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Abstract

We introduce a new nonlinear model for classification, inalihive model the joint distribution of
response variablg;, and covariates, non-parametrically using Dirichlet process mixtures. We
keep the relationship betwegrandx linear within each component of the mixture. The overall
relationship becomes nonlinear if the mixture containsartbean one component, with different
regression coefficients. We use simulated data to comparpdtformance of this new approach
to alternative methods such as multinomial logit (MNL) misdeecision trees, and support vector
machines. We also evaluate our approach on two classificptisblems: identifying the folding
class of protein sequences and detecting Parkinson’ssdis€ur model can sometimes improve
predictive accuracy. Moreover, by grouping observations sub-populations (i.e., mixture com-
ponents), our model can sometimes provide insight intodndructure in the data.

Keywords: mixture models, Dirichlet process, classification

1. Introduction

In regression and classification models, estimation of parameters and étairpr of results are
easier if we assume that distributions have simple forms (e.g., normal) and ¢hegldtionship
between a response variable and covariates is linear. However, foenpamce of such a model
depends on the appropriateness of these assumptions. Poor pedemay result from assum-
ing wrong distributions, or regarding relationships as linear when theynatreln this paper, we
introduce a new model based on a Dirichlet process mixture of simple distrisytigich is more
flexible in capturing nonlinear relationships.

A Dirichlet process,D(Go,Y), with baseline distributiorsy and scale parametgr is a dis-
tribution over distributions. Ferguson (1973) introduced the Dirichletgse as a class of prior
distributions for which the support is large, and the posterior distribution isageable analyti-
cally. Using the Polya urn scheme, Blackwell and MacQueen (1973)eshtvat the distributions
sampled from a Dirichlet process are discrete almost surely.

The idea of using a Dirichlet process as the prior for the mixing proportiérssimple dis-
tribution (e.g., Gaussian) was first introduced by Antoniak (1974). Ingajser, we will describe
the Dirichlet process mixture model as a limit of a finite mixture model (see Ne@, 20r further
description). Suppose exchangeable random vajues,y, are drawn independently from some
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unknown distribution. We can model the distributionyais a mixture of simple distributions, with
probability or density function

Cc
Ply) = > pcF(y,@).

c=1

Here, p; are the mixing proportions, arf(y, ¢) is the probability or density foy under a distribu-
tion, F (@), in some simple class with parametegrs-for example, a normal in whicp= (y, o). We
first assume that the number of mixing compone@iss finite. In this case, a common prior fpg
is a symmetric Dirichlet distribution, with density function

C
P(py,.... pc) = F(:/%))CCD oYe-1

wherep, > 0 andy p; = 1. The parameterg; are independent under the prior, with distribution
Go. We can use mixture identifiers, and represent this model as follows:

yilci,@ ~ F(),
G|p1,....,pc ~ Discretdps,...,pc),
p1,...,pc ~ Dirichlet(y/C,....,y/C),
Q@ -~ Go.

(1)

By integrating over the Dirichlet prior, we can eliminate the mixing proportiggsand obtain the
following conditional distribution for;:
nic +Y/C
P(c = wyCin1) = ————. 2
(CI C‘Cla 7CI 1) |_1+y ( )
Here,nic represents the number of data points previously (i.e., befoidjrassigned to component
c. As we can see, the above probability becomes higheg @iscreases.
WhenC goes to infinity, the conditional probabilities (2) reach the following limits:

o ' Nic
P(Cl —C|C17"'>CI*1) - |_1_|_y’

. - y
P(ci #cjforallj <iler,....G1) — — 14y

As a result, the conditional probability f, whereb; = ¢, becomes

061,....81_1 ~ Go, 3)

Y
. O +——
|—1+y% Pi—1+4y
wheredyg is a point mass distribution & Since the observations are assumed to be exchangeable,
we can regard any observatianas the last observation and write the conditional probability; of

given the otheB; for j # i (written 6_;) as follows:

19, 1 y
el’e—l n—1+y;69j + n—1+yGO' (4)
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The above conditional probabilities are equivalent to the conditionalgibties for6; according
to the Dirichlet process mixture model (as presented by Blackwell and Mee® 1973, using the
Polya urn scheme), which has the following form:

vilei ~ F(6i),
6|G ~ G, (5)
G ~ D(GoyY).

That is, If we let8; = ¢, the limit of model (1) asC — « becomes equivalent to the Dirichlet
process mixture model (Ferguson, 1983; Neal, 2000). In modety(8 . the distribution oveB’s,
and has a Dirichlet process priab,. Phrased this way, each data poinfjas its own parameters,
6;, drawn independently from a distribution that is drawn from a Dirichletgss prior. But since
distributions drawn from a Dirichlet process are discrete (almost suaslghown by Blackwell and
MacQueen (1973), th@ for different data points may be the same.

The parameters of the Dirichlet process prior@gea distribution from whicl®’s are sampled,
andy, a positive scale parameter that controls the number of components of thearthdt will
be represented in the sample, such that a laygesults in a larger number of components. To
illustrate the effect of on the number of mixture components in a sample of size 200, we generated
samples from four different Dirichlet process priors with= 0.1,1,5,10, and the same baseline
distributionGp = N»(0, 10l,) (wherel; is a 2x 2 identity matrix). For a given value of we first
sampled;, wherei = 1, ...,200, according to the conditional probabilities (3), and then we sample
yi|6i ~ N2(6;,0.2l2). The data generated according to these priors are shown in Figurenle éen
see, the (prior) expected number of components in a finite sample inceegdescomes larger.

With a Dirichlet process prior, we can we find conditional distributions ofibsterior distribu-
tion of model parameters by combining the conditional prior probability of () e likelihood
F(yi,8;), obtaining

Bil6_i,yi ~ E_Qijée,-"‘riHi, (6)
J#I

whereH; is the posterior distribution df based on the pridB and the single data poigt, and the
values of theg;; andr; are defined as follows:

gj = DbF(y,9)),
= by [ F(y.8)dGo(6).

