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Abstract

Various relationships are shown hold between monotonic effects and weak monotonic effects and
the monotonicity of certain conditional expectations. Counterexamples are provided to show that
the results do not hold under less restrictive conditions. Monotonic effects are furthermore used to
relate signed edges on a causal directed acyclic graph to qualitative effect modification. The theory
is applied to an example concerning the direct effect of smoking on cardiovascular disease control-
ling for hypercholesterolemia. Monotonicity assumptionsare used to construct a test for whether
there is a variable that confounds the relationship betweenthe mediator, hypercholesterolemia, and
the outcome, cardiovascular disease.

Keywords: Bayesian networks, conditional expectation, covariance,directed acyclic graphs, ef-
fect modification, monotonicity

1. Introduction

Several papers have considered various monotonicity relationships on Bayesian networks or di-
rected acyclic graphs. Wellman (1990) introduced the notion of qualitative causal influence and
derived various resulting concerning the propagation of qualitative influences, the preservation of
monotonicity under edge reversal, the necessity of first order stochasticdominance for propagat-
ing influences and the propagation of sub-additive and super-additiverelationships on probabilistic
networks. Druzdzel and Henrion (1993) developed a polynomial time algorithm for reasoning in
qualitative probabilistic network, based on local sign propagation. More recently, van der Gaag et
al. (2004) showed that identifying whether a network exhibits various monotonicity properties is
coNPPP- complete. VanderWeele and Robins (2009) introduced the concept of amonotonic effect
which is closely related to Wellman’s qualitative influence and considered the relationship between
monotonicity properties and causal effects, covariance, bias and confounding. In this paper we
develop a number of probabilistic properties concerning monotonic effectsand weak monotonic
effects. Some of these properties give rise to certain inequality constraintsthat could be used to
test for the presence of hidden or unmeasured confounding variables. These inequality constraints
which arise from monotonicity relationships provide constraints beyond those already available in
the literature (Kang and Tian, 2006). The paper is organized as follows.In Section 2 we describe
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the notation we will use in this paper and review the definitions concerning directed acyclic graphs.
In Section 3 we present a motivating example for the theory that will be developed. In Section 4, we
define the concepts of a monotonic effect and a weak monotonic effect in the directed acyclic graph
causal framework, the latter essentially being equivalent to Wellman’s (1990) qualitative influence.
In Section 5, we give a number of results relating weak monotonic effects to the monotonicity in the
conditioning argument of certain conditional expectations; we also return tothe motivating example
and show how the theory developed can be applied to this example. Finally, in Section 6, we give a
number of results that relate weak monotonic effects to the existence of qualitative effect modifiers.
Section 7 closes with some concluding remarks.

2. Notation and Directed Acyclic Graphs

Following Pearl (1995), a causal directed acyclic graph is a set of nodes(X1, ...,Xn) and directed
edges amongst nodes such that the graph has no cycles and such that for each nodeXi on the graph
the corresponding variable is given by its non-parametric structural equationXi = fi(pai ,εi) where
pai are the parents ofXi on the graph and theεi are mutually independent. We will useΩ to denote
the sample space forε andω to denote a particular point in the sample space. These non-parametric
structural equations can be seen as a generalization of the path analysis and linear structural equation
models (Pearl, 1995, 2000) developed by Wright (1921) in the genetics literature and Haavelmo
(1943) in the econometrics literature. Directed acyclic graphs can be interpreted as representing
causal relationships. The non-parametric structural equations encodecounterfactual relationships
amongst the variables represented on the graph. The equations themselves represent one-step ahead
counterfactuals with other counterfactuals given by recursive substitution. The requirement that
the εi be mutually independent is essentially a requirement that there is no variable absent from
the graph which, if included on the graph, would be a parent of two or morevariables (Pearl,
1995, 2000). Further discussion of the causal interpretation of directed acyclic graphs can be found
elsewhere (Pearl, 1995, 2000; Spirtes et al., 2000; Dawid, 2002; Robins, 2003).

A path is a sequence of nodes connected by edges regardless of arrowhead direction; a directed
path is a path which follows the edges in the direction indicated by the graph’s arrows. A nodeC
is said to be a common cause ofA andY if there exists a directed path fromC to Y not throughA
and a directed path fromC to A not throughY. We will say thatV1, ...,Vn constitutes an ordered list
if i < j implies thatVi is not a descendent ofVj . A collider is a particular node on a path such that
both the preceding and subsequent nodes on the path have directed edges going into that node, that
is, both the edge to and the edge from that node have arrowheads into the node. A path betweenA
andB is said to be blocked given some set of variablesZ if either there is a variable inZ on the path
that is not a collider or if there is a collider on the path such that neither the collider itself nor any
of its descendants are inZ. If all paths betweenA andB are blocked givenZ thenA andB are said
to be d-separated givenZ. It has been shown that ifA andB are d-separated givenZ thenA andB
are conditionally independent givenZ (Verma and Pearl, 1988; Geiger et al., 1990; Lauritzen et al.,
1990). We will use the notationA

∏

B|Z to denote thatA is conditionally independent ofB givenZ;
we will use the notation(A

∏

B|Z)G to denote thatA andB are d-separated givenZ on graphG. The
directed acyclic graph causal framework has proven to be particularly useful in determining whether
conditioning on a given set of variables, or none at all, is sufficient to control for confounding. The
most important result in this regard is the back-door path criterion (Pearl, 1995). A back-door path
from some nodeA to another nodeY is a path which begins with a directed edge intoA. Pearl
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Figure 1: Motivating example concerning the estimation of controlled direct effects.

(1995) showed that for intervention variableA and outcomeY, if a set of variablesZ is such that
no variable inZ is a descendent ofA and such thatZ blocks all back-door paths fromA to Y then
conditioning onZ suffices to control for confounding for the estimation of the causal effect of A on
Y. The counterfactual value ofY intervening to setA = a we denote byYA=a.

3. Motivating Example

To motivate the theory we develop in this paper consider the following example.

Example 1.Suppose that Figure 1 represents a causal directed acyclic graph. Let A denote smoking;
let Rhypercholesterolemia; and letY denote cardiovascular disease. High cholesterol can lead to the
narrowing of the arteries resulting in cardiovascular disease; smoking can lead to blood clots through
platelet aggregation resulting in cardiovascular disease. LetQ denote some variable that confounds
the relationships between smoking and cardiovascular disease and between hypercholesterolemia
and cardiovascular disease (e.g., stress). LetU be some unmeasured variable which might confound
the relationship between hypercholesterolemia and cardiovascular disease. The researcher is unsure
whether the variableU is a cause ofR and we therefore represent the edge fromU to R as a dashed
line. The results of Pearl (2001) imply that it is possible to estimate controlled direct effects of the
form YA=a1,R=r −YA=a0,R=r (i.e., the direct effect of smoking on cardiovascular disease controlling
for hypercholesterolemia) on the graph in Figure 1 if thatU is not a cause ofR. Suppose that
although the researcher is unsure about the presence an edge fromU to R, it is known that the
relationship betweenA andY is monotonic in the sense thatP(Y > y|A = a,R= r,Q = q,U = u) is
non-decreasing ina for all y, r, q andu. In Section 5, we will present theory that will allow us to
derive a statistical test for the null hypothesis that there is no unmeasuredvariableU confounding
the relationship betweenRandY.
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4. On the Definition of a Monotonic Effect

The definition of a monotonic effect is given in terms of a directed acyclic graph’s nonparametric
structural equations.

