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Abstract

In this paper, we present an automated approach to discover patterns that can distinguish between
sequences belonging to different labeled groups. Our method searches for approximately conserved
motifs that occur with varying statistical properties in positive and negative training examples. We
propose a two-step process to discover such patterns. Usinglocality sensitive hashing (LSH), we
first estimate the frequency of all subsequences and their approximate matches within a given Ham-
ming radius in labeled examples. The discriminative ability of each pattern is then assessed from
the estimated frequencies by concordance and rank sum testing. The use of LSH to identify ap-
proximate matches for each candidate pattern helps reduce the runtime of our method. Space
requirements are reduced by decomposing the search probleminto an iterative method that uses a
single LSH table in memory. We propose two further optimizations to the search for discriminative
patterns. Clustering with redundancy based on a 2-approximate solution of thek-center problem
decreases the number of overlapping approximate groups while providing exhaustive coverage of
the search space. Sequential statistical methods allow thesearch process to use data from only as
many training examples as are needed to assess significance.We evaluated our algorithm on data
sets from different applications to discover sequential patterns for classification. On nucleotide se-
quences from the Drosophila genome compared with random background sequences, our method
was able to discover approximate binding sites that were preserved upstream of genes. We ob-
served a similar result in experiments on ChIP-on-chip data. For cardiovascular data from patients
admitted with acute coronary syndromes, our pattern discovery approach identified approximately
conserved sequences of morphology variations that were predictive of future death in a test pop-
ulation. Our data showed that the use of LSH, clustering, andsequential statistics improved the
running time of the search algorithm by an order of magnitudewithout any noticeable effect on
accuracy. These results suggest that our methods may allow for an unsupervised approach to ef-
ficiently learn interesting dissimilarities between positive and negative examples that may have a
functional role.
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1. Introduction

Pattern discovery has been studied extensively in the context of data miningand knowledge discov-
ery (Han and Kamber, 2005) and causal inference in statistics (Pearl, 2000). The search for patterns
is typically guided by classification. The focus is on discovering activity thatcan distinguish mem-
bers of a family from non-members (Duda et al., 2000) by identifying activitythat is unlikely to
occur purely by chance and may have a functional role (Syed et al., 2007).

Pattern discovery has been applied to data from a variety of applications, for example, world
wide web transactions (Mobasher et al., 1996), marketing information (Shaw et al., 2001), and
medical signals (Li et al., 2005). More recently, there has been an increased interest in applying
techniques for discovering patterns to sequences corresponding to genomic data (Wang et al., 1999).
Of particular importance in computational biology is the problem of discoveringsubsequences, that
is, motifs, which regulate important biological processes (Kellis et al., 2004). Pattern discovery has
been proposed in this context as a machine learning problem (Brazma et al.,1998):

Given two sets of sequencesS+ andS− drawn randomly from familiesF+ andF− respectively
such thatF+∩F− = ⊘, find the patternW of lengthL that has high likelihood inF+ but not in
F−.

This formulation is sufficiently general to apply to a wide variety of applicationswhere sequen-
tial data exists. Furthermore, an extensive literature on symbolization (Daw et al., 2003) allows
for a large set of time-series signals to be abstracted into sequential data for analysis. We make the
notion of a pattern more explicit by refining the goal of pattern discovery described above as follows:

Given two sets of sequencesS+ andS− drawn randomly from familiesF+ andF− respectively
such thatF+ ∩F− = ⊘, find the subsequenceW of lengthL that occurs with a Hamming dis-
tance of at mostd with high likelihood inF+ but not inF−.

In this paper, we propose a method to efficiently carry out the search forsuch approximate
patterns. A variety of techniques have been proposed to address this problem statement (Lawrence
et al., 1993; Bailey and Elkan, 1994; Grundy et al., 1997; Tavazoie et al., 1999; Liu et al., 2001;
Pavesi et al., 2001; Sinha and Tompa, 2003). The common strategy adopted by these methods is
to approach the problem of pattern discovery by finding activity that is statistically unlikely but
occurs consistently in positive examples. Negative examples are primarily used for evaluation. This
process means that discriminative patterns in negatively labeled sequences are not explored for
classification. Other algorithms for pattern discovery (Delcher et al., 1999; Batzoglou et al., 2000)
enumerate all exact patterns across both positive and negative examplesto identify sequences that
can discriminate between these two cases, but become computationally intractable when allowing
subsequences to have an approximate form.

We describe a locality sensitive hashing (LSH) based algorithm to efficientlyestimate the fre-
quencies of all approximately conserved subsequences with a certain Hamming radius in both pos-
itive and negative examples. The search process attempts to identify patterns that allow maximum
discrimination between the two groups. In this way, our method unifies the broad areas of existing
work in sequential pattern detection for classification by proposing a way todiscover patterns that
are both approximate and derived using the additional information available innegative instances.
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LSH forms a key component of our method. The use of LSH has been proposed earlier in
the context of pattern discovery to identify interesting activity in positive examples (Buhler, 2001;
Buhler and Tompa, 2002). We supplement this work by allowing for information from negative ex-
amples to be factored into the search and by proposing different optimizations to the search process.
In particular, we expand the use of LSH in pattern discovery from indexing to fast counting and
approximate clustering. While LSH provides runtime efficiency to the search process, it imposes
significant space requirements, and we describe an iterative method that uses a single LSH table in
memory to address this issue. We also explore the idea of using clustering as part of pattern discov-
ery to reduce approximate subsequences with significantly overlapping Hamming radii to a small
number. This aspect of our work resembles efforts for web clustering (Haveliwala et al., 2000).
We explore similar ideas within the context of approximate pattern discovery. This decreases the
number of motifs to be evaluated while still providing a fairly exhaustive coverage of the search
space. We describe a clustering method based on a 2-approximate solution of the k-center problem
to achieve this goal.

