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Abstract

In this paper, we present an automated approach to discatterps that can distinguish between
sequences belonging to different labeled groups. Our rdetbarches for approximately conserved
motifs that occur with varying statistical properties irsfive and negative training examples. We
propose a two-step process to discover such patterns. Usiality sensitive hashing (LSH), we
first estimate the frequency of all subsequences and theiogimate matches within a given Ham-
ming radius in labeled examples. The discriminative gbiit each pattern is then assessed from
the estimated frequencies by concordance and rank sumgesthe use of LSH to identify ap-
proximate matches for each candidate pattern helps redheceuntime of our method. Space
requirements are reduced by decomposing the search prafiieran iterative method that uses a
single LSH table in memory. We propose two further optiniaa to the search for discriminative
patterns. Clustering with redundancy based on a 2-appagrigolution of the&-center problem
decreases the number of overlapping approximate grouds wtividing exhaustive coverage of
the search space. Sequential statistical methods alloseidueh process to use data from only as
many training examples as are needed to assess significAecevaluated our algorithm on data
sets from different applications to discover sequentistigpas for classification. On nucleotide se-
guences from the Drosophila genome compared with randokgbaund sequences, our method
was able to discover approximate binding sites that wereegpved upstream of genes. We ob-
served a similar result in experiments on ChlP-on-chip.data cardiovascular data from patients
admitted with acute coronary syndromes, our pattern dexgoapproach identified approximately
conserved sequences of morphology variations that wediqgpike of future death in a test pop-
ulation. Our data showed that the use of LSH, clustering, setpliential statistics improved the
running time of the search algorithm by an order of magnitwitbout any noticeable effect on
accuracy. These results suggest that our methods may aloanfunsupervised approach to ef-
ficiently learn interesting dissimilarities between pivsitand negative examples that may have a
functional role.
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1. Introduction

Pattern discovery has been studied extensively in the context of data ramingrowledge discov-
ery (Han and Kamber, 2005) and causal inference in statistics (P@@#l).ZT'he search for patterns
is typically guided by classification. The focus is on discovering activity ¢aatdistinguish mem-
bers of a family from non-members (Duda et al., 2000) by identifying actihigy is unlikely to
occur purely by chance and may have a functional role (Syed et alf) 200

Pattern discovery has been applied to data from a variety of applicatmmexdmple, world
wide web transactions (Mobasher et al., 1996), marketing informationw($hal., 2001), and
medical signals (Li et al., 2005). More recently, there has been anasetenterest in applying
techniques for discovering patterns to sequences correspondingadimgedata (Wang et al., 1999).
Of particular importance in computational biology is the problem of discovesithgequences, that
is, motifs, which regulate important biological processes (Kellis et al., 20R=tjern discovery has
been proposed in this context as a machine learning problem (Brazmal&Gs);

Given two sets of sequenc&s andS~ drawn randomly from familie& = andF — respectively
such thaF*NF~ = ©, find the patteriW of lengthL that has high likelihood ifF* but not in
F-.

This formulation is sufficiently general to apply to a wide variety of applicatishere sequen-
tial data exists. Furthermore, an extensive literature on symbolization (Dal, 003) allows
for a large set of time-series signals to be abstracted into sequential datafgsis. We make the
notion of a pattern more explicit by refining the goal of pattern discovesgriteed above as follows:

Given two sets of sequenc8s andS~ drawn randomly from familie§ ™ andF ~ respectively
such thatF* NF~ = ¢, find the subsequend# of lengthL that occurs with a Hamming dis-
tance of at mosd with high likelihood inF* but not inF .

In this paper, we propose a method to efficiently carry out the searcbufdr approximate
patterns. A variety of techniques have been proposed to addressabismrstatement (Lawrence
et al., 1993; Bailey and Elkan, 1994; Grundy et al., 1997; Tavazoié,et399; Liu et al., 2001,
Pavesi et al., 2001; Sinha and Tompa, 2003). The common strategy @dyptieese methods is
to approach the problem of pattern discovery by finding activity that is statly unlikely but
occurs consistently in positive examples. Negative examples are primaidyfaisevaluation. This
process means that discriminative patterns in negatively labeled sequecaot explored for
classification. Other algorithms for pattern discovery (Delcher et al.,;1B&@oglou et al., 2000)
enumerate all exact patterns across both positive and negative examiglestify sequences that
can discriminate between these two cases, but become computationally in¢radten allowing
subsequences to have an approximate form.

We describe a locality sensitive hashing (LSH) based algorithm to efficieatisnate the fre-
guencies of all approximately conserved subsequences with a cert@imidg radius in both pos-
itive and negative examples. The search process attempts to identify pattatallow maximum
discrimination between the two groups. In this way, our method unifies thel lareas of existing
work in sequential pattern detection for classification by proposing a weistmver patterns that
are both approximate and derived using the additional information availabkpative instances.
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LSH forms a key component of our method. The use of LSH has beergedpearlier in
the context of pattern discovery to identify interesting activity in positivengdas (Buhler, 2001,
Buhler and Tompa, 2002). We supplement this work by allowing for informdtimm negative ex-
amples to be factored into the search and by proposing different optimigatidime search process.
In particular, we expand the use of LSH in pattern discovery from indetornfast counting and
approximate clustering. While LSH provides runtime efficiency to the seaxmteps, it imposes
significant space requirements, and we describe an iterative methodésad gingle LSH table in
memory to address this issue. We also explore the idea of using clusteriag a$ pattern discov-
ery to reduce approximate subsequences with significantly overlappimgniitey radii to a small
number. This aspect of our work resembles efforts for web clustekiaggliwala et al., 2000).
We explore similar ideas within the context of approximate pattern discovdmg decreases the
number of motifs to be evaluated while still providing a fairly exhaustive ayerof the search
space. We describe a clustering method based on a 2-approximate solitiek-center problem
to achieve this goal.