Definition 1. The non-parametric structural equation for some node Y on a causal directed acyclic
graph with parent A can be expressed as Y= f (p̃aY,A,εY) wherep̃aY are the parents of Y other
than A; A is said to have a positive monotonic effect on Y if for allp̃aY and εY, f (p̃aY,A1,εY) ≥
f (p̃aY,A2,εY) whenever A1 ≥ A2. Similarly A is said to have a negative monotonic effect on Y if for
all p̃aY andεY, f (p̃aY,A1,εY) ≤ f (p̃aY,A2,εY) whenever A1 ≥ A2.

As we have defined it above, a causal direct acyclic graph corresponds to a set of non-parametric
structural equations and as such the definition of a monotonic effect given above is relative to a par-
ticular set of non-parametric structural equations. The presence of a monotonic effect is closely
related to the monotonicity of counterfactual variables as is made clear by the following proposi-
tion. All proofs of all propositions and lemmas are given in Appendix A.

Proposition 1. The variable A has a positive monotonic effect on Y if and only if for allω and all
values ofp̃aY, Ya1,p̃aY

(ω) ≥Ya0,p̃aY
(ω) whenever a1 ≥ a0.

We note that several sets of non-parametric structural equations may yieldidentical distributions
of X = (X1, ...,Xn) and{XV=v}V⊆X,v∈supp(V) (Pearl, 2000). In the context of characterizations of
causal directed acyclic graphs that make reference to counterfactualsbut not to non-parametric
structural equations (Robins, 2003), a positive monotonic effect couldinstead be defined to be
present if for all̃paY anda1 ≥ a0, P(Ya1,p̃aY

≥Ya0,p̃aY
) = 1. If this latter condition holds with respect

to one set of non-parametric structural equations it will hold for any set of non-parametric structural
equations which yields the same distribution forX and{XV=v}V⊆X,v∈supp(V). We note that if for
a1 ≥ a0 the set{ω : Ya1,p̃aY

(ω) < Ya0,p̃aY
(ω)} is of measure zero thenYa1,p̃aY

andYa0,p̃aY
could be

re-defined on this set so thatYa1,p̃aY
(ω) ≥Ya0,p̃aY

(ω) for all ω and so that the distributions ofX and
{XV=v}V⊆X,v∈supp(V) remain unchanged.

Because for any valueω we observe the outcome only under one particular value of the inter-
vention variable, the presence of a monotonic effect is not identifiable. The results presented in this
paper are in fact true under slightly weaker conditions which are identifiable when data on all of the
directed acyclic graph’s variables are observed. We thus introduce theconcept of a weak monotonic
effect which is a special case of Wellman’s positive qualitative influence (Wellman, 1990). The def-
inition of a weak monotonic effect does not make reference to counterfactuals and thus can be used
in characterizations of causal directed acyclic graphs that do not employthe concept of counterfac-
tuals (Spirtes et al., 2000; Dawid, 2002). The stronger notion of a monotonic effect given above is
useful in the context of testing for synergistic relationships (VanderWeele and Robins, 2008).

Definition 2. Suppose that variable A is a parent of some variable Y and letp̃aY denote the par-
ents of Y other than A. We say that A has a weak positive monotonic effect onY if the survivor
function S(y|a, p̃aY) = P(Y > y|A = a, p̃aY) is such that whenever a1 ≥ a0 we have S(y|a1, p̃aY) ≥
S(y|a0, p̃aY) for all y and all p̃aY; the variable A is said to have a weak negative monotonic effect
on Y if whenever a1 ≥ a0 we have S(y|a1, p̃aY) ≤ S(y|a0, p̃aY) for all y and all p̃aY.
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Proposition 2. If A has a positive monotonic effect on Y then A has a weak positive monotonic
effect on Y.

We note that for parentA and childY, the definition of a weak monotonic effect coincides
with Wellman’s (1990) definition of positive qualitative influence when the ”context” for qualitative
influence is chosen to be the parents ofY other thanA.

A monotonic effect is a relation between two nodes on a directed acyclic graph and as such it
is associated with an edge. The definition of the sign of an edge can be given either in terms of
monotonic effects or weak monotonic effects. We can define the sign of an edge as the sign of the
monotonic effect or weak monotonic effect to which the edge corresponds; this in turn gives rise to
a natural definition for the sign of a path.

Definition 3. An edge on a causal directed acyclic graph from X to Y is said to be of positivesign
if X has a positive monotonic effect on Y. An edge from X to Y is said to be of negative sign if X
has a negative monotonic effect on Y. If X has neither a positive monotonic effect nor a negative
monotonic effect on Y, then the edge from X to Y is said to be without a sign.

Definition 4. The sign of a path on a causal directed acyclic graph is the product of thesigns of the
edges that constitute that path. If one of the edges on a path is without a signthen the sign of the
path is said to be undefined.

We will call a causal directed acyclic graph with signs on those edges whichallow them a signed
causal directed acyclic graph. The theorems in this paper are given in terms of signed paths so as to
be applicable to both monotonic effects and weak monotonic effects. One further definition will be
useful in the development of the theory below.

Definition 5. Two variables X and Y are said to be positively monotonically associated if all directed
paths from X to Y or from Y to X are of positive sign and all common causes Ci of X and Y are
such that all directed paths from Ci to X are of the same sign as all directed paths from Ci to Y ; the
variables X and Y are said to be negatively monotonically associated if all directed paths between
X and Y are of negative sign and all common causes Ci of X and Y are such that all directed paths
from Ci to X are of the opposite sign as all directed paths from Ci to Y .

It has been shown elsewhere (VanderWeele and Robins, 2009) that ifX andY are positively
monotonically associated thenCov(X,Y) ≥ 0 and if X andY are negatively monotonically asso-
ciated thenCov(X,Y) ≤ 0. We now develop several results concerning the monotonicity in the
conditioning argument of certain conditional expectations.

5. Monotonic Effects and Conditional Expectations

Lemma 1 below can be proved by integration by parts and will be used in the proofs of the subse-
quent propositions. We will assume throughout the remainder of this paperthat the random variables
under consideration satisfy regularity conditions that allow for the integration by parts required in
the proof of Lemma 1. If conditional cumulative distribution functions are continuously differen-
tiable then the regularity conditions will be satisfied; the regularity conditions willalso be satisfied
if all variables are discrete. Ḧardle et al. (1998, p72) also gives relatively weak conditions under
which such integration by parts is possible. Alternatively, the existence of the Lebesgue-Stieltjes
integrals found in the proof of Lemma 1 suffices to allow integration by parts. Note that Lemma 1
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will always be applied either to the functionh(y,a, r) = y or to conditional survivor functions which
will satisfy the relevant regularity conditions; thus the conditions which are required for integration
by parts are only regularity conditions on the distribution of the random variables.