In addition to LSH and clustering, we also draw upon sequential statistical methods to make the
search for interesting patterns more efficient. The process of identifyingpatterns with discriminative
ability makes use of concordance and rank sum testing. In many cases, thegoodness of approximate
patterns can be assessed without using data from all training sequences. We propose a further
optimization to address these cases. The runtime and space requirements of the pattern discovery
process can be reduced by using sequential statistical methods that allow the search process for
patterns to terminate after using data from only as many training examples as areneeded to assess
significance.

We address a similar goal to earlier work on using hypergeometric significance testing to dis-
cover patterns that are enriched in a positive set relative to a negative set (Barash et al., 2001). The
focus of this work is to generate seeds of short lengths that can be expanded using an expectation-
maximization (EM)-like process to produce a position specific scoring matrix ofthe desired length.
However, in contrast to our work, this method is based on the assumption thata pattern occurs at
most once in each sequence. This leads it to disregard multiple copies of a match within the same
sequence. Moreover, the use of a testing function based on hypergeometric analysis may affect the
accuracy of this method (Leung and Chin, 2006).

Our algorithm to find approximate discriminative patterns is also related to previous work on the
use of profile hidden Markov models (Krogh, 1994; Jaakkola et al., 1999) to optimize recognition
of positively and negatively labeled sequences. This work focuses onlearning the parameters of a
hidden Markov model that can represent approximations of subsequences. Generally, this approach
requires large amounts of data or sophisticated priors to train the hidden Markov model. Computing
forward and backward probabilities from the Baum-Welch algorithm is also very computationally
intensive. Subsequent work in this area focuses on mismatch tree-basedkernels (Leslie et al., 2003)
for use in a support vector machine (SVM) classifier. This work focuses on efficiently calculating a
kernel based on the mismatch tree data structure (Eskin and Pevzner, 2002), which quantifies how
different two sequences are based on the approximate occurrence ofthe fixedL-length subsequences
within them. The mismatch kernel is used to train an SVM and assign labels to unknown query
sequences.

Our algorithm supplements this work by measuring how frequently each subsequence occurs in
an approximate form in the data. In contrast to the mismatch kernel, which focuses on quantifying
the difference between two sequences and does not report the frequency of individual approximate
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Figure 1: Overview of the pattern discovery process.

subsequences in the data, our algorithm focuses on identifying the specific approximate patterns
with discriminative value. This approach can be integrated more easily with the use of sequential
statistics, that is, since the frequencies of each approximate pattern are retained during analysis, this
information can be used to determine if patterns are good or bad discriminatorswithout analyzing
all the available data.

We evaluated our algorithm on data sets from different applications to discover sequential pat-
terns for classification. On nucleotide sequences from the Drosophila genome, our method was able
to discover binding sites for genes that are preserved across the genome and do not occur in random
background sequences. On symbolized electrocardiographic time-series from patients with acute
coronary syndromes, our pattern discovery approach identified approximately conserved sequences
of morphology variations that were predictive of future death in a test population. These results sug-
gest that our methods may allow for an unsupervised approach to learn interesting dissimilarities
between positive and negative examples that may have a functional role.

The rest of this paper is organized as follows: Section 2 gives an overview of our algorithm. Sec-
tion 3 describes a locality sensitive hashing scheme to find approximate matchesto all subsequences
in the data set. Section 4 proposes the use of clustering to reduce the numberof approximate patterns
analyzed during pattern discovery. Section 5 discusses the statistical approaches used in assessing
the goodness of patterns. Section 6 details the evaluation methodology of ourpattern discovery
algorithm on data from different real-world applications. Section 7 reports the results of this study.
Section 8 concludes with a discussion.

2. Overview

The process of discovering discriminative patterns of a specified lengthL from positive and negative
sequences is carried out in two stages: frequency estimation and pattern ranking. Figure 1 presents
an overview of this approach.

2.1 Frequency Estimation

Given a set of positive examplesS+ = {S+
x |x = 1, . . . ,N+} and a set of negative examplesS− =

{S−y |y = 1, . . . ,N−} the frequency estimation step measures the frequency of every unique subse-
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quenceWi for i = 1, . . . ,M in sequences belonging toS+ andS−. The resulting frequency forWi in
positive and negative examples is denoted as:

f +
i = { f +

i,z|z∈ S+},
f−i = { f−i,z|z∈ S−}

where f +
i,z and f−i,z are the frequencies with whichWi appears in sequenceszdrawn fromS+ andS−,

and f +
i and f−i are vectors measuring the frequency ofWi in all positive and negative sequences.

To allow for approximate patterns, unique subsequences are then matchedto all other subse-
quences at a Hamming distance of at mostd from Wi . Denoting this group of subsequences asDWi ,
the resulting frequency for the subsequenceWi and its approximate matches is defined as:

g+
i = ∑

j∈DWi

f +
j ,

g−i = ∑
j∈DWi

f−j

whereg+
i andg−i are vectors obtained by summing up the vectorsf +

i and f−i for all subsequences
within a given Hamming radiusd of Wi .

In Section 3, we describe an LSH-based solution that allows for efficientdiscovery of the subse-
quencesDWi matchingWi . We also present a clustering approach in Section 4 to reduce overlapping
approximate patterns for which frequencies are estimated to a smaller number with less redundancy
for subsequent analysis.

2.2 Pattern Ranking

The goal of the search process is to identify approximately matching subsequences that can discrim-
inate between positive and negative training examples. The pattern rankingstage therefore scores
each candidate approximate pattern according to its discriminative ability. We use two measures to
assess the goodness of patterns.

The first approach to score patterns is to use rank sum testing. This technique is a non-parametric
approach for assessing whether two samples of observations come fromthe same distribution. Pat-
terns are ordered based on the significance of separation (as measured by the p-value) obtained by
rank sum testing. A second scoring criterion used by our work is the C-statistic, which corresponds
to the area under the receiver operating characteristic (ROC) curve. Details of these techniques are
provided in Section 5. We further describe how sequential methods can beused to reduce the search
process to only process as many training examples as are needed to determine if a candidate pattern
has high or low discriminative ability.

3. Locality Sensitive Hashing

In this section, we describe the use of locality sensitive hashing in our algorithm.

