Journal of Machine Learning Research 10 (2009) 1187-1238 bmated 4/08; Revised 11/08; Published 6/09

The Hidden Life of Latent Variables:
Bayesian Learning with Mixed Graph Models

Ricardo Silva* RICARDO@STATS.UCL.AC.UK
Department of Statistical Science
University College London, WC1E 6BT, UK

Zoubin Ghahramani' ZOUBIN@ENG.CAM.AC.UK
Department of Engineering
University of Cambridge, CB2 1PZ, UK

Editor: David Maxwell Chickering

Abstract

Directed acyclic graphs (DAGs) have been widely used asraseptation of conditional indepen-
dence in machine learning and statistics. Moreover, hiddétent variables are often an important
component of graphical models. However, DAG models suf@mfan important limitation: the
family of DAGs is not closed under marginalization of hidd@miables. This means that in general
we cannot use a DAG to represent the independencies ovesatsaftvariables in a larger DAG.
Directed mixed graphs (DMGs) are a representation thatded DAGs as a special case, and
overcomes this limitation. This paper introduces algonghor performing Bayesian inference in
Gaussian and probit DMG models. An important requiremenirfizrence is the specification of
the distribution over parameters of the models. We intredunew distribution for covariance ma-
trices of Gaussian DMGs. We discuss and illustrate how aéBaryesian machine learning tasks
can benefit from the principle presented here: the power wefmtependencies that are generated
from hidden variables, but without necessarily modelinghsuvariables explicitly.

Keywords: graphical models, structural equation models, Bayesi&rénce, Markov chain
Monte Carlo, latent variable models

1. Contribution

The introduction of graphical models (Pearl, 1988; Lauritzen, 199@alp 1998) changed the way
multivariate statistical inference is performed. Graphical models providétabte language to
decompose many complex real-world processes through conditionakindieqpce constraints.

Different families of independence models exist. The directed acyclichgi2pG) family is
a particularly powerful representation. Besides providing a languagerfcoding causal state-
ments (Spirtes et al., 2000; Pearl, 2000), it is in a more general sengeilg fiaat allows for
non-monotonic independence constraints: that is, models where somendgegies can be de-
stroyed by conditioning on new information (also known as the “explainingyawffect — Pearl,
1988), a feature to be expected in many real problems.
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Figure 1: Consider the DAG in (a). Suppose we want to represent thgimabdependencies and
independencies that result after marginalizing @t The simplest resulting DAG (i.e.,
the one with fewest edges) is depicted in (b). However, notice that thig gtees not
encode some of the independencies of the original model. For insténeedY, are
no longer marginally independent in the modified DAGs. A different familyrapgical
models, encoded with more than one type of edge (directetiagidected, is the focus
of this paper. The graph in (c) depicts the solution using this “mixed” reptasion.

However, DAG independence models have an undesirable featureanfeyt closed under
marginalization, as we will illustrate. Consider the regression problem whergant to learn the
effect of a cocktail of two drugs for blood pressure, while controlliogd chemotherapy treatment
of liver cancer. We refer o, Y» as the dosage for the blood pressure driYgss a measure of
chemotherapy dosag¥, as blood pressure, ang as an indicator of liver status. Moreover, ¥t
be an hidden physiological factor that affects both blood pressurtvangtatus. It is assumed that
the DAG corresponding to this setup is given by Figure 1(a).

In this problem, predictions concerning are irrelevant: what we care is the marginal for
{V1,...,Ys}. Ideally, we want to take such irrelevant hidden variables out of the Igepthe set of
dependencies within the marginal fof1, . .., Y5} cannot be efficiently represented as a DAG model.
If we remove the edg¥; — Y, from Figure 1(b), one can verify this will imply a model wherg
andY, are independent givevl, which is not true in our original model. To avoid introducing
unwanted independence constraints, a DAG such as the one in Figywellfie necessary. Notice
that in general this will call for extra dependencies that did not exisiraily (such asrz andY,
now being marginally dependent). Not only learning from data will be morfecdif due to the
extra dependencies, but specifying prior knowledge on the paranteteosnes less intuitive and
therefore more error prone.

In general, it will be the case that variables of interest have hidden coromuses. This puts
the researcher using DAGs in a difficult position: if she models only the margomprising the
variables of interest, the DAG representation might not be suitable anynifosbe includes all
hidden variables for the sake of having the desirable set of indepeiedeaxtra assumptions about
hidden variables will have to be taken into account. In this sense, the D#x@&sentation is flawed.
There is a need for a richer family of graphical models, for wimdked graphsare an answer.

Directed mixed graphs (DMGs) are graphs with directed and bi-directgelsedn particular,
acyclic directed mixed graphs (ADMGSs) have no directed cycle, that iseqoence of directed
edgesX — --- — X that starts and ends on the same node. Such a representation encetles a s
of conditional independencies among random variables, which caradeofea graph by using a
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Figure 2: Different examples of directed mixed graphs. The graph iis ®jclic, while all others
are acyclic. A subgraph of two variables where both edges: Y, andY; < Y, are
present is sometimes known as a “bow pattern” (Pearl, 2000) due to its.shap
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Figure 3: After marginalizing variabldd; andH, from the DAG on the left, one possible DMG
representation of the same dependencies is shown by the graph in the middiee
that there are multiple DMGs within a same Markov equivalence class, thaiciadig
the same set of conditional independencies (Richardson and Spirt@3, Zée two last
graphs above are on the same class.

criterion known as m-separation, a natural extension of the d-sepacaitienon used for directed
acyclic graphs (Richardson, 2003).

In a ADMG, two adjacent nodes might be connected by up to two edgesevimé¢his case
one has to be bi-directed and the other directed. A cyclic model can in deraiipw for two
directed edges of opposite directions. Figure 2 provides a few examip@8I@s. The appeal
of this graphical family lies on the representation of the marginal indepeedgnucture among
a set of observed variables, assuming they are part of a larger DAGwst that includes hidden
variables. This is illustrated in Figure'3More details on DMGs are given in Sections 2 and 8.
In our blood pressuigiver status multiple regression problem, the suitable directed mixed graph is
depicted in Figure 1(c).

The contribution of this paper is how to perform Bayesian inference ordifferent families
of mixed graph models: Gaussian and probit. Markov chain Monte CarldMMCand variational
approximations will be discussed. Current Bayesian inference agimgedor DMG models have
limitations, as discussed in Section 2, despite the fact that such models alg wgdd in several
sciences.

The rest of the paper is organized as follows. Section 3 describecmlspase of Gaussian
mixed graph models, where only bi-directed edges are allowed. Prioesdiodte Carlo algorithm
are described. This case will be a building block for subsequent sectanh as Section 4, where

1. Notice that it is not necessarily the case that the probability model itsdifisea under marginalization. This will
happen to some models, including the Gaussian model treated in this Bapére basic claim of closure concerns
the graph, that is, the representation of independence constraints.
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Gaussian DMG models are treated. Section 5 covers a type of discreteutiistrifor binary and
ordinal data that is Markov with respect to an acyclic DMG. In Section 6 iseuds more sophis-
ticated algorithms that are useful for scaling up Bayesian learning to hiifmemsional problems.
Section 7 presents several empirical studies. Since the use of mixedgoalets in machine learn-
ing applications is still in its early stages, we briefly describe in Section 8 ayafi@ossible uses
of such graphs in machine learning applications.

2. Basics of DMGs, Gaussian Models and Related Work

In this section, we describe the Gaussian DMG model and how it complements Vat&ble
models. At the end of the section, we also discuss a few alternative appofor the Bayesian
inference problem introduced in this paper.

2.1 Notation and Terminology

In what follows, we will use standard notions from the graphical modelingglitee, such as ver-
tex (node), edge, parent, child, ancestor, descendant, DAG, atatirgraph, induced subgraph,
Markov condition and d-separation. Refer to Pearl (1988) and Lauri{z996) for the standard
definitions if needed. Less standard definitions will be given explicitly wdpgsropriate. A useful
notion is that of m-separation (Richardson, 2003) for reading off winidbpendencies are entailed
by a DMG representation. This can be reduced to d-separation (P88l iy the following trick:
for each bi-directed edgg < Yj, introduce a new hidden variab¥; and the edgeX;; — Y; and
Xij — Yj. Remove then all bi-directed edges and apply d-separation to the resuféoted graph.
As usual, we will refer to vertices (nodes) in a graph and the correspgprahdom variables in
a distribution interchangeably. Data points are represented by vectoramwithper index, such as
Y@ Y@ . vy The variable corresponding to noden data pointy (1 is represented by,

2.2 Gaussian Parameterization

The origins of mixed graph models can be traced back to Sewall Wright fityd§21), who used
special cases of mixed graph representations in genetic studies. Eémg/right’s approach,
many scientific fields such as psychology, social sciences and ecormmsusi linear mixed graph
models under the name efructural equation model@ollen, 1989). Only recently the graphical
and parametrical aspects of mixed graph models have been given aghdhawretical treatment
(Richardson and Spirtes, 2002; Richardson, 2003; Kang and Téfh; Drton and Richardson,
2008a). In practice, many structural equation models today are Gaussidgls. We will work
under this assumption unless stated otherwise.

For a DMG G with a set of vertice%’, a standard parameterization of the Gaussian model is
given as follows. For each variab¥ewith a (possibly empty) parent s€¥i1, ..., Y}, we define a
“structural equation”

Yi = o+ birYi1 + bi2Yio + - - - 4 b Yik + €

whereg; is a Gaussian random variable with zero mean and varianddotice that this parameter-
ization allows for cyclic models.

Unlike in standard Gaussian DAG models, the error tefm$ are not necessarily mutually
independent. Independence is asserted by the graphical structuee: tgo verticesY; andY;,
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the respective error terngs ande; are marginally independentYf andY; are not connected by a
bi-directed edge.

By this parameterization, each directed edge- Y; in the graph corresponds to a parameter
bij. Each bi-directed edgé « Y; in the graph is associated with a covariance paramgtethe
covariance ot; andej. Each vertexy; in the graph is associated with variance paramejigrthe
variance ofe;. Algebraically, letB be amx m matrix, m being the number of observed variables.
This matrix is such tha(B);; = by; if Y; < Y] exists in the graph, and 0 otherwise. DNétbe a
mx m matrix, where(V);; = vij if i = j or if Y; < Y; is in the graph, and 0 otherwise. L¥tbe
the column vector of observed variablesthe column vector of intercept parameters, argt the
corresponding vector of error terms. The set of structural equatEmbe given in matrix form as

Y=BY+a+e=Y=(-B)le+a) 1
= 2O =(1-B)"vil-B)T @)

whereA~T is the transpose ok ~! andZ (@) is theimplied covariance matrixf the model,© =
{B,V,a}.

2.2.1 GOMPLETENESS OFPARAMETERIZATION AND ANCESTRAL GRAPHS

An important class of ADMGs is the directed ancestral graph. RicharasdrSpirtes (2002) pro-
vide the definition and a thorough account of the Markov propertiesagsiral graphs. One of the
reasons for the name “ancestral graph” is due to one of its main propédfttbere is a directed
pathY; — --- —Yj, that is, ifY; is an ancestor ofj, then there is no bi-directed ed¥e— Y;. Thus
directed ancestral graphs are ADMGs with this constraint.

In particular, they show that any Gaussian distribution that is Markov wiheet to a given
ADMG can be represented by some Gaussian ancestral graph modelghetmeterized as above.
For the ancestral graph family, the given parameterizatiawomplete that is, for each Markov
equivalence class, it is always possible to choose an ancestralghapb the resulting parameteri-
zation imposes no further constraints on the distribution besides the indepencbnstraints of the
class. Since the methods described in this paper apply to general DMG ntbdglalso apply to
directed ancestral graphs.

In principle, itis possible to define and parameterize a Gaussian DAG medeirtails exactly
the same independence constraints encoded in an directed anceptral@mna possibility, as hinted
in the previous Section, is to replace each bi-directed &flgeY; by a new pathy; — X;; — ;.
Variables{X;; } are “ancillary” hidden variables, in the sense that they are introducetidsake of
obtaining the same independence constraints of an ancestral graptar8tBayesian methodology
can then be applied to perform inference in this Gaussian DAG model.

However, this parameterization might have undesirable consequesadiscassed in Section
8.6 of Richardson and Spirtes (2002). Moreover, when Markov chlinte Carlo algorithms
are applied to compute posteriors, the “ancillary” hidden variables will haxe integrated out
numerically. The resulting Markov chain can suffer from substantialcautelation when compared
to a model with no ancillary variables. We illustrate this behavior in Section 7.

Further constraints beyond independence constraints are certainigbiiesiepending on the
context. For instance, general ADMGs that are not ancestral grapjismpose other constraints
(Richardson and Spirtes, 2002), and such graphs can still be semsiliels of, for example, the

2. Notice this rules out the possibility of having both ed¥es: Y; andY; < Yj in the same ancestral graph.
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causal processes for the problem at hand. When many obsenableaare confounded by a same
hidden common cause, models based on factor analysis are appropitiate(&l., 2006). How-
ever, it is useful to be able to build upon independence models that anenkodchave a complete
parameterization. In any case, even the latent variables in any model raightibpendencies that
arise from other latent variables that were marginalized, and a latenblaA®MG model will be
necessary. When it comes to solving a problem, it is up to the modeler (omgaigorithm) to
decide if some set of latent variables should be included, or if they sheuilalicit, living their
hidden life through the marginals.

Richardson and Spirtes (2002) provide further details on the advantdgecomplete parame-
terization. Drton and Richardson (2004) provide an algorithm for fittinggSen ancestral graph
models by maximum likelihood.

2.3 Bayesian Inference

The literature on Bayesian structural equation models is extensive. $shatial. (1999) describe
one of the first approaches, including ways of testings such models(206&) provides details
on many recent advances. Standard Bayesian approaches fai@adMG models rely on either
attempting to reduce the problem to inference with DAG models, or on usindiogjesampling.

In an application described by Dunson et al. (2005), the “ancillary lateick is employed,
and Gibbs sampling for Gaussian DAG models is used. This parameterizaighehdisadvan-
tages mentioned in the previous section. Scheines et al. (1999) use thieteopgsameterization,
with a single parameter corresponding to each bi-directed edge. Howleeaylobal constraint of
positive-definiteness in the covariance matrix is enforced only by rejeséiopling, which might
be inefficient in models with moderate covariance values. The prior is setupimdirect way. A
Gaussian density function is independently defined for each errorianeav;;. The actual prior,
however, is the result of multiplying all of such functions and the indicatoction that discards
non-positive definite matrices, which is then renormalized.

In contrast, the Bayesian approach delineated in the next sections esesithlete parameter-
ization, does not appeal to rejection sampling, makes use of a family of prioch we believe is
the natural choice for the problem, and leads to convenient ways of comgpoéirginal likelihoods
for model selection. We will also see that empirically they lead to much bettevbéhdarkov
chain Monte Carlo samplers when compared to DAGs with ancillary latent Vesiab

3. Gaussian Models of Marginal Independence

This section concerns priors and sampling algorithms for zero-mean i@aussdels that are
Markov with respect to a bi-directed graph, that is, a DMG with no directipeg. Focusing on
bi-directed graphs simplifies the presentation, while providing a convesiiariing point to solve
the full DMG case in the sequel.

