk
0 := 1, k = 1, . . . ,K.

for N = 1,2, . . . do
Read the Experts’ predictionsγk

N, k = 1, . . . ,K.
SetGN(ω) := − ln∑K

k=1wk
N−1e−λ(ω,γk

N), ω ∈ Ω.
Solve∑ω∈Ω(s−GN(ω))+ = 2 in s∈ R.
SetγN{ω} := (s−GN(ω))+/2, ω ∈ Ω.
Output predictionγN ∈ P (Ω).
Read observationωN.
wk

N := wk
N−1e−λ(ωN,γk

N).
end for

Theorem 1 Using Algorithm 1 as Learner’s strategy in Protocol 1 for the Brier game guarantees
that

LN ≤ min
k=1,...,K

Lk
N + lnK (1)

for all N = 1,2, . . . . If A < lnK, Learner does not have a strategy guaranteeing

LN ≤ min
k=1,...,K

Lk
N +A (2)

for all N = 1,2, . . . .

3. Experimental Results

In our first empirical study of Algorithm 1 we use historical data about 8999 matches in various
English football league competitions, namely: the Premier League (the pinnacleof the English
football system), the Football League Championship, Football League One, Football League Two,
the Football Conference. Our data, provided by Football-Data, cover four seasons, 2005/2006,
2006/2007, 2007/2008, and 2008/2009. The matches are sorted first by date, then by league, and
then by the name of the home team. In the terminology of our prediction protocol, the outcome of
each match is the observation, taking one of three possible values, “home win”, “draw”, or “away
win”; we will encode the possible values as 1, 2, and 3.

For each match we have forecasts made by a range of bookmakers. We chose eight bookmakers
for which we have enough data over a long period of time, namely Bet365, Bet&Win, Gamebookers,
Interwetten, Ladbrokes, Sportingbet, Stan James, and VC Bet. (And the seasons mentioned above
were chosen because the forecasts of these bookmakers are availablefor them.)

A probability forecast for the next observation is essentially a vector(p1, p2, p3) consisting of
positive numbers summing to 1. The bookmakers do not announce these numbers directly; instead,
they quote three betting odds,a1, a2, anda3. Each numberai > 1 is the total amount which the
bookmaker undertakes to pay out to a client betting on outcomei per unit stake in the event that
i happens (if the bookmaker wishes to return the stake to the bettor, it should be included inai ;
i.e., the odds are announced according to the “continental” rather than “traditional” system). The
inverse value 1/ai , i ∈ {1,2,3}, can be interpreted as the bookmaker’s quoted probability for the
observationi. The bookmaker’s quoted probabilities are usually slightly (because of thecompetition
with other bookmakers) in his favour: the sum 1/a1 +1/a2 +1/a3 exceeds 1 by the amount called
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the overround(at most 0.15 in the vast majority of cases). We use Victor Khutsishvili’s (2009)
formula

pi := a−γ
i , i = 1,2,3, (3)

for computing the bookmaker’s probability forecasts, whereγ > 0 is chosen such thata−γ
1 +a−γ

2 +
a−γ

3 = 1. Such a value ofγ exists and is unique since the functiona−γ
1 + a−γ

2 + a−γ
3 continuously

and strictly decreases from 3 to 0 asγ changes from 0 to∞. In practice, we usually haveγ > 1
asa−1

1 + a−1
2 + a−1

3 > 1 (i.e., the overround is positive). The method of bisection was more than
sufficient for us to solvea−γ

1 + a−γ
2 + a−γ

3 = 1 with satisfactory accuracy. Khutsishvili’s argument
for (3) is outlined in Appendix B.

Typical values ofγ in (3) are close to 1, and the differenceγ−1 reflects the bookmaker’s target
profit margin. In this respectγ−1 is similar to the overround; indeed, the approximate value of the
overround is(γ−1)∑3

i=1a−1
i lnai assuming that the overround is small and none ofai is too close

to 0. The coefficient of proportionality∑3
i=1a−1

i lnai can be interpreted as the entropy of the quoted
betting odds.

The results of applying Algorithm 1 to the football data, with 8 experts and 3 possible observa-
tions, are shown in Figure 1. LetLk

N be the cumulative loss of Expertk, k = 1, . . . ,8, over the first
N matches andLN be the corresponding number for Algorithm 1 (i.e., we essentially continue to
use the notation of Theorem 1). The dashed line corresponding to Expert k shows the excess loss
N 7→ Lk

N −LN of Expertk over Algorithm 1. The excess loss can be negative, but from the first part
of Theorem 1 (Equation (1)) we know that it cannot be less than− ln8; this lower bound is also
shown in Figure 1. Finally, the thick line (the positive part of thex axis) is drawn for comparison:
this is the excess loss of Algorithm 1 over itself. We can see that at each moment in time the algo-
rithm’s cumulative loss is fairly close to the cumulative loss of the best expert (at that time; the best
expert keeps changing over time).

Figure 2 shows the distribution of the bookmakers’ overrounds. We can see that in most cases
overrounds are between 0.05 and 0.15, but there are also occasional extreme values, near zero or in
excess of 0.3.

Figure 3 shows the results of another empirical study, involving data abouta large number of
tennis tournaments in 2004, 2005, 2006, and 2007, with the total number of matches 10,087. The
tournaments include, for example, Australian Open, French Open, US Open, and Wimbledon; the
data is provided by Tennis-Data. The matches are sorted by date, then by tournament, and then by
the winner’s name. The data contain information about the winner of each match and the betting
odds of 4 bookmakers for his/her win and for the opponent’s win. Therefore, now there are two
possible observations (player 1’s win and player 2’s win). There are four bookmakers: Bet365,
Centrebet, Expekt, and Pinnacle Sports. The results in Figure 3 are presented in the same way as in
Figure 1.

Typical values of the overround are below 0.1, as shown in Figure 4 (analogous to Figure 2).
In both Figure 1 and Figure 3 the cumulative loss of Algorithm 1 is close to the cumulative loss

of the best expert. The theoretical bound is not hopelessly loose for thefootball data and is rather
tight for the tennis data. The pictures look almost the same when Algorithm 1 is applied in the more
realistic manner where the experts’ weightswk are not updated over the matches that are played
simultaneously.