3.1 Finding Approximate Matches for a Subsequence

Locality sensitive hashing (Indyk and Motwani, 1998) has been proposed as a randomized approx-
imation algorithm to solve the nearest neighbor problem. Given a set of subsequences, the goal of
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LSH is to pre-process the data so that future queries searching for closest points under somelp norm
can be answered efficiently. A brief review of LSH is presented here.

Given two subsequencesSx andSy of lengthL, we describe them as being similar if they have a
Hamming distance of at mostd. To detect similarity, we chooseK indicesi1, . . . , iK at random with
replacement from the set{1, . . . ,L}. The locality sensitive hash functionLSH(S) is then defined as:

LSH(S) =< S[i1], . . . ,S[ik] >

where< .. . > corresponds to the concatenation operator. Under this scheme,Sx andSy are declared
to be similar if:

LSH(Sx) = LSH(Sy). (1)

The equality in Equation 1 corresponds to an exact match. However, sincethe indices used by
the locality sensitive hash functionLSH(S) may not span the entire subsequencesSx andSy, an exact
match in Equation 1 may be obtained ifSx andSy match approximately.

Practically, LSH is implemented by creating a hash table using theLSH(S) values for all subse-
quences as the keys. Searching for the approximate neighbors of a query subsequence corresponds
to a two-step process. The locality sensitive hash function is first applied tothe query. Follow-
ing this, the bucket to which the query is mapped is searched for all originalsubsequences with a
Hamming distance of at mostd.

Two subsequences with a Hamming distance ofd or less may not match for a random choice of
K indices if one of theK indices chosen corresponds to a position in whichSx andSy differ. The
probability of such a miss is bounded by (Indyk and Motwani, 1998):

Pr[LSH(Sx) 6= LSH(Sy)] ≤ [1− (1− d
L

)K ].

By repeating the process of choosingK indicesT times this probability can be reduced further
to:

Pr[LSH(Sx) 6= LSH(Sy)] ≤ [1− (1− d
L

)K ]T . (2)

Effectively, Equation 2 corresponds to constructing a data structure comprisingT hash tables
using different locality sensitive hash functionsLSH1(S), . . . ,LSHT(S). Approximate neighbors for
a query are detected by searching for matches in each of these hash tables as described earlier.

The intuition underlying LSH is that the problem of searching through all possible subsequences
in the data set for a match can be reduced to the more feasible problem of first rapidly identifying a
small set of potential matches with a bounded error, and then searching through this smaller set to
remove false positives. The lower the desired error bound for false negatives affecting correctness
(i.e., by choosingK andT), the higher the corresponding false positive rate affecting the runtime
of the algorithm. The choice between these two parameters depends on the application and the
underlying data set.

3.2 Finding Approximate Matches Between All Subsequences

LSH provides an efficient mechanism to find the nearest neighbors of a given subsequence. To find
the nearest neighbors for allM subsequences in the data set, each member of the set can be passed
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through the entire LSH data structure comprisingT hash tables for matches. Unfortunately, this
process is both computationally and memory intensive. In what follows, we describe a strategy to
reduce the space requirements of LSH-based search for all approximate matches between subse-
quences. Section 4 further addresses runtime issues by proposing a clustering amendment to the
search process.

Different approaches have been proposed recently to reduce the space requirements of LSH. In
particular, the use of multi-probe LSH (Lv et al., 2007) has been shown to substantially reduce the
memory requirements for traditional LSH by searching each LSH hash table (i.e., corresponding to
a random selection ofK indices) more thoroughly for misses. This additional work translates into
fewer LSH hash tables being needed to bound the given error rate. As aresult, the space of the LSH
data structure decreases.

In our work, the memory requirements of LSH are reduced by organizing the approximate
matching process asT iterations. Each iteration makes use of a single locality sensitive hash func-
tion and maintains only a single hash table in memory at any time. To preserve state across itera-
tions, the search process maintains a list of matching pairs found during each loop after removing
false positives. The subsequencesDWi matchingWi are found as:

DWi =
T

[

t=1

{Wj |LSHt(Wj) = LSHt(Wi)}.

4. Clustering Subsequences

The runtime of the pattern discovery process as described so far is dominated by the approximate
matching of all subsequences. Every subsequence is first used to create the LSH data structure, and
then passed through the LSH data structure to find matches with a Hamming distance of at most
d. This process is associated with considerable redundancy, as matches are sought individually for
subsequences that are similar to each other. The overlap between approximate patterns increases
the computational needs of the pattern discovery process and also makes itmore challenging to
interpret the results as good patterns may appear many times in the output.

To address this issue, we reduce patterns to a much smaller group that still collectively spans
the search space. This is done by making use of a clustering method based on a 2-approximate
solution to thek-center problem. The focus of this clustering is to group together the original
subsequences falling into the same hash bucket during the first LSH iteration. Each of the clusters
obtained at the end of this process corresponds to an approximate patternthat is retained. During
subsequent iterations, while all subsequences are still used to construct the LSH tables, only the
cluster centroids are passed through the LSH data structure. This reduces the runtime of the search
by reducing the number of times subsequences have to be passed throughthe LSH tables to find true
and false positives. It also reduces the memory requirements of the search by reducing the number
of subsequences for which we need to maintain state about approximate matches.

The traditionalk-center problem can be formally posed as follows. Given a complete graph
G = (V,E) with edge weightsωe ≥ 0, e∈ E andω(v,v) = 0, v∈V, thek-center problem is to find
a subsetZ ∈V of size at mostk such that the following quantity is minimized:

W(Z) = max
i∈V

min
j∈Z

ω(i, j).. (3)
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Thek-center problem is NP-hard, but a 2-approximate solution has been proposed (Hochbaum
and Shmoys, 1985) for the case where the triangular inequality holds:

ω(i, j) +ω( j,k) ≥ ω(i,k).

The Hamming distance metric obeys the triangular inequality. Under this condition,the pro-
cess of clustering can be decomposed into two stages. During the first LSHiteration, we identify
subsequences that serve as cluster seeds using the 2-approximate solution to thek-center problem.
Subsequent LSH iterations are used to grow the clusters till the probability that any subsequence
within a Hamming distance at mostd of the cluster centroid is missed becomes small. This ap-
proach can be considered as being identical to choosing a set of subsequences during the first LSH
iteration, and finding their approximate matches by multiple LSH iterations.

