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Abstract

We are interested in supervised ranking algorithms thdbparespecially well near the top of the
ranked list, and are only required to perform sufficientiflwe the rest of the list. In this work,
we provide a general form of convex objective that gives tggbring examples more importance.
This “push” near the top of the list can be chosen arbitrdaitge or small, based on the preference
of the user. We choosg,-norms to provide a specific type of push,; if the user gekarger, the
objective concentrates harder on the top of the list. Wevdaigeneralization bound based on
the p-norm objective, working around the natural asymmetry &f phoblem. We then derive a
boosting-style algorithm for the problem of ranking with @sp at the top. The usefulness of the
algorithm is illustrated through experiments on repoyittata. We prove that the minimizer of the
algorithm’s objective is unique in a specific sense. Furtiee, we illustrate how our objective is
related to quality measurements for information retrieval

Keywords: ranking, RankBoost, generalization bounds, ROC, infoionatetrieval

1. Introduction

The problem of supervised ranking is useful in many application domainsdtance, maintenance
operations to be performed in a specific order, natural languagegsinge information retrieval,
and drug discovery. Many of these domains require the constructioraokad list, yet often, only
the top portion of the list is used in practice. For instance, in the setting of\sspe movie ranking,
the learning algorithm provides the user (an avid movie-goer) with a rdigted movies based on
preference data. We expect the user to examine the top portion of thediseasmmendation. It
is possible that she never looks at the rest of the list, or examines it onfiybfi@us, we wish to
make sure that the top portion of the list is correctly constructed. This is tixgon on which we
concentrate.

We present a fairly general and flexible technique for solving these typproblems. Specif-
ically, we derive a convex objective function that places more emphatie abp of the list. The
algorithm we develop using this technique (“The P-Norm Push”) is bageahiaimization of a
specific version of this objective. The user chooses a paramgtar the objective, corresponding
to the p of an/, norm. By varyingp, one changes the degree of concentration (“push”) at the top
of the list. One can concentrate at the very top of the list (a big push, [@Brge one can have a
moderate emphasis at the top (a little push, lgwor somewhere in between. The case with no
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RuUDIN

emphasis at the top (no push= 1) corresponds to a standard objective for supervised bipartite
ranking, namely the exponentiated pairwise misranking error.

The P-Norm Push is motivated in the setting of supervised bipartite rankirthelsupervised
bipartite ranking problem, each training instance has a label of +1 orch;meavie is either a good
movie or a bad movie. In this case, we want to push the bad movies away feotogtiof the list
where the good movies are desired. The quality of a ranking can be deterivyrexamining the
Receiver Operator Characteristic (ROC) curve. The AUC (Area UtideROC Curve) is precisely
a constant times one minus the total standard pairwise misranking errorc@in@aey measure for
our problem is different; we care mostly about the leftmost portion of the R@@, corresponding
to the top of the ranked list. We wish to make the leftmost portion of the curve higtheis, we
choose to make a tradeoff: in order make the leftmost portion of the curherhigye sacrifice on
the total area underneath the curve. The parangeitethe P-Norm Push allows the user to directly
control this tradeoff.

This problem is highly asymmetric with respect to the positive and negativeedaand is not
represented by a sum of independent random variables. It is intgréstoonsider generalization
bounds for such a problem; it is not clear how to use standard techrittpia®quire natural sym-
metry with respect to the positive and negative examples, for instance, Waahgunds rely on this
kind of symmetry. In this work, we present a generalization bound thatameering numbers as a
measure of complexity. This bound is designed specifically to handle thgseretric conditions.
The bound underscores an important property of algorithms that cwateon a small portion of
the domain, such as algorithms that concentrate on the top of a ranked listategthms require
more examples for generalization.

Recently, there has been a large amount of interest in the supervigathrproblem, and espe-
cially in the bipartite problem. Freund et al. (2003) have developed theBrarsik algorithm for the
general setting. We inherit the setup of RankBoost, and our algorithmIladllkee a boosting-style
algorithm. Oddly, Freund and Schapire’s classification algorithm AdaB&osund and Schapire,
1997) performs just as well for bipartite ranking as RankBoost; bothrithhgas achieve equally
good values of the AUC (Rudin and Schapire, 2009). This is in contriistsmpport vector ma-
chine classifiers (Cortes and Vapnik, 1995), which do not tend to perfeell for the bipartite
ranking problem (Rakotomamonjy, 2004; Brefeld and Scheffer, 20@®ger et al. (2002) aim to
manipulate specific points of the ROC curve in order to study “churn” in thedetenunications
industry. Perhaps the closest algorithm to ours is the one proposedkiyddal. (2004), who have
used a similar form of objective with different specifics to achieve a diffegoal, namely to rank
labels in a multilabel setting. Other related works on label ranking include tHdSemomer and
Singer (2001) and Shalev-Shwartz and Singer (2006). The workgYal. (2003) contains a brief
mention of a method to optimize the lower left corner of the ROC curve, thoughnthgti-layer
perception approach is highly non-convex. There is a lot of recerk wo generalization bounds
(and large deviation bounds) for supervised ranking, namely, thedsooinFreund et al. (2003),
Clemencon et al. (2008), Agarwal et al. (2005), Usunier et al.§204ill et al. (2002), Rudin et al.
(2005) and Rudin and Schapire (2009), though we were only able f sgtdniques from the lat-
ter two bounds to our particular setting, since the covering number appcaachandle the natural
asymmetry of our problem. There is also a body of work on ROC curvesriargk for example,
the estimation of confidence bands for ROC curves (Macskassy et@.), 20d more recent works
by Clemencon and Vayatis addressing statistical aspects of rankingm®fe.g., Clemencon and
Vayatis, 2007, 2008).
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There is a large body of literature on information retrieval (IR) that carsidther quality
measurements for a ranked list, including “discounted cumulative gaingrége precision” and
“winner take all.” In essence, the P-Norm Push algorithm can be camsids a way to interpolate
between AUC maximization (no push,= 1) and a quantity similar to “winner take all” (largest
possible pushp = «). A simple variation of the P-Norm Push derivation can be used to derive
convex objectives that are somewhat similar to the “discounted cumulaiiveagawe illustrate in
Section 7. Our approach yields simple smooth convex objectives that caimineized using simple
coordinate techniques. In that sense, our work complements those afargaridis et al. (2005)
and Le and Smola (2007) who also minimize a convex upper bound of IRg@mieasurements, but
with a structured learning approach that requires optimization with exponemtiatly constraints;
those works have suggested useful ways to combat this problem. Additichare are recent
works (Cossock and Zhang, 2006; Zheng et al., 2007) that sugggession approaches to optimize
ranking criteria for information retrieval.