Our second empirical study (Figure 3) is about binary prediction, and sothe algorithm of Vovk
(1990) could have also been used (and would have given similar results). We included it since we
are not aware of any empirical studies even for the binary case.
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Figure 1: The difference between the cumulative loss of each of the 8 bookmakers (experts) and of
Algorithm 1 on the football data. The theoretical lower bound− ln8 from Theorem 1 is
also shown.

For comparison with several other popular prediction algorithms, see Appendix C. The data
used for producing all the figures and tables in this section and in AppendixC can be downloaded
from http://vovk.net/ICML2008.

4. Proof of Theorem 1

This proof will use some basic notions of elementary differential geometry, especially those con-
nected with the Gauss-Kronecker curvature of surfaces. (The use of curvature in this kind of results
is standard: see, e.g., Vovk, 1990, and Haussler et al., 1998.) All definitions that we will need can
be found in, for example, Thorpe (1979).

A vector f ∈ R
Ω (understood to be a functionf : Ω → R) is asuperpredictionif there isγ ∈ Γ

such that, for allω ∈ Ω, λ(ω,γ) ≤ f (ω); the setΣ of all superpredictions is thesuperprediction set.
For eachlearning rateη > 0, letΦη : R

Ω → (0,∞)Ω be the homeomorphism defined by

Φη( f ) : ω ∈ Ω 7→ e−η f (ω), f ∈ R
Ω. (4)

The imageΦη(Σ) of the superprediction set will be called theη-exponential superprediction set. It
is known that

LN ≤ min
k=1,...,K

Lk
N +

lnK
η

, N = 1,2, . . . ,

can be guaranteed if and only if theη-exponential superprediction set is convex (part “if” for allK
and part “only if” for K → ∞ are proved in Vovk, 1998; part “only if” for allK is proved by Chris
Watkins, and the details can be found in Appendix A). Comparing this with (1) and (2) we can see
that we are required to prove that
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Figure 2: The overround distribution histogram for the football data, with 200 bins of equal size
between the minimum and maximum values of the overround.

• Φη(Σ) is convex whenη ≤ 1;

• Φη(Σ) is not convex whenη > 1.

Define theη-exponential superprediction surfaceto be the part of the boundary of theη-
exponential superprediction setΦη(Σ) lying inside(0,∞)Ω. The idea of the proof is to check that,
for all η < 1, the Gauss-Kronecker curvature of this surface is nowhere vanishing. Even when this is
done, however, there is still uncertainty as to in which direction the surfaceis bulging (towards the
origin or away from it). The standard argument (as in Thorpe, 1979, Chapter 12, Theorem 6) based
on the continuity of the smallest principal curvature shows that theη-exponential superprediction
set is bulging away from the origin for small enoughη: indeed, since it is true at some point, it is
true everywhere on the surface. By the continuity inη this is also true for allη < 1. Now, since the
η-exponential superprediction set is convex for allη < 1, it is also convex forη = 1.

Let us now check that the Gauss-Kronecker curvature of theη-exponential superprediction sur-
face is always positive whenη < 1 and is sometimes negative whenη > 1 (the rest of the proof, an
elaboration of the above argument, will be easy). Setn := |Ω|; without loss of generality we assume
Ω = {1, . . . ,n}.

A convenient parametric representation of theη-exponential superprediction surface is










x1

x2
...

xn−1

xn










=











e−η((u1−1)2+u2
2+···+u2

n)

e−η(u2
1+(u2−1)2+···+u2

n)

...
e−η(u2

1+···+(un−1−1)2+u2
n)

e−η(u2
1+···+u2

n−1+(un−1)2)











, (5)
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Figure 3: The difference between the cumulative loss of each of the 4 bookmakers and of Algo-
rithm 1 on the tennis data. Now the theoretical bound is− ln4.

whereu1, . . . ,un−1 are the coordinates on the surface,u1, . . . ,un−1 ∈ (0,1) subject tou1+ · · ·un−1 <
1, andun is a shorthand for 1−u1−·· ·−un−1. The derivative of (5) inu1 is

∂
∂u1










x1

x2
...

xn−1

xn










= 2η











(un−u1 +1)e−η((u1−1)2+u2
2+···+u2

n−1+u2
n)

(un−u1)e−η(u2
1+(u2−1)2+···+u2

n−1+u2
n)

...
(un−u1)e−η(u2

1+u2
2+···+(un−1−1)2+u2

n)

(un−u1−1)e−η(u2
1+u2

2+···+u2
n−1+(un−1)2)











∝










(un−u1 +1)e2ηu1

(un−u1)e2ηu2

...
(un−u1)e2ηun−1

(un−u1−1)e2ηun










,

the derivative inu2 is

∂
∂u2










x1

x2
...

xn−1

xn










∝










(un−u2)e2ηu1

(un−u2 +1)e2ηu2

...
(un−u2)e2ηun−1

(un−u2−1)e2ηun










,

and so on, up to

∂
∂un−1










x1

x2
...

xn−1

xn










∝










(un−un−1)e2ηu1

(un−un−1)e2ηu2

...
(un−un−1 +1)e2ηun−1

(un−un−1−1)e2ηun










,

all coefficients of proportionality being equal and positive.
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Figure 4: The overround distribution histogram for the tennis data.

A normal vector to the surface can be found as

Z :=

∣
∣
∣
∣
∣
∣
∣
∣
∣

e1 · · · en−1 en

(un−u1 +1)e2ηu1 · · · (un−u1)e2ηun−1 (un−u1−1)e2ηun

...
. ..

...
...

(un−un−1)e2ηu1 · · · (un−un−1 +1)e2ηun−1 (un−un−1−1)e2ηun

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

whereei is the ith vector in the standard basis ofR
n and|·| stands for the determinant (the matrix

contains both scalars and vectors, but its determinant can still be computed using the standard rules).
The coefficient in front ofe1 is the(n−1)× (n−1) determinant

∣
∣
∣
∣
∣
∣
∣
∣
∣

(un−u1)e2ηu2 · · · (un−u1)e2ηun−1 (un−u1−1)e2ηun

(un−u2 +1)e2ηu2 · · · (un−u2)e2ηun−1 (un−u2−1)e2ηun

...
. . .

...
...

