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Abstract

Predictive models benefit from a compact, non-redundant subset of features that improves inter-
pretability and generalization. Modern data sets are wide,dirty, mixed with both numerical and
categorical predictors, and may contain interactive effects that require complex models. This is a
challenge for filters, wrappers, and embedded feature selection methods. We describe details of
an algorithm using tree-based ensembles to generate a compact subset of non-redundant features.
Parallel and serial ensembles of trees are combined into a mixed method that can uncover masking
and detect features of secondary effect. Simulated and actual examples illustrate the effectiveness
of the approach.
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1. Introduction

Large data sets are becoming the norm and traditional methods designed fordata sets with a modest
number of features will struggle in the new environment. This problem area was described by
Guyon and Elisseeff (2003) along with other publications in the same issue, and it has increased
in importance since then. Additional comments and examples have been provided by Liu and Yu
(2005) in a recent survey article.

c©2009 Eugene Tuv, Alexander Borisov, George Runger and Kari Torkkola.



TUV, BORISOV, RUNGER AND TORKKOLA

1.1 Feature Selection

There are three major categories of feature selection methods. Filter methods score variables, typi-
cally individually, and eliminate some before a model is constructed. The filter needs to be generated
carefully to relate well to the requirements of the modeling task. In particular, the filter may not
consider the value of one variable in the presence of others. For example, the widely-used value
difference metric (VDM) (Stanfill and Waltz, 1986) and its modified version (MVDM) (Cost and
Salzberg, 1993) consider the conditional probability distribution of the response at a predictor value.
Such a measure is not sensitive to the effects of some predictors in a model with others present even
though interactions among predictors might be critical for an effective subset. A sequential, sub-
set search is sometimes implemented to improve the performance when interactionsare important,
although a greedy search also has disadvantages in the presence of interactions. Several common
filter methods such as ReliefF (Robnik-Sikonja and Kononenko, 2003), CFS (Hall, 2000), and FO-
CUS (Almuallin and Dietterich, 1994) were modified with sequential search andcompared by Yu
and Liu (2004).

Wrapper methods form a second group of feature selection methods. Theprediction accuracy
(or the change in accuracy) of a model directly measures the value of a feature set. Although
effective, the exponential number of possible subsets places computational limits for the wide data
sets that are the focus of this work.

Embedded methods form a third group for feature selection. These methodsuse all the vari-
ables to generate a model and then analyze the model to infer the importance ofthe variables.
Consequently, they directly link variable importance to the learner used to model the relationship.

1.2 Subset Feature Selection

Fundamentally, the goal of feature selection is to model a target response (or output) variabley,
with a subset of the (important) predictor variables (inputs). This is a general goal and several
more specific objectives can be identified. Each can lead to different strategies and algorithms. In
filtering the interest is to remove irrelevant variables. Another objective isvariable rankingwhere
the interest is in obtaining relative relevance for all input variables with respect to the target. Finally,
we might be interested in a compact, yet effective model, where the goal is to identify the smallest
subset of independent features with the most predictive power, although a few alternative groups
might be reasonable. An important concept here isthe masking relationshipsamong the predictor
variables. Masking occurs when one variable can effectively represent others in a model. Along
with the related issue of masking, this paper focuses on the subset selection.

1.3 Contributions of this Paper

Existing tree ensembles such as random forest (Breiman, 2001) or gradient boosting trees (Fried-
man, 1999) were developed primarily for predictive modeling. In addition, they can provide an
importance ranking of the features, but this information has been considered an ad hoc benefit.
Random forest (RF) is a random subspace method, and is capable of efficiently ranking features for
large data sets. We exploit this property of RF, augment the original data withartificial contrast
variablesconstructed independently from the target, and use their ranking for removal of irrelevant
variables from the original set. The tree construction method is also modified to produce a more
reliable variable ranking in the presence of high cardinality variables. A variable masking measure
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is then introduced that incorporates surrogate variable scores from ensembles of trees. This forms
the basis forredundancy elimination. Residual effects are calculated to enable the method to detect
variables of secondary importance. These elements are integrated into an efficient algorithm for
subset selection called ACE (artificial contrasts with ensembles).

The structure of this paper is as follows. In Section 2 we describe previous work and outline
directions taken in this paper. Section 3 describes variable importance measures defined through
tree ensembles and explains how they could be used to remove irrelevant features using random,
artificial features. Next, we introduce a masking measure and use it for redundancy elimination.
Section 4 describes the details of the ACE algorithm to generate the selected subset, and compares
ACE with its closest competitors in detail. Section 5 provides results from experiments. Section 6
provides conclusions.

2. Background

This section defines the problem of finding the best susbset of features, discusses previous ap-
proaches, and outlines our solution.

2.1 Markov Boundaries

Let F be a full set of features. A feature selection solution can be described interms of a Markov
blanket (Koller and Sahami, 1996). Given a target featureY, let M ⊂ F andY /∈M. M is said to be
a Markov blanket forY if Y⊥(F−M)|M. That is,Y is conditionally independent of other features
given M. A minimal Markov blanket is referred to as Markov boundary (MB) and such a subset
might be considered a feature selection solution. However, an important issue is that a MB need not
be unique. Redundant features can replace others in a feature subset. Usually feature redundancy is
defined in terms of feature correlation (Hall, 2000). For example, two features are redundant to each
other if their values are completely correlated. In reality, it is not so straightforward to determine
feature redundancy if a feature is partially correlated to a set of features.

Our goal is to focus on the important case with redundant features and obtain at least one MB. In
most real-life problems exactly determining the MB or measuring feature relevance is very difficult
because of a limited sample size, high time complexity, and noise in the data. Furthermore, evalua-
tion of the distribution of the input variables and the response always relieson some model (linear,
support vector machine, frequency tables, trees, etc.). In practice, most algorithms just try to remove
irrelevant features and then apply some heuristics that remove “possibly”redundant variables.

2.2 Existing Approaches in Feature Selection

The nature of real life data sets provides strong restrictions for model fitting and feature selection
methods. First, data sets may be very large both in terms of the number of predictors and in the
number of samples (tens of thousands× tens of millions). Second, the predictors and the response
can be of mixed type (both numeric and categoric), and can contain missing values. Lastly and
also very importantly, dependency of the response on predictors can behighly non-linear, noisy and
multivariate.

This leaves most existing methods out of scope for such problems. For example, wrapper meth-
ods (forward selection or backward elimination) are simply computationally unfeasible when deal-
ing with thousands of predictors. Filter methods are also useless for the minimalsubset selection
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problem, as they do not deal with the notion of redundancy and most of themare inherently uni-
variate. However, there are filters that use a“local” feature importance measure (like RELIEF) that
can be considered multivariate (Kira and Rendell, 1992), but still they do not deal with redundancy
giving just a ranked list of features instead of a selected minimal subset.

