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Predictive models benefit from a compact, non-redundargetutf features that improves inter-
pretability and generalization. Modern data sets are wdd¢y, mixed with both numerical and

categorical predictors, and may contain interactive é&ffdtat require complex models. This is a
challenge for filters, wrappers, and embedded feature temlemethods. We describe details of
an algorithm using tree-based ensembles to generate a cosytsset of non-redundant features.
Parallel and serial ensembles of trees are combined inta@dmiethod that can uncover masking
and detect features of secondary effect. Simulated andlastamples illustrate the effectiveness

of the approach.
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1. Introduction

Large data sets are becoming the norm and traditional methods desigdatefsets with a modest
number of features will struggle in the new environment. This problem assadescribed by
Guyon and Elisseeff (2003) along with other publications in the same isadét has increased
in importance since then. Additional comments and examples have been prbyidéu and Yu

(2005) in a recent survey article.
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1.1 Feature Selection

There are three major categories of feature selection methods. Filter metiooelyariables, typi-
cally individually, and eliminate some before a model is constructed. The fdttsito be generated
carefully to relate well to the requirements of the modeling task. In particulardilter may not
consider the value of one variable in the presence of others. For exaimpleidely-used value
difference metric (VDM) (Stanfill and Waltz, 1986) and its modified versigtvDM) (Cost and
Salzberg, 1993) consider the conditional probability distribution of theoese at a predictor value.
Such a measure is not sensitive to the effects of some predictors in a mtdetlvers present even
though interactions among predictors might be critical for an effectiveetubA sequential, sub-
set search is sometimes implemented to improve the performance when interactiamportant,
although a greedy search also has disadvantages in the presenceaatimis. Several common
filter methods such as ReliefF (Robnik-Sikonja and Kononenko, 20033, (Eall, 2000), and FO-
CUS (Almuallin and Dietterich, 1994) were modified with sequential searcicangbared by Yu
and Liu (2004).

Wrapper methods form a second group of feature selection methodgrédtiietion accuracy
(or the change in accuracy) of a model directly measures the value aftardeset. Although
effective, the exponential number of possible subsets places compataioits for the wide data
sets that are the focus of this work.

Embedded methods form a third group for feature selection. These matkedsl the vari-
ables to generate a model and then analyze the model to infer the importatiee \@friables.
Consequently, they directly link variable importance to the learner used tol thedelationship.

1.2 Subset Feature Selection

Fundamentally, the goal of feature selection is to model a target respaneatput) variabley,
with a subset of the (important) predictor variables (inputs). This is a gegeal and several
more specific objectives can be identified. Each can lead to differeteégira and algorithms. In
filtering the interest is to remove irrelevant variables. Another objectivaiigble rankingwhere
the interest is in obtaining relative relevance for all input variables witheetdo the target. Finally,
we might be interested in a compact, yet effective model, where the goal ierttfjdthe smallest
subset of independent features with the most predictive power, alihedgw alternative groups
might be reasonable. An important concept herdaésmasking relationshipgmong the predictor
variables. Masking occurs when one variable can effectively repteghers in a model. Along
with the related issue of masking, this paper focuses on the subset selection

1.3 Contributions of this Paper

Existing tree ensembles such as random forest (Breiman, 2001) demfrédosting trees (Fried-
man, 1999) were developed primarily for predictive modeling. In additiogy tan provide an
importance ranking of the features, but this information has been coedider ad hoc benefit.
Random forest (RF) is a random subspace method, and is capabfieiehdfy ranking features for
large data sets. We exploit this property of RF, augment the original datsavtiticial contrast

variablesconstructed independently from the target, and use their ranking fovegmidirrelevant

variables from the original set. The tree construction method is also modifieddoge a more
reliable variable ranking in the presence of high cardinality variables.riali@ masking measure
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is then introduced that incorporates surrogate variable scores freemdtes of trees. This forms
the basis foredundancy eliminationResidual effects are calculated to enable the method to detect
variables of secondary importance. These elements are integrated inffacieemtealgorithm for
subset selection called ACE (artificial contrasts with ensembles).

The structure of this paper is as follows. In Section 2 we describe pewouk and outline
directions taken in this paper. Section 3 describes variable importance neeadsfined through
tree ensembles and explains how they could be used to remove irrelesamegeusing random,
artificial features. Next, we introduce a masking measure and use itdondancy elimination.
Section 4 describes the details of the ACE algorithm to generate the selelted, ®ind compares
ACE with its closest competitors in detail. Section 5 provides results from empets. Section 6
provides conclusions.

2. Background

This section defines the problem of finding the best susbset of featlisesisses previous ap-
proaches, and outlines our solution.

2.1 Markov Boundaries

Let F be a full set of features. A feature selection solution can be descrittedns of a Markov
blanket (Koller and Sahami, 1996). Given a target fea¥yretM C F andY ¢ M. M is said to be
a Markov blanket foly if Y_L(F —M)|M. That is,Y is conditionally independent of other features
given M. A minimal Markov blanket is referred to as Markov boundaryB)Mind such a subset
might be considered a feature selection solution. However, an importaatissthat a MB need not
be unique. Redundant features can replace others in a featuré. dussally feature redundancy is
defined in terms of feature correlation (Hall, 2000). For example, twolfesatare redundant to each
other if their values are completely correlated. In reality, it is not so straigh#rd to determine
feature redundancy if a feature is partially correlated to a set of feature

Our goal is to focus on the important case with redundant features &aid ableast one MB. In
most real-life problems exactly determining the MB or measuring feature redeva very difficult
because of a limited sample size, high time complexity, and noise in the data. motheevalua-
tion of the distribution of the input variables and the response always mliseme model (linear,
support vector machine, frequency tables, trees, etc.). In practist afgorithms just try to remove
irrelevant features and then apply some heuristics that remove “possgdlytidant variables.

2.2 Existing Approaches in Feature Selection

The nature of real life data sets provides strong restrictions for modebfatinl feature selection
methods. First, data sets may be very large both in terms of the number oftpredind in the
number of samples (tens of thousandsens of millions). Second, the predictors and the response
can be of mixed type (both numeric and categoric), and can contain misdumgyva_astly and
also very importantly, dependency of the response on predictors daghig non-linear, noisy and
multivariate.

This leaves most existing methods out of scope for such problems. Fopéxavrapper meth-
ods (forward selection or backward elimination) are simply computationallyasitile when deal-
ing with thousands of predictors. Filter methods are also useless for the mmilvsgt selection
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problem, as they do not deal with the notion of redundancy and most of @ahefmmherently uni-
variate. However, there are filters that use a“local” feature importanesune (like RELIEF) that
can be considered multivariate (Kira and Rendell, 1992), but still theyotideal with redundancy
giving just a ranked list of features instead of a selected minimal subset.

