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Abstract

In the machine learning community, the Bayesian scorirtgmeoin is widely used for model selec-
tion problems. One of the fundamental theoretical propsiistifying the usage of the Bayesian
scoring criterion is its consistency. In this paper we refirie property for the case of binomial
Bayesian network models. As a by-product of our derivativesestablish strong consistency and
obtain the law of iterated logarithm for the Bayesian sapgriterion.
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1. Introduction

Bayesian networks are graphical structures which characterizafptiskic relationships among
variables of interest and serve as a ground model for doing probabhitisgrence in large systems
of interdependent components. A basic element of a Bayesian netwodirscéed acyclic graph
(DAG) which is bound to an underlying joint probability distribution by the Marlkcondition. The
absence of certain arcs (edges) in a DAG encodes conditional indlepess in this distribution.
DAG’s not only provide a starting point for implementation of inference aachmeter learning
algorithms, but they also, due to their graphical nature, offer an intuitotane of the relationships
among the variables. It happens too often that researchers haveramigan sample from a prob-
ability distribution and face a problem of choosing the appropriate DAG kmtveelarge number
of competing structures. This, effectively, constitutes the model seleatadrigm in the space of
Bayesian networks. The methodology which is concerned with solvingtagklis called Bayesian
structure learning.

Suppose that the data consistsofi.d. random vector¥;,..., X, with eachX; having the un-
known probability distributior®. We define a probability spa&2with measurd®r for infinite i.i.d.
sequenceXy, Xo, ... having distributionP. There are many structures which can form a Bayesian
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network with the distributior® (see Section 2 for formal definitions and examples), however not all
of them are optimal for future analysis. Indeed, since the presenceatgedge) does not neces-
sarily guarantee direct dependency between corresponding varialdemplete DAG constitutes a
Bayesian network with any probability distribution, yet provides no infornmaéibout conditional
independences in P. It is natural to seek structures which not onlydddayesian network with P,
but also entail only conditional independences in this distribution. Theseda#e calledaithful to
P or elseperfect map®f P. Unfortunately, it turns out that not all probability distributions hame a
associated faithful structure. In this case it is desirable to identify a steuatitich satisfies certain
“optimality” properties with respect tB. Roughly speaking, we want to include only those edges
that are necessary for describiRg

A scoring criterionfor DAGs is a function that assigns a value to each DAG under consideratio
based on the data. Suppddes the set of all DAGs of a fixed size. Under the Bayesian approach
to structure learning, the DA& is chosen fronM such tham maximizes the posterior probability
given the observed dafx

 pmWPOMY)  PmY) fo, PDIM O, 1)p(Onlm, Y)dOn
PMIDW) = 20000 St PITIW) Jo PDIM, O ) PO, )00y

where O, denotes the set of parameters of the conditional distributions of eacle ‘gigdn its
parents” for all the nodes of the DA@®, Qn, denotes the domain of these parameters, (arm-
notes the system of parameter priors. The quam{y|m, ) is called themarginal likelihood
Bayesian scoring criterionr elseScoreof the graphm. We denote it ascor eg(D|m). Assuming

Y mem P(M[Y) = 1 for all m e M, the Bayesian scoring criterion provides a measure of posterior
certainty of the graplmunder the prior systenj.

It is quite interesting to see if the Bayesian scoring criterioroissistentthat is, as the size of
dataD approaches infinity, the criterion is maximized at the DAG which forms a Bayesiavork
with P and has smallest dimension. Based on the fundamental results of HaugB&8) and
Geiger et al. (2001), the consistency of Bayesian scoring criteriorbbas established for the
class of multinomial Bayesian networks. Chickering (2002) provides delk&ketch of the proof.
Further, for the same model class,Afadmits a faithful DAG representatiam, thenm has the
smallest dimension among all DAGs which form a Bayesian network Ri{eee, for example,
Neapolitan, 2004, Corollary 8.1) . Therefore, due to consistency ddéyesian scoring criterion,
we can conclude that P admits a faithful DAG representatian then, in the limit, the Bayesian
scoring criterion will be maximized ah. This last result is naturally expected: as more information
becomes available, a scoring criterion should recognize the properties wfiderlying distribution
P with increasing precision.

