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Abstract
We introduce a new nonlinear model for classification, in which we model the joint distribution of
response variable,y, and covariates,x, non-parametrically using Dirichlet process mixtures. We
keep the relationship betweeny andx linear within each component of the mixture. The overall
relationship becomes nonlinear if the mixture contains more than one component, with different
regression coefficients. We use simulated data to compare the performance of this new approach
to alternative methods such as multinomial logit (MNL) models, decision trees, and support vector
machines. We also evaluate our approach on two classification problems: identifying the folding
class of protein sequences and detecting Parkinson’s disease. Our model can sometimes improve
predictive accuracy. Moreover, by grouping observations into sub-populations (i.e., mixture com-
ponents), our model can sometimes provide insight into hidden structure in the data.
Keywords: mixture models, Dirichlet process, classification

1. Introduction

In regression and classification models, estimation of parameters and interpretation of results are
easier if we assume that distributions have simple forms (e.g., normal) and that the relationship
between a response variable and covariates is linear. However, the performance of such a model
depends on the appropriateness of these assumptions. Poor performance may result from assum-
ing wrong distributions, or regarding relationships as linear when they arenot. In this paper, we
introduce a new model based on a Dirichlet process mixture of simple distributions, which is more
flexible in capturing nonlinear relationships.

A Dirichlet process,D(G0,γ), with baseline distributionG0 and scale parameterγ, is a dis-
tribution over distributions. Ferguson (1973) introduced the Dirichlet process as a class of prior
distributions for which the support is large, and the posterior distribution is manageable analyti-
cally. Using the Polya urn scheme, Blackwell and MacQueen (1973) showed that the distributions
sampled from a Dirichlet process are discrete almost surely.

The idea of using a Dirichlet process as the prior for the mixing proportionsof a simple dis-
tribution (e.g., Gaussian) was first introduced by Antoniak (1974). In thispaper, we will describe
the Dirichlet process mixture model as a limit of a finite mixture model (see Neal, 2000, for further
description). Suppose exchangeable random valuesy1, ...,yn are drawn independently from some
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unknown distribution. We can model the distribution ofy as a mixture of simple distributions, with
probability or density function

P(y) =
C

∑
c=1

pcF(y,φc).

Here,pc are the mixing proportions, andF(y,φ) is the probability or density fory under a distribu-
tion, F(φ), in some simple class with parametersφ—for example, a normal in whichφ = (µ,σ). We
first assume that the number of mixing components,C, is finite. In this case, a common prior forpc

is a symmetric Dirichlet distribution, with density function

P(p1, ..., pC) =
Γ(γ)

Γ(γ/C)C

C

∏
c=1

p(γ/C)−1
c ,

wherepc ≥ 0 and∑ pc = 1. The parametersφc are independent under the prior, with distribution
G0. We can use mixture identifiers,ci , and represent this model as follows:

yi |ci ,φ ∼ F(φci ),

ci |p1, ..., pC ∼ Discrete(p1, ..., pC),

p1, ..., pC ∼ Dirichlet(γ/C, ....,γ/C),

φc ∼ G0.

(1)

By integrating over the Dirichlet prior, we can eliminate the mixing proportions,pc, and obtain the
following conditional distribution forci :

P(ci = c|c1, ...,ci−1) =
nic + γ/C
i−1+ γ

. (2)

Here,nic represents the number of data points previously (i.e., before theith) assigned to component
c. As we can see, the above probability becomes higher asnic increases.

WhenC goes to infinity, the conditional probabilities (2) reach the following limits:

P(ci = c|c1, ...,ci−1) →
nic

i−1+ γ
,

P(ci 6= c j for all j < i|c1, ...,ci−1) →
γ

i−1+ γ
.

As a result, the conditional probability forθi , whereθi = φci , becomes

θi |θ1, ...,θi−1 ∼
1

i−1+ γ ∑
j<i

δθ j +
γ

i−1+ γ
G0, (3)

whereδθ is a point mass distribution atθ. Since the observations are assumed to be exchangeable,
we can regard any observation,i, as the last observation and write the conditional probability ofθi

given the otherθ j for j 6= i (written θ−i) as follows:

θi |θ−i ∼
1

n−1+ γ ∑
j 6=i

δθ j +
γ

n−1+ γ
G0. (4)
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The above conditional probabilities are equivalent to the conditional probabilities forθi according
to the Dirichlet process mixture model (as presented by Blackwell and MacQueen, 1973, using the
Polya urn scheme), which has the following form:

yi |θi ∼ F(θi),

θi |G ∼ G, (5)

G ∼ D(G0,γ).

That is, If we letθi = φci , the limit of model (1) asC → ∞ becomes equivalent to the Dirichlet
process mixture model (Ferguson, 1983; Neal, 2000). In model (5),G is the distribution overθ’s,
and has a Dirichlet process prior,D. Phrased this way, each data point,i, has its own parameters,
θi , drawn independently from a distribution that is drawn from a Dirichlet process prior. But since
distributions drawn from a Dirichlet process are discrete (almost surely)as shown by Blackwell and
MacQueen (1973), theθi for different data points may be the same.

The parameters of the Dirichlet process prior areG0, a distribution from whichθ’s are sampled,
andγ, a positive scale parameter that controls the number of components of the mixture that will
be represented in the sample, such that a largerγ results in a larger number of components. To
illustrate the effect ofγ on the number of mixture components in a sample of size 200, we generated
samples from four different Dirichlet process priors withγ = 0.1,1,5,10, and the same baseline
distributionG0 = N2(0,10I2) (whereI2 is a 2×2 identity matrix). For a given value ofγ, we first
sampleθi , wherei = 1, ...,200, according to the conditional probabilities (3), and then we sample
yi |θi ∼ N2(θi ,0.2I2). The data generated according to these priors are shown in Figure 1. Aswe can
see, the (prior) expected number of components in a finite sample increasesasγ becomes larger.