Here is the outline of the work: in Section 2, we present a general forobjettive function,
allowing us to incorporate a push near the top of the ranked list. In ordesrstract a specific
case of this objective, one chooses both a loss funétammd a convex “price” functiog. We will
chooseg to be a power lawg(r) = rP, so that a higher powey corresponds to a larger push near
the top. In Section 3 we give some examples to illustrate how the objective wiork&ection 4,
we provide a generalization bound for our objective witas the 0-1 loss, based &g, covering
numbers. The generalization bound has been improved from the cocdeversion of this work
(Rudin, 2006). In Section 5 we derive the “P-Norm Push” coordinatxent algorithm based on
the objective with/ chosen as the exponential loss used for AdaBoost and RankBoasior5é
discusses uniqueness of the minimizer of the P-Norm Push algorithm’s gbjeéte prove that the
minimizer is unique in a specific sense. This result is based on conjugate duithe theory of
Bregman distances (Della Pietra et al., 2002), and is analogous to theafeGultins et al. (2002)
for AdaBoost. The “primal” problem for AdaBoost can be written as re¢a¢intropy minimization.
For the objective of the P-Norm Push algorithm, the problem is more diffictthe primal is
not a common function. Section 7 illustrates the similarity between quality measuseusend for
information retrieval and our objective, and gives other variations obtjective. In Section 8,
we demonstrate the P-Norm Push on repository data. Section 9 discpssgsroblems and future
work. Sections 10 and 11 contain the major proofs from Sections 4 andéPINorm Push was
recently applied to the problem of prioritizing manholes in New York City for maiatee and
repair (Rudin et al., 2009).

The main contributions of this work are: a generalization bound for a leguprioblem that is
asymmetric by design, a simple user-adjustable, easy-to-implement algoritisopfervised rank-
ing with a “push,” and a proof that the minimizer of the algorithm’s objective igumin a specific
sense.

2. An Objective for Ranking with a Push

The set of instances with positive labels{is }i—1 . |, wherex; € X. The negative instances are
{X}k=1....k, WhereXy € X. We always uséfor the index over positive instances anfbr the index
over negative instances. In the case of the movie ranking problem,sla#e the good movies used
for training, theXy's are the bad movies, amd is a database of movies. Our goal is to construct a
ranking functionf that gives a real valued score to each instanck,ithat is,f : X — ®. We do
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not care about the actual values of each instance, only the relatiesy&tu positive-negative pair
Xi, Xk, we care thaf (x;) > f(Xx) but it is not important to know, for example, thix;) = 0.4 and
f(Xk) = 0.1.

Let us now derive the general form of our objective. For a particudgative example, we wish
to reduce itHeight, which is the number of positive examples ranked beneath it. That is, ébr ea
k, we wish to make Heigkk) small, where:

|
H6|gh1(k) = 1 D<f (%)
i; [06) < F (5]

Let us now add the push. We want to concentrate harder on negasingotes that have high
scores; we want to push these examples down from the top. Since thethégloeing negative
examples also achieve the largest Heights, these are the examples forwehioipose a larger
price. Namely, for convex, non-negative, monotonically increasingtiong: R, — R, we place
the priceg(Height(k)) on negative examplie

|
9| D) L=<t |-
<izl [F(x)< (xm)

If gis very steep, we pay an extremely large price for a high scoring negataraple. Examples
of steep functions includg(r) = € andg(r) = rP for plarge. Thus we have derived an objective to
minimize, namely the sum of the prices for the negative examples:

K |
Rya(f) = k;g (izll[mxi)gf(xk)]) :

The effect ofg is to force the value oRy1 to come mostly from the highest scoring negative
examples. These high scoring negative examples are precisely the examypiesented by the
leftmost portion of the ROC Curve. Minimizingy 1 should thus boost performance around high
scoring negative examples and increase the leftmost portion of the RQ&.Cur

It is hard to minimizeRy; directly due to the 0-1 loss in the inner sum. Instead, we will mini-
mize an upper boundy ¢, which incorporateg : ® — R, a convex, non-negative, monotonically
decreasing upper bound on the 0-1 loss. Popular loss functions intleadsponential, logistic,
and hinge losses. We can now define the general form of our objective

K | .
Roul1)i= 3 0 (;lf(wxi) - f(xk>)> .

To construct a specific version of this objective, one chooses the laks price functiorg, and
an appropriate hypothesis spageover which to minimizeR,,. In order to derive RankBoost's
specific objective fronR, ., we would choosé as the exponential loss agdo be the identity.

For the moment, let us assume we care only about the very top of the list, thet vgish to
push the most offending negative example as far down the list as po$stplwalently, we wish to
minimize Rnax the number of positives below the highest scoring negative example:

|
Rmax( 1) 1= max3 Lisco)<t(eo)-
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Minimizing this misranking error at the very top is similar to optimizing a “winner take lal$s
such asljmay f(x)<max (%) IN that both would choose a ranked list where a negative example is not
at the top of the list.

Although it is hard to minimizeRnax(f) directly, Ry, can give us some control ov&max.
Namely, the following relationships exist betweggy, Ry 1 andRmax.

Theorem 1 For all convex, non-negative, monotonic g and foréathat are upper bounds for the
0-1 loss, we have that:

Kg (iRmaAf)) < Rya(f) <Kg(Ruad ) and  Rya(f) < Ree().

Proof The proof of the first inequality follows from the monotonicity@and Jensen’s inequality
for convex functior.

1 1 ' 1 K |
" (KRmaX(f)> = Ko (K mfxizil[f(xi)«(ik)]) <Kg <K kzliz\l[f(xi)<f(>~<k)])
K !
= k;g (iglﬁ(xi)«(ik)]) =Rya(f).

For the second inequality, we use the fact tha monotonic:

K | |
Ra(f) = > 9 ( 1[f<xi><f<ik>]> < Kmaxg (Zil[f<xi><f<ik>]>
k=1 i=

|
= Kg (mkaxi;l[f(xi)<f(>~<k)]> = K9<Rmax(f))-

Using that/ is an upper bound on the 0-1 loss, we have the last inequality:

K | K |
Roa(f) =3 (izil[f(xm(xk)]) <20 <;€(f(xi) - f(*k))) = Rg(f).

The fact that the functing(%r) is monotonic inr adds credibility to our choice of objective /;
if Rg¢(f) is minimized, causing a reduction K\g(%RmaX(f)), thenRmax(f) will also be reduced.
Thus, Theorem 1 suggests thiy{, is a reasonable quantity to minimize in order to incorporate a
push at the top, for instance, in order to diminRhax. Also recall that ifg is especially steep, for
instanceg(r) = € or g(r) = rP for p large, theng=1(SK_; g(r«)) ~ maxry. That is, the quantity
g 1(Ry1), for steep functions, will approximateRmax.

For most of the paper, we are considering the power law gemdrm”) price functiongy(r) =
rP. By allowing the user to choose we allow the amount of push to be specified to match the
application. At the heart of this derivation, we are usiiggnorms to interpolate between tlie-
norm (the AUC), and thé.-norm (the values oRnax). In what follows, we overload notation by
definingRy, to denoteRy , whereg(r) = rP:

K /1 P
Rp.(f) = k; (;f(f(xi) = f(*k))) :
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Thus,Ré{f(f) — Rmaxe(f) asp — o, whereRmay,(f) := max si_, £(f(xi) — f(%)).
As we will discuss, the choice gf should depend on the number of examples. More examples
are needed for generalization if a larger valuga$ chosen.