Although the consistency property provides insight into the limiting properfiésegposterior
distribution over the graph space, it is interesting to know at what ratef(aston of sample size)
the graph(s) with the smallest dimension become favored by the Bayesiamstaterion. In this
article we address this question for the case of binomial Bayesian netwal&lsndVe also show
that in addition to being consistent for these models, the Bayesian scoitergper is alsostrongly
consisten(see Definition 4). Our proofs are mostly self-contained, relying mainly elt-kmown
limit theorems of classical probability. At one point we require the input afigtéon (1988) and
Geiger et al. (2001) mentioned in the preceding paragraph (but notdéiatesults only deal with
consistency, not strong consistency).
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It may be possible to re-derive our results using the machinery of VCedgS&pnik, 1998)
or empirical process theory (e.g., van der Vaart and Wellner, 1986}ptour knowledge this has
not yet been done. However, one point of our paper is to show thakethdts are amenable to
fairly transparent and accessible proofs, and do not require thbeag of these well-developed
theoretical frameworks. That being said, we note that our method assbatése networks have
fixed finite size, and other approaches may be better suited to handling thigositun which the
network size gets large.

The rest of the paper is organized as follows. Background and notpipear in Section 2,
with some illustrative examples. Our results are presented in Section 3. Séat@riains some
discussion. Proofs appear in the Appendix.

2. Background

A directed graph is a paiV,E), whereV = {1,...,N} is a finite set whose elements are called
nodes (or vertices), and is a set of ordered pairs of distinct components/of Elements oft
are called edges (or arcs). (ifi,i2) € E we say that there is an edge framto i,. Given a set of
nodes{iy,iz,...,ik} wherek > 2 and(i,ir11) € E for 1 <r < k-1, we call a sequence of edges
((i1,i2),...,(ik-1,ik)) @ path fromi; to iy . A path from a node to itself is called a directed cycle.
Additionally, a directed graph is called a directed acyclic graph (DAG) if ittains no directed
cycles. Given a DAGn= (V,E), a nodd, is called a parent af; if there is an edge frony to ;.
We write Pdi) to denote the set of parents of a nad& nodei; is called a descendant @fif there

is a path fromiq to i, andis is called a nondescendantigfif i, is not a descendant of.

Supposen = (V,E) is a DAG, andX = {1,...,&n} is a random vector that follows a joint
probability distributionP. For eachi, let & correspond to thé™ node ofV. ForAcV, let&a
denote the collection of variabldg; : i € A}. (In the literature, sometimes this collection is written
simply asA. We will occasionally following this convention, but in mathematical expressatiout
probabilities we usually prefer to distinguish clearly between the set ofblasA and their values
&a.) In particular,&py;) describes the states of the parents of nodé/e say thafm,P) satisfies
the Markov condition if each component &f is conditionally independent of the set of all its
nondescendants given the set of all its parents. FinallimiP) satisfies the Markov condition,
then we say thatm, P) is a Bayesian network, and thatforms a Bayesian network witR. See
Neapolitan (2004) for more details.

The independence constraints encoded in a Bayesian network allovsiifmpéfication of the
joint probability distributionP which is captured by the factorization theorem (Neapolitan, 2004,
Theorem 1.4):

Theorem 1 If (m,P) satisfies the Markov condition, then P is equal to the product of its conditiona
distributions of all nodes given the values of their parents, whenevee twxlitional distributions
exist:

N
P(E1,....&n) = _UP(EiIEPa(i)) :

Consider the following example (also see Neapolitan, 2004, Example 2.9rit&¢he vari-
ables(§1,82,83,84) = (U,Y,Z,W). Suppose we have a Bayesian netwonk P) wherem is
shown in Figure 1 and the distributidn satisfies the conditions presented in Table 1 for some
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Pu) =a P(yilu1) =1—(b+c) | P(zly1) =e P(wi|z) =g
P(uz) =1—-a | P(y2lu1) =¢C P(zzly1) =1-¢e | P(Wz2|zs) =1—g
P(yslu) =b P(zily2) =e P(wi|z) =h
P(yi|uz) =1—(b+d) | P(z2|ly2) =1—e | P(Wz[z2) =1-h
P(y2|u2) =d P(z1]ys) = f
P(ysluz) =b P(zlys) =1 f
Table 1: Constraints on distributidh
U Y Z W
O O 's O

Figure 1: The DAGmfor our first example.

