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Abstract

Various relationships are shown hold between monotoneceffand weak monotonic effects and
the monotonicity of certain conditional expectations. @euexamples are provided to show that
the results do not hold under less restrictive conditionendonic effects are furthermore used to
relate signed edges on a causal directed acyclic graph tiveqra effect modification. The theory
is applied to an example concerning the direct effect of sSngpkn cardiovascular disease control-
ling for hypercholesterolemia. Monotonicity assumpti@ans used to construct a test for whether
there is a variable that confounds the relationship betwieemediator, hypercholesterolemia, and
the outcome, cardiovascular disease.

Keywords: Bayesian networks, conditional expectation, covariadaected acyclic graphs, ef-
fect modification, monotonicity

1. Introduction

Several papers have considered various monotonicity relationshipsyesiBn networks or di-
rected acyclic graphs. Wellman (1990) introduced the notion of qualitatiueat influence and
derived various resulting concerning the propagation of qualitativeeinfles, the preservation of
monotonicity under edge reversal, the necessity of first order stocliastimance for propagat-
ing influences and the propagation of sub-additive and super-additatoonships on probabilistic
networks. Druzdzel and Henrion (1993) developed a polynomial timeitiigo for reasoning in
gualitative probabilistic network, based on local sign propagation. Merently, van der Gaag et
al. (2004) showed that identifying whether a network exhibits various mooiimty properties is
coNP’P- complete. VanderWeele and Robins (2009) introduced the concephohatonic effect
which is closely related to Wellman’s qualitative influence and considerea:katonship between
monotonicity properties and causal effects, covariance, bias andwudifg. In this paper we
develop a number of probabilistic properties concerning monotonic effattsveak monotonic
effects. Some of these properties give rise to certain inequality consttiaititsould be used to
test for the presence of hidden or unmeasured confounding varidiilese inequality constraints
which arise from monotonicity relationships provide constraints beyona:thlneady available in
the literature (Kang and Tian, 2006). The paper is organized as follmSection 2 we describe
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the notation we will use in this paper and review the definitions concerningte@ecyclic graphs.
In Section 3 we present a motivating example for the theory that will be deseldn Section 4, we
define the concepts of a monotonic effect and a weak monotonic effee dirktted acyclic graph
causal framework, the latter essentially being equivalent to Wellman'QjXfifalitative influence.
In Section 5, we give a number of results relating weak monotonic effecte tadmotonicity in the

conditioning argument of certain conditional expectations; we also retuie tmotivating example
and show how the theory developed can be applied to this example. FinalBgliois6, we give a
number of results that relate weak monotonic effects to the existence of tjualitiect modifiers.

Section 7 closes with some concluding remarks.

2. Notation and Directed Acyclic Graphs

Following Pearl (1995), a causal directed acyclic graph is a set &304, ..., X,) and directed
edges amongst nodes such that the graph has no cycles and suoh ¢zatfnode; on the graph
the corresponding variable is given by its non-parametric structuralties; = fi(pa,€;) where
pa are the parents of; on the graph and thg are mutually independent. We will uskto denote
the sample space ferandwto denote a particular point in the sample space. These non-parametric
structural equations can be seen as a generalization of the path anadyigiear structural equation
models (Pearl, 1995, 2000) developed by Wright (1921) in the geneticatlite and Haavelmo
(1943) in the econometrics literature. Directed acyclic graphs can be rigtetdpas representing
causal relationships. The non-parametric structural equations enooadéeerfactual relationships
amongst the variables represented on the graph. The equations themsptesent one-step ahead
counterfactuals with other counterfactuals given by recursive sutistituThe requirement that
the & be mutually independent is essentially a requirement that there is no varizgatdrom
the graph which, if included on the graph, would be a parent of two or marnables (Pearl,
1995, 2000). Further discussion of the causal interpretation of ditecieclic graphs can be found
elsewhere (Pearl, 1995, 2000; Spirtes et al., 2000; Dawid, 2002n&&9D03).

A path is a sequence of nodes connected by edges regardlessndieabdirection; a directed
path is a path which follows the edges in the direction indicated by the grapbissa A nodeC
is said to be a common causeAdfandyY if there exists a directed path froGito Y not throughA
and a directed path fro@ to A not throughY. We will say thatvy, ..., Vi, constitutes an ordered list
if i < j implies thatV; is not a descendent . A collider is a particular node on a path such that
both the preceding and subsequent nodes on the path have directsdyedyy into that node, that
is, both the edge to and the edge from that node have arrowheads intdéeApath betweeA
andB is said to be blocked given some set of variatdlekeither there is a variable i# on the path
that is not a collider or if there is a collider on the path such that neither the eoitgklf nor any
of its descendants are & If all paths betweei andB are blocked giveZ thenA andB are said
to be d-separated giveh It has been shown that &£ andB are d-separated givehthenA andB
are conditionally independent givén(Verma and Pearl, 1988; Geiger et al., 1990; Lauritzen et al.,
1990). We will use the notatioALIB|Z to denote tha# is conditionally independent & givenZ;
we will use the notatioffAL|B|Z)¢ to denote thaf andB are d-separated givehon graphG. The
directed acyclic graph causal framework has proven to be particulsefylin determining whether
conditioning on a given set of variables, or none at all, is sufficient tdrobfor confounding. The
most important result in this regard is the back-door path criterion (P€#%)1 A back-door path
from some nodeA to another nod& is a path which begins with a directed edge iAto Pearl
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Figure 1: Motivating example concerning the estimation of controlled diréettst

(1995) showed that for intervention varialeand outcomeY, if a set of variable€ is such that
no variable inZ is a descendent @&t and such thaZ blocks all back-door paths fromto Y then

conditioning onZ suffices to control for confounding for the estimation of the causateffeA on

Y. The counterfactual value dfintervening to seA = a we denote by'a—a.

3. Motivating Example

To motivate the theory we develop in this paper consider the following example.