Here,b is such that; + ¥ ;. gij = 1. These conditional posterior distributions are what are needed
when sampling the posterior using MCMC methods, as discussed furthectiorsa.

Bush and MacEachern (1996), Escobar and West (1995), MaeEaand Miller (1998), and
Neal (2000) have used Dirichlet process mixture models for density estrmidler et al. (1996)
used this method for curve fitting. They model the joint distribution of data pairng) as a Dirich-
let process mixture of multivariate normals. The conditional distributRig|x), and the expected
value,E(y|x), are estimated based on this distribution for a grigd'®{with interpolation) to obtain
a nonparametric curve. The application of this approach (as presentddilker et al., 1996) is
restricted to continuous variables. Moreover, this model is feasible onjyrédlems with a small
number of covariatesp. For data with moderate to large dimensionality, estimation of the joint
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Figure 1: Data sets of size= 200 generated according to four different Dirichlet process mix-
ture priors, each with the same baseline distribut@y—= N2 (0, 101,), but different scale
parametersy. Asy increases, the expected number of components present in the sam-
ple becomes larger. (Note that, as can be seen above, yiselarge, many of these
components have substantial overlap.)

distribution is very difficult both statistically and computationally. This is mostly dua¢odiffi-
culties that arise when simulating from the posterior distribution of large futudance matrices.

In this approach, if a mixture model h&components, the set of full covariance matrices have
Cp(p+1)/2 parameters. For large, the computational burden of estimating these parameters
might be overwhelming. Estimating full covariance matrices can also causeicthtiffficulties
since we need to assure that covariance matrices are positive semid€farijagate priors based
the inverse Wishart distribution satisfy this requirement, but they lack flexijiianiels and Kass,
1999). Flat priors may not be suitable either, since they can lead to improgterior distributions,
and they can be unintentionally informative (Daniels and Kass, 1999).n#rwmn approach to ad-
dress these issues is to use decomposition methods in specifying priard émvariance matrices
(see for example, Daniels and Kass, 1999; Cai and Dunson, 2006)ougjh this approach has
demonstrated some computational advantages over direct estimation ofvarilece matrices, it

is not yet feasible for high-dimensional variables. For example, Cabamg$on (2006) recommend
their approach only for problems with less than 20 covariates.
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We introduce a new nonlinear Bayesian model, which also nonparametristihyages(x,y),
the joint distribution of the response varialyi@nd covariates, using Dirichlet process mixtures.
Within each component, we assume the covariates are independent, andtimeodependence
betweeny andx using a linear model. Therefore, unlike the method daflliet et al. (1996), our
approach can be used for modeling data with a large number of covasates,the covariance
matrix for one mixture component is highly restricted. Using the Dirichlet moees the prior, our
method has a built-in mechanism to avoid overfitting since the complexity of the panlinodel
is controlled. Moreover, this method can be used for categorical as welbr@tinuous response
variables by using a generalized linear model instead of the linear model.

The idea of building a nonlinear model based on an ensemble of simple linealsrthaddeen
explored extensively in the field of machine learning. Jacobs et al. Ji8®&duced a supervised
learning procedure for models that are comprised of several locallsn@erts) each handling a
subset of data. A gating network decides which expert should be oseddiven data point. For
inferring the parameters of such models, Waterhouse et al. (1996)ipcos Bayesian framework to
avoid over-fitting and noise level under-estimation problems associated adlitidnal maximum
likelihood inference. Rasmussen and Ghahramani (2002) generalizadenit experts models by
using infinitely many nonlinear experts. In their approach, each expassismed to be a Gaussian
process regression model, and the gating network is based on an imgeundeat adaptation of
Dirichlet process. Meeds and Osindero (2006) followed the same ideedbead of assuming that
the covariates are fixed, they proposed a joint mixture of experts moeetovariates and response
variable.

Our focus here is on classification models with a multi-category responsdjiam we have
observed data fam cases,X1,y1),....&n, ¥n). Here, the clasg hasJ possible values, and the covari-
atesx; can in general be a vector pfcovariates. We wish to classify future cases in which only the
covariates are observed. For binady=£ 2) classification problems, a simple logistic model can be
used, with class probabilities defined as follows (with the case subsooippeld fronx andy):

exp(a+x'B)
1+expla+XB)

P(y: 1‘X,G, B)

When there are three or more classes, we can use a generalization &ndwenmultinomial logit
(MNL) model (called “softmax” in the machine learning literature):

exp(aj —i—XTBj) '

P(y: ”X,G,B) =

MNL models arediscriminative since they model the conditional distributi®&fy|x), but not
the distribution of covariate®(x). In contrast, our dpMNL model igenerative since it estimates
the joint distribution of response and covariategx,y). The joint distribution can be decompose
into the product of the marginal distributid?(x) and the conditional distributioR(y|x); that is,
P(x.Y) = P(X)P(y|x).

Generative models have several advantages over discriminative meekefe(example, Ulusoy
and Bishop, 2005). They provide a natural framework for handlingings$ata or partially labeled
data. They can also augment small quantities of expensive labeled data ngéhglzantities of
cheap unlabeled data. This is especially useful in applications suchasdntlabeling and image
analysis, where it may provide better predictions for new feature pattetn@esent in the data at
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Figure 2: An illustration of our model for a binary (black and white) clasaifan problem with
two covariates. Here, the mixture has two components, which are shown ivalkisc
and squares. In each component, an MNL model separates the twasdlasstlack”
or “white” with a linear decision boundary. The overall decision boupdahich is a
smooth function, is not shown in this figure.

the time of training. For example, the Latent Dirichlet Allocation (LDA) modelgased by Blei
et al. (2003) is a well-defined generative model that performs well irsifyéisg documents with
previously unknown patterns.