0<ab,c,...,0,h < 1. Note that, due to Theorem 1, the equations in Table 1 fully deter®ine

as a function of, b,c,...,g,h. Further, sincdm, P) satisfies the Markov condition, each node is
conditionally independent of the set of all its nondescendants givenrigniga For example, we

see tha”Z andU are conditionally independent givéh(writtenZ 1L U |Y). Do these conditional
independences entail any other conditional independences, that ifieae any other conditional
independences whidh must satisfy other than the one based on a node’s parents? The answer is
positive. For example, ifm, P) satisfies the Markov condition, then

P(wluy) =5 P(Wizu,y)P(Zu,y) = 5 P(W|zy)P(zly) = P(wly)

and henc&V LI U |Y. Explicitly, the notion of “entailed conditional independence” is given in the
following definition:

Definition 2 Let m= (V,E) be a DAG where V is a set of random variables, and |&.8 C V.
We say that, based on Markov condition, m entails conditional indepeadencB|C if A_LL B|C
holds for every = Py,, where R, is the set of all probability distributions P such tham, P) satisfies
the Markov condition.

We say that there isdirect dependendyetween variable& andB in P if AandB are not condi-
tionally independent given any subseMfBased on the Markov condition, the absence of an edge
betweerA andB implies that there is no direct dependency betw&amdB. However, the Markov
condition is not sufficient to guarantee that the presence of an edgesrdigact dependency. In
general, given a Bayesian netwaii, P), we would want an edge im to mean there is a direct
dependency. In this case the DAG would become what it is naturally expextee—a graphi-
cal representation of the structure of relationships between varialitesaithfulness condition as
defined below indeed reflects this.

Definition 3 We say that a Bayesian netwofin, P) satisfies the faithfulness condition if, based
on the Markov condition, m entails all and only the conditional independeimc®. Whenm, P)
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&3

O O O

Figure 2: A second example of a DAG.

satisfies the faithfulness condition, we say that m and P are faithful to eachastieve say mis a
perfect map of P.

It is easy to see that the Bayesian networkP), wheremis shown in Figure 1 anB satisfies
the constraints in Table 1, does not satisfy the faithfulness conditionedihdable 1 implies that
U L Z, but this independence is not entailedroypased on the Markov condition. As shown in
Example 2.10 of Neapolitan (2004), the distributf®of this example has no perfect map. However,
it is not hard to see that the DAG of Figure 1 is “optimal” in the sense that no WAKsfewer edges
forms a Bayesian network with.

In this paper we concentrate on Bayesian networks over a set of kes¥ab- {&1,...,En} ~ P
where each variable takes values from the{deP}. Let m be a DAG with nodes 1..,N. The
probability distributions inP,, can be parameterized according to the conditional distributions of
Theorem 1 as follows. For each nogdet |Pgi)| be the number of parents o&nd letgi(m) =
2/Pai) pe the number of possible states of the set of varidplgs. Consider a fixed list of the; (m)
possible states @pyi). Forj € {1,...,qi(m)}, we shall write €p4j) = j” to mean that the parents
of nodei are in the states given by th# item in the list. Fok=1,2 andj = 1,...,q(m), we write
Bijk = P(& =K| Epqi) = j). Observe tha;j> = 1— 6;j1. We shall write®, to denote the vector of
all 6jj1’s for m:

Om = (Bj1:i=1,...,N,j=1,....q(m)) € [0,1*,

wherekn = SN, g (m). Then eact®y, in [0, 1]% determines a probability measuPe= Pg,, such
that(m, P) is Bayesian network; and conversely(iif, P) is a Bayesian network, theh = Pg,, for
someOn, € [0, 1]k,

To illustrate this notation, consider the DAGIn Figure 2. Here, Rd) = 0 = P43), P42) =
{1,3}, and P#&4) = {3}, and sog;(m) = 2° = g3(m), gz2(m) = 22, andgs(m) = 2. We could fix
the list of possible states @py4) to be “1,2”, and the list foEp42) to be “(1,1), (1,2), (2,1), (2,2)”
(with the understanding that the orderind s, §3)). For the latter list, we have for example

0231 = P(82=1|&pg2 =3) = P(&2=1](&1,&3) = (2,1)).
Since P&3) = 0, P(&pga) = 1) = 1, andBsy1 is simplyP(&3 = 1). We can write

Om = (0111,0211, 0221, 0231, 0241, 0311, 0411, 0421),
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andkpn =1+4+1+2 = 8.

