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Abstract

The collaborative filtering (CF) using known user ratingstems has proved to be effective for
predicting user preferences in item selection. This thgwsubfield of machine learning became
popular in the late 1990s with the spread of online servieasuse recommender systems, such as
Amazon, Yahoo! Music, and Netflix. CF approaches are usutdgigned to work on very large
data sets. Therefore the scalability of the methods is atudn this work, we propose various
scalable solutions that are validated against the NetflzeRfata set, currently the largest publicly
available collection. First, we propose various matrixdaization (MF) based techniques. Second,
a neighbor correction method for MF is outlined, which afidie global perspective of MF and
the localized property of neighbor based approaches effigieln the experimentation section,
we first report on some implementation issues, and we suggdsiw parameter optimization can
be performed efficiently for MFs. We then show that the preploscalable approaches compare
favorably with existing ones in terms of prediction accyrand/or required training time. Finally,
we report on some experiments performed on MovieLens andrXiegta sets.
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1. Introduction

Recommender systems attempt to profile user preferences over items, agictimeoatlation be-
tween users and items. The task of recommender systems is to recommend itefihg thedr’'s
tastes, in order to help the user in selecting/purchasing items from an alerinh set of choices.
Such systems have great importance in applications such as e-commésiziption based ser-
vices, information filtering, etc. Recommender systems providing persot@liggyestions greatly
increase the likelihood of a customer making a purchase compared to amglered ones. Person-
alized recommendations are especially important in markets where the varigigioés is large,
the taste of the customer is important, and last but not least the price of the iterodést. Typi-
cal areas of such services are mostly related to art (esp. books, mowisie), fashion, food and
restaurants, gaming and humor.

With the burgeoning of web based businesses, an increasing numbebdifased merchant or
rental services use recommender systems. Some of the major participaitismofreerce web, like
Amazon and Netflix, successfully apply recommender systems to delivanatitally generated
personalized recommendation to their customers. The importance of a gomdmender system
was recognized by Netflix, which led to the announcement of the Netflix FXiE¢ competition to
motivate researchers to improve the accuracy of the recommender syfdistilix (see details in
Section 5.1.1).

There are two basic strategies that can be applied when generating recdatimes.Content-
based approachgwofile users and items by identifying their characteristic features, sudére-
graphic data for user profiling, and product information/descriptiongdm profiling. The profiles
are used by algorithms to connect user interests and item descriptiongememmting recommen-
dations. However, it is usually laborious to collect the necessary informatiout items, and
similarly it is often difficult to motivate users to share their personal data todrelge the database
for the basis of profiling.

Therefore, the alternative approach, terneetlaborative filtering(CF), which makes use of
only past user activities (for example, transaction history or user sat@ieexpressed in ratings),
is usually more feasible. CF approaches can be applied to recommeneensysdependently of
the domain. CF algorithms identify relationships between users and items, aedassdciations
using this information to predict user preferences.

In this paper, we focus on the case when users express their opinitenaf by means of
ratings. In this framework, the user first provides ratings of some items, ditlegifacts, usually
on a discrete numerical scale, and the system then recommends other itech®baatings the
virtual communityhas already provided. The virtual community was defined by Hill et al. (1895
“a group of people who share characteristics and interact in esseaffeat only.” The underlying
assumption is that people who had similar tastes in the past may also agree dastiesiiin the
future.

1.1 Related Work

The first works on the field of CF were published in the early 1990s. Gajdkial. (1992) presented
the Tapestry system that used collaborative filtering to filter mails simultanefosiyseveral mail-

ing lists, based on the opinion of other users on the readings. Resnitk(®%4) described the
GroupLens system that was one of the pioneer applications of the fieletwhkers could rate arti-
cles on a 1-5 scale after having read them and were then offeredsiogge Breese et al. (1998)
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divided the underlying techniques of predicting user preferences irtaortain groups.Memory-
basedapproaches operate on the entire database of ratings collected by tloe eservice sup-

plier. On the other hananodel-basedpproaches use the database to estimate or learn a model and
then apply this model for prediction.

Over the last broad decade many CF algorithms have been proposeghadch the prob-
lem by different techniques, including similarity/neighborhood basedcagbies (Resnick et al.,
1994; Sarwar et al., 2001), personality diagnosis (Pennock et aD) 2ZB8yesian networks (Breese
et al., 1998), restricted Boltzmann machines (RBM) (Salakhutdinov et &7)2@nd various ma-
trix factorization techniques (Canny, 2002; Hofmann, 2004; Sarwalr,et000; Srebro et al., 2005).
Vozalis and Margaritis (2007) presented an MF approach that incagsodemographic informa-
tion and ratings to enhance plain CF algorithms. Breese et al. (1998ysdrivedetail the major CF
approaches of the early years, Rashid et al. (2006) gave a skorigt®n of most recent methods,
and Adomavicius and Tuzhilin (2005) also investigated in their survey ths&lgesextensions.

The NP competition boosted the interest in CF, and yielded the publication ohheanof new
methods. We should also mention here the NP related KDD Cup and WorkBeopdit et al.,
2007), which indicated the possible directions of scalable and accuratee@itods. We feature
among them the matrix factorization, neighbor based approaches, andaimsinations.

Several matrix factorization technigues have been successfully app{@# tocluding singular
value decomposition (Sarwar et al., 2000), probabilistic latent semanticss@ofmann, 2004),
probabilistic matrix factorization (Salakhutdinov and Mnih, 2008), maximum mamngtrix factor-
ization (Srebro et al., 2005), expectation maximization for MF (Kurucz e2@Q7), and alternating
least squares (Bell and Koren, 2007a).

Simon Funk (Brandyn Webb) published a detailed implementation of a regulaviEewith
separate feature updatePaterek (2007) introduced a bunch of novel techniques, including MF
with biases, applying kernel ridge regression on the residual of MF,rlimealel for each item,
and asymmetric factor models (NSVD1, NSVD2). Kurucz et al. (2007yvskdothe application
of expectation maximization based MF methods for the NP. Bell and Korerv@Q(iesented an
improved neighborhood based approach, which removes the globel &#tim the data, and calcu-
lates optimal similarity values by solving regression problems. Salakhutdiradv(2007) mention
without details a momentum based MF method that uses batch learning.

Our methods are different from the above ones in various aspectsarReKoren (2007a) use
alternate least squares, but we use incremental gradient descerkn@fen as stochastic gradient
descent) method for weight updates. Their method does not use theldyioal order of ratings,
while we exploit this information in our approaches. They use only positideadinary MFs,
while we propose the semi-positive version of the MF algorithm. Paterek/j2(iplies a different
learning scheme following Simon Funk’s path (see the detailed comparisorciiois8.1). We
point out that this difference makes our training process somewhat tasledoes not deteriorate
the accuracy. Other differences are that Paterek uses fewer nmatagtars for his MF methods.
Salakhutdinov et al. (2007) apply a momentum based MF with batch learninggpoint out that
incremental gradient descent is more appropriate for large scale prable

1. Details ahttp://sifter.org/ ~simon/journal/20061211.html
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1.2 Main Results and Organization

The aim of this work is to propose accurate and scalable solutions foraafl@sllaborative fil-

tering problems. Scalability is crucial since CF systems often have to manage sndfiaisers or
items. As it was shown by many researchers (see for example Bell et@rhPeombination (also
termed blending) of various algorithms typically outperforms single methods in @raccuracy.
Therefore, we would like to emphasize here that a particular method carbeaeficial impact on
the overall accuracy if (1) it yields a very accurate model on its own pit (blends well”, that

is it improves the accuracy of the combination of several models. The meginodesed in this
paper satisfy one or both of these criteria. We classify the methods peddarthis paper into 4
categories:

e crucial in improving accuracy or run-time;

e may negligibly improve accuracy, in a way that is more important for competiticars fibr
real life data;

e does not improve accuracy, but is useful for blending with other teclesiq
e important for real life data.

This paper is organized as follows. Section 2 defines the CF setting we docim this work.
Section 3 describes our proposed MF algorithms. In particular, wengrese

e aregularized MF and its biased version that use an incremental gradgssird weight updat-
ing scheme, termed as RISMF and BRISMF, (biased) regularized inctahsénultaneous
MF;

e afast (semi-)positive MF version that approximates the features by neimgegative values
for either users or items or both;

e an accurate momentum based MF approach;

e an incremental variant of MF that efficiently handles new users/ratingsigletrucial in a
real-life recommender systems);

e a transductive version of MF that makes use of information from test iostafmamely the
ratings users have given for certain items) to improve prediction accuracy

We also introduce a special MF version that supports the visualizationeofites features,
which can be used to generate explanation for recommendations. Finalljlusteate that the
learning scheme of some MF algorithms can be directly described in the netirark framework.

Section 4 presents a neighbor based correction approach for MH) athiys the global per-
spective of MF and the localized property of neighbor based appesasfficiently. We propose
here two similarity functions for items.

Section 5 contains the experiments. First, we introduce the Netflix Prize datgasest which
our proposed algorithms are validated. In addition, we also describe thieMms and the Jester
data sets, on which we also run some experiments. Next, we mention some irhpopimen-
tation issues: we comment on the efficient storage of very large ratingad&s\bwe consider the
proper ordering of training examples, and we outline our parameter optinmzsgiaristic. We then
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report on our comprehensive experiments run on the NP data set.dntoriflustrate the applica-
bility of MF methods to other data sets, we also report on tests executed wldttesdviF method,
BRISMF, on the MovieLens and Jester data sets and compare the resullssafine predictors.
For the NP data set, we report on the results of each proposed methtiteandst accurate com-
binations of methods. We briefly analyze the accuracy-time complexity trfidé-F methods.
We finally compare our results to other published ones to show that thesgdpeethods are com-
parable to the existing one in terms of root mean squared error (RMSE)s&ealiscuss the time
complexity of some selected methods, and we point out that it comparesliéywdoo similar type
methods published so far. We further mention here that all the presenteddsetie part of the
blended solution of our team Gravity in the NP contest.