3. llustrating That It Works

In this section, we will give some examples to illustrate how the objective ctrates on the top
of the list whenp is large, or more generally, wheris steep.

3.1 First Illustration: Swap on the Bottom vs. Swap on the Top

For our first illustration, we aim simply to show that the objective function westderived really
does care more about the top of the list than the rest. Consider the seingblexx;,X2,Xs, ..., Xs
with vector of labels:

(-1,+1,-1,+1, -1 -1 +1,+1).

Consider scoring functioffiorig Which gives the scoresfyrig(xi) =i for all i. Placing the labels in
rank order offyig yields:

labels in original rank ordert—1 +1 -1 +1 -1 -1 +1 +1).

Using the power lavg(r) = r* for the price function, we can compute the valueRafi ( forig) for
this ranked list: 6+ 1% + 2% 4+ 2% = 33.

Now considerfswaponsotWhich swaps the scores of a pair of examples at the bottom of the
ranked list, fswaponsotX1) = 2, fswaponotX2) = 1, and fswaponeofXi) = i for all otheri. The new
rank ordering of labels is:

swap on the bottom:+1 -1 -1 +1 -1 -1 +1 +1).

Here a negative example is ranked above one more positive example foag l@omputing the
value ofRy 1 (fswapongo) Yields ¥+ 1#+ 24+ 24 = 34 > 33; the value oRy 1 changes slightly when
a swap is made at the bottom of the list, only from 33 to 34. Let us now insteeider a swap
near the top of the list, so that the new set of labels is again only one swggfranwathe original,

fswaponTofXs) = 7, fswaponTofX7) = 6, andfswaponTofXi) = i for all otheri. The new ordering of
labels is:

swaponthetop(-1 +1 -1 +1 -1 +1 -1 +1).

Here, the value oRy1( fswapontop is 0%+ 1%+ 2%+ 3* = 98> 33. So, in both cases only one
swap was made between neighboring examples; however, the swap gt ti¢hte list changed the
objective dramatically (from 33 to 98) while the swap at the bottom hardlygdrhthe objective at
all (from 33 to 34). So, we have now illustrated that the objective fund®en(f) concentrates at
the top of the list.

The same behavior occurs using different loss function®his is summarized in Table 1 for
three loss functions: the 0-1 loss which we have just explained, the erpahloss/(r) = e ', and
the logistic losg(r) = log(1+e~"). (Note that using natural log for the logistic loss does not give
an upper bound on the 0-1 loss, it is off by a multiplicative factor that is weglein experiments.)
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X1, X2, X3, X4, X5, X, X7, Xg Ra1(f) | Raexp(f) | Rajogistic(T)
y: (_17 +17 _17 +17 _17 _17 +17 +1)
labels ordered byorig :

(-1,+1,-1,+1, -1 -1 +1,+1) 33 1716017 43079
labels ordered byswapongot:

(+1,-1,-1,+1, -1 -1 +1,+1) 34 7228939 67020
labels ordered byswaponTop:

(-1,+1,-1,+1, -1 +1,-1,+1) 98 13051509 | 121223

Table 1: Values of the objective functidta , for the three slightly different labelings, using the 0-1
loss (columnRy 1), exponential 10ss (columRy exp), and logistic loss (columRy jogistic)-
The objective functions change much more in reaction to the swap at thettopldt: the
values in the third row (swap on the top) are significantly higher than those isettond
row (swap on the bottom).

3.2 A Second Illustration: Reversal of Polarity

Let us assume we want to choose a scoring funcfiday minimizing our objectiveR, /() over

f € F where¥ has only two functions# = {fq, fo}. This is an interesting experiment in which
there are only 2 choices available for the functiorthe first concentrates on the top of the ranked
list, but performs poorly on the rest, whereas the second performs badhe top of the ranked
list, but performs well over all. In fact, the second scoring functigiis exactly a negation of the
first scoring functionf;. Here are the labels and hypotheses:

labels +1 +1 -1 -1 -1 -1 -1 +1 +1 +1 +1 +1 -1 -1
fp: (14 183 12 11 10 9 8 7 6 5 4 3 2 1)/14
fp: (-14 -13 —-12 —11 -10 -9 -8 -7 -6 -5 -4 -3 -2 —1 )/14

Here, f; performs well at the top of the list (the two top-scoring examples are posibivethe whole
middle of the list is reversed; there are 5 negative examples in a row, dow theat 5 positives.
On the other handf, misses the top two examples which have scores -1/14 and -2/14, however,
the 10 middle examples are correctly rankdg.has a larger AUC thar, but f; is better at the
top of the list. Now, which off; and f, would the misranking objectives from Section 2 prefer?
Let us answer this for varioug, ¢, for differentp and/. Specifically, we will demonstrate that as
p becomes largeR,, prefers the first hypothesis which performs better at the top. Tablew2ssho
values ofR, , for three different loss functions and for various valuep.oT his table shows that for
smallerp, f; is preferred. At some value @, the “polarity” reverses and thefi is preferred. So,
using steeper price functions means that we are more likely to prefer gdonations that perform
well at the top of the list.
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P | Rpi(f1) Rp,1(f2) argminR, 1(f) | Rpexp(f1)  Rpexplf2) argminRy exp( )
fe{fy,fa} fe{f1,f2}
1 25 24 fa 50.25 4980 fa
2 125 118 fa 367.39 36235 fa
3 625 726 f1 2.73x10°  2.70%10° fa
4 |3.13x10° 4.88%10° f1 2.056x10* 2.057x 10 f1
5 | 1.56x10* 3.38x10% f1 1.56x10° 1.60%10° f1
6 | 7.81x10* 2356x10 f1 1.20%10° 1.28%10° f1
7 |1 3.91%10° 16.48x10° f1 9.34x10° 10.36x 1P f1
8 | 1.95x10° 1153x10° f1 7.29%10" 8.53x10’ f1
9 | 9.77+«10° 80.71x10° f1 5.72x10°F  7.13x10° f1
10| 4.88x 10" 56.50% 107 f1 450x10° 6.02%10° f1

p Rp,Iogistic ( fl) Rp,logis'{ic ( f2) argmin I:zp,logistic( f )
fG{fl,fz}

1 3434 3409 fa
2 17018 16790 fa
3 85109 83646 fa
4 429%10° 4.22x10° fy
5 218x10° 2.15% 10 fa
6 1114100 1.110%1C° fa
7  572x10° 5.79%10° f1
8 296x10° 3.05x10° f1
9  153%107 1.63% 107 f1
10 798107 8.74x 107 f1

Table 2: This table shows that as the price function gets steeperifaseases), the scoring func-
tion f1 that performs better on the top of the list is preferred. We show the vatueaéh
of the objectiveRy 1, Rp exp aNdRp jogistic for p=1,...,10 applied tof; (first column) and
f» (second column). The third column shows which of the two scoring functipios f;
achieve a lower value of the objective.