With a Dirichlet process prior, we can we find conditional distributions of theposterior distribu-
tion of model parameters by combining the conditional prior probability of (4) with the likelihood
F(yi ,θi), obtaining

θi |θ−i ,yi ∼ ∑
j 6=i

qi j δθ j + r iHi , (6)

whereHi is the posterior distribution ofθ based on the priorG0 and the single data pointyi , and the
values of theqi j andr i are defined as follows:

qi j = bF(yi ,θ j),

r i = bγ
Z

F(yi ,θ)dG0(θ).

Here,b is such thatr i +∑ j 6=i qi j = 1. These conditional posterior distributions are what are needed
when sampling the posterior using MCMC methods, as discussed further in Section 2.

Bush and MacEachern (1996), Escobar and West (1995), MacEachern and M̈uller (1998), and
Neal (2000) have used Dirichlet process mixture models for density estimation. Müller et al. (1996)
used this method for curve fitting. They model the joint distribution of data pairs(xi ,yi) as a Dirich-
let process mixture of multivariate normals. The conditional distribution,P(y|x), and the expected
value,E(y|x), are estimated based on this distribution for a grid ofx’s (with interpolation) to obtain
a nonparametric curve. The application of this approach (as presented by Müller et al., 1996) is
restricted to continuous variables. Moreover, this model is feasible only for problems with a small
number of covariates,p. For data with moderate to large dimensionality, estimation of the joint
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Figure 1: Data sets of sizen = 200 generated according to four different Dirichlet process mix-
ture priors, each with the same baseline distribution,G0 = N2(0,10I2), but different scale
parameters,γ. As γ increases, the expected number of components present in the sam-
ple becomes larger. (Note that, as can be seen above, whenγ is large, many of these
components have substantial overlap.)

distribution is very difficult both statistically and computationally. This is mostly due tothe diffi-
culties that arise when simulating from the posterior distribution of large full covariance matrices.
In this approach, if a mixture model hasC components, the set of full covariance matrices have
Cp(p+ 1)/2 parameters. For largep, the computational burden of estimating these parameters
might be overwhelming. Estimating full covariance matrices can also cause statistical difficulties
since we need to assure that covariance matrices are positive semidefinite.Conjugate priors based
the inverse Wishart distribution satisfy this requirement, but they lack flexibility(Daniels and Kass,
1999). Flat priors may not be suitable either, since they can lead to improper posterior distributions,
and they can be unintentionally informative (Daniels and Kass, 1999). A common approach to ad-
dress these issues is to use decomposition methods in specifying priors for full covariance matrices
(see for example, Daniels and Kass, 1999; Cai and Dunson, 2006). Although this approach has
demonstrated some computational advantages over direct estimation of full covariance matrices, it
is not yet feasible for high-dimensional variables. For example, Cai andDunson (2006) recommend
their approach only for problems with less than 20 covariates.
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We introduce a new nonlinear Bayesian model, which also nonparametrically estimatesP(x,y),
the joint distribution of the response variabley and covariatesx, using Dirichlet process mixtures.
Within each component, we assume the covariates are independent, and model the dependence
betweeny andx using a linear model. Therefore, unlike the method of Müller et al. (1996), our
approach can be used for modeling data with a large number of covariates,since the covariance
matrix for one mixture component is highly restricted. Using the Dirichlet process as the prior, our
method has a built-in mechanism to avoid overfitting since the complexity of the nonlinear model
is controlled. Moreover, this method can be used for categorical as well as continuous response
variables by using a generalized linear model instead of the linear model.

The idea of building a nonlinear model based on an ensemble of simple linear models has been
explored extensively in the field of machine learning. Jacobs et al. (1991) introduced a supervised
learning procedure for models that are comprised of several local models (experts) each handling a
subset of data. A gating network decides which expert should be used for a given data point. For
inferring the parameters of such models, Waterhouse et al. (1996) provided a Bayesian framework to
avoid over-fitting and noise level under-estimation problems associated with traditional maximum
likelihood inference. Rasmussen and Ghahramani (2002) generalized mixture of experts models by
using infinitely many nonlinear experts. In their approach, each expert isassumed to be a Gaussian
process regression model, and the gating network is based on an input-dependent adaptation of
Dirichlet process. Meeds and Osindero (2006) followed the same idea, but instead of assuming that
the covariates are fixed, they proposed a joint mixture of experts model over covariates and response
variable.

Our focus here is on classification models with a multi-category response, in which we have
observed data forn cases, (x1,y1),...,(xn,yn). Here, the classyi hasJ possible values, and the covari-
atesxi can in general be a vector ofp covariates. We wish to classify future cases in which only the
covariates are observed. For binary (J = 2) classification problems, a simple logistic model can be
used, with class probabilities defined as follows (with the case subscript dropped fromx andy):

P(y = 1|x,α,β) =
exp(α+xTβ)

1+exp(α+xTβ)
.

When there are three or more classes, we can use a generalization knownas the multinomial logit
(MNL) model (called “softmax” in the machine learning literature):

P(y = j|x,α,β) =
exp(α j +xTβ j)

∑J
j ′=1exp(α j ′ +xTβ j ′)

.

MNL models arediscriminative, since they model the conditional distributionP(y|x), but not
the distribution of covariates,P(x). In contrast, our dpMNL model isgenerative, since it estimates
the joint distribution of response and covariates,P(x,y). The joint distribution can be decompose
into the product of the marginal distributionP(x) and the conditional distributionP(y|x); that is,
P(x,y) = P(x)P(y|x).

Generative models have several advantages over discriminative models (see for example, Ulusoy
and Bishop, 2005). They provide a natural framework for handling missing data or partially labeled
data. They can also augment small quantities of expensive labeled data with large quantities of
cheap unlabeled data. This is especially useful in applications such as document labeling and image
analysis, where it may provide better predictions for new feature patternsnot present in the data at
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Figure 2: An illustration of our model for a binary (black and white) classification problem with
two covariates. Here, the mixture has two components, which are shown with circles
and squares. In each component, an MNL model separates the two classes into “black”
or “white” with a linear decision boundary. The overall decision boundary, which is a
smooth function, is not shown in this figure.

the time of training. For example, the Latent Dirichlet Allocation (LDA) model proposed by Blei
et al. (2003) is a well-defined generative model that performs well in classifying documents with
previously unknown patterns.