In addition to LSH and clustering, we also draw upon sequential statisticabagetb make the
search for interesting patterns more efficient. The process of identibgitigrns with discriminative
ability makes use of concordance and rank sum testing. In many casgegptieess of approximate
patterns can be assessed without using data from all training sequeWeepropose a further
optimization to address these cases. The runtime and space requiremeptpaitehn discovery
process can be reduced by using sequential statistical methods that alleedtth process for
patterns to terminate after using data from only as many training examples raaealed to assess
significance.

We address a similar goal to earlier work on using hypergeometric sigriédasting to dis-
cover patterns that are enriched in a positive set relative to a negatif@asash et al., 2001). The
focus of this work is to generate seeds of short lengths that can badegbasing an expectation-
maximization (EM)-like process to produce a position specific scoring matthxeodiesired length.
However, in contrast to our work, this method is based on the assumptioa fzdtern occurs at
most once in each sequence. This leads it to disregard multiple copies of fawidtic the same
sequence. Moreover, the use of a testing function based on hypegg@oanalysis may affect the
accuracy of this method (Leung and Chin, 2006).

Our algorithm to find approximate discriminative patterns is also related to piewiork on the
use of profile hidden Markov models (Krogh, 1994; Jaakkola et al.91&optimize recognition
of positively and negatively labeled sequences. This work focusésaoning the parameters of a
hidden Markov model that can represent approximations of subseggie@enerally, this approach
requires large amounts of data or sophisticated priors to train the hidddwWaodel. Computing
forward and backward probabilities from the Baum-Welch algorithm is aésp gomputationally
intensive. Subsequent work in this area focuses on mismatch treekmarets (Leslie et al., 2003)
for use in a support vector machine (SVM) classifier. This work foswseefficiently calculating a
kernel based on the mismatch tree data structure (Eskin and Pevzngy, @Bith quantifies how
different two sequences are based on the approximate occurrethedigedL-length subsequences
within them. The mismatch kernel is used to train an SVM and assign labels townlaqeery
sequences.

Our algorithm supplements this work by measuring how frequently eaclegubésce occurs in
an approximate form in the data. In contrast to the mismatch kernel, whickde@n quantifying
the difference between two sequences and does not report therigof individual approximate
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Figure 1: Overview of the pattern discovery process.

subsequences in the data, our algorithm focuses on identifying the spamiioximate patterns
with discriminative value. This approach can be integrated more easily withsthefutsequential
statistics, that is, since the frequencies of each approximate patterteanededuring analysis, this
information can be used to determine if patterns are good or bad discrimimatbesit analyzing
all the available data.

We evaluated our algorithm on data sets from different applications towdissequential pat-
terns for classification. On nucleotide sequences from the Drosophitarge our method was able
to discover binding sites for genes that are preserved across thegemal do not occur in random
background sequences. On symbolized electrocardiographic time-gerie patients with acute
coronary syndromes, our pattern discovery approach identified&pmately conserved sequences
of morphology variations that were predictive of future death in a testlptipn. These results sug-
gest that our methods may allow for an unsupervised approach to leamsiitig dissimilarities
between positive and negative examples that may have a functional role.

The rest of this paper is organized as follows: Section 2 gives anieweof our algorithm. Sec-
tion 3 describes a locality sensitive hashing scheme to find approximate mitetiesibsequences
in the data set. Section 4 proposes the use of clustering to reduce the rii@roximate patterns
analyzed during pattern discovery. Section 5 discusses the statisticahapps used in assessing
the goodness of patterns. Section 6 details the evaluation methodology patbeim discovery
algorithm on data from different real-world applications. Section 7 tspgbe results of this study.
Section 8 concludes with a discussion.

2. Overview

The process of discovering discriminative patterns of a specified |&rfgtim positive and negative
sequences is carried out in two stages: frequency estimation and patikimg. Figure 1 presents
an overview of this approach.

2.1 Frequency Estimation

Given a set of positive exampl& = {S/|x=1,...,NT} and a set of negative exampl8s =

{$|y =1,...,N"} the frequency estimation step measures the frequency of every uniose-su
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quencel fori =1,...,M in sequences belonging 8 andS™. The resulting frequency fa# in
positive and negative examples is denoted as:

fir = {fifze s,

wheref;’, and fi , are the frequencies with whidhi appears in sequencesirawn fromS" andS-,
andf;" andf;” are vectors measuring the frequencyfin all positive and negative sequences.

To allow for approximate patterns, unique subsequences are then maichkédther subse-
guences at a Hamming distance of at nib&bom W. Denoting this group of subsequencedag,
the resulting frequency for the subsequewtand its approximate matches is defined as:

g = > f,
j€Dw
g =) f
j€Dw
whereg" andg;” are vectors obtained by summing up the vectorsaand f,~ for all subsequences
within a given Hamming radiug of W,.

In Section 3, we describe an LSH-based solution that allows for effidisobvery of the subse-
quencedy matchingM. We also present a clustering approach in Section 4 to reduce overlapping
approximate patterns for which frequencies are estimated to a smaller nuitibkyss redundancy
for subsequent analysis.

2.2 Pattern Ranking

The goal of the search process is to identify approximately matching sudrsees that can discrim-
inate between positive and negative training examples. The pattern rastlg® therefore scores
each candidate approximate pattern according to its discriminative ability. 8@vosmeasures to
assess the goodness of patterns.

The first approach to score patterns is to use rank sum testing. Thigfeelsa non-parametric
approach for assessing whether two samples of observations comth&@ame distribution. Pat-
terns are ordered based on the significance of separation (as niebguihe p-value) obtained by
rank sum testing. A second scoring criterion used by our work is thet3tatawhich corresponds
to the area under the receiver operating characteristic (ROC) curtailPof these techniques are
provided in Section 5. We further describe how sequential methods assebdo reduce the search
process to only process as many training examples as are needed to dettansendidate pattern
has high or low discriminative ability.