More formally, during the first LSH iteration, for each bucketbi in the hash table fori = 1, . . . ,B,
we solve thek-center problem using the 2-approximate method (Hochbaum and Shmoys, 1985) with
a Hamming distance metric. The number of subsequences forming centerski for the i-th hash table
bucket is determined alongside the specific centroid subsequences from:

ki = min{k|W(zi(k)) ≤ d} (4)

whereW(Z) is defined as in Equation 3 andzi(k) denotes the subsequence centers chosen for a
particular choice ofk in Equation 4, that is:

ki = min{k|max
j∈bi

min
zi(k)

ω( j,zi(k)) ≤ d}.

The final set of subsequences chosen as centroids at the end of the first LSH iteration then
corresponds to:

Φ =
B

[

i=1

zi(ki).

The LSH iterations that follow find approximate matches to the subsequences inΦ. It is im-
portant to note that while clustering reduces a large number of overlappingapproximate patterns
to a much smaller group, the clusters formed during this process may still overlap. This overlap
corresponds to missed approximate matches that do not hash to a single bucket during the first LSH
iteration. Techniques to merge clusters can be used at the end of the first LSH iteration to reduce
overlap. In our work, we tolerate small amounts of overlap between clusters analogous to the use
of sliding windows to more thoroughly span the search space. Figure 2 illustrates the clustering
process.

5. Pattern Ranking

Given the frequenciesg+
i and g−i of an approximate pattern corresponding to all subsequences

within a Hamming distanced of the subsequenceWi , a score can be assigned to the pattern by using
concordance statistics and rank sum testing.
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Figure 2: In the absence of clustering there is significant redundancy between the Hamming radii
of approximate patterns. Partitioning the data into disjoint clusters can help address this
issue. In our work, we reduce the original approximate patterns into a smallgroup with
some overlap to span the search space.

5.1 Concordance Statistic

The concordance statistic (C-statistic) (Hanley and McNeil, 1982) measures the discriminative abil-
ity of a feature to classify binary endpoints. The C-statistic corresponds tothe area under the receiver
operating characteristic (ROC) curve, which describes the inherent trade-off between sensitivity and
specificity. As opposed to measuring the performance of a particular classifier, the C-statistic di-
rectly measures the goodness of a feature (in this case the frequency withwhich an approximate
pattern occurs) by evaluating its average sensitivity over all possible specificities.

The C-statistic ranges from 0-1. A pattern that is randomly associated with thelabels would
have a C-statistic of 0.5. Conversely, good discriminators would correspond to either low or high
C-statistic values.

5.2 Rank Sum Testing

An alternate approach to assess the goodness of patterns is to make use ofrank sum testing (Wilcoxon,
1945; Lehmann, 1975). This corresponds to a non-parametric method to test whether a pattern oc-
curs with statistically different frequencies in both positive and negative examples.

Given the frequenciesg+
i andg−i of an approximate pattern in both positive and negative exam-

ples, the null and alternate hypotheses correspond to:

H0 : µg+
i

= µg−i
,

H1 : µg+
i
6= µg−i

.

Rank sum testing calculates the statisticU whose distribution underH0 is known. This is done
by arranging theg+

i andg−i into a single ranked series. The ranks for the observations from theg+
i

series are added up. Denoting this value asR+ and the number of positive examples byN+, the
statisticU is given by:
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U = R+− N+(N+ +1)

2
.

The obtained value ofU is compared to the known distribution underH0 and a probability
for this observation corresponding to the null hypothesis is obtained (i.e., the p-value). For large
samples,U is approximately normally distributed and its standardized value can be checked in
tables of the normal distribution (Gibbons, 1985; Hollander and Wolfe, 1999). The lower the p-
value obtained through rank sum testing, the more probable it is thatg+

i andg−i have distributions
with different means, that is, that the approximate pattern is distributed differently in positive and
negative examples.

5.3 Sequential Statistical Tests

The runtime and space requirements of the pattern discovery process canbe reduced by analyzing
only a subset of the training data. For example, it may be possible to recognize patterns with high
discriminative ability without the need to analyze all positive and negative examples.

Our pattern discovery algorithm starts out by using a small subset of the initial training data
for batch analysis. This helps identify candidate approximate patterns that occur in the data set and
collectively span the search space. The remaining training examples are used for scoring purposes
only. These examples are added in an online manner and during each iteration, the occurrence of
outstanding candidate patterns in positive and negative examples is updated. Patterns may then be
marked as being good or bad (and consequently removed from further analysis) or studied further
to resolve uncertainty. The number of candidate patterns is therefore monotonically non-increasing
with iteration number. As a result, the analysis of training examples becomes faster as more data is
added, since fewer patterns need to be scored.

A sequential formulation for rank sum testing has been proposed (Phatarfod and Sudbury, 1988)
that adds positive and negative examples in pairs. The frequencies of an approximate pattern in
positive and negative examples at the end of iterationn can be denoted asg+

i ( j) andg−i ( j) where
j = 1, . . . ,n. The corresponding statistic for rank sum testing is:

Un =
n

∑
x=1

n

∑
y=1

I(g+
i (x) > g−i (y)). (5)

The operatorI(.) is equal to one when the inequality holds and zero otherwise. Using this
statistic, the decision at the end of then-th iteration corresponds to acceptingH0 if:

Un

n
<

n
2
−λ log(

1−β
α

) (6)

while H1 is accepted if:

Un

n
>

n
2
−λ log(

β
1−α

)

whereλ is defined as Phatarfod and Sudbury (1988):

λ =
1− δ2

2 − δ3

3
√

3
− δ4

48

2
√

3δ− δ2

2

. (7)
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In Equations 6 to 7,α andβ correspond to desired false positive and false negative rates for
the sequential rank sum testing process, whileδ is a user-specified parameter that reflects the pref-
erences of the user regarding how fine or coarse a difference the distributions are allowed to have
under the alternate hypothesis. If both inequalities are not met, the processof adding data continues
until there are no more training examples to add. In this case, all outstanding candidate patterns are
rejected.