While generative models are quite successful in many problems, they camipaitationally in-
tensive. Moreover, finding a good (but not perfect) estimate for the giétribution of all variables
(i.e.,x andy) does not in general guarantee a good estimate of decision bound@yiesntrast,
discriminative models are often computationally fast and are preferred thigecovariates are in
fact non-random (e.g., they are fixed by an experimental design).

Using a generative model in our proposed method provides an additienefib Modeling the
distribution of covariates jointly witly allows us to implicitly model the dependency of covariates
on each other through clustering (i.e., assigning data points to differemgatents), which could
provide insight into hidden structure in the data. To illustrate this concepsjdmmFigure 2 where
the objective is to classify cases into black or white. To improve predictigaracy, our model
has divided the data into two components, shown as squares and cirtiese domponents are
distinguished primarily by the value of the second covarigteyhich is usually positive for squares
and negative for circles. For cases in the squares group, the sespariable strongly depends on
bothx; andx; (the linear separator is almost diagonal), whereas, for cases in thesarolgp, the
model mainly depends on alone (the linear model is almost vertical). Therefore, by grouping the
data into sub-populations (e.g., circles and squares in this example), oet noadnly improves
classification accuracy, but also discovers hidden structure in theidatdy clustering covariate
observations). This concept is briefly discussed in Section 5, wheresev@ur model to predict
Parkinson’s disease. A more detailed discussion on using our method ¢b lieden structure in
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data is provided elsewhere (Shahbaba, 2009), where a Dirichlezgeroaixture of autoregressive
models us used to analyze time-series processes that are subject to tegiges; with no specific
economic theory about the structure of the model.

The next section describes our methodology. In Section 3, we illustrasgppuoach and evalu-
ate its performance on simulated data. In Section 4, we present the resap{gyihg our model to
an actual classification problem, which attempts to identify the folding class aftaip sequence
based on the composition of its amino acids. Section 5 discusses anotherassdlication prob-
lem, where the objective is to detect Parkinson’s disease. This examplavidega to show how
our method can be used not only for improving prediction accuracy,ldofar identifying hidden
structure in the data. Finally, Section 6 is devoted to discussion and futeridirs.

2. Methodology

We now describe our classification model, which we call dpMNL, in detail. $8aime that for each
case we observe a vector of continuous covariatesf dimensionp. The response variablg, is
categorical, with] classes. To model the relationship betwgandx, we non-parametrically model
the joint distribution ofy andx, in the formP(x,y) = P(x)P(y|x), using a Dirichlet process mixture.
Within each component of the mixture, the relationship betweandx (i.e., P(y|x)) is expressed
using a linear function. The overall relationship becomes nonlinear if the mixtntains more
than one component. This way, while we relax the assumption of linearity, tibility of the
relationship is controlled.

Each component in the mixture model has paramefers(p, 0%, a,B). The distribution of
X within a component is multivariate normal, with mean veqiaand diagonal covariance, with
the vectora? on the diagonal. The distribution of given x within a component is given by a
multinomial logit (MNL) model—forj =1,...,J,

GXHCXJ' —I—XTBJ') '
S h_exp(aj +xB;)

P(y: ”X,G,B) =

The parameten j is scalar, an@; is a vector of lengtip. Note that giverx, the distribution ofy does
not depend om anda. This representation of the MNL model is redundant, since one ose
(wherej = 1,...,J) can be set to zero without changing the set of relationships expregsiblthe
model, but removing this redundancy would make it difficult to specify a phiartreats all classes
symmetrically. In this parameterization, what matters is the difference betwegrathmeters of
different classes.

In addition to the mixture view, which follows Equation (1) with— o, one can also view each
observationi, as having its own paramet&, drawn independently from a distribution drawn from
a Dirichlet process, as in Equation (5):

6|G ~ G, fori=1,...,n,
G ~ @(Gan)
Since G will be discrete, many groups of observations will have identalcorresponding to
components in the mixture view.

Although the covariates in each component are assumed to be indepesittiemdrmal priors,
this independence of covariates exists only locally (within a component)ir global (over all
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components) dependency is modeled by assigning data to different centpdne., clustering).
The relationship betwegnandx within a component is captured using an MNL model. Therefore,
the relationship is linear locally, but nonlinear globally.

We could assume thgtandx are independent within components, and capture the dependence
between the response and the covariates by clustering too. Howevanahikead to poor per-
formance (e.g., when predicting the response for new observationg) dejhrendence gfon x is
difficult to capture using clustering alone. Alternatively, we could alsom@gsthat the covariates
are dependent within a component. For continuous response varidiigedsecomes equivalent to
the model proposed by Mler et al. (1996). If the covariates are in fact dependent, using dull ¢
variance matrices (as suggested billr et al., 1996) could result in a more parsimonious model
since the number of mixture component would be smaller. However, as wesdet above, this
approach may be practically infeasible for problems with a moderate to largkerof covariates.
We believe that our method is an appropriate compromise between these twatalésy.

We defineGg, which is a distribution ove® = (p, 62, a,B), as follows:

M“JOaO-O ~ N(l—bao-(z))v
log(o?)|Mg, Ve ~ N(Mg,V2),
ajlt ~ N(0,12),

le v ~ N(O,VZ).

The parameters dby may in turn depend on higher level hyperparameters. For example, we can
regard the variances of coefficients as hyperparameters with the foljqsiiors:

log(t?)[M, Ve~ N(M¢,V2),
log(v¥)|My,V,, ~  N(M,,V2).

We use MCMC algorithms for posterior sampling. We could use Gibbs sampli@g ig the
conjugate prior for the likelihood given by. That is, we would repeatedly draw samples from
616_i,yi (wherei = 1,...,n) using the conditional distribution (6). Neal (2000) presented several
algorithms for sampling from the posterior distribution of Dirichlet process megtwhen non-
conjugate priors are used. Throughout this paper, we use Gibbs sgmwtimauxiliary parameters
(Neal’s algorithm 8).