Subset evaluation filter methods such as CFS (Hall, 2000) are neithersiitdause they do
not deal explicitly with redundancy, and have to iterate over many featilnges$s incurring a high
time complexity. For example, the time complexity of the CFS is at least quadratic iruthieen
of features and linear in number of samples. Also CFS is highly sensitivetliersuas it uses
correlations between features.

Many embedded methods that use a built-in feature relevance measurambkrts SVM-RFE
(Guyon et al., 2002) and linear regression with backward feature elimmat@heavily dependent
on the model (linear or SVM), that can fail to fit the data well. These methogsadtdeast quadratic
complexity in the number of samples for fitting an SVM and at least cubic complexitg number
of features Q(nn? +m?), wheremis the number of features, ands number of samples) for fitting
a regression model. Data sets with tens of thousands of features or sdraptese very time
consuming and impractical to handle. For example, SVM-RFE involves retgaihe SVM after
features with smallest relevance are removed, thus incurring at leastocubplexity in number of
samples ©Q(maxm, n)n?)).

An issue that discourages using regression methods and methods thah retyne kind of
distance measure between observations (linear regression, SVMIHased methods, RELIEF)
is the difficulty of dealing with outliers in the input (predictor) space. Alséec®n of important
model parameters (kernel width and type, feature relevance thresatijlss non-obvious, and the
results of feature selection depend heavily on them.

Most methods return just a ranked list of features instead of an optims¢subhese methods
include RELIEF, Koller's Markov blanket based backward eliminatiofiefred to here as MBBE)
(Koller and Sahami, 1996), and SVM-RFE. Some methods such as FCESeisvance threshold
that is not clear how to adjust (Yu and Liu, 2004). In reality, the user algains a number of
feature subsets corresponding to different values of parameterauvitnint of how to choose the
best subset.

Many methods work with frequency tables. They can thus deal well witlgodtal inputs
only. For numerical inputs, they require discretization. Such methodsoar@ways able to deal
with interacting variables and have great difficulties with multivariate depeside on numerical
inputs. Examples of such methods are FCBS and MBBE. These two algoritedsliscretization
because they use an entropy measure computed on frequency tatilesadmber of categories is
large, or if we use frequency tables with more than two inputs, the tablesecapdsse and may
not represent the data distribution well. Another issue for MBBE is computdticomplexity.
Considering all feature pairs incurs a quadratic complexity on the numieatires.

Hence we see that most methods at hand are either not applicable at alb&stseibset selec-
tion problem, or have some major problems. The most useful methods in setting that ap-
peared to be applicable to the examples of large “real-life” data in the chaltatg sets discussed
in Sec. 5.3) are methods based on backward feature elimination usingramiapgte Markov blan-
ket concept (Koller and Sahami, 1996; Yu and Liu, 2004). Our methpdoapnates the optimal
Markov blanket redundancy elimination procedure, but without mostetithwbacks of previous
methods.
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2.3 Towards Efficient and Approximately Optimal Feature Selection

We propose a method that uses an idea similar to those proposed by Kollsakhachi (1996) and
Yu and Liu (2004) that tries to overcome their limitations. It does not havdmtia time complexity
in the number of features, can deal with thousands of predictors, usedel (ensembles of trees)
that can be applied to mixed variable types, thus eliminating need for discratizdtioumeric
inputs, does not require imputation of missing values, captures local infion(éike RELIEF), is
invariant to a monotone transformation of inputs, thus not very sensitiveise mnd outliers, and
deals well with multivariate dependencies.

It is well known that trees and especially ensembles of trees can pradgdstrand accurate
models in “real-life” data settings. They handle mixed and noisy data, ansicafe insensitive.
Ensembles of trees have high predictive power and are resistant tdittmagr (Breiman, 2001).
Our approach relies heavily on ensembles of trees.

First, we find irrelevant features that are conditionally independenteofélponse given the
rest of the features. It is accomplished by comparing the relevance ofigieal variables with
the relevance of random, artificial features (appended to the origita) danstructed from the
same distribution, but independently from the response. These feateresferred to as artificial
contrasts. We measure feature relevance as variable importance imréor@sts with a modified
robust splitting criteria. We assume that if an original variable had a retevsgore not statistically
higher than that of an artificial probe (independent from the targebbgteuction) then it is also
independent from the target, irrelevant, and should be removed. Notedhey to remove irrelevant
features by directly assessing conditional independence withouhssgfor a MB, the existence
of which is a much stronger requirement. Although the idea of artificial csistigas already used
by other researchers in simple filter methods with success (Stoppiglia etG8), #8 application to
tree ensembles is novel and promising. Actually, our approach can belecgd as non-parametric
because all parameters in our algorithm can be assigned reasonahli dalues that work well
for wide range of problems.

Then the redundant feature elimination step is performed. Redundahegerefeatures is
measured using surrogate scores. The variable with the largest impdiritticn score at a node is
the primary splitter. If surrogate variables (ones that partition the nodevie say as the primary
variable) are present, these surrogate variables are consideradsietl”. Masking scores between
all pairs of important variables are computed and evaluated using a statisitahnd variables
masked by more important variables (“approximately redundant”) are rearniteratively.

Finally, after a set of non-redundant relevant features has be@d four method removes the
influence of the found subset with an ensemble and proceeds. Beeauselancy elimination is
approximate in nature this iterative approach is another advantage of thuwdnét allows one to
recover variables with small importance and to reduce the chance to lose¢amip@riables during
redundancy elimination.

3. Tree Ensembles for Feature Selection

For our embedded method, we focus on ensembles of decision treesfididiwing reasons. Trees
can be applied in ubiquitous scenarios so that they provide a good eimtygydeature selection for
interdisciplinary, wide data sets. They apply to either a numerical or a catabmesponse. They
are nonlinear, simple and fast learners that handle also both numeritahtegorical predictors
well. They are scale invariant and robust to missing values. A simple detis®also provides an
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embedded measure of variable importance that can be obtained from themamdtihe quality of
splits that are generated from a predictor variable. However, a singlést@roduced by a greedy
algorithm that generates an unstable model. A small change to the datawamrasery different
model. Consequently, ensemble methods have been used to counterastahditinof a single
tree.

Supervised ensemble methods construct a set of simple models, calleddrasesleand use
their weighted outcome (or vote) to predict new data. That is, ensemble rsatbotbine outputs
from multiple base learners to form a committee with improved performance. Nusmempiri-
cal studies confirm that ensemble methods often outperform any singiddzaser (Freund and
Schapire, 1996; Bauer and Kohavi, 1999; Dietterich, 2000a). Theoweprent can be dramatic
when a base algorithm is unstable. More recently, a series of theoretig@bgments (Bousquet
and Elisseeff, 2001; Poggio et al., 2002; Mukherjee et al., 2006;iBegal., 2004) also confirmed
the fundamental role of stability for the generalization of a learning algorithoreMomprehensive
overviews of ensemble methods were presented by Dietterich (2000B)adewatini and Masulli
(2002). There are two primary approaches to ensemble constructi@tiepand serial.