While generative models are quite successful in many problems, they can becomputationally in-
tensive. Moreover, finding a good (but not perfect) estimate for the joint distribution of all variables
(i.e., x andy) does not in general guarantee a good estimate of decision boundaries.By contrast,
discriminative models are often computationally fast and are preferred when the covariates are in
fact non-random (e.g., they are fixed by an experimental design).

Using a generative model in our proposed method provides an additional benefit. Modeling the
distribution of covariates jointly withy allows us to implicitly model the dependency of covariates
on each other through clustering (i.e., assigning data points to different components), which could
provide insight into hidden structure in the data. To illustrate this concept, consider Figure 2 where
the objective is to classify cases into black or white. To improve predictive accuracy, our model
has divided the data into two components, shown as squares and circles. These components are
distinguished primarily by the value of the second covariate,x2, which is usually positive for squares
and negative for circles. For cases in the squares group, the response variable strongly depends on
bothx1 andx2 (the linear separator is almost diagonal), whereas, for cases in the circles group, the
model mainly depends onx1 alone (the linear model is almost vertical). Therefore, by grouping the
data into sub-populations (e.g., circles and squares in this example), our model not only improves
classification accuracy, but also discovers hidden structure in the data (i.e., by clustering covariate
observations). This concept is briefly discussed in Section 5, where weuse our model to predict
Parkinson’s disease. A more detailed discussion on using our method to detect hidden structure in
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data is provided elsewhere (Shahbaba, 2009), where a Dirichlet process mixture of autoregressive
models us used to analyze time-series processes that are subject to regime changes, with no specific
economic theory about the structure of the model.

The next section describes our methodology. In Section 3, we illustrate ourapproach and evalu-
ate its performance on simulated data. In Section 4, we present the results ofapplying our model to
an actual classification problem, which attempts to identify the folding class of a protein sequence
based on the composition of its amino acids. Section 5 discusses another realclassification prob-
lem, where the objective is to detect Parkinson’s disease. This example is provided to show how
our method can be used not only for improving prediction accuracy, but also for identifying hidden
structure in the data. Finally, Section 6 is devoted to discussion and future directions.

2. Methodology

We now describe our classification model, which we call dpMNL, in detail. We assume that for each
case we observe a vector of continuous covariates,x, of dimensionp. The response variable,y, is
categorical, withJ classes. To model the relationship betweeny andx, we non-parametrically model
the joint distribution ofy andx, in the formP(x,y) = P(x)P(y|x), using a Dirichlet process mixture.
Within each component of the mixture, the relationship betweeny andx (i.e., P(y|x)) is expressed
using a linear function. The overall relationship becomes nonlinear if the mixture contains more
than one component. This way, while we relax the assumption of linearity, the flexibility of the
relationship is controlled.

Each component in the mixture model has parametersθ = (µ,σ2,α,β). The distribution of
x within a component is multivariate normal, with mean vectorµ and diagonal covariance, with
the vectorσ2 on the diagonal. The distribution ofy given x within a component is given by a
multinomial logit (MNL) model—for j = 1, . . . ,J,

P(y = j|x,α,β) =
exp(α j +xTβ j)

∑J
j ′=1exp(α j ′ +xTβ j ′)

.

The parameterα j is scalar, andβ j is a vector of lengthp. Note that givenx, the distribution ofy does
not depend onµ andσ. This representation of the MNL model is redundant, since one of theβ j ’s
(where j = 1, ...,J) can be set to zero without changing the set of relationships expressiblewith the
model, but removing this redundancy would make it difficult to specify a priorthat treats all classes
symmetrically. In this parameterization, what matters is the difference between the parameters of
different classes.

In addition to the mixture view, which follows Equation (1) withC→ ∞, one can also view each
observation,i, as having its own parameter,θi , drawn independently from a distribution drawn from
a Dirichlet process, as in Equation (5):

θi |G ∼ G, for i = 1, . . . ,n,

G ∼ D(G0,γ).

SinceG will be discrete, many groups of observations will have identicalθi , corresponding to
components in the mixture view.

Although the covariates in each component are assumed to be independentwith normal priors,
this independence of covariates exists only locally (within a component). Their global (over all

1835



SHAHBABA AND NEAL

components) dependency is modeled by assigning data to different components (i.e., clustering).
The relationship betweeny andx within a component is captured using an MNL model. Therefore,
the relationship is linear locally, but nonlinear globally.

We could assume thaty andx are independent within components, and capture the dependence
between the response and the covariates by clustering too. However, thismay lead to poor per-
formance (e.g., when predicting the response for new observations) if the dependence ofy on x is
difficult to capture using clustering alone. Alternatively, we could also assume that the covariates
are dependent within a component. For continuous response variables,this becomes equivalent to
the model proposed by M̈uller et al. (1996). If the covariates are in fact dependent, using full co-
variance matrices (as suggested by Müller et al., 1996) could result in a more parsimonious model
since the number of mixture component would be smaller. However, as we discussed above, this
approach may be practically infeasible for problems with a moderate to large number of covariates.
We believe that our method is an appropriate compromise between these two alternatives.

We defineG0, which is a distribution overθ = (µ,σ2,α,β), as follows:

µl |µ0,σ0 ∼ N(µ0,σ2
0),

log(σ2
l )|Mσ,Vσ ∼ N(Mσ,V2

σ ),

α j |τ ∼ N(0,τ2),

β jl |ν ∼ N(0,ν2).

The parameters ofG0 may in turn depend on higher level hyperparameters. For example, we can
regard the variances of coefficients as hyperparameters with the following priors:

log(τ2)|Mτ,Vτ ∼ N(Mτ,V
2
τ ),

log(ν2)|Mν,Vν ∼ N(Mν,V
2
ν ).