Subset evaluation filter methods such as CFS (Hall, 2000) are neither suitable because they do
not deal explicitly with redundancy, and have to iterate over many feature subsets incurring a high
time complexity. For example, the time complexity of the CFS is at least quadratic in the number
of features and linear in number of samples. Also CFS is highly sensitive to outliers as it uses
correlations between features.

Many embedded methods that use a built-in feature relevance measurement, such as SVM-RFE
(Guyon et al., 2002) and linear regression with backward feature elimination are heavily dependent
on the model (linear or SVM), that can fail to fit the data well. These methods have at least quadratic
complexity in the number of samples for fitting an SVM and at least cubic complexityin the number
of features (O(nm2+m3), wherem is the number of features, andn is number of samples) for fitting
a regression model. Data sets with tens of thousands of features or samplesbecome very time
consuming and impractical to handle. For example, SVM-RFE involves retraining the SVM after
features with smallest relevance are removed, thus incurring at least cubic complexity in number of
samples (O(max(m,n)n2)).

An issue that discourages using regression methods and methods that relyon some kind of
distance measure between observations (linear regression, SVM, Kernel-based methods, RELIEF)
is the difficulty of dealing with outliers in the input (predictor) space. Also, selection of important
model parameters (kernel width and type, feature relevance thresholds, etc) is non-obvious, and the
results of feature selection depend heavily on them.

Most methods return just a ranked list of features instead of an optimal subset. These methods
include RELIEF, Koller’s Markov blanket based backward elimination (referred to here as MBBE)
(Koller and Sahami, 1996), and SVM-RFE. Some methods such as FCBS usea relevance threshold
that is not clear how to adjust (Yu and Liu, 2004). In reality, the user alsoobtains a number of
feature subsets corresponding to different values of parameters without a hint of how to choose the
best subset.

Many methods work with frequency tables. They can thus deal well with categorical inputs
only. For numerical inputs, they require discretization. Such methods are not always able to deal
with interacting variables and have great difficulties with multivariate dependencies on numerical
inputs. Examples of such methods are FCBS and MBBE. These two algorithms need discretization
because they use an entropy measure computed on frequency tables. Ifthe number of categories is
large, or if we use frequency tables with more than two inputs, the tables can be sparse and may
not represent the data distribution well. Another issue for MBBE is computational complexity.
Considering all feature pairs incurs a quadratic complexity on the number offeatures.

Hence we see that most methods at hand are either not applicable at all to thebest subset selec-
tion problem, or have some major problems. The most useful methods in such a setting (that ap-
peared to be applicable to the examples of large “real-life” data in the challenge data sets discussed
in Sec. 5.3) are methods based on backward feature elimination using an approximate Markov blan-
ket concept (Koller and Sahami, 1996; Yu and Liu, 2004). Our method approximates the optimal
Markov blanket redundancy elimination procedure, but without most of the drawbacks of previous
methods.
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2.3 Towards Efficient and Approximately Optimal Feature Selection

We propose a method that uses an idea similar to those proposed by Koller andSahami (1996) and
Yu and Liu (2004) that tries to overcome their limitations. It does not have quadratic time complexity
in the number of features, can deal with thousands of predictors, uses amodel (ensembles of trees)
that can be applied to mixed variable types, thus eliminating need for discretization of numeric
inputs, does not require imputation of missing values, captures local information (like RELIEF), is
invariant to a monotone transformation of inputs, thus not very sensitive to noise and outliers, and
deals well with multivariate dependencies.

It is well known that trees and especially ensembles of trees can provide robust and accurate
models in “real-life” data settings. They handle mixed and noisy data, and arescale insensitive.
Ensembles of trees have high predictive power and are resistant to over-fitting (Breiman, 2001).
Our approach relies heavily on ensembles of trees.

First, we find irrelevant features that are conditionally independent of the response given the
rest of the features. It is accomplished by comparing the relevance of theoriginal variables with
the relevance of random, artificial features (appended to the original data) constructed from the
same distribution, but independently from the response. These featuresare referred to as artificial
contrasts. We measure feature relevance as variable importance in random forests with a modified
robust splitting criteria. We assume that if an original variable had a relevance score not statistically
higher than that of an artificial probe (independent from the target by construction) then it is also
independent from the target, irrelevant, and should be removed. Note that we try to remove irrelevant
features by directly assessing conditional independence without searching for a MB, the existence
of which is a much stronger requirement. Although the idea of artificial contrasts was already used
by other researchers in simple filter methods with success (Stoppiglia et al., 2003), its application to
tree ensembles is novel and promising. Actually, our approach can be considered as non-parametric
because all parameters in our algorithm can be assigned reasonable default values that work well
for wide range of problems.

Then the redundant feature elimination step is performed. Redundancy between features is
measured using surrogate scores. The variable with the largest impurity reduction score at a node is
the primary splitter. If surrogate variables (ones that partition the node in same way as the primary
variable) are present, these surrogate variables are considered as “masked”. Masking scores between
all pairs of important variables are computed and evaluated using a statisticaltest, and variables
masked by more important variables (“approximately redundant”) are removed iteratively.

Finally, after a set of non-redundant relevant features has been found, our method removes the
influence of the found subset with an ensemble and proceeds. Becauseredundancy elimination is
approximate in nature this iterative approach is another advantage of our method. It allows one to
recover variables with small importance and to reduce the chance to lose important variables during
redundancy elimination.

3. Tree Ensembles for Feature Selection

For our embedded method, we focus on ensembles of decision trees for thefollowing reasons. Trees
can be applied in ubiquitous scenarios so that they provide a good entry point for feature selection for
interdisciplinary, wide data sets. They apply to either a numerical or a categorical response. They
are nonlinear, simple and fast learners that handle also both numerical and categorical predictors
well. They are scale invariant and robust to missing values. A simple decisiontree also provides an
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embedded measure of variable importance that can be obtained from the number and the quality of
splits that are generated from a predictor variable. However, a single tree is produced by a greedy
algorithm that generates an unstable model. A small change to the data can result in a very different
model. Consequently, ensemble methods have been used to counteract the instability of a single
tree.

Supervised ensemble methods construct a set of simple models, called base learners, and use
their weighted outcome (or vote) to predict new data. That is, ensemble methods combine outputs
from multiple base learners to form a committee with improved performance. Numerous empiri-
cal studies confirm that ensemble methods often outperform any single base learner (Freund and
Schapire, 1996; Bauer and Kohavi, 1999; Dietterich, 2000a). The improvement can be dramatic
when a base algorithm is unstable. More recently, a series of theoretical developments (Bousquet
and Elisseeff, 2001; Poggio et al., 2002; Mukherjee et al., 2006; Poggio et al., 2004) also confirmed
the fundamental role of stability for the generalization of a learning algorithm. More comprehensive
overviews of ensemble methods were presented by Dietterich (2000b) andValentini and Masulli
(2002). There are two primary approaches to ensemble construction: parallel and serial.