(un−un−1)e2ηu2 · · · (un−un−1 +1)e2ηun−1 (un−un−1−1)e2ηun

∣
∣
∣
∣
∣
∣
∣
∣
∣

∝ e−2ηu1

∣
∣
∣
∣
∣
∣
∣
∣
∣

un−u1 · · · un−u1 un−u1−1
un−u2 +1 · · · un−u2 un−u2−1

...
...

...
...

un−un−1 · · · un−un−1 +1 un−un−1−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= e−2ηu1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1 un−u1−1
2 1 · · · 1 un−u2−1
1 2 · · · 1 un−u3−1
...

...
.. .

...
...

1 1 · · · 2 un−un−1−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= e−2ηu1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1 un−u1−1
1 0 · · · 0 u1−u2

0 1 · · · 0 u1−u3
...

...
. . .

...
...

0 0 · · · 1 u1−un−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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= e−2ηu1
(
(−1)n(un−u1−1)+(−1)n+1(u1−u2)

+(−1)n+1(u1−u3)+ · · ·+(−1)n+1(u1−un−1)
)

= e−2ηu1(−1)n((u2 +u3 + · · ·+un)− (n−1)u1−1)

= −e−2ηu1(−1)nnu1 ∝ u1e−2ηu1 (6)

(with a positive coefficient of proportionality,e2η, in the first∝; the third equality follows from the
expansion of the determinant along the last column and then along the first row).

Similarly, the coefficient in front ofei is proportional (with the same coefficient of proportion-
ality) to uie−2ηui for i = 2, . . . ,n− 1; indeed, the(n− 1)× (n− 1) determinant representing the
coefficient in front ofei can be reduced to the form analogous to (6) by moving theith row to the
top.

The coefficient in front ofen is proportional to

e−2ηun

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

un−u1 +1 un−u1 · · · un−u1 un−u1

un−u2 un−u2 +1 · · · un−u2 un−u2
...

...
. ..

...
...

un−un−2 un−un−2 · · · un−un−2 +1 un−un−2

un−un−1 un−un−1 · · · un−un−1 un−un−1 +1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= e−2ηun

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 · · · 0 un−u1

0 1 · · · 0 un−u2
...

...
. . .

...
...

0 0 · · · 1 un−un−2

−1 −1 · · · −1 un−un−1 +1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= e−2ηun

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 · · · 0 un−u1

0 1 · · · 0 un−u2
...

...
. ..

...
...

0 0 · · · 1 un−un−2

0 0 · · · 0 nun

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= nune−2ηun

(with the coefficient of proportionalitye2η(−1)n−1).
The Gauss-Kronecker curvature at the point with coordinates(u1, . . . ,un−1) is proportional (with

a positive coefficient of proportionality, possibly depending on the point)to
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂ZT

∂u1
...

∂ZT

∂un−1

ZT

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(7)

(Thorpe, 1979, Chapter 12, Theorem 5, withT standing for transposition).
A straightforward calculation allows us to rewrite determinant (7) (ignoring the positive coeffi-

cient((−1)n−1ne2η)n) as

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(1−2ηu1)e−2ηu1 0 · · · 0 (2ηun−1)e−2ηun

0 (1−2ηu2)e−2ηu2 · · · 0 (2ηun−1)e−2ηun

...
...

. . .
...

...
0 0 · · · (1−2ηun−1)e−2ηun−1 (2ηun−1)e−2ηun

u1e−2ηu1 u2e−2ηu2 · · · un−1e−2ηun−1 une−2ηun

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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∝

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1−2ηu1 0 · · · 0 2ηun−1
0 1−2ηu2 · · · 0 2ηun−1
...

...
...

...
...

0 0 · · · 1−2ηun−1 2ηun−1
u1 u2 · · · un−1 un

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= u1(1−2ηu2)(1−2ηu3) · · ·(1−2ηun)+u2(1−2ηu1)(1−2ηu3) · · ·(1−2ηun)+ · · ·
+un(1−2ηu1)(1−2ηu2) · · ·(1−2ηun−1) (8)

(with a positive coefficient of proportionality; to avoid calculation of the parities of various per-
mutations, the reader might prefer to prove the last equality by induction inn, expanding the last
determinant along the first column). Our next goal is to show that the last expression in (8) is
positive whenη < 1 but can be negative whenη > 1.

If η > 1, setu1 = u2 := 1/2 andu3 = · · ·= un := 0. The last expression in (8) becomes negative.
It will remain negative ifu1 andu2 are sufficiently close to 1/2 andu3, . . . ,un are sufficiently close
to 0.

It remains to consider the caseη < 1. Setti := 1−2ηui , i = 1, . . . ,n; the constraints on theti are

−1 < 1−2η < ti < 1, i = 1, . . . ,n,

t1 + · · ·+ tn = n−2η > n−2.
(9)

Our goal is to prove
(1− t1)t2t3 · · ·tn + · · ·+(1− tn)t1t2 · · ·tn−1 > 0,

that is,
t2t3 · · ·tn + · · ·+ t1t2 · · ·tn−1 > nt1 · · ·tn. (10)

This reduces to
1
t1

+ · · ·+ 1
tn

> n (11)

if t1 · · ·tn > 0, and to
1
t1

+ · · ·+ 1
tn

< n (12)

if t1 · · ·tn < 0. The remaining case is where some of theti are zero; for concreteness, lettn = 0.
By (9) we havet1 + · · ·+ tn−1 > n−2, and so all oft1, . . . , tn−1 are positive; this shows that (10) is
indeed true.

Let us prove (11). Sincet1 · · ·tn > 0, all of t1, . . . , tn are positive (if two of them were negative,
the sumt1 + · · ·+ tn would be less thann−2; cf. (9)). Therefore,

1
t1

+ · · ·+ 1
tn

> 1+ · · ·+1
︸ ︷︷ ︸

n times

= n.

To establish (10) it remains to prove (12). Suppose, without loss of generality, that t1 > 0,
t2 > 0,. . . ,tn−1 > 0, andtn < 0. We will prove a slightly stronger statement allowingt1, . . . , tn−2 to
take value 1 and removing the lower bound ontn. Since the functiont ∈ (0,1] 7→ 1/t is convex, we
can also assume, without loss of generality,t1 = · · · = tn−2 = 1. Thentn−1 + tn > 0, and so

1
tn−1

+
1
tn

< 0;
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therefore,
1
t1

+ · · ·+ 1
tn−2

+
1

tn−1
+

1
tn

< n−2 < n.