2. Problem Definition

We define the problem afollaborative filtering(CF) in the following setting. The problem can be
modeled by the random triplét), |, R), where

e U taking values from{1,...,N} is theuser identifieN is the number of users),
e | taking values from{1,...,M} is theitem identifier(M is the number of items), and

¢ Rtaking values fromX C R is the rating value. Typical rating values can be binaxy={
{0,1}), integers from a given range (for examphé = {1,2,3,4,5}), or real numbers of a
closed interval (for example¥ = [—10,10]).

A realization of(U, |, R) denoted by(u,i,r) means that userrated item with valuer.
The goal is to estimat® from (U, 1) such that the root mean squared error of the estimate,

RMSE=\/E{(R—R)2}, (1)

is minimal, whereR is the estimateof R. We briefly discuss other possible evaluation metrics in
CF in Section 5.

In practice, the distribution ofU,1,R) is not known: we are only given a finite sampig, =
{(u1,i1,r1),(Uz,i2,r2),..., (W,it,r)}, generated by it. The samplE can be used for training pre-
dictors. We assumeampling without replacemein the sense that (user ID, item ID) pairs are
unique in the sample, which means that users do not rate items more than ehag iritroduce the
notationZ = {(u,i) : 3r: (u,i,r) € 7'} for the set of (user ID, item ID) pairs. Note th&t'| = |7,
and typically|7T| < N - M, because most of the users rate only a small subset of the entire set of
items. The sample can be represented as a partially specified matrix den&ted R}*M, where
the matrix elements are known in positiofsi) € 7, and unknown in positiongu,i) ¢ 7. The
value of the matrixR at position(u,i) € 7, denoted byr;, stores the rating of user for item
i. For clarity, we use the terrfu,i)-th rating in general for;, and(u,i)-th training example if
rui: (U,i) e 7.

2. In general, superscript “hat” denotes the prediction of the givamtify, soX’is the prediction ok.
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The goal of this CF setup is to create such predictors that aim at minimizing ribie (&).
In practice, we cannot measure the error because the distributidh, bfR) is unknown, but we
can estimate the error on a validation set. Let us denote the validation gét &y(1,...,N] x
[1,...,M] x X, assuming sampling without replacement as defined above, and we fasthene the
uniqueness of (user ID, item ID) pairs acra8sand 1. We define?’ = {(u,i) : 3r : (u,i,r) € V'}.
The assumptions ensure thatN 4 = 0. If both the training setZ’ and validation setl”’ are
generated from the same distribution the estimate of RMSE can be calculated as

_ 1 -
RMSE: ? Z (rui—rui)z.
ke (ui)ev

For better readability, from now on we omit the “hat” from the RMSE, recaltimgt we always
calculate the estimate of the error.

When we predict a given rating,; by fii we refer to the useu asactive userand to the item
asactive item The(u,i) pair of active user and active item is ternepaery.

3. Matrix Factorization

Matrix factorization is one of the most often applied techniques for CF pmudl&lumerous differ-
ent MF variants have been already published and were validated atlpiNP data set as well. We
should credit here again Simon Funk, who published the first detailed implatisennotes on this
problem. He applied a regularized MF with gradient descent learningrechklis model trained
factors one after another, which can be considered as a series dfot K&F training processes
performed on the residual of the previous one. Other efficient MFmgriaere published by Bell
and Koren (2007a), where they used alternating least squares ifgitwgdates. Biased MF was
applied by Paterek (2007), whose technique was also proposed atrtigetisne in our previous
work (Takacs et al., 2007) as “constant values in matrices”.

In this section we give an overview of our MF variants that proved to fex&fe in tackling
the large scale practical problem of NP, and hence may be considemagsatul collection of tools
for practitioners. Here we also propose several modifications fordlda@own MF variants, which
are effective in improving the accuracy of the generated models. We &isaletails concerning
the time requirement of certain methods and propose efficient implementatitiosslu

The idea behind MF techniques is very simple. Suppose we want to appteximamatrixkR
as the product of two matrices:

R~ PQ,

whereP is anN x K andQ is aK x M matrix. We callP the user feature matrix ar@ the item
feature matrix, an& is the number of features in the given factorization. If we consider the reatric
as linear transformations, the approximation can be interpreted as followrsx Qds a transform
from $1 = RM into $» = RX, and matrixP is a transform fronss, into $3 = RN. Typically, K < N
andK <« M, therefore the vector spagg acts as a bottleneck when predictinge S3 fromv; € $1.
In other words, the number of parameters to desdriloan be reduced fron? | to NK+ KM. Note
thatQ andP typically contain real numbers, even whrcontains only integers.

In the case of the given problem, the unknown ratingfRofannot be represented by zero.
For this case, the approximation task can be defined as follows pJketenote the elements of
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P ¢ RN*K andqy the elements of € RK*M. Further, letp, denote a row (vector) d?, andg; a
column (vector) ofQ. Then:

K
fui = Puktki = Puli, )
K=1
eui =ruyi—fui for(ui)eT,
1
ei = 5€i; 3)
K 2
SSE= ) &= > (rui -5 puqui> :
(ui)eT (ul)eT k=1
SSE = %SSE: S €
(unNeT
RMSE= /SSE/|T],
(P*,Q*) = argminSSE = arg minSSE= arg minRMSE (4)
(P.Q) (P.Q) (P.Q)

Herer}i denotes how the-th user would rate thith item, according to the moded,; denotes the
training error measured at tlja, i)-th rating, and SSE denotes the sum of squared training errors.
Eq. (4) states that the optim&l and Q minimize the sum of squared errors only on the known
elements oR.

In order to minimize RMSE, which is in this case equivalent to minimizing 'S&& apply a
simple incremental gradient descent method to find a local minimum of, 88¥re one gradient
step intends to decrease the square of prediction error of only one, ratiaguivalently, eithe€;
or e’

Minimizing RMSE can be seen as a weighted low-rank approximatiéh ¢ffeighted low-rank
approximations try to minimize the objective function SSE S1\_; SM; wyi - €5, wherew,-s are
predefined non-negative weights. For collaborative filtering problemsds 1 for known ratings,
and O for unknown ratings. Srebro and Jaakkola (2003) showedntet the rank of( (wyi))
is 1, all local minima are global minima. However, when it is greater than 1—aseircdke of
collaborative filtering—this statement does not hold any more, which wagrshy the authors via
counterexamples.

For the incremental gradient descent method, suppose we are(at ithéh training example,
rui, and its approximation, is given.

We compute the gradient &f;:

0 0
me{n = —€&ui - Gki, ﬁe{“ = —€yi - Puk-

We update the weights in the direction opposite to the gradient:
Puk = Puk+ N - €ui - Ois
Oki = ki + 1 - €ui - Puk-
That is, we change the weights FhandQ to decrease the square of actual error, thus better ap-

proximatingr,. Heren is the learning rate. This basic MF method is referred to as ISMF, that is
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incremental simultaneous MF, due to its distinctive incremental and simultanedgist wpdating
method to other MF methods.

When the training has been finished, each valu® @ian be computed easily using Eq. (2),
even at unknown positions. In other words, the moBeélgndQ*) provides a description of how an
arbitrary user would rate any item.

3.1 RISMF

The matrix factorization presented in the previous section can overfitstnswith few (no more
thanK) ratings: assuming that the feature vectors of the items rated by the udereanty inde-
pendent and) does not change, there exists a user feature vector with zero traimorg €hus,
there is a potential for overfitting, if and the extent of the change@are both small. A common
way to avoid overfitting is to apply regularization by penalizing the squareeEticlidean norm
of weights. This is often used in machine learning methods, for example 8\gmbor Machines
and ridge regression apply that. It is common also in neural networksgvitiie termed as weight
decay (Duda et al.). Penalizing the weights results in a new optimization problem:

e = (5+Apu-pl +A-a -a)/2,

SSE == Z %i?
(uher
(P*,Q*) = argminSSE. (5)
(P.Q)

HereA > 0 is the regularization factor. Note that minimizing $8Eno longer equivalent to min-
imizing SSE, unles& = 0, in which case we get back the ISMF. We call this MF variant RISMF
that stands for regularized incremental simultaneous MF.

Similar to the ISMF approach, we compute the gradierg pf

0 0
me{n = —€yi - Oki + A - Puk, ﬁe{” = —€yj - Puk+A - Oi- (6)

We update the weights in the direction opposite to the gradient:

Puk = Puk+N - (€ui - Oki — A - Puk);
Qf(i =0k + N - (€ui- Puk— A Gki)-

For the training algorithm used in RISMF, see Algorithm 1. Note that we udg s@pping in
Algorithm 1, thusP* andQ* differs from Eq. (5), because we optimize for the validation set. Note
that the matrices are initialized randomly. If bd®fandQ are initialized with a constant value, that
is, both are rank 1, the weight update will not increase the rank, whichuwaent to theK = 1
case. Random initialization is a simple way to avoid this. Typically, we uniformlypsb@andom
values from—0.01,0.01] or [-0.02,0.02].

We point out that RISMF differs from Funk’s MF in a few important agpetVe update each
feature simultaneously and initialize the matrix randomly. Simon Funk’s approachsleach
feature separately during a certain number of epochs, but there apegdication as to when
the learning procedure has to step to the next feature. His approactrges slower than ours,
because it iterates ovBrmore times. Both methods use regularization and early stopping to prevent
overfitting.