A parallel ensemble combines independently constructed and diverse base learners. That is,
different base learners should make different errors on new data. An ensemble of such base learners
can outperform any single one of its components since diverse errors cancel out (Hansen and Sala-
mon, 1990; Amit and Geman, 1997). Parallel ensembles are variance-reduction techniques, and in
most cases, they are applied to unstable, high-variance algorithms (such as trees). Also, Valentini
and Dietterich (2003) showed that ensembles of low-bias support vectormachines (SVMs) often
outperformed a single, best-tuned, canonical SVM (Boser et al., 1992).

Random forest (RF) is an exemplar for parallel ensembles (Breiman, 2001). It is an improved
bagging method (Breiman, 1996) that extends the “random subspace” method (Ho, 1998). It grows
a forest of random decision trees on bagged samples showing excellentresults comparable with the
best known classifiers. A RF can be summarized as follows: (1) Grow each tree on a bootstrap sam-
ple of the training set to maximum depth, (2) GivenM predictors, select at randomm< M variables
at each node, and (3) Use the best split selected from the possible splits on thesem variables. Note
that for every tree grown in RF, about one-third of the cases are out-of-bag (out of the bootstrap
sample). The out-of-bag (OOB) samples can serve as a test set for the tree grown on the non-OOB
data. We discuss later how OOB samples can be used for feature selection.

In serial ensembles, every new learner relies on previously built learners so that the weighted
combination forms an accurate model. A serial ensemble algorithm is often more complex. It is
targeted to reduce both bias and variance. A serial ensemble results in an additive model built by
a forward-stagewise algorithm. Theadaboostalgorithm was introduced by Freund and Schapire
(1996). At every step of ensemble construction the boosting scheme addsa new base learner that is
forced (by iteratively reweighting the training data) to concentrate on the training observations that
are misclassified by the previous sequence. Boosting showed dramatic improvement in accuracy
even with very weak base learners (like decision stumps, single split trees). Breiman (1998) and
Friedman et al. (2000) showed that the adaboost algorithm is a form of gradient optimization in
functional space, and is equivalent to a forward-stagewise, additivealgorithm with the exponential
loss functionΨ(y,F(x)) = exp(−yF(x)) referred to as a gradient boosted tree (GBT).
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3.1 Relative Variable Importance Metrics
A single decision tree partitions the input space into a set of disjoint regions, and assigns a response
value to each corresponding region. It uses a greedy, top-down recursive partitioning strategy. At
every step an exhaustive search is used to test all variables and split points to achieve the maximum
reduction in impurity. Therefore, the tree constructing process itself can be considered as a type
of variable selection (a kind of forward selection, embedded algorithm), and the impurity reduction
due to a split on a specific variable indicates the relative importance of that variable to the tree model
(Breiman et al., 1984). For ensembles, the metric is averaged over the collection of base learners.
Note, that this relative importance automatically incorporates variable interaction effects thus being
very different from the relevance measured by a univariate filter method.

For a single decision tree the measure of variable importance is

VI(Xi ,T) = ∑
t∈T

∆I(Xi , t), (1)

where∆I(Xi , t) is the decrease in impurity due to an actual (or potential) split on variableXi at a
nodet of the optimally pruned treeT (Breiman et al., 1984). Node impurityI(t) for regression is
defined as∑i∈t(yi − ȳ)2/N(t) where the sum and mean are taken over all observationsi in nodet,
andN(t) is the number of observations in nodet. For classificationI(t) = Gini(t) whereGini(t) is
the Gini index of nodet defined as

Gini(t) = ∑
i 6= j

pt
i p

t
j ,

and pt
i is the proportion of observations int whose response label equalsi (y = i) and i, j run

through all response class numbers. The Gini index is in the same family of functions ascross-
entropy=−∑i pt

i log(pt
i ), and measures node impurity. It is zero whent has observations only from

one class, and is maximum when classes are perfectly mixed. The decrease∆I(Xi , t) computes the
impurity at the nodet and the weighted average of impurities at each child node oft. The weights
are proportional to the number of observations that are assigned to eachchild from the split at node
t so that∆I(Xi , t) = I(t)− pLI(tL)− pRI(tR).

For an ensemble ofM trees this importance measure is easily generalized. It is simply averaged
over the trees

E(Xi) =
1
M

M

∑
m=1

VI(Xi ,Tm). (2)

The averaging makes this measure more reliable.
This split weight measure∆I(Xi , t) in Equation (1) can be improved if OOB samples are used.

The split value for a variable is calculated using the training data as usual. However, the variable
selected as the primary splitter uses only the OOB samples. Also, the variable importance measure
is calculated from only the OOB samples. This provides a more accurate and unbiased estimate of
variable importance in each tree and improves the filtering of noise variables.

Breiman (2001) also proposed asensitivitybased measure of variable relevance evaluated by a
RF. For a classification problem it is summarized as follows: (1) Classify the OOB cases and count
the number of votes cast for the correct class in every tree grown in the forest, (2) randomly permute
the values of variablem in the OOB cases and classify these cases down the tree, (3) Subtract the
number of votes for the correct class in the variable-m-permuted OOB data from the original OOB
data, and (4) Average this number over all trees in the forest to obtain the raw importance score for
variablem. Similar ideas were presented by Parmanto et al. (1996) and a similar resampling strategy
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was successfully used in a more traditional model by Wisnowski et al. (2003). The sensitivity
measure is computationally expensive. Furthermore, it does not accountfor masking, nor does it
consider an iterative process with residuals (that we describe in Sec. 4.2). Experiments by Tuv
(2006) demonstrated that weaker but independent predictors can rank higher than stronger, but
related predictors. Also, related predictors can all be identified as important. Neither of these
results are desirable for a best subset model and a more effective algorithm is described in Sec. 4.

With the importance measure (2) we can thus merely rank the variables. The following two
subsections discuss how to amend the ranking so that irrelevant variablescan be reliably detected,
and how the redundancies among the remaining relevant variables can thenbe handled.

3.2 Removing Irrelevant Features by Artificial Contrasts

Although an ensemble can be used to calculate a relative feature ranking from the variable im-
portance score in (2) the metric does not separate relevant features from irrelevant. Only a list of
importance values is produced without a clear indication which variables to include, and which to
discard. Also, trees tend to split on variables with more distinct values. This effect is more pro-
nounced for categorical predictors with many levels. It often makes a lessrelevant (or completely
irrelevant) input variable more “attractive” for a split only because it hashigh cardinality.

The variable importance score in (2) is based on the relevance of an inputvariable to the target.
Consequently, any stable feature ranking method should favor a relevant inputXi over an artificially
generated variable with the same distribution asXi but generated to be irrelevant to the target. That
is, a higher variable importance score is expected from a true relevant variable than from an artifi-
cially generated contrast variable. With sufficient replicates in an analysisone can select important
variables from those that have statistically significantly higher variable importance scores than the
contrast variables (Tuv et al., 2006). Here, these contrast variablesare integrated into a subset
algorithm. We discuss this in detail in Section 4.