Lemma 1. If h(y,a, r) is non-decreasing in y and in a and S(y|a, r) = P(Y > y|A = a,R = r) is
non-decreasing in a for all y then E[h(Y,A,R)|A = a,R= r] is non-decreasing in a.

Proposition 3 immediately follows from Lemma 1.

Proposition 3. Suppose that the A–Y edge, if it exists, is positive. Let X denote some set of non-
descendents of Y that includes̃paY, the parents of Y other than A, then E[Y|X = x,A = a] is
non-decreasing in a for all values of x.

Proposition 4 gives the basic result for the monotonicity of conditional expectations. For the
conditional expectation of some variableY to be monotonic in a conditioning argumentA, it re-
quires that the conditioning set includes variables that block all backdoorpaths fromA to Y. In
order to prove Proposition 4 we will make use of the following two lemmas.

Lemma 2. Suppose that A is a non-descendent of Y and let Q denote the set of ancestors of A
or Y which are not descendents of A. Let R= (R1, ...,Rm) denote an ordered list of some set of
nodes on directed paths from A to Y such that for each i the backdoor pathsfrom Ri to Y are
blocked by R1, ...,Ri−1,A, and Q. Let V0 = A and Vn = Y and let V1, ...,Vn−1 be an ordered list of
all the nodes which are not in R but which are on directed paths from A to Y such that at least
one of the directed paths from each node to Y is not blocked by R. LetVk = {V1, ...,Vk} then
S(vk|a,vk−1,q, r) = S(vk|pavk).

Lemma 3. If under the conditions of Lemma 2 all directed paths from A to Y are positive except
possibly through R then S(y|a,q, r) is non-decreasing in a.

These two lemmas allow us to prove Proposition 4 given below.

Proposition 4. Suppose that A is a non-descendent of Y and let X denote some set of non-
descendents of A that blocks all backdoor paths from A to Y. Let R= (R1, ...,Rm) denote an ordered
list of some set of nodes on directed paths from A to Y such that for each i the backdoor paths from
Ri to Y are blocked by R1, ...,Ri−1,A and X. If all directed paths from A to Y are positive except
possibly through R then S(y|a,x, r) and E[y|a,x, r] are non-decreasing in a.

If R= ∅ the statement of Proposition 4 is considerably simplified and is stated in the following
corollary.

Corollary . Let X denote some set of non-descendents of A that blocks all backdoor paths from A to
Y. If all directed paths between A and Y are positive then S(y|a,x) and E[y|a,x] are non-decreasing
in a.

Lemma 3 and Proposition 4 are generalizations of results given by Wellman (1990) and Druzdzel
and Henrion (1993). In particular, in Lemma 3 ifR= ∅, then the result follows immediately from
repeated application of Theorems 4.2 and 4.3 in Wellman (1990) or more directlyfrom the work of
Druzdzel and Henrion (1993, Theorem 4). Lemma 3 generalizes the results of Wellman (1990) and
Druzdzel and Henrion (1993) by allowing for conditioning on nodesR= (R1, ...,Rm) which are on
directed paths fromA to Y. Proposition 4 further generalizes Lemma 3 by replacing the setQ in
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Figure 2: Example illustrating Propositions 4-6.

Lemma 3 which consists of the set of ancestors ofA orY which are not descendents ofA with some
other setX which consists of some set of non-descendents ofA that blocks all backdoor paths from
A to Y.

Propositions 5-8 relax the condition that the conditioning set includes variables that block all
backdoor pathsA toY and impose certain other conditions; the proofs of each of these propositions
make use of Proposition 4.

Proposition 5. Suppose that A is not a descendent of Y , that A is binary, and that A and Yare
positively monotonically associated then E[Y|A] is non-decreasing in A.

Proposition 6. Suppose that A is not a descendent of Y , that Y is binary, and that A and Yare
positively monotonically associated then E[A|Y] is non-decreasing in Y .

Propositions 5 and 6 require that the conditioning variable be binary. Counterexamples can be
constructed to show that if the conditioning variable is not binary then the conditional expectation
may not be non-decreasing in the conditioning argument even ifA andY are positively monotoni-
cally associated (see Appendix B, counterexamples 1 and 2).

Propositions 5 and 6 can be combined to give the following corollary which makes no reference
to the ordering ofA andY.

Corollary. Suppose that A is binary and that A and Y are positively monotonically associated then
E[Y|A] is non-decreasing in A.

Example 2. Consider the signed directed acyclic graph given in Figure 2. By Proposition 4, we
have thatE[Y|A = a,C = c,R= r] andE[Y|A = a,C = c] are non-decreasing ina. If A is binary
then by Proposition 5, it is also the case thatE[Y|A = a] is non-decreasing ina. If Y is binary, then
by Proposition 6,E[A|Y = y] is non-decreasing iny. The monotonicity ofE[Y|A = a,C = c,R= r]
andE[Y|A = a,C = c] also follow directly from the results of Wellman (1990) and Druzdzel and
Henrion (1993); the monotonicity ofE[Y|A = a] andE[A|Y = y] do not.

Propositions 7 and 8 consider the monotonicity of conditional expectations while conditioning
on variables other than the variable in which monotonicity holds but not conditioning on variables
that are sufficient to block all backdoor paths betweenA andY. Propositions 7 and 8 generalize
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Figure 3: Example illustrating Propositions 7 and 8.

Propositions 5 and 6 respectively.

Proposition 7. Suppose that A is not a descendent of Y and that A is binary. Let Q be some set of
variables that are not descendents of Y nor of A and let C be the commoncauses of A and Y not
in Q. If all directed paths from A to Y are of positive sign and all directed pathsfrom C to A not
through Q are of the same sign as all directed paths from C to Y not through{Q,A} then E[Y|A,Q]
is non-decreasing in A.

Proposition 8 is similar to Proposition 7 but the conditional expectationE[A|Y,Q] is considered
rather thanE[Y|A,Q] andY rather thanA is assumed to be binary. The form of the proof differs.

Proposition 8. Suppose that A is not a descendent of Y and that Y is binary. Let Q be some set of
variables that are not descendents of Y nor of A and let C be the commoncauses of A and Y not
in Q. If all directed paths from A to Y are of positive sign and all directed pathsfrom C to A not
through Q are of the same sign as all directed paths from C to Y not through{Q,A} then E[A|Y,Q]
is non-decreasing in Y .

Propositions 7 and 8 can be combined to give the following corollary which makes no reference
to the ordering ofA andY.