3.3 Third lllustration: Contribution of Each Positive-Negative Pair

Consider the following list of labels and function values :

y:1 1-1 1 1-1 1 1-1 1 1-111-11 1-1-1-1)
f:(20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2)/2D

Figure 1 illustrates the amount that each positive-negative pair contritiuf@gey, for var-
ious values ofp. We aim to show thaRyexp, becomes more influenced by the highest scoring
negative examples gsis increased. On the vertical axis are the positive examipie§,..., 12
ordered by score, with the highest scoring examples at the bottom. On tizerital axis are
the negative examplds=1,...,8 ordered by score, with the highest scoring examples on the
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left. The value of the(i,k)™" entry is the contribution of th&" highest scoring negative exam-
ple, (zﬁe—(f(xi*)—f(ik)))p, multiplied by the proportion attributed to ti® highest scoring positive
exampleg™(f00)~ (%)) / g~ (00 -T(X))  As we adjust the value gf, one can see that most of the
contribution shifts towards the left, or equivalently, towards the highestreg negative examples.

p=1 p=2 p=4 p=6 p=8

Figure 1: Contribution of each positive-negative pair to the obje®jg,. Each square represents
ani,k pair, wherd is an index along the vertical axis, akds along the horizontal axis.
Lighter colors indicate larger contributionsi® exp. The upper left corner represents the
highest (worst) ranked negative and the lowest (worst) ranked ymsiti

4. A Generalization Bound for Ry 1

We present two bounds, where the second has better dependepdtieammthe first. A preliminary
version of the first bound appears in the conference version of thir gRudin, 2006). This work
is inspired by the works of Koltchinskii and Panchenko (2002), Cueketr Smale (2002), and
Bousquet (2003).

Assume that the positive instancgss X, i = 1,...,1 are chosen independently and at random
(iid) from a fixed but unknown probability distributio®, on X. Assume the negative instances
Xk € X, k=1,...,K are chosen iid fromD_. The notationx ~ D meansx is chosen randomly
according to distributiorD. The notatiors, ~ LDL means each of thieelements of the training set
S, are chosen independently at random according to Similarly forS_ ~ DX,

We now define the “true” objective function for the underlying distribution:

1/p
Ror(f) = (Exﬂa (EX+~@+1[f<X+>ff<x7>s0})p)

= [P, (FOx) = Fx-) <O-)

The empirical loss associated Wlﬂ‘gf‘le(f) is the following:

1
Rempkmalf . 1X 14 1 P\ P
pi ()= Rk; Ti; [F(6)~ (%) <0 :

Here, for a particulagy, R?;'Ip"ica'(f) takes into account the average number of positive examples

that have scores beloky. It is a monotonic function oR, 1. To make this notion more general, let

Lp(X,,@,)
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us consider the average number of positive examples that have sarasettiose toor belowXy.
A more general version d¥ mp'”cal(f) is thus defined as:

p\ 1/p
qu%rlcal(f) ( < ZI [ (%) F (%) <e> ) :

This terminology incorporates the “margin” val®e As before, we suffer some loss whenever
positive example; is ranked below negative exampilg but now we also suffer loss whenever
andX, have scores withif of each other. Note th&tpnipe'”ca' is an empirical quantity, so it can be
measured for ang®. We will state two bounds, proved in Section 10, where the second is tighter

than the first. The first bound is easier to understand and is a diretfacpraf the second bound.

Theorem 2 (First Generalization Bound) For akt > 0,p > 1, 8 > 0, the probability over random
choice of training set, S~ D! ,S_ ~ DX that there exists an € ¥ such that

RIY(f) > R f) +¢

220 (7.5) (er0]-2(5) "] +exp| 5141k ).

Here the covering numbei(( ¥, €) is defined as the number efsized balls needed to covér in
L., and it is used here as a complexity measuregffoil his expression states that, provideahdK
are large, then with high probability, the true eng;f’le(f) is not too much more than the empirical
error RET%'”C&"( f).

It is important to note the implications of this bound for scalability. More exampkesaguired
for largerp. This is because we are concentrating on a small portion of input spaesponding
to the top of the ranked list. If most of the vaIueRSFj“1 comes from a small portion of input space,
it is necessary to have more examples in that part of the space in orde¢imatests value with
high confidence. The fact that more examples are required for famgn affect performance in
practice. A 1-dimensional demonstration of this fact is given at the enéafd® 10.

Theorem 2 shows that the dependencg@aimportant for generalization. The following theo-

rem shows that in most circumstances, we have much better dependemc8mecifically, the de-
2(p-1)

is at most:

pendence can be shifted frorg?? in the exponential to a factor related-t@? (inff Rg,“f( f ))

The bound becomes much tighter than Theorem 2 when all hypotheseslaaye enough true risk,
that is, when inf Rtgfle( f) is large compared te.

Theorem 3 (Second Generalization Bound) For aft- 0, p> 1, 8 > 0, the probability over random
choice of training set, S~ Q)L,& ~ DK that there exists an & F such that
Rtrue( f ) > Rzr?-rgncal( f ) +e

is at most:

2{7\[( 9) <exp[ 2K max{iz(Rpmin)z(p_l) , (Z)zp}] +exp[—882l +1In KD

where R min = infre s RIS(f).
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The proof is in Section 10. The dependencemis now much better than in Theorem 2. It is
possible that the bound can be tightened in other ways, for instance, @ different type of
covering number. For instance, one might use the “sloppy covering ntimbRudin and Schapire
(2009)’s ranking bound, which is adapted from the classification bo@iGthapire et al. (1998).

The purpose of Theorems 2 and 3 is to provide the theoretical justificatipriree for our
choice of objective, provided a sufficient number of training examplewirig) completed this, let
us now write an algorithm for minimizing that objective.

5. A Boosting-Style Algorithm

We now choose a specific form for our objectig, by choosing/. We have already choseyto
be a power lawg(r) = rP. From now on/ will be the exponential los§(r) = e™". One could just
as easily choose another loss; we choose the exponential loss in ocdenpare with RankBoost.
The objective whemp = 1 is exactly that of RankBoost, whose global objectivRiigyp. Here is the
objective functionRpexpfor p>1:

K /| p
Roexp(f) i= e (Fe)—f(&) |
P k; (Zi

The functionf is constructed as a linear combination of “weak rankers” or “rankintyfea,”

is the class of convex combinations of weak rankers. Our objective iSRa@w(A):

K /1 Pk /1 P
Roexp(A) = e (ZiAhi(x)-3iAhi(%0)) | — e MNic |
PP k; (Zl k; i;

where we have rewritten in terms of a matkilx which describes how each individual weak ranker
ranks each positive-negative pajrXy; this will make notation significantly easier. Define an index
set that enumerates all positive-negative pals= {ik:i € 1,...,I,ke 1,...,K} where indexk
corresponds to thé positive example and tHé" negative example. Formally,

Mik,j = hj(Xi) — hj(f(k)‘

The size oM is | Cp| x n. The notation(-), means the' index of the vector, that is,
n n
(MN)ic =3 MicjAj= % Ajhj(xi) —Ajhj (%)
=1 =1

The functionRp exp(A) is convex inX. This is because MMk is a convex function of\,
any sum of convex functions is convex, and a composition of an inciggasimvex function with a
convex function is convex. (Note thBp exp(A) is convex but not necessarily strictly convex.)