Also, artificial contrasts can be applied to masking discussed in the next subsection. Given a
selected subset of relevant variables, one computes the masking scoresof all variables by elements
of this subset, and the masking of contrast variables by this subset. Masking scores statistically
higher than the contrast variables are considered to be real masking. Variables that are masked are
dropped from the relevant subset list over a sequence of iterations ofthe algorithm.

3.3 Masking Measures

An important issue for variable importance in tree-based models is how to evaluate or rank variables
that were masked by others with slightly higher splitting scores, but could provide as accurate a
model if used instead. One early approach in the CART methodology used surrogate splits (Breiman
et al., 1984). The predictive association of a surrogate variableXs for the best splitterX∗ at a tree
nodeT is defined through the probability thatXs predicts the action ofX∗ correctly and this is
estimated as

p(Xs,X∗) = pL(X
s,X∗)+ pR(Xs,X∗),

wherepL(Xs,X∗) andpR(Xs,X∗) define the estimated probabilities that bothXs andX∗ send a case
in T left (right). The predictive measure of associationλ(X∗|Xs) between splitXs and primary split
X∗ is defined as

λ(X∗|Xs) =
min(πL,πR)− [1− p(Xs,X∗)]

min(πL,πR)
,
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whereπL,πR are the proportions of cases sent to the left(or right) byX∗. It measures the relative
reduction in error (1− p(Xs,X∗)) due to usingXs to predictX∗ as compared with the “naive” rule
that matches the action with max(πL,πR) (with error min(πL,πR)). If λ(X∗|Xs) < 0 thenXs is
disregarded as a surrogate forX∗. Sometimes a small, nonnegative threshold is used instead. The
variable importance sum in Equation (1) is taken over all internal tree nodeswhereXi is a primary
splitter or a surrogate variable (λ(X∗|Xi) > 0 for a primary splitterX∗). Often a variable that does not
appear as a primary splitter in a tree is still ranked high on the variable importance list constructed
using surrogate variables.

We extend the surrogate concept to define a masking score as follows. Variablei is said to mask
variable j in a tree, if there is a split in variablei in a tree with a surrogate on variablej. We define
the masking measure for a pair of variablesi, j in treeT as

Mi j (T) = ∑
{t∈T|split onXi}

w(Xi , t)λ(Xi |Xj),

wherew(Xi , t) = ∆I(Xi , t) is the decrease in impurity from the primary split on variableXi , and
summation is done over the nodes where primary split was made on variableXi . Here we take into
account both the similarity between variablesXi ,Xj at the node, and the contribution of the actual
split of variableXi to the model. For an ensemble the masking measure is simply averaged over the
trees. Note that in general the measure is not symmetric in the variables. One variable may mask
several others, but for a single selected masked variable the reverse may not be true.

4. Algorithm: Ensemble-Based Feature Selection with Artificial Variables and
Redundancy Elimination

We now integrate the previously described concepts and metrics into a subset selection algorithm.
The fundamental steps outlined in Section 2.3 consist of using the advantages of a parallel ensemble
to detect important variables among potentially a very large feature set, usingthe advantages of a
serial ensemble to de-mask the important variables, and calculating residualsand repeating in order
to recover variables of secondary importance.

Within the algorithm, artificial contrast variables are re-generated a numberof times. Then
the significance from a paired t-test over the replicates is used to identify important variables and
masked variables. Essentially the t-test is used to define thresholds for selection and masking. These
thresholds could also be set as tunable parameters. An advantage of the statistical test is that the
significance of selected variables relative to noise can be quantified.

4.1 Algorithm Details

1. Identify Important Variables: Artificially generated noise variables are used to determine
a threshold to test for statistically significant variable importance scores. The test is used
to remove irrelevant variables. Details are presented in the displayed algorithms and further
described as follows.

In each replicater, r = 1,2, . . . ,Rartificial variables are constructed as follows. For every real
variableXj j = 1,2, . . . ,M a corresponding artificial variableZ j is generated from a random
permutation. Then in each replicate a small RF is trained and variable importancescores
are computed for real and artificial variables. The scores from each replicater are compiled
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into therth row of a matrixV R×2M. Furthermore, the 1−α percentile of the importance
scores in replicater is calculated from only the artificial variables. This is denoted asvr and
the vector of percentiles over theR replicates isv R×1. For each real variableXj a paired
t-test compares importance scores forXj (obtained from thejth column ofV) to the vector of
scoresv. A test that results in statistical significance identifies an important variable.

Significance is evaluated through a suitably small p-value. The use of a p-value requires a
feature to consistently score higher than the artificial variables over multiple replicates. Fur-
thermore, this statistical testing framework also allows any method to control false selections
to be applied. We routinely use the Bonferroni adjustment, but a false discovery rate approach
is also reasonable. Each replicate uses a RF withL = 20-50 trees to score the importance of
the original and artificial noise variables. Also, the split weight calculation for variable im-
portance in (2) only uses OOB samples as described previously.

2. Calculate Masking Scores:A masking matrix is computed from independent replicates in
order to evaluate the statistical significance of masking results. Suppose there arem impor-
tant variables from step 1. For similar reasons as in the previous step, replicates and noise
variables are used to detect masking among the relevant variables. Theseare currently the
same replicates that are used for variable importance. A set ofR independent GBT models
are generated each withL = 10-50 trees. Note that all variables are tested in each node in each
tree in a serial ensemble. Therefore, richer, more effective masking information is obtained
from a serial ensemble than from a random subspace method like RF. In these calculations,
the surrogate scores and the split weights are calculated from the OOB samples as in the
previous step. LetMr

i, j denote the masking score for variablesXi andXj from the ensemble
in replicater, for r = 1,2, . . . ,R. Also, letMr

i,α denote the(1−α)-percentile of the masking
score in replicater from the distribution of scores between variableXi and the noise variables.
That is,Mr

i,α denotes the(1−α)-percentile ofMr
i, j for j = m+1, . . . ,2m. Similar to the check

for variable importance, a paired t-test compares the masking score between variables(Xi ,Xj)
with masking scoreMr

i,α computed from the noise variables. There is a significant masking
between variables(Xi ,Xj) if the paired t-test is significant. VariableXj is masked by variable
Xi if the test is significant.

3. Eliminate Masked Variables: Masked variables are removed from the list of important vari-
ables as follows. Given a list of important variables upon entry to this step, the variables are
sorted by the importance score calculated in step 2. The most important variable is added to
an exit list, and dropped from the entry list. Assume this is variableXi . All variables that are
masked byXi are dropped from the entry list. This is repeated until the entry list is empty.
The exit list represents the unmasked important variables.