Concerning the notation: the distribution we introduce in this section is a distnibotier
covariance matrices. In the interest of generality, we will refer to theaianchatrix as>. In the
context of the previous sectioh,= Z(©) =V, since we are assumiy= 0,a = 0.
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3.1 Priors

Gaussian bi-directed graph models are sometimes catiedriance graph modelsCovariance
graphs are models of marginal independence: each edge corredpamdingle parameter in the
covariance matrix (the corresponding covariance); the absencesofal — Y; is a statement that
Ovy, = 0, oxy being the covariance of random variabkesndY. More precisely, iz is a random
covariance matrix generated by a covariance model, a distributi@riothe distribution over the
(non-repeated) entries corresponding to variances and covasiahadjacent nodes.

In a model with a fully connected bi-directed graph, this reduces to a sfjaceestricted co-
variance matrices. A common distribution for covariance matrices is the inWistertIW (5, U).
In this paper, we adopt the following inverse Wishart parameterization:

p(z) O \Z|(5+2m)/2exp{—;tr(21U)} ,% positive definite

p(-) being the density functioriy(-) the trace function, anth the number of variables (nodes) in
our model* We will overload the symbop(-) wherever it is clear from the context which density
function we are referring to. It is assumed that 0 andU is positive definite.

Following Atay-Kayis and Massam (2005), Mt (G) be the cone of positive definite matrices
such that, for a given bi-directed graghandx € M*(G), oi; = 0 if nodesY; andY; are not adjacent
in G. Itis convenient to choose a distribution that is conjugate to the Gaussiéihdibé function,
since one can use the same algorithms for performing inference both indhamd posterior. In a
zero-mean Gaussian model, the likelihood function for a fixed dat@se{Y( Y@ .. y("W}is
defined by the sufficient statist®&= 51_,(Y@)(Y@)T as follows:

L(Z;D) = (2m) "2z "2 exp{—;tr(zls)} . )

We extend the inverse Wishart distribution to the case of constrainedi@osarmatrices in
order to preserve conjugacy. This define the following distribution:

1

p(Z) = 15(5,0)

‘Z’(6+2m)/2exp{—;tl’(z1U)}7Z€ M*(G) (3)

which is basically a re-scaled inverse Wishart prior with a different sttpgnd, consequently,
different normalizing constant; (d,U). An analogous concept exists for undirected graphs, where
s-1e M*(@G) is given a Wishart-like prior: theG-Wishart” distribution (Atay-Kayis and Massam,
2005). We call the distribution with density function defined as in Equatiorth@)G-Inverse
Wishartdistribution (G-IW). It will be the basis of our framework. There are no analytical formulas
for the normalizing constant.

3. As such, the density function faris defined with respect to the Lebesgue measure of the non-zero eimtagt
elements of this matrix.

4. We adopt this non-standard parameterization of the inverse Wiskeatibe it provides a more convenient reparam-
eterization used in the sequel. Notice this is the parameterization used by Bt@k (1993) and Atay-Kayis and
Massam (2005), which developed other distributions for covarian¢gaes.
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3.2 The Normalizing Constant

We now derive a Monte Carlo procedure to compiyted,U). In the sequel, this will be adapted
into an importance sampler to compute functionals BV distribution. The core ideas are also
used in a Gibbs sampler to obtain samples from its posterior.

The normalizing constant is essential for model selection of covariamgegr By combining
the likelihood equation (2) with the prior (3), we obtain the joint

p(D,Z|G)=(2m) 1g(5,U) tx |z =% exp{—;tr[z_1(5+ U)]}

where we make the dependency on the graphical struciuexplicit. By the definition ofig,
integratingz out of the above equation implies the following marginal likelihood:
1 lg(d+n,S+U)

from which a posterio( G | D) can be easily derived as a function of quantities of the tyje-).
The normalizing constar (3, U) is given by the following integrat:

P(D|G)=

8+2m

|g(6,U):/ 2 exp{—;tr(zlw} ds. (4)

Ay
M*(G)

The spacé*(G) can be described as the space of positive definite matrices conditioneel on th
event that each matrix has zero entries corresponding to non-adjaudes in graphg. We will
reduce the integral (4) to an integral over random variables we knawtdisample from. The given
approach follows the framework of Atay-Kayis and Massam (2005)quisia techniques of Drton
and Richardson (2003).

Atay-Kayis and Massam (2005) show how to compute the marginal likelihdodoao-
decomposable undirected models by reparameterizing the precision matrighhitee Cholesky
decomposition. The zero entries in the inverse covariance matrix of this roodespond to con-
straints in this parameterization, where part of the parameters can be samigleeindently and the
remaining parameters calculated from the independent ones.

We will follow a similar framework but with a different decomposition. It turng ¢hat the
Cholesky decomposition does not provide an easy reduction of (4) tategrah over canonical,
easy to sample from, distributions. We can, however, use Bartlett's desitiopdo achieve this
reduction.

3.2.1 BARTLETT S DECOMPOSITION

Before proceeding, we will need a special notation for describing $@tslices and submatrices.

Let {i} represent the set of indicg4,2,...,i}. LetZ; ;i_1) be the row vector containing the
covariance betweeY; and all elements ofYy, Yz, ..., Y _1}. LetZg_qy i1y be the marginal covari-
ance matrix ofY1,Yz, ...,Yi_1}. Let gj be the variance of;. Define the mapping

Z_) CDE {yla$2;y2;$37y3;--~7$m7ym}7

5. Notice this integral is always finite for any choice®f> 0 and positive definité), since it is no greater than the
normalizing constant of the inverse Wishart.
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such thatB is a row vector with — 1 entriesy; is a scalar, and

Y1 = O, .
B = -0y g1 . > 5 (5)
Vi = Oiifi1yi-1y = Oii = 2ifi-1 20 gy oy 2fi-1hi> 1> 1

The set® provides a parameterization Bf in the sense that the mapping (5) is bijective. Given
thato11 = y1, the inverse mapping is defined recursively by

Sy = BIiggioy, 1>

i 6
Gi = Y +$iz{i—1},ia i>1. ( )

We call the seth = {y1,Bo,Y2, B3, V3, - - -, Bm,Ym} the Bartlett parameterf Z, since the de-
composition (6) is sometimes known as Bartlett’'s decomposition (Brown et aB).199

For a random inverse Wishart matrix, Bartlett's decomposition allows theti@fiof its density
function by the joint density ofy:, Bz,Y2, B3, Y3, - -, Bm,Ym}. Define Uy _1y -1y, Ugi—gy; and
Ui {i—1} {i—1y In @ way analogous to thedefinitions. The next lemma follows directly from Lemma
1 of Brown et al. (1993):

Lemma 1 Suppos& is distributed as IWd,U). Then the distribution of the corresponding Bartlett
parametersb = {y1, B2, Y2, B3, Vs, - . ., Bm,Ym} IS given by:

1. yi is independent oP\{y;, B}
2. ¥ ~1G((d+i—1)/2,u 4i—1i-1;/2), where IGa, B) is the inverse gamma distribution

3B |y~ N(Uﬁil},{ifl}u{i—l}ai’yiuﬁjil}{ifl})’ where NM,C) is a multivariate Gaussian
distribution andUgfl}’{i_l} = (Ui -1 &

3.2.2 BARTLETT'S DECOMPOSITION OFMARGINAL INDEPENDENCEMODELS

What is interesting about Bartlett's decomposition is that it provides a simpéarederization of
the inverse Wishart distribution with variation independent parameters.d€hi@mposition allows
the derivation of new distributions. For instance, Brown et al. (19968Yyea “Generalized Inverted
Wishart” distribution that allows one to define different degrees of fveefbr different submatrices

of an inverse Wishart random matrix. For our purposes, Bartlett'srdposition can be used to
reparameterize thg-IW distribution. For that, one needs to express the independent eleménts of
in the space of Bartlett parameters.

The original reparameterization mapso ® = {y1,Bo,Y2,B3,V3, ..., Bd,Yd}. To impose the
constraint tha¥; andY; are uncorrelated, far> j, is to set(@iz{i_l}7{i_1})j = Oyy;(®) =0. Fora
fixed Z4i_1) ji—1, this implies a constraint of;); = fjj.

Following the terminology used by Richardson and Spirtes (2002), $gaseof nodeY in
a mixed graph be any node adjacentytdy a bi-directed edge. The set of spouse¥;at de-
noted bysp(i). The set of spouses of according to order ¥, Y-, ..., Yy is defined bysp(i) =
sp(i)N{VY1,...,Yi_1}. The set of non-spouses ¥fis denoted byisi). Analogously,nsp.(i) =
{Y,...,Yia}\sp(i). Let Bis, (i) be the subvector of3; corresponding to the the respective
spouses ofi. Define, sy (i) analogously.
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Given the constrainBiZ; 1y nsp. (i) = 0, it follows that
B sp iy Zspa (i).nspe (i) T Binspe (i) Znsp(iy.nspu(i) = 0=

B nsp. (i) = —Bsp. () Zsp. (1.5 (1) Znp. i) nspu i) (7)
Identity (7) was originally derived by Drton and Richardson (2003). rAperty inherited
from the original decomposition for unconstrained matrices is #hat i is functionally inde-
pendent of2_yy ;i_1;. From (7), we obtain that the free Bartlett parameters afre ®; =
{1, Bosp.(2), Y2, B sp.(3): Y35 - - - » Brsp. (m) Ym } -
Notice that, according to (5% corresponds to the set of parameters of a fully connected, zero-
mean, Gaussian DAG model. In such a DAGIis a child of{Y1,...,Yi_1}, and

Y, = BYi_1+], ¢j ~N(0,yj)

whereY;_; is the(i — 1) x 1 vector corresponding tpY1,...,Yi_1}.
As discussed by Drton and Richardson (2003), this interpretation alghgaguation (7) im-
plies
Yi = B sp.i)Zi + ¢ (8)

where the entries id; are the corresponding residuals of the regressiapofi) onnsp.(i).
The next step in solving integral (4) is to find the Jacoldighg ) of the transformatio — @.
This is given by the following Lemma:

Lemma 2 The determinant of the Jacobian for the change of variable @ is

[I(® )\=|1\RI= |'l i
§ = ﬂinlz‘znsmm,nsmaﬂ i= l
where R=Zsp_; sp.) — Zsp«i)’nspﬁi)Z‘l Znsp.).sp.g) that is, the covariance matrix of the

. : NSPx(i) NSP<() ! :
respective residual; (as parameterize bsbgs. If nsp.;) =0, R is defined a<sp, ) sp.g and

|Znsp. ) nsp., | is defined as 1.

The proof of this Lemma is in Appendix C. A special case is the Jacobian ofnt@nstrained
covariance matrix (i.e., when the graph has no missing edges):

m-1 )
(@)= [ (9)

Now that we have the Jacobian, the distribution over Bartlett’'s parametens gy Lemma 1,
and the identities of Drton and Richardson (2003) given in Equation (@)hawe all we need to
provide a Monte Carlo algorithm to compute the normalizing constant@fi& with parameters
(5,U).

Let Z(®g) be the implied covariance matrix given by our set of parametgfs We start
from the integral in (4), and rewrite it as a function®f;. This can be expressed by substituting
Z for Z(®4) and multiplying the integrand by the determinant of the Jacobian. Notice that the
parameters iz (®g) are variation independent: that is, their joint range is given by the ptaduc
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their individual ranges (positive reals for thgariables and the real line for tifiscoefficients). This
range will replace the origindl ™ (G) space, which we omit below for simplicity of notation:

15(8,U) :/|J(¢g)\|2(q>g)|—5*% exp{—;tr(Z(dDg)_lU)} ddg.

We now multiply and divide the above expression by the normalizing constaant afverse
Wishart(d,U), which we denote by (8, U):

15(3.0) = Iw(®.U) [ 1306 x i 8. exp - 5ir(x(0g) )} dog. (10
The expression

IWL(8, 0|z~ "%" exp{—;tr(zlw}

corresponds to the density function of an inverse WiskarLemma 1 allows us to rewrite the
inverse Wishart density function as the density of Bartlett parameterthibus assuming no inde-
pendence constraints. We can easily reuse the result of Lemma 1 as follows

1. write the density of the inverse Wishart as the product of gamma-nomnaitees given in
Lemma 1;

2. this expression contains the original Jacobian determja&by|. We have to remove it, since
we are plugging in our own Jacobian determinant. Hence, we divide tlaeampterized
density by the expression in Equation (9).

This ratio|J(®g)|/|J(P)| can be rewritten as

3(@g)l _ ™ R| _ 1
‘J((D)‘ i= V:ﬁnil ﬂ{12|znsp<(i)vnsp<(i)

where|Znsp, nsp. | = 1 if nspe(i) = 0;
3. substitute each vectdk s, i), which is not a free parameter, by the corresponding expres-
SioN—B; <. (i Zsp. (i nx- 1o .
i,5p< (1) =sp<(i),nsp< (i) “nsp. (i),nsps (i)
This substitution takes place into the original factors given by Bartlett'smdposition, as in-
troduced in Lemma 1:
(i —(i-1)/2
p(B,y) = (2m (-D/2 070/ Ugi—gy gy 2
1T MU, T_ M.
X exp<_2y_($i _MI) U{lfl}.,{lfl}(qgi _MI)) (11)

|
(Ui i1y i-0/2) D2 _(aa ) 1
Fr((d+i—1)/2) 2 exp(—uiii{i_l}i/{i_l})

2y;
whereM; = Uﬁil}_{i_l}u{ifl},i- Plugging in this in (10) results in

X
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1

SP<(i),NS Px(i)

m

16(6.U) = w(®V) [ = plys) [] p(B.y) o
|_|i:2 ‘Zn ’ i=
However, after substitution, each factuitB;, i) is notin general a density function ¢, s, (i,

yi} and will include also parametefsB; s, (j),Y;}, ] < i. Because of the non-linear relationships
that link Bartlett parameters in a marginal independence model, we canpedtte® reduce this
expression to a tractable distribution we can easily sample from. Instea@éwsitereach original
density factomp(;,yi) such that it includes all information abofts, ) andy; within a canonical
density function. That is, factorize(B;,y:) as

P(B, Yi|Pi-1) = Po(Bisp. (i) Vs Pi—1) Pg(Vi| Pi—1) x fi(Pi_1) (12)

where we absorb any occurrence®f,_ () within the sampling distribution and factorize the re-
maining dependence on previous paramet®rs = {y1,Y2, Bosp.(2); - - -5 Yi-1, Bi—1sp.(i—1)} INtO &
separate functioh. We derive the functiongy(-), pg(-) and fi(-) in Appendix A. The result is as
follows.