Finally, let us check that the positivity of the Gauss-Kronecker curvature implies the convexity
of theη-exponential superprediction set in the caseη ≤ 1, and the lack of positivity of the Gauss-
Kronecker curvature implies the lack of convexity of theη-exponential superprediction set in the
caseη > 1. Theη-exponential superprediction surface will be oriented by choosing the normal
vector field directed towards the origin. This can be done since






x1
...

xn




 ∝






e2ηu1

...
e2ηun




 , Z ∝ (−1)n−1






u1e−2ηu1

...
une−2ηun




 , (13)

with both coefficients of proportionality positive (cf. (5) and the bottom rowof the first determinant
in (8)), and the sign of the scalar product of the two vectors on the right-hand sides in (13) does
not depend on the point(u1, . . . ,un−1). Namely, we take(−1)nZ as the normal vector field directed
towards the origin. The Gauss-Kronecker curvature will not change sign after the re-orientation: if
n is even, the new orientation coincides with the old, and for oddn the Gauss-Kronecker curvature
does not depend on the orientation.

In the caseη > 1, the Gauss-Kronecker curvature is negative at some point, and so theη-
exponential superprediction set is not convex (Thorpe, 1979, Chapter 13, Theorem 1 and its proof).

It remains to consider the caseη ≤ 1. Because of the continuity of theη-exponential superpre-
diction surface inη we can and will assume, without loss of generality, thatη < 1.

Let us first check that the smallest principal curvaturek1 = k1(u1, . . . ,un−1,η) of theη-exponential
superprediction surface is always positive (among the arguments ofk1 we list not only the coordi-
natesu1, . . . ,un−1 of a point on the surface (5) but also the learning rateη ∈ (0,1)). At least at some
(u1, . . . ,un−1,η) the value ofk1(u1, . . . ,un−1,η) is positive: take a sufficiently smallη and the point
on the surface (5) with coordinatesu1 = · · ·= un−1 = 1/n; a simple calculation shows that this point
will be a point of local maximum forx1 + · · ·+ xn. Therefore, for all(u1, . . . ,un−1,η) the value of
k1(u1, . . . ,un−1,η) is positive: ifk1 had different signs at two points in the set

{
(u1, . . . ,un−1,η) |u1 ∈ (0,1), . . . ,un−1 ∈ (0,1),u1 + · · ·+un−1 < 1,η ∈ (0,1)

}
, (14)

we could connect these points by a continuous curve lying completely inside (14); at some point
on the curve,k1 would be zero, in contradiction to the positivity of the Gauss-Kronecker curvature
k1 · · ·kn−1.

Now it is easy to show that theη-exponential superprediction set is convex. Suppose there
are two pointsA andB on theη-exponential superprediction surface such that the interval[A,B]
contains points outside theη-exponential superprediction set. The intersection of the planeOAB,
whereO is the origin, with theη-exponential superprediction surface is a planar curve; the curvature
of this curve at some point betweenA andB will be negative (remember that the curve is oriented by
directing the normal vector field towards the origin), contradicting the positivity of k1 at that point.

5. Derivation of the Prediction Algorithm

To achieve the loss bound (1) in Theorem 1 Learner can use, as discussed earlier, the strong aggre-
gating algorithm (see, e.g., Vovk, 2001, Section 2.1, (15)) withη = 1. In this section we will find
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a substitution function for the strong aggregating algorithm for the Brier gamewith η ≤ 1, which
is the only component of the algorithm not described explicitly in Vovk (2001). Our substitution
function will not require that its input, the generalized prediction, should becomputed from the
normalized distribution(wk)K

k=1 on the experts; this is a valuable feature for generalizations to an
infinite number of experts (as demonstrated in, e.g., Vovk, 2001, AppendixA.1).

Suppose that we are given a generalized prediction(l1, . . . , ln)T computed by the aggregating
pseudo-algorithm from a normalized distribution on the experts. Since(l1, . . . , ln)T is a superpredic-
tion (remember that we are assumingη ≤ 1), we are only required to find a permitted prediction








λ1

λ2
...

λn








=








(u1−1)2 +u2
2 + · · ·+u2

n
u2

1 +(u2−1)2 + · · ·+u2
n

...
u2

1 +u2
2 + · · ·+(un−1)2








(15)

(cf. (5)) satisfying
λ1 ≤ l1, . . . ,λn ≤ ln. (16)

Now suppose we are given a generalized prediction(L1, . . . ,Ln)
T computed by the aggregating

pseudo-algorithm from an unnormalized distribution on the experts; in otherwords, we are given






L1
...

Ln




 =






l1 +c
...

ln +c






for somec ∈ R. To find (15) satisfying (16) we can first find the largestt ∈ R such that(L1 −
t, . . . ,Ln− t)T is still a superprediction and then find (15) satisfying

λ1 ≤ L1− t, . . . ,λn ≤ Ln− t. (17)

Sincet ≥ c, it is clear that(λ1, . . . ,λn)
T will also satisfy the required (16).

Proposition 2 Define s∈ R by the requirement

n

∑
i=1

(s−Li)
+ = 2. (18)

The unique solution to the optimization problem t→ maxunder the constraints (17) withλ1, . . . ,λn

as in (15) will be

ui =
(s−Li)

+

2
, i = 1, . . . ,n, (19)

t = s−1−u2
1−·· ·−u2

n. (20)

There exists a uniques satisfying (18) since the left-hand side of (18) is a continuous, increasing
(strictly increasing when positive) and unbounded above function ofs. The substitution function is
given by (19).
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Proof of Proposition 2 Let us denote theui andt defined by (19) and (20) asui andt, respectively.
To see that they satisfy the constraints (17), notice that theith constraint can be spelt out as

u2
1 + · · ·+u2

n−2ui +1≤ Li − t,

which immediately follows from (19) and (20). As a by-product, we can seethat the inequality
becomes an equality, that is,

t = Li −1+2ui −u2
1−·· ·−u2

n, (21)

for all i with ui > 0.
We can rewrite (17) as 





t ≤ L1−1+2u1−u2
1−·· ·−u2

n,
...

t ≤ Ln−1+2un−u2
1−·· ·−u2

n,

(22)

and our goal is to prove that these inequalities implyt < t (unlessu1 = u1, . . . ,un = un). Chooseui

(necessarilyui > 0 unlessu1 = u1, . . . ,un = un; in the latter case, however, we can, and will, also
chooseui > 0) for which εi := ui −ui is maximal. Then every value oft satisfying (22) will also
satisfy

t ≤ Li −1+2ui −
n

∑
j=1

u2
j

= Li −1+2ui −2εi −
n

∑
j=1

u2
j +2

n

∑
j=1

ε ju j −
n

∑
j=1

ε2
j

≤ Li −1+2ui −
n

∑
j=1

u2
j −

n

∑
j=1

ε2
j ≤ t. (23)

The penultimate≤ in (23) follows from

−εi +
n

∑
j=1

ε ju j =
n

∑
j=1

(ε j − εi)u j ≤ 0.