3. Locality Sensitive Hashing

In this section, we describe the use of locality sensitive hashing in ourithiigor

3.1 Finding Approximate Matches for a Subsequence

Locality sensitive hashing (Indyk and Motwani, 1998) has been pexpas a randomized approx-
imation algorithm to solve the nearest neighbor problem. Given a set oéguésces, the goal of
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LSH is to pre-process the data so that future queries searching festfmsints under sonmgnorm
can be answered efficiently. A brief review of LSH is presented here.

Given two subsequenc&s andS, of lengthL, we describe them as being similar if they have a
Hamming distance of at modt To detect similarity, we chood¢€ indicesiy, ..., ik at random with
replacement from the s¢t,...,L}. The locality sensitive hash functi&r8H(S) is then defined as:

LSH(S) =< Sfia],..., Sl >

where< ... > corresponds to the concatenation operator. Under this sci8medS, are declared
to be similar if:

LSH(S) = LSH(S,)). (1)

The equality in Equation 1 corresponds to an exact match. However,thimddices used by
the locality sensitive hash functidtrBH(S) may not span the entire subsequereandS,, an exact
match in Equation 1 may be obtained§fandS, match approximately.

Practically, LSH is implemented by creating a hash table using 8t S) values for all subse-
guences as the keys. Searching for the approximate neighbors ofyasgibeequence corresponds
to a two-step process. The locality sensitive hash function is first applidtetquery. Follow-
ing this, the bucket to which the query is mapped is searched for all origliteequences with a
Hamming distance of at modt

Two subsequences with a Hamming distancd of less may not match for a random choice of
K indices if one of theK indices chosen corresponds to a position in wiiglandS, differ. The
probability of such a miss is bounded by (Indyk and Motwani, 1998):

d
PrILSH(S,) # LSH(S)] < [1- (1 - ).
By repeating the process of choosikgndicesT times this probability can be reduced further
to:
d
PrILSH(S) # LSH(S)] < [1- (1-1)"]". )

Effectively, Equation 2 corresponds to constructing a data structum@rising T hash tables
using different locality sensitive hash functionSH; (S),...,LSHr (S). Approximate neighbors for
a query are detected by searching for matches in each of these hashamtkscribed earlier.

The intuition underlying LSH is that the problem of searching through aBiptessubsequences
in the data set for a match can be reduced to the more feasible problen @Edidly identifying a
small set of potential matches with a bounded error, and then searchinglththis smaller set to
remove false positives. The lower the desired error bound for falgatimes affecting correctness
(i.e., by choosind andT), the higher the corresponding false positive rate affecting the runtime
of the algorithm. The choice between these two parameters depends orplicatam and the
underlying data set.

3.2 Finding Approximate Matches Between All Subsequences

LSH provides an efficient mechanism to find the nearest neighborsieéa gubsequence. To find
the nearest neighbors for &ll subsequences in the data set, each member of the set can be passed
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through the entire LSH data structure comprisindnash tables for matches. Unfortunately, this
process is both computationally and memory intensive. In what follows, werithe a strategy to
reduce the space requirements of LSH-based search for all apptexinagches between subse-
guences. Section 4 further addresses runtime issues by proposingiexioty amendment to the
search process.

Different approaches have been proposed recently to reduceabe sgmuirements of LSH. In
particular, the use of multi-probe LSH (Lv et al., 2007) has been shownkistantially reduce the
memory requirements for traditional LSH by searching each LSH hash iablecfrresponding to
a random selection df indices) more thoroughly for misses. This additional work translates into
fewer LSH hash tables being needed to bound the given error ratere&sl the space of the LSH
data structure decreases.

In our work, the memory requirements of LSH are reduced by organiziagapiproximate
matching process &k iterations. Each iteration makes use of a single locality sensitive hash func-
tion and maintains only a single hash table in memory at any time. To preservecstae iera-
tions, the search process maintains a list of matching pairs found durihndagrafter removing
false positives. The subsequenggg matching\ are found as:

;
Dw = [J{Wj|LSH (W) = LSH(W)}.
t=1

4. Clustering Subsequences

The runtime of the pattern discovery process as described so far is dethimathe approximate
matching of all subsequences. Every subsequence is first usedte ttre LSH data structure, and
then passed through the LSH data structure to find matches with a Hamming elisfaatcmost
d. This process is associated with considerable redundancy, as matelsesight individually for
subsequences that are similar to each other. The overlap betweeniaggteopatterns increases
the computational needs of the pattern discovery process and also maka® ithallenging to
interpret the results as good patterns may appear many times in the output.

To address this issue, we reduce patterns to a much smaller group thatlltdtieely spans
the search space. This is done by making use of a clustering method brase?-approximate
solution to thek-center problem. The focus of this clustering is to group together the okrigina
subsequences falling into the same hash bucket during the first LSH iter&&ah of the clusters
obtained at the end of this process corresponds to an approximate plagteisiretained. During
subsequent iterations, while all subsequences are still used to coribUcSH tables, only the
cluster centroids are passed through the LSH data structure. Thisseitheécruntime of the search
by reducing the number of times subsequences have to be passed tim®udi tables to find true
and false positives. It also reduces the memory requirements of thé $gareducing the number
of subsequences for which we need to maintain state about approximatematch

The traditionalk-center problem can be formally posed as follows. Given a complete graph
G = (V,E) with edge weightss > 0, e € E andw(v,v) = 0, v € V, thek-center problem is to find
a subse¥ €V of size at mosk such that the following quantity is minimized:

W(Z) = ?l%xrj‘é'é“"@i)" 3)
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Thek-center problem is NP-hard, but a 2-approximate solution has beengaogHochbaum
and Shmoys, 1985) for the case where the triangular inequality holds:

Wi, j) + Wj k) = Wi k-

The Hamming distance metric obeys the triangular inequality. Under this condtiemro-
cess of clustering can be decomposed into two stages. During the firsit&@kion, we identify
subsequences that serve as cluster seeds using the 2-approximiate solinek-center problem.
Subsequent LSH iterations are used to grow the clusters till the probabilitaniessubsequence
within a Hamming distance at modtof the cluster centroid is missed becomes small. This ap-
proach can be considered as being identical to choosing a set ofjsebses during the first LSH
iteration, and finding their approximate matches by multiple LSH iterations.