(7)
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Input: 7”: training setn: learning rate): regularization factor
Output: P*,Q*: the user and item feature matrices

1 Partition7” into two sets:7”;, 7’ (validation set)

2 Initialize P andQ with small random numbers.

3 loop until the terminal condition is met. One epoch:

4 iterate over eacku,i,r;) element of7”;:

5 computee;;

6 compute the gradient &;;, according to Eq. (6);

7 for eachk

8 updatep,, theu-th row of P,

9 andgq;, thei-th column ofQ according to Eq. (7);
10 calculate the RMSE off’y;

1 if the RMSE onT”;, was better than in any previous epoch:
12 LetP* =PandQ* =Q.

13 terminal condition: RMSE off’;; does not decrease during two epochs.
14 end

Algorithm 1: Training algorithm for RISMF

We observed (Técs et al., 2007), that the learning curve of epochs (RMSE on the vatidatio
set as a function of the number of epochs) is always convex, regamfi¢he value ok, that is why
we use not only regularization but also early stopping.

3.2 BRISMF: Constant Values in Matrices

One may argue that some users tend to rate all items higher or lower thanithgeavehe same may
hold for items: some items can be very popular. Although MF can reconstraicriginal matrix
exactly wherK is large enough anll = 0, this is not the case when overfitting is to be avoided.
There is a straightforward way to extend RISMF to be able to directly model igisgmenon, by
extending MF with biases for users and items.

The bias feature idea was mentioned by Paterek (2007). He termed hawe&VvD2, which
appeared at the same time in our work in a generalized form by incorpoxaimgant values in
the MF (Talacs et al., 2007). Paterek’s and our variants share some common $ebtutrbe used
Simon Funk’s approach to update feature weights.

We incorporate bias features into RISMF by fixing the first columiP@nd the second row
of Q to the constant value of 1. By “fixing to a constant value” we mean initigbizeand g2,
with a fixed constant value instead of random values and drop the applicdit{@) when updating
p.1 andgy.. In this way, we get back exactly Paterek’s RSVD2, except that watepeatures
simultanously. The pair of these featuregs.(andp,.2) can serve as bias features. Qs andd;;
corresponds to Paterelcsandd; resp.

We refer to this method as BRISMF that stands for biased regularizedvieatal simultaneous
MF. This simple extension speeds up the training phase and yields a moratactwdel with
better generalization performance. Since BRISMF is always superiolSMRin terms of both
the accuracy and the running time, it is our recommended basic MF method.
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3.3 Semipositive and Positive MF

The RISMF algorithm can generate not only positive but also negataterie values. Nonnega-
tive matrix factorization (Lee and Seung, 1999) generates models with onlyegative features,
which enables additive part-based representation of the data. PoBiiNeuid Koren, 2007a) and
semipositive (Hofmann, 2004) matrix factorization techniques have bemessfully applied in
the field of CF. We present a simple modification of RISMF that can give pesiind semipos-
itive factorizations. Although, these modifications do not yield more accunatdels, they are
important, because the models are still accurate (Section 5.4.6), they blémdtlvether methods
(Section 5.4.8), and the running time (Section 5.4.10), simplicity and accuoatyares favorably
with Bell and Koren'’s positive MF method.

We talk about semipositive MF when exactly oneRPoind Q contains both nonnegative and
negative values, and positive MF, when both contains only nonnegaiives.

We apply a simple thresholding method to ensure the nonnegativenestuoé$edor the(u,i)-
th training example in a given epoch,pfk or gk would become negative when applying (7), we
reset their value to 0. We describe the modified equations for the casehstteiser and item
features are required to be nonnegative:

Pk = Max{0, Puk+ N - €ui - Oki — A - Puk},

8
i = Max{0, Qi + 1N - €ui - Puk — A - Oki }- ®

If we allow, for instance, user features to be negative, we can simplqs€’) instead of Eq. (8)
for p/,. Allowing only nonnegative item features can be treated similarly.

3.4 Applying Momentum Method

This method modifies the learning rule of RISMF slightly. In each learning seepvélight updates
are calculated from the actual gradient and from the last weight chaigi¢h the modification of
(7) we get the following equations:

Puk(t +1) = puk(t) +Apuk(t + 1),

Apuk(t+1) =n- (eui- oki(t) — A~ puk(t)) + 0 - Apuk(t),
Oki(t+1) = oki(t) +Agki(t + 1),

Adi(t+1) =n - (eui- Puk(t) = A - Qki(t)) + 0 - Agi(t).

Hereo is the momentum factor anpl(t + 1) and puk(t) stands for the new and oldth feature
values of usew, respectively. AnalogouslyApu(t + 1) and Apy(t) denote the current and last
change of the given feature value. The notations are similar for the itdarésa

Without a detailed description, the momentum method was mentioned by Salakkugtizlo
(2007), but they used batch learning, which makes the training slowesurlexperiments, mo-
mentum MF does not yield more accurate models; however, it blends well wigr snethods
(Section 5.4.8).

3.5 Retraining User Features

The incremental gradient descent weight update of RISMF has a setiawback: item features
change while we iterate through users. If the change is significant, eaturés updated in the
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beginning of an epoch may be inappropriate at the end of the epoch. uivg fwo ways to solve
this.
1. We can evaluate the test ratings of a user immediately after iterating througtirits in the
training set, and before starting to iterate through the next user’s ratings.
2. We can completely recompute the user features after the learning precethis method
can serve as an efficient incremental training method for recommendensysAlgorithm 2
summarizes the method.

Input: 7”: training setn: learning rate): regularization factor
Output: P*,Q*: the user and item feature matrices
1 Partition7” into two setsZ7”;, T’ (tuning set)
2 First training step: call Algorithm 1, store the result Py (Q1)
3 LetQ = Qg, initialize P randomly.
4 Second training step: call Algorithm 1, with the following restrictions:
5 skip the weight initialization step, useandQ from here.
6 do not change weights iQ, that is, do not apply (7) or its variants fqg;.
7 store the optimal number of epochs, denot# it
8 Return the result of Algorithm 1 called in line 4
9 end

Algorithm 2 : Algorithm for retraining user features

Note that this method can efficiently incorporate into the model new usersworatimgs of
existing users without the necessity of retraining the entire model, which ysirgrortant for
recommender systems. Then we do not apply the whole training procgusiregset the user
feature weights of the active useand apply the second training procedurerfoepochs fou. The
second training procedure needs to iterate through the entire databasd++equires slow (but
sequential) disk access operation—only once (ridimes), as the ratings of usercan be kept in
memory and can be immediately re-used in the next epoch.

We remark that the presented algorithm cannot handle the addition of new &rchafter the
addition of many new ratings to the databaQewill be obsolete, thus the first training step should
be re-run. Retraining user features mostly yields a slightly more accuratel if@ettion 5.4.7),
which means that it is useful for real life recommender systems to handleditea of new users
or ratings.

3.6 Transductive MF

Transductive learning involves the use of validation examples but notl#issts. In the case of
CF, this means that the algorithm “knows” what validation examples the moddbevibpplied for,
the (u,i) € ¥ pairs, but not the corresponding values. The first transductive model for CF was
the conditional restricted Boltzmann machine (Salakhutdinov et al., 2007hidriRBM variant,
the distribution over the visible and hidden units is defined conditional on viteinis the user has
rated. The authors noted that the model performance is significantly ingpbyvesing conditional
distribution instead of unconditional one.

We give a possible practical example when transductive learning modsfisluLet us suppose
that, when buying items, users can optionally rate them. Via the proposedjeehtie information
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that a user purchased but did not rate an item can be incorporatechicases into the prediction
model.

We propose a transductive MF that can exploit this information after theitepprocess. The
idea behind the method is the following: suppose that ugerith feature vectop,) has the fol-
lowing v queries in the validation sety;,...,ry. When we are at theth validation example of
useru, we can predict another feature vector based only on what other item$ @ v,i’ # i) are
to be predicted. A proper linear combination—not dependingi oni—of the original user fea-
ture vector and this new feature vector can yield a third feature vectdnégorediction of; that
produces a better predictor than the original one (see Table 7 for tfegrpance gain obtained by
transductive MF). Formally:

o 1 L g
p“(”_¢|i':(u,i')ef1/|+1iglq'"' (9)
i £

A

Fui = Fui+V-py(i)-di =pu-Gi+V-py(i)-ai.

The attenuation factor in Eq. (9) ensures that the more ratings a userthadiaining set, the less
the prediction relies on the information the validation set provides,thwsll differ less fromry;.

In practicey need not be determined: we can u§andp,(j)-q; as two predictions for,;, and
apply linear regression to get an improved RMSE. Transductive MF istagrocessing method for
MF, which can exploit the information provided by the existence of ratings éthe values of the
ratings are unknown. This can be the case in some real life problemsaimpée, when a user buys
many items but rates only a few of them.

