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Abstract

In the machine learning community, the Bayesian scoring criterion is widely used for model selec-
tion problems. One of the fundamental theoretical properties justifying the usage of the Bayesian
scoring criterion is its consistency. In this paper we refinethis property for the case of binomial
Bayesian network models. As a by-product of our derivationswe establish strong consistency and
obtain the law of iterated logarithm for the Bayesian scoring criterion.
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1. Introduction

Bayesian networks are graphical structures which characterize probabilistic relationships among
variables of interest and serve as a ground model for doing probabilisticinference in large systems
of interdependent components. A basic element of a Bayesian network is adirected acyclic graph
(DAG) which is bound to an underlying joint probability distribution by the Markov condition. The
absence of certain arcs (edges) in a DAG encodes conditional independences in this distribution.
DAG’s not only provide a starting point for implementation of inference and parameter learning
algorithms, but they also, due to their graphical nature, offer an intuitive picture of the relationships
among the variables. It happens too often that researchers have only arandom sample from a prob-
ability distribution and face a problem of choosing the appropriate DAG between a large number
of competing structures. This, effectively, constitutes the model selection problem in the space of
Bayesian networks. The methodology which is concerned with solving suchtask is called Bayesian
structure learning.

Suppose that the data consists ofn i.i.d. random vectorsX1, . . . ,Xn with eachXi having the un-
known probability distributionP. We define a probability spaceΩ with measurePr for infinite i.i.d.
sequencesX1,X2, . . . having distributionP. There are many structures which can form a Bayesian
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network with the distributionP (see Section 2 for formal definitions and examples), however not all
of them are optimal for future analysis. Indeed, since the presence of an arc (edge) does not neces-
sarily guarantee direct dependency between corresponding variables, a complete DAG constitutes a
Bayesian network with any probability distribution, yet provides no information about conditional
independences in P. It is natural to seek structures which not only forma Bayesian network with P,
but also entail only conditional independences in this distribution. These DAGs are calledfaithful to
P or elseperfect mapsof P. Unfortunately, it turns out that not all probability distributions have an
associated faithful structure. In this case it is desirable to identify a structure which satisfies certain
“optimality” properties with respect toP. Roughly speaking, we want to include only those edges
that are necessary for describingP.

A scoring criterionfor DAGs is a function that assigns a value to each DAG under consideration
based on the data. SupposeM is the set of all DAGs of a fixed size. Under the Bayesian approach
to structure learning, the DAGm is chosen fromM such thatmmaximizes the posterior probability
given the observed dataD:

p(m|D,ψ) =
p(m|ψ)p(D|m,ψ)

p(D|ψ)
=

p(m|ψ)
R

Ωm
p(D|m,Θm,ψ)p(Θm|m,ψ)dΘm

∑m∈M p(m|ψ)
R

Ωm
p(D|m,Θm,ψ)p(Θm|m,ψ)dΘm

, (1)

whereΘm denotes the set of parameters of the conditional distributions of each “node given its
parents” for all the nodes of the DAGm, Ωm denotes the domain of these parameters, andψ de-
notes the system of parameter priors. The quantityP(D|m,ψ) is called themarginal likelihood,
Bayesian scoring criterionor elseScoreof the graphm. We denote it asscoreB(D|m). Assuming
∑m∈M p(m|ψ) = 1 for all m∈ M, the Bayesian scoring criterion provides a measure of posterior
certainty of the graphmunder the prior systemψ.

It is quite interesting to see if the Bayesian scoring criterion isconsistent, that is, as the size of
dataD approaches infinity, the criterion is maximized at the DAG which forms a Bayesian network
with P and has smallest dimension. Based on the fundamental results of Haughton (1988) and
Geiger et al. (2001), the consistency of Bayesian scoring criterion hasbeen established for the
class of multinomial Bayesian networks. Chickering (2002) provides a detailed sketch of the proof.
Further, for the same model class, ifP admits a faithful DAG representationm, thenm has the
smallest dimension among all DAGs which form a Bayesian network withP (see, for example,
Neapolitan, 2004, Corollary 8.1) . Therefore, due to consistency of theBayesian scoring criterion,
we can conclude that ifP admits a faithful DAG representationm then, in the limit, the Bayesian
scoring criterion will be maximized atm. This last result is naturally expected: as more information
becomes available, a scoring criterion should recognize the properties ofthe underlying distribution
P with increasing precision.