We use MCMC algorithms for posterior sampling. We could use Gibbs sampling ifG0 is the
conjugate prior for the likelihood given byF . That is, we would repeatedly draw samples from
θi |θ−i ,yi (wherei = 1, ...,n) using the conditional distribution (6). Neal (2000) presented several
algorithms for sampling from the posterior distribution of Dirichlet process mixtures when non-
conjugate priors are used. Throughout this paper, we use Gibbs sampling with auxiliary parameters
(Neal’s algorithm 8).

This algorithm uses a Markov chain whose state consists ofc1, ...,cn andφ = (φc : c∈{c1, ...,cn}),
so thatθi = φci . In order to allow creation of new clusters, the algorithm temporarily supplements
theφc parameters of existing clusters withm (or m−1) additional parameter values drawn from the
prior, wherem a postive integer that can be adjusted to give good performance. Each iteration of
the Markov chain simulation operates as follows:

• For i = 1, ...,n: Let k− be the number of distinctc j for j 6= i and leth = k− +m. Label these
c j with values in{1, ...,k−}. If ci = c j for somej 6= i, draw values independently fromG0 for
thoseφc for which k− < c≤ h. If ci 6= c j for all j 6= i, let ci have the labelk− +1, and draw
values independently fromG0 for thoseφc wherek− + 1 < c ≤ h. Draw a new value forci

from {1, ...,h} using the following probabilities:

P(ci = c|c−i ,yi ,φ1, ...,φh) =















b
n−i,c

n−1+ γ
F(yi ,φc) for 1≤ c≤ k−,

b
γ/m

n−1+ γ
F(yi ,φc) for k− < c≤ h,
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wheren−i,c is the number ofc j for j 6= i that are equal toc, andb is the appropriate normalizing
constant. Change the state to contain only thoseφc that are now associated with at least to
one observation.

• For all c ∈ {c1, ...,cn} draw a new value from the distributionφc | {yi such thatci = c}, or
perform some update that leaves this distribution invariant.

Throughout this paper, we setm= 5. This algorithm resembles one proposed by MacEachern and
Müller (1998), with the difference that the auxiliary parameters exist only temporarily, which avoids
an inefficiency in MacEachern and M̈uller’s algorithm.

Samples simulated from the posterior distribution are used to estimate posterior predictive prob-
abilities. For a new case with covariatesx′, the posterior predictive probability of the response
variable,y′, is estimated as follows:

P(y′ = j|x′) =
P(y′ = j,x′)

P(x′)
,

where

P(y′ = j,x′) =
1
S

S

∑
s=1

P(y′ = j,x′|G0,θ(s)),

P(x′) =
1
S

S

∑
s=1

P(x′|G0,θ(s)).

Here, S is the number of post-convergence samples from MCMC, andθ(s) represents the set of
parameters obtained at iterations. Alternatively, we could predict new cases usingP(y′ = j,x′) =
1
S∑S

s=1P(y′ = j|x′,G0,θ(s)). While this would be computationally faster, the above approach allows
us to learn from the covariates of test cases when predicting their response values. Note also that
the above predictive probabilities include the possibility that the test case is from a new cluster.

We use these posterior predictive probabilities to make predictions for test cases, by assigning
each test case to the class with the highest posterior predictive probability.This is the optimal strat-
egy for a simple 0/1 loss function. In general, we could use more problem-specific loss functions
and modify our prediction strategy accordingly.

Implementations for all our models were coded in MATLAB, and are available online athttp:
//www.ics.uci.edu/ ˜ babaks/codes .

3. Results for Simulated Data

In this section, we illustrate our dpMNL model using synthetic data, and compare it with other
models as follows:

• A simple MNL model, fitted by maximum likelihood or Bayesian methods.

• A Bayesian MNL model with quadratic terms (i.e.,xl xk, wherel = 1, ..., p andk = 1, ..., p),
referred to as qMNL.

• A decision tree model (Breiman et al., 1993) that uses 10-fold cross-validation for pruning,
as implemented by the MATLAB “treefit”, “treetest” (for cross-validation) and “treeprune”
functions.
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• Support Vector Machines (SVMs) (Vapnik, 1995), implemented with the MATLAB “svm-
train” and “svmclassify” functions from the Bioinformatics toolbox. Both a linear SVM
(LSVM) and a nonlinear SVM with radial basis function kernel (RBF-SVM) were tried.

When the number of classes in a classification problem was bigger than two, LSVM and RBF-SVM
used the all-vs-all scheme as suggested by Allwein et al. (2000), Fürnkranz (2002), and Hsu and
Lin (2002). In this scheme,

(J
2

)

binary classifiers are trained where each classifier separates a pair
of classes. The predicted class for each test case is decided by using amajority voting scheme
where the class with the highest number of votes among all binary classes wins. For RBF-SVM,
the scaling parameter,λ, in the RBF kernel,k(x,x′) = exp(−||x−x′||/2λ), was optimized based on
a validation set comprised of 20% of training samples.

The models are compared with respect to their accuracy rate and theF1 measure. Accuracy rate
is defined as the percentage of the times the correct class is predicted.F1 is a common measurement
in machine learning defined as:

F1 =
1
J

J

∑
j=1

2A j

2A j +B j +Cj
,

whereA j is the number of cases which are correctly assigned to classj, B j is the number cases
incorrectly assigned to classj, andCj is the number of cases which belong to the classj but are
assigned to other classes.

We do two tests. In the first test, we generate data according to the dpMNL model. Our objective
is to evaluate the performance of our model when the distribution of data is comprised of multiple
components. In the second test, we generate data using a smooth nonlinear function. Our goal is to
evaluate the robustness of our model when data actually come from a different model.

3.1 Simulation 1

The first test was on a synthetic four-way classification problem with five covariates. Data are
generated according to our dpMNL model, except the number of components was fixed at two. Two
hyperparameters definingG0 were given the following priors:

log(τ2) ∼ N(0,0.12),

log(ν2) ∼ N(0,22).