We now derive a boosting-style coordinate descent algorithm for minimRjng, as a function
of A. At each iteration of the algorithm, the coefficient veckds updated. At iteratioh, we denote
the coefficient vector by;. There is much background material available on the convergence of
similar coordinate descent algorithms (for instance, see Zhang and 8&).2W0/e start with the

objective at iteration: )
K /1
Rpexp(At) = =M |
kzl i;
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We then compute the variational derivative along each “direction” andsghaveak rankej; to

have largest absolute variational derivative. The notagjoneans a vector of 0's witha 1 in th&

entry.

dRpexp(At +0€j)
da

. K | =1/
dRp7eXp(d)\t+GeJ) —p Z zle(—M)\t)ik zliMikJe—(M)\t)ik
a a=0 &= | \iS i=

Define the vectog; on pairs,kasg; ik := e=MX)i and the weight vectal; asd ik 1= O.ik/ ¥ ik Oh.ik-
Our choice ofj; becomes (ignoring constant factors that do not affect the argmax):

jt € arg_max[— ] , Where
i

a=0

K

| -1
jt € argmax o ik 0k ikMik j
t j kzl (ug I) i; e
p—1
= afgjmaxgdt,ikl\/lik,j,Whefedt,ik:dt,ik (IZdt,i/k> -

To update the coefficient of weak rankgr we now perform a linesearch for the minimum
of Rpexp along theji" direction. The distance to travel in th&' direction, denotedy;, solves
0= dRp.exp(dAwaen)

a

. Ignoring division by constants, this equation becomes:
O

K | 1
0= i —0tMij; M; i O —0tMik j; . 1
k; (izldt’ke ) <|Zl i ik ) @

The value ofa; can be computed analytically in some cases, for instance, when the wéaksran
are binary-valued and= 1 (this is RankBoost). Otherwise, we simply use a linesearch to solve this
equation fora;. To complete the algorithm, we s&t,; = A +aiej,. To avoid having to compute
di. 1 directly from A, we can perform the update by:

d'[ 'ke_atMik~jt - N
dt+1,ik = lf where % = Zdt’ike utMlk,]t.
|

The full algorithm is shown in Figure 2. This implementation is not optimized foy \ege
data sets since the size Mf is |C,| x n. Note that the weak learning part of this algorithm in Step
3(a), when written in this form, is the same as for AdaBoost and RankBddsts, any current
implementation of a weak learning algorithm for AdaBoost or RankBoosbeatfirectly used for
the P-Norm Push.

6. Uniqueness of the Minimizer

We now show that a functioh= 3 ; Ajh; (or limit of functions) minimizing our objective is unique

in some sense. Sindé is not required to be invertible (and often is not), we cannot expect to find
a unigue vecto; one may achieve the identical valuesbf )i with different choices of. Itis

also true that elements & may approach-o, and furthermore, elements bf\; often approach
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1. Input: {X;}i=1. i positive examples{X }k-1
sifiers,tmax number of iterationsp power.

k hegative examplegh; }j—1 . n weak clas-

2. Initialize: Ay j=0forj=1,...,n, dyx=1/IKfori=1,...,I,k=1.. K Mi;=hjx)—
hj(Xk) for all i,k |

3. Loopfort=1,...,tmax

(@) ji € argma ¥ kM j wheredt i = dhic (i in) P

(b) Perform a linesearch far;. That is, find a value; that solves (1).
(©) At+1= At +aiej, whereej, is 1 in positionj; and 0 elsewhere.
(d) z = ik e M

(€) i1k = dtVikefthik‘it Jzfori=1,..,1,k=1,...,K

4. Output: A,

Figure 2: Pseudocode for the “P-Norm Push” algorithm.

~+oo, S0 it would seem difficult to prove (or even define) uniqueness. A thekcomes in handy
for such situations is to use the closure of the sp@ice= {q' € R¥ |}, = e M for somel ¢
R"}. The closure o’ includes the limits wher®&l \; becomes infinite, and considers the linear
combination of hypothesdd A rather than\ itself, so it does not matter whethit is invertible.
With the help of convex analysis, we will be able to show that our objectnetfon yields a unique
minimizer in the closure of)’. Here is our uniqueness theorem:

Theorem 4 Define Q:= {q' € ®!¥|df, = e MV for someX € ®"} and defineQ’ as the closure
of Q’in ®'K. Then for p> 1, there is a unique™ € Q’ where:

p
q" = argmir]q,ed,z (Z qi’k> .
|

Our uniqueness proof depends mainly on the theory of convex duality étass of Bregman
distances, as defined by Della Pietra et al. (2002). This proof is indpyr€allins et al. (2002) who
have proved unigueness of this type for AdaBoost. In the case of éaBthe primal optimization
problem corresponds to a minimization over relative entropy. Our case is umusual and the
primal is not a common function. The proof of Theorem 4 is located in Secfion 1

7. Variations of the Objective and Relationship to Information Retrieval M easures

It is possible to use variations of our basic derivation in Section 2 to dether specialized ob-
jectives. Some of these objectives are similar to current popular qualityunegasnts from infor-
mation retrieval (IR), such as the “discounted cumulative gain” (DC@&ivé&lin and Keklainen,
2000). A basic property of this quality measurement, and additionally thegeeqrecision (the
mean of precision values), is that it is proportional to a sum over relelamiments (which are the
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positive examples in this setting), and uses a discounting factor that desraecording to the rank
of a relevant document. The discounting factor here is analogous toitleefpnction. Let us use
the framework we have developed to derive new quality measurements wsthgheperties.

Our derivation in Section 2 is designed to push the highly ranked negataraptes down.
Rearranging this argument, we can also pull the positive examples up,tbsifigeverse height.”
The reverse height of positive examplis the number of negative examples ranked above it.

Reverse Heiglfft) := Zl[f(xi)gf(ik)]-

The reverse height is very similar to the rank used in the IR quality measutemehe reverse
height only considers the relationship of the positives to the negativegisregards the relation-
ship of positives to each other. Precisely, define:

Ranki) == 3 Litoo<tin) + 2 Litoo<ro) = Reverse Height) + 5 L)<t
| |

The rank can often be substituted for the reverse height. For discodatitgy g: R, — R,
consider the variations of our objective:

Rgiverse Heigh(tf) = Zg(Reverse Heiglft)) = Zg <Z l[f(xi)<f()~<k)]> .
| |

RGA"(f) = Y g(Ranki)) = 3 g (Z Lroay<ta) + ) 1[f<xi><f<xr>]> :

Then, one might maximizﬂgin"for variousg. The functiong should achieve the largest values for
the positive exampleghat possess the smallest reverse heights or ranks, since those artepith
the list. It should thus be a decreasing function with steep negative slap¢heey-axis. Choosing
0(z) = 1/z gives the average value ofank. Choosingy(z) = 1/In(1+ z) gives the discounted
cumulative gain:

1 1
AveR(f) = — = )
() Z Rank() 2 2k Lt <f o] T 2L )< )

1 1
(=2 n(L+Ranki)) ~ 2n (14 S0 <1 0] + 200 <t 06])
Let us consider the practical implications of minimizing the negation of the DC@ didtounting
function 1/In(1+ z) is decreasing, but its negation is not convex so there is no optimizationnguara
tee. This is true even if we incorporate the exponential loss sirigdn(1+ €) is not convex. The
same observation holds for the AveR.