Let D =D, = {Xy,..., Xy} be fully observed data of sizegenerated according r, and let
Nijk be the number of cases in the databiaseich that nodetakes valug while its parent sepy;)
takes the values correspondingjto

A probabilistic modelM for a random vectoX = (&1,...,&n) is a set of possible joint proba-
bility distributions of its components. If the probability distributiBris a member of a model/,
we sayP is includedin . Letm be a DAG(V,E). A Bayesian network modés a pair(m,F)
whereF is a set of possible parameter vect@s. each@y, in F determines conditional probability
distributions form, such that the joint probability distributio®s,, of X (given by the product of
these conditional distributions) satisfies the Markov condition witiE.g., for the DAGm of Fig-
ure 2, the most general choiceis [0, 1]8, butF could also be a subset [ff, 1]8.) For simplicity,
we shall usually omiF when referring to a Bayesian network modei, F). In a given class of
models, if M, includes the probability distributioR, and if there exists né/; (in the class) such
that 24, includesP and M, has smaller dimension tha¥, then4; is called aparameter optimal
mapof P. (E.g. the DAG of Figure 1 is a parameter optimal map of the distriblRiah Table 1.)
For the Bayesian network models we shall work with in this paper, the dimen$iarmodelm
is km = ZiN:1 gi(m). A detailed discussion of probabilistic model selection in the case of Bayesian
networks could be found in Neapolitan (2004).

In order to proceed further we would also need a formal definition a$istency. In this defini-
tion we assume that the dimensions of the probabilistic models are well-defioreglntore detailed
discussion of the definition of consistency see, for example, Neapoli@@#)2Giinwald (2007)
and Lahiri (2001).

Definition 4 Let D, be a set of values (data) of a set of n mutually independent randotorsec
Xi,...,%Xn, €ach with probability distribution P. Furthermore, lstor e be a scoring criterion
over some class of models for the random variables that constitute eeftdr. /e sayscor e is
consistent for the class of models if the following two properties hold:

1. If M7 includes P andM, does not, then

lim Pr(scor e(Dn, M) > score(Dp, M) = 1.

n—oo

2. If M, and M5 both include P andM; has smaller dimension thaft, then

rI]im Pr(scor e(Dn, M) > scor e(Dp, M) = 1.
Additionally, we say that the scoring criterion $rongly consistent if, in both cases 1 and 2, it
selects the appropriate model almost surely:

Pr(IN:¥n>N scor e(Dp, M) > scor e(Dp, M)) = 1.

As an example, lety be the DAG of Figure 2, letn, be the DAG obtained fronmy by adding
an arc from node 3 to node 4, and e be the DAG obtained frommy by removing the arc from
node 2 to node 4. Far=0,1,2, let M; be the probabilistic model consisting of all probability
distributions with whichm forms a Bayesian network. L& be a probability distribution iy
such the components @, are eight distinct numbers if0,1). Then My does not contaitP
(since&, is not independent of1,&2,&3}), while 44 and M, both contairP, andM; has smaller
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dimension thatM>. If score is consistent, then in a situation with lots of datagor e will be
very likely to rank; over eitherMg or M,. However, consider an infinite stream of dxtaXo, . ..
sampled independently froR Suppose that after each new observation, we as@r e to choose
amongMy, M, andM,. Consistency says that the expected proportiorsobr e’s correct choices
tends to 1 as tends to infinity. But strong consistency says moresitor e is strongly consistent,
then with probability one it will make the correct choice for all but finitely maajues ofn.