Corollary. Suppose that A is binary. Let Q be some set of variables that are not descendents of Y
nor of A and let C be the common causes of A and Y not in Q. If all directedpaths from A to Y (or
from A to Y) are of positive sign and all directed paths from C to A not through{Q,Y} are of the
same sign as all directed paths from C to Y not through{Q,A} then E[Y|A,Q] is non-decreasing in
Y .

Example 3. Consider the signed directed acyclic graph given in Figure 3. IfA is binary, then
by Proposition 7,E[Y|A = a,C = c,Q = q], E[Y|A = a,Q = q], E[Y|A = a,C = c] andE[Y|A =
a] are all non-decreasing ina. If Y is binary then by Proposition 8,E[A|Y = y,C = c,Q = q],
E[A|Y = y,Q = q], E[A|Y = y,C = c] andE[A|Y = y] are all non-decreasing iny. The monotonicity
of E[Y|A = a,C = c,Q = q] follows directly from the results of Wellman (1990) and Druzdzel and
Henrion (1993); the monotonicity of the other conditional expectations do not.
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We now return to Example 1 concerning potential unmeasured confoundingin the estimation of
controlled direct effects.

Example 1 (Revisited). Consider once again the causal directed acyclic graph given in Figure 1.
Suppose that we may assume thatA has a weak monotonic effect onY. Under the null hypothesis
that U is not a cause ofR (i.e., does not confound the relationship betweenR andY) we could
conclude by Proposition 4 thatE[Y|A= a,R= r,Q= q] is non-decreasing ina for all r andq. Under
the alternative hypothesis thatU is a cause ofR, we could not apply Proposition 4 because of the
unblocked backdoor pathR−U −Y betweenR andY. The monotonicity relationship would thus
not necessarily hold. Consequently, ifE[Y|A = a,R= r,Q = q] were found not to be monotonic in
a then we could reject the null hypothesis thatU is not a cause ofR. Note that the monotonicity
of E[Y|A = a,R= r,Q = q] in a also follows from the results of Wellman (1990) and Druzdzel and
Henrion (1993). If, however, there were an edge fromU to Q for example, or in more complicated
scenarios, the results of Wellman (1990) and Druzdzel and Henrion (1993) would no longer suffice
to conclude the monotonicity ofE[Y|A= a,R= r,Q= q] in a; one would need to employ Proposition
4.

We now construct a simple statistical test in the case thatA, RandY are all binary (cf. Robins and
Greenland, 1992) of the null hypothesis thatU is absent from Figure 1. Letni jq denote the number of
individuals in stratumQ= q with A= i andR= j and let letdi jq denote the number of individuals in
stratumQ= qwith A= i andR= j andY = 1. Letpi jq denote the true probabilityP(Y = 1|A= i,R=
j,Q = q). From the null hypothesis thatU is absent from Figure 1, it follows by Proposition 4 that
p1 jq− p0 jq ≤ 0 for all j andq. Thus we havedi jq ∼Bin(ni jq , pi jq) with E[

di jq

ni jq
] = pi jq andVar(di jq

ni jq
) =

pi jq(1−pi jq)
ni jq

. By the central limit central limit theorem
(

d1 jq
n1 jq

−
d0 jq
n0 jq

)−(p1 jq−p0 jq)
√

p1 jq(1−p1 jq)

n1 jq
+

p0 jq(1−p0 jq)

n0 jq

.
∼N(0,1) and by Slut-

sky’s theorem we have
(

d1 jq
n1 jq

−
d0 jq
n0 jq

)−(p1 jq−p0 jq)
√

d1 jq(n1 jq−d1 jq)

n3
1 jq

+
d0 jq(n0 jq−d0 jq)

n3
0 jq

.
∼N(0,1). To test the null hypothesis that the edge

from U to R is absent from Figure 1 one may thus use the test statistic
(

d1 jq
n1 jq

−
d0 jq
n0 jq

)
√

d1 jq(n1 jq−d1 jq)

n3
1 jq

+
d0 jq(n0 jq−d0 jq)

n3
0 jq

with critical regions of the form:{
(

d1 jq
n1 jq

−
d0 jq
n0 jq

)
√

d1 jq(n1 jq−d1 jq)

n3
1 jq

+
d0 jq(n0 jq−d0 jq)

n3
0 jq

> Z1−α} to carry out a one-sided (up-

per tail) test. The derivation of the power of such a test would require providing explicit structural
equations for each of the variables in the model. Similar tests could be constructed for other sce-
narios. We note that if the test fails to reject the null, one cannot conclude that the arrow fromU
to R is absent; if the inequalityE[Y|A = a1,R= r,Q = q] ≤ E[Y|A = a2,R= r,Q = q] holds for all
a1 ≤ a2 this is potentially consistent with both the presence and the absence of an edge fromU to
R. If, however, the test rejects the null then one can conclude that an edge fromU to R must be
present, provided the other model assumptions hold. With observational data, the assumption that
no unmeasured confounding variable is present can be falsified but it cannot be verified regardless
of the approach one takes. It is nevertheless worthwhile testing any empirical implications of the
no unmeasured confounding variables assumptions which can be derived, such as those following
from Proposition 4.
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Tian and Pearl (2002) and Kang and Tian (2007) derived various equality constraints that arise
from causal directed acyclic graphs with hidden variables; Kang and Tian (2006) derived various
inequality constraints that arise from causal directed acyclic graphs with hidden variables. We note
that the inequality constraintE[Y|A = a1,R = r,Q = q] ≤ E[Y|A = a2,R = r,Q = q] for a1 ≤ a2

does not follow from the results of Tian and Pearl (2002) or Kang and Tian (2006, 2007). The
equality and inequality constraints which follow from their work will apply to all causal models
consistent with the directed acyclic graph in Figure 1 (without the sign); the inequality constraint
E[Y|A = a1,R= r,Q = q] ≤ E[Y|A = a2,R= r,Q = q] follows only if it can be assumed in Figure 1
thatA has a weak positive monotonic effect onY. More generally, the results in this paper provide a
supplementary set of constraints to those of Tian and Pearl (2002) and Kang and Tian (2006, 2007).

6. Effect Modification and Monotonic Effects

If when conditioning on a particular variable, the sign of the effect of another variable on the out-
come varies between strata of the conditioning variable, then the conditioning variable is said to
be a qualitative effect modifier. The following definition gives the condition for qualitative effect
modification more formally.

Definition 6. A variable Q is said to be an effect modifier for the causal effect of A on Y if Q
is not a descendent of A and if there exist two levels of A, a0 and a1 say, such that E[YA=a1|Q =
q]−E[YA=a0|Q = q] is not constant in q. Furthermore Q is said to be a qualitative effect modifier if
there exist two levels of A, a0 and a1, and two levels of Q, q0 and q1, such that sign(E[YA=a1|Q =
q1]−E[YA=a0|Q = q1]) 6= sign(E[YA=a1|Q = q0]−E[YA=a0|Q = q0]).

Monotonic effects and weak monotonic effects are closely related to the concept of qualitative
effect modification. Essentially, the presence of a monotonic effect precludes the possibility of qual-
itative effect modification. This is stated precisely in Propositions 9 and 10.