Example 1. Suppose that Figure 1 represents a causal directed acyclic grapghdeeote smoking;

let Rhypercholesterolemia; and Mdenote cardiovascular disease. High cholesterol can lead to the
narrowing of the arteries resulting in cardiovascular disease; smokirigadto blood clots through
platelet aggregation resulting in cardiovascular diseaseQldstnote some variable that confounds
the relationships between smoking and cardiovascular disease and hétypszcholesterolemia
and cardiovascular disease (e.g., stress)ULls¢ some unmeasured variable which might confound
the relationship between hypercholesterolemia and cardiovascularadiéasresearcher is unsure
whether the variabl¥ is a cause oR and we therefore represent the edge ftdrto R as a dashed
line. The results of Pearl (2001) imply that it is possible to estimate controlledtdiffects of the
form Ya—a, r—r — Ya—ao,r—r (i.€., the direct effect of smoking on cardiovascular disease controlling
for hypercholesterolemia) on the graph in Figure 1 if tbais not a cause oR. Suppose that
although the researcher is unsure about the presence an edg¥l ftomR, it is known that the
relationship betweeA andY is monotonic in the sense thafY > y|JA=aR=r,Q=q,U =u)is
non-decreasing ia for all y, r, g andu. In Section 5, we will present theory that will allow us to
derive a statistical test for the null hypothesis that there is no unmeaganietleU confounding

the relationship betweeRandyY.
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4. On the Definition of a Monotonic Effect

The definition of a monotonic effect is given in terms of a directed acycliplgsanonparametric
structural equations.

Definition 1. The non-parametric structural equation for some node Y on a causaitéu acyclic
graph with parent A can be expressed as-¥f(pa,, A, ey) wherepa, are the parents of Y other
than A; A is said to have a positive monotonic effect on Y if fopa)l and ey, f(pa,,As,ey) >
f(pay,A2,€v) whenever A> Ay. Similarly A is said to have a negative monotonic effect on Y if for
all pa, andey, f(pa,,A1,ey) < f(pay,Az,ey) Wwhenever A> Ay.

As we have defined it above, a causal direct acyclic graph comesio a set of non-parametric
structural equations and as such the definition of a monotonic effect ghwave is relative to a par-
ticular set of non-parametric structural equations. The presence ohatamic effect is closely
related to the monotonicity of counterfactual variables as is made clear bylltwihg proposi-
tion. All proofs of all propositions and lemmas are given in Appendix A.

Proposition 1. The variable A has a positive monotonic effect on Y if and only if fasalhd all
values ofpay, Ya, pa, (W) > Ya, pa, (W) whenever a> ao.

We note that several sets of non-parametric structural equations majdgetatal distributions
of X = (Xg,...,%) and {Xv=v}vcxvesupgv) (Pearl, 2000). In the context of characterizations of
causal directed acyclic graphs that make reference to counterfablutai®t to non-parametric
structural equations (Robins, 2003), a positive monotonic effect cosléad be defined to be
present if for allpa, anday > ao, P(Ya, pa, > Yay,pa,) = 1. If this latter condition holds with respect
to one set of non-parametric structural equations it will hold for anyfsbie-parametric structural
equations which yields the same distribution forand {Xv—y}vcx vesupgv)- We note that if for
a1 > ap the set{w : Yy, pa, (W) < Ya, pa, (W)} is of measure zero thevy, gz, andYy, 55, could be
re-defined on this set so thef, 55, (W) > Ya, 5a, (w) for all wand so that the distributions &fand
{Xv=v}vcx vesupgv) reémain unchanged.

Because for any value we observe the outcome only under one particular value of the inter-
vention variable, the presence of a monotonic effect is not identifiabke rdsults presented in this
paper are in fact true under slightly weaker conditions which are idenéfiaiben data on all of the
directed acyclic graph’s variables are observed. We thus introducetioept of a weak monotonic
effect which is a special case of Wellman'’s positive qualitative influeWedithan, 1990). The def-
inition of a weak monotonic effect does not make reference to counteafa@and thus can be used
in characterizations of causal directed acyclic graphs that do not enff@aoncept of counterfac-
tuals (Spirtes et al., 2000; Dawid, 2002). The stronger notion of a moicotffect given above is
useful in the context of testing for synergistic relationships (Vandeld\&®d Robins, 2008).

Definition 2. Suppose that variable A is a parent of some variable Y angdetdenote the par-
ents of Y other than A. We say that A has a weak positive monotonic efféctfdhe survivor
function Sy|a, pa,) = P(Y > y|A=a, pa,) is such that wheneven & ag we have 8/|a;, pa,) >
S(ylap, pa,) for all y and all pa,; the variable A is said to have a weak negative monotonic effect
onY if whenever 8> ap we have 8y|a;, pa,) < S(y|ap, pay) for all y and all pa,.
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Proposition 2. If A has a positive monotonic effect on Y then A has a weak positive monotonic
effectonY.

We note that for parenA and childY, the definition of a weak monotonic effect coincides
with Wellman’s (1990) definition of positive qualitative influence when thaiteat” for qualitative
influence is chosen to be the parent¥ afther tharA.

A monotonic effect is a relation between two nodes on a directed acyclit gnagh as such it
is associated with an edge. The definition of the sign of an edge can beqther in terms of
monotonic effects or weak monotonic effects. We can define the sign afgmas the sign of the
monotonic effect or weak monotonic effect to which the edge correspainid in turn gives rise to
a natural definition for the sign of a path.

Definition 3. An edge on a causal directed acyclic graph from X to Y is said to be of positue
if X has a positive monotonic effect on Y. An edge from X to Y is said to beaifveegign if X
has a negative monotonic effect on Y. If X has neither a positive monoféedt mor a negative
monotonic effect on Y, then the edge from X to Y is said to be without a sign.

Definition 4. The sign of a path on a causal directed acyclic graph is the product dfighmes of the
edges that constitute that path. If one of the edges on a path is without éheigithe sign of the
path is said to be undefined.

We will call a causal directed acyclic graph with signs on those edges \ahah them a signed
causal directed acyclic graph. The theorems in this paper are givemris ¢téisigned paths so as to
be applicable to both monotonic effects and weak monotonic effects. Gtherfaefinition will be
useful in the development of the theory below.

Definition 5. Two variables X and Y are said to be positively monotonically associated ifedtdd
paths from X to Y or from Y to X are of positive sign and all common caysek X and Y are
such that all directed paths from @ X are of the same sign as all directed paths fronoCY ; the
variables X and Y are said to be negatively monotonically associated if atitditgpaths between
X and Y are of negative sign and all common causex X and Y are such that all directed paths
from G to X are of the opposite sign as all directed paths fronoCy .

It has been shown elsewhere (VanderWeele and Robins, 2009) KairitlY are positively
monotonically associated th&ouX,Y) > 0 and if X andY are negatively monotonically asso-
ciated thenCouX,Y) < 0. We now develop several results concerning the monotonicity in the
conditioning argument of certain conditional expectations.