Although the consistency property provides insight into the limiting properties of the posterior
distribution over the graph space, it is interesting to know at what rate (as afunction of sample size)
the graph(s) with the smallest dimension become favored by the Bayesian scoring criterion. In this
article we address this question for the case of binomial Bayesian network models. We also show
that in addition to being consistent for these models, the Bayesian scoring criterion is alsostrongly
consistent(see Definition 4). Our proofs are mostly self-contained, relying mainly on well-known
limit theorems of classical probability. At one point we require the input of Haughton (1988) and
Geiger et al. (2001) mentioned in the preceding paragraph (but note thattheir results only deal with
consistency, not strong consistency).
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It may be possible to re-derive our results using the machinery of VC classes (Vapnik, 1998)
or empirical process theory (e.g., van der Vaart and Wellner, 1996), but to our knowledge this has
not yet been done. However, one point of our paper is to show that theresults are amenable to
fairly transparent and accessible proofs, and do not require the overhead of these well-developed
theoretical frameworks. That being said, we note that our method assumesthat the networks have
fixed finite size, and other approaches may be better suited to handling the situation in which the
network size gets large.

The rest of the paper is organized as follows. Background and notationappear in Section 2,
with some illustrative examples. Our results are presented in Section 3. Section4 contains some
discussion. Proofs appear in the Appendix.

2. Background

A directed graph is a pair(V,E), whereV = {1, . . . ,N} is a finite set whose elements are called
nodes (or vertices), andE is a set of ordered pairs of distinct components ofV. Elements ofE
are called edges (or arcs). If(i1, i2) ∈ E we say that there is an edge fromi1 to i2. Given a set of
nodes{i1, i2, . . . , ik} wherek ≥ 2 and(ir , ir+1) ∈ E for 1≤ r ≤ k−1, we call a sequence of edges
((i1, i2), . . . ,(ik−1, ik)) a path fromi1 to ik . A path from a node to itself is called a directed cycle.
Additionally, a directed graph is called a directed acyclic graph (DAG) if it contains no directed
cycles. Given a DAGm= (V,E), a nodei2 is called a parent ofi1 if there is an edge fromi2 to i1.
We write Pa(i) to denote the set of parents of a nodei. A nodei2 is called a descendant ofi1 if there
is a path fromi1 to i2, andi2 is called a nondescendant ofi1 if i2 is not a descendant ofi1.

Supposem = (V,E) is a DAG, andX = {ξ1, . . . ,ξN} is a random vector that follows a joint
probability distributionP. For eachi, let ξi correspond to thei th node ofV. For A ⊂ V, let ξA

denote the collection of variables{ξi : i ∈ A}. (In the literature, sometimes this collection is written
simply asA. We will occasionally following this convention, but in mathematical expressions about
probabilities we usually prefer to distinguish clearly between the set of variablesA and their values
ξA.) In particular,ξPa(i) describes the states of the parents of nodei. We say that(m,P) satisfies
the Markov condition if each component ofX is conditionally independent of the set of all its
nondescendants given the set of all its parents. Finally, if(m,P) satisfies the Markov condition,
then we say that(m,P) is a Bayesian network, and thatm forms a Bayesian network withP. See
Neapolitan (2004) for more details.

The independence constraints encoded in a Bayesian network allow for asimplification of the
joint probability distributionP which is captured by the factorization theorem (Neapolitan, 2004,
Theorem 1.4):

Theorem 1 If (m,P) satisfies the Markov condition, then P is equal to the product of its conditional
distributions of all nodes given the values of their parents, whenever these conditional distributions
exist:

P(ξ1, . . . ,ξN) =
N

∏
i=1

P
(

ξi |ξPa(i)

)

.

Consider the following example (also see Neapolitan, 2004, Example 2.9). Rewrite the vari-
ables(ξ1,ξ2,ξ3,ξ4) = (U,Y,Z,W). Suppose we have a Bayesian network(m,P) where m is
shown in Figure 1 and the distributionP satisfies the conditions presented in Table 1 for some

1513



SLOBODIANIK , ZAPOROZHETS ANDMADRAS

P(u1) = a P(y1|u1) = 1− (b+c) P(z1|y1) = e P(w1|z1) = g
P(u2) = 1−a P(y2|u1) = c P(z2|y1) = 1−e P(w2|z1) = 1−g

P(y3|u1) = b P(z1|y2) = e P(w1|z2) = h
P(y1|u2) = 1− (b+d) P(z2|y2) = 1−e P(w2|z2) = 1−h
P(y2|u2) = d P(z1|y3) = f
P(y3|u2) = b P(z2|y3) = 1− f

Table 1: Constraints on distributionP

- - -k
U

k
Y

k
Z

k
W

Figure 1: The DAGm for our first example.