This algorithm uses a Markov chain whose state consigtg of, c, ande= (¢ : c€ {c1,...,Cn}),
so thatd; = @. In order to allow creation of new clusters, the algorithm temporarily suppiesne
the @ parameters of existing clusters with(or m— 1) additional parameter values drawn from the
prior, wherem a postive integer that can be adjusted to give good performance. Egatioiteof
the Markov chain simulation operates as follows:

e Fori=1,...,n: Letk™ be the number of distinaj for j # i and leth =k~ +m. Label these
c; with values in{1, ...,k }. If ¢, = ¢; for somej # i, draw values independently fro@ for
thoseq. for whichk™ <c < h. If ¢; #cj forall j #1i, letc have the labek™ + 1, and draw
values independently froiBg for those@. wherek™ +1 < ¢ < h. Draw a new value foc;
from {1,...,h} using the following probabilities:

—I1,C

n—-1+vy

y/m
n—-1+vy

F(yh(pC) forlgc§k77
P(Ci = C‘C*iuyiaq-}la 7%) =

F(yi, @) fork- <c<h,
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wheren_; ¢ is the number of; for j #i that are equal to, andbis the appropriate normalizing
constant. Change the state to contain only thgsthat are now associated with at least to
one observation.

e Forallce {c,...,ch} draw a new value from the distributiag | {y; such that; = c}, or
perform some update that leaves this distribution invariant.

Throughout this paper, we set= 5. This algorithm resembles one proposed by MacEachern and
Miller (1998), with the difference that the auxiliary parameters exist only ¢eaniby, which avoids
an inefficiency in MacEachern andiMer’s algorithm.

Samples simulated from the posterior distribution are used to estimate posteditige prob-
abilities. For a new case with covariat€s the posterior predictive probability of the response
variable,y', is estimated as follows:

Py = i) = U,

where
Py =j.X) = fzmyzLﬂ%ﬁ®x
S=

15
PIX) = g3 PIXICo.6%)

Here, Sis the number of post-convergence samples from MCMC, @fidrepresents the set of
parameters obtained at iteratienAlternatively, we could predict new cases usPE = j,x) =
152 Py = j|X,Go,0®)). While this would be computationally faster, the above approach allows
us to learn from the covariates of test cases when predicting their spatues. Note also that
the above predictive probabilities include the possibility that the test casmisafinew cluster.

We use these posterior predictive probabilities to make predictions forasss cby assigning
each test case to the class with the highest posterior predictive probdiiityis the optimal strat-
egy for a simple 0/1 loss function. In general, we could use more problegifgploss functions
and modify our prediction strategy accordingly.

Implementations for all our models were coded in MATLAB, and are availahlie® athttp:
Iwww.ics.uci.edu/ ~ babaks/codes

3. Results for Simulated Data

In this section, we illustrate our dpMNL model using synthetic data, and caripaith other
models as follows:

e A simple MNL model, fitted by maximum likelihood or Bayesian methods.

¢ A Bayesian MNL model with quadratic terms (i.exk, wherel = 1,...,pandk=1,...,p),
referred to as gMNL.

e A decision tree model (Breiman et al., 1993) that uses 10-fold crossatialidfor pruning,
as implemented by the MATLAB “treefit”, “treetest” (for cross-validationydtreeprune”
functions.
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e Support Vector Machines (SVMs) (Vapnik, 1995), implemented with the M®E “svm-
train” and “svmclassify” functions from the Bioinformatics toolbox. Both a én&VM
(LSVM) and a nonlinear SVM with radial basis function kernel (RBF-SMMére tried.

When the number of classes in a classification problem was bigger than$vd) land RBF-SVM
used the all-vs-all scheme as suggested by Allwein et al. (20@@hkFanz (2002), and Hsu and
Lin (2002). In this scheme(,%) binary classifiers are trained where each classifier separates a pair
of classes. The predicted class for each test case is decided by usiaprity voting scheme
where the class with the highest number of votes among all binary classgs kon RBF-SVM,
the scaling parametek, in the RBF kernelk(x,X') = exp(—||x—X||/2\), was optimized based on
a validation set comprised of 20% of training samples.
The models are compared with respect to their accuracy rate afg theasure. Accuracy rate
is defined as the percentage of the times the correct class is predicte@d common measurement
in machine learning defined as:

1 2A,

L= Y oo
! ngzA,-+B,-+cj’

whereA; is the number of cases which are correctly assigned to ¢laBgis the number cases
incorrectly assigned to clags andC; is the number of cases which belong to the clpbsit are
assigned to other classes.

We do two tests. In the first test, we generate data according to the dpMN&l ntauat objective
is to evaluate the performance of our model when the distribution of data isrsmd@f multiple
components. In the second test, we generate data using a smooth nonlimati@nf Our goal is to
evaluate the robustness of our model when data actually come from adtffandel.