It is possible, however, to choose a different discounting factor tlmtsus to create a convex
objective to minimize. Let us choose a discounting factor-df(1 -+ z), which is similar to the
discounting factors for the AveR and DCG in that it is decreasing andesorivigure 3 illustrates
these discounting factors. Using this new discounting factor, and usingetkese height rather
than the rank (which is an arbitrary choice), we arrive at the followinjgailve:

Ror.1(f) == IZ'” <1+ Z 1[f(xi><f<ikﬂ> ;

DCG
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[N

0 5 10 15 20

Figure 3: Discounting factor for discounted cumulative gaiin11+ z) (upper curve), discounting
factor for the average of the reciprocal of the ranks(iniddle curve), and new discount-
ing factor—In(1+ z) (lower curve) versus z.

and bounding the 0-1 loss from above,

Ryr.exp( f) 1= Z In <1+ Ze(f(xi)f(ik))> _ “IR Push” @

Equation (2) is our version of IR-ranking measures, which we refey ttfbPush” in Section 8. Itis
also very similar in essence to the objective for the multilabel problem definBeksi et al. (2004).
The objective (2) is globally convex. In general, one must be carefidnwdefining discounting
factors in order to avoid non-convexity. Figure 4 illustrates the contribati@ach positive-negative
pair to Ry, exp( ) for the set of labels and examples defined in Section 3.3. The slant tothards
lower left indicates that this objective is biased towards the top of the list.

Concentrating on the Bottom: Since our objective concentrates at the top of the ranked list, it can
just as easily be made to concentrate on the bottom of the ranked list bgingvdre positive and
negative examples, or equivalently, by using the reverse height witltauttisng factor of-z°. In

this case, oup-norm objective becomes:

I /K P
RBOttom(f) - e—(f(Xi)—f(f(k)) .

Here, positive examples that score very badly are heavily penalgtjg"(f) is also convex, so

it can be easily minimized. Also, one can now write an objective that contestoa the top and
bottom simultaneously such &, exp( f) + constREGO™(f).

Crucial PairsFormulation: The bipartite ranking problem is a specific case of the pairwise ranking
problem. For the more general problem, the labels are replaced by a ‘ing¢hdn” 11: X x X —
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Figure 4: Contribution of each positive-negative pair to the objed®ygex,. Each square rep-
resents ari,k pair, wherei is an index along the vertical axis, arkdis along the
horizontal axis, as described in Section 3.3. Lighter colors indicate largeiri-
bution. The value of the, k" entry is the contribution of thé" positive example,
In (1+ 3y e~ (10)=f)) multiplied by the proportion of the loss attributed to tkié
negative examp|$—(f(xi)—f<)~(k))/ Ege—(f(xﬂ—f(;@).

{0,1}, indicating whether the first element of the pair should be ranked aboweetwnd. In this
case, one can replace the objective by:

R&ZUCial Pairi f):= kglg (iif (f (xj)—f (Xk)> (X, Xk)> ,

where the indices andk now run over all training examples. A slightly more general version of
the above formula fog(z) = z° and the exponential loss was used by Ji et al. (2006) for the natural
language processing problem of named entity recognition in Chinese. [gbistlam performed
quite well, in fact, within the margin of error of the best algorithm, but with a maitefr training
time. Its performance was substantially better than the support vector madpanithm tested for

this experiment. In Ji et al. (2006)’s setup, the P-Norm Push was usee tilve first time, a low
value of p was chosen and a cutoff was made. The algorithm was used againrfotkiag (after
some additional processing) with a higher valugof

8. Experiments

The experiments of Ji et al. (2006) indicate the usefulness of our agipifor larger, real-world
problems. In this section, we will discuss the performance of the P-Noish B some smaller
problems, since smaller problems are challenging when it comes to generaliz&tie choices
we have made in Section 5 allow us to compare with RankBoost, which also esespbnential
loss. Furthermore, the choice @fas an adjustable power law allows us to illustrate the effect of the
priceg on the quality of the solution. Experiments have been performed using tleerRRush for

p =1 (RankBoost), 24,8,16 and 64, and using the IR Push information retrieval objective (2). For
the P-Norm Push, the linesearch fqrwas performed using matlab’s “fminunc” subroutine. The
total number of iterationg;,ax, Was fixed at 100 for all experiments. For the information retrieval
objective, “fminunc” was used for the full optimization, which can be dawestall experiments.
Data were obtained from the UCI machine learning repository (AsuncidriNewman, 2007) and
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all features were normalized {0,1]. The three data sets chosen were MAGIC, ionosphere, and
housing.

The first experiment uses the UCI MAGIC data set, which contains datatfie Major Atmo-
spheric Gamma Imaging Cherenkov Telescope project. The goal is to disat@mire statistical
signatures of Monte Carlo simulated “gamma” particles from simulated “hagarticles. In this
problem, there are several relevant points on the ROC curve that degdimeiquality of the result.
These points correspond to different acceptable false positive @tekfferent experiments, and
all are close to the top of the list. There are 19020 examples (12332 gamnéé@®thadron) and
11 features. Positive examples represent gamma particles and negativgles represent hadron
particles. As a sample run, we chose 1000 examples randomly for trairdrigsted on the rest.