0 ≤ a,b,c, . . . ,g,h ≤ 1. Note that, due to Theorem 1, the equations in Table 1 fully determineP
as a function ofa,b,c, . . . ,g,h. Further, since(m,P) satisfies the Markov condition, each node is
conditionally independent of the set of all its nondescendants given its parents. For example, we
see thatZ andU are conditionally independent givenY (written Z ⊥⊥U |Y). Do these conditional
independences entail any other conditional independences, that is, are there any other conditional
independences whichP must satisfy other than the one based on a node’s parents? The answer is
positive. For example, if(m,P) satisfies the Markov condition, then

P(w|u,y) = ∑
u

P(w|z,u,y)P(z|u,y) = ∑
u

P(w|z,y)P(z|y) = P(w|y)

and henceW ⊥⊥U |Y. Explicitly, the notion of “entailed conditional independence” is given in the
following definition:

Definition 2 Let m= (V,E) be a DAG where V is a set of random variables, and let A,B,C ⊂ V.
We say that, based on Markov condition, m entails conditional independence A⊥⊥B|C if A⊥⊥B|C
holds for every P∈Pm, where Pm is the set of all probability distributions P such that(m,P) satisfies
the Markov condition.

We say that there is adirect dependencybetween variablesA andB in P if A andB are not condi-
tionally independent given any subset ofV. Based on the Markov condition, the absence of an edge
betweenA andB implies that there is no direct dependency betweenA andB. However, the Markov
condition is not sufficient to guarantee that the presence of an edge means direct dependency. In
general, given a Bayesian network(m,P), we would want an edge inm to mean there is a direct
dependency. In this case the DAG would become what it is naturally expected to be—a graphi-
cal representation of the structure of relationships between variables. The faithfulness condition as
defined below indeed reflects this.

Definition 3 We say that a Bayesian network(m,P) satisfies the faithfulness condition if, based
on the Markov condition, m entails all and only the conditional independences in P. When(m,P)
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Figure 2: A second example of a DAG.

satisfies the faithfulness condition, we say that m and P are faithful to each otherand we say m is a
perfect map of P.

It is easy to see that the Bayesian network(m,P), wherem is shown in Figure 1 andP satisfies
the constraints in Table 1, does not satisfy the faithfulness condition. Indeed, Table 1 implies that
U ⊥⊥ Z, but this independence is not entailed bym based on the Markov condition. As shown in
Example 2.10 of Neapolitan (2004), the distributionP of this example has no perfect map. However,
it is not hard to see that the DAG of Figure 1 is “optimal” in the sense that no DAGwith fewer edges
forms a Bayesian network withP.

In this paper we concentrate on Bayesian networks over a set of variablesX = {ξ1, . . . ,ξN} ∼ P
where each variable takes values from the set{1,2}. Let m be a DAG with nodes 1, . . . ,N. The
probability distributions inPm can be parameterized according to the conditional distributions of
Theorem 1 as follows. For each nodei, let |Pa(i)| be the number of parents ofi and letqi(m) =
2|Pa(i)| be the number of possible states of the set of variablesξPa(i). Consider a fixed list of theqi(m)
possible states ofξPa(i). For j ∈ {1, . . . ,qi(m)}, we shall write “ξPa(i) = j” to mean that the parents
of nodei are in the states given by thej th item in the list. Fork = 1,2 and j = 1, . . . ,qi(m), we write
θi jk = P(ξi = k|ξPa(i) = j). Observe thatθi j2 = 1−θi j1. We shall writeΘm to denote the vector of
all θi j1’s for m:

Θm =
(

θi j1 : i = 1, . . . ,N, j = 1, . . . ,qi(m)
)

∈ [0,1]km,

wherekm = ∑N
i=1qi(m). Then eachΘm in [0,1]km determines a probability measureP = PΘm such

that(m,P) is Bayesian network; and conversely, if(m,P) is a Bayesian network, thenP = PΘm for
someΘm ∈ [0,1]km.

To illustrate this notation, consider the DAGm in Figure 2. Here, Pa(1) = /0 = Pa(3), Pa(2) =
{1,3}, and Pa(4) = {3}, and soq1(m) = 20 = q3(m), q2(m) = 22, andq4(m) = 21. We could fix
the list of possible states ofξPa(4) to be “1,2”, and the list forξPa(2) to be “(1,1), (1,2), (2,1), (2,2)”
(with the understanding that the ordering is(ξ1,ξ3)). For the latter list, we have for example

θ231 = P
(

ξ2 = 1|ξPa(2) = 3
)

= P(ξ2 = 1|(ξ1,ξ3) = (2,1)) .