The prior for component parametersθ = (µ,σ2,α,β) defined by thisG0 was

µl ∼ N(0,1),

log(σ2
l ) ∼ N(0,22),

α j |τ ∼ N(0,τ2),

β jl |ν ∼ N(0,ν2),

wherel = 1, ...,5 and j = 1, ...,4. We randomly draw parametersθ1 andθ2 for two components as
described from this prior. For each component, we then generate 5000 data points by first drawing
xil ∼ N(µl ,σl ) and then samplingy using the following MNL model:

P(y = j|x,α,β) =
exp(α j +xβ j)

∑J
j ′=1exp(α j ′ +xβ j ′)

.
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Model Accuracy (%) F1 (%)

Baseline 45.57 (1.47) 15.48 (1.77)
MNL (Maximum Likelihood) 77.30 (1.23) 66.65 (1.41)
MNL 78.39 (1.32) 66.52 (1.72)
qMNL 83.60 (0.99) 74.16 (1.30)
Tree (Cross Validation) 70.87 (1.40) 55.82 (1.69)
LSVM 78.61 (1.17) 67.03 (1.51)
RBF-SVM 79.09 (0.99) 63.65 (1.44)
dpMNL 89.21 (0.65) 81.00 (1.23)

Table 1: Simulation 1: the average performance of models based on 50 simulated data sets. The
Baseline model assigns test cases to the class with the highest frequency inthe training
set. Standard errors of estimates (based on 50 repetitions) are providedin parentheses.

The overall sample size is 10000. We randomly split the data into a training set, with 100 data
points, and a test set, with 9900 data points. We use the training set to fit the models, and use the
independent test set to evaluate their performance. The regression parameters of the Bayesian MNL
model with Bayesian estimation and the qMNL model have the following priors:

α j |τ ∼ N(0,τ2),

β jl |ν ∼ N(0,ν2),

log(τ) ∼ N(0,12),

log(ν) ∼ N(0,22).

The above procedure was repeated 50 times. Each time, new hyperparameters,τ2 andν2, and
new component parameters,θ1 andθ2, were sampled, and a new data set was created based on these
θ’s.

We used Hamiltonian dynamics (Neal, 1993) for updating the regression parameters (theα’s
andβ’s). For all other parameters, we used single-variable slice sampling (Neal, 2003) with the
“stepping out” procedure to find an interval around the current point, and then the “shrinkage”
procedure to sample from this interval. We also used slice sampling for updating the concentration
parameterγ, We used log(γ) ∼ N(−3,22) as the prior, which, encourages smaller values ofγ, and
hence a smaller number of components. Note that the likelihood forγ depends only onC, the
number of unique components (Neal, 2000; Escobar and West, 1995). For all models we ran 5000
MCMC iterations to sample from the posterior distributions. We discarded the initial 500 samples
and used the rest for prediction.

Our dpMNL model has the highest computational cost compared to all other methods. Simulat-
ing the Markov chain took about 0.15 seconds per iteration using a MATLABimplementation on an
UltraSPARC III machine (approximately 12.5 minutes for each simulated data set). Each MCMC
iteration for the Bayesian MNL model took about 0.1 second (approximately 8minutes for each
data set). Training the RBF-SVM model (with optimization of the scale parameter)took approxi-
mately 1 second for each data set. Therefore, SVM models have a substantial advantage over our
approach in terms of computational cost.
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Figure 3: A random sample generated according to Simulation 2, witha3 = 0. The dotted line is
the optimal boundary function.

The average results (over 50 repetitions) are presented in Table 1. As we can see, our dpMNL
model provides better results compared to all other models. The improvements are statistically
significant (p-values< 0.001) for comparisons of accuracy rates using a pairedt-test withn = 50.

3.2 Simulation 2

In the above simulation, since the data were generated according to the dpMNL model, it is not
surprising that this model had the best performance compared to other models. In fact, as we
increase the number of components, the amount of improvement using our model becomes more and
more substantial (results not shown). To evaluate the robustness of the dpMNL model, we performed
another test. This time, we generatedxi1,xi2,xi3 (wherei = 1, ...,10000) from theUni f orm(0,5)
distribution, and generated a binary response variable,yi , according the following model:

P(y = 1|x) =
1

1+exp[a1sin(x1.04
1 +1.2)+x1cos(a2x2 +0.7)+a3x3−2]

,

wherea1, a2 anda3 are randomly sampled fromN(1,0.52). The function used to generatey is a
smooth nonlinear function of covariates. The covariates are not clustered, so the generated data
do not conform with the assumptions of our model. Moreover, this function includes a completely
arbitrary set of constants to ensure the results are generalizable. Figure 3 shows a random sample
from this model except thata3 is fixed at zero (sox3 is ignored). In this figure, the dotted line is the
optimal decision boundary.

Table 2 shows the results for this simulation, which are averages over 50 data sets. For each data
set, we generated 10000 cases by sampling new values fora1, a2, anda3, new covariates,x, for each
case, and new values for the response variable,y, in each case. As before, models were trained on
100 cases, and tested on the remaining 9900. As before, the dpMNL model provides significantly
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Model Accuracy (%) F1 (%)

Baseline 61.96 (1.53) 37.99 (0.57)
MNL (Maximum Likelihood) 73.58 (0.96) 68.33 (1.17)
MNL 73.58 (0.97) 67.92 (1.41)
qMNL 75.60 (0.98) 70.12 (1.36)
Tree (Cross Validation) 73.47 (0.95) 66.94 (1.43)
LSVM Linear 73.09 (0.99) 64.95 (1.71)
RBF-SVM 76.06 (0.94) 68.46 (1.77)
dpMNL 77.80 (0.86) 73.13 (1.26)

Table 2: Simulation 2: the average performance of models based on 50 simulated data sets. The
Baseline model assigns test cases to the class with the highest frequency inthe training
set. Standard errors of estimates (based on 50 repetitions) are providedin parentheses.

(all p-values are smaller than 0.001) better performance compared to all other models. This time,
however, the performances of qMNL and RBF-SVM are closer to the performance of the dpMNL
model.