3. Results

In this paper we consider the case of binomial Bayesian networks withéndepBeta a1, ajj2)
priors for the paramete®;; (note thatjj» = 1 — 6;j1), wherea;j1,aij2 > 0. We choose the beta
family as it is the conjugate prior for the Binomial distribution. According to {t, value of the
Bayesian scoring criterion can be calculated as follows:

p(Dn|m) :/ P(Dn|M, Om) p(Om|Mm)dOn,

_ N gi(m / eNIJl+GIJl 1 1 e )Nij2+0ij2—1;de-,l
|'| I_L ij1 Beta(dijj1, Oijz)
_ N ai(m) Beta(Njj1 + aij1, Nij2 + Qijj2)
il:l i Beta(aijl,aijz)
B N Gi(m Mu+am_(Mp+ﬂ”ﬁ.rm”r+mﬂ)
I_l rl[ F(Nijz+Nij2 +aijr+aij2) - (i)l (aij2)’

(2)

which coincides with the well-known formula by Cooper and Herskovits 21.99

Throughout this paper we produce several asymptotic expansionsolalpility” and “almost
surely”, always with respect to our probability meashkreon Q. We derive several properties of
the marginal likelihood (2). We shall show that, for any moabel

log p(Dn|m) = nCy+ O(y/nloglogn) a.s, 3)

whereC, is a constant independent nf We strengthen this result by showing how to obtain a
positive constant, such that

, logp(Dn|m) —nGy .. logp(Dn/m) —nCy,
“Tjtjp J2noglogn O™ and fiminf /2nloglogn

We note that “in probability” versions of the above statements also follow frormethods (as
in the proofs of Corollaries 12 and 10):

=—0On as. 4)

logp(Dn|m) = nCi+Op(v/N), (5)

log p(Dn|m) — NCry 2
Jn

N(0,0m).
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Additionally, we will be using the approximation of the Bayesian scoring criteria maximum
log-likelihood:

N Gi(m

log p(Dn|m) = log (I_l I_l 9:\;"'11 1— e,ll N.Jz> _7kmmgn+0p(l) (6)

whereéijl is the MLE of 6;j; andkyn = ziN:lqi(m) is the dimension of the modeh. This is the
efficient approximation of Bayesian score commonly known as BIC which fivat derived in
Schwarz (1978) for the case of linear exponential families. In Haug(itéB8) his result was
made more specific and extended to the case of curved exponential fantiiesype of model that
includes Bayesian networks, as is shown in Geiger et al. (2001).

In this work, we attempt to get insight into the rate of convergence of theSfagtor comparing
two modelsmy andnp.  Our result strengthens the well known property of consistency of the
Bayesian scoring criterion (e.g., see Chickering, 2002) and is exgaressthe following theorem.

Theorem 5 In the case of a binomial Bayesian network class, for the Bayesian gcorit@rion
based on independent beta priors, the following two properties hold:

1. If my includes P and mdoes not, then there exists a positive constgift @;,m,) such that

scor eg(Dn|mp)
scor eg(Dn|m)

= C(P,my,mp)n+ O(4/nloglogn) a.s.

and
scor eg(Dn|my)

scor eg(Dn|my)

= C(P,my,mp)n+Op(v/n).
2. If my and m both include P andlimmy, > dimny wheredimmy = zi’\‘zlqi(mk), k=1,2,then

scoreg(Dp|mp)  dimmg —dimmy
scor eg(Dplmy) 2

logn+ O(loglogn) a.s.

and _ _
scor eg(Dnjmp)  dimmg —dimmp

scoreg(Dp|my) 2

logn+ Op(1).
In particular, the Bayesian scoring criterion is strongly consistent.

It follows from the consistency property of the Bayesian scoring criteti@t if P admits a
faithful DAG representation, then the limit of the probability that a consisteatirsg criterion
chooses a model faithful 8, as the size of data approaches infinity, equals 1. Our result in Theorem
5 strengthens this claim as follows:

Corollary 6 If (my,P) satisfies the faithfulness condition afrd,, P) does not, then with probabil-

ity 1 s"oreB(D”lml% approaches infinity at exponential rate in n whep does not include P, and

' scoreg(
approaches infinity at polynomial rate in n when mcludes P.

The first result of Theorem 5 is optimal in the following sense:
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Theorem 7 If m; includes P and mdoes not, then there existGm, > 0 andom, m, > 0 such that:

scoreg(Dn|mp)
Iog scor eg(Dp|my) nCmLmZ

limsup =1 a.s,

N0 Om,,myv/2nloglogn

scorep(Dn|mp)
gscoreB(D [my) nle m

liminf = -1 a.s.

n—oo Om,.m,v/2nloglogn

and also

scor eg(Dn|mp)
%9 seorestoum) "m0 oo
ﬁ s Y my,mp /-

The constant€y, m, andom, m, from the above theorem could be defined as follows.