4. Generate Residuals for Incremental Adjustment:An iteration is used to enhance the abil-
ity of the algorithm to detect variables that are important, but possibly weaker than a primary
set. Given a current subset of important variables, only this subset is used to predict the
target. Residuals are calculated and form a new target. For a numerical target the residuals
are simply the actual minus the predicted values. For a classification problem residuals are
calculated from a multiclass logistic regression procedure (Friedman et al., 2000). We pre-
dict the log-odds of class probabilities for each class (typically GBT is used), and then take
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pseudo residuals as summarized in the following multi-class logistic regression algorithm.
The algorithms are described using the notation in Table 1.

The iterations are similar to those used in forward selection. See, for example, Stoppiglia
et al. (2003). The Gram-Schmidt procedure first selects the variable withhighest correlation
with the target. To remove the information from this variable the remaining predictors and the
target are othogonalized with respect to the selected variable. This provides residuals from the
fit of the target to the first selected variable. In the feature selection methodhere we do not re-
quire orthogonal predictors, but we adjust the target for the variablesalready selected through
residuals. We also can select more than a single variable in each iteration. The method also
uses a conservative selection criterion (Bonferroni adjustment) and theresiduals allow a vari-
able to enter on another iteration. There are similar procedures used elsewhere in regression
model building. Least angle regression (Efron et al., 2004) and projection pursuit methods
(Friedman et al., 1981) are well known examples that use residuals in forward-stagewise
modeling.

The algorithm returns to step 1 and continues until no variables with statistically significant
importance scores remain. The current subset of important variables is used for the prediction
model. Whenever step 1 is calculated, all variables are used to build the ensembles—not only the
currently important ones. This approach allows the algorithm to recover partially masked variables
that still contribute predictive power to the model. This can occur after the effect of a masking
variable is completely removed, and the partial masking is eliminated. The algorithmsfor numerical
(regression) and categorical (classification) targets are presented as algorithms 1 and 2. A separate
algorithm 3 describes the variable masking calculations.

Algorithm 1: Ensemble-Based Feature Selection, Regression

1. SetΦ←{}; setF ←{X1, . . . ,XM}; setW = 0 (|W|= M).
2. for r = 1, . . . ,Rdo
3. {Z1, . . . ,ZM}← permute{X1, . . . ,XM}
4. setFP← F ∪{Z1, . . . ,ZM}
5. r th row of V = Vr. = gI (FP,Y);

endfor
6. R×1 vector (element wise)v = Percentile1−α(V[·,M +1, . . . ,2M])

7. SetΦ̂ to those{Xj} for which element wiseV. j > v
with specified paired t-test significance(0.05)

8. SetΦ̂ = RemoveMasked(Φ̂,W+gI (FP,Y))

9. If Φ̂ is empty, then quit.
10. Φ←Φ∪ Φ̂;
11. Y = Y−gY(Φ̂,Y)

12. W(Φ̂) = W(Φ̂)+gI (Φ̂,Y)
13. Go to 2.
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Algorithm 2: Ensemble-Based Feature Selection, Classification

1. setΦ←{}; Gk(F) = 0,Wk = 0
2. for k = 1, . . . ,K do
3. setV = 0.
4. for r = 1, . . . ,Rdo

{Z1, . . . ,ZM}← permute{X1, . . . ,XM}
setF ← X∪{Z1, . . . ,ZM}
Compute class proportionpk(x) = exp(Gk(x))/∑K

l=1exp(Gl (x))
Compute pseudo-residualsYk

i = I(Yi = k)− pk(xi)
Vr. = Vr. +gI (F,Yk);

endfor
5. Element wisev = Percentile1−α(V[·,M +1, . . . ,2M])

6. SetΦ̂k to those{Xk} for whichV.k > v
with specified paired t-test significance (0.05)

7. SetΦ̂k = RemoveMasked(Φ̂k,Wk +gI (F,Yk))

8. Φ←Φ∪ Φ̂k;
for k = 1, ...,K do

9. Gk(F) = Gk(F)+gY(Φ̂k,Yk)

10. Wk(Φ̂k) = Wk(Φ̂k)+gI (Φ̂k,Yk)
endfor

endfor
11. If Φ̂k for all k = 1, . . . ,K is empty, then quit.
12. Go to 2.

4.2 Comparison to Previous Work

Two earlier methods are closely related to ACE, FCBS (Yu and Liu, 2004) and MBBE (Koller
and Sahami, 1996). We compare our method in detail to these two methods. Because we use a
multivariate model (tree) instead of frequency tables, our method fits in the category of embedded
methods. This is unlike FCBS and MBBE that can be considered as correlation filters, although
Koller works with frequency tables of 2-5 variables.

FCBS first sorts features by correlation with the response using a symmetricuncertainty, op-
tionally removing the bottom of the list by a user-specified threshold, then

1. The feature most correlated to the response is selected.

2. All features that have correlation with the selected feature higher than it’s correlation with
response are considered redundant and removed. The feature is added to the minimal subset
(and this is an approximate heuristic for Markov blanket filtering).

3. Return to 1).

FCBS is similar in structure to our method, with the following important differences.
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Algorithm 3: RemoveMasked(F,W)

1 Letm= |F|.
2. for r = 1, . . . ,Rdo
3. {Z1, . . . ,Zm}← permute{X1, . . . ,Xm}
4. setFP← F ∪{Z1, . . . ,Zm}
5. Build GBT modelGr = GBT(FP).
6. Calculate masking matrixMr = M(Gr) (2m×2mmatrix).

endfor
7. SetMr

i,αm
= Percentile1−αm(Mr [i,m+1, . . . ,2m]), r = 1, . . . ,R

8. SetM∗i j = 1 for thosei, j = 1. . .m for whichMr
i j > Mr

i,αm
, r = 1, . . . ,R

with specified paired t-test significance (0.05), otherwise setM∗i j = 0
9. SetL = F,L∗ = {}.
10. MoveXi ∈ L with i = argmaxi Wi to L∗.
11. Remove allXj ∈ L from L, for whichM∗i j = 1.
12. Return to step 10 ifL 6= {}.

1. We use tree importance instead of univariate correlation with the response. This makes ACE
much more robust and accurate.

2. We use a surrogate masking measure instead of correlation. This takes the response into
account, not only the correlations between inputs. No arbitrary thresholds for correlation are
used.

3. We compute residuals to find smaller effects reducing the chance to drop anon-redundant
feature.

Koller’s MBBE works as follows:

1. For each featureXi , find the setMi of K features (K = 1−4) that are most correlated to it.
(That is, which provide little information on the response when added to the selected feature in
frequency table models.) Additional information is measured as KL-distance (Kullback and
Liebler, 1951)D(P(y|Xi ,Xj),P(y|Xi)). The setMi is called the approximate Markov blanket
for featureXi . The authors state thatK = 1−2 gives the best results.

2. For each feature compute the relevance scoreδi = D(P(y|Mi ,Xi),P(y|Mi)). This represents
the additional information it brings when added to its approximate Markov blanket, and re-
move features that have the smallest relevance scores (i.e., most redundant).