3.1 Simulation 1

The first test was on a synthetic four-way classification problem with foxeariates. Data are
generated according to our dpMNL model, except the number of comfzowas fixed at two. Two
hyperparameters definir@y were given the following priors:

log(t?) ~ N(0,0.1%),

log(v?) ~ N(0,22).
The prior for component parametds- (, 62, a, B) defined by thisGo was
Mo~ N(071)>
log(of) ~ N(0,2%),
ajlt ~ N(O,T%),
(0,v?),

=z

Bjllv ~

wherel =1,....,5andj = 1,...,4. We randomly draw parameteds and8, for two components as
described from this prior. For each component, we then generate 38@@aints by first drawing
X ~ N(p,01) and then sampling using the following MNL model:

exp(a +xBj)
Sh_sexp(aj +xB;y)’

P(y: j|X,CX,B) =
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Model | Accuracy (%) F1 (%)

Baseline 45.57 (1.47)| 15.48 (1.77)
MNL (Maximum Likelihood) | 77.30 (1.23)| 66.65 (1.41)
MNL 78.39 (1.32)| 66.52 (1.72)
gMNL 83.60 (0.99)| 74.16 (1.30)
Tree (Cross Validation) 70.87 (1.40)| 55.82 (1.69)
LSVM 78.61 (1.17)| 67.03 (1.51)
RBF-SVM 79.09 (0.99)| 63.65 (1.44)
dpMNL 89.21 (0.65)| 81.00 (1.23)

Table 1. Simulation 1: the average performance of models based on 50 sintdditesets. The
Baseline model assigns test cases to the class with the highest frequeheytriaining
set. Standard errors of estimates (based on 50 repetitions) are provjum@ntheses.

The overall sample size is 10000. We randomly split the data into a training glet1®0 data
points, and a test set, with 9900 data points. We use the training set to fit thdsmaad use the
independent test set to evaluate their performance. The regressiongtars of the Bayesian MNL
model with Bayesian estimation and the gMNL model have the following priors:

Gj |'l'
Bji [v
log(t)
log(v)

The above procedure was repeated 50 times. Each time, new hyperfmsmeandv?, and
new component parametefs,and6,, were sampled, and a new data set was created based on these
0's.

We used Hamiltonian dynamics (Neal, 1993) for updating the regressiampéers (ther’s
andf's). For all other parameters, we used single-variable slice samplind, (Rz@8) with the
“stepping out” procedure to find an interval around the current poimd, then the “shrinkage”
procedure to sample from this interval. We also used slice sampling for ugda&rconcentration
parametey, We used logy) ~ N(—3,2?) as the prior, which, encourages smaller valueg, @nd
hence a smaller number of components. Note that the likelihoog fapends only o, the
number of unique components (Neal, 2000; Escobar and West, 19853l Fhodels we ran 5000
MCMC iterations to sample from the posterior distributions. We discarded thd Bttasamples
and used the rest for prediction.

Our dpMNL model has the highest computational cost compared to all othbodse Simulat-
ing the Markov chain took about 0.15 seconds per iteration using a MATiABementation on an
UltraSPARC Il machine (approximately 12.5 minutes for each simulated dataEssth MCMC
iteration for the Bayesian MNL model took about 0.1 second (approximatetjn8tes for each
data set). Training the RBF-SVM model (with optimization of the scale parantewk)approxi-
mately 1 second for each data set. Therefore, SVM models have a diddsidwantage over our
approach in terms of computational cost.
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Figure 3: A random sample generated according to Simulation 2,ayith 0. The dotted line is
the optimal boundary function.

The average results (over 50 repetitions) are presented in Table 1le A&amsee, our dpMNL
model provides better results compared to all other models. The improvermenttatistically
significant fp-values< 0.001) for comparisons of accuracy rates using a paitegt withn = 50.

3.2 Simulation 2

In the above simulation, since the data were generated according to theldpiddEl, it is not
surprising that this model had the best performance compared to othetsmddefact, as we
increase the number of components, the amount of improvement using oekrlmecdmes more and
more substantial (results not shown). To evaluate the robustness pitL.dnodel, we performed
another test. This time, we generated X2, X3 (wherei = 1,...,10000) from theJniform(0,5)
distribution, and generated a binary response varighlaccording the following model:

1

Ply=1)x) =
=1 1+ explag Sin(x+04+ 1.2) + x; cogapxz +0.7) + agxz — 2]

wherea, a; andag are randomly sampled fromM(1,0.5%). The function used to generayes a
smooth nonlinear function of covariates. The covariates are not cldsteoethe generated data
do not conform with the assumptions of our model. Moreover, this functicdndes a completely
arbitrary set of constants to ensure the results are generalizablee Bighiows a random sample
from this model except that; is fixed at zero (sag is ignored). In this figure, the dotted line is the
optimal decision boundary.

Table 2 shows the results for this simulation, which are averages ovet&86eta. For each data
set, we generated 10000 cases by sampling new values, f@, andag, new covariatess, for each
case, and new values for the response varigblie, each case. As before, models were trained on
100 cases, and tested on the remaining 9900. As before, the dpMNL nrogtElgs significantly
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Model | Accuracy (%) F1 (%)

Baseline 61.96 (1.53)| 37.99 (0.57)
MNL (Maximum Likelihood) | 73.58 (0.96) | 68.33 (1.17)
MNL 73.58 (0.97)| 67.92 (1.41)
gMNL 75.60 (0.98)| 70.12 (1.36)
Tree (Cross Validation) 73.47 (0.95)| 66.94 (1.43)
LSVM Linear 73.09 (0.99)| 64.95 (1.71)
RBF-SVM 76.06 (0.94)| 68.46 (1.77)
dpMNL 77.80 (0.86)| 73.13 (1.26)

Table 2: Simulation 2: the average performance of models based on 50 sinddditesets. The
Baseline model assigns test cases to the class with the highest frequeheytriaining
set. Standard errors of estimates (based on 50 repetitions) are provjum@ntheses.

(all p-values are smaller than 0.001) better performance compared to all othelsmdtiis time,
however, the performances of gMNL and RBF-SVM are closer to thimpaance of the dpMNL
model.

4. Results on Real Classification Problems

In this section, we first apply our model the problem of predicting a pr&éb structure (i.e.,
folding class) based on its sequence. We then use our model to identifgtpatigh Parkinson’s
disease (PD) based on their speech signals.