Definition 8 Consider a single observationX (&1, ...,&N) from P. Define

_ _ J logBijk if & =k and&pyi) = j
Pik(X) = { 0 otherwise

and define
N Q| 2

lelk_ @k (X

Then define g m, and oy, m, respectively to be the mean and the standard deviatia®afm, ) —
T(X,mp). Also define

a(m o P(&pai=1)
0; 1-6;; Pali)
(:.7 — I | ell(l_el) ij1 .
m L |: ij1 1) i|

Observe that we have

N
m) = i;logeiipdi)’ai .

We shall show (see Lemma 13) thidX, m) = logP(X), and (see proof of Lemma 9) that

Co = S log S )
Ty, My i; Ci,ml .

Observe that for any the constan€; , depends only on the conditional probabilit®(&; |&py;i))
of the modelm; therefore, if modelsn, andm, have the same set of parents of tfenode, then
Cim, = Ci.m, and the'" term in (7) is zero.

The quantities defined above will be extensively used throughout therfgin
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4. Conclusion

In this paper we proved the strong consistency property of the Bayss@ing criterion for the
case of binomial Bayesian network models. We obtained asymptotic exparigiche logarithm
of Bayesian score as well as the logarithm of the Bayes factor comparingibalels. These results
are important extensions of the consistency property of the Bayesiaingauoiterion, providing
insight into the rates at which the Bayes factor favors correct modetsa3ymptotic properties are
found to be independent of the particular choice of beta parameter.priors

The methods we used are different from the mainstream. One typical wayestigate the
properties of Bayesian score is to use BIC approximation and henceeréueiproblem to investi-
gation of the maximum log-likelihood term. In this paper we use expressioni@)enthe first term
is the log-likelihood evaluated at the true parameter.

If we use the results of Theorem 5 in the approximation of Bayes scoritggion by BIC (6),
we can see that given two modets andm, if both of them include the generating distributiBn
then their maximum log-likelihoods are with@(loglogn) of each other, and if one of the models
does not includé® then the maximum log-likelihoods differ by a leading ordeiGdP, my, mp)n.
These are the rates obtained by Qian and Field (2002, Theorems 2 amdt3¢ case of model
selection in logistic regression. This observation advocates for the eéstéra unified approach
for a very general class of models which can describe the rates at Bhjasian scoring criterion
and its approximations favor correct model choices.
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Appendix A.

In this section we provide proofs for the basic facts in this paper andHeoiems 5 and 7. Note
that part 1 of Theorem 5 follows directly from Theorem 7. In our deiions we first assume that
the parameter prior of every node follows a fBeta(1, 1) distribution. At the end, we shall show
how the results can be extended to the case of general beta priors.

We will start from the expression for the marginal likelihood (2). Noticing Betax+ 1,y +
1) = [(x+y+1)(*)] " we obtain the expression for the Bayesian scoring criterion via binomial
coefficients:

N ai(m) Niqi4+N: -1
m) (Nj2+Nij2+2) (% ”2> . 8
n‘ [u I_l ij1l ij2 )< Nijl ( )

i =1
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LetP(k,n,6) = (})6%(1—6)"X. Substituting(y) = % into (8) with 6 taken as;;; we obtain

an expression for log(Dn|m), which will be the fundamental core of our proof:

logp(D nlm) =

N Gi(m
Zl Z ['09< .'\:”11 1- 9ij1)N”2> —|09P(Nij1,Nij1+Nijz,eijl)—|09(Nij1+Nijz+1)]- 9)

The rest of the Appendix is organized as follows. In Lemma 9 we deriviathef iterated log-
arithm for the first term of (9) by using the functia(X, m) introduced in Definition 8. Lemma 11
states asymptotic expansions of each of three terms in (9) hence providivithian opportunity to
get an expansion fqu(D,|m). Asymptotic expressions (3), (4) and (5) are immediate consequences
of this lemma. Lemma 13 establishes a fundamental result regarding the logddakaluated at
the true parameter value. It is followed by the proofs of Theorems 5 and 7.