Proposition 9. Suppose that some parent A1 of Y is such that the A1−Y edge is of positive sign
then there can be no other parent, A2, of Y which is a qualitative effect modifier for causal effect of
A1 on Y, either unconditionally or within some stratum C= c of the parents of Y other than A1 and
A2.

A similar result clearly holds if theA1−Y edge is of negative sign. We give the contrapositive
of Proposition 9 as a corollary.

Corollary. Suppose that some parent of Y , A2, is a qualitative effect modifier for causal effect of
another parent of Y , A1, either unconditionally or within some stratum C= c of the parents of Y
other than A1 and A2 then A1 can have neither a weak positive monotonic effect nor a weak negative
monotonic effect on Y.

If there are intermediate variables betweenA andY then Proposition 9 can be generalized to
give Proposition 10.

Proposition 10. Suppose that all directed paths from A to Y are of positive sign (or are all ofneg-
ative sign) then there exists no qualitative effect modifier Q on the directed acyclic graph for the
causal effect of A on Y.
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Y

Q2

A
+

Q1
Q5

Q4

Q3

Figure 4: Example illustrating the use of Propositions 9 and 10.

Example 4. Consider the signed directed acyclic graph given in Figure 4 in which theA−Y edge
is of positive sign. It can be shown that any ofQ1, Q2, Q3, Q4 or Q5 can serve as effect modifiers
for the causal effect ofA onY (VanderWeele and Robins, 2007). However, by Proposition 9 or 10,
sinceA has a (weak) monotonic effect onY, none ofQ1, Q2, Q3, Q4 or Q5 can serve asqualitative
effect modifiers for the causal effect ofA onY. Conversely, if it is found that one ofQ1, Q2, Q3, Q4

or Q5 is a qualitative effect modifier for the causal effect ofA onY then theA−Y edge cannot be of
positive (or negative) sign.

7. Concluding Remarks

In this paper we have related weak monotonic effects to the monotonicity of certain conditional
expectations in the conditioning argument and to qualitative effect modification. When the variables
on a causal directed acyclic graph exhibit weak monotonic effects the results can be used to construct
tests for the presence of unmeasured confounding variables. Future work could examine whether it
is possible to weaken the restrictions onR in Proposition 4; another area of future research would
include developing an algorithm for what relationships need systematic evaluation in order to test for
particular confounding patterns; further research could also be doneon the derivation of statistical
tests of the type considered at the end of Section 5 for cases in whichA, RandY are not binary and
for dealing with issues related to multiple testing problems.
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Appendix A. Proofs

This appendix contains the proofs for all of the results in this paper.
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A.1 Proof of Proposition 1

By the definition of a non-parametric structural equation,Ya,p̃aY
(ω) = f (p̃aY,a,εY(ω)) and from

this the result follows.

A.2 Proof of Proposition 2

SinceA has a positive monotonic effect onY, for anya1 ≥ a0 we have thatS(y|a1, p̃aY) = P(Y >
y|a1, p̃aY) = P{ f (p̃aY,a1,εY) > y} ≥ P{ f (p̃aY,a0,εY) > y} = P(Y > y|a0, p̃aY) = S(y|a1, p̃aY).

A.3 Proof of Lemma 1

Fora≥ a′ we haveE[h(Y,A,R)|A = a,R= r]−E[h(Y,A,R)|A = a′,R= r]

=
Z y=∞

y=−∞
h(y,a, r)dF(y|a, r)−

Z y=∞

y=−∞
h(y,a′, r)dF(y|a′, r)=

Z y=∞

y=−∞
h(y,a, r)d{F(y|a, r)−F(y|a′, r)}+

Z y=∞

y=−∞
{h(y,a, r)−h(y,a′, r)}dF(y|a′, r)= [h(y,a, r){F(y|a, r)−F(y|a′, r)}]y=∞

y=−∞−
Z y=∞

y=−∞
{F(y|a, r)−

F(y|a′, r)}dh(y,a, r)+
Z y=∞

y=−∞
{h(y,a, r)−h(y,a′, r)}dF(y|a′, r)

=
Z y=∞

y=−∞
{S(y|a, r)−S(y|a′, r)}dh(y,a, r)+

Z y=∞

y=−∞
{h(y,a, r)− h(y,a′, r)}dF(y|a′, r). This final ex-

pression is non-negative since the integrands of both integrals are non-negative fora≥ a′.

A.4 Proof of Proposition 3

We have thatE[Y|X = x,A = a] = E[Y|p̃aY,A = a] and sinceA has a (weak) positive monotonic
effect onY, we have thatS(y|a, p̃aY) is non-decreasing ina and it follows from Lemma 1 that
E[Y|X = x,A = a] = E[Y|p̃aY,A = a] is non-decreasing ina.

A.5 Proof of Lemma 2

We will say a path fromA to B is a frontdoor path fromA to B if the path begins with a directed
edge with the arrowhead pointing out ofA. Let Qk andRk be the subsets ofQ andR respectively
that are ancestors ofVk. We will show that

S(vk|a,v1, ...,vk−1,q, r) = S(vk|a,v1, ...,vk−1,q, rk)

= S(vk|a,v1, ...,vk−1,q
k, rk) = S(vk|pavk).

If Rk = R, the first equality holds trivially. Suppose thatRk 6= Rso thatRm is not an ancestor ofVk. All
frontdoor paths fromRm toVk must include a collider sinceRm is not an ancestor ofVk. This collider
will not be inA,V1, ...,Vk−1,Q,R1, ...,Rm−1 since all these variables are non-descendents ofRm. Thus
all frontdoor paths fromRm toVk will be blocked givenA,V1, ...,Vk−1,Q,R1, ...,Rm−1. All backdoor
paths fromRm to Vk with an edge going intoVk will be blocked givenA,V1, ...,Vk−1,Q,R1, ...,Rm−1

by paVk; note by hypothesis it can be seen thatpaVk will be contained by the variablesA,V1, ...,Vk−1,
Q,Rk since there is a directed path fromVk to Y and Q includes all ancestors ofY not on di-
rected paths fromA to Y. All backdoor paths fromRm to Vk with an edge going out fromVk

will be blocked givenA,Q,R1, ...,Rm−1 by hypothesis; otherwise there would be a backdoor path
from Rm throughVk to Y not blocked byA,Q,R1, ...,Rm−1. But all backdoor paths fromRm to Vk