3.7 2D Variant of the Matrix Factorization Algorithm

We propose here an MF variant that provides visual information abdufédtures, which can
be used to generate an explanation for recommendations. The idea is thtraveser and item
features in a two dimensional (2D) grid instead of a one dimensional rotervekccordingly, we
replace theyk andgy; notation of feature values withyx anddimn. Furthermore we define a simple
neighborhood relation between the features based on their distance idth# the difference of
the horizontal and vertical positions of two features is small, then the “meaairigose features
should also be close. To achieve this, we modify our error function in (B¢talize the difference
between neighbor features:

e’ =€+ s(k, 1, m,n)(Puki — Pumn)® + s(k,|,m,n) (ki — Gimn)*.
i i g mi&%ﬁ]#l u umn g m?é%q#l i imn

Here(k,l), (m,n) are the indices in the 2D grid, astk,|, m,n) is the similarity between thg, 1 )-th
and (m,n)-th positions of the grid. For example we can use the inverse of the sqiacdidean
distance as similarity:

P

s(k,I,mn) = K—m2L (I —nZ
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With this function the gradient used for learnipgq andgq will be:

a " a
M= i+2 s(k,I,mn _ :
apukleUI apuk|e(“' m;égn# ( ) (Puki — Pumn)
0 0
—e =€ +2 s(k, 1, M, n) (i — Gimn).
aQIKI aq,k| mAh

Rolitical Protest

Figure 1: Features of movi€onstantine

The 2D features of items (or users) can be visualized on a so-datdare map In our next
examples, items are movies from the Netflix Prize data set. Meanings candmates to the
regions of the feature map. Note that the labels on Figure 1 are assiggexifs of featureand
not to single features. The labels have been manually determined basedhomavies that have
extreme values at the given feature group.

The labeling process is performed as follows: we select a cell of theréeatap. Then we list
the movies with the highest and the lowest feature values in the selected cetknvéhemrepre-
sentative moviedrinally, we select an expression which describes the best the commueriies
of the movies with high feature values in contrast to the movies with low featuues/aln the
case when neighboring features have similar representative moviessiga a common label to
the corresponding cells. As a result of the label unification, we can dlat@er areas of the feature
map with the same label; see for instance lal@sssic Westernor Actionon Figure 1. Since the
described labeling process is subjective, it requires human interactiom.siZe of the areas the
labels are assigned to depends on multiple factors like the neighborhoogtspethe size of the
feature map, and how general the label term assigned is. In the exartples(E), the labels prin-
cipally characterize the features directly under themselves and immediatbdorsigfihe further a
feature is from the label, the less the label reflects its meaning.

Such feature maps are useful for detecting main differences betwedasn\episodes of the
same movie. Figure 2 represents the three episodes of The Matrix movieca@rabserve that
the main characteristic of the feature maps are the same, but there arebletaemges between
the first and the other episodes. In the first episode the feature vakiddggher in the area of
Political protestand Absurdand lower around.egendary This may indicate that the first episode
presents a unique view of the world, but the other two are rather bastt @uccess of the first
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episode. Visual feature maps can also be used to demonstrate to the lugéneyare provided the
current recommendations: showing similar feature map of items formerly darigé by the user
can justify the recommendations. This kind visual of explanation may be erpedfby people who
can capture the meaning of visual information faster than textual one. fefdhe, recommend
this technique for real life recommender systems, although it does not imghve\blending of the

methods.

Matrix Matrix: Reloaded Matrix: Revolutions

Figure 2: Features ofhe Matrix episodes

3.8 Connections with Neural Networks

In this section we point out that the learning scheme of some MF varianteddirelstly represented
in the framework of neural networks (NN). We show that this corredpone can be exploited by
applying the methodology of NN learning for CF problems.

The learning of the ISMF and RISMF models can be paired with the multi-layeep&on
depicted on Figure 3. The network hidsnputs,M outputs andK hidden neurons and an identity
activation function in each neuron. The weight betweenuttie input and thek-th hidden neuron
corresponds t@uk, and the weight between theth hidden neuron and thieth output neuron
corresponds to;.

Figure 3: The multilayer perceptron equivalent for the general MFreehe
In the learning phase, an incremental learning method is used. Far,theh rating, we set the

inputx so thatx, is 1 andxy, = 0, thusz = pyk holds. Letry; = y; denote the-th output of the
network. We compute the errog, = rj — fiyj. This error is back-propagated from thth output
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neuron towards the input layer. This neural network (NN) with this spemaning is equivalent to
the ISMF.

If we apply regularization (weight decay), we get the RISMF approach

We can extend this NN to be equivalent to the BRISMF: item biases can lokeldny adding
a bias (constant 1) input to the output neurons; user biases candiledhay settingy,, Weights to
1 and keeping them constant. In the evaluation phase, we set the inpuhadearning phase, and
yi (i=1,...,M) predicts the active user’s rating on thth item.

It was shown that feed-forward neural networks with linear activatiorction can find the
principal components of a data set (Baldi and Hornik, 1989), since edll lminima are global
minima there. However, our problem setting differs in two minor and one majoessg-irst, our
goal is to factorize a non-squared matrix (the number of inputs of the Ineeirsiork is different
from the number of outputs), second, we penalize the weights of thel metnark, and principally,
not all output are defined, since users rate only a small subset of the itdnsdatter point infers
that we cannot expect local minima to be global minima, as it has been reftecpbe 629.

4. Neighbor Based Correction of MF

Neighbor based (NB) approaches exploit the observation that similes tage similar items simi-
larly. In the NB scheme a set of similar users is selected for each quemaimong those who rated
the active item. Or analogously, a set of similar items is selected from amongthiad$@ve been
rated by the active user. The answer of the predictor is then obtainednhlyiging the ratings of
similar users (items) for the active item (user). The first variant is termedsieneighbor based,
and the second is termed the item neighbor based approach.

MF and NB approaches complement each other well:

e The MF approach views the data from a high level perspective. MF eantifd the major
structural patterns in the ratings matrix. An appealing property of MF is thatable to
detect the similarity between 2 items, even if no user rated both of them.

e The NB approach is more localized. It is typically good at modeling pairs efslitems and
not so good at modeling interdependency within larger sets of users/iteBhmdthods are
memory based, therefore they do not require any traifing.

It is known that the combination of MF and NB can lead to very accuratdgireals (Bell and
Koren, 2007a; Bell et al., 2007b). However, the price of additioneligacy is paid by the decreased
scalability. Here we propose a scalable solution for unifying the MF and piBcaches. We will
point out that it is computationally less expensive than Bell et al's aphasac

The idea is that we try to improve an existing MF mode)d) by adding a neighbor based
correction term to its answer in the prediction phase. Assuming the item neighbed scheme,
the corrected answer for quefy, i) is the following:

3 jem\fi} Si (PU9) — Tuj)
2 jeT\{i} Si
wheres;j is the similarity between; andqj, and7y is set of the items rated by userThe weight of

the correction terny can be optimized via cross-validation. This model can be seen as a unification
of the MF and NB approaches.

Fui =P+

3. However, it can be useful to precompute the similarity values to spe#teiprediction phase.
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The similaritys; can be defined in many different ways. Here we propose two variants.

e (S1): Normalized scalar product based similarity.

a

5 = max{0, ¥ i1 OkiCli }
| )
wherea is an amplification parameter.

e (S2): Normalized Euclidean distance based similarity.

—a

k(@i —ag)®
S = K o2 K g2
\/zk:lqki ' \/Zk:lqkj

In both cases, the valug can be calculated in @() time, thusrg; can be calculated in @(- |Z|).
We remark that one can restrict to use only theSaighbors of the queried item (Bell and Koren,
2007a), however, it does not affect the time requirement, if we use the fnction fors; and
neighbor selection.

Now let us comment in more details on the time and memory requirements of our ki teot
MF in comparison with the improved neighborhood based approach of BelKaren (2007a),
which can also be applied to further improve the results of an MF. For a gjuery, the running
time of our method is O - S), while their method requires to solve a separate linear least squares
problem withS variables, thus it is ). Memory requirements: for the-th user, our method
requires the storing, andQ in the memory, that is {N), while their approach must store the
item-by-item matrix and the ratings of the user, which is®¢- |7,|). For all users, our method
requires OKK -+ KM) while their approach requires @€ + |7|) memory.

Despite the simplicity of our method its effectiveness is comparable with thatlbaBe Ko-
ren’s method, see Section 5.4.9. We highly recommend this method as it impoowueaey signif-
icantly, as we show above and in Section 5.4.8.

This model can be seen as simple, scalable, and accurate unification oftlaed/NB ap-
proaches. The training is identical to the regular MF training. The predictiosists of an MF and
a NB term. The similarities used in the NB term need not to be precomputed and,dbecause
they can be calculated very efficiently from the MF model.

5. Experiments

Currently, the largest publicly available ratings data set is provided byiXetfpopular online DVD
rental company. Netflix initiated the Netflix Prize contest in order to improve teemmmender
system—called Cinematch—that provides movie recommendations to customerdatarset re-
leased for the competition was substantially larger than former benchmarketatand contained
about 100 million ratings from over 480k users on nearly 18k movies (stglglin Subsection
5.1.1). For comparison, the well-known EachMovie dat4 esty consists of 2,811,983 ratings of

4. It used to be available upon request from Compag, but in 2004 teietary retired the data set, and since then it
has no longer been available for download.
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72,916 users and 1,628 movies. Rashid et al. (2006) used a 3 millions ratipggst of the Grou-
pLens project, which entirely contains about 13 million ratings from 105ksuze 9k movies. We
evaluated all of our algorithms against the Netflix data set, since currentlysttti® most chal-
lenging problem for the collaborative filtering community, and our work wasly motivated by
it. In addition, to illustrate the applicability of the presented methods on other dtgtavge also
performed experiments with a selected MF, BRISMF, on the 1M MovieLeddlanJester data set
(see details in Subsection 5.1.2-5.1.3).

The evaluation metrics of recommender systems can greatly vary depemndimg characteris-
tics of the data set (size, rating density, rating scale), the goal of recodatiem, the purpose of
evaluation (Herlocker et al., 2004). In the current CF setting the goalé@sdtate the predictive
accuracy, namely, how closely the recommender system can predict ¢hatings of the users,
measured in terms of root mean squared error.

In case of MovieLens and Jester data sets, we also provide the me&tabsmr (MAE) since
this is the most common performance measure for these sets:

1 A

] (ui)e?