3. Repeat (1,2) until all features are ranked in the order they are deleted. This method returns a
ranked list of features rather than one subset.

Our ACE algorithm works more like FCBS as it uses only one feature as an approximate MB for
each feature (as does the MBBE algorithm withK = 1). Furthermore, it filters features by relevance
before computing redundancy between the features, and reports a final minimum feature subset.
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K Number of classes (if classification problem)
X set of original variables
Y target variable
M Number of variables
R Number of replicates for t-test
α quantile used for variable importance estimation
αm quantile used for variable masking estimation
Z permuted versions ofX
W cumulative variable importance vector.
Wk cumulative variable importance vector fork-th class in classification.
F current working set of variables
Φ set of important variables
V variable importance matrix(R×2M)
Vr. rth row of variable importance matrixV, r = 1. . .R
V. j jth column of matrixV
gI (F,Y) function that trains an ensemble ofL trees based on

variablesF and targetY, and returns a row vector
of importance for each variable inF

gY(F,Y) function that trains an ensemble based on variablesF
and targetY, and returns a prediction ofY

Gk(F) current predictions for log-odds ofk-th class
GBT(F) GBT model built on variable setF
M(G) Masking measure matrix calculated from modelG
Mk Masking matrix fork-th GBT ensembleGt .
M∗ Masking flags matrix

Table 1: Notation in Algorithms 1-3

However, the major difference is that our redundancy measure approximates KL-distance taking the
response into account and uses local information. Thus, it can deal withmultivariate dependencies.
MBBE for K > 1 will incur three (or more) dimensional frequency tables that are hard to deal with
if number of categories is large.

The learnerg(., .) in the ACE algorithms is an ensemble of trees. Any classifier/regressor func-
tion can be used, from which the variable importance from all variable interactions can be derived.
To our knowledge, only ensembles of trees can provide this conveniently.

The computational complexity of the algorithm is of the same order as the maximal complexity
of a RF on the whole feature set and a GBT model on the selected important feature subset. A
GBT model is usually more complex, because all surrogate splits at every tree node are computed.
However, a smaller tree depth setting for the GBT model reduces the calculations in this part of the
algorithm. The complexity is proportional to

(Fsel+Fimpvar)∗N∗ logN∗Ntrees∗Nensembles∗Niter+Niter∗Fimpvar2,
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where the variables are defined as follows:Niter is the number of iterations of the ACE algorithm
(for example, for the challenge discussed in Sec. 5.3 this was always lessthan 10 and usually
3-4); Nensemblesis the number of replicates for t-tests (equal to 20 in the challenge);Ntreesis
the number of trees in the RF or ensemble (equal to 20-100 in the challenge);N is the number
of samples;Fsel is the number of selected variables per tree split in RF (equal to the square root
of the total number features or less);Fimpvar is the number of selected important variables (for
example, for the challenge data set NOVA discussed in Section 5.3 this was approximately 400-800
depending on parameters). The algorithm is very fast with approximately a minute for one feature
selection iteration on the challenge NOVA data set with 16K variables with 20 replicates with 70
trees on a Windows XP-based four-processor Xeon (2 x HT) 3.4GHz workstation.

5. Experiments

In order to evaluate the goodness of feature selection algorithms, two options have been used in
the literature. The first is not to evaluate the actual feature selection performance at all, but the
performance of a subsequent learner in some task. This facilitates the useof any data set in the
“evaluation” but does not give much useful information at all in characterizing the actual feature
selection. The second option is to directly evaluate the feature selection performance without using
a subsequent proxy task. The latter dictates the need to know the ground truth behind the data,
which typically means that the data must be artificially generated, either completely, or by adding
some redundant and/or irrelevant features to some known data.

As the topic of the paper at hand is a method for the subset feature selection, the first evaluation
method is affected by the choice of the classifier. The effects of feature selection are mixed in
with how well the learner is able to handle redundant or irrelevant features. The results would thus
depend on the choice of learners and on the choice of data sets. Therefore we will mainly describe
experiments with two types of simulated data with known ground truth.

Experiments on data with linear relationships are presented first. Then a nonlinear data generator
is used to study the sensitivity to multiple variable interactions with nonlinear relations. Further
results are from the 2007 International Joint Conference on Neural Networks (IJCNN), “Agnostic
learning vs. prior knowledge challenge & data representation discoveryworkshop”. The algorithm
described here had the second best performance in the agnostic track.Here we demonstrate the
effect of the subset to predictor performance as compared to the full set of features. Also, an actual
manufacturing data set as well as a comparison to a previous analysis of thewell known Hepatitis
data are also presented in terms of predictive power of the resulting feature set.

5.1 Generated Data with Linear Relationships

The data in this experiment has an additive structure with one numeric response variable and 203
input variables. Inputsx1, . . . ,x100 are highly correlated with one another, and they are all reasonably
predictive of the response (regressionR2 ∼ 0.5). But a,b, andc are independent variables that are
much weaker predictors (regressionR2 ∼ 0.1). Furtheru1, . . . ,u100 are i.i.d. N(0,1) variables that
are unrelated to the target. The target variable was generated as an additive model with additional
noise usingy = x1 + a+ b+ c+ ε, whereε ∼ N(0,1). This structure is chosen because it is well
known that linear (oblique) relationships are not optimal for a tree representation. However, they
are ideal for correlation-based methods. Thus we have here the worstpossible case for ACE and the
best possible case for CFS. The methods were evaluated on 50 data sets of size 400 samples.
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Figure 1: Artificial data with linear relationships. Subset discovery methods (ACE, CFS, CFS-gen)
and methods finding a subset of predefined size four (RFE4, Relief4) are compared. The
results for each method consist of three bars. The first is the percentage of relevant vari-
ables detected (out of four), the second is the percentage of redundant variables detected
(out of 100), and the third is the percentage of irrelevant variables detected (out of 100).
The results are averages over 50 data sets.

Figure 1 depicts the performance of ACE against methods that also discover the subsets (CFS
with best-first search, CFS with genetic search), as well as against somesubset ranking methods
(RFE, Relief).

RFE and Relief are ranking methods. In this experiment they were given theadvantage of know-
ing the number of relevant features beforehand, that is, their task was to“find the best possible four
variable subset” (RFE4, Relief4), whereas ACE and CFS had to also findthe number themselves.
A further advantage was given to RFE by matching the underlying supportvector regressor to the
problem with a linear kernel (using the standard RBF kernel produced inferior results). This ex-
periment demonstrates one aspect of the advantages of ACE. In a task ideal for correlation-based
methods but hard for trees, we show equal performance.