4.1 Protein Fold Classification

When predicting a protein’s 3D structure, it is common to presume that the muhipessible
folds is fixed, and use a classification model to assign a protein to one @f fibleing classes.
There are more than 600 folding patterns identified in the SCOP (Structiasdification of Pro-
teins) database (Lo Conte et al., 2000). In this database, proteinsraidered to have the same
folding class if they have the same major secondary structure in the samgearant with the same
topological connections.

We apply our model to a protein fold recognition data set provided by Diddarchak (2001).
The proteins in this data set are obtained from the BBRct database (Hobohm et al., 1992;
Hobohm and Sander, 1994) such that two proteins have no more thanf3Eessequence identity
for aligned subsequences larger than 80 residues. Originally, thiingsdata set included 128
unique folds. However, Ding and Dubchak (2001) selected only the &t pupulated folds (311
proteins) for their analysis. They evaluated their models based on areimdiept sample (i.e., test
set) obtained from PDB-40D (Lo Conte et al., 2000). PDB-40D contamS®OP sequences with
less than 40% identity with each other. Ding and Dubchak (2001) selecBepBsentatives of
the same 27 folds in the training set with no more than 35% identity to the trainingrseeg The
training and test data sets are available onlirnstpt/crd.Ibl.gov/ ~ cding/protein/

The covariates in these data sets are the length of the protein sequethdbe aercentage
composition of the 20 amino acids. While there might exist more informative iedearto pre-
dict protein folds, we use these so that we can compare the results of olet tochat of Ding
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and Dubchak (2001), who trained several Support Vector Macl{iiéM) with nonlinear kernel
functions.

We centered the covariates so they have mean zero, and used the folwionsgor the MNL
model and gMNL model (with no interactions, ondyandx? as covariates):

ajjn ~ N(O,n?),
log(n?) ~ N(0,2),

(
Bil&.ar ~ N(0,&%a?),
log(€*) ~ N(0,1),
log(af) ~ N(-3,4%).

Here, the hyperparameters for the variances of regression paramaetenore elaborate than in the
previous section. One hyperparametar, is used to control the variance of all coefficierf,
(wherej =1,...,J), for covariatex. If a covariate is irrelevant, its hyperparameter will tend to be
small, forcing the coefficients for that covariate to be near zero. This miethomed Automatic
Relevance Determination (ARD), has previously been applied to neunabriemodels by Neal
(1996). We also used another hyperparaméteio control the overall magnitude of @ls. This
way, o; controls the relevance of covariagecompared to other covariates, andontrols the overall
usefulness of all covariates in separating all classes. The standéatiateof3; is therefore equal
to &oy.

The above scheme was also used for the dpMNL model. Note that in this mondel, controls
all Bjic, wherej = 1,...,J indexes classes, amd= 1,...,C indexes the unique components in the
mixture. Therefore, the standard deviatior3gf is {ojv.. Here,v. is specific to each component
¢, and controls the overall effect of coefficients in that component. hawhile o and ¢ are
global hyperparameters common between all componggts, a local hyperparameter within a
component. Similarly, the standard deviation of intercepis,in component is nt.. We used
N(0O,1) as the prior fom; andtec.

We also needed to specify priors fgrando;, the mean and standard deviation of covanate
wherel = 1, ..., p. For these parameters, we used the following priors:

Wclkoi, 001~ N(koy,03)),
bor ~ N(0,5%),
log(a,) ~ N(0,2%),
log(fe) Moy, Vos  ~ N(Mgy,V, )
Mg, ~ N(0,1%),
log(Vs) ~ N(0,2%).
These priors make use of higher level hyperparameters to provideilitgxiBor example, if the
components are not different with respect to covarkatéhe corresponding varianaeg‘l, becomes
small, forcingpyc close to their overall meapy . '
The MCMC chains for MNL, gMNL, and dpMNL ran for 10000 iterationsimBlating the
Markov chain took about 2.1 seconds per iteration (5.8 hours in totalyfigiNL and 0.5 seconds

per iteration (1.4 hours in total) for MNL using a MATLAB implementation on an IB#ARC IlI
machine. Training the RBF-SVM model took about 2.5 minutes.
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Model | Accuracy (%)| F1 (%)
MNL 50.0 41.2
gqMNL 50.5 42.1
SVM (Ding and Dubchak, 2001 49.4 -

LSVM 50.5 47.3
RBF-SVM 53.1 49.5
dpMNL 58.6 53.0

Table 3: Performance of models based on protein fold classification data.

The results for MNL, gMNL, LSVM, RBF-SVM, and dpMNL are presedi@ Table 3, along
with the results for the best SVM model developed by Ding and Dubchdkljath the exact same
data set. As we can see, the nonlinear RBF-SVM model that we fit has bettieracy than the
linear models. Our dpMNL model provides an additional improvement oveRBfe SVM model.
This shows that there is in fact a nonlinear relationship between foldingedad the composition
of amino acids, and our nonlinear model could successfully identify thisae&hip.

4.2 Detecting Parkinson’s Disease

The above example shows that our method can potentially improve predictoraag, though
of course other classifiers, such as SVM and neural networks, mégtter on some problems.
However, we believe the application of our method is not limited to simply improviedigtion
accuracy—it can also be used to discover hidden structure in data byfyadensubgroups (i.e.,
mixture components) in the population. This section provides an example to tiugtimconcept.

Neurological disorders such as Parkinson’s disease (PD) haf@uptbconsequences for pa-
tients, their families, and society. Although there is no cure for PD at this time pibgsible to
alleviate its symptoms significantly, especially at the early stages of the disiagh €t al., 2007).
Since approximately 90% of patients exhibit some form of vocal impairmene(tah, 1998), and
research has shown that vocal impairment could be one of the earligsitord of onset of the
illness (Duffy, 2005), voice measurement has been proposed aslda¢tial to detect and monitor
PD (Sapir et al., 2007; Rahn et al., 2007; Little et al., 2008). For examat&nts with PD com-
monly display a symptom known a@gsphoniawhich is an impairment in the normal production of
vocal sounds.