with an edge going out fromVk which are blocked byA,Q,R1, ...,Rm−1 will also be blocked by
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A,V1, ...,Vk−1,Q,R1, ...,Rm−1. This is because such a path concluding with an edge going out from
Vk which is blocked byA,Q,R1, ...,Rm−1 but not blocked byA,V1, ...,Vk−1,Q,R1, ...,Rm−1 would
require that one ofV1, ...,Vk−1, sayVp, be a collider on the path or a descendent of a collider. If one
of V1, ...,Vk−1 were a collider then the path would in fact be blocked by the parents of the collider
since all the parents ofV1, ...,Vk−1 are inA,V1, ...,Vk−1,Q,R1, ...,Rm−1. If one ofV1, ...,Vk−1, say
Vp, were a descendent of the collider then none of the directed paths from the collider toVp could
contain nodes inR1, ...,Rm−1 for otherwise the path would not be blocked byA,Q,R1, ...,Rm−1; for
the same reason the collider itself could not be inR1, ...,Rm−1. But it then follows that the collider
must itself be one ofV1, ...,Vp−1 since it is an ancestor ofVp with a directed path toVp not blocked
by R. However, if the collider is one ofV1, ...,Vp−1 then the path would in fact be blocked by the
parents of the collider since all the parents ofV1, ...,Vk−1 are inA,V1, ...,Vk−1,Q,R1, ...,Rm−1. From
this it follows that all backdoor paths fromRm to Vk with an edge going out fromVk are blocked by
A,V1, ...,Vk−1,Q,R1, ...,Rm−1.

We have thus shown thatVk andRm are d-separated givenA,V1, ...,Vk−1,Q,R1, ...,Rm−1 and so

S(vk|a,v1, ...,vk−1,q, r) = S(vk|a,v1, ...,vk−1,q, r1, ..., rm−1).

Similarly,Vk andRm−1 are d-separated givenA,V1, ...,Vk−1,Q,R1, ...,Rm−2 and so

S(vk|a,v1, ...,vk−1,q, r1, ..., rm−1) = S(vk|a,v1, ...,vk−1,q, r1, ..., rm−2).

We may carry this argument forward to get

S(vk|a,v1, ...,vk−1,q, r) = S(vk|a,v1, ...,vk−1,q, rk).

All backdoor paths fromVk to Q\Qk will be blocked givenA,V1, ...,Vk−1,Qk,Rk by pavk. SinceVk

is not a descendent ofQ\Qk all frontdoor paths fromVk to Q\Qk will involve at least one collider
which is a descendent ofVk. This collider is not in the conditioning setA,V1, ...,Vk−1,Qk,Rk since
this entire set consists of non-descendents ofVk and so the collider will block the frontdoor path
from Vk to Q\Qk.

ThusVk andQ\Qk are d-separated givenA,V1, ...,Vk−1,Qk,Rk and so

S(vk|a,v1, ...,vk−1,q, rk) = S(vk|a,v1, ...,vk−1,q
k, rk).

Furthermore,A,V1, ...,Vk−1,Qk,Rk are non-descendents ofVk and include all of the parents ofVk and
so

S(vk|a,v1, ...,vk−1,q
k, rk) = S(vk|pavk).

We have thus shown as desired that

S(vk|a,v1, ...,vk−1,q, r) = S(vk|a,v1, ...,vk−1,q, rk)

= S(vk|a,v1, ...,vk−1,q
k, rk) = S(vk|pavk).

A.6 Proof of Lemma 3

Let V0 = A andVn = Y and letV1, ...,Vn−1 be an ordered list of all the nodes which are not inR but
which are on directed paths fromA to Y such that at least one of the directed paths from each node
to Y is not blocked byR. Let Vk = {V1, ...,Vk}. It can be shown by induction that by starting with
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n = k and for eachk iteratively replacing by their negations the parents ofVk with negative edges
into Vk suffices to obtain a graph such that all edges on all directed paths fromA to Y not blocked
by R have positive sign.

We can expressE[1(Vn > v)|A,Q,R] as

E[E[...E[E[1(Vn > v)|A,Vn−1,Q,R]|A,Vn−2,Q,R]|...|A,V1,Q,R]|A,Q,R].

Now conditional onA,Vn−1\Vi ,Q,Rwe have that

E[1(Vn > v)|,A,Vn−1,Q,R]

is non-decreasing invi for i = 1, ...,n−1 sinceVi has either a weak positive monotonic effect or no
effect onVn. Thus conditional onA,Vn−1\{Vi ,Vn−1},Q,Rwe have that

E[1(Vn > v)|A,Vn−1,Q,R]

is a non-decreasing function ofvi andvn−1. Furthermore, by Lemma 2 we have thatS(vn−1|a,v1, ...,
vn−2,q, r) = S(vn−1|pavn−1) and soS(vn−1|a,v1, ...,vn−2,q, r) = S(vn−1|pavn−1) is a non-decreasing
in vi for all a,v1, ...,vi−1,vi+1, ...,vn−2,q, r sinceVi has either a weak positive monotonic effect or no
effect onVn−1. Thus by Lemma 1 we have that conditional onA,Vn−2\Vi ,Q,R,

E[E[1(Vn > v)|A,Vn−1,Q,R]|A,Vn−2,Q,R]

is non-decreasing invi for i = 1, ...,n−2. Carrying the argument forward, conditional onA,Q,R,
we will have that

E[...E[E[1(Vn > v)|A,Vn−1,Q,R]|A,Vn−2,Q,R]|...|A,V1,Q,R]

is a non-decreasing function ofv1 andv0 = a and sinceA has either a weak positive monotonic
effect or no effect onV1, S(v1|a,q, r) = S(v1|pav1) will be non-decreasing ina and thus by Lemma
1,

S(y|a,q, r) = E[1(Vn > y)|A,Q,R]

= E[E[...E[E[1(Vn > y)|A,Vn−1,Q,R]|A,Vn−2,Q,R]|...|A,V1,Q,R]|A,Q,R]

will be non-decreasing ina.

A.7 Proof of Proposition 4

Let Q denote the set of ancestors ofA or Y which are not descendents ofA. Note that if for eachi
the backdoor paths fromRi to Y are blocked byR1, ...,Ri−1,A andX then these backdoor paths will
also be blocked byR1, ...,Ri−1,A andQ since for each backdoor path fromRi to X there must be
some member of{A}

[

Q through which the path passes. We may thus apply Lemma 3 to conclude
thatE[1(Y > y)|a,Q, r]. SinceQ blocks all backdoor paths fromA to Y we have

S(y|a,x, r) = E[E[1(Y > y)|a,Q,x, r]|a,x, r]

= E[E[1(Y > y)|a,Q, r]|a,x, r] = E[E[1(Y > y)|a,W, r]|a,x, r]

whereW is the subset ofQ which are either parents ofY or parents of a node on a directed path
from A to Y. Let W′ denote the subset ofW for which there is a path toY not blocked byA,X,R
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thenE[E[1(Y > y)|a,W, r]|a,x, r] = E[E[1(Y > y)|a,W′, r]|a,x, r]. All backdoor paths fromA toW′

are blocked givenRandX by X sinceX blocks all backdoor paths fromA toY. Any frontdoor path
from A to W′ will include a collider since the nodes inW′ are not descendents ofA. The collider
cannot be inX becauseX includes only non-descendents ofA. Suppose the collider were some
nodeRi ; by hypothesis all backdoor paths fromRi toY are blocked byR1, ...,Ri−1,A andX; thus the
frontdoor path fromA to W′ would have to be blocked byA,R1, ...,Ri−1 andX for otherwise there
would be a backdoor path fromRi throughW′ to Y not blocked byA,R1, ...,Ri−1 andX. From this
it follows that every frontdoor path fromA toW′ must be blocked givenRandX either by a collider
or by a node inR or X. We have thus shown that all paths fromA to W′ are blocked givenR andX
and soW′ is conditionally independent ofA givenR andX and so we have

E[E[1(Y > y)|a,W′, r]|a,x, r] = E[E[1(Y > y)|a,W′, r]|x, r]

= E[E[1(Y > y)|a,Q, r]|x, r].