4. Results on Real Classification Problems

In this section, we first apply our model the problem of predicting a protein’s 3D structure (i.e.,
folding class) based on its sequence. We then use our model to identify patients with Parkinson’s
disease (PD) based on their speech signals.

4.1 Protein Fold Classification

When predicting a protein’s 3D structure, it is common to presume that the number of possible
folds is fixed, and use a classification model to assign a protein to one of these folding classes.
There are more than 600 folding patterns identified in the SCOP (Structural Classification of Pro-
teins) database (Lo Conte et al., 2000). In this database, proteins are considered to have the same
folding class if they have the same major secondary structure in the same arrangement with the same
topological connections.

We apply our model to a protein fold recognition data set provided by Ding and Dubchak (2001).
The proteins in this data set are obtained from the PDBselect database (Hobohm et al., 1992;
Hobohm and Sander, 1994) such that two proteins have no more than 35%of the sequence identity
for aligned subsequences larger than 80 residues. Originally, the resulting data set included 128
unique folds. However, Ding and Dubchak (2001) selected only the 27 most populated folds (311
proteins) for their analysis. They evaluated their models based on an independent sample (i.e., test
set) obtained from PDB-40D (Lo Conte et al., 2000). PDB-40D contains the SCOP sequences with
less than 40% identity with each other. Ding and Dubchak (2001) selected 383 representatives of
the same 27 folds in the training set with no more than 35% identity to the training sequences. The
training and test data sets are available online athttp://crd.lbl.gov/ ˜ cding/protein/ .

The covariates in these data sets are the length of the protein sequence, and the percentage
composition of the 20 amino acids. While there might exist more informative covariates to pre-
dict protein folds, we use these so that we can compare the results of our model to that of Ding
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and Dubchak (2001), who trained several Support Vector Machines(SVM) with nonlinear kernel
functions.

We centered the covariates so they have mean zero, and used the followingpriors for the MNL
model and qMNL model (with no interactions, onlyxi andx2

i as covariates):

α j |η ∼ N(0,η2),

log(η2) ∼ N(0,22),

β jl |ξ,σl ∼ N(0,ξ2σ2
l ),

log(ξ2) ∼ N(0,1),

log(σ2
l ) ∼ N(−3,42).

Here, the hyperparameters for the variances of regression parameters are more elaborate than in the
previous section. One hyperparameter,σl , is used to control the variance of all coefficients,β jl

(where j = 1, ...,J), for covariatexl . If a covariate is irrelevant, its hyperparameter will tend to be
small, forcing the coefficients for that covariate to be near zero. This method, termed Automatic
Relevance Determination (ARD), has previously been applied to neural network models by Neal
(1996). We also used another hyperparameter,ξ, to control the overall magnitude of allβ’s. This
way,σl controls the relevance of covariatexl compared to other covariates, andξ controls the overall
usefulness of all covariates in separating all classes. The standard deviation ofβ jl is therefore equal
to ξσl .

The above scheme was also used for the dpMNL model. Note that in this model, oneσl controls
all β jlc , where j = 1, ...,J indexes classes, andc = 1, ...,C indexes the unique components in the
mixture. Therefore, the standard deviation ofβ jlc is ξσl νc. Here,νc is specific to each component
c, and controls the overall effect of coefficients in that component. Thatis, while σ and ξ are
global hyperparameters common between all components,νc is a local hyperparameter within a
component. Similarly, the standard deviation of intercepts,α jc in componentc is ητc. We used
N(0,1) as the prior forνc andτc.

We also needed to specify priors forµl andσl , the mean and standard deviation of covariatexl ,
wherel = 1, ..., p. For these parameters, we used the following priors:

µlc|µ0,l ,σ0,l ∼ N(µ0,l ,σ2
0,l ),

µ0,l ∼ N(0,52),

log(σ2
0,l ) ∼ N(0,22),

log(σ2
lc)|Mσ,l ,Vσ,l ∼ N(Mσ,l ,V

2
σ,l ),

Mσ,l ∼ N(0,12),

log(V2
σ,l ) ∼ N(0,22).

These priors make use of higher level hyperparameters to provide flexibility. For example, if the
components are not different with respect to covariatexl , the corresponding variance,σ2

0,l , becomes
small, forcingµlc close to their overall mean,µ0,l .

The MCMC chains for MNL, qMNL, and dpMNL ran for 10000 iterations. Simulating the
Markov chain took about 2.1 seconds per iteration (5.8 hours in total) for dpMNL and 0.5 seconds
per iteration (1.4 hours in total) for MNL using a MATLAB implementation on an UltraSPARC III
machine. Training the RBF-SVM model took about 2.5 minutes.
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Model Accuracy (%) F1 (%)

MNL 50.0 41.2
qMNL 50.5 42.1
SVM (Ding and Dubchak, 2001) 49.4 -
LSVM 50.5 47.3
RBF-SVM 53.1 49.5
dpMNL 58.6 53.0

Table 3: Performance of models based on protein fold classification data.

The results for MNL, qMNL, LSVM, RBF-SVM, and dpMNL are presented in Table 3, along
with the results for the best SVM model developed by Ding and Dubchak (2001) on the exact same
data set. As we can see, the nonlinear RBF-SVM model that we fit has betteraccuracy than the
linear models. Our dpMNL model provides an additional improvement over theRBF-SVM model.
This shows that there is in fact a nonlinear relationship between folding classes and the composition
of amino acids, and our nonlinear model could successfully identify this relationship.

4.2 Detecting Parkinson’s Disease

The above example shows that our method can potentially improve prediction accuracy, though
of course other classifiers, such as SVM and neural networks, may dobetter on some problems.
However, we believe the application of our method is not limited to simply improving prediction
accuracy—it can also be used to discover hidden structure in data by identifying subgroups (i.e.,
mixture components) in the population. This section provides an example to illustrate this concept.