5. Monotonic Effects and Conditional Expectations

Lemma 1 below can be proved by integration by parts and will be used in tésprbthe subse-
guent propositions. We will assume throughout the remainder of this fzatehe random variables
under consideration satisfy regularity conditions that allow for the integrdyoparts required in
the proof of Lemma 1. If conditional cumulative distribution functions aretiooiously differen-
tiable then the regularity conditions will be satisfied; the regularity conditionsafgitl be satisfied

if all variables are discrete. &tdle et al. (1998, p72) also gives relatively weak conditions under
which such integration by parts is possible. Alternatively, the existenceeoféhbesgue-Stieltjes
integrals found in the proof of Lemma 1 suffices to allow integration by partée khat Lemma 1
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will always be applied either to the functidriy, a,r) =y or to conditional survivor functions which
will satisfy the relevant regularity conditions; thus the conditions whichegeired for integration
by parts are only regularity conditions on the distribution of the randomblasa

Lemma 1. If h(y,a,r) is non-decreasing in y and in a andyfa,r) = P(Y >y|JA=aR=r) is
non-decreasing in a for all y then[&(Y, A R)|A= a,R=r] is non-decreasing in a.
Proposition 3 immediately follows from Lemma 1.

Proposition 3. Suppose that the-AX edge, if it exists, is positive. Let X denote some set of non-
descendents of Y that includes,, the parents of Y other than A, thenfYBEX = x,A=a] is
non-decreasing in a for all values of x.

Proposition 4 gives the basic result for the monotonicity of conditional @afiens. For the
conditional expectation of some variabfeto be monotonic in a conditioning argumeAt it re-
quires that the conditioning set includes variables that block all backgktbis fromA to Y. In
order to prove Proposition 4 we will make use of the following two lemmas.

Lemma 2. Suppose that A is a non-descendent of Y and let Q denote the setestarmf A
or Y which are not descendents of A. LetRR;,...,Ry) denote an ordered list of some set of
nodes on directed paths from A to Y such that for each i the backdoor frathsR to Y are
blocked by R ...,R_1,A, and Q. Lety=A and A=Y and let,...,V,_1 be an ordered list of
all the nodes which are not in R but which are on directed paths from A tocH that at least
one of the directed paths from each node to Y is not blocked by RVl et{Vy,...,\k} then

S(W|a,Vk-1,0,T) = S(W|pay,).

Lemma 3. If under the conditions of Lemma 2 all directed paths from A to Y are positieept
possibly through R then(a, q,r) is non-decreasing in a.
These two lemmas allow us to prove Proposition 4 given below.

Proposition 4. Suppose that A is a non-descendent of Y and let X denote some smi-of n
descendents of A that blocks all backdoor paths from Ato Y. ket ..., Rn) denote an ordered
list of some set of nodes on directed paths from Ato Y such that for eaetbatkdoor paths from
R to Y are blocked by R...,R_1,A and X. If all directed paths from A to Y are positive except
possibly through R then(@a, x,r) and Ely|a, x,r] are non-decreasing in a.

If R= @ the statement of Proposition 4 is considerably simplified and is stated in the fajlowin
corollary.

Corollary . Let X denote some set of non-descendents of A that blocks all lmeglatbs from A to
Y. If all directed paths between A and Y are positive thgmeSk) and Ey|a, x| are non-decreasing
ina.

Lemma 3 and Proposition 4 are generalizations of results given by Wellm@@)@ad Druzdzel
and Henrion (1993). In particular, in Lemma 3Rf= @, then the result follows immediately from
repeated application of Theorems 4.2 and 4.3 in Wellman (1990) or more difrectiythe work of
Druzdzel and Henrion (1993, Theorem 4). Lemma 3 generalizes thkse$s Wellman (1990) and
Druzdzel and Henrion (1993) by allowing for conditioning on noRes (R, ...,Ry) which are on
directed paths fromh to Y. Proposition 4 further generalizes Lemma 3 by replacing th&sat
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Figure 2: Example illustrating Propositions 4-6.

Lemma 3 which consists of the set of ancestora of Y which are not descendentsAfvith some
other seX which consists of some set of non-descendenstbfat blocks all backdoor paths from
AtoY.

Propositions 5-8 relax the condition that the conditioning set includes Vesiaitat block all
backdoor pathé&toY and impose certain other conditions; the proofs of each of these propssitio
make use of Proposition 4.

Proposition 5. Suppose that A is not a descendent of Y, that A is binary, and that A amd Y
positively monotonically associated thef\i\ is non-decreasing in A.

Proposition 6. Suppose that A is not a descendent of Y, that Y is binary, and that A anel Y
positively monotonically associated thepAEY| is non-decreasing in Y .

Propositions 5 and 6 require that the conditioning variable be binary. t€mxamples can be
constructed to show that if the conditioning variable is not binary then thditbomal expectation
may not be non-decreasing in the conditioning argument evaraifdY are positively monotoni-
cally associated (see Appendix B, counterexamples 1 and 2).

Propositions 5 and 6 can be combined to give the following corollary whiclema& reference
to the ordering oA andyY.

Corollary. Suppose that A is binary and that A and Y are positively monotonically iassd¢hen
E[Y|A] is non-decreasing in A.

Example 2. Consider the signed directed acyclic graph given in Figure 2. By Pitigog, we
have thatE[Y|A=a,C = c,R=r] andE[Y|A = a,C = ¢] are non-decreasing & If A is binary
then by Proposition 5, it is also the case tB@t |A = a] is non-decreasing ia. If Y is binary, then
by Proposition 6E[A]Y =] is non-decreasing in. The monotonicity oE[Y|A=a,C=c,R=r]
andE[Y|A = a,C = ] also follow directly from the results of Wellman (1990) and Druzdzel and
Henrion (1993); the monotonicity d&[Y|A = a) andE[AY =] do not.

Propositions 7 and 8 consider the monotonicity of conditional expectatioits @dnditioning
on variables other than the variable in which monotonicity holds but not conttigaon variables
that are sufficient to block all backdoor paths betwdeandY. Propositions 7 and 8 generalize
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Q ®

Figure 3: Example illustrating Propositions 7 and 8.

Propositions 5 and 6 respectively.

Proposition 7. Suppose that A is not a descendent of Y and that A is binary. Let Qniee st of
variables that are not descendents of Y nor of A and let C be the coroauses of A and Y not
in Q. If all directed paths from A to Y are of positive sign and all directed pé&tira C to A not
through Q are of the same sign as all directed paths from C to Y not thréQgh} then EY|A, Q]
is non-decreasing in A.