We have thus shown thatS(y|a,x, r) = E[E[1(Y > y)|a,Q, r]|x, r]. SinceE[1(Y > y)|a,Q, r] is non-
decreasing ina for all q we also have that

S(y|a,x, r) = E[E[1(Y > y)|a,Q, r]|x, r]

is non-decreasing ina. Finally, sinceS(y|a,x, r) is non-decreasing ina, it follows from Lemma 1
thatE[y|a,x, r] is also non-decreasing ina.

A.8 Proof of Proposition 5

Proposition 5 is in fact a special case of Proposition 7 withR = ∅ and Q = ∅. The proof of
Proposition 7 is given below.

A.9 Proof of Proposition 6

Proposition 6 is in fact a special case of Proposition 8 withR = ∅ and Q = ∅. The proof of
Proposition 8 is given below.

A.10 Proof of Proposition 7

By the law of iterated expectations,

E[Y|A = a,Q = q]

= ∑
c

E[Y|A = a,C = c,Q = q]P(C = c|A = a,Q = q)

We have by Proposition 4 thatE[Y|A,Q,C] is non-decreasing inA. Let (C1, ...,Cn) denote an ordered
list of the variables inC. LetQc be variables inQ which are common causes ofC and letQn = Q\Qc.
Let Qd

i be the variables inQc that are descendents ofCi . Let Cd
i denote the variables inC that

are descendents ofCi and letCn
i = C\{Ci ,Cd

i }. By Proposition 4 we have thatE[Y|A,Q,C] is
non-decreasing in each componentCi of C by choosing for eachi, A in Proposition 4 to beCi , X
in Proposition 4 to be the set{Qn,Qc\Qd

i ,C
n
i } andR in Proposition 4 to be the set{Qd

i ,C
d
i ,A}.

Furthermore,

P(C = c|A = a,Q = q) =
P(A = a|C = c,Q = q)P(C = c|Q = q)

P(A = a|Q = q)
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and so
P(C = c|A = 1,Q = q) = νq(c)P(C = c|A = 0,Q = q)

where

νq(c) =
P(A = 0|Q = q)P(A = 1|C = c,Q = q)

P(A = 1|Q = q)P(A = 0|C = c,Q = q)

which is non-decreasing in each dimension ofc since the numerator is non-decreasing in each
dimension ofc and the denominator is non-increasing in each dimension ofc by Proposition 4 by
choosing for eachi, A in Proposition 4 to beCi , X in Proposition 4 to be the set{Qn,Qc\Qc

i ,C
n
i }

andR in Proposition 4 to be the set{Qc
i ,C

d
i }. Thus

E[Y|A = 1,Q = q]

= ∑
c

E[Y|A = 1,C = c,Q = q]P(C = c|A = 1,Q = q)

≥ ∑
c

E[Y|A = 0,C = c,Q = q]P(C = c|A = 1,Q = q)

= ∑
c

E[Y|A = 0,C = c,Q = q]νq(c)P(C = c|A = 0,Q = q)

≥ ∑
c

E[Y|A = 0,C = c,Q = q]P(C = c|A = 0,Q = q)

= E[Y|A = 0,Q = q].

The second inequality holds because by an argument similar to that aboveE[Y|A = 0,Q = q,C = c]
is non-decreasing in each dimension ofc andP(C = c|A= 1,Q= q) = νq(c)P(C = c|A= 0,Q= q)
weights more heavily higher values of each dimension ofc than doesP(C = c|A = 0,Q = q) since
νq(c) is non-decreasing in each dimension ofc. ThusE[Y|A = a,Q = q] is non-decreasing ina.

A.11 Proof of Proposition 8

By the law of iterated expectations we have that

E[A|Y = y,Q = q] = ∑
c

E[A|Y = y,C = c,Q = q]P(C = c|Y = y,Q = q)

= ∑
c,a

aP(A = a|Y = y,C = c,Q = q)P(C = c|Y = y,Q = q)

= ∑
c,a

a
P(Y = y,A = a,C = c|Q = q)

P(Y = y,C = c|Q = q)
P(C = c|Y = y,Q = q)

= ∑
c,a

a
P(Y = y|A = a,C = c,Q = q)

P(Y = y|Q = q)
P(A = a,C = c|Q = q)

= EC,A[A
P(Y = y|A,C,Q = q)

P(Y = y|Q = q)
|Q = q].

As in the proof of Proposition 7, we have by Proposition 4 we have that conditional on andQ = q,
P(Y=1|A,C,Q=q)

P(Y=1|Q=q) is a non-decreasing function ofAand of each dimension ofC. Similarly, P(Y=0|A,C,Q=q)
P(Y=0|Q=q)

is a non-increasing function ofA and each dimension ofC. Over c and a, conditional on and
Q = q, P(Y=y|A=a,C=c,Q=q)

P(Y=y|Q=q) is a weight function that sums to 1, that is,EC,A[P(Y=y|A=a,C=c,Q=q)
P(Y=y|Q=q) ] =
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P(Y=y|Q=q)
P(Y=y|Q=q) = 1. Furthermore, by Proposition 4,S(a|c,q) is non-decreasing inc and we thus have
that

E[A|Y = 1,Q = q] = EC,A[A
P(Y = 1|A,C,Q = q)

P(Y = 1|Q = q)
|Q = q]

≥ EC,A[A
P(Y = 0|A,C,Q = q)

P(Y = 0|Q = q)
|Q = q]

= E[A|Y = 0,Q = q]

and soE[A|Y,Q] is non-decreasing inY.