More formally, during the first LSH iteration, for each buckein the hash table far=1,...,B,
we solve thé-center problem using the 2-approximate method (Hochbaum and Shreggs viith
a Hamming distance metric. The number of subsequences forming clrftarthei-th hash table
bucket is determined alongside the specific centroid subsequences from:

k = min{kW(z (k)) < d} (4)

whereW(Z) is defined as in Equation 3 argjy, denotes the subsequence centers chosen for a
particular choice ok in Equation 4, that is:

ki = min{k|maxminw; 5y < d}.
{kimaxminey 4 ) < d}
The final set of subsequences chosen as centroids at the end afstHeSH iteration then
corresponds to:

The LSH iterations that follow find approximate matches to the subsequendeslinis im-
portant to note that while clustering reduces a large number of overlappingximate patterns
to a much smaller group, the clusters formed during this process may still pvertas overlap
corresponds to missed approximate matches that do not hash to a singledwrakg the first LSH
iteration. Techniques to merge clusters can be used at the end of theSlistdration to reduce
overlap. In our work, we tolerate small amounts of overlap between cduaterogous to the use
of sliding windows to more thoroughly span the search space. Figure 2allestthe clustering
process.

5. Pattern Ranking

Given the frequencieg;” and g, of an approximate pattern corresponding to all subsequences
within a Hamming distance of the subsequend#, a score can be assigned to the pattern by using
concordance statistics and rank sum testing.
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Complete Overlap Disjoint Clusters Clusters with Overlap

B Nen-Centroid Subsequence
B Centroid Subsequence

Figure 2: In the absence of clustering there is significant redundagteyelbn the Hamming radii
of approximate patterns. Partitioning the data into disjoint clusters can helpssdithis
issue. In our work, we reduce the original approximate patterns into a gnoaip with
some overlap to span the search space.

5.1 Concordance Statistic

The concordance statistic (C-statistic) (Hanley and McNeil, 1982) meatheaiscriminative abil-
ity of a feature to classify binary endpoints. The C-statistic corresporitie tirea under the receiver
operating characteristic (ROC) curve, which describes the inherelet tfh between sensitivity and
specificity. As opposed to measuring the performance of a particulaifidgsthe C-statistic di-
rectly measures the goodness of a feature (in this case the frequenayhidth an approximate
pattern occurs) by evaluating its average sensitivity over all possibbifisiiees.

The C-statistic ranges from 0-1. A pattern that is randomly associated withlibks would
have a C-statistic of 0.5. Conversely, good discriminators would comelsimoeither low or high
C-statistic values.

5.2 Rank Sum Testing

An alternate approach to assess the goodness of patterns is to makeamgesoin testing (Wilcoxon,
1945; Lehmann, 1975). This corresponds to a non-parametric methcat tehtether a pattern oc-
curs with statistically different frequencies in both positive and negakisenples.

Given the frequencieg;” andg, of an approximate pattern in both positive and negative exam-
ples, the null and alternate hypotheses correspond to:

Ho by = Hy
il 7 Ky
Rank sum testing calculates the statitiovhose distribution undety is known. This is done
by arranging thej” andg;” into a single ranked series. The ranks for the observations fromgj‘'the

series are added up. Denoting this valueRdsand the number of positive examples Ky, the
statisticU is given by:
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Nt(NT +1)
—

The obtained value df is compared to the known distribution unddg and a probability
for this observation corresponding to the null hypothesis is obtained (ieep-ttalue). For large
samplesU is approximately normally distributed and its standardized value can be chétke
tables of the normal distribution (Gibbons, 1985; Hollander and Wolfe9119%he lower the p-
value obtained through rank sum testing, the more probable it igthahdg.~ have distributions
with different means, that is, that the approximate pattern is distributedetitfgrin positive and
negative examples.

U=R"—

5.3 Sequential Statistical Tests

The runtime and space requirements of the pattern discovery procebe cagluced by analyzing
only a subset of the training data. For example, it may be possible to reegggtierns with high
discriminative ability without the need to analyze all positive and negativenphes.

Our pattern discovery algorithm starts out by using a small subset of thd trdgiising data
for batch analysis. This helps identify candidate approximate patternsatiat io the data set and
collectively span the search space. The remaining training exampleseatéouscoring purposes
only. These examples are added in an online manner and during eachiitettai@ccurrence of
outstanding candidate patterns in positive and negative examples is upBategins may then be
marked as being good or bad (and consequently removed from furthses) or studied further
to resolve uncertainty. The number of candidate patterns is therefore maradypnon-increasing
with iteration number. As a result, the analysis of training examples becontesdasnore data is
added, since fewer patterns need to be scored.

A sequential formulation for rank sum testing has been proposed (Rithtard Sudbury, 1988)
that adds positive and negative examples in pairs. The frequenciesagproximate pattern in
positive and negative examples at the end of iteratican be denoted a3’ (j) andg; (j) where
j =1,...,n. The corresponding statistic for rank sum testing is:

Un = i il(gﬁ(X) >0 () (5)
x=1y=1

The operatoi (.) is equal to one when the inequality holds and zero otherwise. Using this
statistic, the decision at the end of ttih iteration corresponds to acceptiHg if:

U, n 1-pB

o < > —Alog(——) (6)
while H; is accepted if:

U n B

F > E —)\Iog(il_a)

whereA is defined as Phatarfod and Sudbury (1988):

A=_ 2 33 % ()
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In Equations 6 to 7¢ and 3 correspond to desired false positive and false negative rates for
the sequential rank sum testing process, while a user-specified parameter that reflects the pref-
erences of the user regarding how fine or coarse a difference tibutions are allowed to have
under the alternate hypothesis. If both inequalities are not met, the pafeadding data continues
until there are no more training examples to add. In this case, all outstandidiglate patterns are
rejected.