In a recent paper, Little et al. (2008) show that by detectipgphoniawe could identify pa-
tients with PD. Their study used data on sustained vowel phonations fraulidcts, of whom 23
were diagnosed with PD. The 22 covariates used include traditional lesjach as measures of
vocal fundamental frequency and measures of variation in amplitude radlsjcas well as a novel
measurement referred to pgch period entropyPPE). See Little et al. (2008) for a detailed de-
scription of these variables. This data set is publicly available at UCI Madlearning Repository
(http:/farchive.ics.uci.edu/ml/datasets/Parkinsons ).

Little et al. (2008) use an SVM classifier with Gaussian radial basis ké&netions to identify
patients with PD, chosing the SVM penalty value and kernel bandwidth byteustive search over
a range of values. They also perform an exhaustive search to 8eegptimal subset of features
(10 features were selected). Their best model provides48®1+4.4) accuracy rate based on a
bootstrap algorithm. This of course does not reflect the true predictmmaxy rate of the model
for future observations since the model is trained and evaluated on thesaampée. Here, we use
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Model | Accuracy (%)| F1 (%)

MNL 85.6 (2.2) | 79.1(2.8)
qMNL 86.1(1.5) | 79.7 (2.0)
LSVM 87.2(2.3) | 80.6 (2.8)
RBF-SVM | 87.2(2.7) | 79.9 (3.2)
dpMNL 87.7 (3.3) | 82.6 (2.5)

Table 4: Performance of models based on detecting Parkinson’s dise&selard errors of esti-
mates (based on 5 cross-validation folds) are provided in parentheses.

Group | Frequency| Age Average| Male Proportion

1 107 66 (0.7) 0.86 (0.03)
2 12 72 (1.1) 0.83 (0.11)
3 36 63 (1.8) 0.08 (0.04)
4 40 65 (2.2) 0.40 (0.08)
Population] 195 | 66(0.7) | 0.60(0.03)

Table 5: The age average and male proportion for each cluster (i.e., mixtomgonent) identified
by our model. Standard errors of estimates are provided in parentheses.

a 5-fold cross validation scheme instead in order to obtain a more accutiatatesof prediction
accuracy rate and avoid inflating model performance due to overfittinga ¥esult, our models
cannot be directly compared to that of Little et al. (2008).

We apply our dpMNL model to the same data set, along with MNL and gMNL (neodaotens,
only x; andx? as covariates). Although the observations from the same subject drelapendent,
we assume they are, as done by Little et al. (2008). Instead of selectmgianum subset of fea-
tures, we used PCA and chose the first 10 principal components. Th&QviIgorithm for MNL,
gMNL, and dpMNL ran for 3000 iterations (the first 500 iterations werealided). Simulating
the Markov chain took about 0.7 second per iteration (35 minutes per dateoisdpMNL and
0.1 second per iteration (5 minutes per data set) for MNL using a MATLAB impheatien on an
UltraSPARC lll machine. Training the RBF-SVM model took 38 seconde&mh data set.

Using the dpMNL model, the most probable number of components in the postefmur
(note that might change from one iteration to another). Table 4 shows #ragevand standard
errors (based on 5-fold cross validation) of the accuracy rate arfg ttnieasure for MNL, LSVM,
RBF-SVM, and dpMNL. (But note that the standard errors assume émaimce of cross-validation
folds, which is not really correct.)

While dpMNL provides slightly better results, the improvement is not statisticallyifsignt.
However, examining the clusters (i.e., mixture components) identified by dpkéMeals some
information about the underlying structure in the data. Table 5 shows thagevage of subjects
and male proportion for the four clusters (based on the most probableenwwhbomponents in
the posterior) identified by our model. Note that age and gender are aitalde from the UCI
Machine Learning Repository, and they are not included in our modey diee however, available
from Table 1 in Little et al. (2008). The first two groups include substantlzlijher percentages
of male subjects than female subjects. The average age in the secondeofjtbegs is higher
compared to the first group. Most of the subjects in the third group arddgjoraly 8% are male).
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The fourth group also includes more female subjects than male subjectse loispinoportionality
is not as high as for the third group.

When identifying Parkinson’s disease by detecting dysphonia, it has $kemvn that gender
has a confounding effect (Cnockaert et al., 2008). By groupingl#tta into clusters, our model
has identified (to some extent) the heterogeneity of subjects due to age radet,geven though
these covariates were not available to the model. Moreover, by fitting aatepimear model to
each component (i.e., conditioning on mixture identifiers), our model appade&s the confounding
effect of age and gender. For this example, we could have simply takesgthand gender of
subjects from Table 1 in Little et al. (2008) and included them in our model. Imyrsduations,
however, not all the relevant factors are measured. This could resuibbservable changes in the
structure of data. We discuss this concept in more detail elsewhereb@ieg2009).

5. Discussion and Future Directions

We introduced a new nonlinear classification model, which uses Dirichleeépsamixtures to model
the joint distribution of the response variabjeand the covariateg, non-parametrically. We com-
pared our model to several linear and nonlinear alternative methodshsingimulated and real
data. We found that when the relationship betwgandx is nonlinear, our approach provides sub-
stantial improvement over alternative methods. One advantage of thisaappsothat if the rela-
tionship is in fact linear, the model can easily reduce to a linear model by aslp@ne component
in the mixture. This way, it avoids overfitting, which is a common challenge in mamjimear
models.

We believe our model can provide more interpretable results. In manynaakms, the iden-
tified components may correspond to a meaningful segmentation of data. tBénoelationship
betweery andx remains linear in each segment, the results of our model can be expresssdta
of linear patterns for different data segments.