A parallel ensemble combines independently constructed and diversddaasers. That is,
different base learners should make different errors on new dateangemble of such base learners
can outperform any single one of its components since diverse eancgloout (Hansen and Sala-
mon, 1990; Amit and Geman, 1997). Parallel ensembles are varianeeticedtechniques, and in
most cases, they are applied to unstable, high-variance algorithms Gtreles). Also, Valentini
and Dietterich (2003) showed that ensembles of low-bias support v@etchines (SVMSs) often
outperformed a single, best-tuned, canonical SVM (Boser et al., 1992)

Random forest (RF) is an exemplar for parallel ensembles (Breimad,).2@0s an improved
bagging method (Breiman, 1996) that extends the “random subspacejar(gth, 1998). It grows
a forest of random decision trees on bagged samples showing excefiahis comparable with the
best known classifiers. A RF can be summarized as follows: (1) Growteseon a bootstrap sam-
ple of the training set to maximum depth, (2) Givdrpredictors, select at random< M variables
at each node, and (3) Use the best split selected from the possible gplitssem variables. Note
that for every tree grown in RF, about one-third of the cases arefehdg (out of the bootstrap
sample). The out-of-bag (OOB) samples can serve as a test set foedlgrawvn on the non-OOB
data. We discuss later how OOB samples can be used for feature selection.

In serial ensembles, every new learner relies on previously built lesaseethat the weighted
combination forms an accurate model. A serial ensemble algorithm is often mongex. It is
targeted to reduce both bias and variance. A serial ensemble resultsddidweamodel built by
a forward-stagewise algorithm. Thelaboostalgorithm was introduced by Freund and Schapire
(1996). At every step of ensemble construction the boosting scheme aadsbase learner that is
forced (by iteratively reweighting the training data) to concentrate on tirérigpobservations that
are misclassified by the previous sequence. Boosting showed dramaticémanat in accuracy
even with very weak base learners (like decision stumps, single split.trBesiman (1998) and
Friedman et al. (2000) showed that the adaboost algorithm is a formadfemt optimization in
functional space, and is equivalent to a forward-stagewise, additiegithm with the exponential
loss function®(y, F (x)) = exp(—yF(x)) referred to as a gradient boosted tree (GBT).
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3.1 Relative Variable Importance Metrics
A single decision tree partitions the input space into a set of disjoint regindgssigns a response
value to each corresponding region. It uses a greedy, top-dowrsiee partitioning strategy. At
every step an exhaustive search is used to test all variables and gkt tpcachieve the maximum
reduction in impurity. Therefore, the tree constructing process itself eatbhsidered as a type
of variable selection (a kind of forward selection, embedded algorithrd)tteimpurity reduction
due to a split on a specific variable indicates the relative importance of thalbleto the tree model
(Breiman et al., 1984). For ensembles, the metric is averaged over theticolletbase learners.
Note, that this relative importance automatically incorporates variable intanadffexcts thus being
very different from the relevance measured by a univariate filter method

For a single decision tree the measure of variable importance is

VI, T) = ZN(NJ), (1)
te

whereAl (X,t) is the decrease in impurity due to an actual (or potential) split on varklde a
nodet of the optimally pruned tre& (Breiman et al., 1984). Node impurityt) for regression is
defined asy i (yi — y)2/N(t) where the sum and mean are taken over all observaitionsodet,
andN(t) is the number of observations in node~or classification (t) = Gini(t) whereGini(t) is

the Gini index of nod¢ defined as
t

Gini(t) = z pi Pj;
i#]
and p! is the proportion of observations inwhose response label equal§y = i) andi, j run
through all response class numbers. The Gini index is in the same familyctidos ascross-
entropy= — 5; ptlog(p}), and measures node impurity. It is zero whéwas observations only from
one class, and is maximum when classes are perfectly mixed. The defsté%se) computes the
impurity at the nodé¢ and the weighted average of impurities at each child node e weights
are proportional to the number of observations that are assigned tcla&tfrom the split at node
t so thatAl (X, t) =1 (t) — pLl(tL) — prl (tR).
For an ensemble & trees this importance measure is easily generalized. It is simply averaged
over the trees

1 M
EX) = 7 3 VIS, T 2)

The averaging makes this measure more reliable.

This split weight measural (X,t) in Equation (1) can be improved if OOB samples are used.
The split value for a variable is calculated using the training data as usualevdq the variable
selected as the primary splitter uses only the OOB samples. Also, the variableanggomeasure
is calculated from only the OOB samples. This provides a more accuratendiabed estimate of
variable importance in each tree and improves the filtering of noise variables.

Breiman (2001) also proposedsansitivitybased measure of variable relevance evaluated by a
RF. For a classification problem it is summarized as follows: (1) Classify DB €ases and count
the number of votes cast for the correct class in every tree grown intéstf (2) randomly permute
the values of variablen in the OOB cases and classify these cases down the tree, (3) Subtract the
number of votes for the correct class in the variaiigermuted OOB data from the original OOB
data, and (4) Average this number over all trees in the forest to obtaiawhienportance score for
variablem. Similar ideas were presented by Parmanto et al. (1996) and a similar resgsifiegy

1347



Tuv, BORISOV, RUNGER AND TORKKOLA

was successfully used in a more traditional model by Wisnowski et al.3j200he sensitivity
measure is computationally expensive. Furthermore, it does not adosuntisking, nor does it
consider an iterative process with residuals (that we describe in Sec. Bxperiments by Tuv
(2006) demonstrated that weaker but independent predictors ckrhigimer than stronger, but
related predictors. Also, related predictors can all be identified as importéither of these
results are desirable for a best subset model and a more effectivihaiyis described in Sec. 4.

With the importance measure (2) we can thus merely rank the variables. Mdweirig two
subsections discuss how to amend the ranking so that irrelevant varablé® reliably detected,
and how the redundancies among the remaining relevant variables cdrethandled.

3.2 Removing Irrelevant Features by Artificial Contrasts

Although an ensemble can be used to calculate a relative feature ran@ngtie variable im-
portance score in (2) the metric does not separate relevant featomesrfelevant. Only a list of
importance values is produced without a clear indication which variables lidscand which to
discard. Also, trees tend to split on variables with more distinct values. Tieist & more pro-
nounced for categorical predictors with many levels. It often makes adéssnt (or completely
irrelevant) input variable more “attractive” for a split only because ittigh cardinality.

The variable importance score in (2) is based on the relevance of anvampable to the target.
Consequently, any stable feature ranking method should favor a relepganX; over an artificially
generated variable with the same distributiorXabut generated to be irrelevant to the target. That
is, a higher variable importance score is expected from a true relevaaiieathan from an artifi-
cially generated contrast variable. With sufficient replicates in an anagsi€an select important
variables from those that have statistically significantly higher variable impegtacores than the
contrast variables (Tuv et al.,, 2006). Here, these contrast variabdemtegrated into a subset
algorithm. We discuss this in detail in Section 4.