Since Pa(3) = /0, P(ξPa(3) = 1) = 1, andθ311 is simplyP(ξ3 = 1). We can write

Θm = (θ111,θ211,θ221,θ231,θ241,θ311,θ411,θ421),
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andkm = 1+4+1+2 = 8.
Let D = Dn = {X1, ...,Xn} be fully observed data of sizen generated according toPr, and let

Ni jk be the number of cases in the databaseD such that nodei takes valuek while its parent setξPa(i)

takes the values corresponding toj.
A probabilistic modelM for a random vectorX = (ξ1, . . . ,ξN) is a set of possible joint proba-

bility distributions of its components. If the probability distributionP is a member of a modelM ,
we sayP is includedin M . Let m be a DAG(V,E). A Bayesian network modelis a pair(m,F)
whereF is a set of possible parameter vectorsΘm: eachΘm in F determines conditional probability
distributions form, such that the joint probability distributionPΘm of X (given by the product of
these conditional distributions) satisfies the Markov condition withm. (E.g., for the DAGmof Fig-
ure 2, the most general choice ofF is [0,1]8, butF could also be a subset of[0,1]8.) For simplicity,
we shall usually omitF when referring to a Bayesian network model(m,F). In a given class of
models, ifM2 includes the probability distributionP, and if there exists noM1 (in the class) such
thatM1 includesP andM1 has smaller dimension thanM2, thenM2 is called aparameter optimal
mapof P. (E.g. the DAG of Figure 1 is a parameter optimal map of the distributionP of Table 1.)
For the Bayesian network models we shall work with in this paper, the dimensionof a modelm
is km = ∑N

i=1qi(m). A detailed discussion of probabilistic model selection in the case of Bayesian
networks could be found in Neapolitan (2004).

In order to proceed further we would also need a formal definition of consistency. In this defini-
tion we assume that the dimensions of the probabilistic models are well-defined. For a more detailed
discussion of the definition of consistency see, for example, Neapolitan (2004), Gr̈unwald (2007)
and Lahiri (2001).

Definition 4 Let Dn be a set of values (data) of a set of n mutually independent random vectors
X1, . . . ,Xn, each with probability distribution P. Furthermore, letscore be a scoring criterion
over some class of models for the random variables that constitute each vector. We sayscore is
consistent for the class of models if the following two properties hold:
1. If M1 includes P andM2 does not, then

lim
n→∞

Pr(score(Dn,M1) > score(Dn,M2)) = 1.

2. If M1 andM2 both include P andM1 has smaller dimension thanM2, then

lim
n→∞

Pr(score(Dn,M1) > score(Dn,M2)) = 1.

Additionally, we say that the scoring criterion isstrongly consistent if, in both cases 1 and 2, it
selects the appropriate model almost surely:

Pr(∃N : ∀n≥ N score(Dn,M1) > score(Dn,M2)) = 1.

As an example, letm1 be the DAG of Figure 2, letm2 be the DAG obtained fromm1 by adding
an arc from node 3 to node 4, and letm0 be the DAG obtained fromm1 by removing the arc from
node 2 to node 4. Fori = 0,1,2, let Mi be the probabilistic model consisting of all probability
distributions with whichmi forms a Bayesian network. LetP be a probability distribution inM1

such the components ofΘm1 are eight distinct numbers in(0,1). ThenM0 does not containP
(sinceξ4 is not independent of{ξ1,ξ2,ξ3}), whileM1 andM2 both containP, andM1 has smaller
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dimension thatM2. If score is consistent, then in a situation with lots of data,score will be
very likely to rankM1 over eitherM0 orM2. However, consider an infinite stream of dataX1,X2, . . .
sampled independently fromP. Suppose that after each new observation, we askscore to choose
amongM0, M1 andM2. Consistency says that the expected proportion ofscore’s correct choices
tends to 1 asn tends to infinity. But strong consistency says more: ifscore is strongly consistent,
then with probability one it will make the correct choice for all but finitely many values ofn.

3. Results

In this paper we consider the case of binomial Bayesian networks with independentBeta(αi j1,αi j2)
priors for the parametersθi j1 (note thatθi j2 = 1− θi j1), whereαi j1,αi j2 > 0. We choose the beta
family as it is the conjugate prior for the Binomial distribution. According to (1),the value of the
Bayesian scoring criterion can be calculated as follows:

p(Dn|m) =
Z

Ωm

p(Dn|m,Θm)p(Θm|m)dΘm

=
N

∏
i=1

qi(m)

∏
j=1

Z 1

0
θNi j1+αi j1−1

i j1 (1−θi j1)
Ni j2+αi j2−1 1

Beta(αi j1,αi j2)
dθi j1

=
N

∏
i=1

qi(m)

∏
j=1

Beta(Ni j1 +αi j1,Ni j2 +αi j2)

Beta(αi j1,αi j2)

=
N

∏
i=1

qi(m)

∏
j=1

Γ(Ni j1 +αi j1)Γ(Ni j2 +αi j2)

Γ(Ni j1 +Ni j2 +αi j1 +αi j2)
· Γ(αi j1 +αi j2)