The densitypy (B, sp.(i)|Yi, Pi-1) is the density of a Gaussidh(Kimj, yiK;) such that

mi = (Uss—AiUns)Msm(i)+(Usn—AiUnn)Mn5p<(i)7
Kit = Uss—AiUns—UsoAT +AiUneAT, (13)
-1
A = ZSFL(i)vnsm(i)znsm(i).,nsm(i)
where
[ Uss Usn } _ [ Uspo(iyspei) YUspa(i)nsp(i) ' (14)
Uns Unn Unsp<(i),sp<(i) Unsp<(i),nsp<(i)

The densitypg(yi|®i—1) is the density of an inverse gamr@(g1, g2) such that

5+i—1+#nsp.(i)

0 = 5 )
Ui {i—1},/i-1} + Ui
g = 2 ;
U = MiTU{i,l}di,l}Mi—miTKimi.
whereu; ¢_1, i1y Was originally defined in Section 3.2.1.
Finally,
_ (i=1)—#sp<(i)
fi(®i1) = (2m) 7 K20 iy oy M2
(Ui i—1} i-13/2) @172 F((d+i—1+#nsp.(i))/2)

F(O+i-1)/2) (Ui 11+ W)/ 2)0H-1nsp()/2

6. A simpler decomposition was employed by Silva and GhahramaniJ206t6ice however that paper used an incorrect
expression for the Jacobian). The following derivation, howeverbesadapted with almost no modification to define
a Gibbs sampling algorithm, as we show in the sequel.
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Density functionpy (3 sp. i)+, -) and determinanik;|*/2 are defined to be 1 Bp. (i) = 0. U;
is defined to be zero ifisp.(i) =0, andU; = MiTU{i,l}V{i,l}Mi if spx(i)=0.

The original normalizing constant integral is the expected value of a funclisb; over a
factorized inverse gamma-normal distribution. The density function of thisilmifon is given
below:

16.0) (Pg) = <|_l Pg(Vi|Pi-1) ) (ﬁ pb(gi,sm(i)yivq)i—l)).

We summarize the main result of this section through the following theorem:

Theorem 3 Let (f (X))« be the expected value ofX) whereX is a random vector with density
p(X). The normalizing constant of @-Inverse Wishart with paramete(s, U) is given by

15(8,U) = lw (3,U) 7 fil®ia)
=l l_l\znsp i) NSPL i '
=T Piu) (Pg)

This can be further simplified to

m
<|‘| 5 [(®i-1) > (15)
NSP<() "SR« Py (Pg)

where

F((3+i—1+#nsps(i))/2)
((Uii.{ifl},{ifl} + rui)/z)(6+ifl+#nsp<(i))/2

(@)= (2m 7 [Ki(@g)H2

which, as expected, reduckgd, U) to l)w (d,U) when the graph is complete.
A Monte Carlo estimate off;(d,U) is then given from (15) by obtaining sampl{a®(gl)7¢(gz),
dJ(gM)} according top, 5 u)(-) and computing:

1 M |()1)
G(8,U)
M Zl|_| ’znsmm NSP<i) (CD|(S)1)’

where here we emphasize ttiagwn’nsw” is a function of®; as given by (6).

3.3 General Monte Carlo Computation

If Y follows a GaussiaMN(0,%) whereX is given aG-IW(3,U) prior, then from a samplé& =
{Y®, ... ,Y™} with sufficient statisticS = $1_,(Y@)(Y@)T, the posterior distribution foE
given S will be a G-IW(d+n,U+S). In order to obtain samples from the posterior or to com-
pute its functionals, one can adapt the algorithm for computing normalizingastiasWe describe
an importance sampler for computing functionals, followed by a Gibbs sampjogtam that also
provides samples from the posterior.
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Algorithm SAMPLEGIW-1
Input: am x mmatrix U, scalard, bi-directed graphg, an ordering<

1. LetX be amx mmatrix
. Define functionsp.(-), nspx(-) according tog and ordering<
. Sampleoy; from 1G(8/2,u11/2)

2
3
4. Fori=2,3,....m
5 Sampleyi ~ 1G((d+i—1+#nsps(i)/2, (Ui fi—1} fi—1y + Ui)/2)
6

SampleB; sp_ i) ~ N(Kim;, yiKj)

7. SetB, nsp<(i) = _Q;i,sm(i)zsm(i)7n8p<(i)z;slp<(i),nsp<(i)
8.  Selrf ;=Ziqi1=5BZi 11
9. Setgii =V + B2 ji_1

10. Setw ="y f/(Pi-1)/|Znsp.(i).nsp.i |

11. Return(w,%).

Figure 4: A procedure for generating an importance sarBed importance weight for com-
puting functionals of ag-Inverse Wishart distribution. Variablggvi;,m;,K;, 7} and
function f/(®;_1) are defined in Section 3.2.2.

3.3.1 THE IMPORTANCE SAMPLER
One way of computing functionals of thg-IW distribution, that is, functions of the type
9B.U:G)= [ oE)p(E|8.U.G)dz
M*(G)
is through the numerical average

Mﬁ W. Z(S)
g(6,U; g) ~ Z&lMsg( )
Ys—1Ws

where weightwi,wo,...,wy } and sampleg=M 52 .. (M1 are generated by an importance
sampler. The procedure for computing normalizing constants can be readipted for this task
using p,u)(-) as the importance distribution and the corresponding weights from the regnaind
factors. The sampling algorithm is shown in Figure 4.

)

3.3.2 THE GIBBS SAMPLER

While the importance sampler can be useful to compute functionals of the distipwe will
need a Markov chain Monte Carlo procedure to sample from the postaritre Gibbs sampling
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Algorithm SAMPLEGIW-2
Input: am x m matrix U, scalard, bi-directed graphg, amx m matrix Zsta"

1. LetX be a copy ofstart

2. Define functionsp(-), nsp(-) according toG

3. Fori=1,23,...,m

4. Sampleyi ~ IG((3+ (m—1) +#nspi))/2, (Ui p\iy. 0y + Wi)/2)
5. SampleB, sy from aN(Kyimy;, viK\y)

6. SetBnsgi) = — B sp(i) Zspii).nsiti) Znsyti) nsp

7o Setrfy; =Zip = BZpiy ()

8. Setgii = Vi + BiZi p\iy

9. Returnz.

Figure 5: A procedure for generating a sampledithin a Gibbs sampling procedure.

procedure, we sample the whaléh row of Z, for each 1< i < m, by conditioning on the remaining
independent entries of the covariance matrix as obtained on the prevarkswthain iteration.

The conditional densities required by the Gibbs sampler can be deriwa&d(12), which for a
particular ordering< implies

P(Ei8.U.6) 0 py) [ P - -2 P91 01

By an abuse of notation, we us&dn the left-hand side and the Bartlett parameters in the righ-hand
side.
The conditional density of By, sp.(m); Ym} given all other parameters is therefore

p(gm.,sm(m) ;Y| P \{ B sp.(m), Ym}) = Po(Bmsp.(m)|Yms Pm-1) Pg(Ym|Pm-1)

from which we can reconstruct a new sample of theh row/column ofX after sampling
{Bmsp.(m)¥Ym}. Sampling other rows can be done by redefining a new order where the co
sponding target variable is the last one.

More precisely: let{\i} denote the sefl,2,...,i—1,i+1,...,m}. The Gibbs algorithm is
analogous to the previous algorithms. Insteadmf(i) andnsp.(i), we refer to the originasp(i)
andnsp(i). MatricesZyj; iy andUg, iy are defined by deleting the respectivth row and
i-th columns. Row vectoE; \;; and scalaw; p\;; are defined accordingly, as well as any other
vector and matrix originally required in the marginal likelihood/importance samginogedure.
The algorithm is described in Figure 5. The procedure can be interpastedlling a modification
of the importance sampler with a dynamic orderigwhich, at every step, movégto the end of
the global orderingx.
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3.4 Remarks

The importance sampler suffers from the usual shortcomings in high-diomahgroblems, where
a few very large weights dominate the procedure (MacKay, 1998). Trisresult in unstable
estimates of functionals of the posterior and the normalizing constant.

The stability of the importance sampler is not a simple function of the numberiables in the
domain. For large but sparse graphs, the number of parameters mightheFor large but fairly
dense graphs, the importance distribution might be a good match to the actributicn since
there are few constraints. In Section 7, we performe some experimen@taivthe sampler.

When used to compute functionals, the Gibbs sampler is more computationallydiamann-
sidering the cost per step, but we expect it to be more robust in high-diomerh problems. In
problems that require repeated calculations of functionals (such asrtatorsl optimization pro-
cedure of Section 4.3), it might be interesting to run a few preliminary congrezibetween the
estimates of the two samplers, and choose the (cheaper) importance sartipegestimates are
reasonably close.

Naively, the Gibbs sampler cos®m?) per iteration, since for each step we have to invert the
matrix Znspniynspi\iy, Which is of sizeO(m) for sparse graphs. However, this inversion can cost
much less thai®(m?) if sparse matrix inversion methods are used. Still, the importance sampler
can be even more optimized by using the methods of Section 6.

4. Gaussian Directed Mixed Graph Models

As discussed in Section 2, Gaussian directed mixed graph models are fmizeoeby the set with
parameter® = {V,B,a}. Our prior takes the fornp(®) = p(B)p(a)p(V). We assign priors for
the parameters of directed edges (non-zero entries of nitiix a standard way: each parameter
bij is given a Gaussiam(cﬁ,sﬁ-) prior, where all parameters are marginally independent in the
prior, that is,p(B) = [1;; p(bij). The prior for intercept parametemsis analogous, witlw; being a
GaussiaN(c?, s7).

Recall from Equation (1) that the implied covariance of the model is giverthBymatrix
3(©) = (1-B)"v(1 —B)~T. Similarly, we have the implied mean vecta(®) = (I — B) la.
The likelihood function for data seb = {Y( Y@ . YW} is defined as

LOD) = [Z(©) "2 exp(~3(Y @ — (@) TE(@) LY@ i
= {10-B) V1 —B)T[} " {exp(~4tr(v-(1 - B)S( ~B)"))},

—

~—

~—
~—

where nowS= 3h_, (Y@ — (@) (Y —pe)T.
Given a priorG-IW (9, U) for V, itimmediately follows that the posterior distribution\éfgiven
the data and other parameters is

V| {B,a,D} ~ G- IW(@B+nU+ (I -B)S(I —B)T).

Therefore it can be sampled using the results from the previous sectiticehis holds even
if the directed mixed graply is cyclic.

Samplinga; given{D,O\{a; }} can also be done easily for both cyclic and acyclic models: the
posterior is given by a normal(c® /s, 1/s"') where
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Sia/ = $+n(vl)“,

, c m n m

o = L-n'y (Vhra+ v (v - th<d>>,
Gn 3 e 3 3 (40 gha

with p; being an index running over the parentsrpin G.
However, sampling the non-zero entriesBfesults in two different cases depending whether
G is cyclic or not. We deal with them separately.

4.1 Sampling from the Posterior: Acyclic Case

The acyclic case is simplified by the fact that B can be rearranged in a way it becomes lower
triangular, with each diagonal element being 1. This implies the ideitityB) ~||V||(I -B)~T| =

|V, with the resulting log-likelihood being a quadratic function of the non-zkenments oB. Since

the prior for coefficient;j is Gaussian, its posterior given the data and all other parameters will be
the GaussiaN(cfl /s, 1/s7) where

n

/ 1 -
$ o= gtV g

) cd n m
= 5 +dz Yj(d) Z(V_l)it A b Yo — o | .
S1bj =1 t= P, (t,P0)#( )

As before, p; runs over the indices of the parents¥fin G. Notice that in the innermost
summation we echudIanj(d). We can then sampla; accordingly.

Itis important to notice that, in practice, better mixing behavior can be obtaynsarpling the
coefficients (and intercepts) jointly. The joint distribution is Gaussian andeabtained in a way
similar to the above derivation. The derivation of the componentwise condisids nevertheless
useful in the algorithm for cyclic networks.

(16)

4.2 Sampling from the Posterior: Cyclic Case

Cyclic directed graph models have an interpretation in terms of causal syistexpglibrium. The
simultaneous presence of directed paghs --- — Yj andY; — --- —Yj can be used to parameterize
instantaneous causal effects in a feedback loop (Spirtes, 1995). mMiusl appears also in the
structural equation modeling literature (Bollen, 1989). In terms of cycliplggaas families of
conditional independence constraints, methods for reading off conistia linear systems also
exist (Spirtes et al., 2000).

The computational difficulty in the cyclic case is that the determifianB| is no longer a con-
stant, but a multilinear function of coefficier{ls;; }. Becausdy; will appear outside the exponential
term, its posterior will no longer be Gaussian.

From the definition of the implied covariance matkix®), it follows that|Z(©)|~"/2 = (|| —
B||V|~|I —B|)"2. As a function of coefficienty;,

k=m
I—-B|= (—l)i+j+1cijbij + <—1)i+k+1cikbika
k=1k#]
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whereG;; is the determinant of respective co-factoi ef B, by = 0 if there is no edg¥ «— Yk, and
bi = —1. The resulting density function &f; given and©\{b;; } is

— /<) }
Zsf{ ’

(bjj
p(bij[©\{bij }, D) O [bjj — ki |”exp{ )

where

Kij =Cjj* % (—1)* I 1Cybi
k=1k#]

and{cIJ ,é)'} are defined as in Equation (16). Standard algorithms such as Metropsisals can
be applled to sample from this posterior within a Gibbs procedure.

4.3 Marginal Likelihood: A Variational Monte Carlo Approach

While model selection of bi-directed graphs can be performed using a simpiearlo procedure
as seen in the previous Section, the same is not true in the full Gaussian B84G Approaches
such as nested sampling (Skilling, 2006) can in principle be adapted to dbathe full case.
For problems where there are many possible candidates to be evaluated somputationally
demanding sampling procedure might be undesirable (at least for an ianikihg of graphical
structures). As an alternative, we describe an approximation praséaiuthe marginal likelihood
p(D|G) by combining variational bounds (Jordan et al., 1998) withGhieverse Wishart samplers,
and therefore avoiding a Markov chain over the joint model of coeffisiand error covariances.
This is described for acyclic DMGs only.

We adopt the following approximation in our variational approach, adbogialso for possible
latent variable:

p(V,B,a,X|D)~q(V)q(B,a) J‘| q(X V)a(B, o)a(X)
with q(B,a) being a multivariate Gaussian density of the non-zero eleme@saoda. Function
q(X¥) is also a Gaussian density, and functiglt) is a G-Inverse Wishart density.

From Jensen’s inequality, we obtain the following lower-bound (Beal320047):

Inp(D|G) In [ p(Y,X|V,B,a)p(V,B a)dXdBdVda

> (Y, XIV.B.0)) a0
+{Inp(V)/a(V))qv
+(Inp(B,a)/qa(B,a

17)
)
Na@a) — {(INAX))gx)

where this lower bound can be optimized with respect to functigh’y, q(B), q(X). This can be
done by iterative coordinate ascent, maximizing the bound with respect tgla g{n function at
atime.

The update o§(V) is given by

q"MV) = pgaw (3+d,U+ <(| —B)S(I - B)T>q(x)q(B,u))
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wherepg.w (-) is the density function for &-Inverse Wishart, an§ is the empirical second mo-
ment matrix summed over the completed datg XeY ) (hence the expectation ovgfX)) centered
atyu(o).

The updates foq(B,a) andq(X) are tedious but straightforward derivations, and described in
Appendix B. The relevant fact about these updates is that they acéidos of (V) . For-
tunately, we pay a relatively small cost to obtain these inverses using theeManlo sampler of
Figure 4: from the Bartlett parameters, define a lower triangularm matrix B (by placing on the
ith line the row vectom;, followed by zeroes) and a diagonal matrixrom the respective vector of
yi's. The matrixV—! can be computed frorfi — 8) T ~1(I — B), and the relevant expectation com-
puted according to the importance sampling procedure. For problems ofat@dénensionality,
the importance sampler might not be recommended, but the Gibbs samplerusedbe

At the last iteration of the variational maximization, the (importance or postes@&nples from
g(V) can then be used to compute the required averages in (17), obtaining@dmthe marginal
log-likelihood of the model. Notice that the expectatitmp(V)/q(V))q, contains the entropy of
q(V), which will require the computation aj-inverse Wishart normalizing constants.