This formulation of sequential rank sum testing adds data in pairs of poaitidenegative ex-
amples. In cases where there is a skew in the training examples (withoutflgeseralization
we assume a much larger number of negative examples than positiveweese a different for-
mulation of sequential testing (Reynolds, 1975). Denoting the mean fregirepositive training
samples as:

N+
W=3 g'(x). (8)
x=1

The alternate hypothesis can be redefined as the case Wherg — 4" is asymmetrically
distributed about the origin. This can be identified using the statistic:

Un= ZL ng(h ))Rex 9

whereRyy is defined as the rank difij(x)| in the set{|h;(1),...,|hi(y)|} with x <y and sgrf|h;(x)|)
is 1if hj(x) > 0 and -1 otherwise. The test procedure using the statistic continues téisagyations
as long adJ, € (—9,8) whered is a user-specified parameter.

Traditional formulations of sequential significance testing remove goodrpatiem analysis
when the test statistic is first found to lie above or below a given threshattkrRs with potentially
low discriminative ability are retained for further analysis and are dischifdihey do not meet
any of the admission criteria during any iteration of the search processe Biere may be a large
number of such patterns with low discriminative value, we make use of a modifipcbach to
reject poor hypotheses while retaining patterns that may have value iificetgmn. This strategy
improves efficiency, while also ensuring that good patterns are rardied the available training
data. Given the typical goal of pattern discovery to return the best patt@und during the search
process, this technique naturally addresses the problem statement.

Given the test statistics in Equations 5 and 9, we remove all patterns thaa bestestatistic:

Un < AUmax

whereUnax is the maximum test statistic for any pattern anid a user-specific fraction (e.g., 0.2).

5.4 Multiple Hypothesis Correction

While assessing a large number of approximate pattdinghe statistical significance required
for goodness must be adjusted for Type | (i.e., false positive) ertbvge declare a pattern to be
significant for some probability of the null hypothesis less tBatien the overall false positive rate
for the experiment assuming independence of patterns is given by:

FP=1—(1-9)V
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If we do not assume that the patterns are independent, the false paaigivan be bounded by:

FP <OM.

To account for this condition, a more restrictive level of significance rbasset consistent
with the number of unique patterns being evaluated (in our case, the clabtaised earlier). If
c clusters are assessed for goodness, the Bonferroni correctenmd(Bnd Altman, 1995) suggests
that the level of significance be set at:

9 ==
<
This addresses the issue of increasing false positives caused bwalhatien of a large number
of clusters by correspondingly lowering the p-value required to acppttern.

6. Evaluation

All experiments were carried out on a 3.2 GHz P4 with 2 GB of RAM runningikiRedora Core4.
The algorithms to be evaluated were implemented in Java.

6.1 Regulatory Motifs in Drosophila Genome

We evaluated our pattern discovery algorithm on data from the Assessiméamputational Mo-
tif Discovery Tools project (Li and Tompa, 2006; Tompa et al., 2005)e Tdtus of this project
was to compare 13 motif discovery tools on nucleotide sequences fromienhmouse, fly and
yeast genomes to see if they could successfully identify known regulelements such as binding
sites for genes. These tools differed from each other mainly in their defirofi@a motif, and in
the method used to search for statistically overrepresented motifs. Authorspeitific expertise
were chosen to test each tool and avoid the disadvantage of being ruerwitiinformed set of pa-
rameters. The expert predictions were then compared with known binitiisgrsthe TRANSFAC
database (Wingender et al., 1996) using various statistics to assesg#utnass of the predictions.

In our work, we focused on nucleotide sequences fronTttosophila melanogastegenome
comprising 43 kb base pairs (Li and Tompa, 2006; Tompa et al., 2005¢seThequences were
divided into 8 data sets, each corresponding to a different binding she.Drosophila genome
was the smallest (in terms of the available data) of the four genomes used irofbet,pallowing
us to compare our method with more computationally intensive algorithms that ds@diSH or
clustering. To use our method, we generated random negative segueitit the same background
frequencies and lengths as the positive examples, and supplementedobititre pand negative
sequences with their reverse complements. Our method predicted bindinig sitewriginal data
corresponding to all subsequences in the groyp with maximum discriminative value. While
our algorithm has been designed to use additional information in negativepdss when available,
this approach presents an example of how our method can be used easasmwthere only positive
training data is present and negative examples are generated using aspprpiach.

The pattern discovery process attempted to find approximate subsegjo¢heggths 8, 12 and
16. We investigated Hamming radii of 1-3 for patterns of length 8, 2-4 fadlod length 12 and 3-5
for length 16. Parameters were chosen using the inequality in Equation & st SH probability
of false negatives in each case was below 0.005. For each of thesg wasan our algorithm three
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times and consistent with the other motif discovery algorithms evaluated, we onbsthe best
pattern discovered (where best corresponded to lowest rank statug-or no result if a pattern
with a p-value less than 0.05 was not found).

We compared our method to the 13 motif discovery tools evaluated on the sansetiasing
thenPCandnCC summary statistics (Li and Tompa, 2006; Tompa et al., 2005). Given the mumbe
of nucleotide positions in both known sites and predicted sit@®)( the number of nucleotide
positions in neither known sites nor predicted sit€BN), the number of nucleotide positions not in
known sites but in predicted sitesHP) and the number of nucleotide positions in known sites but
not in predicted sitemEN), the nucleotide level performance coefficienP(C) (Pevzner and Sze,
2000) was defined as:

nTP
NnTP+nFN+nFP’
The nucleotide level correlation coefficiemC) (Burset and Guigo, 1996) was defined as:

nPC=

NTRPNTN—nNFN.nFP
V/(nTP+nFN)(nTN+nFP)(nT P+ nFP)(nTN-+nFN)

In addition to comparing our method with results from the 13 motif discovery #lgos eval-
uated in the Assessment of Computational Motif Discovery Tools project,|seeexplored the
runtime and accuracy of two variations of our algorithm. These variations meant to assess the
contribution of clustering and LSH-based approximate matching to the peafare of our method.
The first variation we examined did not make use of the clustering proesssilded in Section 4 to
reduce overlapping approximate patterns to a smaller group. The seaoation further avoided
the use of LSH to match subsequences and was based instead on astiesisaarch.