The last≤ in (23) follows from (21) and becomes< when not allu j coincide withu j .

The detailed description of the resulting prediction algorithm was given as Algorithm 1 in Sec-
tion 2. As discussed, that algorithm uses the generalized predictionGN(ω) computed from unnor-
malized weights.

6. Conclusion

In this paper we only considered the simplest prediction problem for the Brier game: competing
with a finite pool of experts. In the case of square-loss regression, it ispossible to find efficient
closed-form prediction algorithms competitive with linear functions (see, e.g.,Cesa-Bianchi and
Lugosi, 2006, Chapter 11). Such algorithms can often be “kernelized” toobtain prediction algo-
rithms competitive with reproducing kernel Hilbert spaces of prediction rules. This would be an
appealing research programme in the case of the Brier game as well.
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Appendix A. Watkins’s Theorem

Watkins’s theorem is stated in Vovk (1999, Theorem 8) not in sufficient generality: it presupposes
that the loss function is mixable. The proof, however, shows that this assumption is irrelevant (it can
be made part of the conclusion), and the goal of this appendix is to give a self-contained statement
of a suitable version of the theorem. (The reader will notice that the generality of the new version is
essential only for our discussion in Section 4, not for Theorem 1 itself.)

In this appendix we will use a slightly more general notion of a game of prediction (Ω,Γ,λ):
namely, the loss functionλ : Ω×Γ → R is now allowed to take values in the extended real line
R := R∪{−∞,∞} (although the value−∞ will be later disallowed).

Partly following Vovk (1998), for eachK = 1,2, . . . and eacha > 0 we consider the following
perfect-information gameGK(a) (the “global game”) between two players, Learner and Environ-
ment. Environment is a team ofK + 1 players called Expert 1 to ExpertK and Reality, who play
with Learner according to Protocol 1. Learner wins if, for allN = 1,2, . . . and allk∈ {1, . . . ,K},

LN ≤ Lk
N +a; (24)

otherwise, Environment wins. It is possible thatLN = ∞ or Lk
N = ∞ in (24); the interpretation of

inequalities involving infinities is natural.
For eachK we will be interested in the set of thosea > 0 for which Learner has a winning

strategy in the gameGK(a) (we will denote this by L⌣ GK(a)). It is obvious that

L ⌣ GK(a) & a′ > a =⇒ L ⌣ GK(a′);

therefore, for eachK there exists a uniqueborderline value aK such that L⌣ GK(a) holds when
a > aK and fails whena < aK . It is possible thataK = ∞ (but remember that we are only interested
in finite values ofa).

These are our assumptions about the game of prediction (similar to those in Vovk, 1998):

• Γ is a compact topological space;

• for eachω ∈ Ω, the functionγ ∈ Γ 7→ λ(ω,γ) is continuous (R is equipped with the standard
topology);

• there existsγ ∈ Γ such that, for allω ∈ Ω, λ(ω,γ) < ∞;

• the functionλ is bounded below.
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We say that the game of prediction(Ω,Γ,λ) is η-mixable, whereη > 0, if

∀γ1 ∈ Γ,γ2 ∈ Γ,α ∈ [0,1] ∃δ ∈ Γ ∀ω ∈ Ω : e−ηλ(ω,δ) ≥ αe−ηλ(ω,γ1) +(1−α)e−ηλ(ω,γ2). (25)

In the case of finiteΩ, this condition says that the image of the superprediction set under the map-
ping Φη (see (4)) is convex. The game of prediction ismixableif it is η-mixable for someη > 0.

It follows from Hardy et al. (1952, Theorem 92, applied to the meansMφ with φ(x) = e−ηx)
that if the prediction game isη-mixable it will remainη′-mixable for any positiveη′ < η. (For
another proof, see the end of the proof of Lemma 9 in Vovk, 1998.) Letη∗ be the supremum of the
η for which the prediction game isη-mixable (withη∗ := 0 when the game is not mixable). The
compactness ofΓ implies that the prediction game isη∗-mixable.

Theorem 3 (Chris Watkins) For any K∈ {2,3, . . .},

aK =
lnK
η∗ .

In particular, aK < ∞ if and only if the game is mixable.

The theorem does not say explicitly, but it is easy to check, that L⌣GK(aK): this follows both from
general considerations (cf. Lemma 3 in Vovk, 1998) and from the fact that the strong aggregating
algorithm winsGK(aK) = GK(lnK/η∗).

Proof of Theorem 3 The proof will use some notions and notation used in the statement and proof
of Theorem 1 of Vovk (1998). Without loss of generality we can, and will,assume that the loss
function satisfiesλ > 1 (add a suitable constant toλ if needed). Therefore, Assumption 4 of Vovk
(1998) (the only assumption in that paper not directly made here) is satisfied. In view of the fact
that L⌣ GK(lnK/η∗), we only need to show that L⌣ GK(a) does not hold fora < lnK/η∗. Fix
a < lnK/η∗.

The separation curve consists of the points(c(β),c(β)/η) ∈ [0,∞)2, whereβ := e−η and η
ranges over[0,∞] (see Vovk, 1998, Theorem 1). Since the two-fold convex mixture in (25)can be
replaced by any finite convex mixture (apply two-fold mixtures repeatedly),settingη := η∗ shows
that the point(1,1/η∗) is Northeast of (actually belongs to) the separation curve. On the other
hand, the point(1,a/ lnK) is Southwest and outside of the separation curve (use Lemmas 8–12 of
Vovk, 1998). Therefore, E (i.e., Environment) has a winning strategy in the gameG(1,a/ lnK). It
is easy to see from the proof of Theorem 1 in Vovk (1998) that the definition of the gameG can be
modified, without changing the conclusion aboutG(1,a/ lnK), by replacing the line

E choosesn≥ 1 {size of the pool}
in the protocol on p. 153 of Vovk (1998) by

E choosesn∗ ≥ 1 {lower bound on the size of the pool}
L choosesn≥ n∗ {size of the pool}

(indeed, the proof in Section 6 of Vovk, 1998, only requires that there should be sufficiently many
experts). Letn∗ be the first move by Environment according to her winning strategy.