Table 3 shows how different algorithms (the columns) performed with ce$pelifferent qual-
ity measures (the rows) on the MAGIC data. Each column of Table 3 repgeeaeP-Norm Push
or IR Push trial. The quality of the results is measured using the AUC (toplaoger values are
better),Ry 1 for variousp (middle rows, smaller values are better), and the DCG and AveR (bottom
rows, larger values are better). The best algorithms for each measusaramarized in bold and
in the rightmost column. ROC curves and zoomed-in versions of the RO@<siwov this sample
run are shown in Figure 5. We expect the P-Norm Push for smalyield the best results for

MAGIC data set

measure| p=1 p=2 p=4 p=8 p=16 p=64 IR best

AUC 0.8370| 0.8402 | 0.8397 | 0.8363| 0.8329| 0.8288| 0.8284| smallp
Ro1 6.5515| 5.9731| 5.5896 | 5.4806 | 5.4990 | 5.5819| 5.5886| mediump
Ra1 4.2134| 3.4875| 2.8875| 2.5638| 2.4291| 2.3651 | 2.3582 | IR /largep
Rs.1 3.8830| 2.9138| 2.1091| 1.6266| 1.3923| 1.2396 | 1.2257 | IR /largep
Rie61 6.8153| 4.7208| 3.0545| 1.9698| 1.4494| 1.1096 | 1.0823 | IR /largep
DCG | 1.4022| 1.4048| 1.4066| 1.4084 | 1.4087 | 1.4087 | 1.4087 | IR /largep
AveR | 8.1039| 8.5172| 8.6860| 9.6701| 9.7520 | 9.7679 | 9.7688 | IR/ largep

Table 3: Test performance of minimizers Rf exp and Ry exp ON @ sample run with the MAGIC
data set. Only significant digits are kept (factors of 10 have been rafhovidhe best
scores in each row are in bold and the right column summarizes the resulify vigich
algorithms performed the best with respect to each quality measure.

optimizing AUC, and we expect the largeand IR columns to yield the best results iy, when
pis large, and for the DCG and AveR. In other words, the rightmost colurghtdo say “smallp”
towards the top, followed by “medium,” and then “IR / largep.” This general trend is observed.
In this particular trial run, the IR Push and P-Norm Pushdet 64 yielded almost identical results,
and their ROC curves are almost on top of each other in Figure 5.

The next experiment uses a much smaller data set, namely the UCI ionodateeset, which
has 351 examples (225 positive and 126 negative). These are datdembfiem a phased array of
antennas. The goal is to distinguish “good” radar returns from “badér returns. The good returns
represent signals that reflect back towards the antenna, indicatictusérin the ionosphere. The
features are based on characteristics of the received signal. Owt 8#itfeatures, we choose 5
of them (the last 5 features), which helps to alleviate overfitting, thougle tisestill significant
variation in results due to the small size of the data set. We used 3-foldalidation, where all
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Figure 5: ROC Curves for the P-Norm Push and IR Push on the MAGt& sket. All plots are
number of true positives vs. number of false positiveper Left: Full ROC Curves
for training. Upper Right:Zoomed-in version of training ROC Curvdsower Left; Full
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ROC Curves for testing.ower Right:Zoomed-in version of testing ROC Curves.

algorithms were run once on each split, and the mean performance is tepoifiable 4. ROC
curves from one of the trials is presented in Figure 6. The trend from solaltgep is able to be
observed, despite variation due to train/test splits.

ionosphere data set

measure| p=1 p=2 p=4 p=8 p=16 p=64 IR best
AUC 0.6797 | 0.6732 | 0.6700 | 0.6612 | 0.6479 | 0.6341 | 0.6409 smallp
Ro1 2.1945 | 2.1931 | 2.1515 | 21213 | 2.1575 | 2.1974 | 2.1811 | med/lgp
Ra1 2.0841 | 1.9891 | 1.8041 | 1.5911 | 1.4327 | 1.3104 | 1.4046 | IR/largep
Re 1 3.7099 | 3.3459 | 2.6271 | 1.8950 | 1.3861 | 1.0823 | 1.2979 | IR /largep
Ri61 1.7294 | 1.4558 | 0.8786 | 0.4236 | 0.2437 | 0.1884 | 0.2272 | IR /largep
DCG | 13.9197| 14.1308| 14.3261| 14.5902| 14.6916| 14.7903 | 14.7169| IR/ largep
AveR 2.9712 | 3.1610 | 3.3041 | 3.5084 | 3.5849 | 3.6571 | 3.6076 | IR/largep

Table 4. Mean test performance of minimizerdpfex, andRy,; exp OVer 3-fold cross-validation on

the ionosphere data set.

We last consider the Boston Housing data set, which has 506 examplessj@%ey 471 neg-
ative), 13 features. This data set is skewed; there are significantr feesitive examples than
negative examples. In order to use the housing data set for a bipartiegaroblem, we used
the fourth feature (which is binary) as the lalyel The fourth feature describes whether a tract
bounds the Charles River. Since there is some correlation between thigfaad the other features
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Figure 6: ROC Curves for the P-Norm Push and IR Push on ionosglataeset. All plots are
number of true positives vs. nhumber of false positiveper Left: Full ROC Curves
for training. Upper Right:Zoomed-in version of training ROC Curvdsower Left; Full
ROC Curves for testing.ower Right:Zoomed-in version of testing ROC Curves.

(such as distance to employment centers and tax-rate), it is reasonable fearning algorithm

to predict whether the tract bounds the Charles River based on thefedtteres. We used 3-fold
cross-validation#£ 12 positives in each test set), where all algorithms were run once orspéich
and the mean performance is reported in Table 5. ROC curves from dhe tfals is presented in
Figure 7. The trend from small to largeis again generally observed, despite variation due to data
set size.

For all of these experiments, in agreement with our algorithm’s derivatidargar push
large) causes the algorithm to perform better near the top of the ranked like training set. As
discussed, this ability to correct the top of the list is not without sacrificejoveacrifice the ranks
of items farther down on the list and we do reduce the value of the AUC, butave made this
choice on purpose in order to perform better near the top of the list.

9. Discussion and Open Problems

Here we describe interesting directions for future work.

9.1 Producing Dramatic Changesin the ROC curve

An open question is to quantify what properties of a hypothesis spacdaadet would allow an
increase inp to cause a dramatic change in the ROC curve. In Section 8, we have shees c
where the benefits of increasipgare substantial, and in Section 3.2 we have shown that a dramatic
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housing data set

measure, p=1 p=2 p=4 p=8 p=16 p=64 IR best
AUC 0.7739 | 0.7633 | 0.7532| 0.7500 | 0.7420 | 0.7330| 0.7373 smallp
Ro1 3222 3406 3665 3799 3818 3759 3847 smallp
Rs1 294078 | 292870 | 304457 | 307135| 305498 | 298611| 304915| small/medp
Re.1 3.9056 | 3.5246 | 3.3908 | 3.2953 | 3.2479 | 3.3173| 3.2346 | IR /largep
Ri61 1.1762 | 0.9694 | 0.8337 | 0.8028 | 0.7801 | 0.8816 | 0.7788 | IR /largep
DCG 3.6095 | 3.6476 | 3.6757 | 3.6858 | 3.6977 | 3.6671| 3.6931 | IR/largep
AveR | 0.5241 | 0.5644 | 0.6022 | 0.6124 | 0.6258 | 0.6012 | 0.6250 | IR /largep

Table 5: Mean test performance of minimizersRyfexp and Ry, exp Over 3-fold cross validation
with the housing data set. Only significant digits are kept (factors of 1@ baen re-
moved). The best scores in each row are in bold and the right column simem#re
result by listing which algorithms performed the best with respect to eadityqoeea-
sure.

20 r s
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Figure 7: ROC Curves for the P-Norm Push and IR Push on the houstiagsdta All plots are
number of true positives vs. humber of false positiveper Left: Full ROC Curves
for training. Upper Right:Zoomed-in version of training ROC Curvdsower Left: Full
ROC Curves for testing.ower Right:Zoomed-in version of testing ROC Curves.

change is possible, even using an extremely small hypothesis spacevefoivis sometimes the
case that changes mdo not greatly affect the ROC curve.