This formulation of sequential rank sum testing adds data in pairs of positiveand negative ex-
amples. In cases where there is a skew in the training examples (without loss of generalization
we assume a much larger number of negative examples than positive ones),we use a different for-
mulation of sequential testing (Reynolds, 1975). Denoting the mean frequency in positive training
samples as:

µ+
i =

N+

∑
x=1

g+
i (x).. (8)

The alternate hypothesis can be redefined as the case wherehi = g−i − µ+
i is asymmetrically

distributed about the origin. This can be identified using the statistic:

Un =
n

∑
x=1

1
x+1

sgn(hi(x))Rxx (9)

whereRxy is defined as the rank of|hi(x)| in the set{|hi(1)|, . . . , |hi(y)|} with x≤ y and sgn(|hi(x)|)
is 1 if hi(x)≥ 0 and -1 otherwise. The test procedure using the statistic continues taking observations
as long asUn ∈ (−δ,δ) whereδ is a user-specified parameter.

Traditional formulations of sequential significance testing remove good patterns from analysis
when the test statistic is first found to lie above or below a given threshold. Patterns with potentially
low discriminative ability are retained for further analysis and are discarded if they do not meet
any of the admission criteria during any iteration of the search process. Since there may be a large
number of such patterns with low discriminative value, we make use of a modifiedapproach to
reject poor hypotheses while retaining patterns that may have value in classification. This strategy
improves efficiency, while also ensuring that good patterns are ranked using the available training
data. Given the typical goal of pattern discovery to return the best patterns found during the search
process, this technique naturally addresses the problem statement.

Given the test statistics in Equations 5 and 9, we remove all patterns that havea test statistic:

Un < λUmax

whereUmax is the maximum test statistic for any pattern andλ is a user-specific fraction (e.g., 0.2).

5.4 Multiple Hypothesis Correction

While assessing a large number of approximate patterns,M, the statistical significance required
for goodness must be adjusted for Type I (i.e., false positive) errors.If we declare a pattern to be
significant for some probability of the null hypothesis less thanθ, then the overall false positive rate
for the experiment assuming independence of patterns is given by:

FP = 1− (1−θ)M
.
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If we do not assume that the patterns are independent, the false positive rate can be bounded by:

FP≤ θM.

To account for this condition, a more restrictive level of significance mustbe set consistent
with the number of unique patterns being evaluated (in our case, the clustersobtained earlier). If
c clusters are assessed for goodness, the Bonferroni correction (Bland and Altman, 1995) suggests
that the level of significance be set at:

θ′ =
θ
c
.

This addresses the issue of increasing false positives caused by the evaluation of a large number
of clusters by correspondingly lowering the p-value required to accepta pattern.

6. Evaluation

All experiments were carried out on a 3.2 GHz P4 with 2 GB of RAM running Linux Fedora Core4.
The algorithms to be evaluated were implemented in Java.

6.1 Regulatory Motifs in Drosophila Genome

We evaluated our pattern discovery algorithm on data from the Assessmentof Computational Mo-
tif Discovery Tools project (Li and Tompa, 2006; Tompa et al., 2005). The focus of this project
was to compare 13 motif discovery tools on nucleotide sequences from the human, mouse, fly and
yeast genomes to see if they could successfully identify known regulatoryelements such as binding
sites for genes. These tools differed from each other mainly in their definition of a motif, and in
the method used to search for statistically overrepresented motifs. Authors withspecific expertise
were chosen to test each tool and avoid the disadvantage of being run withan uninformed set of pa-
rameters. The expert predictions were then compared with known binding sites in the TRANSFAC
database (Wingender et al., 1996) using various statistics to assess the correctness of the predictions.

In our work, we focused on nucleotide sequences from theDrosophila melanogastergenome
comprising 43 kb base pairs (Li and Tompa, 2006; Tompa et al., 2005). These sequences were
divided into 8 data sets, each corresponding to a different binding site. The Drosophila genome
was the smallest (in terms of the available data) of the four genomes used in the project, allowing
us to compare our method with more computationally intensive algorithms that do notuse LSH or
clustering. To use our method, we generated random negative sequences with the same background
frequencies and lengths as the positive examples, and supplemented both positive and negative
sequences with their reverse complements. Our method predicted binding sitesin the original data
corresponding to all subsequences in the groupDWi with maximum discriminative value. While
our algorithm has been designed to use additional information in negative examples when available,
this approach presents an example of how our method can be used even in cases where only positive
training data is present and negative examples are generated using a simpleapproach.

The pattern discovery process attempted to find approximate subsequences of lengths 8, 12 and
16. We investigated Hamming radii of 1-3 for patterns of length 8, 2-4 for those of length 12 and 3-5
for length 16. Parameters were chosen using the inequality in Equation 2 so that the LSH probability
of false negatives in each case was below 0.005. For each of these cases, we ran our algorithm three
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times and consistent with the other motif discovery algorithms evaluated, we chose only the best
pattern discovered (where best corresponded to lowest rank sum p-value or no result if a pattern
with a p-value less than 0.05 was not found).

We compared our method to the 13 motif discovery tools evaluated on the same dataset using
thenPCandnCCsummary statistics (Li and Tompa, 2006; Tompa et al., 2005). Given the number
of nucleotide positions in both known sites and predicted sites (nTP), the number of nucleotide
positions in neither known sites nor predicted sites (nTN), the number of nucleotide positions not in
known sites but in predicted sites (nFP) and the number of nucleotide positions in known sites but
not in predicted sites (nFN), the nucleotide level performance coefficient (nPC) (Pevzner and Sze,
2000) was defined as:

nPC=
nTP

nTP+nFN+nFP
.

The nucleotide level correlation coefficient (nCC) (Burset and Guigo, 1996) was defined as:

nCC=
nTP.nTN−nFN.nFP

√

(nTP+nFN)(nTN+nFP)(nTP+nFP)(nTN+nFN)
.