Also, artificial contrasts can be applied to masking discussed in the nesgctidn. Given a
selected subset of relevant variables, one computes the masking stcallasriables by elements
of this subset, and the masking of contrast variables by this subset. gastamnes statistically
higher than the contrast variables are considered to be real maskingbl¥a that are masked are
dropped from the relevant subset list over a sequence of iteratighe afgorithm.

3.3 Masking Measures

An important issue for variable importance in tree-based models is how tag@alurank variables
that were masked by others with slightly higher splitting scores, but couldlde&@s accurate a
model if used instead. One early approach in the CART methodology usedate splits (Breiman
et al., 1984). The predictive association of a surrogate vardbfer the best splitteX* at a tree

nodeT is defined through the probability thxt® predicts the action oXK* correctly and this is
estimated as

(X%, X*) = pL(XZX") + pr(X®, X7),

wherep (X3, X*) and pr(X3,X*) define the estimated probabilities that bthandX* send a case

in T left (right). The predictive measure of associatidiX*|X%) between spliX*® and primary split

X* is defined as

min(T, T) — [1— p(X®,X")]
min(Ty, TR)

)

A(X*[XS) =
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whereTy , Tk are the proportions of cases sent to the left(or rightXby It measures the relative
reduction in error (- p(X%,X*)) due to usingX® to predictX* as compared with the “naive” rule
that matches the action with m@ax , 1w) (with error minty,1R)). If A(X*|X®) < 0 thenX® is
disregarded as a surrogate &f. Sometimes a small, nonnegative threshold is used instead. The
variable importance sum in Equation (1) is taken over all internal tree nedeseX; is a primary
splitter or a surrogate variabl®((X*|X;) > 0 for a primary splitteX*). Often a variable that does not
appear as a primary splitter in a tree is still ranked high on the variable imperiahconstructed
using surrogate variables.

We extend the surrogate concept to define a masking score as follokabl¥ais said to mask
variablej in a tree, if there is a split in variablén a tree with a surrogate on varialjleWe define
the masking measure for a pair of variabigsin treeT as

Mij(T) = WX, DA G]X)),
{teT|split onx}

wherew(X;,t) = Al(X,t) is the decrease in impurity from the primary split on varial§eand
summation is done over the nodes where primary split was made on vaXjallere we take into
account both the similarity between variab)sX; at the node, and the contribution of the actual
split of variableX; to the model. For an ensemble the masking measure is simply averaged over the
trees. Note that in general the measure is not symmetric in the variables.a@algley may mask
several others, but for a single selected masked variable the reveysoiize true.

4. Algorithm: Ensemble-Based Feature Selection with Artifical Variables and
Redundancy Elimination

We now integrate the previously described concepts and metrics into & sehsion algorithm.
The fundamental steps outlined in Section 2.3 consist of using the advaategyparallel ensemble
to detect important variables among potentially a very large feature set, theiraglvantages of a
serial ensemble to de-mask the important variables, and calculating residdatspeating in order
to recover variables of secondary importance.

Within the algorithm, artificial contrast variables are re-generated a nuoitiénes. Then
the significance from a paired t-test over the replicates is used to identifytiampariables and
masked variables. Essentially the t-test is used to define thresholds fdaiseénd masking. These
thresholds could also be set as tunable parameters. An advantage tEtitecal test is that the
significance of selected variables relative to noise can be quantified.

4.1 Algorithm Details

1. Identify Important Variables: Atrtificially generated noise variables are used to determine
a threshold to test for statistically significant variable importance scores.tédt is used
to remove irrelevant variables. Details are presented in the displayed atgowdtd further
described as follows.

In each replicate, r = 1,2, ..., Rartificial variables are constructed as follows. For every real
variableX; j = 1,2,...,M a corresponding artificial variabl& is generated from a random
permutation. Then in each replicate a small RF is trained and variable impogeocss
are computed for real and artificial variables. The scores from eguicater are compiled
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into therth row of a matrixV Rx 2M. Furthermore, the 1 a percentile of the importance
scores in replicate is calculated from only the artificial variables. This is denoteg, and
the vector of percentiles over tiiereplicates isy Rx 1. For each real variabl¥; a paired
t-test compares importance scoresXp obtained from thgth column ofV) to the vector of
scoresy. A test that results in statistical significance identifies an important variable.

Significance is evaluated through a suitably small p-value. The use ofatup-kequires a
feature to consistently score higher than the artificial variables over mulépleates. Fur-
thermore, this statistical testing framework also allows any method to contreldalsctions
to be applied. We routinely use the Bonferroni adjustment, but a falsevdiscate approach
is also reasonable. Each replicate uses a RF with20-50 trees to score the importance of
the original and artificial noise variables. Also, the split weight calculatowrvériable im-
portance in (2) only uses OOB samples as described previously.

. Calculate Masking Scores:A masking matrix is computed from independent replicates in
order to evaluate the statistical significance of masking results. Supposeatiearimpor-

tant variables from step 1. For similar reasons as in the previous stdijgatep and noise
variables are used to detect masking among the relevant variables. areesarrently the
same replicates that are used for variable importance. A fRtrmdependent GBT models
are generated each with= 10-50 trees. Note that all variables are tested in each node in each
tree in a serial ensemble. Therefore, richer, more effective maskingriafmn is obtained
from a serial ensemble than from a random subspace method like RFskdhkeulations,
the surrogate scores and the split weights are calculated from the OOBesaaspin the
previous step. LeM{; denote the masking score for variabksandX; from the ensemble

in replicater, forr =1,2,...,R. Also, IetM{ﬂ denote theg1 — a)-percentile of the masking
score in replicate from the distribution of scores between varialflend the noise variables.
Thatis,M{ , denotes th¢l —a)-percentile oM; ; for j =m-+1,...,2m. Similar to the check

for variable importance, a paired t-test compares the masking score betaébles X, X;)

with masking score{ , computed from the noise variables. There is a significant masking
between variablegX, X)) if the paired t-test is significant. Variablg is masked by variable

X; if the test is significant.

. Eliminate Masked Variables: Masked variables are removed from the list of important vari-
ables as follows. Given a list of important variables upon entry to this stepjatiables are
sorted by the importance score calculated in step 2. The most importantieasiallded to

an exit list, and dropped from the entry list. Assume this is varixhl@ll variables that are
masked byX; are dropped from the entry list. This is repeated until the entry list is empty.
The exit list represents the unmasked important variables.

. Generate Residuals for Incremental Adjustment:An iteration is used to enhance the abil-
ity of the algorithm to detect variables that are important, but possibly weadketiprimary
set. Given a current subset of important variables, only this subsete 1o predict the
target. Residuals are calculated and form a new target. For a numergetl tae residuals
are simply the actual minus the predicted values. For a classification probesiduals are
calculated from a multiclass logistic regression procedure (Friedman e0@0).2We pre-
dict the log-odds of class probabilities for each class (typically GBT is)used then take
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pseudo residuals as summarized in the following multi-class logistic regredgimnmitiam.
The algorithms are described using the notation in Table 1.