Proposition 8 is similar to Proposition 7 but the conditional expectai@Y, Q] is considered
rather tharE[Y|A, Q] andY rather tharA is assumed to be binary. The form of the proof differs.

Proposition 8. Suppose that A is not a descendent of Y and that Y is binary. Let Qrizessi of
variables that are not descendents of Y nor of A and let C be the coroauzes of A and Y not
in Q. If all directed paths from A to Y are of positive sign and all directed p&tha C to A not
through Q are of the same sign as all directed paths from C to Y not thréQgh} then EA|Y, Q]
is non-decreasing inY.

Propositions 7 and 8 can be combined to give the following corollary whictema& reference
to the ordering oA andyY.

Corollary. Suppose that A is binary. Let Q be some set of variables that are soéddents of Y
nor of A and let C be the common causes of Aand Y notin Q. If all dirgetdts from Ato Y (or
from A to Y) are of positive sign and all directed paths from C to A not thra@@fy } are of the

same sign as all directed paths from C to Y not throg@hA} then EY|A, Q] is non-decreasing in
Y.

Example 3. Consider the signed directed acyclic graph given in Figure 3A i binary, then
by Proposition 7E[Y[A=aC=c,Q=q], E[Y[A=aQ=q], E[Y|[A=aC=c] andE[Y|A=
a) are all non-decreasing ia. If Y is binary then by Proposition &[AlY =y,C =¢,Q = ¢,
EJAY =y,Q=q], E[A]Y =y,C = c] andE[A]Y =] are all non-decreasing in The monotonicity
of E[Y|A=a,C = c,Q = q] follows directly from the results of Wellman (1990) and Druzdzel and
Henrion (1993); the monotonicity of the other conditional expectations ¢tlo no
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We now return to Example 1 concerning potential unmeasured confouimdiing estimation of
controlled direct effects.

Example 1 (Revisited). Consider once again the causal directed acyclic graph giigure 1.
Suppose that we may assume tAdtas a weak monotonic effect & Under the null hypothesis
thatU is not a cause oR (i.e., does not confound the relationship betw&andY) we could
conclude by Proposition 4 thefY|A=a,R=r,Q = g] is non-decreasing iafor all r andg. Under
the alternative hypothesis thdtis a cause oR, we could not apply Proposition 4 because of the
unblocked backdoor patR—U —Y betweenR andY. The monotonicity relationship would thus
not necessarily hold. ConsequentlyEifY |A=a,R=r,Q = g] were found not to be monotonic in
a then we could reject the null hypothesis thhis not a cause oR. Note that the monotonicity
of E[Y|A=a,R=r,Q=q] in aalso follows from the results of Wellman (1990) and Druzdzel and
Henrion (1993). If, however, there were an edge ftdrto Q for example, or in more complicated
scenarios, the results of Wellman (1990) and Druzdzel and Henri@3)1@ould no longer suffice
to conclude the monotonicity &[Y|A=a,R=r,Q=q] in & one would need to employ Proposition
4.

We now construct a simple statistical test in the caseAhRafandY are all binary (cf. Robins and
Greenland, 1992) of the null hypothesis thiais absent from Figure 1. Letjq denote the number of
individuals in stratun@ = gwith A=i andR = j and let letd;jq denote the number of individuals in
stratumQ = qwith A=iandR= j andY = 1. Letp;jq denote the true probabiliy(Y = 1|A=i,R=
j,Q=q). From the null hypothesis thak is absent from Figure 1, it follows by Proposition 4 that
P1jq — Pojq < O for all j andg. Thus we haveljq ~ Bin(njjq, pijq) with E[%] = Pijq andVar(g:%) =
o)

(1D L. L. At = s P1jq—Pojq)
M By the central limit central limit theorem =424 e N(0,1) and by Slut-
ijq \/P;qu(lfpqu)_"_Pojq(lfpojq) ~
. Mjq Mojq
, Al — 22) — (pujq— Pojq) .
sky’s theorem we have —2—4 ~N(0,1). To test the null hypothesis that the edge

%ja("jq—91jg) , %ja("oja—Coja)
3. 3.
1jq Oja
%jq _ %ja )
. . . . Nyj noj
from U to R is absent from Figure 1 one may thus use the test statistic———14__0i
1ja(Mjq~91jq) , %ojg(Mojq—ojg)

"jq "ojq
(it~ o) .
with critical regions of the form{ g Ol > 73 4} to carry out a one-sided (up-
dliq(”léq’dliq) +d01q<”031q*d01q>
"jq "jq
per tail) test. The derivation of the power of such a test would requirgging explicit structural
equations for each of the variables in the model. Similar tests could be cdedtfoc other sce-
narios. We note that if the test fails to reject the null, one cannot concladehté arrow fronlJ
to Ris absent; if the inequalitE[Y|A=a;,R=r,Q=q] < E[Y|A=ax,R=r,Q = q] holds for all
a; < ap this is potentially consistent with both the presence and the absence of afreaid) to
R. If, however, the test rejects the null then one can conclude that anfemlgU to R must be
present, provided the other model assumptions hold. With observatidaaltia assumption that
no unmeasured confounding variable is present can be falsified larribtbe verified regardless
of the approach one takes. It is nevertheless worthwhile testing any eahfrniglications of the
no unmeasured confounding variables assumptions which can bedjevixgh as those following
from Proposition 4.
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Tian and Pearl (2002) and Kang and Tian (2007) derived variouali#g constraints that arise
from causal directed acyclic graphs with hidden variables; Kang and (2i206) derived various
inequality constraints that arise from causal directed acyclic graphs ididein variables. We note
that the inequality constraifg[Y|/A=a;,R=r,Q=0q <E[Y[A=a,R=rQ=q| fora < a
does not follow from the results of Tian and Pearl (2002) or Kang aad {2006, 2007). The
equality and inequality constraints which follow from their work will apply to alsal models
consistent with the directed acyclic graph in Figure 1 (without the sign); thguiality constraint
E[Y[A=a;,R=r,Q=q] <E[Y|A=a,R=r1,Q= (] follows only if it can be assumed in Figure 1
thatA has a weak positive monotonic effect¥nMore generally, the results in this paper provide a
supplementary set of constraints to those of Tian and Pearl (2002)amglahd Tian (2006, 2007).