Now suppose L⌣ GK(a). From the fact that there exists Learner’s strategyL1 winningGK(a)
we can deduce: there exists Learner’s strategyL2 winningGK2(2a) (we can split theK2 experts into
K groups ofK, merge the experts’ decisions in each group withL1, and finally merge the groups’
decisions withL1); there exists Learner’s strategyL3 winningGK3(3a) (we can split theK3 experts
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Loss resulting from (3) Loss resulting from (26) Difference
5585.69 5588.20 2.52
5585.94 5586.67 0.72
5586.60 5587.37 0.77
5588.47 5590.65 2.18
5588.61 5589.92 1.31
5591.97 5593.48 1.52
5596.01 5601.85 5.84
5596.56 5598.02 1.46

Table 1: The bookmakers’ cumulative Brier losses over the football data set when their probability
forecasts are computed using formula (3) and formula (26).

into K groups ofK2, merge the experts’ decisions in each group withL2, and finally merge the
groups’ decisions withL1); and so on. When the numberKm of experts exceedsn∗, we obtain a
contradiction: Learner can guarantee

LN ≤ Lk
N +ma

for all N and allKm expertsk, and Environment can guarantee that

LN > Lk
N +

a
lnK

ln(Km) = Lk
N +ma

for someN andk.

Appendix B. Khutsishvili’s Theory

In the conference version of this paper (Vovk and Zhdanov, 2008a)we used

pi :=
1/ai

1/a1 +1/a2 +1/a3
, i = 1,2,3, (26)

in place of (3). A natural way to compare formulas (3) and (26) is to compare the losses of the
probability forecasts found from the bookmakers’ betting odds using those formulas. Using Khut-
sishvili’s formula (3) consistently leads to smaller losses as measured by the Brier loss function:
see Tables 1 and 2. The improvement of each bookmaker’s total loss overthe football data set is
in the range 0.72–5.84; over the tennis data set the difference is in the range 1.27–11.64. These
differences are of the order of the differences in cumulative loss between different bookmakers, and
so the improvement is significant.

The goal of this appendix is to present, in a rudimentary form, Khutsishvili’s theory behind (3).
The theory is based on a very idealized model of a bookmaker, who is assumed to compute the
betting oddsa for an event of probabilityp using a functionf ,

a := f (p).
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Loss resulting from (3) Loss resulting from (26) Difference
3935.32 3944.02 8.69
3943.83 3945.10 1.27
3945.70 3957.33 11.64
3953.83 3957.75 3.92

Table 2: The bookmakers’ cumulative Brier losses over the tennis data setwhen their probability
forecasts are computed using formula (3) and formula (26).

Different bookmakers (and the same bookmaker at different times) can use different functionsf .
Therefore, different bookmakers may quote different odds because they may use differentf and
because they may assign different probabilities to the same event.

The following simple corollary of Darboux’s theorem describes the set ofpossible functionsf ;
its interpretation will be discussed straight after the proof.

Theorem 4 (Victor Khutsishvili) Suppose a function f: (0,1) → (1,∞) satisfies the condition

f (pq) = f (p) f (q) (27)

for all p,q∈ (0,1). There exists c> 0 such that f(p) = p−c for all p ∈ (0,1).

Proof Equation (27) is one of the four fundamental Cauchy equations, which can be easily reduced
to each other. For example, introducing a new functiong : (0,∞) → (0,∞) by g(u) := ln f (e−u) and
new variablesx,y ∈ (0,∞) by x := − ln p andy := − lnq, we transform (27) to the most standard
Cauchy equationg(x+y) = g(x)+g(y). By Darboux’s theorem (see, e.g., Aczél, 1966, Section 2.1,
Theorem 1(b)),g(x) = cx for all x > 0, that is,f (p) = p−c for all p∈ (0,1).

The functionf is defined on(0,1) since we assume that in real life no bookmaker will assign a
subjective probability of exactly 0 or 1 to an event on which he accepts bets. It would be irrational
for the bookmaker to havef (p) ≤ 1 for somep, so f : (0,1) → (1,∞). To justify the requirement
(27), we assume that the bookmaker offers not only “single” but also “double” bets (Wikipedia,
2009). If there are two events with quoted oddsa andb that the bookmaker considers independent,
his quoted odds on the conjunction of the two events will beab. If the probabilities of the two events
arep andq, respectively, the probability of their conjunction will bepq. Therefore, we have (27).

Theorem 4 provides a justification of Khutsishvili’s formula (3): we just assume that the book-
maker applies the same functionf to all three probabilitiesp1, p2, andp3. If f (p) = p−c, we have
pi = a−γ

i , whereγ = 1/c andi = 1,2,3, andγ can be found from the requirementp1 + p2 + p3 = 1.
An important advantage of (3) over (26) is that (3) does not impose any upper limits on the

overround that the bookmaker may charge (Khutsishvili, 2009). If the game hasn possible outcomes
(n = 3 for football andn = 2 for tennis) and the bookmaker usesf (p) = p−c, the overround is

n

∑
i=1

a−1
i −1 =

n

∑
i=1

pc
i −1
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and so continuously changes between−1 andn−1 asc ranges over(0,∞) (in practice, the over-
round is usually positive, and soc∈ (0,1)). Even forn = 2, the upper bound of 1 is too large to be
considered a limitation. The situation with (26) is very different: upper bounding the numerator of
(26) by 1 and replacing the denominator by 1+o, whereo is the overround, we obtainpi <

1
1+o for

all i, and soo < mini p−1
i −1; this limitation ono is restrictive when one of thepi is close to 1.