5.1 Data Sets

In this section we describe in details the above mentioned three data sets.

5.1.1 THE NETFLIX PRIZE DATA SET

The data set provided generously by Netflix for the NP competition contaimng ;,dy;) rating
qguadruples, representing that useated itemi asry; on dated,;, whered,; € D the ordered set of
possible dates. The ratingg are integers from 1 to 5, where 1 is the worst, and 5 is the best. The
data were collected between October, 1998 and December, 2005 aud tted distribution of all
ratings received by Netflix during this period (Bennett and Lanning7200he collected data was
released in a train-test setting in the following manner (see also Figure 4).

Netflix selected a random subset of users from their entire customewiihsa least 20 ratings
in the given period. AHold-out setwas created from the 9 most recent ratings of the users, con-
sisting of about 4.2 million ratings. The remaining data formed the Training setratimgs of the
Hold-out set were split randomly with equal probability into three subsetgjoél size: Quiz, Test
and Probe. Th@robe setwas added to the Training set and was released with ratings. The ratings
of the Quiz and Test setsere withheld as &ualifying setto evaluate competitors. The Quiz/Test
split of the Qualifying set is unknown to the public. We remark that the datedopartition of the
entire NP data set into train-test sets reflects the original aim of recommsygiems, which is the
prediction of future interest of users from their past ratings/activities.

As the aim of the competition is to improve the prediction accuracy of user ratihesslix
adopted RMSE as evaluation measure. The goal of the competition is to iBdaideast 10 percent
the RMSE on the Test set, relative to the RMSE achieved by Cinermaltie. contestants have to
submit predictions for the Qualifying set. The organizers return the RM3BEeosubmissions on

5. The first team achieving the 10 percent improvement is promised dwaeded by a grand prize of $1 million by
Netflix. Not surprisingly, this prospective award drawn much interesaitds the competition. So far, more than
3000 teams submitted entries for the competition.
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the Quiz set, which is also reported on a public leaderbbaidte that the RMSE on the Test set is
withheld by Netflix.

All Data
(~100 M user item pairs)

N

Held-Out Set
(last 9 rating
for each user:

Training Data

4.2 M pairs)
Random 3-
way split
Training Data Probe Quiz | Test
] [ —
Known ratings Ratings withheld by

Netflix for scoring

Figure 4: The train-test split and the naming convention of Netflix Prize ddteafier Bell et al.
(2007a)

There are some interesting characteristics of the data and the set-up ofitpetition that pose
a difficult challenge for prediction:

e The distribution over the time of the ratings of the Hold-out set is quite différem the
Training set. As a consequence of the selection method, the Hold-oubeetindt reflect
the skewness of the movie-per-user, observed in the much larger TratinTherefore the
Qualifying set contains approximately equal number of queries for oftenrarely rating
users.

e The designated aim of the release of the Probe set is to facilitate unbisiseaties of RMSE
for the Quiz/Test sets despite of the different distributions of the Trainiptiae Hold-out
sets. In addition, it permits off-line comparison of predictors before sudianis

e We already mentioned that users’ activity at rating is skewed. To put thisiimtbers, ten
percent of users rated 16 or fewer movies and one quarter ratedf@@er The median is
93. Some very active users rated more than 10,000 movies. A similar biageeltyrcan
be observed for movies: The most-rated moMéss Congenialitywvas rated by almost every
second user, but a quarter of titles were rated fewer than 190 times heamtiful were rated
fewer than 10 times (Bell et al., 2007a).

6. Found ahttp://www.netflixprize.com/leaderboard
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e The variance of movie ratings is also very different. Some movies are rpgdxamately
equally by the user base (typically well), and some partition the users. Thedaés may be
more informative in predicting the taste of individual users.

In this experimentation section we evaluate the presented methods on a raseteoted 10%
subset of the Probe set, which we term as Probeldfiless we explicitly mention, from now on the
RMSE values refer to the Probel0 RMSE. We have decided to reporM8ER/alues measured
on the Probel0 set, since in our experiments the Probel0 RMSE are aighificloser to the
Quiz RMSE than Probe RMSE, and Quiz RMSE tell us more about the agcofdoe predictor,
since it excludes the impact of overtraining. On the other hand the ruleP abihpetition allows
only 1 submission daily, which limits the number of the Quiz RMSE calculation dréigticAle
remark that we measured typically0003 difference between the Probel0 and the Quiz RMSE
values (sometimes.0010), while this was of an order of magnitude larger for the Probe sét. Th
advantageous property hominates the ProbelO set for being a stamdhhdetflix-independent
evaluation set for predictors trained on the NP data set.

We performed a thorough analysis to check how reliable the Probelifsrasel For this, we
will show that if a given method has better RMSE compared to another methaddarticular
subset of the Probe set, then it has the same performance gain on dtbetssf the Probe set. To
do this, we patrtitioned the Probe set into 10 subsets, and we ran 10 miffee¢thods using them.
Therefore, in total we had 100 runs. We denote the test RMSE aftinenethod on thg-th test set
by my,. To summarize the results, we calculated the average test RMSE for eaardiaghoted
by (M., ...,M), and adifficulty offseffor each test set, denoted k4 (. . ., 010), defined as

1 10
oy = EX;Wy—mo-

The test RMSE of the 100 runs are approximateangs= my, + 0y. The standard deviation of
this approximation is 00224 RMSE score, and the maximal deviation is less th2000 RMSE
score, which means that is well approximated, thus we can assign a difficulty offset to each test
set. Consequently, our initial hypothesis is verified.

When Quiz RMSE values are reported we also mention the percentage ofvenmnt over
Cinematch (IoC). We performed all tests on an average single procieggop (a 2 GHz Intel
Pentium M (Dothan) with 1 GB RAM), on which reported training times were megsu

5.1.2 MoVvIELENS DATA SET

The 1M MovieLens data sétontains cca. 1 million ratings from 6,040 users on 3,900 movies.
As in the case of NP, ratings are made on a 5 star scale, and the ratingsracemlso quadruples
containing the timestamp of the rating. Demographic data provided with the ratmgsiaused in
our setting. Since there is no standard train-test split of the data set, \Wedapsimple random
split to generate a 90%—-10% train-test setfing.

7. A Perl script can be downloaded from our homepagg:/gravityrd.com , which selects the Probel0 from the
original Netflix Probe set to ensure repeatability and comparability.

8. Available at:http://www.grouplens.org/node/73

9. This split can be downloaded from our webslhtp:/gravityrd.com
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5.1.3 ESTERDATA SET

The Jester data é@t(GoIdberg et al., 2001) contains 4,136,360 ratings from 73,421 uset8®n
jokes. Users rated jokes on the continupudO, +-10] range. Ten percent of the jokes (called the
gauge set, which users were asked to rate) are densely rated, otbezssparsely. Two thirds of
the users have rated at least 36 jokes, and the remaining ones havieatatedn 15 and 35 jokes.
The average number of ratings per user is 46, so it is a particularly detsset compared to NP
and MovieLens. Goldberg et al. (2001) created their train-test splirbpdom division of a subset
of 18,000 users into two disjoint sets. For our experiments this split is odyimappropriate since

it does not enable us to integrate user preferences into the model. drieetedre we also applied a
random split to generate a 90%—10% train-test setting.

5.2 Implementation Issues

Because the data set is huge, its storage is an important issue. This wagtiipiinvestigated
in our previous work (see Taks et al., 2007). We have shown there that the entire data set can
be stored in 300 MB without storing the dates but keeping the chronologjidat of the ratings,
and in 200 MB without even keeping the order. This enables to performigiogitams on an
average PC (our platform details are given at the end of Section 5.1syeAwill point out here,
MF methods are sensitive to the order of training examples and the selectiogirgbroper order
exploits date information. On the other hand, pure NB approaches asemsitive to the order of
training examples.

The users’ tastes change in time, and when providing them recommendatibntheir current
taste matters. This phenomenon is modeled in the NP data set as the valuis greater for test
examples than for training examples. We can condition MF methods to exploiataéndormation
by properly ordering training examples. We found the following order todrg effective: iterate
over users in an arbitrary order, and for each user, take the ratiragsiimcreasing chronological
order, that is, starting from the oldest and ending with the newest. Urkplisity mentioned
otherwise, in our experiments we use this training example order for MF metAde impact of
the order on the accuracy of MFs is investigated in Subsection 5.4.4.

5.3 Parameter Optimization

All of the presented methods have many pre-defined parameters thidy gridaence the accuracy.
Sometimes a few experiments are enough to set them well, sometimes we neelyl fraequpeter
optimization to find the best settings.

We recall that a parameter setting can be advantageous because ¢tlitgs a very accurate
model (low validation RMSE) or (2) it “blends well”, that is it improves the aeay of the blended
model. The more parameters a method has, the harder to set them well, buréhehaoce to get
a better RMSE.

We used random search and Algorithm 3 to optimize parameters. The tyaigalafnis 2. In
case of MF, we have experimented with many parameters, namely:

e the number of feature¥;

o different learning rate and regularization factor

10. Available athttp://goldberg.berkeley.edu/jester-data/
11. This split can be downloaded from our websitip://gravityrd.com
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Input: L, p1,...,pL, N

Output: vyp,...,V

Randomly initialize parameters, ..., p.

Iterate forever (iteration is stopped manually).
Randomly choose one parametpr;
Randomly generate different values

to that parametetus, ..., Up;

Let up be the current value of thg.

For each of thel, ... ., u, values, run a training
algorithm, temporarily setting, to that value, and
evaluating the model on the validation set.

Assign the best value tp,.