In addition to comparing our method with results from the 13 motif discovery algorithms eval-
uated in the Assessment of Computational Motif Discovery Tools project, we also explored the
runtime and accuracy of two variations of our algorithm. These variations were meant to assess the
contribution of clustering and LSH-based approximate matching to the performance of our method.
The first variation we examined did not make use of the clustering process described in Section 4 to
reduce overlapping approximate patterns to a smaller group. The second variation further avoided
the use of LSH to match subsequences and was based instead on an exhaustive search.

While comparing the three approaches, we use the following notation:LSHCSfor our original
algorithm using clustering and sequential statistics,NoClustfor the variation that did not use clus-
tering, andExhSearchfor the exhaustive search algorithm that further avoided the use of LSHto
match subsequences.

For some binding site data setsNoClustandExhSearchdid not terminate even after very long
processing times. We terminated algorithms if they did not produce results within 24 hours of CPU
time. These cases are annotated where included.

6.2 Regulatory Motifs in ChIP-on-chip Yeast Data

We evaluated the ability of our method to discover yeast transcription factor binding motifs in ChIP-
on-chip data (Harbison et al., 2004). The “gold standard” motifs for this data set were generated by
applying a suite of six motif-finding algorithms to intergenic regions fromSaccharomyces cerevisiae
and clustering the results to arrive at a consensus motif for each transcription factor. When no motif
was found computationally for the intergenic regions, a literature-based consensus motif was used.

In our experiments, we focused on the 21 transcription factors in the data set for which the six
motif-finding algorithms in Harbison et al. (2004) failed to find a significant motifand the reported
motif had to be based on a consensus obtained from the literature. For all tests, we used the output
from theLSHCSalgorithm with the lowest rank sum p-value (or no result if a motif with p-value
less than 0.05 was not found), with the motif width chosen to match the width of the literature
consensus motif. This approach was analogous to earlier work on ChIP-on-chip data to evaluate
motif discovery methods (Siddharthan et al., 2005).
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For each experiment, we defined positive examples as the set of probe sequences found to bind
the transcription factor and set negative examples to be randomly selected non-binding probe se-
quences. The positive and negative sets contained the same number of sequences. This approach
was also chosen to be consistent with earlier studies to evaluate motif discovery tools (Redhead and
Bailey, 2007).

6.3 Predictive Morphology Variations in Electrocardiogram Signals

We evaluated our method on 24-hour electrocardiographic (ECG) signalsfrom patients admitted
with non-ST-elevation acute coronary syndromes (NSTEACS) to discover patterns of morphology
changes associated with future cardiovascular death. Earlier studies suggest that increased beat-
to-beat variations in ECG morphology may be associated with instability in the conduction system
of the heart and could help identify high risk patients (Syed et al., 2008). We applied our pattern
discovery algorithm to discover specific sequences of beat-to-beat changes that had predictive value.

Given a 24-hour ECG signal, we first converted the data recorded during the course of hospi-
talization into a time-series of morphology changes between pairs of consecutive heart beats (Syed
et al., 2008). Morphology changes between beats were measured usinga dynamic time-warping
algorithm (Rabiner et al., 1978) that calculates the time-aligned energy difference between beats.
The morphology change time-series was then converted into a sequence using symbolic aggregate
approximation (SAX) (Lin et al., 2003) with an alphabet size of 10. In this manner, multiple ECG
signals were transformed into sequences that could be analyzed by our method. On average, each
sequence corresponding to 24 hours of ECG was almost 100,000 symbolslong.

On a training set of 765 patients, where 15 patients died over a 90 day period following NSTEACS
(i.e., 15 positive examples and 750 negative examples), we used our pattern discovery algorithm
to learn sequences of morphology changes in the ECG signal that were predictive of death. We
searched for patterns of length 8 with a Hamming distance of at most 2. Parameters were chosen
using the inequality in Equation 2 so that the LSH probability of false negativeswas less than 0.01.
We selected patterns that showed a C-statistic greater than 0.7 and a rank sum test p-value of 0.05
corrected for multiple hypotheses using the Bonferroni correction. These were evaluated on a test
set of 250 patients with 10 deaths.

We also studied the runtime performance of our algorithm on this data set with and without the
use of sequential statistics to find significant patterns. Given the large number of negative examples
in the training data, we employed the sequential formulation in Equations 8 and 9 with λ = 0.2.
Consistent with the notation proposed in Section 6 we denote our original algorithm using sequential
statistics asLSHCSwhile the variation that avoids sequential statistics is denoted byNoSeqStats.

7. Results

The results of our experiments are as follow.

7.1 Regulatory Motifs in Drosophila Genome

Table 1 presents the results of the 13 different motif discovery algorithms evaluated by the Assess-
ment of Computational Motif Discovery Tools project. The results of using our method are given in
Table 2.
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Algorithm nPC nCC

AlignACE 0 -0.006
ANN-Spec 0.010 0.002
Consensus 0 -0.011
GLAM 0.002 -0.008
Improbizer 0.008 0.002
MEME 0.021 0.027
MEME3 0.016 0.013
MITRA 0 -0.008
Moti f Sampler 0.003 -0.006
Oligodyad-Analysis 0 -0.015
QuickScore 0 -0.016
SeSiMCMC 0.036 0.054
Weeder 0.009 0.011
YMF 0 -0.014

Table 1: Performance of 13 different motif discovery methods on the Drosophila genome
(nPC=performance coefficient,nCC=correlation coefficient) in the Assessment of Com-
putational Motif Discovery Tools project (Tompa et al., 2005).