The iterations are similar to those used in forward selection. See, for exaBiplgpiglia
et al. (2003). The Gram-Schmidt procedure first selects the variablehigitiest correlation
with the target. To remove the information from this variable the remaining presdiatml the
target are othogonalized with respect to the selected variable. This gsaésiduals from the
fit of the target to the first selected variable. In the feature selection mbhtdredve do not re-
quire orthogonal predictors, but we adjust the target for the varialhiesdy selected through
residuals. We also can select more than a single variable in each iteratieméthod also
uses a conservative selection criterion (Bonferroni adjustment) amddturials allow a vari-
able to enter on another iteration. There are similar procedures usedhetsaw regression
model building. Least angle regression (Efron et al., 2004) and pimjepursuit methods
(Friedman et al., 1981) are well known examples that use residuals imrfdistagewise
modeling.

The algorithm returns to step 1 and continues until no variables with statisti¢gghifisant
importance scores remain. The current subset of important variablesdsfar the prediction
model. Whenever step 1 is calculated, all variables are used to build thmlg@ese—not only the
currently important ones. This approach allows the algorithm to recovealpamasked variables
that still contribute predictive power to the model. This can occur after tteetedf a masking
variable is completely removed, and the partial masking is eliminated. The algof@hmsnerical
(regression) and categorical (classification) targets are presengdgaithms 1 and 2. A separate
algorithm 3 describes the variable masking calculations.

Algorithm 1: Ensemble-Based Feature Selection, Regression

1. Setd— {}; setF — {Xq,...,Xm}; setW =0 (|W| =M).
2 forr=1,...,Rdo
3. {Z4,...,2u} — permutdXy,...,Xu}
4 SetFp<—FU{Z]_,...,ZM}
5 r'" row of V =V, =g (Fp,Y);
endfor
R x 1 vector (element wise) = Percentilg_q(V[-,M+1,...,2M])
7. Set® to those{X;} for which element wis&/ | > v
with specified paired t-test significan(@05)
8. Setd = RemoveMaskd®d,W +g; (Fp,Y))
9. If dis empty, then quit.
10. ® — dU;
11. Y=Y —gy(D,Y)
12. W(d)=W(®)+a(d,Y)
13. Goto 2.

o
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Algorithm 2: Ensemble-Based Feature Selection, Classification

PonNpE

10.

11.
12.

setd — {}; G(F) =0,W=0
fork=1,...,Kdo
setvV = 0.
forr=1,...,Rdo
{Z1,...,Zn} — permutdXy,..., Xu}
setF — XU{Zl,...,ZM}
Compute class proportiop(x) = exp(Gk(X))/ T 1, exp G (X))
Compute pseudo-residuats = 1(Y; = k) — pk(x)
V.. =V, +0g (Fva);
endfor
Element wise = Percentilg_q(V[-,M+1,...,2M])
Setdy to those{ Xy} for whichV y > v
with specified paired t-test significanceb)
Setd, = RemoveMaskédy, W, + g (F,YK))
D — DUDy;
fork=1,....K do A
Gk(E) = Gk(F2 + gY(q3|(A7Yk)
Wk (D) = Wh(Pi) + 1 (P, Y¥)
endfor
endfor
If &y for all k= 1,...,K is empty, then quit.
Goto 2.

4.2 Comparison to Previous Work

Two earlier methods are closely related to ACE, FCBS (Yu and Liu, 200d)MBBE (Koller

and Sahami, 1996). We compare our method in detail to these two methodsusBeea use a
multivariate model (tree) instead of frequency tables, our method fits in thgarg of embedded
methods. This is unlike FCBS and MBBE that can be considered as comefitiios, although

Koller works with frequency tables of 2-5 variables.

FCBS first sorts features by correlation with the response using a symmeteetainty, op-

tionally removing the bottom of the list by a user-specified threshold, then

1.

2.

3.

FCBS is similar in structure to our method, with the following important differences

The feature most correlated to the response is selected.

All features that have correlation with the selected feature higher ttlgooitrelation with
response are considered redundant and removed. The featudedstadhe minimal subset
(and this is an approximate heuristic for Markov blanket filtering).

Return to 1).
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Algorithm 3: RemoveMasked(F,W)

1 Letm=|F]|.

2. forr=1,....Rdo

3. {Z1,...,Zn} — permutd Xy, ..., Xm}

4, setFp +— FU {Zl, . ,Zm}

5. Build GBT modelG, = GBT(Fp).

6. Calculate masking matrid" = M(Gy) (2m x 2m matrix).
endfor

7. SetM{, =Percentilg_q,(M'[i,m+1,....2m) r=1..R

8. SetM; = 1forthosd,j=1...mforwhichM] >M[, r=1...R
with specified paired t-test significance@®), otherwise se¥; =0

9. SetL=FL"={}.

10. MoveX; € L with i = argmaxW to L*.

11. Remove alK € L from L, for which Mi*j =1.

12. Returnto step 10 If # {}.

1. We use tree importance instead of univariate correlation with the resp®dhis makes ACE
much more robust and accurate.

2. We use a surrogate masking measure instead of correlation. This tekessplonse into
account, not only the correlations between inputs. No arbitrary thresfmidorrelation are
used.

3. We compute residuals to find smaller effects reducing the chance to drop-eedundant
feature.

Koller's MBBE works as follows:

1. For each featur#;, find the setV; of K features K = 1 — 4) that are most correlated to it.
(Thatis, which provide little information on the response when added to kbelsd feature in
frequency table models.) Additional information is measured as KL-distdtudéback and
Liebler, 1951)D(P(y|Xi, X;),P(y|X)). The setV; is called the approximate Markov blanket
for featureX;. The authors state thKt= 1 — 2 gives the best results.

2. For each feature compute the relevance sépteD(P(y|M;, %), P(y|M;)). This represents
the additional information it brings when added to its approximate Markov btaakd re-
move features that have the smallest relevance scores (i.e., most nefjunda

3. Repeat (1,2) until all features are ranked in the order they are delBtes method returns a
ranked list of features rather than one subset.

Our ACE algorithm works more like FCBS as it uses only one feature aspnxmate MB for
each feature (as does the MBBE algorithm wWith- 1). Furthermore, it filters features by relevance
before computing redundancy between the features, and reportd afimaum feature subset.
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Number of classes (if classification problem)

set of original variables

target variable

Number of variables

Number of replicates for t-test

guantile used for variable importance estimation

guantile used for variable masking estimation

permuted versions of

cumulative variable importance vector.

cumulative variable importance vector foth class in classification.

current working set of variables

set of important variables

variable importance matriR x 2M)

rth row of variable importance matriX, r =1...R

jth column of matrixv/

function that trains an ensemblelotrees based on

variablesF and targel, and returns a row vector

of importance for each variable

ov(F,Y) function that trains an ensemble based on variables
and targel, and returns a prediction &of

Gk(F) current predictions for log-odds &fth class

GBT(F) GBT model built on variable sét

SEN2R2DIT<XR

<<<gm

«

mo
<

~—

=

M(G) Masking measure matrix calculated from moGel
MK Masking matrix fork-th GBT ensembl&s;.
M* Masking flags matrix

Table 1: Notation in Algorithms 1-3

However, the major difference is that our redundancy measure dppates KL-distance taking the
response into account and uses local information. Thus, it can deainwltivariate dependencies.
MBBE for K > 1 will incur three (or more) dimensional frequency tables that are hardabwvdth

if number of categories is large.