Γ(αi j1)Γ(αi j2)
, (2)

which coincides with the well-known formula by Cooper and Herskovits (1992).
Throughout this paper we produce several asymptotic expansions “in probability” and “almost

surely”, always with respect to our probability measurePr on Ω. We derive several properties of
the marginal likelihood (2). We shall show that, for any modelm,

logp(Dn|m) = nCm+O(
√

nlog logn) a.s., (3)

whereCm is a constant independent ofn. We strengthen this result by showing how to obtain a
positive constantσm such that

limsup
n→∞

logp(Dn|m)−nCm√
2nloglogn

= σm and liminf
n→∞

logp(Dn|m)−nCm√
2nloglogn

= −σm a.s. (4)

We note that “in probability” versions of the above statements also follow fromour methods (as
in the proofs of Corollaries 12 and 10):

logp(Dn|m) = nCm+Op(
√

n), (5)

logp(Dn|m)−nCm√
n

D→ N(0,σm).

1517



SLOBODIANIK , ZAPOROZHETS ANDMADRAS

Additionally, we will be using the approximation of the Bayesian scoring criterion via maximum
log-likelihood:

logp(Dn|m) = log

(

N

∏
i=1

qi(m)

∏
j=1

θ̂Ni j1
i j1 (1− θ̂i j1)

Ni j2

)

− 1
2

km logn+Op(1), (6)

whereθ̂i j1 is the MLE of θi j1 andkm = ∑N
i=1qi(m) is the dimension of the modelm. This is the

efficient approximation of Bayesian score commonly known as BIC which was first derived in
Schwarz (1978) for the case of linear exponential families. In Haughton(1988) his result was
made more specific and extended to the case of curved exponential families—the type of model that
includes Bayesian networks, as is shown in Geiger et al. (2001).

In this work, we attempt to get insight into the rate of convergence of the Bayes factor comparing
two modelsm1 and m2. Our result strengthens the well known property of consistency of the
Bayesian scoring criterion (e.g., see Chickering, 2002) and is expressed as the following theorem.

Theorem 5 In the case of a binomial Bayesian network class, for the Bayesian scoring criterion
based on independent beta priors, the following two properties hold:

1. If m2 includes P and m1 does not, then there exists a positive constant C(P,m1,m2) such that

log
scoreB(Dn|m2)

scoreB(Dn|m1)
= C(P,m1,m2)n+O(

√

nlog logn) a.s.

and

log
scoreB(Dn|m2)

scoreB(Dn|m1)
= C(P,m1,m2)n+Op(

√
n).

2. If m1 and m2 both include P anddimm1 > dimm2 wheredimmk = ∑N
i=1qi(mk), k= 1,2, then

log
scoreB(Dn|m2)

scoreB(Dn|m1)
=

dimm1−dimm2

2
logn+O(log logn) a.s.

and

log
scoreB(Dn|m2)

scoreB(Dn|m1)
=

dimm1−dimm2

2
logn+Op(1).

In particular, the Bayesian scoring criterion is strongly consistent.

It follows from the consistency property of the Bayesian scoring criterion that if P admits a
faithful DAG representation, then the limit of the probability that a consistent scoring criterion
chooses a model faithful toP, as the size of data approaches infinity, equals 1. Our result in Theorem
5 strengthens this claim as follows:

Corollary 6 If (m1,P) satisfies the faithfulness condition and(m2,P) does not, then with probabil-

ity 1, scoreB(Dn|m1)
scoreB(Dn|m2)

approaches infinity at exponential rate in n when m2 does not include P, and
approaches infinity at polynomial rate in n when m2 includes P.

The first result of Theorem 5 is optimal in the following sense:
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Theorem 7 If m2 includes P and m1 does not, then there exist Cm1,m2 > 0 andσm1,m2 > 0 such that:

limsup
n→∞

log scoreB(Dn|m2)
scoreB(Dn|m1)

−nCm1,m2

σm1,m2

√
2nlog logn

= 1 a.s.,

liminf
n→∞

log scoreB(Dn|m2)
scoreB(Dn|m1)

−nCm1,m2

σm1,m2

√
2nlog logn

= −1 a.s.

and also

log scoreB(Dn|m2)
scoreB(Dn|m1)

−nCm1,m2√
n

D→ N(0,σm1,m2).

The constantsCm1,m2 andσm1,m2 from the above theorem could be defined as follows.

Definition 8 Consider a single observation X= (ξ1, . . . ,ξN) from P. Define

φi jk(X) =

{

logθi jk if ξi = k andξPa(i) = j
0 otherwise

and define

τ(X,m) =
N

∑
i=1

qi(m)

∑
j=1

2

∑
k=1

φi jk(X) .