Parameter nPC nCC

L = 8,d = 1 0.021 0.031
L = 8,d = 2 0.007 -0.009
L = 8,d = 3 0.013 -0.002
L = 12,d = 2 0.013 0.018
L = 12,d = 3 0.039 0.062
L = 12,d = 4 0.013 0.018
L = 16,d = 3 0 -0.011
L = 16,d = 4 0.032 0.055
L = 16,d = 5 0.056 0.093

Table 2: Performance of theLSHCSpattern discovery method on the Drosophila genome using
different input parameters (nPC=performance coefficient,nCC=correlation coefficient,
L=pattern length,d=maximum Hamming distance allowed in pattern).
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Our LSHCSalgorithm compared favorably with the other motif discovery algorithms evalu-
ated on the same data by experts. In particular, for two of the parameter settings evaluated (i.e.,
L = 12,d = 3 andL = 16,d = 5), our algorithm had both a higher performance coefficient and a
higher correlation coefficient than any of the other methods. TheL = 16,d = 4 case also had a
higher correlation coefficient than the motif discovery algorithms previously reported, although the
performance coefficient for this choice of parameters was exceeded by SeSiMCMC.

We note that these findings help only to validate the ability of our pattern discovery approach to
identify potentially interesting activity. Since these results hold on a specific genome, we caution
against interpreting the results as a more general comparison ofLSHCSwith nucleotide motif dis-
covery methods. In particular, we observe that the nucleotide motif discovery methods in Table 1
were tested blindly on a single pre-determined choice of parameters. It is possible that with different
choices of input parameters (i.e., similar to the evaluation ofLSHCSusing different values ofL and
d), these methods would have yielded significantly better results.

Tables 3 and 4 present the performance and correlation coefficients for the NoClustandExh-
Searchalgorithms. For both these variations, the algorithms did not terminate for the largest choice
of Hamming radiusd. Investigation revealed that the slow processing times in these cases were
associated with insufficient memory to store the neighborhoods for all approximate patterns (i.e.,
in the absence of clustering for both algorithms). For large choices of the maximum allowed Ham-
ming radius, the neighborhood for each pattern is more extensive and storing this information for
all overlapping patterns imposes significant space requirements. Conversely, by using clustering,
LSHCSis able to reduce the number of overlapping patterns and avoid references to disk.

We found some of the results in Tables 3 and 4 comparingLSHCSto NoClustandExhSearch
to be surprising. In contrast toLSHCS, the NoClustvariation explores all overlapping patterns
while ExhSearchuses an exhaustive search to find nearest neighbors (i.e., avoiding thesmall false
negative probability associated with LSH). Since both variations use strictly more data and explore
the outputs ofLSHCSas well as other alternatives, we expected the results to improve uniformly
betweenLSHCSandExhSearchfor all parameter selections. While this was generally the case, for
some parameter choices (e.g.,L = 16,d = 4) the best results were obtained byLSHCS. Examining
the outputs by all three algorithms revealed these inconsistencies to be the result of resolving ties
between patterns with identical rank sum p-values arbitrarily. While presenting the results in this
section, we explicitly note this limitation of the objective function (i.e., the rank sum p-value) used
for evaluation.

Ignoring parameter choices for whichNoClustand ExhSearchdid not terminate, the perfor-
mance of all three methods was similar as shown in Table 5. A comparison of the running time for
all three algorithms is also presented in Table 6. The running time increased significantly both as all
overlapping approximate patterns were studied, and when an exhaustivesearch was used to replace
LSH. The increase in runtime due to exhaustive search was considerablymore than the effect of
examining all overlapping approximate patterns.

7.2 Regulatory Motifs in ChIP-on-chip Yeast Data

The results of applying theLSHCSalgorithm on the ChIP-on-chip data set for the 21 transcription
factors for which the six motif-finding algorithms failed to find a significant motif are shown in
Table 7.
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Parameter nPC nCC

L = 8,d = 1 0.037 0.063
L = 8,d = 3† . . . . . .
L = 12,d = 2 0 -0.009
L = 12,d = 3 0.032 0.0499
L = 12,d = 4† . . . . . .
L = 16,d = 3 0 -0.011
L = 16,d = 4 0.020 0.029
L = 16,d = 5† . . . . . .

Table 3: Performance of theNoClust pattern discovery method on the Drosophila genome us-
ing different input parameters (nPC=performance coefficient,nCC=correlation coefficient,
L=pattern length,d=maximum Hamming distance allowed in pattern). † Cases where the
algorithm did not terminate in 24 hours.

Parameter nPC nCC

L = 8,d = 1 0.039 0.065
L = 8,d = 2 0.017 0.015
L = 8,d = 3† . . . . . .
L = 12,d = 2 0.006 0.005
L = 12,d = 3 0.025 0.036
L = 12,d = 4† . . . . . .
L = 16,d = 3 0 -0.011
L = 16,d = 4 0.009 0.008
L = 16,d = 5† . . . . . .

Table 4: Performance of theExhSearchpattern discovery method on the Drosophila genome us-
ing different input parameters (nPC=performance coefficient,nCC=correlation coefficient,
L=pattern length,d=maximum Hamming distance allowed in pattern). † Cases where the
algorithm did not terminate in 24 hours.

Parameter AveragenPC AveragenCC

LSHCS 0.019 0.024
NoClust 0.021 0.031
ExhSearch 0.016 0.020

Table 5: Comparison ofLSHCS, NoClustandExhSearchby summarizing results from parameter
selections where all three algorithms terminated within 24 hours (nPC=performance co-
efficient,nCC=correlation coefficient,L=pattern length,d=maximum Hamming distance
allowed in pattern).
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Parameter LSHCSTime NoClustTime ExhSearchTime

L = 8,d = 1 5:01 15:40 3:01:22
L = 8,d = 2 5:53 1:06:06 3:49:08
L = 8,d = 3† 4:13 . . . . . .
L = 12,d = 2 18:14 35:54 17:05:37
L = 12,d = 3 24:48 2:33:12 17:27:43
L = 12,d = 4† 27:30 . . . . . .
L = 16,d = 3 31:08 29:59 18:21:15
L = 16,d = 4 32:20 2:59:14 18:04:59
L = 16,d = 5† 24:15 . . . . . .

Table 6: Time taken forLSHCS, NoClust and ExhSearchpattern discovery methods on the
Drosophila genome using different input parameters. † Cases where one or more of the
algorithm did not terminate in 24 hours.