Lemma9 Recall the notation of Section 2 and Definition 8. For model m, lgh)T= T,(m) =
SN 12 Iog( ”"11(1 G.Jl)N'12> Then the following laws of the iterated logarithm hold almost
surely:

T(m) —ny,109Cim T(m)—n3N,logCim

Iw&s;;p Gv/2nTogTogn =1, |Ir]IlI£If om\/ﬁIW’ = -1 (20)
- [T(my) —T(mg)] — NGy m, oo [T (M) = T(Me)] — NGy my
I — =1 I f — = -1 (11
ITjoEp Om,.m,v/2nloglogn ’ e Om,.mv/2nloglogn (1)
Proof Itis not difficult to see thal (m) = 3, T1(X,,m) and
N Gi(m) 2 _ N
E(t(X Z Z P (Epxi) = ]) Bijk 1098k = leogQ,m-
i=1 j=1 k=1 i=

By the law of the iterated logarithm applied Tgm) we conclude that

—nsN .
IimsupT(m) n3i-1100Cm _ 1,

N—oo omyv/2nloglogn

where o, is the standard deviation af{X,m). Further, applying the law of the iterated loga-
rithm to T(my) — T (), we obtain the equalities (11) wheog, m, is the standard deviation of
T(X,my) —1(X, my). u

Corollary 10 The following expressions hold:
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T(m)—-T(m) = nGpy m,+O(y/nloglogn) a.s., (12)
N a(m) N ) N
Z > log ( (- eijl)N.Jz) = nzi|ogci,m+op(ﬁ), (13)
i =1 i=

T(m) —T(mg)] — NGy my
NG
Proof Obviously, (12) is a direct consequence of (11). Applying the cetinétl theorem toT (m)

andT (my) — T(mp) in the proof of Lemma 9 instead of the law of the iterated logarithm we obtain
(13) and (14). |

2 N(O,Omy.my). (14)

Lemma 11 The following asymptotic expansions hold:

N ai(m)

N
Zl > log (ei’\jliil(l—eijl)Nip) = nzllogci7m+0(\/nloglogn) a.s.,
9= i<

Nij1+Nijz+1 N [P (&pai) = J) +0(1)] a.s., (15)
1

logP(Nij1,Nij1 +Nij2,6ij1) = —élogn+O(IogIogn) a.s., (16)
1

logP(Nij1,Nij1 +Nij2,8ij1) = *§|09n+op(1). (17)

Proof The first expression follows from (10). Further, note, that eachef/#riablesN;jx is a sum
of i.i.d. Bernoulli variables. Based on the law of the iterated logarithm for theber of successes
in n Bernoulli trials, as — o

Nijk = nBijkP(&pai) = j) +O(+/nloglogn) a.s., (18)

which immediately implies (15). Additionally, using the central limit theorem insteatefaw of
the iterated logarithm we obtain:

Nijk = nBijkP(Epxi) = )+ Op(v/N). (19)

Next, we will be using the following version of Local De Moivre-Laplacedhem (see for example
p. 46 of Chow and Teicher 1978):

If n — oo and k= k;, — o are such that g1~ — 0, where ¥ = % then
1 _ (k=np?
P(knp) = ——- g aniptod) (20)
2mp(1—p)
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According to the law of the iterated logarithm, = \/:p(?_ip) = O(y/loglogn) a.s., for the case

wherek is the number of successes nn.i.d. Bernoulli trials of probabilityp. Notice that any
suchx satisfies the conditiomen~8 — 0. Therefore we can use (20) to approximate the binomial
probability in (9), specifically:

logP(Nij1,Nij1 + Nij2,6ij1)

(Nij1 — (Nij1+Nij2)8ij1)?
2(Nij1+Nij2)6ij1(1—6ij1)

—log \/ZT[(Nijl +Nij2)8ij1(1—8ij1) — +0(1) as. (21)

The first term in this expansion can be simplified based on (15):

1
—Iog\/ZT[(N”1+N”2)6”1(1—9;,—1) = —ilogn+0(1) a.s. (22)

Applying (18) to the second term we conclude thahas oo

~ (Nija— (Nij1+ Nij2)6ij1)? _
2(Nij1+Nij2)6ij1(1—6ij1)

O(loglogn) a.s. (23)

Now, (21) could be simplified further based on (22) and (23) to obtain @#®ally, we can prove
(17) analogously to (16) by using (19) instead of (18). Thereforepthef of the lemma is com-
plete. |

Now it is easy to derive the expansions announced in Sect. 3.