Neurological disorders such as Parkinson’s disease (PD) have profound consequences for pa-
tients, their families, and society. Although there is no cure for PD at this time, it ispossible to
alleviate its symptoms significantly, especially at the early stages of the disease (Singh et al., 2007).
Since approximately 90% of patients exhibit some form of vocal impairment (Hoet al., 1998), and
research has shown that vocal impairment could be one of the earliest indicators of onset of the
illness (Duffy, 2005), voice measurement has been proposed as a reliable tool to detect and monitor
PD (Sapir et al., 2007; Rahn et al., 2007; Little et al., 2008). For example, patients with PD com-
monly display a symptom known asdysphonia, which is an impairment in the normal production of
vocal sounds.

In a recent paper, Little et al. (2008) show that by detectingdysphonia, we could identify pa-
tients with PD. Their study used data on sustained vowel phonations from 31subjects, of whom 23
were diagnosed with PD. The 22 covariates used include traditional variables, such as measures of
vocal fundamental frequency and measures of variation in amplitude of signals, as well as a novel
measurement referred to aspitch period entropy(PPE). See Little et al. (2008) for a detailed de-
scription of these variables. This data set is publicly available at UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/datasets/Parkinsons ).

Little et al. (2008) use an SVM classifier with Gaussian radial basis kernelfunctions to identify
patients with PD, chosing the SVM penalty value and kernel bandwidth by an exhaustive search over
a range of values. They also perform an exhaustive search to selectthe optimal subset of features
(10 features were selected). Their best model provides a 91.4% (±4.4) accuracy rate based on a
bootstrap algorithm. This of course does not reflect the true prediction accuracy rate of the model
for future observations since the model is trained and evaluated on the samesample. Here, we use
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Model Accuracy (%) F1 (%)

MNL 85.6 (2.2) 79.1 (2.8)
qMNL 86.1 (1.5) 79.7 (2.1)
LSVM 87.2 (2.3) 80.6 (2.8)
RBF-SVM 87.2 (2.7) 79.9 (3.2)
dpMNL 87.7 (3.3) 82.6 (2.5)

Table 4: Performance of models based on detecting Parkinson’s disease. Standard errors of esti-
mates (based on 5 cross-validation folds) are provided in parentheses.

Group Frequency Age Average Male Proportion

1 107 66 (0.7) 0.86 (0.03)
2 12 72 (1.1) 0.83 (0.11)
3 36 63 (1.8) 0.08 (0.04)
4 40 65 (2.2) 0.40 (0.08)

Population 195 66 (0.7) 0.60 (0.03)

Table 5: The age average and male proportion for each cluster (i.e., mixturecomponent) identified
by our model. Standard errors of estimates are provided in parentheses.

a 5-fold cross validation scheme instead in order to obtain a more accurate estimate of prediction
accuracy rate and avoid inflating model performance due to overfitting. Asa result, our models
cannot be directly compared to that of Little et al. (2008).

We apply our dpMNL model to the same data set, along with MNL and qMNL (no interactions,
only xi andx2

i as covariates). Although the observations from the same subject are notindependent,
we assume they are, as done by Little et al. (2008). Instead of selecting anoptimum subset of fea-
tures, we used PCA and chose the first 10 principal components. The MCMC algorithm for MNL,
qMNL, and dpMNL ran for 3000 iterations (the first 500 iterations were discarded). Simulating
the Markov chain took about 0.7 second per iteration (35 minutes per data set) for dpMNL and
0.1 second per iteration (5 minutes per data set) for MNL using a MATLAB implementation on an
UltraSPARC III machine. Training the RBF-SVM model took 38 seconds foreach data set.

Using the dpMNL model, the most probable number of components in the posterior is four
(note that might change from one iteration to another). Table 4 shows the average and standard
errors (based on 5-fold cross validation) of the accuracy rate and theF1 measure for MNL, LSVM,
RBF-SVM, and dpMNL. (But note that the standard errors assume independence of cross-validation
folds, which is not really correct.)

While dpMNL provides slightly better results, the improvement is not statistically significant.
However, examining the clusters (i.e., mixture components) identified by dpMNLreveals some
information about the underlying structure in the data. Table 5 shows the average age of subjects
and male proportion for the four clusters (based on the most probable number of components in
the posterior) identified by our model. Note that age and gender are not available from the UCI
Machine Learning Repository, and they are not included in our model. They are, however, available
from Table 1 in Little et al. (2008). The first two groups include substantiallyhigher percentages
of male subjects than female subjects. The average age in the second of these groups is higher
compared to the first group. Most of the subjects in the third group are female (only 8% are male).
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The fourth group also includes more female subjects than male subjects, but the disproportionality
is not as high as for the third group.

When identifying Parkinson’s disease by detecting dysphonia, it has been shown that gender
has a confounding effect (Cnockaert et al., 2008). By grouping thedata into clusters, our model
has identified (to some extent) the heterogeneity of subjects due to age and gender, even though
these covariates were not available to the model. Moreover, by fitting a separate linear model to
each component (i.e., conditioning on mixture identifiers), our model approximates the confounding
effect of age and gender. For this example, we could have simply taken theage and gender of
subjects from Table 1 in Little et al. (2008) and included them in our model. In many situations,
however, not all the relevant factors are measured. This could resultin unobservable changes in the
structure of data. We discuss this concept in more detail elsewhere (Shahbaba, 2009).

5. Discussion and Future Directions

We introduced a new nonlinear classification model, which uses Dirichlet process mixtures to model
the joint distribution of the response variable,y, and the covariates,x, non-parametrically. We com-
pared our model to several linear and nonlinear alternative methods usingboth simulated and real
data. We found that when the relationship betweeny andx is nonlinear, our approach provides sub-
stantial improvement over alternative methods. One advantage of this approach is that if the rela-
tionship is in fact linear, the model can easily reduce to a linear model by usingonly one component
in the mixture. This way, it avoids overfitting, which is a common challenge in many nonlinear
models.

We believe our model can provide more interpretable results. In many real problems, the iden-
tified components may correspond to a meaningful segmentation of data. Sincethe relationship
betweeny andx remains linear in each segment, the results of our model can be expressed as a set
of linear patterns for different data segments.