6. Effect Modification and Monotonic Effects

If when conditioning on a particular variable, the sign of the effect oftlagrovariable on the out-
come varies between strata of the conditioning variable, then the conditioaifable is said to
be a qualitative effect modifier. The following definition gives the conditimndualitative effect
modification more formally.

Definition 6. A variable Q is said to be an effect modifier for the causal effect of AonY if Q
is not a descendent of A and if there exist two levels ofpfgral & say, such that Fa_,,|Q =
g — E[Ya=a,|Q = g] is not constant in g. Furthermore Q is said to be a qualitative effect modifier if
there exist two levels of Apand &, and two levels of Q,gand ¢, such that SigfE[Ya—a,|Q =
1) — E[Ya=ao|Q = th1]) # SIGN(E[Ya=a,|Q = o] — E[Ya=a,|Q = Co]).

Monotonic effects and weak monotonic effects are closely related to tleepbaf qualitative
effect modification. Essentially, the presence of a monotonic effeciyates the possibility of qual-
itative effect modification. This is stated precisely in Propositions 9 and 10.

Proposition 9. Suppose that some parent 8f Y is such that the A-Y edge is of positive sign
then there can be no other pareng,Af Y which is a qualitative effect modifier for causal effect of
A; onY, either unconditionally or within some stratuns=& of the parents of Y other than And
Ao.

A similar result clearly holds if théy; —Y edge is of negative sign. We give the contrapositive
of Proposition 9 as a corollary.

Corollary. Suppose that some parent of Y,, & a qualitative effect modifier for causal effect of
another parent of Y, A either unconditionally or within some stratum-€c of the parents of Y
other than A and A then A can have neither a weak positive monotonic effect nor a weak negative
monotonic effecton Y .

If there are intermediate variables betwe®andY then Proposition 9 can be generalized to
give Proposition 10.

Proposition 10. Suppose that all directed paths from Ato Y are of positive sign (or are akgf

ative sign) then there exists no qualitative effect modifier Q on the directadiagyaph for the
causal effectof AonY.
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2

Q,
Q,

Figure 4: Example illustrating the use of Propositions 9 and 10.

Example 4. Consider the signed directed acyclic graph given in Figure 4 in whichth& edge

is of positive sign. It can be shown that any@f, Q», Qsz, Q4 or Qs can serve as effect modifiers
for the causal effect oA onY (VanderWeele and Robins, 2007). However, by Proposition 9 or 10,
sinceA has a (weak) monotonic effect 0f) none ofQ;, Q2, Qs, Q4 or Qs can serve agualitative
effect modifiers for the causal effect AfonY. Conversely, if it is found that one 1, Q, Q3, Q4

or Qs is a qualitative effect modifier for the causal effectfobnY then theA—Y edge cannot be of
positive (or negative) sign.

7. Concluding Remarks

In this paper we have related weak monotonic effects to the monotonicity w@firceonditional
expectations in the conditioning argument and to qualitative effect modificatiben the variables
on a causal directed acyclic graph exhibit weak monotonic effects thkksean be used to construct
tests for the presence of unmeasured confounding variables. Fuitkeauld examine whether it

is possible to weaken the restrictions Riin Proposition 4; another area of future research would
include developing an algorithm for what relationships need systematicaieadin order to test for
particular confounding patterns; further research could also be alotige derivation of statistical
tests of the type considered at the end of Section 5 for cases in wWhiRhndY are not binary and
for dealing with issues related to multiple testing problems.
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Appendix A. Proofs

This appendix contains the proofs for all of the results in this paper.
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A.1 Proof of Proposition 1

By the definition of a non-parametric structural equatis, (w) = f(pay,a,ey(w)) and from
this the result follows.

A.2 Proof of Proposition 2
SinceA has a positive monotonic effect af for anya; > ap we have thaB(y|a;, pa,) = P(Y >
yla1, pay) = P{f(pay,as,ev) >y} > P{f(pay,a0,ev) >y} = P(Y > y|ao, pay) = S(y|as, Pay).
A.3 Proof of Lemma 1
Fora > & we haveE[h(Y, A, R)|A a,R=r]—E[h(Y,AR)|A=4d,R=r1]
—00 y:OO
= / hyandFylan—[" hyandran= " hy.andFan-Fa,n}+
——00 —00 . y:m
/y ~{han —hiy. Ny, = hiy.an {Fean —Fyan.- [ (Foan-
y:oo
Fivltnbdniyan+ [ {hiv.an —hiy.a.n}dr(y.n)
y=—00
y=00 y=00
= |7 _{sylan-syia.njdny.an+ [~ {hy.an -hia.n}dF(ya.n. This final ex-
y=—00 y=—00
pression is non-negative since the integrands of both integrals aneayative fora > a'.

A.4 Proof of Proposition 3

We have thaE[Y|X = x,A=a] = E[Y|pa,,A = @ and sinceA has a (weak) positive monotonic
effect onY, we have thaS(y|a, pa,) is non-decreasing ia and it follows from Lemma 1 that
E[Y|X =x,A=a] = E[Y|pa,,A = a] is non-decreasing ia.

A.5 Proof of Lemma 2

We will say a path fromA to B is a frontdoor path fronA\ to B if the path begins with a directed
edge with the arrowhead pointing out Af Let Q¢ andR¥ be the subsets @ andR respectively
that are ancestors df,.. We will show that

S(Vk’a,V]_,...,Vk_]_,q,r) = S(Vk‘avvlv"ka—lvq?rk)
= S(Vila,vi, ..., k1,05, 1) = S(w| pa,).