For large problems, the cost of this approximation might still be prohibitiveopgtion is to par-
tially parameterizé/ in terms of ancillary latents and another submatrix distributed G@sraverse
Wishart, but details on how to best do this partition are left as future woik gfsproximation will
be worse but less computationally expensive if ancillary latents are indepenf the coefficient
parameters in the variational density functigrn)). Laplace approximations might be an alternative,
which have been successfully applied to undirected non-decomposatidsniBoverato, 2002).

We emphasize that the results present in this section are alternatives timat @ixist before
in previous approaches for learning mixed graph structures througttigaal methods (e.g., Silva
and Scheines, 2006). It is true that the variational approximation forinaidgkelihoods will tend
to underfit the data, that is, generate models simpler than the true model in simaulaflespite
the bias introduced by the method, this is less of a problem for large dataBsetisapd Ghahra-
mani, 2006) and the method has been shown to be useful in model seleqiaratigns (Silva
and Scheines, 2006), being consistently better than standard scoinesssBIC when hidden vari-
ables are present (Beal and Ghahramani, 2006). An application ircpoedusing the variational
posterior instead of MCMC samples is discussed by Silva and Ghahran@@)(2lt is relevant
to explore other approaches for marginal likelihood evaluation of DMG tsaging alternative
methods such as annealed importance sampling (Neal, 2001) and nestédgéakiling, 2006),
but it is unrealistic to expect that such methods can be used to evaluate alangper of candidate
models. A pre-selection by approximations such as variational methods neigisskbntial.

5. Discrete Models: The Probit Case

Constructing a discrete mixed graph parameterization is not as easy as iaubsi#&h case. Ad-
vances in this area are described by Drton and Richardson (200%ze & complete parameteriza-
tion of binary bi-directed graph models is given. In our Bayesian coritgetence with the mixed
graph discrete models of Drton and Richardson would not to be any conamatiéy easier than the
case for Markov random fields, which has been labelagbably-intractablgMurray et al., 2006).

7. We observed a high ratio of the highest importance weight divideddynttdian weight in problems with dimen-
sionality as low as 15 nodes. However, notice that in practice the errariaoee matriX/ has a block diagonal
structure, and only the size of the largest block is relevant. This is explaimaore detail in Section 6.
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Instead, in this paper we will focus on a class of discrete models that kastidely used in
practice: the probit model (Bartholomew and Knott, 1999). This model engisdly a projection of
a Gaussian distribution into a discrete space. It also allows us to build on then@igcdeveloped
in the previous sections. We will describe the parameterization of the modatyolic DMGs, and
then proceed to describe algorithms for sampling from the posterior distributio

5.1 Parameterizing Models of Observable Independencies

A probit model for the conditional probability of discrete varialflgiven a set of variablefYi, ...,
Yik} can be described by the two following relationships:

Y* = di+bitYir+bioYio + - - 4 bikYik + €

PG =V |Y) = 11, <Y <T) (18)

where?(-) is the probability mass function of a given random variable, as given byatheext, and
1(-) is the indicator functionY; assumes values ifvy, Vi, ...,V ; }. Thresholdg(ty = —o < 1} <
Tiz < e < TL(i = oo} are used to define the mapping from continugtigo discreteY;. This model
has a sensibfe interpretation for ordinal and binary values as the diati@tinf someunderlying
latent variable(UV) Y;*. Such a UV is a conditionally Gaussian random variable, which follows
by assuming normality of the error tergn This formulation, however, is not appropriate for gen-
eral discrete variables, which are out of the scope of this paper. tAdbdrChib (1993) describe
alternative Bayesian treatments of discrete distributions not discussed her

Given this binary/ordinal regression formulation, the natural step is hatefioe a graphical
model accordingly. As a matter of fact, the common practice does not stridlibyfthe probit
regression model. Consider the following example: for a given grgph respective graphical
representation of a probit model can be built by first replicatinas a graplG*, where each vertex
Y; is relabeled a¥*. Those vertices represent continuous underlying latent variables)(UNo
each vertex;* in G*, we then add a single chil. We call this theType-I UV model Although
there are arguments for this approach (see, for instance, the arglbyéhietob and Forster (2006)
concerning stability to ordinal encoding), this is a violation of the original mngeassumption
as embodied byg: if the given graph is a statement of conditional independence constrints
is expected that such independencies will be present in the actual mdaellype-I formulation
does not fulfill this basic premise: by construction there are no conditioda@pendence constraints
among the set of variablé&&(the marginal independencies are preserved, though). This is illustrated
by Figure 6(b), where the conditional independenc¥,andY; givenY, disappears.

An alternative is illustrated in Figure 6(c). Starting from the original grgplas in Figure 6(a)),
the probit graph model;* shown in the Figure is built frong; by the following algorithm:

1. add to empty graply* the verticesy of G, and for eacly; € Y, add a respective U¥,* and
the edger;” — Y;;

2. for eachy; —Y;jin G, add edgé —>YJ-* to G*,
3. for eachy; < Yj in G, add edgé&* < Y/ to G*;

We call this theType-Il UV modelwhich has the following property (the proof is in Appendix
C):

1206



BAYESIAN LEARNING WITH MIXED GRAPH MODELS
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Figure 6: The model in (a) has at least two main representations as a petldrk. In (b), the
original structure is given to the underlying variables, with observeidbias being chil-
dren of their respective latents. In (c), the underlying variable inhegtpénents of the
original variable and the underlying latents of the spouses.

Theorem 4 Suppose; is acyclic with vertex set. Y, and Y, are m-separated gived C Y\{¥;,Y;}
in G ifand only if Y and Y are m-separated given in G*.

The parameterization of the Type-Il UV model follows from the definition ailyir regression:
the conditional distributiol; given its parents i, ..., Yi } in G is given as in Equation (18), while
the error termgey, €2,...,€m} follow the multivariate GaussiaN(0,V). The entry corresponding
to the covariance ofi ande; is assumed to be zero if there is no bi-directed edge Y; in G.

In what follows, we discuss algorithms for Type-Il models. The appgrdare described can
be easily adapted to cover Type-l models. We say that Type-ll modeln@dels ofobservable
independenciesince independencies hold even after marginalizing all UVs.

5.2 Algorithm

As before, we provide a Gibbs sampling scheme to sample paran®tersx,B,V, 7} from the
posterior distribution given data sé? = {YD) Y2 . YW}  The setT = {7} is the set of
threshold parameters; = {1y = — < T} <T, <--- <T,;, = «} for each random variabl¢ with
K(i) different values. We will not discuss priors and algorithms for samplingiven the other
parameters: this can be done by standard approaches (e.qg., Alo@hind993)

For the purposes of the Gibbs procedure, we augment the data set withdéadying variables
D = {y*1 y*2 y*"} at each sampling step.

From the set of structural equations

Y —a+BY® te

it follows that the conditional distribution of %@ given the? U@ is a truncated Gaussian with
meana +BY (@ and covariance matri¥. The truncation levels are given by the thresholds and
observed datd (@): for eachY = Vi, the range foiy;" ) becomeqt ,,1}). Sampling from a
truncated Gaussian is a standard procedure. We used the algorithrreohK@nd Djuric (1999) in
our implementation.

To sampleV from its conditional, we will rely on the following result.

8. In Section 7, we perform experiments with binary data only. In this,dhgethresholds are set to fixed values:
{Tp=—,1, =0,T1, =} forall 0<i<m
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Proposition 5 Let G be an acyclic DMG, anda, B,V, T) be the respective set of parameters that
defines the probit model. For a fixéd,B, T, there is a bijective functiongf,+(-) mappingY* to
€. This is not true in general if; is cyclic.

Proof: If the graph is acyclic, this follows directly by recursively solving the moeglations,
starting from those correspondingXp vertices with no parents. This resultser- Y* — o — BY,
as expected.

For cyclic graphs, the following model provides a counter-example. leegtaph bey; —
Y1 — YJ — Y2 — Y[ Let the model b&" =Y>+€1,Y) =Y, + &, that is, by, = b1 = 1 anda = 0.
Let the variables be binary, with a threshold at zefo< 1 if and only if Y;* > 0). Then the two
instantiationgY;” = —0.8,Y;" = 0), (Y;" = 0.2,Y; = 1) imply the same paife; = —0.8,e2 = 0). O

The negative result for discrete models with cycles is the reason whynsodéls are out of the
scope of the paper.

Let D = {eW, ... eM}, wheree = fgq7(y@*). Due to this bijection (and the determinism
mappingY* to Y), the densityp(V | ©\V, D, D*) = p(V | O\V, D*) = p(V | O\V,yD* . y(dx)
is equivalent to

p(V | ©\V, D)

p(V | a,B,T,D* Df)
p(V|a,B,T,Df)
p(V|a,B,T)p(Df | a,B,7,V)
P(V) M=y P V).

For the given data s&bU D, defineS* as the sum of Y*@ —a —BY (@) (Y*® —q —BY@)T
over alld € {1,2,...,n}. Sincep(e | V) is normal with zero mean and covariance mawfixthe
posterior forV given all other parameters and variables is

ool

V| {O\V,D, D"} ~ G-IW(B+nU+S).

SamplingB anda is analogous to the Gaussian case, except that we have to consideethat th
left-hand side of the structural equations now referto We give the explicit conditional fom;,
with the conditional folb;j being similarly adapted from Section 4. The posteriordipis given by
anormalN((s)~tn{,s) where

§ = $+n(vl)“,

, co m n m

of = F-n Y (Vo vy (@ - th(d)>.
2on B 23 (g

5.3 A Note on Identifiability

The scale of the underlying latent variables in the probit model is arbitéssysuch, it has been
often suggested that such latents should have constant (e.qg., unitylcea(Ritt et al., 2006). There
are two usual arguments for fixing the variance: improving the interpretabilitye model, and im-
proving the mixing of the Markov chain. The interpretability argument is ndiqdarly appealing
within the Bayesian setting with proper priors, such as the one proposed paiber: the posterior
distribution of the parameters is well-defined by the prior uncertainty andattze d
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The goal of improving the mixing of the chain might be important: if some parametars
assume arbitrary values and still allow for the same model over the obksgyv#ien fixing such
parameters may help sampling by eliminating largely flat regions from the postetiach will
happen for large data sets and broad priors). In practice, howssading UVs might not be ad-
vantageous. In some cases it might increase the computational coshasaeapling step, while
sampling from the non-scaled model might work just fine. Many MCMC algarstivork well on
highly unidentifiable models such as multilayer perceptrons (Neal, 199&urlexperiments, we
do not use any scaling.

5.4 Remarks

Itis clear that the given approach can be generalized to other geeérhifizar models by changing
the link function that maps underlying latent variables (UVs) to observablasinstance, a model
containing discrete and continuous variables can be constructed bythsiigntity link function
instead of probit for the continuous variables. Notice that the continuarables will not nec-
essarily be marginally Gaussian if some of its parents are discrete. Otheufiotidns will have
different parameters besides thresholds, such as in multivalued (fmttymous”) discrete distri-
butions. A Bayesian account of Gaussian copula models is given by Ritt(@006), to which a
DMG-based family could in principle be defined. For continuous, marginaiy@aussian, vari-
ables joined by a Gaussian copula, it is possible that all link functions aeetiioie. In this case,
it is easier in principle to define cyclic models through Type-I UV models (eigur 6(b)) while
preserving the observable independencies.

It is important to point out that Type-II probit models with Markov equivelgraphs will not,
in general, be likelihood equivalent. A simple example is given by the two-gaj#hsy; — Y, and
Y1 < Yo: if Y1 is binary, then the marginal fdb in the first case is equivalent to having an underlying
latent variable that follows a mixture of two Gaussians. While some of thesesissun be solved
by adopting a mixture of Gaussians marginal independence model to aéophndirected edges
(Silva and Ghahramani, 2009), details need to be worked out. When thefgoadel selection
is to find causal structures (Spirtes et al., 2000), the usual guarasfteearch methods based on
Markov equivalence classes do not hold. However, it remains to bevgeether the parametric
constraints implied by the Type-Il formulation will allow for other consistergrapches for causal
discovery, as shown in the case of non-linearities with additive noisegiHziyal., 2008).

6. Scaling Up: Factorizations and Perfect Sequences

Each Monte Carlo sampling step for the given mixed graph models is theoretiealigble, but not
necessarily practical when the dimensionatityf the data is high. By using clever factorizations
of the graph and ordering of the variables, it is possible to sometimes scaightalimensional
problems. In this section, we describe approaches to minimize the run-time roftiginal likeli-
hood computation for bi-directed graphs, which is also important for compuériational bounds
for DMG models. We start, however, with a discussion on factorizationsegbdisterior density for
coefficient paramete. The context is the Gibbs sampler for acyclic models.
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Figure 7: The coefficientlz; andbs,, represented as nodes in (a), become dependent after condi-
tioning onY. However, they are still independentlwfy. This a general property of DAG
models. In DMG models, a sequence of bi-directed edges will conneetegifficients.

In graph (b), coefficientd,1,bs, andbsz will all be dependent givery. Coefficients
into nodes in different districts will still be independent. The graph in (&) diatricts
{Y]_,Yz,Yg,Y4} and{Y5,Y6}.

6.1 Factorizations

Our prior for coefficients{;j } is fully factorized. In directed acyclic graphs, this is particularly
advantageous: coefficients corresponding to edges into differelesrare independent in the pos-
terior? One can then jointly sample a whole set{tx; } coefficients with same index, with no
concern for the other coefficients. Figure 7(a) illustrates this factorizatithis means that, in
Equation (16), the summation ovedoes not go over all variables, but only foe 1. This also
follows from the fact thatV);* = 0 unless =t, sinceV is diagonal.

In ADMGs, however, this is not true anymore. For any pair of verticeselinky a path of
bi-directed edges, for examphg,— Yi. 1 < --- < Y;, one will have in general thzﬁt/)i{l #0. This
can be shown by using the graphical properties of the model when caondgion some arbitrary
datapointy':

Proposition 6 Let G be an acyclic DMG with vertex sét, and G’ the DMG obtained by aug-
mentingg with a vertex for each parameter;land a respective edgejb— Y. Then if there is a
bi-directed path Y« --- < Y in G, {hij, b} are not m-separated givenin G'.

Proof: The joint model for{Y,B} with independent priors on the non-zero entrie®a$ Markov
with respect tag’. The sequence of bi-directed edges betwgemdY; implies a path betweeln;
andb,, where every vertex but the endpoints is a collider in this path. Since evliger is inY,
this path is activel]

This Proposition is illustrated by Figure 7(b). The practical implication is asvisliom-
connection means that there is no further graphical property that watdd &/);* = 0 (i.e., only
particular cancellations on the expression of the inverse, unlikely to hapgeactice, would hap-
pen to generate such zeroes).