While comparing the three approaches, we use the following notdt®HCSfor our original
algorithm using clustering and sequential statistdsClustfor the variation that did not use clus-
tering, andeExhSearctor the exhaustive search algorithm that further avoided the use ofthSH
match subsequences.

For some binding site data séi®Clustand ExhSearchdid not terminate even after very long
processing times. We terminated algorithms if they did not produce results withiours of CPU
time. These cases are annotated where included.

6.2 Regulatory Motifs in ChlP-on-chip Yeast Data

We evaluated the ability of our method to discover yeast transcription faciding motifs in ChiP-
on-chip data (Harbison et al., 2004). The “gold standard” motifs for thia det were generated by
applying a suite of six motif-finding algorithms to intergenic regions f@@mecharomyces cerevisiae
and clustering the results to arrive at a consensus motif for each tigtistfactor. When no motif
was found computationally for the intergenic regions, a literature-baseskosus motif was used.

In our experiments, we focused on the 21 transcription factors in the éiatarsvhich the six
motif-finding algorithms in Harbison et al. (2004) failed to find a significant maotd the reported
motif had to be based on a consensus obtained from the literature. Fotslitesused the output
from the LSHCSalgorithm with the lowest rank sum p-value (or no result if a motif with p-value
less than 0.05 was not found), with the motif width chosen to match the width of tihatlite
consensus motif. This approach was analogous to earlier work on @hthip data to evaluate
motif discovery methods (Siddharthan et al., 2005).
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For each experiment, we defined positive examples as the set of popenses found to bind
the transcription factor and set negative examples to be randomly selectduinding probe se-
guences. The positive and negative sets contained the same numbguafces. This approach
was also chosen to be consistent with earlier studies to evaluate motif digtoeksr(Redhead and
Bailey, 2007).

6.3 Predictive Morphology Variations in Electrocardiogram Signals

We evaluated our method on 24-hour electrocardiographic (ECG) sifjpatspatients admitted
with non-ST-elevation acute coronary syndromes (NSTEACS) to disgatéerns of morphology
changes associated with future cardiovascular death. Earlier studigessuhat increased beat-
to-beat variations in ECG morphology may be associated with instability in thauctiod system
of the heart and could help identify high risk patients (Syed et al., 200&8) applied our pattern
discovery algorithm to discover specific sequences of beat-to-baageb that had predictive value.

Given a 24-hour ECG signal, we first converted the data recordedgdiire course of hospi-
talization into a time-series of morphology changes between pairs of cdivecaeiart beats (Syed
et al., 2008). Morphology changes between beats were measuredaudymamic time-warping
algorithm (Rabiner et al., 1978) that calculates the time-aligned energyetifie between beats.
The morphology change time-series was then converted into a sequemgsyrabolic aggregate
approximation (SAX) (Lin et al., 2003) with an alphabet size of 10. In thismegrmultiple ECG
signals were transformed into sequences that could be analyzed by thadn®n average, each
sequence corresponding to 24 hours of ECG was almost 100,000 sylotipls

On atraining set of 765 patients, where 15 patients died over a 90 day pataaving NSTEACS
(i.e., 15 positive examples and 750 negative examples), we used oungditeovery algorithm
to learn sequences of morphology changes in the ECG signal that westietiye of death. We
searched for patterns of length 8 with a Hamming distance of at most 2. Raramere chosen
using the inequality in Equation 2 so that the LSH probability of false negatiasdess than 0.01.
We selected patterns that showed a C-statistic greater than 0.7 and amatéssp-value of 0.05
corrected for multiple hypotheses using the Bonferroni correctionsd nere evaluated on a test
set of 250 patients with 10 deaths.

We also studied the runtime performance of our algorithm on this data set witlidrout the
use of sequential statistics to find significant patterns. Given the largeenwhbegative examples
in the training data, we employed the sequential formulation in Equations 8 ariith 9 w: 0.2.
Consistent with the notation proposed in Section 6 we denote our originaithfgaising sequential
statistics a& SHCSwhile the variation that avoids sequential statistics is denotedd8eqStats

7. Results

The results of our experiments are as follow.

7.1 Regulatory Moatifs in Drosophila Genome

Table 1 presents the results of the 13 different motif discovery algorithaisated by the Assess-
ment of Computational Motif Discovery Tools project. The results of usingwethod are given in
Table 2.
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| Algorithm | nPC | nCC |
AlignACE 0 -0.006
ANN-Spec 0.010| 0.002
Consensus 0 -0.011
GLAM 0.002 | -0.008
Improbizer 0.008| 0.002
MEME 0.021| 0.027
MEMES3 0.016| 0.013
MITRA 0 -0.008
MotifSampler 0.003 | -0.006
OligodyadAnalysis| 0 -0.015
QuickScore 0 -0.016
SeSiMCMC 0.036| 0.054
Weeder 0.009| 0.011
Y MF 0 -0.014

Table 1: Performance of 13 different motif discovery methods on the dpiik& genome
(nPC=performance coefficienhCC=correlation coefficient) in the Assessment of Com-
putational Motif Discovery Tools project (Tompa et al., 2005).

| Parameter [ nPC | nCC |

L=8,d=1 | 0.021| 0.031
L=8,d=2 | 0.007| -0.009
L=8,d=3 | 0.013]| -0.002
L=12d=2| 0.013| 0.018
L=12d=3| 0.039| 0.062
L=12d=4| 0.013| 0.018
L=16d=3 0 -0.011
L=16,d=4 | 0.032| 0.055
L=16,d=5| 0.056| 0.093