Hyperparameters such asλ in RBF-SVM andγ in dpMNL can substantially influence the per-
formance of the models. Therefore, it is essential to choose these parameters appropriately. For
RBF-SVM, we optimizedλ using a validation set that includes 20% of the training data. Figure 4
(a) shows the effect ofλ on prediction accuracy for one data set. The value ofλ with the highest
accuracy rate based on the validation set was used to train the RBF-SVM model. The hyperparam-
eters in our dpMNL model are not fixed at some “optimum” values. Instead, we use hyperpriors
that reflect our opinion regarding the possible values of these parameters before observing the data,
with the posterior for these parameters reflecting both this prior opinion and the data. Hyperpriors
for regression parameters,β, facilitate their shrinkage towards zero if they are not relevant to the
classification task. The hyperprior for the scale parameterγ affects how many mixture components
are present in the data. Instead of settingγ to some constant number, we allow the model to decide
the appropriate value ofγ, using a hyperprior that encourages a small number of components, but
which is not very restrictive, and hence allowsγ to become large in the posterior if required to fit
the data. Choosing unreasonably restrictive priors could have a negative effect on model perfor-
mance and MCMC convergence. Figure 4 (b) illustrates the negative effect of unreasonable priors
for γ. For this data set, the correct number of components is two. We gradually increaseµγ, where
log(γ) ∼ N(µγ,2), in order to put higher probability on larger values ofγ and lower probability on
smaller values. As we can see, settingµγ ≥ 4, which makes the hyperprior very restrictive, results in
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Figure 4: Effects of scale parameters when fitting a data set generated according to Simulation 1.
(a) The effect ofλ in the RBF-SVM model. (b) The effect of the prior on the scale
parameter,γ ∼ log-N(µγ,22), asµγ changes in the dpMNL model.

a substantial decline in accuracy rate (solid line) due to overfitting with a largenumber of mixture
components (dashed line).

The computational cost for our model is substantially higher compared to other methods such
as MNL and SVM. This could be a preventive factor in applying our model tosome problems.
The computational cost of our model could be reduced by using more efficient methods, such as
the “split-merge” approach introduced by Jain and Neal (2007). This method uses a Metropolis-
Hastings procedure that resamples clusters of observations simultaneously rather than incrementally
assigning one observation at a time to mixture components. Alternatively, it mightbe possible to
reduce the computational cost by using a variational inference algorithm similar to the one proposed
by Blei and Jordan (2005). In this approach, the posterior distributionP is approximated by a
tractable variational distributionQ, whose free variational parameters are adjusted until a reasonable
approximation toP is achieved.

We expect our model to outperform other nonlinear models such as neural networks and SVM
(with nonlinear kernel functions) when the population is comprised of subgroups each with their
own distinct pattern of relationship between covariates and response variable. We also believe that
our model could perform well if the true function relating covariates to response variable contains
sharp changes.

The performance of our model could be negatively affected if the covariates are highly correlated
with each other. In such situations, the assumption of diagonal covariancematrix for x adopted
by our model could be very restrictive. To capture the interdependencies between covariates, our
model would attempt to increase the number of mixture components (i.e., clusters). This however
is not very efficient. To address this issue, we could use mixtures of factor analyzers, where the
covariance structure of high dimensional data is model using a small number of latent variables (see
for example, Rubin and Thayer, 2007; Ghahramani and Hinton, 1996).

In this paper, we considered only continuous covariates. Our approach can be easily extended
to situations where the covariate are categorical. For these problems, we need to replace the nor-
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mal distribution in the baseline,G0, with a more appropriate distribution. For example, when the
covariatex is binary, we can assumex∼ Bernoulli(µ), and specify an appropriate prior distribution
(e.g.,Betadistribution) forµ. Alternatively, we can use a continuous latent variable,z, such that
µ = exp(z)/{1+ exp(z)}. This way, we can still model the distribution ofz as a mixture of nor-
mals. For categorical covariates, we can either use a Dirichlet prior for the probabilities of theK
categories, or useK continuous latent variables,z1, ...,zK, and let the probability of categoryj be
exp(zj)/∑K

j ′ exp(zj ′).

Throughout this paper, we assumed that the relationship betweeny andx is linear within each
component of the mixture. It is possible of course to relax this assumption in order to obtain more
flexibility. For example, we can include some nonlinear transformation of the original variables
(e.g., quadratic terms) in the model.

Our model can also be extended to problems where the response variable isnot multinomial.
For example, we can use this approach for regression problems with continuous response,y, which
could be assumed normal within a component. We would model the mean of this normal distribution
as a linear function of covariates for cases that belong to that component.Other types of response
variables (i.e., with Poisson distribution) can be handled in a similar way.

In the protein fold prediction problem discussed in this paper, classes were regarded as a set of
unrelated entities. However, these classes are not completely unrelated, and can be grouped into
four major structural classes known asα, β, α/β, andα + β. Ding and Dubchak (2001) show the
corresponding hierarchical scheme (Table 1 in their paper). We have previously introduced a new
approach for modeling hierarchical classes (Shahbaba and Neal, 2006, 2007). In this approach, we
use a Bayesian form of the multinomial logit model, called corMNL, with a prior that introduces
correlations between the parameters for classes that are nearby in the hierarchy. Our dpMNL model
can be extend to classification problems where classes have a hierarchical structure (Shahbaba,
2007). For this purposse, we use a corMNL model, instead of MNL, to capture the relationship
between the covariates,x, and the response variable,y, within each component. The results is a
nonlinear model which takes the hierarchical structure of classes into account.

Finally, our approach provides a convenient framework for semi-supervised learning, in which
both labeled and unlabeled data are used in the learning process. In our approach, unlabeled data
can contribute to modeling the distribution of covariates,x, while only labeled data are used to
identify the dependence betweeny andx. This is a quite useful approach for problems where the
response variable is known for a limited number of cases, but a large amount of unlabeled data can
be generated. One such problem is classification of web documents.
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