9. Sampling in Gaussian DAG models is still necessary if the model inclutte® ariables (Dunson et al., 2005).
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Consider the maximal sets of vertices in an ADMG such that each pair of elernethis set
is connected by a path of bi-directed edges. Following Richardson Y2@@3all this adistrict.1®
It follows that is not possible in general to factorize the posterid@ beyond the set of districts of
G. Figure 7(c) illustrates a factorization. Fortunately, for many DMG models latih directed
and bi-directed edges found in practical applications (e.g., Bollen, 1889naximum district size
tends to be considerably smaller than the dimensionality of the problem.

6.2 Perfect Sequences

It is still important to speed up marginal likelihood (or variational bound) cataions for models
with districts of moderate size, particularly if many models are to be evaluated.

Without loss of generality, assume our graplis a bi-directed graph with a single district, since
the problem can be trivially separated into the disjoint bi-directed compan@veswill consider
the case where the bi-directed graph is sparse: otherwise there is little &nled ¢y exploring the
graphical structure. In that case, we will assume that the largest nwhbpouses of any node in
G is bounded by a constartthat is independent of the total number of nodes,The goal is to
derive algorithms that are of lower complexityrimthan the original algorithms.

The bottleneck of our procedure is the computation szﬁé@(i),nsm(i) matrices, required
in the mapping between independent and dependent Bartlett paramejaeetidB 7), as well as
computing the determinant&nsp i) nsp.(i)|- Since in sparse districtssp.(i) grows linearly with
m, the cost of a riae algorithm for a single sampling stepd¢m?®) per node. Iterating over all nodes
implies a cost 0O(m?*) for a Monte Carlo sweep. Therefore, our goal is to find a proceduwehich
such mappings can be computed in less tém®) time. The general framework is reusing previous
inverses and determinants instead of performing full matrix inversion atedndimant calculation
for eachy;. The difficulty on applying low-rank updates when we traverse the tvee matrix
according to< is that the sets of non-spousesp. (i) andnsp. (i + 1) might differ arbitrarily. We
want sensible orderings where such sets vary slowly and allow foregffiow-rank updates, if any.

The foundation of many scaling-up procedures for graphical modelsigrdph decompo-
sition by clique separators (Tarjan, 1985), usually defined for unéidegraphs. The definition
for bi-directed graphs is analogous. Such a decomposition identifiemppergprime subgraphs
{Gpr@), Grr2),- -, Grk) } OF the original graphG. A prime graph is a graph that cannot be partitioned
into a triple(Y’,S,Y") of non-empty sets such th&tis a complete separator (i.&js a clique and
removingS disconnects the graph). Notice that a clique is also a prime subgraph.

The prime components of a graph can be ordered peréect sequenceYp), ..., Yp( } Of
subsets ol (Roverato, 2002; Lauritzen, 1996). DefiHg = Yp(1) U---U Y p(j) as thehistoryof the
perfect sequence up to tieh subgraph. LeRj = Yp(j)\H;_1 be theresidualof this history (with
R1=Yp(y)), andS; =H;j_1NYp(j the separator. In a perfect sequence, the t(idle 1\S;, Sj, R;)
forms a decomposition of the subgraph@fnduced by the vertex sét;.

Surprisingly, although bi-directed and undirected graph models hayediferent Markov
properties (in undirected models, conditioning removes dependencieg]iretted models, it adds
dependencies), perfect prime graph sequences prove to be alsh bstin an entirely different

10. Kang and Tian (2005) call such structucesomponentand reserve the word “district” to refer to the function map-
ping a vertex to its respective c-component, as originally introduced byaRison (2003). We choose to overload
the word and call “district” both the structure and the mapping.
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Y ={Y1,Y2,Y3}
G ® ® R
Vs ={Ye}

Figure 8: On the left, we have a bi-directed graph of 7 vertices arraanggdrdered such that nodes
are numbered by a depth-first numbering starting from “ro6t”with {Y1,Y2,Ya,Ys}
being leaves. Verticer1, Yo, ..., Ys} can be partitioned as the unioﬁzl% as illustrated
on the right.

way. The next subsection describes the use of prime graph decompesitiamparticularly inter-
esting class of bi-directed graphs: the decomposable case. Thelgaserss treated in the sequel.

6.2.1 DECOMPOSABLEMODELS

In a recursively decomposable graph, all prime subgraphs are cliGieswill assume that any
perfect sequence in this case contains all and only the (maximal) cliques@fatph. The resulting
decomposition can be interpreted as a hypergraph where nodes arexthm@hwdiques of the origi-
nal graph, and edges correspond to the separators. In the statistasitdgea decomposable model
is defined as a model that is Markov with respect to a recursively decgabfoundirected graph
(Lauritzen, 1996). Its widespread presence on applications of Madgdom fields is due to nice
computational properties, with tree-structured distributions being a particate. Our definition
of bi-directed decomposable models is analogous: a model Markov witkatespa recursively
decomposable bi-directed graph.

Given the residual sequen¢R1,R>, ..., Rk} obtained through a perfect sequence of maximal
cliques ofG, we define gerfect ordering< by numbering nodes iR; before nodes iRy, ..., Ri_1,
1 <t < kand ordering nodes according to this numberihé\ny ordering that satisfies this restric-
tion is a perfect ordering. Such an ordering has the following property.

Theorem 7 Let G be a recursively decomposable bi-directed graph such that the indexiitg
verticesY = {Y1,Ys,...,Yn} follows a perfect ordering<. Then for eachl < i < m, the set

Y1,Ya,...,Yi_1} can be partitioned aSJK:(i)‘Vt such that:
t=1

1. each?/ induces a connected subgraph@f and for each e 1} and ¥, € U, t #t/, Y is
not adjacent toy'in G;

11. Lauritzen (1996) describes other uses of perfect sequenceslirected graphs. Notice that the notion of perfect
numbering described by Lauritzen (1996) is not equivalent to our mofiperfect ordering, which is always derived
from a perfect sequence of prime graphs.
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2. for each{Yy,Yq} € U, if Y, is a spouse ofiYand ¥, is a non-spouse of Ythen p> q;

The proof is in Appendix C. This result is easier to visualize in trees. Onéade as a perfect
ordering some depth-first ordering for a given choice of root. Thenehch vertexy;, the set
{Y1,Y2,...,Yi_1} is partitioned according to the different branches “rooted; al he starting point
of each branch is a spouse ¥f and all other vertices are non-spouse¥;ofThe ordering result
then follows directly from the definition of depth-first traversal, as illusttateFigure 8.

Let > be the covariance matrix of a bi-directed decomposable model with gfapthere
follows a G-inverse Wishart distribution. Let be a perfect ordering fog. By the construction of
Bartlett's decomposition, mapping between parameters is given by

-1
ZSn&DﬁSpJUZnsmﬁynsmU)’

the computational bottleneck being the inversion. Notice this corresponds tauitiple regression
coefficients ofsps(i) on nsp.(i). But according to Theorem 7, using a perfect ordering implies
that within each; for a fixedY;, all preceding non-spouses 4§fare ordered before the preceding
spouses. Elemen{¥), Yq} in different s are marginally independent givéMy, ..., Yi—1}\{Yp, Yq}.
This implies that the regression coefficient of spovsen non-spous¥; will be zero if Y, andYy

are on different componentss, and will be identical to the previously computé  if they are

in the same component. Splitting the $¥{,Y>,...Yi_1} into preceding spousesg,_ ;) and non-
Spousey nsp (i), We have

Yspo(i) = Bosp(i)sp(i) Y spei) T Bspa(i).nspaiy Y nspu(i) T Espui) =

Yoy = (= Bspiiysputi) (B iy nspetiy Y nsp. i) +Esp. i)

where eaclg; is an independent Gaussian with variaggeand each elemenip,d) in Bsp_ (i) nsp. (i)
corresponds to the known (i.e., previously computed) regressionaeaffof the spous¥, on the
non-spouse’y. Matrix Bsp i) sp.(i) IS defined analogously. Hence, the regression coefficients of
Ysp.(i) ONYnsp, (i) @re given by

-1
Zsp.(i),nspa(i) Znsp. (i nspu(i) = (= Bopa(iy.spa()) ™ Bspoiynsp. i)- (19)

No inversion ofZ,sp (i) nsp.(i) IS €ver necessary. Moreover, the determinapd, i) nsp. (i)l iS given
by Myq st. Yoensp. (i)} Yas since all non-spouses precede the spouses (which means their rhargina
covariance matrix is given by the previously computed Bartlett parameters).

Hence, calculating; nsp, i) for all 1 <i < maccording to a perfect ordering has as a bottleneck
the inversion (of a triangular matrix) and multiplication in Equation (19), with a@b®(k? 4+ mk?),
K being the maximum number of spouses for any given node. The cost @rtteéning operations
for thei-th stage in the importance sample&?). As a function ofm, the cost of the parameter
sampling step falls fron@(m?) to O(m). The cost of computing the weights is dominated by the
computation ofK; from Equation (13), which i©(k® 4+ kn?) = O(m?). Figure 9 illustrates the
derivation of the new ordering in a tree-structured model.

6.2.2 NON-DECOMPOSABLEMODELS

In a non-decomposable model, some prime grafhg will no longer be cliques. In what follows,
we once again assume thatis a perfect ordering. Unlike in the decomposable case, the product
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=) QYOG Ye o —{Ye—CQeved

(a) (b)

Figure 9: The tree-structured (i.e., cycle-free) bi-directed graph)ihga as maximal cliques the
adjacent pairs. Such cliques can be ordered in a perfect sequesieeven in (b), where
rectangles indicate the separators. Notice®at {Ya,Yc},Ro = {Yg},Rs={Yp}. One
possible perfect ordering b, Y, Y, Ya}-

zsm(i),nsm(i)zﬁslm(i),nsp<(i) does not simplify in general. Instead we will focus only on fast methods
to computé;slw)!nsm(i).

As we shall see, the function of the perfect sequence is now to providmsible choice of
which inverse submatricef,\y}, W C Y, to cache and reuse when computig,
The same can be done to compute determin@its (i nsp. |-

A simple way of reusing the results from the previous section is by triangul&tiegion-
decomposable grap, transforming it into a decomposable og, which is then used to generate
the perfect sequence. We need to distinguish between the “true” spouaeodey; in G and the
artificial spouses irg’ that result from the extra edges added.

Let nsp. (i) be the non-spouses ¥ in G’ that precede it according te: by construction,
these are also non-spousesfoin G. Letspm~¢ (i) be the spouses of in G’ that arenot spouses
of Yj in G. That s, the set of preceding non-spouse¥; afi G is given bynsp. (i) = nsp.g/ (i) U
Shh<g'(1)-

Recall that the inverse of a partitioned matrix can be given by the followingiigte

nspe (i)’

A B\' [/AlrA1B(D-CA1B)ICA! —A-!B(D-CA!B)? (20)
C D - —(D-CA-1B)"ica? (D-CcA-1B)! '

-1

nsp (i) nsp. (i) W€ consider its partitioned version

In order to comput&

-1

-1 . Znsp«;/(i),nsp«i]‘/(i) Znsp<g/(i),spA<g/(i)

zns (i),nsp<(i) — : (21)
P ’ P zspA<g’(i)7nSp<g’(i) zSpA<g’(i)7spA<g’(i)

Let Knsp be the maximum number of non-spouses amon;adlithin any prime subgraph in-
duced byYpy. By using relation (20), where we assume for now that we know =
erslpw,(i),nsmg/(i), the cost of computing (21) B(MPKnsp) + O(K3sp) = O(MPKnsp) (the cost of com-
putingD — CA~'B is O(mPKnsp) + O(Kasp) = O(MPKnsp), while the cost of inverting it iO(k3sp))-
Treatingknsp as a constant, this reduces the complexity of sampling-theow of > from o(md)

to O(n?). A similar procedure applies to the computation of the determif2agh i) nsp. (i)l Using
in this case the relationship (26).
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The advantage of using the perfect sequence is to allow for the computdtiah A—1 =
nsp. . (i)nsp..(i) &t @ total cost, across all nodes, @fm®): each senhsp.4 (i) is guaranteed to
=G ’ =G

be equal to{Y1,Y2,...,Yins} WhereYins is the last non-spouse of in G’ that antecede¥. This
follows from the result in the previous section, since all non-spousasofie in a decomposable
graph precede its spouses. Therefore, if we store the inversearmamatrices fofYs, Yo,..., Y},
1 <i < m, we can obtain the required matricas®. This requires the storage 6f(m) matrices,
and each matrix can be obtained by the previous one by a low-rank ug@teith aO(nv) cost.
Arbitrary orderings do not guarantee such an incremental patterrhande, no efficient low-
rank updates. Notice that depending on the problem, many of such inmatsees can be dynam-
ically removed from memory if they are not used by any node placed aftartigydar position.

6.3 Remarks

In Gaussian undirected models, the problem of covariance matrix samptirgjszabe reduced to
sampling within each prime graph at the costQf®|%), || being the size of the largest prime
component (Atay-Kayis and Massam, 2005). Since bo#ndknsp are O(||), our procedure
costsO(?|P|? 4 |P|*) per prime graph, plus a cost 6(n?) per node to compute the importance
weights. Considering a number of/|P| prime graphs and¢f?| < m, the total cost iO(m*|?|),
down fromO(m?*). For undirected models, the corresponding cost by sampling step usipertaet
ordering decomposition i©(m|?|%). The higher-order dependency omin bi-directed models is
to be expected, since the Markov blanket of any ngde a connected bi-directed graphv§{Y; }.

It is clear that inference with a given bi-directed graph model will newalesat the same rate
of a undirected model with the same adjacencies, but this does not justifjirzglan undirected
representation if it is ill-suited to the problem at hand. One has also to conbaten problems
with directed and bi-directed edges, the actual maximum district size might besmadler than the
number of variables. For large problems, however, further approximstisemes will be necessary.
Drton and Richardson (2008b) describe some reduction techniquésafsforming bi-directed
edges into directed edges such that the resulting Gaussian model remaiasitheAs future work,
such methods could be adapted to theénverse Wishart sampling procedures and combined with
the ordering techniques developed here into a single framework. It wilba&lénteresting to develop
similar schemes for the Gibbs sampler.

7. Experiments

We now evaluate the advantages of the Gaussian and probit models irigBeiydsrence on real
problems.

7.1 Industrialization and Democratization Study

Bollen (1989) describes a structural equation model of political and dextizetion factors within
nations. “Democratization” and “industrialization” levels are abstract nefibat nevertheless of
clearly observable impact. They are tied to empirical observations thratfghedt sets ofindi-
cators For instance, an indicator of industrialization level is the gross natiomauyst. Hence,
democratization and industrialization levels are here defined as scalar\atatiles never ob-
served directly, while the observed data is composed of indicators. In thdsljrtbere is a total
of three indicators of industrialization, and four indicators of democratizafiiemocratization is
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Gross national product (GNP) 1960
Energy consumption per capita 1960
Percentage of labor force in industry 1960
Freedom of press 1960

Freedom of opposition 1960

Fairness of elections 1960

Elective nature of legislative body 1960
Freedom of press 1965

Freedom of opposition 1965

Fairness of elections 1965

. Elective nature of legislative body 1965

©Co~NoGORWDNE

[
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Figure 10: A directed mixed graph representing dependencies betWeansérved political and
economical indicators and three latent concepts (shaded nodes)fDenal., 2005;
Bollen, 1989).

measured in a longitudinal study, where data was collected in two year® @r#61965). The
indicators of democratization are pooled expert opinions summarized irdarabnumber scaled
from 1 to 10. Following Bollen, we will treat the model as multivariate Gaussidrich provides
an excellent fit (a p-value greater than 0.3 using a chi-square testsénple of 75 countries.