5.2 Generated Nonlinear Data

Next, experiments were conducted using a well-known data generator (Friedman, 1999), which
produces data sets with multiple non-linear interactions between input variables. The true model
can be designed with relevant, redundant, and noise inputs. We selected 10 relevant inputs plus
random, uniform (0, 1) noise. Also, 20 redundant inputs were used. Each was a random linear
combination of three inputs plus random, uniform noise. Finally, 40 noise inputs were added, so
that 70 features were available to the full model. The target function was generated as a weighted
sum of 10 multidimensional Gaussians, each Gaussian at a time involving aboutfour input variables
randomly drawn from the relevant 10 variables. Thus all of the relevant10 input variables are
involved in the target, to a varying degree. The Gaussian functions also have a random mean vector
and a random covariance matrix as described by Friedman (1999). Weights for the Gaussians were
randomly drawn fromU [−1,1].

The data generator produces continuous-valued variables. Thus the data sets can be used as such
for regression problems. Data sets of two different sizes were generated, 1000 and 4000 samples. In
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order to generate classification problems, the target variable was discretized to two levels. Mixed-
type data was generated by randomly discretizing half of the variables, each to a random number
of levels drawn fromU [2,32]. There are thus eight different experiments altogether. For each
experiment, 50 data sets were generated with different seeds. Figure 2 presents the results for each
case as average percentages of features selected in each group (relevant, redundant, or noise) over
the 50 generated data sets.
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Figure 2: Artificial data with nonlinear relationships. Subset discovery methods (ACE, CFS, CFS-
gen, FCBS) and methods finding a subset of predefined size 10 (RFE10, Relief10) are
compared. FCBS works only in classification problems. The results for each method
consist of three bars. The first is the percentage of relevant variables detected (out of 10),
the second is the percentage of redundant variables detected (out of 20), and the third is
the percentage of irrelevant variables detected (out of 40). The results are averages over
50 data sets.

RFE and Relief were again given the advantage of knowing the number of relevant features
beforehand, that is, their task was to “find the best possible ten-variablesubset”, whereas ACE,
CFS, and FCBS had to also find the number by themselves. A further advantage was given to RFE
by matching the underlying support vector classifier to the problem with an RBF kernel. Using a
linear kernel produced inferior results.
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The notable failure of FCBS on this data can be explained as follows. Most numerical important
variables are dropped at the discretization step of FCBS, because MDL discretization works as a
filter method, and it cannot deal with the multivariate dependency from Friedmans’s generator. It
works well with discrete variables only when the number of categories is smalland the response is
categorical with a small number of categories.

This experiment demonstrates another aspect of the universality of ACE.The only case where
another method (RFE10) showed a superior result was a classification problem with a smaller sam-
ple size and mixed type inputs. Again RFE10 was given the advantage of knowing the number of
relevant features and an appropriate kernel beforehand.

5.3 IJCNN 2007 Agnostic Learning vs. Prior Knowledge Challenge

In this experiment we show the effect of the selected subset within variousclassification tasks. The
ACE feature selection algorithm was applied to the data sets in the Agnostic Learning Challenge.
The number of training/validation/testing instances and the number of featuresare shown in the
following list:

• ADA, Marketing, 4147/415/41471, 48 features

• GINA, Handwriting recognition, 3153/315/31532, 970 features

• HIVA, Drug discovery, 3845/384/38449, 1617 features

• NOVA, Text, 1754/175/17537, 16969 features

• SYLVA, Ecology, 13086/1309/130857, 216 features

For feature selection with ACE, the number of trees, importance and masking quantiles were pa-
rameters that were optimized. Next GBT with embedded feature selection (to prevent overfitting)
(Borisov et al., 2006) was built on the subset. The following parameters ofGBT were optimized:
number of trees, tree depth, shrinkage, number of selected features per tree node, and the impor-
tance adjustment rate for embedded feature selection, stratified sampling for0/1 class proportions,
and priors. The optimization strategy (manual) was to set reasonable parameter values, and then
try to adjust each parameter sequentially, so that the test error decreased. The model was trained
on 60% of the training data during parameter optimization. Several passes over all the GBT pa-
rameters were used, and one for the feature selection parameters. Priors were selected using cross
validation. Feature selection and GBT were used onK partitions of the data and then optimal priors
were selected on the remaining part.

Table 2 shows the results before and after subset selection for the five challenge data sets. The
CV-error was either preserved or reduced through a good subset. The overall results were the sec-
ond best in the agnostic learning challenge. Redundancy elimination was applied on ADA, HIVA,
SYLVA, and feature selection without redundancy elimination was used on NOVA and GINA.

5.4 TIED Data Set

A data set with multiple Markov boundaries was generated by Statnikov and Aliferis (2009). The
data was obtained from a discrete Bayesian network with 1000 variables and a target variable
with four classes. A training set was constructed with 750 instances simulatedfrom the network.
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Original Features CV-error from Best CV-error from
all features subset size selected subset

Ada 47 0.1909 16 0.1855
Gina 970 0.0527 75 0.0506
Hiva 1617 0.2847 221 0.2559
Nova 12993 0.0591 400 0.0518
Sylva 212 0.0133 69 0.0129

Table 2: IJCNN 2007 Agnostic Learning vs. Prior Knowledge Challenge results.

Variable p-value Importance Score
3 0 100.0%
2 0 98.4%

10 0 96.4%
1 1.E-10 96.4%

11 3.E-07 83.3%
12 2.E-07 83.3%
13 5.E-07 79.1%
18 3.E-09 67.5%
19 2.E-07 67.5%
15 2.E-07 41.4%
20 2.E-06 39.5%
29 2.E-06 29.8%
8 3.E-06 26.2%

14 1.E-08 11.6%
4 8.E-06 9.5%
9 6.E-06 8.3%

Table 3: Feature selection scores for the TIED data set. Variables in any Markov boundary are
recovered as significant with three false alarms.

The network contained 72 Markov boundaries. Each boundary contained five variables (one from
each of the following subsets):(1){X9}, (2) {X4,X8}, (3){X11,X12,X13}, (4) {X18,X19,X20}, and (5)
{X1,X2,X3,X10}.

The ACE feature selection method described here was used to remove irrelevant features. After
three iterations of the residual calculations described previously the algorithm stopped with the im-
portant variables (and p-values from the artificial contrasts) shown in Table 3. The list of statistically
significant variables reproduces all the variables in any of the Markov boundaries listed above, with
false alarms from variablesX14,X15, andX29.

Although ACE recovered the variables in the Markov boundaries, there are limitations with
the masking methods for a multi-class target. The GBT ensembles model each class(versus the
rest) with a binary logistic function and averages variable masking scores over the binary models.
Consequently, some attenuation of the importance scores are expected. Redundancy elimination did
not effectively eliminate masking in the TIED data. However, we used the TIED network and TIED
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data for binary problems with each class versus the rest. For example, forclass 1 versus the rest
the TIED network generates the same collection of 72 Markov boundaries.The results from ACE
without redundancy elimination for the binary target are shown in Table 4. The list of statistically
significant variables reproduces all the variables in any of the Markov boundaries, with no false
alarms.