Table 2: Performance of theSHCSpattern discovery method on the Drosophila genome using
different input parametermPC=performance coefficientnCC=correlation coefficient,
L=pattern lengthd=maximum Hamming distance allowed in pattern).
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Our LSHCSalgorithm compared favorably with the other motif discovery algorithms evalu-
ated on the same data by experts. In particular, for two of the parametegsettialuated (i.e.,
L=12d =3 andL = 16,d = 5), our algorithm had both a higher performance coefficient and a
higher correlation coefficient than any of the other methods. Tkel6,d = 4 case also had a
higher correlation coefficient than the motif discovery algorithms previowggnted, although the
performance coefficient for this choice of parameters was excegd8dRMCMC

We note that these findings help only to validate the ability of our pattern discaperoach to
identify potentially interesting activity. Since these results hold on a specifiorge, we caution
against interpreting the results as a more general comparidoBHE Swith nucleotide motif dis-
covery methods. In particular, we observe that the nucleotide motif discovethods in Table 1
were tested blindly on a single pre-determined choice of parameters. #sibfmthat with different
choices of input parameters (i.e., similar to the evaluatidnSHMCSusing different values df and
d), these methods would have yielded significantly better results.

Tables 3 and 4 present the performance and correlation coefficigrtsefloClustand Exh-

Searchalgorithms. For both these variations, the algorithms did not terminate for thestanigoice

of Hamming radiugl. Investigation revealed that the slow processing times in these cases were
associated with insufficient memory to store the neighborhoods for albaippate patterns (i.e.,

in the absence of clustering for both algorithms). For large choices of tkgmam allowed Ham-

ming radius, the neighborhood for each pattern is more extensive amgstiois information for

all overlapping patterns imposes significant space requirements. Gelywdyy using clustering,
LSHCSis able to reduce the number of overlapping patterns and avoid referendisk.

We found some of the results in Tables 3 and 4 compdtBigCSto NoClustand ExhSearch
to be surprising. In contrast bSHCS the NoClustvariation explores all overlapping patterns
while ExhSearctuses an exhaustive search to find nearest neighbors (i.e., avoidisg#ficalse
negative probability associated with LSH). Since both variations use strictly daia and explore
the outputs oLSHCSas well as other alternatives, we expected the results to improve uniformly
betweernLSHCSandExhSearcHor all parameter selections. While this was generally the case, for
some parameter choices (elg+ 16,d = 4) the best results were obtained bl$HCS Examining
the outputs by all three algorithms revealed these inconsistencies to beuhefessolving ties
between patterns with identical rank sum p-values arbitrarily. While ptiesgetine results in this
section, we explicitly note this limitation of the objective function (i.e., the rank suralpe) used
for evaluation.

Ignoring parameter choices for whidtoClustand ExhSearchdid not terminate, the perfor-
mance of all three methods was similar as shown in Table 5. A comparison afrthimg time for
all three algorithms is also presented in Table 6. The running time increasdfitsigtly both as all
overlapping approximate patterns were studied, and when an exhaesiah was used to replace
LSH. The increase in runtime due to exhaustive search was considenabdythan the effect of
examining all overlapping approximate patterns.

7.2 Regulatory Motifs in ChlP-on-chip Yeast Data

The results of applying theSHCSalgorithm on the ChlP-on-chip data set for the 21 transcription
factors for which the six motif-finding algorithms failed to find a significant moté ahown in
Table 7.
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| Parameter | nPC | nCC |
L=8d=1 0.037| 0.063
L=8,d=3ft

L=12d=2 0 | -0.009
L=12d=3 | 0.032| 0.0499
L=12d=4t| ...
L=16,d=3 0 | -0.011
L=16,d=4 | 0.020| 0.029
L=16d=5%| ...

Table 3: Performance of thHoClust pattern discovery method on the Drosophila genome us-
ing different input parameteraPC=performance coefficienhCC=correlation coefficient,
L=pattern lengthd=maximum Hamming distance allowed in pattern). 1t Cases where the
algorithm did not terminate in 24 hours.

| Parameter | nPC [ nCC |

L=8,d=1 |0.039] 0.065
L=8,d=2 |0.017| 0.015
L=8d=3t | ...
L=12d=2 | 0.006| 0.005
L=12d=3 | 0.025| 0.036
L=12d=4t| ...
L=16,d=3 0 |-0.011
L=16,d=4 | 0.009| 0.008
L=16d=5t| ...

Table 4: Performance of thexhSearchpattern discovery method on the Drosophila genome us-
ing different input parameteralPC=performance coefficienbCC=correlation coefficient,
L=pattern lengthd=maximum Hamming distance allowed in pattern). T Cases where the
algorithm did not terminate in 24 hours.

| Parameter| AveragenPC | AveragenCC |

LSHCS 0.019 0.024
NoClust 0.021 0.031
ExhSearch 0.016 0.020

Table 5: Comparison diSHCS NoClustand ExhSearchby summarizing results from parameter
selections where all three algorithms terminated within 24 hauPSC£performance co-
efficient,nCC =correlation coefficient.=pattern lengthd=maximum Hamming distance
allowed in pattern).
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| Parameter | LSHCSTime | NoClustTime | ExhSearcilime |

L=8d=1 5:01 15:40 3:01:22
L=8d=2 5:53 1:06:06 3:49:08
L=28,d=3% 4:13
L=12d=2 18:14 35:54 17:05:37
L=12d=3 24:48 2:33:12 17:27:43
L=12d=4% 27:30
L=16d=3 31:08 29:59 18:21:15
L=16d=4 32:20 2:59:14 18:04:59
L=16,d=5% 24:15

Table 6: Time taken fo,SHCS NoClust and ExhSearchpattern discovery methods on the
Drosophila genome using different input parameters. 1 Cases whereranore of the
algorithm did not terminate in 24 hours.