Transcription Factor Motif Found

ADR1 . . .
DAL80 Yes
GAL80 . . .
GCR1 . . .
GZF3 . . .
HAP2 . . .
HAP3 Yes
HAP5 . . .
MAC1 Yes
MET31 . . .
MET32 . . .
MOT3 Yes
MSN4 . . .
PUT3 . . .
RGT1 . . .
RLM1 . . .
ROX1 Yes
RTG3 . . .
SKO1 . . .
YAP6 Yes
YOX1 . . .

Table 7: Results ofLSHCSon the ChIP-on-chip data set for transcription factors (TF) where com-
mon motif-finding algorithms failed to find a significant motif.
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Pattern (Centroid) Rank Sum P-Value C-statistic

ABCCDFGJ 0.025 0.71
FFJJJJCC 0.004 0.70

Table 8: Statistical significance of approximate patterns found on a training set of 765 post-
NSTEACS patients (15 deaths over a 90 day follow-up period) when evaluated on a test
population of 250 patients (10 deaths).

In 6 of the 21 experiments conducted, the discriminative motif with the lowest p-value found
by theLSHCSalgorithm corresponded to the consensus motif in the literature, but was notfound
by any of the six motif-finding algorithms evaluated earlier.LSHCS, as well as the other six motif-
finding algorithms, failed to find the discriminative motif in the remaining 15 cases although motifs
are described in the literature.

7.3 Predictive Morphology Variations in Electrocardiogram Signals

Our pattern discovery method returned 2 approximate patterns that were assessed to have discrim-
inative value in the training set (i.e., a C-statistic of more than 0.7 and a p-value of less than 0.05
after accounting for the Bonferroni correction). Representing the symbols obtained using SAX by
the lettersA-J, whereA corresponds to the symbol class for the least beat-to-beat change in mor-
phology andJ denotes the symbol for the greatest change, the centroids for the approximate pattern
can be written as:

ABCCDFGJ

FFJJJJCC

The first of these patterns is equivalent to increasing time-aligned energychanges between suc-
cessive beats. This may suggest increased instability in the conduction system of the heart. The
second pattern corresponds to a run of instability followed by a return to baseline. This pattern can
be interpreted as a potential arrhythmia.

The results of testing both patterns on previously unseen data from 250 patients (with 10 deaths
over a 90 day follow-up period) are shown in Table 8. Both patterns found by our approximate
pattern discovery algorithm showed statistical significance in predicting death according to the C-
statistic and rank sum criteria.

A comparison of the running times for theLSHCSandNoSeqStatsalgorithms is presented in
Table 9. While the outputs produced by both algorithms were identical, the use of sequential statis-
tics helped ourLSHCSmethod decrease the runtime of the search process to almost half of what
we encountered for the variation not using the methods proposed in Section5.3. We also note that
the NoSeqStatsvariation used considerably more memory than theLSHCSapproach. This effect
was due toLSHCSpurging state for patterns that did not obey the inequality in Equation 9. In the
absence of sequential statistics,NoSeqStatshad to retain ranking information for all patterns till the
training data set was completely analyzed.
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Algorithm Time

LSHCS 5:08:24
NoSeqStats 9:43:09

Table 9: Time taken by theLSHCSandNoSeqStatspattern discovery algorithms on the cardiovas-
cular training data set.

8. Summary and Discussion

This paper presents an approach to efficiently learn patterns in labeled sequences that can be used
for classification. We define patterns as groups of approximately matching subsequences, that is, all
variations of a subsequence within a given Hamming radius. Our method represents a fully auto-
mated approach for unsupervised pattern discovery, where the goodness of patterns is assessed by
measuring differences in their frequency of occurrence in positive and negative training examples.

We designed our pattern discovery algorithm to make it both accurate and efficient in terms of
space and computation. We briefly review the central ideas of our work.

First, we include patterns from both positive and negative training sets in our search for discrim-
inative activity. In many applications, we can consider positive examples asbeing associated with
some physical phenomenon. Patterns that occur mainly in positive examples can be considered as
potentially regulatory activity that may cause the phenomenon being studied. Conversely, patterns
that occur mainly in negative examples (i.e., are absent in positive examples)can be considered
as potentially supressive activity. The absence of these suppressivepatterns in positive examples
may promote the observed phenomenon. We allow for the discovery of both types of activity. This
approach has a further advantage in that it reduces the need for priorknowledge. In the absence
of negative examples, activity in positive training samples must be assessedthrough some assump-
tion of statistical over-representation. By being able to directly compare positive examples against
negative ones, we attempt to remove the need for such assumptions.

Second, to efficiently search for approximate patterns, we make use of locality sensitive hashing.
LSH has been proposed as a randomized approximation algorithm to solve thenearest neighbor
problem. We employ an iterative LSH method that is able to efficiently find groupsof matching
subsequences for subsequent analysis as candidate patterns.

Third, we explore the idea of clustering together subsequences, so thatthe number of candidate
patterns can be reduced. This abstraction is intended to decrease the redundancy associated with
evaluating a large number of approximate patterns with significant overlap. Reducing this redun-
dancy, while still spanning the search space, provides an improvement in efficiency and also allows
for more clarity in interpreting the results of the search process.

Finally, we make use of non-parametric statistical methods that have been designed to identify
patterns with different distributions in both positive and negative examples.An extension of this
work is the use of sequential methods, which only use as much of the training data as is needed to
make a decision about a candidate pattern.

We evaluated the use of our pattern discovery algorithm on data from different real-world ap-
plications. On nucleotide sequences from the Drosophila genome, our method was able to discover
approximate binding sites that were preserved upstream of genes. A similarresult was seen for
ChIP-on-chip data from the yeast genome. For cardiovascular data from patients admitted with
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acute coronary syndromes, our pattern discovery approach identifiedapproximately conserved se-
quences of morphology changes that were predictive of future death ina test population. Our data
showed that the use of LSH, clustering, and sequential statistics improved the running time of the
search algorithm by an order of magnitude without any noticeable effect on accuracy. These re-
sults suggest that our methods may allow for an efficient unsupervised approach to learn interesting
dissimilarities between positive and negative examples, which may have a functional role.
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