An interesting phenomenon in racetrack betting, known since Griffith (1949), is that favourites
are usually underbet while longshots are overbet (see, e.g., Snowberg and Wolfers, 2007, for a
recent survey and analysis). Khutsishvili’s formula (3) can be regarded as a way of correcting this
“favourite-longshot bias”: whenai is large (the outcomei is a longshot), (3) slashes 1/ai when
computingpi more than (26) does.

Appendix C. Comparison with Other Prediction Algorithms

Other popular algorithms for prediction with expert advice that could be used instead of Algorithm
1 in our empirical studies reported in Section 3 are, among others, the Weighted Average Algo-
rithm (WdAA, proposed by Kivinen and Warmuth, 1999), the weak aggregating algorithm (WkAA,
proposed independently by Kalnishkan and Vyugin, 2008, and Cesa-Bianchi and Lugosi, 2006,
Theorem 2.3; we are using Kalnishkan and Vyugin’s name), and the Hedge algorithm (HA, pro-
posed by Freund and Schapire, 1997). In this appendix we pay most attention to the WdAA since
neither WkAA nor HA satisfy bounds of the form (2). (The reader can consult Vovk and Zhdanov,
2008b, for details of experiments with the latter two algorithms and formula (26) used for extracting
probabilities from the quoted betting odds.) We also briefly discuss three morenaive algorithms.

The Weighted Average Algorithm is very similar to the strong aggregating algorithm (SAA)
used in this paper: the WdAA maintains the same weights for the experts as the SAA, and the only
difference is that the WdAA merges the experts’ predictions by averagingthem according to their
weights, whereas the SAA uses a more complicated “minimax optimal” merging scheme(given
by (19) for the Brier game). The performance guarantee for the WdAA applied to the Brier game
is weaker than the optimal (1), but of course this does not mean that its empirical performance is
necessarily worse than that of the SAA (i.e., Algorithm 1). Figures 5 and 6 show the performance of
this algorithm, in the same format as before (see Figures 1 and 3). We can see that for the football
data the maximal difference between the cumulative loss of the WdAA and the cumulative loss of
the best expert is slightly larger than that for Algorithm 1 but still well within the optimal bound lnK
given by (1). For the tennis data the maximal difference is almost twice as large as for Algorithm 1,
violating the optimal bound lnK.

In its most basic form (Kivinen and Warmuth, 1999, the beginning of Section6), the WdAA
works in the following protocol. At each step each expert, Learner, andReality choose an ele-
ment of the unit ball inRn, and the loss function is the squared distance between the decision
(Learner’s or an expert’s move) and the observation (Reality’s move).This covers the Brier game
with Ω = {1, . . . ,n}, each observationω ∈ Ω represented as the vector(δω{1}, . . . ,δω{n}), and
each decisionγ ∈ P (Ω) represented as the vector(γ{1}, . . . ,γ{n}). However, in the Brier game the
decision makers’ moves are known to belong to the simplex{(u1, . . . ,un) ∈ [0,∞)n |∑n

i=1ui = 1},
and Reality’s move is known to be one of the vertices of this simplex. Therefore, we can optimize
the ball radius by considering the smallest ball containing the simplex rather than the unit ball. This
is what we did for the results reported here (although the results reportedin the conference version
of this paper, Vovk and Zhdanov, 2008a, are for the WdAA applied to theunit ball in R

n). The
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Figure 5: The difference between the cumulative loss of each of the 8 bookmakers and of the
Weighted Average Algorithm (WdAA) on the football data. The chosen value of the
parameterc = 1/η for the WdAA,c := 16/3, minimizes its theoretical loss bound. The
theoretical lower bound− ln8≈−2.0794 for Algorithm 1 is also shown (the theoretical
lower bound for the WdAA,−11.0904, can be extracted from Table 3 below).
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Figure 6: The difference between the cumulative loss of each of the 4 bookmakers and of the WdAA
for c := 4 on the tennis data.
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Algorithm Maximal difference Theoretical bound
Algorithm 1 1.2318 2.0794

WdAA (c = 16/3) 1.4076 11.0904
WdAA (c = 1) 1.2255 none

Table 3: The maximal difference between the loss of each algorithm in the selected set and the loss
of the best expert for the football data (second column); the theoreticalupper bound on
this difference (third column).

radius of the smallest ball is

R :=

√

1− 1
n
≈







0.8165 ifn = 3

0.7071 ifn = 2

1 if n is large.

As described in Kivinen and Warmuth (1999), the WdAA is parameterized byc := 1/η instead of
η, and the optimal value ofc is c = 8R2, leading to the guaranteed loss bound

LN ≤ min
k=1,...,K

Lk
N +8R2 lnK

for all N = 1,2, . . . (see Kivinen and Warmuth, 1999, Section 6). This is significantly looser than
the bound (1) for Algorithm 1.

The valuesc= 16/3 andc= 4 used in Figures 5 and 6, respectively, are obtained by minimizing
the WdAA’s performance guarantee, but minimizing a loose bound might not be such a good idea.
Figure 7 shows the maximal difference

max
N=1,...,8999

(

LN(c)− min
k=1,...,8

Lk
N

)

, (28)

whereLN(c) is the loss of the WdAA with parameterc on the football data over the firstN steps and
Lk

N is the analogous loss of thekth expert, as a function ofc. Similarly, Figure 8 shows the maximal
difference

max
N=1,...,10087

(

LN(c)− min
k=1,...,4

Lk
N

)

(29)

for the tennis data. And indeed, in both cases the value ofc minimizing the empirical loss is far
from the value minimizing the bound; as could be expected, the empirical optimal value for the
WdAA is not so different from the optimal value for Algorithm 1. The following two figures, 9 and
10, demonstrate that there is no such anomaly for Algorithm 1.

Figures 11 and 12 show the behaviour of the WdAA for the value of parameter c = 1, that is,
η = 1, that is optimal for Algorithm 1. They look remarkably similar to Figures 1 and 3, respectively.