11 end

© 00 N O g B~ W DN P

=
o

Algorithm 3. Simple parameter optimization algorithm

— for users and movies)(P,n(@ AP A@):
— for the corresponding variables of bias featurg®{, n (@ A\(Pb) (@b
e minimum and maximum weights in the uniform random initializatiofP@ndQ: wp, Wy, Wy,
Wy,
¢ G: the offset to subtract frorR before learning (can be, for example, set to the global average
of ratings);
We subsampled the matriX for faster evaluation of parameter settings. We have experienced
that movie-subsampling substantially increased the error, in contrastritswssampling, thus we
do not perform the former. The reason for this is that in the evaluationsgataovies have much
more ratings than users. Consequently, if we do user-subsamplingaiompéx with 100 instead of
the original 200 ratings we lose more information than at movie-subsampling waé&ave for ex-
ample 10000 ratings instead of 20000. Interestingly, the larger the sulesathe fewer iterations
are required to achieve the optimal model. This can be explained by the exetimgdancy in the
data set. This implies also that the time-complexity of MF is sublinear in the numbatirngs.

5.4 Results of Matrix Factorization

We recall that we applied linear combinations of methods for blentfiagd we ordered the training
examples user-wise and then by date, as specified in Section 5.2.

5.4.1 OMPARING REGULARIZED AND BIASED MF VARIANTS

We compare:

e an instance of the regularized RISMF, termed as RISMF#0, with the follopamgmeter
settings:K =40,n =0.0LA = 0.0Lwp = —wp =Wwg = —Wg = —0.01

e an instance of the biased BRISMF, named briefly as BRISMF#0, with theviolipparameter
settings:iK = 40,n = 0.0L,A = 0.01,wp = —Wp = Wgq = —Wg = —0.01

12. The source code of our combination algorithm can be downloadeddur web sitehttp://gravityrd.com
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RISMF#0 reaches its optimal RMSE in the 13th epoch: 0.9214, while these ensnfir
BRISMF#0 are: 10th and 0.9113, which is a 0.0101 improvement.

5.4.2 (HANGING THE PARAMETERS OF THEBRISMF

Table 1 presents the influence gfand A on the Probel0 RMSE and the optimal number of
epochs. Other parameters are the same as in BRISMF#0. The bestr&MBE= 0.9056 when
n = 0.007,A = 0.005, which is a 0.0057 improvement. We refer to this MF in the following as
BRISMF#1. The running time for this MF is only 14 minutes! Note that running tieyethds only
onK, and on the optimal number of epochs.

Note that decreasing or increasingh increases the optimal number of epochs, (except for
n = A =0.020).

n A 0.005 0.007 0.010 0.015 0.020
0.005 0.9061 /13| 0.9079/15| 0.9117/19| 0.9168/ 28| 0.9168/ 44
0.007 0.9056 /10| 0.9074/11| 0.9112/13| 0.9168/19| 0.9169/ 31
0.010 0.9064/7 | 0.9077/8 | 0.9113/10| 0.9174/13| 0.9186/ 21
0.015 0.9099/5 | 0.9111/6 | 0.9152/6 | 0.9257/7 | 0.9390/7
0.020 0.9166/4 | 0.9175/4 | 0.9217/4 | 0.9314/4 | 0.9431/3

Table 1: Probel0 RMSE/optimal number of epochs of the BRISMF for wampand A values
(K =40)

Now we show that the usage and proper setting of new parameters cstrttperformance:
we introduce the parametars®, n(@ AP A@ andn (PP (@ A(Pb) \(ab) (see Section 5.3 for ex-
planation).

Initially n(P = n@ = @ = \(PY = 0.007, and\(P) = A(@ = A(PH) = \(ab) — 0,005, to yield
the RMSE= 0.9056 given above. Finding the best setting of these 8 variables is pilyciina
possible and can cause overlearning on Probel0. To demonstrateehparémeter optimization
algorithm mentioned in Section 5.3 works, we apply its simplified version: we das® ran-
dom numbers, just fix the order of these variables and define the posalbks for them. Let
the order be:n(® (@ (P A@) AP A@ AP \(@b) | et the set of values fon variants be
{0.0050.007,0.010}, and for theA variants: {0.003 0.0050.007}. Table 2 shows step-by-step
how parameters are optimized one-by-one in 8 iterations. The parameter agitmigrocedure
decreased the RMSE score from 0.9056 to 0.9036.

5.4.3 BRISMF RESULTS ONMOVIELENS AND JESTERDATA SETS

We performed several tests on MovieLens and Jester data sets with tB&BRhethod. As men-
tioned earlier there are no standard train-test split for these data setsfotheit is difficult to
compare our obtained results with already published ones. Consequentliged three baseline
methods for comparison. Thmnstantmethod always predicts the average of the ratings in the
training set, thetem averageutputs the average of the training ratings of the active item at query-
ing, while theitem neighbor(Takacs et al., 2008b) is an item neighbor based method with Pearson
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0.003 [ 0.005 | 0.007 [ 0.010 || Decision

n(P 0.9057| 0.9056| 0.9058| n(P := 0.007 (no change)
n@ 0.9057| 0.9056| 0.9061 n(@ :=0.007 (no change)
n(Po 0.9059| 0.9056| 0.9052( nPP := 0.010

n (@b) 0.9053| 0.9052| 0.9056| n(@ :=0.007 (no change
AP [1'0.9053] 0.9052| 0.9051 AP :=0.007

A@ [10.9057] 0.9051| 0.9050 A@ :=0.007

A(PD) 1'0.9053| 0.9050| 0.9047 AP :—0.007

A@) '0.9036| 0.9047| 0.9066 A@ .= 0.003

Table 2: Effect of parameter optimization on BRISMF#1

correlation based similarity. The MAE results for BRISMFs were obtaineasinyg the same and
Q that were used to get the RMSE values.
For MovieLens, the main training parameters were sgtto=n(@ = 0.01,A(P =A@ = 0.02,
and the number of featureK) was varied as tabulated in Table 3. The obtained results show that
the increase of the number of featukeyields better accuracy at a decreasing number of epochs.

Model Epochs| RMSE | RMSE | MAE | MAE
w/o S2 | with S2 || w/o S2 | with S2
constant - 1.1179]| - 0.9348 | —
item average | — 0.9793| — 0.7829 | —
item neighbor| — 0.8521| — 0.6641 | —
BRISMF#5 35 0.8555| 0.8537 || 0.6684 | 0.6667
BRISMF#10 | 27 0.8471| 0.8426 || 0.6608| 0.6563
BRISMF#20 | 24 0.8435| 0.8363 || 0.6582| 0.6507
BRISMF#50 | 23 0.8396| 0.8319 || 0.6544| 0.6461
BRISMF#100| 24 0.8378| 0.8299 || 0.6531| 0.6444
BRISMF#200| 21 0.8365| 0.8285 || 0.6519| 0.6430
BRISMF#500| 20 0.8353| 0.8275 || 0.6508| 0.6424

Table 3:; Test RMSE of various methods on the MovieLens data set

In terms of RMSE, the simplest BRISMF#5 achieves 12.64% improvementtioggtem av-
erage, while this is 14.70% for the largest BRISMF#3®0Me also included in the table the test
RMSE value achieved with neighbor correction using similarity function &2 (5). The im-
provement over the item average is 12.82% and 15.5% for the neighbvectamt BRISMF#5 and
BRISMF#500, respectively. The S2 correction improves RMSE vabara 0018 to 00080, which
can be as large as almost 1% improvement over the RMSE of the nontedrkezsion. One can
observe that the percentage of improvement increases with the numieatafels. The improve-
ment of BRISMF#500 with S2 correction over item neighbor is 2.89%, whicsinslar to the
results published in Taics et al. (2008b) and Taks et al. (2008a) for the Netflix data set.

13. We recall that Cinematch produces 9.6% improvement over iterageéQuiz RMSE 1.0540) on the NP data set
(Bennett and Lanning, 2007).
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In terms of MAE, the tendency of the improvements is almost identical. The singidsthe
largest BRISMF achieves 14.63% and 16.87% improvements, which beca8®4 and 17.95%
with NB correction. Here the magnitude of improvement is somewhat larger.

The reported results on RMSE and MAE value on the MovieLens data seatairdirectly
comparable with ours because of the use of different train-test splits.b&st known results are
given by Delannay and Verleysen (2007): RMSE 0.875 and MAE 0.648dte obtained with
an interlaced generalized linear model. Similar MAE.652 was reported by DeCoste (2006)
achieved with ensembles of maximum margin matrix factorizations.

For Jester, the main training parameters were sgt?o=n(¥ = 0.002,A(P) = \(9 = 0.02, and
K was varied as tabulated in Table 4. The obtained results show that thesmoféayields better
accuracy, while the number of epochs is almost the same. Due the difédramatcteristics of the
Jester data set, the magnitude of RMSE scores are larger. Itis interestimog tthe Jester data set
the item neighbor method gives better results than BRISMF. We think that teisoptenon is due
to the different characteristics of Jester data set when compared tod\WaueLens data sets: the
rating matrix is almost dense and there are only 100 items.