The learneg(.,.) in the ACE algorithms is an ensemble of trees. Any classifier/regressor func
tion can be used, from which the variable importance from all variable ittieres can be derived.
To our knowledge, only ensembles of trees can provide this conveniently.

The computational complexity of the algorithm is of the same order as the maximalexity
of a RF on the whole feature set and a GBT model on the selected imporsumtefesubset. A
GBT model is usually more complex, because all surrogate splits at evergdoe are computed.
However, a smaller tree depth setting for the GBT model reduces the caloslatithis part of the
algorithm. The complexity is proportional to

(Fsel+ Fimpvar) % N «logN « Ntrees NensemblesNiter + Niter « Fimpvar,
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where the variables are defined as followster is the number of iterations of the ACE algorithm
(for example, for the challenge discussed in Sec. 5.3 this was alwaythbsd0 and usually
3-4); Nensembless the number of replicates for t-tests (equal to 20 in the challendegesis
the number of trees in the RF or ensemble (equal to 20-100 in the challdage)he number
of samplesjFselis the number of selected variables per tree split in RF (equal to the sqare r
of the total number features or les§mpvar is the number of selected important variables (for
example, for the challenge data set NOVA discussed in Section 5.3 this yas<apately 400-800
depending on parameters). The algorithm is very fast with approximately @erfior one feature
selection iteration on the challenge NOVA data set with 16K variables with Aitaggs with 70
trees on a Windows XP-based four-processor Xeon (2 x HT) 3.4Ga#ks#tation.

5. Experiments

In order to evaluate the goodness of feature selection algorithms, two ghiame been used in
the literature. The first is not to evaluate the actual feature selectionrpenfice at all, but the
performance of a subsequent learner in some task. This facilitates tleé asg data set in the
“evaluation” but does not give much useful information at all in char&itey the actual feature
selection. The second option is to directly evaluate the feature selectiamrparfce without using
a subsequent proxy task. The latter dictates the need to know the gratimdbéhind the data,
which typically means that the data must be artificially generated, either complatély adding
some redundant and/or irrelevant features to some known data.

As the topic of the paper at hand is a method for the subset feature seléutidinst evaluation
method is affected by the choice of the classifier. The effects of featleet®n are mixed in
with how well the learner is able to handle redundant or irrelevant featditee results would thus
depend on the choice of learners and on the choice of data sets. dreesef will mainly describe
experiments with two types of simulated data with known ground truth.

Experiments on data with linear relationships are presented first. Thefimgarmata generator
is used to study the sensitivity to multiple variable interactions with nonlinear regatibarther
results are from the 2007 International Joint Conference on New@dtks (IJCNN), “Agnostic
learning vs. prior knowledge challenge & data representation discav@kshop”. The algorithm
described here had the second best performance in the agnostic Haskwe demonstrate the
effect of the subset to predictor performance as compared to thetfoll fatures. Also, an actual
manufacturing data set as well as a comparison to a previous analysisveélthenown Hepatitis
data are also presented in terms of predictive power of the resultingdestr

5.1 Generated Data with Linear Relationships

The data in this experiment has an additive structure with one numeric sespariable and 203
input variables. Inputsy, . .., Xjpo are highly correlated with one another, and they are all reasonably
predictive of the response (regressh~ 0.5). Buta,b, andc are independent variables that are
much weaker predictors (regressi@f~ 0.1). Furtherus,...,uigo are i.i.d. N(0,1) variables that

are unrelated to the target. The target variable was generated as aneaahditiel with additional
noise usingy = x1 + a+ b+ c+ ¢, wheree ~ N(0,1). This structure is chosen because it is well
known that linear (oblique) relationships are not optimal for a tree reptason. However, they
are ideal for correlation-based methods. Thus we have here theppsssble case for ACE and the
best possible case for CFS. The methods were evaluated on 50 datbssssA00 samples.
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Linear data

ace cfs cfs-gen rfe4 relief4

Figure 1: Artificial data with linear relationships. Subset discovery methd@&( CFS, CFS-gen)
and methods finding a subset of predefined size four (RFE4, Relief¢panpared. The
results for each method consist of three bars. The first is the pereenitaglevant vari-
ables detected (out of four), the second is the percentage of returadbles detected
(out of 100), and the third is the percentage of irrelevant variablestaet¢out of 100).
The results are averages over 50 data sets.

Figure 1 depicts the performance of ACE against methods that also digbeveubsets (CFS
with best-first search, CFS with genetic search), as well as againstadieet ranking methods
(RFE, Relief).

RFE and Relief are ranking methods. In this experiment they were givertlamtage of know-
ing the number of relevant features beforehand, that is, their task Wisdahe best possible four
variable subset” (RFE4, Relief4), whereas ACE and CFS had to alsthigndumber themselves.
A further advantage was given to RFE by matching the underlying suppotbr regressor to the
problem with a linear kernel (using the standard RBF kernel produdedanresults). This ex-
periment demonstrates one aspect of the advantages of ACE. In a takfkoideorrelation-based
methods but hard for trees, we show equal performance.

5.2 Generated Nonlinear Data

Next, experiments were conducted using a well-known data generateditian, 1999), which

produces data sets with multiple non-linear interactions between input variabte true model

can be designed with relevant, redundant, and noise inputs. We sel@ctetévant inputs plus
random, uniform (0, 1) noise. Also, 20 redundant inputs were useath Bvas a random linear
combination of three inputs plus random, uniform noise. Finally, 40 noisdsnpere added, so
that 70 features were available to the full model. The target function waergied as a weighted
sum of 10 multidimensional Gaussians, each Gaussian at a time involvingfaboumiput variables

randomly drawn from the relevant 10 variables. Thus all of the relet@nnput variables are
involved in the target, to a varying degree. The Gaussian functions alsamhandom mean vector
and a random covariance matrix as described by Friedman (1999). td/&glithe Gaussians were
randomly drawn fromJ [—1,1].