Precise numbers associated with the figures referred to above are given in Tables 3 and 4: the
second column gives the maximal differences (28) and (29), respectively. The third column gives the
theoretical upper bound on the maximal difference (i.e., the optimal value ofA in (2), if available).
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Figure 7: The maximal difference (28) for the WdAA as function of the parameterc on the football
data. The theoretical guarantee ln8 for the maximal difference for Algorithm 1 is also
shown (the theoretical guarantee for the WdAA, 11.0904, is given in Table 3).
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Figure 8: The maximal difference (29) for the WdAA as function of the parameterc on the tennis
data. The theoretical bound for the WdAA is 5.5452 (see Table 4).
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Figure 9: The maximal difference ((28) withη in place ofc) for Algorithm 1 as function of the
parameterη on the football data.
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Figure 10: The maximal difference ((29) withη in place ofc) for Algorithm 1 as function of the
parameterη on the tennis data.
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Figure 11: The difference between the cumulative loss of each of the 8 bookmakers and of the
WdAA on the football data forc = 1 (the value of parameter minimizing the theoretical
performance guarantee for Algorithm 1).
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Figure 12: The difference between the cumulative loss of each of the 4 bookmakers and of the
WdAA for c = 1 on the tennis data.
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Algorithm Maximal difference Theoretical bound
Algorithm 1 1.1119 1.3863

WdAA (c = 4) 2.0583 5.5452
WdAA (c = 1) 1.1207 none

Table 4: The maximal difference between the loss of each algorithm in the selected set and the loss
of the best expert for the tennis data (second column); the theoretical upper bound on this
difference (third column).

The following two algorithms, the weak aggregating algorithm (WkAA) and the Hedge algo-
rithm (HA), make increasingly weaker assumptions about the prediction gamebeing played. Al-
gorithm 1 computes the experts’ weights taking full account of the degree of convexity of the loss
function and uses a minimax optimal substitution function. Not surprisingly, it leads to the optimal
loss bound of the form (2). The WdAA computes the experts’ weights in the same way, but uses a
suboptimal substitution function; this naturally leads to a suboptimal loss bound.The WkAA “does
not know” that the loss function is strictly convex; it computes the experts’ weights in a way that
leads to decent results for all convex functions. The WkAA uses the samesubstitution function as
the WdAA, but this appears less important than the way it computes the weights.The HA “knows”
even less: it does not even know that its and the experts’ performance ismeasured using a loss
function. At each step the HA decides which expert it is going to follow, andat the end of the step it
is only told the losses suffered by all experts. Both WkAA and HA depend on a parameter, which is
denotedc in the case of WkAA andβ in the case of HA; the ranges of the parameters arec∈ (0,∞)
andβ ∈ [0,1). The loss bounds that we give below assume that the loss function takes values in the
interval [0,L], in the case of the WkAA, and that the losses are chosen from[0,L], in the case of
HA, whereL is a known constant. In the case of the Brier loss function,L = 2.

In the notation of (1), a simple loss bound for the WkAA is

LN ≤ min
k=1,...,K

Lk
N +2L

√
N lnK (30)

(Kalnishkan and Vyugin, 2008, Corollary 14); this is quite different from (1) as the “regret term”
2L

√
N lnK in (30) depends onN. This bound is guaranteed forc =

√
lnK/L. For c =

√
8lnK/L,

Cesa-Bianchi and Lugosi (2006, Theorem 2.3) prove the stronger bound

LN ≤ min
k=1,...,K

Lk
N +L

√
2N lnK +L

√

lnK
8

.

The performance of the WkAA on our data sets is significantly worse than that of the WdAA
with c = 1: the maximal difference (28)–(29) does not exceed lnK for all reasonable values ofc in
the case of football but only for a very narrow range ofc (which is far from both Kalnishkan and
Vyugin’s

√
lnK/2 and Cesa-Bianchi and Lugosi’s

√
8lnK/2) in the case of tennis. Moreover, the

WkAA violates the bound for Algorithm 1 for all reasonable values ofc on some natural subsets
of the football data set: for example, when prediction starts from the second (2006/2007) season.
Nothing similar happens for the WdAA withc = 1 on our data sets.
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The loss bound for the HA is

ELN ≤
L∗

N ln 1
β +L lnK

1−β
(31)

(Freund and Schapire, 1997, Theorem 2), whereELN stands for Learner’s expected loss (the HA
is a randomized algorithm) andL∗

N stands for mink=1,...,K Lk
N. In the same framework, the strong

aggregating algorithm attains the stronger bound

ELN ≤
L∗

N ln 1
β +L lnK

K ln K
K+β−1

(32)

(Vovk, 1998, Example 7). Of course, the SAA applied to the HA framework(as described above,
with no loss function) is very different from Algorithm 1, which is the SAA applied to the Brier
game; we refer to the former algorithm as SAA-HA. Figure 13 shows the ratioof the right-hand
side of (32) to the right-hand side of (31) as function ofβ.
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Figure 13: The relative performance of the HA and SAA-HA for variousnumbers of experts as
function of parameterβ.

The losses suffered by the HA and the SAA-HA on our data sets are veryclose and violate
Algorithm 1’s regret term lnK for all values ofβ. It is interesting that, for both football and tennis
data, the loss of the HA is almost minimized by setting its parameterβ to 0 (the qualification
“almost” is necessary only in the case of the tennis data). The HA withβ = 0 coincides with the
Follow the Leader Algorithm (FLA), which chooses the same decision as the best (with the smallest
loss up to now) expert; if there are several best experts (which almost never happens after the first
step), their predictions are averaged with equal weights. Standard examples (see, e.g., Cesa-Bianchi
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and Lugosi, 2006, Section 4.3) show that this algorithm (unlike its version Follow the Perturbed
Leader) can fail badly on some data sequences. Its empirical performance on the football data set is
not so bad: it violates the loss bound for Algorithm 1 only slightly; however,on the tennis data set
the bound is violated badly.

The decent performance of the Follow the Leader Algorithm on the footballdata set suggests
checking the empirical performance of other similarly naive algorithms, suchas the following two.
TheSimple Average Algorithm’s decision is defined as the arithmetic mean of the experts’ decisions
(with equal weights). TheBayes Mixture Algorithm(BMA) is the strong aggregating algorithm
applied to the log loss function; this algorithm is in fact optimal, but not for the Brier loss function.
The BMA has a very simple description (Cesa-Bianchi and Lugosi, 2006,Section 9.2), and was
studied from the point of view of prediction with expert advice already in DeSantis et al. (1988).

We have found that none of the three naive algorithms perform consistently poorly, but they
always fail badly on some natural part of our data sets. The advantageof the more sophisticated
algorithms having strong performance guarantees is that there is no danger of catastrophic perfor-
mance on any data set.
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