The corresponding mixed graph is depicted in Figure 10, along with aipgsnrof all indica-
tors. The graph is taken from Bollen (1989). Other hidden common cailffees the democratiza-
tion indicators over time, but the nature of such hidden variables is irrdlevéire problem at hand:
that is, the bi-directed edges are motivated by unmeasured causegbflipin the observed in-
dicators that exist over time. For instance, the records of freedomestpn 1960Y;) and 1965
(Ys) co-vary due to other unmeasured factors not accounted by dematimatifactors.
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Factor scores: countries in the latent space

O Deml1960
0 Deml1965
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Country (ordered by industrialization factor)

Figure 11: An embedding of 75 countries in a two-dimensional latent spi@oeocratization level
in 1960 and 1965. Boxplots of the Bayesian posterior distribution of thggtion
in the two dimensions are depicted in the vertical axis. Countries are adamdee
horizontal axis by the increasing order of their posterior expected indiization level.
Figure adapted from Dunson et al. (2005).

An example of Bayesian inference application is shown in Figure 11. Btsxpfahe posterior
values ofDemocratization Level 1968nd Democratization Level 196&re generated. Dunson
et al. (2005) use this information to, for instance, find clusters of cowntmi¢he latent space. An
example of a cluster is the one formed by the bottom 16 countries in the industitiizevel
ranking: the growing trend of democratization levels after the first 16tciegris interrupted. This
type of analysis might provide new insights to a polical scientist, for examplkeMealing particular
characteristics for such a group of nations.

7.1.1 B/ALUATING THE MCMC ALGORITHM FORDIFFERENTMODELS

In our analysis, we fix to unity the coefficients corresponding to the ebigkstrialization 1960
—Yp, Democratization 1966~ Y, andDemocratization 1965~ Yg, since the scale and sign of the
latent variables is arbitrary. The intercept terms of the equationg; fof andYg are set to zero,
since the mean of the latents is also arbitrary. The resulting model is identifiable.

We apply the Gibbs sampling procedure to three different models. Thesi@al3MG model as
described in this paper, and two modified DAG models. The first DAG modetisttie described
by Dunson et al. (2005), where each bi-directed edge is substituted bgnaillary” latent (as
mentioned in Section 2.3). For instance, the pathway correspondifag-t0Ys is substituted by the
chainY, < Dgag — Yg, whereDgg is unobserved. Dunson et al. further assume that all covariances
due to such ancillary latents are positive. As such, the coefficients xgrmto {Y;,Y;} are set
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Figure 12: Posterior distribution of parameters associated with the regpedtes in the industri-
alization/democratization domain. Smoothed posterior obtained using the ofiaut o
Gibbs sampler and the@eNsITY function of R 2.6.0.
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Figure 13: The first three plots show the initial 5,000 iterations of a run ofGinds sampling
algorithm for the DMG model for three different parameters associatedesliges in
the graph. The last plot depicts the posterior distribution the error coxariassociated
with the edgeY7 < Yi1 (smoothed with the kernel density estimator from the statistical
software R).

to unity, with the variance ob;; corresponding to the residual covariance{Wf,Y;} given their
parents. Means of ancillary latents are fixed at zero.

However, even for covariance matrices with positive covariances, énaeterization is not
complete. This result is evident from the fact that the variancésanidY; will both be larger than
their covariance, which is not true of covariance matrices in generalthioparticular problem,
however, this extra restriction provides no measurable difference in trfiiness. It does serve
as a reminder, however, that “intuitive” parameterizations might hide inadbds constraints.

The second DAG model is an extension of the DAG model suggested bybenal., the only
difference being that the coefficients corresponding to ebges: Y;,i < j, are free to vary (instead
of being fixed to 1). In general, there are Gaussian DMG models thabtherparameterized this
way (Richardson and Spirtes, 2002). Notice also that because ofschiath aPemocratization
1960 — Y4 < Ys < Democratization 1965the set of independence constraints in this graph can
only be represented by a DAG if we include the ancillary laté€pfs That is, there is no DAG with

1218



Effective Sample Size

BAYESIAN LEARNING WITH MIXED GRAPH MODELS

MCMC comparison: DMG vs. positive covariance DAG MCMC comparison: DMG vs. unconstrained DAG

1 T
O DMG !
B posDAG 1
T

50000
50000

40000
40000
]

30000
]
30000
]

Effective Sample Size

20000
]
20000
]

10000
]
10000
]

(LRRARRRRR R R RN R RN RN RN RN R R R R RN R R RN RN R R RN AR RN RRRE] RN RN R R RN R RN RN R RN R RN R RN RN RN RN R
14 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 14 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

Parameter Parameter

Figure 14: Comparison of the effective sample size of the MCMC algorithplieapto the three
models, DMG, DAG with positive covariances (posDAG) and general DAS ex-
plained in the main text. The horizontal axis is the boxplot for each indepémaie
try of the observed covariance matrix, 66 in total. The boxplots are obt&iosd80
independent chains initialized randomly, where each chain runs forGagiations.

exactly the same set of independence constraints as the given DMG antiéary latent variables
are added.

We study the behavior of the MCMC algorithm for these three motfelsturns out that the
mixing properties of the chain are considerably affected by the choice deimdrecall that, in
the Gibbs sampling algorithm for the DMG model, a whole row of the error ¢avee matrix is
sampled jointly conditioning on the other parameters. For the DAG models all eotriles error
covariance matrix are independent and can be sampled jointly, but thisagecpnditioningon the
ancillary latents, which do not exist in the DMG model and have to be samplgdrothe DAG
case.

For the majority of the covariance entries, the MCMC procedure mixed qulteasellustrated
in Figure 13. Notice how about 12% of the sampled DMG error covaridoc&s < Y1, were under
zero, which could raise suspicion over the assumption of positive coeaga Autocorrelation is

12. A few technical notes: we used the priors suggested in Dunson(2085b), except that we changed the confidence
in the prior of the covariance of the error terivigo be smaller (in order to minimize the influence of the priors in the
models, since in this particular problem the DMG and DAG models are neaglihdod equivalent but not posterior
distribution equivalent- the priors belong to different families). We used 1 degree of freedoouirng-Inverse
Wishart, with the matrix parameter being the expected value of Dunsorsegiradr. For the DAG models, we also
used theg-inverse Wishart prior for the error terms, but where all error tesinesindependent. For the DAG model
with a free coefficient per ancillary latent, we assigned a standard @ayssor to such coefficients. The chains
were initialized randomly by sampling standard Gaussians for the coatfic@d latent variables. Error covariance
matrices were initialized to diagonal matrices with diagonal entries sampifairaly in [1, 2]. Coefficient parame-
ters were sampled jointly given the error covariance matrix and latei@bles. Latent variables were also sampled
jointly, given the parameters.
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Figure 15: Comparison of the effective sample size of the MCMC algorithplieapto the three
models. Here we plot the average effective sample sizes over 80 trialsGfitbsam-
ples for each of the 66 entries of the covariance matrix. Points over the (iieata
parameters where the DMG approach performed better.

essentially zero for most parameters at a lag of 50. The degree of englation, however, varied
significantly between the DMG model and each DAG model. The chains for M& nhodel

mixed considerably better. To summarize such behavior, we calculatedféictivef sample size
of the samples obtained from several chains. The parameters of intetleist comparison are the

independent entries in the X111 dimensional observed covariance matrix. This is a total of 66

parameters. The effective sample size statistics were obtained by 80madéepehains of 50,000
samples each, for the three models. For each chain and each parameetermpute the desired
statistic using th&FFeCTIVESIZE function implemented in the R packagenDa, freely available
in the Internet.

Results are summarized by boxplots in Figure 14. Parameters are ordtred-axis following
the upper triangular covariance matrix, scanning it in the of@&fy,,0v,v,- - -, Oy;Y;1, O¥oYss - - -5
Ov,,v;; }- White boxplots correspond to the distribution of effective sample size statistth the
DMG model across the 80 independent chains. Gray boxplots congéspahe two DAG variants.
There is no significant difference between the behaviour of the Gibhplsay procedure for the
two DAG models. The procedure with the DMG model is clearly better beha&ed summary
statistic, the average effective sample size over 80 trials was steadly ilartdeer DMG outcome
than in the positive DAG outcome (61 out of 66 parameters) and uncoretrBifG (59 out of 66).
The comparison of averages is illustrated by Figure 15.

By caching the sufficient statistics of the data and factorizing the samplirgguoe according
to the districts of the graph, the running time for generating 50,000 sample$ ingt DMG model
was of 34 seconds in a dual core Pentium IV 2.0 GHz. Depending on tireectity of the bi-
directed components of the graph and on the implementation of matrix inveramoplisg from the
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DAG model might be faster than sampling from the DMG. In this particular ssaippling from the
DAG models was substantially slower, an approximate average of 60 sefopitmbth variants. This
can be explained by the fact that sampling latent variables is very experspecially considering
that in the given DAG models all ancillary latents become dependent whelitioming on the data.
To summarize, the DMG approach allowed for a complete parameterization withicagtly better
mixing properties, while still resulting in a faster MCMC procedure.

7.2 Structure Learning Applications

When trying to find a point estimate of graphical structures (i.e., returninggéesgraph that ex-
plains the data well), simple approaches such as testing for marginal irteymées are reasonable
learning algorithms under the Gaussian assumption. The Bayesian appnoaever, allows one
to compute odds and distributions over graphs and graph statistics, fopkxadhe joint probability
of small substructures (Friedman and Koller, 2003). Moreover, it isleatr how the independence
test procedure controls for the predictive ability of the model, which is striegghtforward function
of the edges that are selected due to the quantitative aspects of the elepesad

We evaluate our Bayesian model selection contribution, focusing on théeM@arlo sampler
for bi-directed models. Jones et al. (2005) propose the following pidoigraphs:

P(GIB) = BEI(L- )OS E

wheref is a hyperparametejz| is the number of edges i§, andm is the number of nodes. As
suggested by Jones et al., we chopse0.5/(m— 1), which puts more mass on graphs w@(m)
edges than the uniform prior.

We start with a brief synthetic study to compare the approach against a siotpbffdctive
approach based on the BIC approximatldrn experiment with gene expression data closes this
subsection.

7.2.1 SYNTHETIC STUDIES

As a sanity check for the procedure, we generate synthetic 10-dimah&aussian data from
models that are Markov with respect to a bi-directed graph. One huddtadets of 50 datapoints
each are generated, each coming from a different middade initially find a structure by marginal
independence tests using the Fisher’s Z statistic at a 0.05 level. From tlirsgsparint, we perform
two searches: one using the BIC score, and the other using the margeidddd with aG-IW
prior.® Given the best model for each procedure, we evaluate the prediagitikédinood on a test
set of 2,000 points which are independently sampled for each of the 108lsnod

13. The BIC approach is an asymptotically consistent score for seléhéngaximum a posteriori Gaussian bi-directed
graph model (Richardson and Spirtes, 2002).

14. The details of the simulated data are as follows: we start with DAG with m@sedwith observed nodes
{Y1,Y2,..., Y10} and hidden node$Xy, X, X3,X4}. Each individual edgei — Y;j is added with probability 0.35,
and no other edges are allowed. We reject graphs with fewer than £8.edj coefficient parameters are sampled
from a standard Gaussian, and variances from an uniform distributiih The model ovelY corresponds to
a bi-directed graph, where the edge— Y;j exists if and only ifY; andY; have a common latent pareX in the
DAG. We then store 50 samples for tifevariables in a data set. The procedure is repeated 100 times with different
parameters and graphical structures each time. The average noiheloigies in the resulting simulation was of 18.4
edges per graph

15. In both cases, we center the data at the empirical mean of the traétiagdsassume the data to have been generated
from a zero-mean Gaussian. T§elnverse Wishart is an empirical prior: a diagonal matrix with the trainawgance
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Figure 16: The differente in predictive log-likelihood with models learned whia G-IW prior
and the best BIC models found by greedy search. Although the differper point is
small, it reflects a persistent advantage of the full Bayesian approapireKa) shows
the estimated density of the distribution of differences when predicting pogitg u
the Bayesian predictive log-likelihood. Since the BIC search method duestempt
to maximize the finite sample posterior distribution, we provide Figure (b) for com-
pleteness: in this case, the predictive log-likelihood for the BIC model aksilated
using the maximum likelihood estimator. The difference hardly changes, arfdlt
Bayesian model still wins (density estimates produced by#esiTy(-) function of R
2.6.0.).

The average difference in log-likelihood predicttbrbetween the structure learned with the
Bayesian prior and the BIC-induced model is depicted in Figure 16(a¥ i$ktomputed by con-
ditioning on the learned structures (fully Bayesian vs. BIC maximum a postgraphs) and
marginalizing over the posterior of the parameters. The parameter proth@se used for the
structure learning step. This might be unfair for the BIC proceduregsins not designed to max-
imize the finite sample posterior: hence we also show in Figure 16(b) the rebtdined when the
predictions given the BIC model are obtained by using the maximum likelihadmatsrs of the

of each variable used as the diagonal. The number of degrees dbifinéie set to 1. The search is a standard greedy
procedure: we evaluate the marginal log-likelihood or BIC score fcin ggaph that differs from the current candidate
by one edge (i.e., graphs with one more or one fewer edge) and giaknthwith the highest score. We stop when
no improvement is possible.

16. In terms of incorrect edge additions and deletions, the procetlates/e about the same: an average of one third
of the edges is missed, and 7% of edges are incorrectly added (iralipeucentages are with respect to total
number of possible mistakes in each graph). Unlike BIC, howeverporedure allows for different trade-offs
by using different priors. It should also be pointed out that countirggestrors is just one possible measure. A
more global quantitative score such as predictive log-likelihood takesatount, indirectly, the magnitude of the
errors—although it is not a direct measure of model fitness.
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parameters. The average difference in the first case is 400.07, Bnslightly less for the second
case (389.63). Most of the mass of the difference distribution is posg@vet of 100 for the first
case, 89 out of 100 in the second case), which passes a sign tesD&tlavel. The difference is
still relatively small, suggesting that informative prior knowledge might beegsary to produce
substantially better predictions.

7.2.2 (ENE EXPRESSIONANALYSIS

To illustrate the use of Bayesian model selection approaches, we anaygerth expression data
previously studied by Drton and Perlman (2007), also as Gaussian btetirsmodels. As before,
our goal will be to compare the predictive power of models learned bydgreearch with BIC and
greedy search with the Bayesian posterior.

The data consists of 13 gene expression measurements from a metabotickneiwotal of
118 points is available. Using all data, the BIC-induced graph has 3%gdbée the finite sample
posterior graph had 44. The same procedure used in the synthetic stodiestializing graphs
and choosing priors and centering the data, was applied in this case witihomwes of degrees of
freedomd for the G-IW prior: 8 =1 andd = 5. Preliminary experiments where 90% of the samples
are assigned to the training set showed a negligible difference betweeodsete then generate
10 random splits of the data, 50% of them assigned to the training set. Rredéegults using the
MCMC method for evaluating the Bayesian predictions (with half a million samples3lown in
Table 1. The BIC graphs are by definition the same in the three sets of gva|uaut parameters
are learned in three different ways (maximum likelihood point estimation agddsan averaging
with two different priors). There is a steady advantage for the Bayegiproach, although a small
one. Notice that using Bayesian averaging over parameters given@gr&bh improves prediction
when compared to using the maximum likelihood point estimate, despite the simplisite dio
prior in this study. Notice also that the cases where the Monte Carlo methositaksor no
advantage over the BIC method were the ones where the maximum likelihoodtessim@duced
their best results.