Then define Cm1,m2 andσm1,m2 respectively to be the mean and the standard deviation ofτ(X,m1)−
τ(X,m2). Also define

Ci,m =
qi(m)

∏
j=1

[

θθi j1
i j1 (1−θi j1)

1−θi j1

]P(ξPa(i)= j)
.

Observe that we have

τ(X,m) =
N

∑
i=1

logθi,ξPa(i),ξi
.

We shall show (see Lemma 13) thatτ(X,m) = logP(X), and (see proof of Lemma 9) that

Cm1,m2 =
N

∑
i=1

log
Ci,m2

Ci,m1

. (7)

Observe that for anyi, the constantCi,m depends only on the conditional probabilitiesP(ξi |ξPa(i))

of the modelm; therefore, if modelsm1 andm2 have the same set of parents of theith node, then
Ci,m1 = Ci,m2 and theith term in (7) is zero.

The quantities defined above will be extensively used throughout the Appendix.
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4. Conclusion

In this paper we proved the strong consistency property of the Bayesianscoring criterion for the
case of binomial Bayesian network models. We obtained asymptotic expansions for the logarithm
of Bayesian score as well as the logarithm of the Bayes factor comparing two models. These results
are important extensions of the consistency property of the Bayesian scoring criterion, providing
insight into the rates at which the Bayes factor favors correct models. The asymptotic properties are
found to be independent of the particular choice of beta parameter priors.

The methods we used are different from the mainstream. One typical way to investigate the
properties of Bayesian score is to use BIC approximation and hence reduce the problem to investi-
gation of the maximum log-likelihood term. In this paper we use expression (9) where the first term
is the log-likelihood evaluated at the true parameter.

If we use the results of Theorem 5 in the approximation of Bayes scoring criterion by BIC (6),
we can see that given two modelsm1 andm2, if both of them include the generating distributionP
then their maximum log-likelihoods are withinO(log logn) of each other, and if one of the models
does not includeP then the maximum log-likelihoods differ by a leading order ofC(P,m1,m2)n.
These are the rates obtained by Qian and Field (2002, Theorems 2 and 3) for the case of model
selection in logistic regression. This observation advocates for the existence of a unified approach
for a very general class of models which can describe the rates at whichBayesian scoring criterion
and its approximations favor correct model choices.
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Appendix A.

In this section we provide proofs for the basic facts in this paper and for Theorems 5 and 7. Note
that part 1 of Theorem 5 follows directly from Theorem 7. In our derivations we first assume that
the parameter prior of every node follows a flatBeta(1,1) distribution. At the end, we shall show
how the results can be extended to the case of general beta priors.

We will start from the expression for the marginal likelihood (2). Noticing that Beta(x+1,y+

1) =
[

(x+y+1)
(x+y

x

)]−1
we obtain the expression for the Bayesian scoring criterion via binomial

coefficients:

p(Dn|m) =

[

N

∏
i=1

qi(m)

∏
j=1

(Ni j1 +Ni j2 +1)

(

Ni j1 +Ni j2

Ni j1

)

]−1

. (8)
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Let P(k,n,θ) =
(n

k

)

θk(1−θ)n−k. Substituting
(n

k

)

= P(k,n,θ)
θk(1−θ)n−k into (8) withθ taken asθi j1 we obtain

an expression for logp(Dn|m), which will be the fundamental core of our proof:

logp(Dn|m) =

N

∑
i=1

qi(m)

∑
j=1

[

log
(

θNi j1
i j1 (1−θi j1)

Ni j2

)

− logP(Ni j1,Ni j1 +Ni j2,θi j1)− log(Ni j1 +Ni j2 +1)
]

. (9)

The rest of the Appendix is organized as follows. In Lemma 9 we derive thelaw of iterated log-
arithm for the first term of (9) by using the functionτ(X,m) introduced in Definition 8. Lemma 11
states asymptotic expansions of each of three terms in (9) hence providing us with an opportunity to
get an expansion forp(Dn|m). Asymptotic expressions (3), (4) and (5) are immediate consequences
of this lemma. Lemma 13 establishes a fundamental result regarding the log-likelihood evaluated at
the true parameter value. It is followed by the proofs of Theorems 5 and 7.

Lemma 9 Recall the notation of Section 2 and Definition 8. For model m, let T(m) = Tn(m) =

∑N
i=1 ∑qi(m)

j=1 log
(

θNi j1
i j1 (1−θi j1)

Ni j2

)

. Then the following laws of the iterated logarithm hold almost

surely:

limsup
n→∞

T(m)−n∑N
i=1 logCi,m

σm
√

2nlog logn
= 1, liminf

n→∞

T(m)−n∑N
i=1 logCi,m

σm
√

2nlog logn
= −1, (10)

limsup
n→∞

[T(m1)−T(m2)]−nCm1,m2

σm1,m2

√
2nlog logn

= 1, liminf
n→∞

[T(m1)−T(m2)]−nCm1,m2

σm1,m2

√
2nlog logn

= −1. (11)

Proof It is not difficult to see thatT(m) = ∑n
r=1 τ(Xr ,m) and

E(τ(X,m)) =
N

∑
i=1

qi(m)

∑
j=1

2

∑
k=1

P
(

ξPa(i) = j
)

θi jk logθi jk =
N

∑
i=1

logCi,m.