Transcription Factof Motif Found |

ADR1 ...
DALS80 Yes
GAL80
GCR1
GZF3
HAP2 ...
HAP3 Yes
HAPS5 ...
MAC1 Yes
MET31
MET32 .
MOT3 Yes
MSN4
PUT3
RGT1
RLM1 ..
ROX1 Yes
RTG3
SKO1 ...
YAP6 Yes
YOX1

Table 7: Results of SHCSon the ChIP-on-chip data set for transcription factors (TF) where com-
mon motif-finding algorithms failed to find a significant motif.
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| Pattern (Centroid] Rank Sum P-Valug C-statistic |

ABCCDFGJ 0.025 0.71
FFJJJICC 0.004 0.70

Table 8: Statistical significance of approximate patterns found on a trai@h@fs765 post-
NSTEACS patients (15 deaths over a 90 day follow-up period) when aeallon a test
population of 250 patients (10 deaths).

In 6 of the 21 experiments conducted, the discriminative motif with the lowestyevound
by theLSHCSalgorithm corresponded to the consensus motif in the literature, but wdeurat
by any of the six motif-finding algorithms evaluated earll€8BHCS as well as the other six motif-
finding algorithms, failed to find the discriminative motif in the remaining 15 caseswatihmotifs
are described in the literature.

7.3 Predictive Morphology Variations in Electrocardiogram Signals

Our pattern discovery method returned 2 approximate patterns that veeresad to have discrim-
inative value in the training set (i.e., a C-statistic of more than 0.7 and a p-valassathan 0.05
after accounting for the Bonferroni correction). Representing thebsys obtained using SAX by

the lettersA-J, whereA corresponds to the symbol class for the least beat-to-beat change-in mor
phology and) denotes the symbol for the greatest change, the centroids for thexapate pattern

can be written as:

ABCCDFGJ
FFJJJICC

The first of these patterns is equivalent to increasing time-aligned eokagges between suc-
cessive beats. This may suggest increased instability in the conductiemsgtthe heart. The
second pattern corresponds to a run of instability followed by a returnsieliba. This pattern can
be interpreted as a potential arrhythmia.

The results of testing both patterns on previously unseen data from #6tpgwith 10 deaths
over a 90 day follow-up period) are shown in Table 8. Both patternsdfidyynour approximate
pattern discovery algorithm showed statistical significance in predictintp d@eaording to the C-
statistic and rank sum criteria.

A comparison of the running times for the&SHCSand NoSeqStatalgorithms is presented in
Table 9. While the outputs produced by both algorithms were identical, thef geguential statis-
tics helped outL SHCSmethod decrease the runtime of the search process to almost half of what
we encountered for the variation not using the methods proposed in SB@iowWe also note that
the NoSeqStatsariation used considerably more memory thantB#CSapproach. This effect
was due td.SHCSpurging state for patterns that did not obey the inequality in Equation 9. In the
absence of sequential statistibgSeqStathad to retain ranking information for all patterns till the
training data set was completely analyzed.
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| Algorithm | Time |
LSHCS 5:08:24
NoSeqStats 9:43:09

Table 9: Time taken by theSHCSandNoSeqgStatpattern discovery algorithms on the cardiovas-
cular training data set.

8. Summary and Discussion

This paper presents an approach to efficiently learn patterns in labejedrees that can be used
for classification. We define patterns as groups of approximately matahissgguences, that s, all
variations of a subsequence within a given Hamming radius. Our methodeasea fully auto-
mated approach for unsupervised pattern discovery, where the ggmdhpatterns is assessed by
measuring differences in their frequency of occurrence in positidenagative training examples.

We designed our pattern discovery algorithm to make it both accurate feidrdfin terms of
space and computation. We briefly review the central ideas of our work.

First, we include patterns from both positive and negative training sets seawch for discrim-
inative activity. In many applications, we can consider positive examplegiag associated with
some physical phenomenon. Patterns that occur mainly in positive examaplée considered as
potentially regulatory activity that may cause the phenomenon being studiedefSely, patterns
that occur mainly in negative examples (i.e., are absent in positive exanspled)e considered
as potentially supressive activity. The absence of these suppresdieens in positive examples
may promote the observed phenomenon. We allow for the discovery of etk of activity. This
approach has a further advantage in that it reduces the need fokpamedge. In the absence
of negative examples, activity in positive training samples must be asgbssagh some assump-
tion of statistical over-representation. By being able to directly compatiévy@osxamples against
negative ones, we attempt to remove the need for such assumptions.

Second, to efficiently search for approximate patterns, we make useabfy@ensitive hashing.
LSH has been proposed as a randomized approximation algorithm to solweahest neighbor
problem. We employ an iterative LSH method that is able to efficiently find gro@ipsatching
subsequences for subsequent analysis as candidate patterns.

Third, we explore the idea of clustering together subsequences, shehaimber of candidate
patterns can be reduced. This abstraction is intended to decreaseuhdamedy associated with
evaluating a large number of approximate patterns with significant overlagudihg this redun-
dancy, while still spanning the search space, provides an improvemsfitiarey and also allows
for more clarity in interpreting the results of the search process.

Finally, we make use of hon-parametric statistical methods that have bagnetkto identify
patterns with different distributions in both positive and negative examp@lasextension of this
work is the use of sequential methods, which only use as much of the traiaiags is needed to
make a decision about a candidate pattern.

We evaluated the use of our pattern discovery algorithm on data fromediffecal-world ap-
plications. On nucleotide sequences from the Drosophila genome, ouranesiscable to discover
approximate binding sites that were preserved upstream of genes. A diesildr was seen for
ChlP-on-chip data from the yeast genome. For cardiovascular datagatients admitted with
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acute coronary syndromes, our pattern discovery approach iderdfffgdximately conserved se-
guences of morphology changes that were predictive of future deatkest population. Our data
showed that the use of LSH, clustering, and sequential statistics improvedrthing time of the
search algorithm by an order of magnitude without any noticeable effeetcouracy. These re-
sults suggest that our methods may allow for an efficient unsupervigedaagh to learn interesting
dissimilarities between positive and negative examples, which may haveteohaicole.
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