If R=R, the first equality holds trivially. Suppose th&it=~ Rso thaiRy, is not an ancestor &k. All
frontdoor paths fronkky, to Vk must include a collider sindg&y, is not an ancestor &f. This collider
willnotbe inA,Vy,...,Vk_1,Q, Ry, ..., Rn_1 since all these variables are non-descenderRg,0Thus
all frontdoor paths fronR, to Vi will be blocked givemA, Vi, ..., Vk_1,Q, Ry, ..., Rm_1. All backdoor
paths fromR, to Vi with an edge going int®y will be blocked givemA, V1, ...,.Vik_1,Q,R1,...,Rm_1
by pay,; note by hypothesis it can be seen thay, will be contained by the variablésVy, ..., Vi1,
Q,R since there is a directed path frovk to Y and Q includes all ancestors of not on di-
rected paths fronA to Y. All backdoor paths fronRy, to Vi with an edge going out fronvi
will be blocked givenA, Q, Ry, ...,Rn_1 by hypothesis; otherwise there would be a backdoor path
from Ry, throughV, to Y not blocked byA, Q, Ry, ...,Ry_1. But all backdoor paths froRy, to Vi
with an edge going out frorw, which are blocked by, Q,Ry,...,Ry_1 will also be blocked by
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AV1,....Vk_1,Q,Ry,...,Rn_1. This is because such a path concluding with an edge going out from
Vk which is blocked byA Q,Ry,...,Rn_1 but not blocked byA, Vi, ...,Vk_1,Q,Ry,...,Rn_1 would
require that one 0¥y, ..., Vik_1, sayVp, be a collider on the path or a descendent of a collider. If one
of Vi, ...,Vk_1 were a collider then the path would in fact be blocked by the parents of theeco
since all the parents ofy,....Vik_1 are inAVy,....Vk_1,Q,R1,...,Rn_1. If one of Vi, ..., Vk_1, say
Vp, were a descendent of the collider then none of the directed paths feoooliider toV,, could
contain nodes iRy, ..., Rn_1 for otherwise the path would not be blockedAyQ, Ry, ...,Rn_1; for
the same reason the collider itself could not b&jn..., Rn_1. But it then follows that the collider
must itself be one d¥y,...,Vp_1 since it is an ancestor &, with a directed path t&, not blocked
by R. However, if the collider is one ofy, ...,Vp_1 then the path would in fact be blocked by the
parents of the collider since all the parentd/gf...,Vi_1 are inA,Va,...,Vk_1,Q,Ry, ..., Rm_1. From
this it follows that all backdoor paths froRy, to Vi with an edge going out frofdk are blocked by
AV, ...\ Vk-1,Q,R1, ..., Rn_1.

We have thus shown th¥f andRy, are d-separated givef V1, ...,Vk_1,Q, Ry, ...,Rn_1 and so

S(w|a, Vi, .., Vik-1,0, 1) = S(Vk|@,Va, .oy Ve 1,0, T 1y vvey Fm—1) -
Similarly, Vk andRy,_1 are d-separated give Vi, ..., Vk_1,Q,R1, ...,Rn_2 and so
S(Vk|a, Vi, o, Ve 1,0, T 1y ooy Tme1) = S(VK|@, Ve ev ey, Ve 1,0, Ty ey Tm2)

We may carry this argument forward to get

S(Vi|a, Vi, ..., V1,0, ) = S(W|a, va, ..., Vi1, G, T¥).

All backdoor paths fronvi to Q\Q* will be blocked giverA, Vi, ..., Vik_1,Q%, R¢ by pa,,. SinceVk
is not a descendent (GI\Qk all frontdoor paths fronvy to Q\Qk will involve at least one collider
which is a descendent . This collider is not in the conditioning sét Vi, ..., Vi_1, Q%, R since
this entire set consists of non-descendentsiadind so the collider will block the frontdoor path
from Vi to Q\QX.

ThusVk andQ\ QX are d-separated giveR Vi, ..., Vi1, Q%, R¢ and so

S(Vk|aa Vi, Vk—1, q7 rk) = S(Vk‘a,V]_, ooy V-1, qu rk)'

FurthermoreA, Vi, ..., Vk_1, Q¥, R¢ are non-descendents\éfand include all of the parents ‘b and
o)

S(Vk‘aa V1, ..oy Vk—1, qu rk> = S(Vk‘ pa/k)
We have thus shown as desired that

S(Vk’avvla"'vkalaqar) — S(Vk‘a,V]_,...,Vk,]_,q,rk)
= S(wlavi, ..., Vi 1,95 1¢) = S(w| pay,).

A.6 Proof of Lemma 3

LetVp = AandV, =Y and letV,,...,Vh_1 be an ordered list of all the nodes which are noRibut
which are on directed paths froAto Y such that at least one of the directed paths from each node
toY is not blocked byR. LetVy = {Vi,...,\k}. It can be shown by induction that by starting with
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n = k and for eaclk iteratively replacing by their negations the parentpfvith negative edges
into Vg suffices to obtain a graph such that all edges on all directed pathsAfttony not blocked
by R have positive sign.

We can expresi[1(V,, > V)|A,Q,R] as

E[E[...E[E[1(Vh > V)|AVh_1,Q,RIAV,_2,Q,R]|...]A V1, Q,RIA,Q,R].
Now conditional omA,V,_1\V;, Q,Rwe have that
E[l(vn > V)|7A>\7n717 Qv R]

is non-decreasing is fori = 1,...,n— 1 sinceV; has either a weak positive monotonic effect or no
effect onV,,. Thus conditional o\, V,_1\{Vi,Vh_1},Q, Rwe have that

E[l(Vn > V)’Ayvn—lyQa R]

is a non-decreasing function gfandv,_1. Furthermore, by Lemma 2 we have ti$a¥,_1|a, v, ...,

Vn-2,0,) = S(Vn-1|pa,,_,) and soS(vn_1|a,vi,...,Vn—2,0,r) = S(Vn_1|pa,,_,) IS @ non-decreasing
inv; forall a,vy,...,Vi_1,Vi11,...,Vn_2,0,r SinceV; has either a weak positive monotonic effect or no
effect onV;,_1. Thus by Lemma 1 we have that conditional&V,_»\Vi,Q,R,

E[E[l(vn > V) |Aa\7l’lfla Qa R] |Aa\7l’l*27 Q) R]

is non-decreasing i fori =1,...,n—2. Carrying the argument forward, conditional AmQ, R,
we will have that

E[...E[E[1(Va > V)|AVh_1,Q.RIAVh 2, Q,R]|..][AV1,Q,R

is a non-decreasing function #f andvy = a and sinceA has either a weak positive monotonic
effect or no effect oy, S(vi1|a,q,r) = S(v1|pa,, ) will be non-decreasing ia and thus by Lemma
1,

S(y|a,q,r) = E[l(Vn > y)‘Aa Qa R]
= E[E[E[E[l(vn > y) |A,\7n,1, Qa R] |A7\7n72a Q> R] | ’A,V]_, Q? R] |A7 Q7 R]

will be non-decreasing ia.