By the law of the iterated logarithm applied toT(m) we conclude that

limsup
n→∞

T(m)−n∑N
i=1 logCi,m

σm
√

2nlog logn
= 1,

whereσm is the standard deviation ofτ(X,m). Further, applying the law of the iterated loga-
rithm to T(m1)−T(m2), we obtain the equalities (11) whereσm1,m2 is the standard deviation of
τ(X,m1)− τ(X,m2).

Corollary 10 The following expressions hold:
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T(m1)−T(m2) = nCm1,m2 +O(
√

nlog logn) a.s., (12)

N

∑
i=1

qi(m)

∑
j=1

log
(

θNi j1
i j1 (1−θi j1)

Ni j2

)

= n
N

∑
i=1

logCi,m+Op(
√

n), (13)

[T(m1)−T(m2)]−nCm1,m2√
n

D→ N(0,σm1,m2). (14)

Proof Obviously, (12) is a direct consequence of (11). Applying the centrallimit theorem toT(m)
andT(m1)−T(m2) in the proof of Lemma 9 instead of the law of the iterated logarithm we obtain
(13) and (14).

Lemma 11 The following asymptotic expansions hold:

N

∑
i=1

qi(m)

∑
j=1

log
(

θNi j1
i j1 (1−θi j1)

Ni j2

)

= n
N

∑
i=1

logCi,m+O(
√

nlog logn) a.s.,

Ni j1 +Ni j2 +1 = n
[

P
(

ξPa(i) = j
)

+o(1)
]

a.s., (15)

logP(Ni j1,Ni j1 +Ni j2,θi j1) = −1
2

logn+O(log logn) a.s., (16)

logP(Ni j1,Ni j1 +Ni j2,θi j1) = −1
2

logn+Op(1). (17)

Proof The first expression follows from (10). Further, note, that each of the variablesNi jk is a sum
of i.i.d. Bernoulli variables. Based on the law of the iterated logarithm for the number of successes
in n Bernoulli trials, asn→ ∞

Ni jk = nθi jkP(ξPa(i) = j)+O(
√

nloglogn) a.s., (18)

which immediately implies (15). Additionally, using the central limit theorem instead ofthe law of
the iterated logarithm we obtain:

Ni jk = nθi jkP(ξPa(i) = j)+Op(
√

n). (19)

Next, we will be using the following version of Local De Moivre-Laplace theorem (see for example
p. 46 of Chow and Teicher 1978):

If n → ∞ and k= kn → ∞ are such that xkn−
1
6 → 0, where xk = k−np√

np(1−p)
, then

P(k,n, p) =
1

√

2πnp(1− p)
e−

(k−np)2

2np(1−p) +o(1)
. (20)
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According to the law of the iterated logarithm,xk = k−np√
np(1−p)

= O(
√

loglogn) a.s., for the case

wherek is the number of successes inn i.i.d. Bernoulli trials of probabilityp. Notice that any
suchxk satisfies the conditionxkn−

1
6 → 0. Therefore we can use (20) to approximate the binomial

probability in (9), specifically:

logP(Ni j1,Ni j1 +Ni j2,θi j1)

= − log
√

2π(Ni j1 +Ni j2)θi j1(1−θi j1)−
(Ni j1− (Ni j1 +Ni j2)θi j1)

2

2(Ni j1 +Ni j2)θi j1(1−θi j1)
+o(1) a.s. (21)

The first term in this expansion can be simplified based on (15):

− log
√

2π(Ni j1 +Ni j2)θi j1(1−θi j1) = −1
2

logn+O(1) a.s. (22)

Applying (18) to the second term we conclude that asn→ ∞:

− (Ni j1− (Ni j1 +Ni j2)θi j1)
2

2(Ni j1 +Ni j2)θi j1(1−θi j1)
= O(log logn) a.s. (23)

Now, (21) could be simplified further based on (22) and (23) to obtain (16). Finally, we can prove
(17) analogously to (16) by using (19) instead of (18). Therefore theproof of the lemma is com-
plete.

Now it is easy to derive the expansions announced in Sect. 3.

Corollary 12 Properties (3), (4) and (5) of the marginal likelihood P(Dn|m) hold.