Model Epochs| RMSE | RMSE | MAE | MAE
w/o S2 | with S2 || w/o S2 | with S2
constant - 5.2976| - 44372 | -
item average | — 5.0527| — 4.1827| —
item neighbor 41123 — 3.1616| —

BRISMF#5 7 4.2080| 4.1902 || 3.2608 | 3.2352
BRISMF#10 | 8 41707 | 4.1575 || 3.2201 | 3.1967
BRISMF#20 | 7 4.1565| 4.1405 || 3.2095| 3.1820
BRISMF#50 | 8 4.1399| 4.1265 || 3.1876| 3.1616
BRISMF#100| 7 4.1395| 4.1229 || 3.1909| 3.1606

Table 4: RMSE of various methods on the Jester data set

In terms of RMSE, the simplest BRISMF#5 achieves 16.72% improvementloéiem aver-
age, while this is 18.07% for the largest BRISMF#100. We also included itabte the test RMSE
value achieved with neighbor correction using similarity functiond®2 6). The improvement over
the item average is 17.07% and 18.40% for the neighbor corrected BRIk BRISMF#100,
respectively. The S2 correction improves the RMSE value fradd 82 to 00178, which can be
an over 0.4% improvement over the RMSE of the non-corrected versioterins of MAE, the
improvements are somewhat larger; they reach 23.72% without and 24.43%2atbrrection.

Here we also indicate some of the best published RMSE and MAE scormsingein mind
that those are not directly comparable due to different test settings. ri2gi@md Verleysen (2007)
achieved RMSE 4.17 and MAE 3.26 with an interlaced generalized linear mbeetame MAE
score was obtained by Canny (2002) with a sparse factor analysis model.

We can conclude from the experiments performed on the MovielLens ater data sets that
the applicability of MF based methods and neighbor based correction teehisigot restricted to
the NP data set. Rather, they are useful CF techniques for differaiepns as well.
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5.4.4 ORDER OFEXAMPLES

We examined how the order of examples influences the result by compagiRgMEE of BRISMF#1
on two different orders: For the proposed order the RMSE is 0.90%b fa& a random order—
obtained by a random shuffle of the ratings of each user—the RMSE i84).91

5.4.5 SBSAMPLING USERS

On Figure 5 we demonstrate how the number of users (thus, the numbeingk)anfluences

RMSE and the optimal number of training epochs in case of BRISMF#1. RMBES between
0.9056 and 0.9677, and the number of epochs between 10 and 26. Tiler sheasubset of users
used for training and testing, the larger the RMSE and the number of epblalssmeans that the
time-complexity of MF is sublinear in the number of ratings (see Section 5.3).eWark that the

number of ratings is proportional to the number of users; the ratio of themehvidrequal to the

average number of ratings per user—is 209 in the training set.

0.98 —

097 26 b

0.96 b
23

095 b

094 19 :

Probe10 RMSE

093 b
092 b

091

09 — — '
1000 1000 100° 1m0°
Number of users

Figure 5: Effect of the number of users on Probel0 RMSE and on timamumber of training
epochs.

5.4.6 EMIPOSITIVE AND POSITIVE MF

We investigated the accuracy of semipositive and positive variants usiffiglitheing MFs:
e SemPosMF#800: this is a semipositive MF, where user features aregativeeand item
features are arbitrary. Parameters are sef te:800,wp = 0, Wp = —Wq = Wgq = 0.005n(P) =
NP = 0.016n@ = n(@ = 0.005A(P =A@ = 0.010A(PD) = A(M®) — 0, G = 3.6043. After
12 epochs, learning rates are multiplied by 0.01, and the model is traineabfiwea 2 epochs.
e PosMF#400: this is a positive MF. Parameters are the same as in SemP@&NV&#8:pt that
K =400,wg = 0.
e PosMF#100: like PosMF#400, bt= 100.
The results are summarized on Table 5.
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| Model | Epochs| RMSE |
SemPosMF#800 12+2 0.8950
PosMF#400 14 0.9036
PosMF#100 14 0.9078

Table 5: Probel0 RMSE of positive and semipositive MFs

5.4.7 RETRAINING USERFEATURES

We investigated the effectiveness of retraining user features. We testtedolutions proposed in
Section 3.5. The experiments were run with three parameter settings: BRISKIRd the following
two MFs:

¢ BRISMF#250:K = 250,wp, = —0.01, Wy, = —0.006,wy = —0.010,wg = 0.020,n(P) = 0.008,

n(PY) = 0.016,n@ = 0.015,n(9 = 0.007,A(P) = 0.048,A(@ = 0.008,A(PY) = 0.019,\ (@) =
0,G=0.

e BRISMF#1000: the same as BRISMF#250, Kut 1000.

First, we investigated the first solution (intra-training user-wise test). RISBIF#250 the
obtained Probe10 RMSE is 0.8959, which is only a slight 0.0002 improvement.

Second, we tested the second solution (see Table 6). Both the simpleattasthé first learn-
ing step, reseP and retrain onlyP), and the advanced case (after the first learning step, Pesed
retrain bothP andQ) are analyzed. We append letter “U” to the method name in the simpler case
(BRISMF#1 becomes BRISMF#1U, etc.) and letters “UM” in the advanesg (BRISMF#1UM,
etc.). We indicated the required number of epochs both in the first andabedstaining procedure
(if available). Note, that in case of BRISMF#250 and BRISMF#1000r¢h@ining of user features
greatly improves their performance. BRISMF#1000UM is currently ost b#: Probe10 RMSE
is 0.8921, Quiz RMSE is 0.8918.

| Model | Epochs| Probe10| Quiz [ 1oC |
BRISMF#1 10 0.9056
BRISMF#1U 10+8 0.9072
BRISMF#1UM 10+6 0.9053
BRISMF#250 14 0.8961 | 0.8962| 5.80%

BRISMF#250U 14+8 | 0.8953 | 0.8954| 5.89%
BRISMF#250UM || 14+7 0.8937
BRISMF#1000 14 0.8938 | 0.8939| 6.04%
BRISMF#1000U 14+8 | 0.8936
BRISMF#1000UM|| 14+8 | 0.8921 | 0.8918| 6.26%

Table 6: Examining the effect of retraining user features

We investigated the effect of retraining ortywhen BRISMF#250 was learnt on a subset of the
database. The question in this case is: how reliablejdearnt only on a subset of the database.

First, we kept only the 40%, 60% or 80% of users and ran an MF algorithuinfized the
resultingQ. Then we reset and learRt first on the same subset of the database, and then on the
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entire database. In all 3 cases, the difference between the two Pre®dé3& results was less
than 00013. Each Probel0 RMSE was less th&9@0. Thus, we can conclude that the proposed
retraining method can handle the addition of new users.

Second, we discarded the |&$t ratings of each user and ran the same retraining procedure. In
our experimentsiN; was set to 0, 10, 20, 40. Obviously, the removal of ratings increasszbP0
RMSE significantly; the highest score wa®Q@38, whereas Probel0 RMSE on the entire training
database went up to only&980, which means that tlig calculated on the subset of the data differs
slightly from theQ calculated on the entire data set. Thus, the proposed retraining method can
handle the addition of new ratings as well. These experiments verify thditysabuser feature
retraining method for handling new users or ratings.

5.4.8 THE EFFECT OFCORRECTIONTECHNIQUES

In order to investigate the effect of various correction techniques, nstegfenerated a number of
accurate MF models. We will show that correction techniques improve acgsignificantly for
all of these models. We applied the parameter optimization method mentioned in $e8tiorget
accurate MFs. Also, we applied the “trial and error” method to get manuaikypeterized accurate
MFs. Here we describe some results of both:

e BRISMF#800: manually parameterized MF, with 800 features. Parameteseato:K =
800, Wp = —Wp = Wg = —Wg = —0.005n(P) = n(P = 0.016 (@ = n(9 = 0.005A(P) =
A@ = 0.010A(PY) = \(@) — 0, G = 3.6043. After 9 epochs, learning rates are multiplied by
0.01, and the model is trained for another 2 epochs.

e SemPosMF#800: defined in Section 5.4.6.

e MIMF#200: a BRISMF with 200 features. Parameters are found by thenpeter optimiza-
tion algorithm.

e MIMF#80: a BRISMF with 80 features. Parameters are found by the paeamgtimization
algorithm.

e MomentumMF: a BRISMF with momentum method, manually optimiz€d: 50,n = 0.01,
o = 0.3 andA = 0.00005. Model learnt in 5 epochs.

We refer to a variant of the transductive MF algorithm as Q-correctiofEgn(9) to improve
predictions we use only the ratings in the Qualify set, not in the Probe&Qalify set. See Table 7
for the RMSE values of the each method and its blended versions. We apptiédB corrections
to the MF models, with similarities S1 and S2.

The results indicated in the Q, S1, S2 and-@1+ S2 columns are obtained by using one or
more correction techniques; thus those figures refer to linear regnesfgwedictors (columns) on
Probel0 data. Each correction technique adds one more column to the atiambuf the basic
method; that is Q, S1, S2 add 1 extra column; Q1+ S2 adds 3 extra columns.

One can observe in Table 7 that NB correction significantly improves thidt iefsMF based
methods. Starting from an average MF (MIMF#80) the reduction of RM®be®0179, it reduces
the RMSE of the good MomentumMF bydD75, and it even improves slightly.(D26) the very
accurate BRISMF#800. We recall that we measured similar accuracyvement using NB cor-
rection (with S2 similarity) in the case of the MovieLens and the Jester datassetSéctions 5.1.2
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# || Model basic | Q S1 S2 Q+S1+S2
1 || BRISMF#800 0.8940| 0.8930| 0.89164_g) | 0.8914,_7 | 0.8902
2 || SemPosMF#800 0.8950| 0.8941| 0.8916,_g) | 0.8913,_5 | 0.8900
3 || MIMF#200 0.9112| 0.9106| 0.90874_g) | 0.9085,_¢ | 0.9076
4 || MIMF#80 0.9251| 0.9240| 0.9104,_g) | 0.9072,_5 | 0.9058
5 || BRISMF#1000UM | 0.8921| 0.8918| 0.890%,_7, | 0.8907,—s5) | 0.8901
6 | MomentumMF 0.9031| 0.9020| 0.8979,_¢) | 0.89564_3 | 0.8949
7 || 1+2 0.8923 0.8880
8 || 1+2+3 0.8913 0.8872
9 | 1+2+3+4 0.8909 0.8863
10 || 1+24+3+4+5 0.8895 0.8851
11| 1+2+3+4+5+6 | 0.8889 0.8838

Table 7: Probel0 RMSE of accurate MFs without and with applying Qectian and NB correc-
tion (S1 and S2). At columns S1 and S2 we also indicated the optimal valueaoheter
a.

and 5.1.3). In comparison, BellKor's approach (Bell and Koren, 200@ble 2) results in.0096
RMSE reduction, starting from MF with.9167 RMSE. Here the reduced RMSE score is almost
identical with our NB corrected MIMF#80 that has originally only RMSBZb1.