A.7 Proof of Proposition 4

Let Q denote the set of ancestorsAbr Y which are not descendents &f Note that if for each

the backdoor paths frofR to'Y are blocked byry, ...,R_1,AandX then these backdoor paths will
also be blocked by, ...,R_1,A andQ since for each backdoor path froRy to X there must be
some member of A} UQ through which the path passes. We may thus apply Lemma 3 to conclude
thatE[1(Y > y)|a, Q,r]. SinceQ blocks all backdoor paths fromto Y we have

Slyla,x,r) = E[E[L(Y >y)|a,Q,xr]|a,xr]
= E[E[L(Y >y)|la,Q,r]la,x,r] =E[E[L(Y >y)|a,W,r]|a,X,r]

whereW is the subset o which are either parents of or parents of a node on a directed path
from AtoY. LetW’ denote the subset & for which there is a path t¥ not blocked byA, X,R
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thenE[E[L(Y >y)|a,W,r]|a,x,r] = E[E[1(Y >y)|a,W’,r]|a,x,r]. All backdoor paths fron to W’
are blocked givelR andX by X sinceX blocks all backdoor paths fromto Y. Any frontdoor path
from A to W’ will include a collider since the nodes W'’ are not descendents &f The collider
cannot be inX becauseX includes only non-descendents Af Suppose the collider were some
nodeR;; by hypothesis all backdoor paths frdgnto Y are blocked byRy, ...,R_1, A andX; thus the
frontdoor path fromA to W’ would have to be blocked b& Ry, ...,R_1 andX for otherwise there
would be a backdoor path froR throughW’ to Y not blocked byA, Ry, ...,R_; andX. From this

it follows that every frontdoor path from to W’ must be blocked giveR andX either by a collider
or by a node irR or X. We have thus shown that all paths fréno W’ are blocked giveiR andX
and soWV' is conditionally independent & givenR andX and so we have

E[E[L(Y >y)laW' r]laxr] = E[E[LY >y)laW, r]xr]
= E[E[L(Y >y)|a,Q,r]|xr].

We have thus shown th&yla,x,r) = E[E[1(Y > y)|a,Q,r]|x,r]. SinceE[1(Y > y)|a,Q,r] is non-
decreasing ima for all g we also have that

Syla,xr) = E[E[L(Y >y)|a,Q,r][xr]

is non-decreasing ia. Finally, sinceS(y|a,x,r) is non-decreasing ig, it follows from Lemma 1
thatE[y|a,x,r] is also non-decreasing &

A.8 Proof of Proposition 5

Proposition 5 is in fact a special case of Proposition 7 it & andQ = @. The proof of
Proposition 7 is given below.

A.9 Proof of Proposition 6

Proposition 6 is in fact a special case of Proposition 8 idta: @ and Q = @. The proof of
Proposition 8 is given below.

A.10 Proof of Proposition 7

By the law of iterated expectations,

=Y E[Y[A=aC=cQ=qP(C=clA=2aQ=0)

We have by Proposition 4 thefY |A, Q,C] is non-decreasing iA. Let(C;, ...,C,) denote an ordered
list of the variables it€. LetQC be variables ifQ which are common causes©find letQ" = Q\ Q°.
Let QY be the variables ifQ° that are descendents 6f. Let CY denote the variables i€ that
are descendents @ and letC" = C\{C;,C%}. By Proposition 4 we have th&[Y|A Q,C] is
non-decreasing in each componénof C by choosing for each A in Proposition 4 to b&;, X
in Proposition 4 to be the sQ",Q°\Q",C"} andR in Proposition 4 to be the s¢Qf,CY A}.
Furthermore,

P(A=aC=c,Q=qP(C=clQ=0q)

P(C=c/A=a,Q=0q)= P(A=alQ=0)
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and so
P(C=c/A=1,Q=0) =Vq(c)P(C=Cc|A=0,Q=0)

where
vo(c) = PA=0Q=0qP(A=-1C—-cQ=q
T P(A=1Q=qP(A=0C=c,Q=0q)

which is non-decreasing in each dimensioncafince the numerator is non-decreasing in each
dimension ofc and the denominator is non-increasing in each dimensianbgfProposition 4 by
choosing for each, A in Proposition 4 to b&;, X in Proposition 4 to be the s¢Q",Q°\Qf,C""}
andRin Proposition 4 to be the s¢Q°,C"}. Thus

1™

E[Y[A=1,Q=¢]
=S E[Y[A=1C=c,Q=qPC=clA=1,Q=0q)
2§EWM:QC:QQ:mHC:dA=LQ=®
:iEwm:QC:qumwmwmszZQQ=®
ZiEwmzqcquszmszZQsz
= EC[Y|A:O,Q: q.

The second inequality holds because by an argument similar to that BBtve= 0,Q = g,C = (]

is non-decreasing in each dimensiorc@ndP(C =c|A=1,Q=q) =Vq(c)P(C=c/A=0,Q=0q)

weights more heavily higher values of each dimensioa than doe$?(C = c|A = 0,Q = q) since
Vq(C) is non-decreasing in each dimensiorcofhusE[Y|A = a,Q = g is non-decreasing ia.

A.11 Proof of Proposition 8

By the law of iterated expectations we have that
EAY =y,Q=0q =} E[AY =y,C=c,Q=qP(C=c|]Y =y,Q=0)
[

=Y aP(A=aY=yC=cQ=qP(C=cly=y,Q=0q)

ca

B aP(Y =y,A=aC=c|Q=0q)
& PY=yC=cQ=q)

P(Y=y|A=aC=c,Q=0)

PC=clY=y,Q=0q)

I
®

P(A=a,C=clQ=q)

ca P(Y = y|Q = Q)
P(Y =y|A,C,Q=q)
= A - .
A ey —yig=g 107

As in the proof of Proposition 7, we have by Proposition 4 we have thatitonal on andQ = q,
% is a non-decreasing function Afand of each dimension &f. Similarly, %@iﬁ‘”
is a non-increasing function &k and each dimension &@. Overc anda, conditional on and

Q=q, PY=y0=q) is a weight function that sums to 1, that g A P(Y=y0=q) | =
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7%3}823; = 1. Furthermore, by Proposition &a|c,q) is non-decreasing in and we thus have
that
P(Y =1/A,C,Q=0)
E[AY=1,Q=q = EcalA —
P(Y =0/A,C,Q=0)
> EcalA =
= E[AY=0,Q=(]

and soE[A|Y, Q] is non-decreasing .