Hyperparameters such asn RBF-SVM andy in dpMNL can substantially influence the per-
formance of the models. Therefore, it is essential to choose these paramppropriately. For
RBF-SVM, we optimized\ using a validation set that includes 20% of the training data. Figure 4
(a) shows the effect of on prediction accuracy for one data set. The valug wfith the highest
accuracy rate based on the validation set was used to train the RBF-SV#.riibeé hyperparam-
eters in our dpMNL model are not fixed at some “optimum” values. Insteadjse hyperpriors
that reflect our opinion regarding the possible values of these paraetere observing the data,
with the posterior for these parameters reflecting both this prior opinion andtia. Hyperpriors
for regression parameterfs, facilitate their shrinkage towards zero if they are not relevant to the
classification task. The hyperprior for the scale paramgeadiects how many mixture components
are present in the data. Instead of setirig some constant number, we allow the model to decide
the appropriate value of using a hyperprior that encourages a small number of components, but
which is not very restrictive, and hence allows become large in the posterior if required to fit
the data. Choosing unreasonably restrictive priors could have a veegdfiect on model perfor-
mance and MCMC convergence. Figure 4 (b) illustrates the negativet effenreasonable priors
for y. For this data set, the correct number of components is two. We graduakyaseg,, where
log(y) ~ N(my,2), in order to put higher probability on larger valuesyadnd lower probability on
smaller values. As we can see, setfigg> 4, which makes the hyperprior very restrictive, results in
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Figure 4: Effects of scale parameters when fitting a data set generaimdliag to Simulation 1.
() The effect ofA in the RBF-SVM model. (b) The effect of the prior on the scale
parametery ~ log-N(Ly, 22), aspy changes in the dpMNL model.

a substantial decline in accuracy rate (solid line) due to overfitting with a targeer of mixture
components (dashed line).

The computational cost for our model is substantially higher compared to misthods such
as MNL and SVM. This could be a preventive factor in applying our modedaime problems.
The computational cost of our model could be reduced by using moréaffimethods, such as
the “split-merge” approach introduced by Jain and Neal (2007). Thisodaikes a Metropolis-
Hastings procedure that resamples clusters of observations simultgrnadiusr than incrementally
assigning one observation at a time to mixture components. Alternatively, it imégpossible to
reduce the computational cost by using a variational inference algorithitaisto the one proposed
by Blei and Jordan (2005). In this approach, the posterior distribiRid® approximated by a
tractable variational distributio®, whose free variational parameters are adjusted until a reasonable
approximation tdP is achieved.

We expect our model to outperform other nonlinear models such asl metwabrks and SVM
(with nonlinear kernel functions) when the population is comprised of rmwipg each with their
own distinct pattern of relationship between covariates and resporiableaiWe also believe that
our model could perform well if the true function relating covariates togasp variable contains
sharp changes.

The performance of our model could be negatively affected if the @earare highly correlated
with each other. In such situations, the assumption of diagonal covanmatre for x adopted
by our model could be very restrictive. To capture the interdependebeisveen covariates, our
model would attempt to increase the number of mixture components (i.e., clusthishowever
is not very efficient. To address this issue, we could use mixtures ofrfantdyzers, where the
covariance structure of high dimensional data is model using a small nurfribégrd variables (see
for example, Rubin and Thayer, 2007; Ghahramani and Hinton, 1996).

In this paper, we considered only continuous covariates. Our agpuoaacbe easily extended
to situations where the covariate are categorical. For these problemsedédémeeplace the nor-
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mal distribution in the baselin&;, with a more appropriate distribution. For example, when the
covariatex is binary, we can assume~ Bernoulli(i), and specify an appropriate prior distribution
(e.g.,Betadistribution) forp. Alternatively, we can use a continuous latent variablesuch that
n=exp(z)/{1+exp(z)}. This way, we can still model the distribution afas a mixture of nor-
mals. For categorical covariates, we can either use a Dirichlet prior éopribbabilities of the&K
categories, or usk continuous latent variableg;, ..., z¢, and let the probability of categorybe
exp(zj)/ 3§ exnzy).

Throughout this paper, we assumed that the relationship betyeaedx is linear within each
component of the mixture. It is possible of course to relax this assumptiomé@r ty obtain more
flexibility. For example, we can include some nonlinear transformation of tiggnat variables
(e.g., quadratic terms) in the model.

Our model can also be extended to problems where the response variabtamsitinomial.
For example, we can use this approach for regression problems with wauninesponse, which
could be assumed normal within a component. We would model the mean of thmalrbstribution
as a linear function of covariates for cases that belong to that compdDtrdr types of response
variables (i.e., with Poisson distribution) can be handled in a similar way.

In the protein fold prediction problem discussed in this paper, classesregarded as a set of
unrelated entities. However, these classes are not completely unreladedarabe grouped into
four major structural classes known asp, a /B, anda + 3. Ding and Dubchak (2001) show the
corresponding hierarchical scheme (Table 1 in their paper). We haveopsly introduced a new
approach for modeling hierarchical classes (Shahbaba and Neél|, ZBWr). In this approach, we
use a Bayesian form of the multinomial logit model, called corMNL, with a priot itt@oduces
correlations between the parameters for classes that are nearby inrdretijeOur dpMNL model
can be extend to classification problems where classes have a hierasthicture (Shahbaba,
2007). For this purposse, we use a corMNL model, instead of MNL, ttucagphe relationship
between the covariateg, and the response variablg, within each component. The results is a
nonlinear model which takes the hierarchical structure of classes inboiatcc

Finally, our approach provides a convenient framework for semitsigasl learning, in which
both labeled and unlabeled data are used in the learning process. Ippsaaeh, unlabeled data
can contribute to modeling the distribution of covariateswhile only labeled data are used to
identify the dependence betwegmndx. This is a quite useful approach for problems where the
response variable is known for a limited number of cases, but a large &wfaumiabeled data can
be generated. One such problem is classification of web documents.
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