7.2.3 REMARKS

The procedure based on the sampler is doable for reasonably siz#drpron the order of a few
dozen variables in desktop machines. Further improvements are ngcisskarger problems.
One aspect that was not explored here was re-using previous cdiopsitahen calculating the
probability of a new candidate, in a way similar to the local updates in DAG mo@dligKering,
2002). How to combine local updates with the ordering-based improvedlsaofSection 6 is
left as future research. Several practical variations can also be impiedpesuch as vetoing the
inclusion of edges associated with high p-values in the respective indiepen tests. Such tabu
lists can significantly shrink the search space.

It is important to evaluate how the Monte Carlo procedure for computing d@inconstants
behaves in practice. For all practical purposes, the procedure is antampe sampler and as such
is not guaranteed to work within a reasonable amount of time for problemglotiimensionality
(MacKay, 1998). We can, however, exploit the nature of the probteradr benefit. Notice that the
procedure depends upon a choice of orderintpr the variables. Different orderings correspond
in general tddifferent importance distributiondNVe can play with this feature to choose an suitable
ordering. Consider the following algorithm for choosing an orderingwyia bi-directed graply:
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-6578.44
-6392.67
-8194.54
-6284.00
-9428.00
-7111.45
-6411.43
-6350.44
-6374.31
-7247.82

-6382.45
-6284.64
-6567.89
-6265.16
-6473.93
-6573.85
-6329.53
-6319.87
-6307.13
-6584.96

-6308.19
-6277.94
-6433.51
-6285.77
-6400.51
-6572.74
-6317.18
-6295.19
-6308.21
-6468.51

-6342.82
-6279.54
-6553.88
-6252.54
-6483.43
-6528.76
-6313.05
-6299.53
-6297.47
-6528.61

-6296.14
-6285.26
-6452.15
-6258.42
-6469.45
-6513.02
-6309.18
-6297.80
-6304.25
-6444.55

Table 1: Results for the 10 random splits of the gene expression data, @iitobthe points as-
signed to the training set. The first column shows the predictive log-likelitionthe
graph learned with the BIC criterion and parameters fit by maximum likelihobd.next
two columns show predictive log-likelihood results for the graphs learnddBIC and
the Monte Carlo (MC) marginal likelihood method usingzalW prior with degrees of
freedomd = 1. The last two columns are the results of a prior whetre5. Best results in
bold.

1. Let< be an empty queue.

2. Let G’ be the graph complement ¢f, that is, the graph wher¥;,Y;} are neighbors if and
only if they are not adjacent ig.

3. LetC be an arbitrary maximum clique @’. Add all elements of” to the end of< in any
arbitrary order.

4. For each pai{Y,,Y;}, not intersecting”, such that the pathf < Y¢ < Y] exists inG and
Yk € C, add the edg¥ « Y to G.

5. Remove all element% € C from G, including any edge intd.

6. Iterate Steps 2-5 untif is an empty graph.

The resulting queue: is an ordering that attempts to maximize the number of variables that are
marginally independent given their common predecessors. This is jupbsamility to simplify the
importance sampling distribution: perfect orderings and the approachssiiplifying maximum
likelihood estimation described by Drton and Richardson (2008b) coulddyated to provide even
better orderings, but we leave this as future wbirk.

17. In our actual implementation used in the experiments in this Section, wenrapted an even simpler approach:
instead of finding maximum cliques, we start to build a clique from a particudee, “greedily” adding other nodes
to the clique according to the column order of the data set. Each nodeaggsharcandidate clique, and we pick an
arbitrary clique of maximal size to be our new g&t
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Figure 17: An evaluation on the stability of the Monte Carlo normalizing functimegdure. The
top row depicts the marginal likelihood estimates for the gene problem usingitwo d
ferent distributions implied by two different orderings, as explained in thie Eperi-
ments with synthetic data are shown in the bottom, and the bottom-right figure désstra
major differences.

Figure 17 illustrates the difference that a smart choice of ordering caa.rii&le top left graph
in Figure 17 depicts the progress of the marginal likelihood Monte Carlo estirfatthe gene
expression problem using the graph given by the hypothesis testingdan@ The model has 55
parameters. We obtain three estimates, each using a sample of 100,000 wlicltsallows us
to observe how the estimates change at the initial stages. The variablmgrdethis case is the
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ordering present in the original database (namely, DXPS1, DXPS233XPXR, MCT, CMK,
MECPS, HDS, HDR, IPPI1, GPPS, PPDS1 and PPDS2). The top rigibhgghows three runs
using the optimized ordering criterion. Convergence is much faster in thes aad both samplers
agree on the normalizing constant estimate.

As an illustration of the power of the procedure and its limitations, we genesasytthetic
sample of 1,000 training points from a graph with 25 nodes, using the saroedore of Section
7.2.1. A run of two different samplers is shown at the bottom left of FigiteThey are seemingly
well-behaved, the ratio between the largest and median weight being aidiéread one hundred
in the “optimally” ordered case. In contrast, the bottom right corner of feigr illustrates the
method with a covariance matrix of 50 random variables and 1,000 trainingspdlntice this is a
particularly dense graph. Much bigger jumps are observed in this cdsben is no clear sign of
convergence at 100,000 iterations.

While there is no foolproof criterion to evaluate the behavior of an importaacepler, the
relationship between orderings provides a complementary technique: ibtheahzing constant
estimators vary substantially for a given set of random permutations oftietles, then the out-
comes are arguably not to be trusted even if the respective estimatoes &ppave converged.

Concerning the choice of priors, in this Section we exploited empirical pribing G-Inverse
Wishart matrix hyperparameter is a diagonal matrix where variance enteigdssesample variances.
While this adds an extra bias towards diagonal matrices, at least in ouiragpés we performed
close to or better than other approaches—it is however not clear whetheuld have done much
better. Itis still an open question which practical “default” hyperparamaetél prove useful for the
G-IW. Elicitation of subjective priors in the context of structural equation modaisbenefit from
pre-existing work on Bayesian regression, although again practicalratight be different for
the G-IW. Dunson et al. (2005) describe some limitations of default priors for tstraicequation
models. A thorough evaluation of methods for eliciting subjective priors iobthe context of
this work, but existing work on inverse Wishart elicitation provides a stanpioigt (Al-Awadhi
and Garthwaite, 1998). As in the case of the inverse Wishartgthaverse Wishart has a single
hyperparameter for specifying degrees of freedom, a limitation which migtiva® new types of
priors (Brown et al., 1993).

7.3 Discrete Data Applications

We now show results on learning a discrete distribution that factorizesdingdo a mixed graph.
Drton and Richardson (2008a) describe applications on real-worldybitzda modeled according
to bi-directed graphs. The empirical contingency tables for two studiebe&ound in the corre-
sponding technical report (Drton and Richardson, 2005). DrtonRiodardson used a complete
parameterization for bi-directed binary models and a maximum likelihood estimataceqgure.
In this section, we analyze these two data sets to illustrate the behavior oageasiBn procedure
using the probit model. Our model imposes probit constraints that are faooted by Drton and
Richardson, but it allows us to obtain Bayesian credible intervals andcosts.

The graphs used in the two studies are depicted in Figure 18. The fidéprds a study on the
dependence between alcoholism and depression, as shown in FigareA 8ata point is collected
for a given pair of mono-zygotic twins. For each siblifg it is recorded whethe§ is/is not
alcoholic &), and whethef suffers/does not suffer from depressi@i)( The hypothesis encoded
by the graph is that alcoholism and depression do not share a commdit ganse, despitd and
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Figure 18: Two learning problems with discrete data. In (a), the graplvssbependencies con-
cerning alcoholism4;) and depressiorl);) symptoms for paired twin§l,2}. In (b), a
model for dependencies among features of a study on parole appeklding the suc-
cess of the parole, if the type of offense was a person offense caimobif the offender
had a dependency on drugs and was over 25 years old. All varialtlessia studies are
binary and further details and references are provided by Drton Eh@iRson (2008a).
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Figure 19: Posterior distribution of some of the marginal contingency taliteegrior the twin
model.

D having some hidden (but different) genetic cause# ahdD did have genetic common causes,
one would expect that the edgas — D, andA; « D1 would be also required. The compounded
hypothesis of marginal independencies #prandDj, i # j, can be tested jointly by testing a bi-
directed model. Notice that no reference to particular genetic hidden<afisgcoholism and
depression is necessary, which again illustrates the power of modelingrigynaiezing out latent
variables.

The second study, as shown in Figure 18(b), concerns the deeslamong several variables
in an application for parole. The model implies, for instance, that the ssiof@gparole application
(Successiode, in the Figure) is independent of the age of the offender beingr @xdAgenode).
However, if it is known that the offender had a prior sentence, thesgaviables become dependent
(through the pattsuccess— Prior sentence— Age. As reported by Drton and Richardson, their
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Entry Estimates Entry Estimates
A1A;D1D;, | E[O|D] | MLE | UMLE | AjA;D1D; | E[©|D] | MLE | uMLE
0000 0.461| 0.461| 0.482 1000 0.018| 0.018| 0.013
0001 0.136| 0.138| 0.134 1001 0.003| 0.004| 0.007
0010 0.157| 0.159| 0.154 1010 0.021| 0.020| 0.013
0011 0.097| 0.096| 0.085 1011 0.009| 0.009| 0.015
0100 0.032| 0.032| 0.025 1100 0.008| 0.010| 0.005
0101 0.022] 0.021| 0.015 1101 0.003| 0.002| 0.003
0110 0.007| 0.008| 0.012 1110 0.003| 0.005| 0.007
0111 0.012| 0.012| 0.017 1111 0.006| 0.005| 0.012

Figure 20: The posterior expected value of the 16 entries in the twin stuldy(E®|D]). Results
generated with a chain of 5,000 points. We also show the maximum likelihood egtimate
of Drton and Richardson (MLE) and the maximum likelihood values obtainid) @
unconstrained model (UMLE). Despite the probit parameterization, in thigcylar
study there is a reasonable agreement between the Bayesian estimater estihiator
of Drton and Richardson.

binary bi-directed model passes a significance test. Drton and Riclhaatisn attempted to learn
an undirected (Markov) network structure with this data, but the outconseawfally connected
graph. This is expected, since Markov networks cannot represagtrmabindependencies unless
the graph is disconnected, which would introduce all sorts of other imdiepeies and possibly
not fit the data well. If many marginal independencies exist in the dataaamgprocess, Markov
networks might be a bad choice of representation. For problems with symsnaiiih as the twin
study, DAGs are not a natural choice either.

7.3.1 RESULTS

For the twin data problem, we used a simple prior for the covariance matrix ahterlying latent
variables: ag-inverse Wishart with 1 degree of freedom and a complete covarianceawitfue
of 2 for each element in the diagonal and 1 outside the diagonals. Tlilesdre fixed at zero,
since we have binary data. We present the expected posterior vathescointingency table entries
in Figure 20. The outcome is essentially identical to the maximum likelihood estimaidarf
and Richardson despite the probit parameterization. Moreover, withrooegure we are able to
generate Bayesian confidence intervals, as illustrated in Figure 19e3tksrare very stable for a
chain of 1,000 points.

For the parole data, we usedzinverse Wishart prior for the covariance matrix of underlying
variablesy* with 1 degree of freedom and the identity matrix as hyperparameters. Weacehe
effective sample size of the Gibbs sampler for our DMG model and the DAGehairdained by
using the ancillary latent parameterization of Section 7.1 for the underlyingt legeiable covari-
ance matrix:® Boxplots for the 16 contingency table entries of the twin network and the B82en
of the parole study are shown in Figure 21. The setup is the same as in therdénation and

18. The priors used are as follows: the ancillary representation was giyprior with mean 1 and variance 1 for the
coefficientsX;j — YJ-*, for j > i, and set constant to 1, if< j. The means of the ancillary latents were fixed at
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industrialization experiment, where we run 80 independent chains anthplalistribution of the
effective sample sizes to measure the mixing time. We ran a shorter chain 6ff@bis, since
computing the contingency table entries is expensive.

There is a substantial difference in effective sample size for the parmlg dNotice that we are
comparing MCMC samples for the entries in the contingency table, which in tii& é&e requires
integrating out not only the underlying latent variables implicit in the probiapesterization, but
also the ancillary latents that account for the bi-directed edges. Thigdhgraf latent variables,
which does not exist in the DMG case, causes a considerable incneamgazorrelation of the
chain compared to the DMG model. The standard DMG parameterization caebes a way
of obtaining a collapsed Gibbs sampler, where the parameterization byumitstrreflects latent
variables that were analytically marginalized.

MCMC comparison: DMG vs. DAG (twin data) MCMC comparison: DMG vs. DAG (parole data)
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Figure 21: Comparison of effective sample sizes for the twin data (a) arudepdata (b). 80 in-
dependent chains of 2,000 points were obtained using the Gibbs samplarghaly
and the respective box-plots shown above. The Markov chain with th& Rjpbroach
easily dominates the DAG one. For the parole data, the average effentiessize for
the DAG was as low as 60 points.

8. Conclusion

Directed mixed graph models are a generalization of directed graph modeé&nevér a machine
learning application requires directed graphs, one should first considether directed mixed
graphs are a better choice of representation instead. DMGs repoeswlitional independencies
of DAGs where hidden variables have been marginalized out. Given tinab$h applications it is

0. Variance parameters were givéh5,0.5) inverse gamma priors, which approximately matches the priors in the
DMG model.
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Figure 22: In (a), a simple bi-directed chain with four random variables.(b), the respec-
tive factor graph that is obtained from a Bartlett parameterization using riher-o
ing <= {Yl,Yz,Y3,Y4}. In this case, the factors an{Yl) X p(Yz’Yl) X p(Y3‘Y1,Y2) X
p(Ya|Y1,Y2,Y3). A different choice of ordering (e.g., the perfect ordering) coulo-pr
vide simpler factors on average, but the presence of a factor linked warables is
unavoidable.

unlikely that all relevant variables are known, DMGs are a haturakssprtation to use. In this pa-
per, we introduced priors and inference algorithms for Bayesian leawith two popular families
of mixed graph models: Gaussian and probit. We discussed some implemeraaticagproxima-
tions to scale up algorithms. We showed examples of applications with reabddtdemonstrated
that Bayesian inference in Gaussian and probit DMG models using MCM@aee substantially
faster mixing than in comparable DAGs.

It is part of the machine learning folklore that factor graphs can subslireeted networks.
In an important sense, this is known not to be true: undirected and facphg only allow for
monotonic independence models, where explaining away is ruled out. Thigles a vast number
of realistic, non-monotonic, models. While factor graphs are perhapsatiaestructuref choice
for general message-passing algorithms (e.g., Yedidia et al., 2005gré&yr from being universal
modeling languagefr independencies.