A.12 Proof of Proposition 9

Note that by Proposition 3 aboveAf has a weak positive monotonic effect ¥rthenE[Y|A; =
a1, A2 = ap,C = ¢] must be non-decreasing & and if A has a weak negative monotonic effect on
Y thenE[Y|As = a1, Az = a,C = ¢] must be non-increasing &. Since(YLIA;[{A2,C})ge, where
Gg, is the original directed acyclic graph with all edges emanating froly; removed, we have
Ya,—allA1|{A2,C} (Pearl, 1995). ThUE[Ya,—q, |A2 = 8,C=c| = E[Y|A1 = a;,A, = @,C = ¢] and
so if Ay is a qualitative effect modifier for the causal effecgfonY for stratumC = c then we must
two values ofA, a; andaj*, and two levels of\y, &, andaj, such thaE[Y|A; = aj*, A = &,,C =
c|-E[Y|Ai=a;,Ac=8;,C=c|<0andE[Y|A; =a;*, A, =a,,C=C]—E[Y|A =a],Ay =&, C=
c] > 0. Eithera;* > a;j or a;* < aj. Consider the first case (the second is analogous) then since
E[Y|AL=a;",Ac=a;,C=c|—E[Y|A; =a],Ay = a],C =] <0, A; does not have a weak positive
monotonic effect oy and sinceE[Y|A; = aj*, Ap = a,,C =] —E[Y|A1 = aj,Ay = &,,C= | > 0,
A; does not have a weak negative monotonic effect oNow if A, is a qualitative effect modifier
for the causal effect oy unconditionally then we must have two valueshef a; anda;*, and two
levels of Ay, & anday, such thaE[Ya,—a;|Az = &5] — E[Ya,—a;|A2 = @] < 0 andE[Yp,—ay|A2 =
&) — E[Ya,—a;|A2 = &] > 0. Once again eithea;* > aj or ai* < aj. We will consider the first
case (the second is analogous). We thus haveStaY |A; = a;*, A = @,,C = c]P(C = c|Ax =

Cc

a’z’) = %E[YAlza’{* A = a’z’,C = ]P(C = C’Az = a’z’) = E[YAliafi*
zE[YAl:ai Ay =a;,C=clP(C=c|A; =a;) = SE[Y|AL = a],Ar = &;,C = c]P(C = c|A; = a&))
Cc Cc

and soA; cannot have a weak positive monotonic effectvoand similarly,y E[Y|A; = a;*, A =

Cc
a,C=cP(C=clAy=4d)) = %E[YAlzai* Ay =a,,C=Cc|P(C=c|Ay=a,) = E[Ya,—ar*
E[YAlzai A = a’z] = ZE[YAl:aﬂAz = a’Z,C = }P(C = C’Az = 8./2) = Z E[Y’Al = aI,Az = a’z,C =
Cc C

c|P(C = c|A; = &) and saA; cannot have a weak negative monotonic effec¥on

Ay =ay] < ElYa—a;|A2 = &3] =

A= a’z] >

A.13 Proof of Proposition 10

We prove the Theorem for weak positive monotonic effects. The paofveak negative mono-
tonic effects is similar. Le€C denote all non-descendents Afwhich are either parents of or
parents of a node on a directed path betw&emdY. By the law of iterated expectations we have
E[Ya-a,|Q = 0] — E[Ya-2,|Q = 0] = JcE[Ya-,|C = ¢,Q = ]P(C = c|Q = ) — 3 E[Ya—4[|C =
c,Q =gP(C =c|Q=q). We will show that this latter expression is equal¥E[Ya—5,|C =
c|P(C =c|Q=10q) — 3:E[Ya=a|C = c|P(C =c|Q=q). By Theorem 3 of Pearl (1995) it suffices
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® ®

C——— A —™Y

®

Figure 5: Directed acyclic graph illustrating counterexamples to ProposHiarsl 6 when A is
not binary.

to show that(YLIQ|C, A)g, whereG denotes the graph obtained by deleting from the original di-
rected acyclic graph all arrows pointing info Any front door path fromY to Q in Gz will be
blocked by a collider. Any backdoor path frovhto Q in Gz will be blocked byC. We thus
have tha€ [Ya—s, |Q = 0] — E[Ya-a)|Q = a] = 5 cE[Ya-a|C = c]P(C = c|Q=0q) — 5 E[Ya-a|C =
c|P(C = c|Q =q). SinceC will block all backdoor paths fronA to Y we have by the backdoor
path adjustment theoreffi. E[Y|C = c,A = &1]P(C = c|Q = q) — J.E[Y|C = c,A = g|P(C =
clQ=0q) =S AE[Y|IC=c,A=a1] —E[Y|C =c,A=a}P(C=c|Q=q). Ifthere were a qual-
itative effect modifierQ for the causal effect oA onY then there would exist a valug such that
E[Ya=a,|Q=0o] — E[Ya=a,|Q=0o] < 0. But since all paths betwedrandyY are of positive sign and
sinceC blocks all backdoor paths frodto Y we have by Proposition 4 th&[Y|C =c,A=4a] is
non-decreasing ia and SOE[Ya—a, |Q = qo] — E[Ya=a,|Q =] = S AE[Y|[C=c,A=a] —E[Y|C=
c,A=a|}P(C=c|Q=qo) > 0.

Appendix B. Counterexamples

This appendix contains the details of the counterexamples mentioned in thefttbdypaper.

B.1 Counterexample 1

Consider the directed acyclic graph given in Figure 5. In this exa@@edY are binary andA

is ternary. Suppose th&t ~ Ber(0.5), ea ~ Ber(0.5) and thatP(A = Olgea = 0) = 1 andP(A =
C+1lea=1) = 1. Suppose also th&(Y = 1|A=2) =1 and that ifP(Y =C|A=0) =1 and
P(Y =C|A=1) = 1. Clearly therC has a positive monotonic effect ghand onY andA has a
positive monotonic effect oM and soA andY are positively monotonically associated. However,
we have thaE[Y|A=1] =E[C/[A=1] =0«xP(C=1A=1) =0 butE[Y/A=0] =E[CIA=0] =
1xP(C=1|A=0)+0xP(C=0A=0) =1/2.

B.2 Counterexample 2

Consider again the directed acyclic graph given in Figure 5. In this exanglgill assume that
andA are binary and that is ternary. Suppose th@t~ Ber(0.5) and thata takes on the values 0, 1
and 2, each with probability/B. Suppose also th®(A=0|ea=0) =1,P(A=Clea=1) =1 and
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P(A=1lea=2) = 1. Suppose further th&(Y = 0|C =0) =1 and ifP(Y = A+ 1|C = 1). Clearly
thenC has a positive monotonic effect @nand onY andA has a positive monotonic effect dh
and soA andY are positively monotonically associated. However, we haveBhaty = 1] = 0 but
E[AlY =0 =E[AIC=0]=1/3.
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