Proof Using (10), (15) and (16) in (9) and denotingCm
de f
= ∑N

i=1 logCi,m we get (4). Further, (3) is a
direct consequence of (4). Finally, (5) can be proved by substituting (15), (13) and (16) into (9).

Lemma 13 Suppose the probability distribution P is a member of the model m. Let T(m) =

∑N
i=1 ∑qi(m)

j=1 log
(

θNi j1
i j1 (1−θi j1)

Ni j2

)

for model m. Then T(m) = logP(Dn).

Proof SinceP is a member of the modelm, we know that(m,P) satisfies the Markov condition.
Therefore, by the factorization theorem (Theorem 1), we obtain

P(Dn) =
N

∏
i=1

qi(m)

∏
j=1

θNi j1
i j1 (1−θi j1)

Ni j2

and the result follows.
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Next, we will prove Theorems 5 and 7. Note that part 1 of Theorem 5 directly follows from
Theorem 7.

Geiger et al. (2001) showed that each of the competing Bayesian networkmodelsm could be
represented as aC∞ connected manifold of dimension∑N

i=1qi(m) embedded inR N. In order to keep
the notation simple we will be denoting this manifold asm. Every probability distribution for a finite
sample space belongs to an exponential family. Therefore, there exists a set of ζi , i = 1,2, . . . , i.i.d.
observations from an underlying distributionPθ0 belonging to a full exponential family in standard
form with densitiesf (ζ,θ) = exp(ζθ−b(θ)) with respect to a finite measure onR N, with θ ∈ Θ
the natural parameter space, such that

log

(

N

∏
i=1

qi(m)

∏
j=1

θ̂Ni j1
i j1 (1− θ̂i j1)

Ni j2

)

= n sup
φ∈m∩Θ

(Ynφ−b(φ)), (24)

whereYn = (1/n)∑n
i=1 ζi .

Theorem 2.3 of Haughton (1988) provides an expansion of the logarithmof the Bayesian scoring
criterion via maximum log-likelihood and, together with (24), guarantees (6).It follows from (3),
(6) and (24) that

n sup
φ∈m∩Θ

(Ynφ−b(φ)) = Cmn+Op(
√

nlog logn). (25)

Supposem2 includesP andm1 does not. In this case, Haughton (1988, p.346) guarantees that
asn→ ∞, we have

Pr

(

sup
φ∈m1∩Θ

(Ynφ−b(φ))+ ε < sup
φ∈m2∩Θ

(Ynφ−b(φ))

)

→ 1

for someε > 0, and by (25) we obtainCm1 < Cm2. Hence,∑N
i=1 log

Ci,m2
Ci,m1

> 0. Now, the result of

Theorem 7 can be obtained by using (15), (11) and (16) in (9), and byusing (15), (14) and (16) in
(9).

Now, suppose bothm1 and m2 include the true distributionP and km2 < km1. For part 2 of
Theorem 5, direct application of Lemma 13, (16) and (15) provides the “almost surely” result,
while Lemma 13, (17) and (15) prove the “in probability” result.

Finally, we shall show that the results of Theorems 5 and 7 hold for the caseof general beta
priors. It is not difficult to see that Stirling’s approximation implies

lim
z→∞

zb−aΓ(z+a)

Γ(z+b)
= 1. (26)

Denote asψ1 the flat Beta(1,1) system of priors and denote asψ2 the system which, for each
parameterθi j1, assumes the distributionBeta(αi j1,αi j2), whereαi j1,αi j2 > 0. It follows from (2)
and (26) that:
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p(m|D,ψ2)

p(m|D,ψ1)
=

N

∏
i=1

qi(m)

∏
j=1

Beta(Ni j1 +αi j1,Ni j2 +αi j2)

Beta(Ni j1 +1,Ni j2 +1)
· 1
Beta(αi j1,αi j2)

=
N

∏
i=1

qi(m)

∏
j=1

Γ(Ni j1 +αi j1)Γ(Ni j2 +αi j2)Γ(Ni j1 +Ni j2 +2)

Γ(Ni j1 +1)Γ(Ni j2 +1)Γ(Ni j1 +Ni j2 +αi j1 +αi j2)
· 1
Beta(αi j1,αi j2)

∼
N

∏
i=1

qi(m)

∏
j=1

N
αi j1−1
i j1 N

αi j2−1
i j2

(Ni j1 +Ni j2)αi j1+αi j2−2 ·
1

Beta(αi j1,αi j2)
.

Therefore, using (18) we can conclude that there exists a constantc > 0 such that:

lim
n→∞

p(m|D,ψ2)

p(m|D,ψ1)
= c a.s.,

which implies that the results of Theorems 5 and 7 extend to the case of general beta parameter
priors.
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