If we putin all MFs and all correction techniques, which is a linear combinaif@®4 methods,
then the combination yields RMSE0.8838, Quiz RMSE= 0.8839. Using only the first 4 methods
with all corrections (combination of 16 methods), it yields RMSB.8863, Quiz RMSE= 0.8862.

It brings only insignificant improvements if one applies Q-correction teatnfqr all MFs. We
get RMSE= 0.8839 if we exclude the Q-corrections of all MFs but the first from the doation.
Moreover, if we apply neighbor and Q-correction only on BRISMF#£8@8n the RMSE increases
only by 0.0011 to 0.8850. In general, we can state that one “correctibnitpe” brings a major
decrease in the RMSE when applied only to a single method in the linear combiritienapply
it multiple times, the improvement becomes less. In other words, Q-correctibNRrtorrections
captures the same aspects of the data, regardless of the MF behind them.

These experiments demonstrate that the Probel0 set containing 140,8¢$ isabig enough
to evalute not only single methods, but also combinations of many methods.

5.4.9 MMPARISON WITHBELLKOR'S POSTPROCESSING

The neighbor based correction of MF can also be done by running Bbwigased method on the
residuals of MF. A very effective known algorithm for postprocesshgresiduals of MF is Bel-

IKor's neighbor based method (Bell and Koren, 2007b) (BKNB). Tamparison of our neighbor
correction scheme and BKNB can be seen in Table 8.

In the experiments we applied the techniques on the residuals of 3 modeldSMBRL00, a
SemPosMF#100, and a so callgidbal effects moddBell and Koren, 2007b) with 12 effects. For
running S1 and S2 correction on global effects we used the item featuBessnPosMF#100.
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Model basic | S1 S2 S1+S2 | BKNB
BRISMF#100 0.8979| 0.8940| 0.8937| 0.8933 | 0.8948
SemPosMF#100|| 0.9001| 0.8954| 0.8951| 0.8946 | 0.8957
GlobalEffects#12|| 0.9600| 0.9196| 0.9237| 0.9174 | 0.9145

Table 8: Comparison of NB correction and BKNB in terms of Probe10 RMSE.

For MF models the most accurate postprocessing technique is S2 correltitime case of
global effects BKNB gives the lowest Probel0 RMSE. It is also importanhention that our
approach is significantly faster than BKNB (see Section 5.4.10).

5.4.10 $EED VS ACCURACY

From the scalability point of view, it is interesting and important to investigatedlationship of
speed and accuracy. We ran numerous randomly parameterized MA§ wit®, and collected the
best accuracies in each epoch, and then optimized the parameters. $abien@rizes the results.
One epoch takes 80 secon#is=£ 40), and the initialization takes an additional 40 seconds (loading
the full database into the memory).

An RMSE of 0.9071 can be achieved within 200 seconds (including the timeinovith the
100 million available ratings and evaluate on the Probe10)! For a compahstfiix's Cinematch
algorithm can achieve Quiz RMSE 0.9514, so this fast solution achievesthar®.6% improve-
ment on Cinematch.

In Table 9, 1.1 epoch means that the model was trained for one epochearti¢iratings of the
first 1/10 of users was used for another epoch. The reason is theasdiorefeature retraining (see
Section 3.5): when we train only for 1 epoch, the features of the firstelailsers will be obsolete
at the end of the epoch, since items have nonsense values at the begirthmtraining procedure,
and item features change significantly by the end of the epoch.

| Epoch| Training Time (sec) RMSE |

1 120 0.9179
1.1 128 0.9147
2 200 0.9071
3 280 0.9057
4 360 0.9028
5 440 0.9008
6 520 0.9002

Table 9: Probel0 RMSE and running time of fast and accurate MFs.

To our best knowledge, the running times and accuracies here and iretlieys sections are
favorable compared to any other method published in the field of Collabetailiering. Though
this statement might seem somewhat speculative since authors do not teiptigh punning times,
we can support it with the following arguments:

e Wwe train each feature simultaneously;

e the number of epochs is small;
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e we use a gradient descent algorithm, which is the fastest if we can keeprtiieer of required
gradient steps low, which is exactly the case.

Note that givemn*, the number of epochs, there are- |7|-K variable updates if? and Q
during the training. The presented methods can achieve the favorabl&ERMSle keeping the
number of features) and the number of epochs*] low; consequently they are also favorable in
terms of time requirement.

Let us compare the time requirement of our MF methods (all major variants) tafottne
best published ones. Bell and Koren (2007a) provide a detailediptésierof their alternating
least squares approach proposed to matrix factorization. Briefly, thegrigdto initializeP and
Q randomly, recompute one of them using a nonnegative or a regular tpestes solver while
the other is constant, then recompute the other, and iterate these two altestepsfpr a certain
number of epochsn{). In the case of thé-step, one needs to run the solver for each user to
determine how the features of the items rated by the user should be combinest frdxdict the
ratings. One run of the solver requir@{K?) time, which should be run for each user; thus the
P-step require(|N| - K3) time!* Analogously, theQ-step require€(|M| - K3) time. Thek?
elements of the covariance matrix need to be updated for each rating, thoth ialternating steps
we updateK? elements 7| times. Letn* denote the optimal number of epochs, which is a few
dozen according to their paper. In total, their method requ@€$N| + [M|) - K3+ |T| - K?) - n*
time.

Our presented approaches havgQ - K) - n* computational complexity, wher& is typically
less than 20. We remark that Qis an upper bound, whil@(-) is a lower bound for the computa-
tional complexity.

Here we neglected the cost of parameter optimization. Our MF has 13 paranwéeperform
the parameter optimization process (Sec. 5.3) with a subset of usersda¢byyith a smallK
value (typicallyK is 20 or 40). The optimization process requires 100-200 MF runs. Inafase
SemPosMF#800, which is manually parameterized, we perforattiruns. One may argue that
parameter optimization for alternating least squares type MF is faster, sirgedte no learning
rates, thus it has just 9 parameters. We observed that the more paraimetdis have, the easier
it was to tune the parameters to get the same Probel0 RMSE. Consequeritiftoduced some
additional parameters, for examp|€”,n(@ n(PY (@ jnstead of a singlg.

5.5 RMSE Values Reported by Other Authors

Finally, let us compare the accuracy of our method (in terms of Probel0ERMBies that differ
from Quiz RMSE values at most by@03) with other RMSE values reported for the Netflix Prize
data set. This comparison is difficult since authors often report on RMfikEes measured on
various custom test sets, different from the Probe and Quiz set. Ofttke t&o options, Probe
RMSE values, which are calculated by leaving out the Probe set fromrtie Jet, can be also
misleading, and, consequently, Probe RMSE is often much lower than QuUaERWe remark that
Quiz RMSE is often computed by incorporating the Probe data into the trainitigeqdredictor.
The comparison presented in Table 10 therefore focuses on methods @bz RMSE values
are available. The table shows that our presented MF method and carreatfmiques compare
favorably with other published ones.

14. There exists somewhat better least squares solvers, but thisatagnificantly change this comparison.
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| Source | Method’s name | Quiz | 1oC | Probel0|
Paterek (2007) Basic + RSVD + RSVD2][ 0.9070] 4.67%
Salakhutdinov and PMF + PMF with a 0.8970| 5.72%
Mnih (2008) learnable prior +

constrained PMF
Bell et al. (2007b) best stand-alone positive 0.9039| 4.99%

MF
best NB corrected 0.8953| 5.90%
positive MF
stand-alone MF, 0.8939| 6.04% | 0.8938
BRISMF#1000
this paper stand-alone MF with 0.8918]| 6.26% | 0.8921

retrained features,
BRISMF#1000UM
NB corrected MF, 0.8904| 6.41% | 0.8905
BRISMF#1000UM+ S1
stand-alone positive MF,| 0.9046| 4.92% | 0.9036
PosMF#400

Table 10: Comparison of Quiz RMSE values of reported MF based methcelals/indicate the
Probel0 values of our methods

6. Conclusions

This paper surveyed our approaches for collaborative filtering. Meepted several MF methods
and a neighbor based correction to the MF. Our methods apply a numberadifreodifications
compared to already published MF variants, but these modifications atheogaportant from the
aspects of implementation (time and memory requirements) and accuracy. ¢enegel a com-
prehensive evaluation of our methods on the Netflix Prize data set, artibwed that the methods
can be efficiently applied for other data set (we tested on MovieLensesterHata sets). We also
presented different “correction techniques” to improve predictionraogu Q-correction use infor-
mation from unlabeled examples, while neighbor based correction expldii&zied information at
prediction. We showed that linear combination of various methods can sanlfiamprove the
accuracy of the blended solution. We pointed out that various corrgetitimiques can bring major
improvement in accuracy when applied to only one method of the linear comlmnatie showed
that they compare favorably with existing methods in terms of prediction ancunaasured by
RMSE and time complexity. The experiments prove that the proposed metheostsadaible to large
recommender systems having hundreds of millions of ratings.
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