A.12 Proof of Proposition 9

Note that by Proposition 3 above ifA1 has a weak positive monotonic effect onY thenE[Y|A1 =
a1,A2 = a2,C = c] must be non-decreasing ina1 and ifA1 has a weak negative monotonic effect on
Y thenE[Y|A1 = a1,A2 = a2,C = c] must be non-increasing ina1. Since(Y

∏

A1|{A2,C})GE1
where

GE1 is the original directed acyclic graphG with all edges emanating fromA1 removed, we have
YA1=a

∏

A1|{A2,C} (Pearl, 1995). ThusE[YA1=a1|A2 = a2,C = c] = E[Y|A1 = a1,A2 = a2,C = c] and
so if A2 is a qualitative effect modifier for the causal effect ofA1 onY for stratumC= c then we must
two values ofA1, a∗1 anda∗∗1 , and two levels ofA2, a′2 anda′′2, such thatE[Y|A1 = a∗∗1 ,A2 = a′′2,C =
c]−E[Y|A1 = a∗1,A2 = a′′2,C= c] < 0 andE[Y|A1 = a∗∗1 ,A2 = a′2,C= c]−E[Y|A1 = a∗1,A2 = a′2,C=
c] > 0. Eithera∗∗1 > a∗1 or a∗∗1 < a∗1. Consider the first case (the second is analogous) then since
E[Y|A1 = a∗∗1 ,A2 = a′′2,C = c]−E[Y|A1 = a∗1,A2 = a′′2,C = c] < 0, A1 does not have a weak positive
monotonic effect onY and sinceE[Y|A1 = a∗∗1 ,A2 = a′2,C = c]−E[Y|A1 = a∗1,A2 = a′2,C = c] > 0,
A1 does not have a weak negative monotonic effect onY. Now if A2 is a qualitative effect modifier
for the causal effect ofA1 unconditionally then we must have two values ofA1, a∗1 anda∗∗1 , and two
levels ofA2, a′2 anda′′2, such thatE[YA1=a∗∗1

|A2 = a′′2]−E[YA1=a∗1|A2 = a′′2] < 0 andE[YA1=a∗∗1
|A2 =

a′2]−E[YA1=a∗1|A2 = a′2] > 0. Once again eithera∗∗1 > a∗1 or a∗∗1 < a∗1. We will consider the first
case (the second is analogous). We thus have that∑

c
E[Y|A1 = a∗∗1 ,A2 = a′′2,C = c]P(C = c|A2 =

a′′2) = ∑
c

E[YA1=a∗∗1
|A2 = a′′2,C = c]P(C = c|A2 = a′′2) = E[YA1=a∗∗1

|A2 = a′′2] < E[YA1=a∗1|A2 = a′′2] =

∑
c

E[YA1=a∗1|A2 = a′′2,C = c]P(C = c|A2 = a′′2) = ∑
c

E[Y|A1 = a∗1,A2 = a′′2,C = c]P(C = c|A2 = a′′2)

and soA1 cannot have a weak positive monotonic effect onY and similarly,∑
c

E[Y|A1 = a∗∗1 ,A2 =

a′2,C = c]P(C = c|A2 = a′2) = ∑
c

E[YA1=a∗∗1
|A2 = a′2,C = c]P(C = c|A2 = a′2) = E[YA1=a∗∗1

|A2 = a′2] >

E[YA1=a∗1|A2 = a′2] = ∑
c

E[YA1=a∗1|A2 = a′2,C = c]P(C = c|A2 = a′2) = ∑
c

E[Y|A1 = a∗1,A2 = a′2,C =

c]P(C = c|A2 = a′2) and soA1 cannot have a weak negative monotonic effect onY.

A.13 Proof of Proposition 10

We prove the Theorem for weak positive monotonic effects. The proof for weak negative mono-
tonic effects is similar. LetC denote all non-descendents ofA which are either parents ofY or
parents of a node on a directed path betweenA andY. By the law of iterated expectations we have
E[YA=a1|Q = q]−E[YA=a0|Q = q] = ∑cE[YA=a1|C = c,Q = q]P(C = c|Q = q)−∑cE[YA=a0|C =
c,Q = q]P(C = c|Q = q). We will show that this latter expression is equal to∑cE[YA=a1|C =
c]P(C = c|Q = q)−∑cE[YA=a0|C = c]P(C = c|Q = q). By Theorem 3 of Pearl (1995) it suffices
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YAC

+

+

+

Figure 5: Directed acyclic graph illustrating counterexamples to Propositions5 and 6 when A is
not binary.

to show that(Y

∏

Q|C,A)GA
whereGA denotes the graph obtained by deleting from the original di-

rected acyclic graph all arrows pointing intoA. Any front door path fromY to Q in GA will be
blocked by a collider. Any backdoor path fromY to Q in GA will be blocked byC. We thus
have thatE[YA=a1|Q = q]−E[YA=a0|Q = q] = ∑cE[YA=a1|C = c]P(C = c|Q = q)−∑cE[YA=a0|C =
c]P(C = c|Q = q). SinceC will block all backdoor paths fromA to Y we have by the backdoor
path adjustment theorem∑cE[Y|C = c,A = a1]P(C = c|Q = q)− ∑cE[Y|C = c,A = a0]P(C =
c|Q = q) = ∑c{E[Y|C = c,A = a1]−E[Y|C = c,A = a0]}P(C = c|Q = q). If there were a qual-
itative effect modifierQ for the causal effect ofA onY then there would exist a valueq0 such that
E[YA=a1|Q= q0]−E[YA=a0|Q= q0] < 0. But since all paths betweenA andY are of positive sign and
sinceC blocks all backdoor paths fromA to Y we have by Proposition 4 thatE[Y|C = c,A = a] is
non-decreasing ina and soE[YA=a1|Q= q0]−E[YA=a0|Q= q0] = ∑c{E[Y|C = c,A= a1]−E[Y|C =
c,A = a0]}P(C = c|Q = q0) ≥ 0.

Appendix B. Counterexamples

This appendix contains the details of the counterexamples mentioned in the bodyof the paper.

B.1 Counterexample 1

Consider the directed acyclic graph given in Figure 5. In this exampleC andY are binary andA
is ternary. Suppose thatC ∼ Ber(0.5), εA ∼ Ber(0.5) and thatP(A = 0|εA = 0) = 1 andP(A =
C+ 1|εA = 1) = 1. Suppose also thatP(Y = 1|A = 2) = 1 and that ifP(Y = C|A = 0) = 1 and
P(Y = C|A = 1) = 1. Clearly thenC has a positive monotonic effect onA and onY andA has a
positive monotonic effect onY and soA andY are positively monotonically associated. However,
we have thatE[Y|A = 1] = E[C|A = 1] = 0∗P(C = 1|A = 1) = 0 butE[Y|A = 0] = E[C|A = 0] =
1∗P(C = 1|A = 0)+0∗P(C = 0|A = 0) = 1/2.

B.2 Counterexample 2

Consider again the directed acyclic graph given in Figure 5. In this examplewe will assume thatC
andA are binary and thatY is ternary. Suppose thatC∼Ber(0.5) and thatεA takes on the values 0, 1
and 2, each with probability 1/3. Suppose also thatP(A = 0|εA = 0) = 1, P(A = C|εA = 1) = 1 and
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P(A = 1|εA = 2) = 1. Suppose further thatP(Y = 0|C = 0) = 1 and ifP(Y = A+1|C = 1). Clearly
thenC has a positive monotonic effect onA and onY andA has a positive monotonic effect onY
and soA andY are positively monotonically associated. However, we have thatE[A|Y = 1] = 0 but
E[A|Y = 0] = E[A|C = 0] = 1/3.
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