The data generator produces continuous-valued variables. Thusttéheatis can be used as such
for regression problems. Data sets of two different sizes were geded®00 and 4000 samples. In
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order to generate classification problems, the target variable was diedraizwo levels. Mixed-
type data was generated by randomly discretizing half of the variablds teacrandom number

of levels drawn fromU[2,32]. There are thus eight different experiments altogether. For each

experiment, 50 data sets were generated with different seeds. Figteeehts the results for each
case as average percentages of features selected in each glewan{reedundant, or noise) over
the 50 generated data sets.

numeric, classification, N=1000 numeric, classification, N=4000
80f " " ! " " " 3 80Ff
60 1 60
401 1 40+
20t 1 20+
0

ace cfs cfs-gen fcbs rfe10 relief10 ace cfs cfs-gen fcbs rfe10 relief10

numeric, regression, N=1000 numeric, regression, N=4000

80f 80Ff
60 1 60
401 1 40+
20t 1 20+
ace cfs cfs-gen fcbs rfe10 relief10 ace cfs cfs-gen fcbs rfe10 relief10
mixed, classification, N=1000 mixed, classification, N=4000
80f " " ! j " " 3 80Ff
60| 1 60
401 1 40+
20t 1 20+

ace cfs cfs-gen fcbs rfe10 relief10 ace cfs cfs-gen fcbs rfe10 relief10

mixed, regression, N=1000 mixed, regression, N=4000

80Ff 80F
60 1 60}
40t 1 40t
201 1 201
0
ace cfs cfs-gen fcbs rfe10 relief10 ace cfs cfs-gen fcbs rfe10 relief10

Figure 2: Artificial data with nonlinear relationships. Subset discovery otst(ACE, CFS, CFS-
gen, FCBS) and methods finding a subset of predefined size 10 (RReli6f10) are
compared. FCBS works only in classification problems. The results fdr esthod
consist of three bars. The first is the percentage of relevant vagidbtected (out of 10),
the second is the percentage of redundant variables detected (@)t ahd the third is
the percentage of irrelevant variables detected (out of 40). Thégesa averages over
50 data sets.

RFE and Relief were again given the advantage of knowing the humbelesfant features
beforehand, that is, their task was to “find the best possible ten-vasabket”’, whereas ACE,
CFS, and FCBS had to also find the number by themselves. A further ageamés given to RFE
by matching the underlying support vector classifier to the problem with an k&Bnel. Using a
linear kernel produced inferior results.
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The notable failure of FCBS on this data can be explained as follows. Mastrical important
variables are dropped at the discretization step of FCBS, because 4bietization works as a
filter method, and it cannot deal with the multivariate dependency from fRgaed’s generator. It
works well with discrete variables only when the number of categories is smalihe response is
categorical with a small number of categories.

This experiment demonstrates another aspect of the universality of M@&Eonly case where
another method (RFE10) showed a superior result was a classificatioleiprwith a smaller sam-
ple size and mixed type inputs. Again RFE10 was given the advantage wirighthe number of
relevant features and an appropriate kernel beforehand.

5.3 IJCNN 2007 Agnostic Learning vs. Prior Knowledge Challenge

In this experiment we show the effect of the selected subset within vasiassification tasks. The
ACE feature selection algorithm was applied to the data sets in the Agnosticihg&hallenge.

The number of training/validation/testing instances and the number of feateeshown in the

following list:

e ADA, Marketing, 4147/415/41471, 48 features

e GINA, Handwriting recognition, 3153/315/31532, 970 features
e HIVA, Drug discovery, 3845/384/38449, 1617 features

e NOVA, Text, 1754/175/17537, 16969 features

e SYLVA, Ecology, 13086/1309/130857, 216 features

For feature selection with ACE, the number of trees, importance and maskandgilgs were pa-
rameters that were optimized. Next GBT with embedded feature selectiorefterproverfitting)
(Borisov et al., 2006) was built on the subset. The following paramete®Bdf were optimized:
number of trees, tree depth, shrinkage, number of selected featurgegaode, and the impor-
tance adjustment rate for embedded feature selection, stratified sampl®id fdass proportions,
and priors. The optimization strategy (manual) was to set reasonable paraalees, and then
try to adjust each parameter sequentially, so that the test error detrddse model was trained
on 60% of the training data during parameter optimization. Several passeslbthe GBT pa-
rameters were used, and one for the feature selection parameters.viirierselected using cross
validation. Feature selection and GBT were use&guartitions of the data and then optimal priors
were selected on the remaining part.

Table 2 shows the results before and after subset selection for thénéiltergye data sets. The
CV-error was either preserved or reduced through a good subisetoverall results were the sec-
ond best in the agnostic learning challenge. Redundancy elimination whscapp ADA, HIVA,
SYLVA, and feature selection without redundancy elimination was used@vi2hNand GINA.

5.4 TIED Data Set

A data set with multiple Markov boundaries was generated by Statnikov anerial{009). The
data was obtained from a discrete Bayesian network with 1000 variabies s&arget variable
with four classes. A training set was constructed with 750 instances simtitatedhe network.
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Original Features CV-error from Best CV-error from
all features  subset size selected subset
Ada 47 0.1909 16 0.1855
Gina 970 0.0527 75 0.0506
Hiva 1617 0.2847 221 0.2559
Nova 12993 0.0591 400 0.0518
Sylva 212 0.0133 69 0.0129

Table 2: IJCNN 2007 Agnostic Learning vs. Prior Knowledge Challeegaelts.

Variable p-value Importance Score

3 0 100.0%
2 0 98.4%
10 0 96.4%
1 1.E-10 96.4%
11 3.E-07 83.3%
12 2.E-07 83.3%
13 5.E-07 79.1%
18 3.E-09 67.5%
19 2.E-07 67.5%
15 2.E-07 41.4%
20 2.E-06 39.5%
29 2.E-06 29.8%
8 3.E-06 26.2%
14 1.E-08 11.6%
4 8.E-06 9.5%
9 6.E-06 8.3%

Table 3: Feature selection scores for the TIED data set. Variables in angoMboundary are
recovered as significant with three false alarms.

The network contained 72 Markov boundaries. Each boundary cewttdive variables (one from
each of the following subsets): o}, (2) {Xa,Xs}, (3){X11, X12, X13}, (4) {X18, X19, X20}, and (5)
{X]_,Xz,Xg,Xlo}.

The ACE feature selection method described here was used to remoweaintdkatures. After
three iterations of the residual calculations described previously thatalgstopped with the im-
portant variables (and p-values from the artificial contrasts) showaliteT. The list of statistically
significant variables reproduces all the variables in any of the Markawndaries listed above, with
false alarms from variable$;4, X15, andXyg.

Although ACE recovered the variables in the Markov boundaries, therdiraitations with
the masking methods for a multi-class target. The GBT ensembles model eacfvelass the
rest) with a binary logistic function and averages variable masking scuegstee binary models.
Consequently, some attenuation of the importance scores are expeaeddRecy elimination did
not effectively eliminate masking in the TIED data. However, we used th® Ti&work and TIED
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data for binary problems with each class versus the rest. For exampldagsrl versus the rest
the TIED network generates the same collection of 72 Markov boundaresresults from ACE
without redundancy elimination for the binary target are shown in Tableh4.li§t of statistically
significant variables reproduces all the variables in any of the Markewmdaries, with no false
alarms.