What is true is that for any distribution that is Markov with respect to a DA®MBIG there
is at least one corresponding factor graph model, but this is a vaclaosaf little interest: any
distribution can be represented by a single-factor model involving allhlasa Some wilkequire
a factor with all variables, even under the presence of a large numirategfendence constraints.
For instance, a factor graph corresponding to any given bi-diredteih evill necessarily include
a factor node adjacent to all variable nodes, as illustrated in Figure 22n\Warameterizing a
distribution with many marginal independencies (e.g., a bi-directed treegspective factor graph
would be no more than an unhelpful drawing. A better strategy for sohaagworld problems is
to define a family of models according to the (directed/undirected/factophgraf choice, and let
the inference algorithm decide which re-expression of the model suitsobéem. This has been
traditional in graphical modeling literature (Lauritzen, 1996). The strassippted in this paper
followed this spirit.

An alternative has been recently introduced by Huang and Frey (2008$ paper discusses
graphical families of marginal independence constraints (essentially idktatioi-directed graphs,
although other types of constraints might implicitly follow from the parameterizatidiodels are
parameterized using a very different strategy. The idea is to parametariagdative distribution
functions (CDFs) instead of densities or probability mass functions. A sirapterization criterion
can be defined in the space of CDFs, but densities have to be computedbsl anessage-passing

1230



BAYESIAN LEARNING WITH MIXED GRAPH MODELS

scheme. The particular application discussed by Huang and Frey (2060R)in principle be ap-
proached using the Gaussian bi-directed probit model of Section 5, éyiatameterization in
Huang and Frey (2008) does not need to rely on Gaussian distributioissnot clear, however,
how to efficiently perform Bayesian inference in this case and whicht@nts are implicitly im-
plied by the different choices of parameterization. The different petsge given by products of
CDFs is novel and promising. It should point out to new directions in mixaglymodeling.

The structural equation modeling literature also describes several pgiagvags of specifying
non-linearities in the structural equations (Lee, 2007). Less common ipéuiisation of non-
Gaussian models for the joint density of the error terms. Silva and Ghahir§2089) introduce a
flexible mixture of Gaussians approach for models of marginal indeperdérhere is a need on
how to combine this approach with flexible families of structural equations imgpuatationally
efficient way. Also, models with non-additive error terms remain to be egglor

Currentinterest in estimating sparse statistical models has lead to ap@tizattestimate struc-
tured covariance matrices (e.g., Bickel and Levina, 2008). This dawenpcould also lead to new
families of priors. In particular, different matrix decompositions have motil/different ways of
specifying priors on covariance matrices. For instance, Chen andb(2803) propose a modified
Cholesky decomposition for the covariance matrix of random effectnpetiers: standard devia-
tions are parameterized separately with a prior that puts positive massooreri@nces (effectively
allowing the random effect to be neutralized). Wong et al. (2003) desarprior for inverse corre-
lation matrices that is uniform conditioned on the number of structural zéteropolis-Hastings
schemes are necessary in this case.

Shrinkage methods have also been applied to the estimation of covariancematirabommon
approach, shrinkage towards a diagonal matrix (e.g., Daniels and 328, could be generalized
towards some sparse matrix corresponding to a bi-directed graph. Alttebuigtkage will not
generate structural zeros in the resulting matrix, allowing for sparseksigenmatrices other than
the identity matrix could be interesting in prediction problems.

Some approaches can exploit an ordering for the variables, which imhatisome domains
such as time-series analysis. While #idnverse Wishart is invariant to a permutation of the vari-
ables, new types of priors that exploit a natural variable orderingldhmiof interest, as in the
original work of Brown et al. (1993) that motivated our approach.

Other directions and applications are suggested by recent papers:

¢ learning measurement models:the industrialization and democratization problem of Sec-

tion 7.1 provides an example of a measurement model. In such a family of preldbserved
variables are children of latent variables, and connections from latentssayvables define
the measurement model. Sparsity in the measurement can be exploited to allmweréor
general dependencies connecting latent variables. One role of thedtied component is
to allow for extra dependencies connecting observed variables thabbaecounted by the
explicit latent variables in the model. Silva et al. (2006) describes a leaahgagithm for
mixed graph measurement models using the “ancillary” parameterization. ail@ahques-
tion is which alternative optimization strategies could be used and how to scaleithe

e structural and relational learning: in prediction problems where given an input veckor
we have to predict an output vectyr, the dependence structure Yfgiven X can also lie
within the directed mixed graph family. Silva et al. (2007) introduces mixed gnapdhels
within the context of relational classification, wheYeare labels of different data points
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not independently distributed. In such a class of problems, novel kihgdarameterization

are necessary since the dimensionality of the covariance matrix incre#éhethevsample

size. Structural features of the graph are used to propose diffeaeatneterizations of the
dependencies, and many other alternatives are possible;

e causal inference: mixed graphs have been consistently used as a language for represent-
ing causal dependencies under unmeasured confounding. ZI20®) (Bscribes recent ad-
vances in identifying causal effects with ancestral graphs. Algorithmé&frning mixed
graph structures are described by Spirtes et al. (2000) and the esbemtces in parameter-
izing such models should result in new algorithms;

Many challenges remain. For instance, more flexible models for DMG disoretiels are
being developed (Drton and Richardson, 2008a), but for largengrtiqey pose a formidable com-
putational problem. An important question is which other less flexible, but rnmactable, pa-
rameterizations could be used, and which approximation algorithms to deviédlerobit family
discussed here was a choice among many. The parameterization by DatRichardson (2008a)
could be a starting point for trading-off flexibility and computational effaknd while it is true
that Gaussian copula models (Pitt et al., 2006) can be adapted to gendw@bmproach introduced
here, it remains to be seen if other copula parameterizations easily lead tonid&s.

Acknowledgments

We thank the anonymous reviewers for their suggestions, Kenneth Boltgardviding us with

the industrialization and democratization data set, and Robert Gramacy|jpdultgiscussions.

An earlier version of this paper (Silva and Ghahramani, 2006) appé&atbd proceedings of the
Uncertainty in Artificial Intelligence conference. This work was fundgdhe Gatsby Charitable
Foundation and a EPSRC grant #EP/D065704/1.

Appendix A. Deriving the Sampling Distribution for the Monte Carlo Computation
of Normalizing Constants

We give here the details on how to derive the sampling distribution used rigpuiing normalizing
constantd (3, U), as described in Section 3.2.2.

Let Aj = ZSD<(i)snsm(i)z;slm(i),nsm(i)' Recall from Equation (7) thaBi nsp. i) = — B sp. (i) Ai-
The original densityp(3; | Vi), as given by Lemma 1, is a multivariate Gaussian with the following
kernel:

-
exp| — = Qi,rsm(i) —Msp.q) [ Uss Usn ] Q_glij—sm(i) —Msp. i) (22)
2¥i | B nsp.(i) ~ Mnsp.(i) Uns Unn B, nsp. (i) ~ Mnsp.(i)

whereUy;_1, (i—1y in Lemma 1 was rearranged above as the partitioned matrix in (14). The pair
{Msp.(i)sMnsp.(i)} corresponds to the respective partition of the mean vediorPlugging in the
expression forB; nsp. (i) in (22), we obtain the modified kernel
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BT

-
gl sp<() —Msp i) [ Uss Usn } |sp<() —Msp i) (23)
_AiT$ - Mnsp<(i)

A $|sp<() Mnsp<(i) Uns Unn

i,sp<(i)

1
exp (Zy

which can be rewritten as

Po(B i,sp(i)s SKimi, viKi) - x (zn)#sm(i)/Z‘yi|#sp<(i)/2|Ki((Di71)|l/2
{ 1 (24)
X exps—zVY U
2
where #p. (i) is the size of sesp. (i), po(+; 0, ) is the density function of a multivariate Gaussian
distribution with meam and covariancg, K;(®;_1) = K; to emphasize the contribution of previous
parameters, and

mi = (Uss—AiUns)Msm(i)+(Usn—AiUnn)Mn5p<(i)7
Kfl = Uss—AiUns—UsnAiT‘FAiUnnAiTy

U = MiTU{i_l}_’{i_l}Mi—miTKimi.

If spx(i) = 0, it follows that B, = B, 1sp.iy = 0. The kernel (23) reduces to €xp0.5/y;),
and U = MiTU{i_l},{i_l}Mi- If nspc(i) = 0, then the expression for the kernel does not change
(‘U; = 0), and Equation (24) corresponds to the original kernel in Equatibn (1

Inserting the re-expressed kernel into the original function (11), btaio

O+i—1+#nsp.(i) Wisi—nrin + G
Po(B; sp. (i) Kimi, K )IOg(V > p<()7 m.{ 1}’{'2 S I>fi(<1>i_1)

wherepg(-;a,B) is an inverse gamma density function and

p<<)

(@) = (@ K (Pi_1)[Y2Uyi gy 4oy Y2
(uii‘{ifl},{l 13/2) /2 F((8+i—1+#nsps(i))/2)
r((d+i-1)/2) (Ui fi—1y fio1y + Uy) /2) @ 1HAnspe(0)/2”

Appendix B. Variational Updates for Gaussian Mixed Graph Models

The variational updates for the coefficient and intercept parametesaentially identical to their
joint conditional distribution giveW andX, where occurrences d andX are substituted by expec-
tations(V‘1>q(V) and(X)qx), respectively. Let; be theij-th entry of<V‘1>q(v). The covariance
matrix of (B,a) is the covariance matrix of the vecteedB, a). Such vector is constructed using
all (non-zero) coefficients and intercepts. We denote this covariantenga >g . For simplicity
of notation, we will treat; as the coefficienb;,, 1), m being the number of variables. We will

also adopt the notationT(f_"g1 = 1 in the following derivations. As an abuse of notation, Ye&lso
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refer to latent variables. In this case YifandY; refer to latent variableXy, andXy,, then define
Let bjj and by, be ther-th ands-th entries ofvedB,a), respectively. Thes-th entry of the
inverse matrixZgé is given by

ibj
)
whereby, = 0 if no edgeY, — Yy, exists in the graph, (1) is the indicator function, andf, sﬁ are
the given prior parameters defined in Section 4. Similarly to the factorizatiterion explained
in Section 6, the matrix(V) will in general be block-diagonal, and this summation can be highly
simplified.
Define now a vectoc? analogous to the Gibbs sampling case, where

b N NG
= - : .
r t; it (gl i t st}

The variational distributioq(B, a) is then aN(2g «C, 2g ). The variational distribution for the
latent variables will exactly the same as the Gibbs distribution, except traenees td,a,V 1
are substituted byB) g o), (0)qg ) NA(V 1)

n
(Zgaks = rVitdz Yj(d)Yv(d) +1(i=1t)1(j=v)
=1

a(v)’

Appendix C. Proofs

Proof of Lemma 2 Arrange the columns of the Jacobian such that their order corresporide
sequences, 021, 022,031,032,033,. . .,O0mm, €XCluding the entries;; that are identically zero by
construction. Arrange the rows of the Jacobian such that their ordezsponds to the sequence
Y1,B21, Y2, B31, B32, - - - , Ym, €Xcluding the entrief;; that are not ind; (i.e., exclude any;; corre-
sponding to a paifY;,Y;j} that is not adjacent in the graph).

By the definition of Bartlett's decompositioi;, i and s are functionally independent for
s> i. The same holds foE, iy andys. As such,dajj/0Bst = 0 anddaij /dys = O for s > i.
This implies thatl(®Pg) is a (lower) block triangular matrix ofd— 1 blocks: fork odd, thek-th
block is the singletoda; /dy; = 1, wherei = (k+1)/2. Fork even, thek-th block is the Jacobian
0Zisp.) /0B sp. ), Wherei = 1+k/2 andZ; sp_ is the vector of covariances ¥fand its preceding
spouses.

From the interpretation given by Equation (8), it follows th&t,, ;) can also be defined by the
regression of; onZ;. That is

Bisp.() = 4.z 27,7, = vz R (25)

Howeverzy, z, = Z; sp (i), SinceY; is independent of its non-spouses. From (25) weggt ) =
B sp. ()R, and as such the submatd;sp /0B sp., turns out to beR;.

Since the determinant of the block triangular JacoBi@h; ) is given by the determinant of the
blocks, this implies

|J<a>g>|=_|ﬂ|a|.

By the matrix identity
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A B _

— -1
‘Z{i—l},{i—l} ’ = \Znsp<<i>-,nsp<<i> | ‘ZSP<(i)-,SD<(i) - ZSD<(i)-nSp<(i) Znsp<(i>,nsp<(i)zﬂsF&(i)«,SF&(i) | =
. i—1 .
|Znsp<(i),nsp<<i)||Ri|. Since|Zi_qy ji—y| = [i—1 ¥ the second equality hold&l

Proof of Theorem 4 We first describe a mapping from each pathgirio a path inG*, and vice-
versa (such mappings are not inverse functions of each other, secrithber of paths iG* is
larger than inG). By construction, all bi-directed edges ¢ have two UVs as endpoints, with
an one-to-one mapping between edgh— Y* in G* and eaclYs < Y; in G. All directed edges in
G* are of two typesYs — Y, with s#t, or Y7 — Ys. Therefore, one can define an unique path
in G as a function of a patR* in G*, obtained by relabeling eadft asY, and by collapsing any
Y — Y edges that might result from this relabeling into a single verteX mapping in the opposite
direction is analogous as given by the construction rule of Type-Il models

A collider in a path is any vertex within a head-to-head collision in the path, thanysvertex
Y; where the preceding and the next vertex in the path are connectdavith an edge (directed
or bi-directed) into;. Y; andY; are m-separated &% in an acyclic DMG if and only if there is no
active path connecting andY;. Like in d-separation, a path is active if all of its colliders have some
descendant iZ, and none of its non-colliders is i (Richardson, 2003). The mappings between
pathsP andP* are such tha; is a collider inP if and only if ; is in P* and is a collider, o¥* is in
P* and is a collider. Since by construction ayywill have the samé&’-descendants ig* asY; has
in G, andZ C Y, the result follows[]

Proof of Theorem 7: The first of the two claims of the theorem trivially holds, since connectivity is
a transitive property and as such this partition will always exist (wWKérg= 1 is a possibility). We
will prove the validity of the second claim by induction. LER;, ..., Rk} be the perfect sequence
that generated our perfect ordering. The second claim automaticallg farl@ll vertices inRy,
sinceR is a clique.

Assume the second claim holds for the subsequéReer, Ry, 2, ...,Rk}. LetY; be an element
of R|. Assume there is some non-spoilfg®f Y; in Ry, and some spousg of Y; in R», such that
I <I”<1”. We will assume that botlfy andY,, belong to the same componeht and show this
leads to a contradiction.

Without loss of generality, we can assume titpaindY,, are adjacent: otherwise, the fact that
Yy andYj are in the connected sét will imply there is a path connecting, andY,, in the subgraph
induced by{R|11,...,Rx}. We can redefingYy, Y, } to be the endpoints of the first edge in the path
containing a non-spouse and a spous¥;ofit will still be the case that > p, by the induction
hypothesis.

SinceY, € Ry», there is a separat&» betweerH;»\ S~ andRy». ButY; € H», andY; is adjacent
to Yp, which impliesY; € Sy. If I’ < 1”, this will also imply thatYg € S, which is a contradiction,
sinceS» is a complete set. If =1”, this implies thaty; andYg are both inY (., which is also a
contradiction sincé' p;» is a clique.[
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