Variable Importance Score
4 100.0%
8 100.0%

19 88.1%
18 88.1%
20 88.1%
9 64.8%

13 39.5%
12 39.5%
11 39.5%
10 21.9%
2 21.9%
3 21.9%
1 21.9%
6 0.0%

Table 4: Variable importance for TIED data modified for a binary target (class 1 versus the rest).
All variables in the true Markov boundaries are identified with no false alarms.

As the importance scores are arranged in decreasing order in Table 4, groups of variables with
similar scores become noticeable and these groups correspond to the subsets (equivalence classes)
in the cross-product that defines the Markov boundaries. That is, themost important variables in
Table 4 are those in the subset{X4,X8} in the Markov boundaries and the last group matches the
subset{X1,X2,X3,X10}. The equivalent groups are clear from their importance scores in this case.

The analysis with redundancy elimination generated the list of significantly significant variables
in Table 5. One equivalent variable from the subset{X1,X2,X3,X10} was missed in the recovery of
a Markov boundary. The contribution from this subset was, however,small. The predictive perfor-
mance of a tree ensemble on the recovered variables is nearly identical to a model on a true Markov
boundary. In addition, the three variables{X18,X20,X4} are identified in Table 5 as important, but
they are redundant in the true network. Although these comprise false alarms, the magnitudes of
the importance scores indicate that the last three variables are much less important than the others.
Similar results (not shown here) were obtained for the binary target class2 (versus the rest). Results
without any errors were obtained for classes 0 and 3 (each versus therest). Specifically, for class 0
the Markov boundaries from the TIED network consist of one element from{X1,X2,X3,X10}. In this
case the ACE analysis without redundancy elimination recovered these four variables without false
alarms. The analysis with redundancy elimination correctly recovered a single variable from this
set. Similarly for class 3, without redundancy elimination all variables in the Markov boundaries
{X12,X13,X14} were recovered, and only one variable from this set was recovered with redundancy
elimination.
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Variable Importance Score
8 100.0%
9 61.3%

19 43.8%
1 10.2%

18 2.6%
20 0.9%
4 0.3%

Table 5: Variable importance for TIED data modified for a binary target (class 1 versus the rest)
with redundancy elimination.

5.5 Manufacturing Data

In multiple real world applications collecting unnecessary variables is a costissue and finding a
suitable subset is critical in terms of cost-efficiency. As an example we present manufacturing data
from a process that contained approximately 10K rows and consisted of 35 predictors that were all
numerical, continuous measurements. The target was a binary response and approximately 20%
of the data belonged in the rare class. Because the data is actual manufacturing data, the specific
variable names are not provided. The data was analyzed extensively withtraditional regression
methods (the response was coded as 0 and 1) and models obtained were complex and not accurate.
A list of the results from our algorithm is shown in Table 6. It is not unusualfor manufacturing
data to consist of related predictors. Without redundancy elimination, 20 variables were identified
as related to the target. However, after masking scores were used to remove redundant predictors
the final subset model consisted of only five predictors.

The predictive accuracy for the binary target was nearly identical using a GBT model with these
5 predictors to the full set of 35 predictors. Table 6 also compares other subset selection algorithms
to ACE in terms of their predictive accuracy and the size of the selected feature set.

A previous analysis of this data by Berrado and Runger (2007) used association rules applied
after the predictors were discretized with simple equal-frequency discretization. Only rules with
consequent equal to the rare target class were considered. A total of25 rules were detected that met
the minimum support threshold. These rules contained 14 variables and 13 out of 14 are listed in
the Table 6. Although the objectives of the association analysis were different, the relatively high
proportion of important variables is consistent with the results in Table 6.

5.6 Hepatitis Data

The hepatitis data available from the UC-Irvine repository has been widely analyzed. There are 155
patients and 19 predictors and the response is a binary survival result.Breiman (2001) considered
this data and cited a previous analysis from the Stanford Medical School and another analysis by
Diaconis and Efron (1983). The analysis from the medical school concluded that the important
variables were 6, 12, 14, 19. But Breiman (2001) concluded after a set of analyses that number 12
or 17 provided predictive power nearly equivalent to the full set of variables, and that these masked
each other. A notable difficulty is the small sample size in this example.

1361



TUV, BORISOV, RUNGER AND TORKKOLA

ACE without ACE with CFS CFS-gen FCBS
Variables redundancy elim. redundancy elim.

V11 100.0% 72.4% 1 1
V4 96.1% 100.0% 1 1
V5 49.8% 49.4% 1 1 1

V12 48.6% 1 1
V14 46.6% 1 1
V10 43.5% 1 1
V2 43.3% 36.4% 1 1

V13 38.7% 21.6%
V8 30.3% 1
V1 27.9% 1
V9 23.7%
V3 23.6% 1

V19 21.8%
V7 21.5%

V20 20.4%
V26 1
V27 1

Errors 0.145 0.144 0.145 0.190

Table 6: Manufacturing data with a binary target with redundancy elimination excludes many vari-
ables. Only a smaller subset of the relevant predictors remain. We comparethe extracted
variables to other subset selection algorithms (selected variables are marked as ’1’ in the
table). The error rate for the full set of variables was 0.146.

We confirmed the strong masking between variables 12 and 17 (and vice versa) from our mask-
ing matrix. We also obtained a subset model that consists of variables 6, 17,14, 19, and 11, similar
to medical school. Variable 11 was also identified in unpublished lecture notesby Breiman. The
subset selected by our algorithm has the lowest cross-validation error using logistic regression.

6. Conclusions

We have presented an efficient method for feature subset selection thatbuilds upon the known
strengths of the tree ensembles and is designed explicitly to discover a non-redundant, effective
subset of features in large, dirty, and complex data sets.

Our method attempts to eliminate irrelevant variables using statistical comparisons with artificial
contrasts to obtain a threshold for importance estimated from the parallel ensembles of trees capable
of scoring very large number of variables.

It uses serial ensembles to discover significant masking effects for redundancy elimination. Fur-
thermore we have showed that the redundancy elimination based on featuremasking approximates
the Markov blanket redundancy filtering. It also uses an iterative strategy to allow for weaker pre-
dictors to be identified after stronger contributors.
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Variables ACE CFS CFS-gen FCBS

malaise-6 1 1 1
albumin-17 1
bilirubin-14 1 1 1

histology-19 1 1 1
spiders-11 1 1 1 1

age-1 1 1
sex-2 1 1 1

ascites-12 1 1 1
varices-13 1 1

Errors 0.142 0.155 0.155 0.194

Table 7: Hepatitis data. Features selected from ACE compared to other subset selection algorithms
(selected variables are marked as ’1’ in the table). The baseline error rate for the full set
of variables was 0.148.

The superior performance of the algorithm is illustrated with a number of experiments on both
artificial and real data as well as by its success in the agnostic learning challenge.
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