Variable Importance Score

4 100.0%
8 100.0%
19 88.1%
18 88.1%
20 88.1%
9 64.8%
13 39.5%
12 39.5%
11 39.5%
10 21.9%
2 21.9%
3 21.9%
1 21.9%
6 0.0%

Table 4: Variable importance for TIED data modified for a binary targeséclaversus the rest).
All variables in the true Markov boundaries are identified with no false alarms

As the importance scores are arranged in decreasing order in Talsteupsaf variables with
similar scores become noticeable and these groups correspond to thesgeljsivalence classes)
in the cross-product that defines the Markov boundaries. That isntis¢ important variables in
Table 4 are those in the subded, Xg} in the Markov boundaries and the last group matches the
subset{ X1, X2, X3, X10}. The equivalent groups are clear from their importance scores in thés ca

The analysis with redundancy elimination generated the list of significantlifiseymt variables
in Table 5. One equivalent variable from the subsét, X, X3, X10} was missed in the recovery of
a Markov boundary. The contribution from this subset was, howswea)l. The predictive perfor-
mance of a tree ensemble on the recovered variables is nearly identical tiehona true Markov
boundary. In addition, the three variabl$s, Xo0, X4} are identified in Table 5 as important, but
they are redundant in the true network. Although these comprise falsasalire magnitudes of
the importance scores indicate that the last three variables are much lessimhfiwan the others.
Similar results (not shown here) were obtained for the binary targetZasssus the rest). Results
without any errors were obtained for classes 0 and 3 (each verstestiieSpecifically, for class 0
the Markov boundaries from the TIED network consist of one elememnt {iX1, X2, X3, X10}. In this
case the ACE analysis without redundancy elimination recovered thesedidables without false
alarms. The analysis with redundancy elimination correctly recovered ke siagable from this
set. Similarly for class 3, without redundancy elimination all variables in thekMaboundaries
{X12, Xa3, X14} Were recovered, and only one variable from this set was recovetiedetdundancy
elimination.
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Variable Importance Score

8 100.0%
9 61.3%
19 43.8%
1 10.2%
18 2.6%
20 0.9%
4 0.3%

Table 5: Variable importance for TIED data modified for a binary targesgchversus the rest)
with redundancy elimination.

5.5 Manufacturing Data

In multiple real world applications collecting unnecessary variables is aisast and finding a
suitable subset is critical in terms of cost-efficiency. As an example wemresanufacturing data
from a process that contained approximately 10K rows and consistégipre8ictors that were all
numerical, continuous measurements. The target was a binary respmhapp@oximately 20%
of the data belonged in the rare class. Because the data is actual maimgadtia, the specific
variable names are not provided. The data was analyzed extensivelyraditional regression
methods (the response was coded as 0 and 1) and models obtained mvplexcand not accurate.
A list of the results from our algorithm is shown in Table 6. It is not unusaaimanufacturing
data to consist of related predictors. Without redundancy elimination, i28bles were identified
as related to the target. However, after masking scores were used toerestiomdant predictors
the final subset model consisted of only five predictors.

The predictive accuracy for the binary target was nearly identicagus®BT model with these
5 predictors to the full set of 35 predictors. Table 6 also compares aibheesselection algorithms
to ACE in terms of their predictive accuracy and the size of the selecteddesst

A previous analysis of this data by Berrado and Runger (2007) usedtiation rules applied
after the predictors were discretized with simple equal-frequency disatietiz Only rules with
consequent equal to the rare target class were considered. A t@&toles were detected that met
the minimum support threshold. These rules contained 14 variables ana ®8 1 are listed in
the Table 6. Although the objectives of the association analysis weredtttfehe relatively high
proportion of important variables is consistent with the results in Table 6.

5.6 Hepatitis Data

The hepatitis data available from the UC-Irvine repository has been widalyzed. There are 155
patients and 19 predictors and the response is a binary survival rBsgilthan (2001) considered
this data and cited a previous analysis from the Stanford Medical Schddresther analysis by
Diaconis and Efron (1983). The analysis from the medical schoolleded that the important
variables were 6, 12, 14, 19. But Breiman (2001) concluded after @ s@alyses that number 12
or 17 provided predictive power nearly equivalent to the full set ofdes, and that these masked
each other. A notable difficulty is the small sample size in this example.
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ACE without ACE with | CFS | CFS-gen| FCBS
Variables| redundancy elim| redundancy elim
V11 100.0% 72.4%| 1 1
V4 96.1% 100.0% 1 1
V5 49.8% 49.4%| 1 1 1
V12 48.6% 1 1
V14 46.6% 1 1
V10 43.5% 1 1
V2 43.3% 36.4% 1 1
V13 38.7% 21.6%
V8 30.3% 1
V1 27.9% 1
V9 23.7%
V3 23.6% 1
V19 21.8%
V7 21.5%
V20 20.4%
V26 1
V27 1
Errors 0.145] 0.144| 0.145 | 0.190

Table 6: Manufacturing data with a binary target with redundancy eliminakoluges many vari-
ables. Only a smaller subset of the relevant predictors remain. We cothpaggtracted
variables to other subset selection algorithms (selected variables arednaarke in the
table). The error rate for the full set of variables was 0.146.

We confirmed the strong masking between variables 12 and 17 (and vézg frem our mask-
ing matrix. We also obtained a subset model that consists of variables 5,119, and 11, similar
to medical school. Variable 11 was also identified in unpublished lecture hgtBseiman. The
subset selected by our algorithm has the lowest cross-validation singy logistic regression.

6. Conclusions

We have presented an efficient method for feature subset selectiohuilfdg upon the known
strengths of the tree ensembles and is designed explicitly to discover a&dandant, effective
subset of features in large, dirty, and complex data sets.

Our method attempts to eliminate irrelevant variables using statistical comparigbastiicial
contrasts to obtain a threshold for importance estimated from the parallehbleswof trees capable
of scoring very large number of variables.

It uses serial ensembles to discover significant masking effects fendedcy elimination. Fur-
thermore we have showed that the redundancy elimination based on feetskang approximates
the Markov blanket redundancy filtering. It also uses an iterative girateallow for weaker pre-
dictors to be identified after stronger contributors.
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Variables| ACE | CFS | CFS-gen| FCBS

malaise-6| 1 1 1
albumin-17
bilirubin-14

histology-19
spiders-11
age-1

sex-2
ascites-12
varices-13
Errors| 0.142

N N

PlRrRRPPRPPRRBR
RPRrRRRRPRRRPR

o

55

o

55 | 0.194

Table 7: Hepatitis data. Features selected from ACE compared to othet selection algorithms
(selected variables are marked as '1’ in the table). The baseline etediorahe full set
of variables was 0.148.

The superior performance of the algorithm is illustrated with a number ofrempets on both
artificial and real data as well as by its success in the agnostic learnilgnzjea
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