Corollary 12 Properties (3), (4) and (5) of the marginal likelihood®,|m) hold.

Proof Using (10), (15) and (16) in (9) and denoti@g, def ZiN:1 logCi m we get (4). Further, (3) is a
direct consequence of (4). Finally, (5) can be proved by substitutif (13) and (16) into (9)H

Lemma 13 Suppose the probability distribution P is a member of the model m. et F

SN, z Iog( :\J"’ll(l— eijl)Nijz) for model m. Then m) = logP(Dp).

Proof SinceP is a member of the modeh, we know that(m, P) satisfies the Markov condition.
Therefore, by the factorization theorem (Theorem 1), we obtain

N gi(m
|_| I_Ile”lil l 6”1 Nij2

and the result follows. [ |
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Next, we will prove Theorems 5 and 7. Note that part 1 of Theorem 5 ttiirémllows from
Theorem 7.

Geiger et al. (2001) showed that each of the competing Bayesian netwazt&lsm could be
represented asGf® connected manifold of dimensigr|Y.; gi(m) embedded iR N. In order to keep
the notation simple we will be denoting this manifoldrasEvery probability distribution for a finite
sample space belongs to an exponential family. Therefore, there exettefdsi = 1,2,..., i.i.d.
observations from an underlying distributi®), belonging to a full exponential family in standard
form with densitiesf (Z,0) = exp(Z6 — b(0)) with respect to a finite measure &y, with 6 € ©
the natural parameter space, such that

N gi(m
log (rl |‘L GE"'f 1-8ij1) ”2> =n sup (Ya0—b(9)), (24)

PemMoO

whereY, = (1/n) 31, &.

Theorem 2.3 of Haughton (1988) provides an expansion of the logaoittime Bayesian scoring
criterion via maximum log-likelihood and, together with (24), guaranteesl{®llows from (3),
(6) and (24) that

n sup (Ya@—b(@)) = Cnn+ Op(4/nloglogn). (25)

PcmO

Supposemn, includesP andm; does not. In this case, Haughton (1988, p.346) guarantees that
asn — oo, we have

Pr( sup (Yn@—b(¢)) +&< sup (Ynp— b(cp))> —1
PemnNO PemNO

for somee > 0, and by (25) we obtai€my, < Cn,. Hence,5N lIogQm2 > 0. Now, the result of
Theorem 7 can be obtained by using (15), (11) and (16) in (9), anﬂ;lmg (15), (14) and (16) in
(9).

Now, suppose botimy andmy include the true distributio® andkny, < km,. For part 2 of
Theorem 5, direct application of Lemma 13, (16) and (15) provides thmd&t surely” result,
while Lemma 13, (17) and (15) prove the “in probability” result.

Finally, we shall show that the results of Theorems 5 and 7 hold for theafageneral beta
priors. It is not difficult to see that Stirling’s approximation implies

L Mzra)
fim 2 F(z1b)

(26)
Denote ag); the flatBeta1,1) system of priors and denote g5 the system which, for each

parameteB;j1, assumes the distributid®eta aij1, aij2), whereaij, ajj2 > 0. It follows from (2)
and (26) that:
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p(mD,yz) N 3 BetalNij1 + tijz, N2+ dij2) 1
p(mM|D, Y1) i=1 |= Bete(N|11+1; N|12+1) Bet'c’(aijlvaijz)
_ N G (NG A+ o) T (N2 4 0j2) T (Nij1 + Nij2 4 2) ' 1
I_l I_L F(Nij1+2)F (Nij2+ DN (Nij2+ Nij2 + ajj1 +a4j2)  Beta(aija, ij2)
N ql alll lNCX”z—l 1

Ijl 1j2
I_l I_L (Nij1+ Njo)iirtdizz— 2 Betaaljl,aljz)

Therefore, using (18) we can conclude that there exists a comsta@itsuch that:

p(MD, Y2)

n—e p(m|D, Y1)

which implies that the results of Theorems 5 and 7 extend to the case of geegrgparameter
priors.

=C a.s.,
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