A factor involved in this open question involves the flexibility of the hypothepace with
respect to the training set. Given a low capacity hypothesis space in wigighithnot too much
flexibility in the set of solutions that yield good rankings, increasmngill not have much of an
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effect. On the other hand, if a learning machine is high capacity, it probdasythe flexibility

to change the shape of the ROC curve dramatically. However, a highitafggrning machine
generally is able to produce a consistent (or nearly consistent) rardmgagain, the choice of

p probably does not have much effect. With respect to optimization on the aseip we have
found the effect of increasing to be the most dramatic when the hypothesis space is: limited (so
as not to produce an almost consistent ranking), not too limited (featwees#ives are better than
random guesses) and flexible (for instance, allowing some hypothesegdte in order to produce

a better solution as in Section 3.2). If such hypotheses are not availabteligve it is unlikely that

any algorithm, whether the P-Norm Push, or any optimization algorithm forrirdtion retrieval
measures, would be able to achieve a dramatic change in the ROC curve.

9.2 Optimizing Ryax Directly

Given that there is no generalization guarantee fordh®rm, that isRmax, IS it useful to directly
minimize Rnax? This is still a convex optimization problem, and variations of this are done im othe
contexts, for instance, in the context of label ranking by Shalev-Shveard Singer (2006) and
Crammer and Singer (2001). One might consider, for instance, optimipagand measuring
success on the test set uskg) for p < oo,

One answer is provided by the equivalence of norms in finite dimensionggtance, the value
of Rmax Scales withR, 1, as demonstrated in Theorem 1. So optimiziagx would still possibly
be useful with respect to measuring success on smal{grough in this case, one could optimize
Rp.0)-

9.3 Choicesfor £ and g

An important direction for future research is the choice of loss fundtiamd price functiorg. This
framework is flexible in that different choices férandg can be chosen based on the particular
goal, whether it is to optimize the AU, ; for somep, one of the IR measures suggested, or
something totally different. The objective for the IR measures needed @w®rprice function
In(1+ z), in which case the objective convex was made convex by using the exjairiess, in
other words., 101+ €*) is convex. It may be possible to leverage the loss function in other cases,
allowing us to consider more varied price functions while still working with ajective that is
convex. One appealing possibility is to choose a non-monotonic functiay f@nich might allow
us to concentrate on a specific portion of the ROC Curve; however, it malfficult to maintain
the convexity of the objective through the choice of the loss function.

Now we move on to the proofs.

10. Proof of Theorem 2 and Theorem 3

We define a Lipschitz functiop: ® — R_(with Lipschitz constant Lifp)) which will act as our
loss function, and gives us the margin. We will eventually use the same pgecknear definition
of @as Koltchinskii and Panchenko (2002), but for now, we require omiglobey 0< ¢(z) < 1Vz
and@(z) = 1 for z< 0. Sinceg(z) > 1,<¢), we can define an upper bound ﬁg‘f(f):

(Exwa) <EX+~@+(P(‘°(X+) - f(x_))> p)
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We haveRI*(f) < RI%(f). The empirical error associated wiR{y; is:

. L K 1 | p\ 1/p
R;:;Pma(f) o (Kkzl (I-Zlq)(f()(i) — f(>~(k))> ) )

First, we bound from above the quant®} by two terms: the empirical error terRETppirica',
and a term characterizing the deviatiom‘éfgp'”ca' from REY uniformly:

irical il
[Tle( f) < Rg?([)e( f)= Rt;;,ti[?( f)— R?)Tppll’lca( f)+ R(;f'r(;mnca( )
< sup (Rt&:g( f_) . szgpirical( f_)) + R;::)pirical(f)‘

feF

The proof of Theorem 3 rlnainly involves an upper bound on the first tehra.second term will be
empirical

upper bounded bRp,l,e (f) by our choice ofp. DefineL(f) as follows:

L(f) := Rue(f) — RGP ).

Let us outline the proof that follows. The goal is to bour(d) uniformly overf € #. To do
this, we use a covering number argument similar to that of Cucker and Sroéi2) (First, we will
coverF by L., disks. We show in Lemma 5 (below) that the valué.6f) within each disk does not
change very much provided that the disks are small. We then derive alplistic bound orL(f)
forany f in Lemma 9, and use this bound on representativ®m each disk. A union bound over
disks yields the result. The most effort of this proof is devoted to the bourid f) in Lemma 9
below, which uses McDiarmid’s Inequality. Let us now proceed with thefro

The following lemma is true for every training s&tlt will be used later to show that the value
of L(f) does not change much within ealch ball.

Lemma5 For any two functionsf f» € Lo (X),
L(f1) — L(f2) <4Lip(@)]|f1— f2[w.

Proof First, we rearrange the terms:

L(fy) —L(f2) = REM(fy) — RO fy) — REU(f,) + RO 1)
= [REG(f1) — REG(f2)] — [REG" (1) — RGP (f2)]. ®3)
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We bound from above the second bracketed term of (3),

irical irical
R;fr(;plnca( fl) . Rzn(:)plnca( fz)

- [23 [F5 - flxk)]T/p[ 515 o fzxk>)]pr/p

_ pq1/p
< ii Zl@(f1X| flxk) |1|21< k)) ]
:1 < p71/p
< _Rk; |Z’ o(fa06) = a5 ) —9( a0) — fo Xk)‘] _
< [T |5 (@] 120) = Fa(8) = fax) + F2(%) I
< _Kk:1 _I i; p(@)|fo(Xi 1(Xk 2(Xi 2(Xk
T K10 pq1/p _
< _szl -Ii;Llp((p)ZS}(Jp’ fl(x)—fz(x>)] ] = 2Lip(@)|[ f1— fafle.

Here, we have used Minkowski's inequality fgy( R ), which is the triangle inequalityf —g||p >
|| f1lp— ll9l| p, and the definition of the Lipschitz constant fprAn identical calculation for the first
bracketed term of (3), again using Minkowski’s inequality yields:

R f1) — RIU(f,) < 2Lip(@)]|f1 — fol e

Combining the two terms yields the statement of the lemma. |

The following step appears in Cucker and Smale (2002)/let A ( F ( , 8L|p( )) the covering
number of ¥ by L., disks of radiusﬁ Definefy, fa, ..., fs, to be the centers of such a cover. In

other words, the collection df,. dlsksBr centered af; and W|th radlu% is a cover forF. In
the proof of the theorem, we will use the center of each disk to act asersmrpatlve for the whole
disk. So, we must show that we do not lose too much by uirg a representative for digk.

Lemma6 Forall € >0,

}

NI ™

Ps, vl s ~oK {?equL(f) > 5} <Ps o s ~oK {'—(fr) >

Proof By Lemma 5, for every training s&and for allf € B;,

. . € €
SupL (1) ~ L(f1) < 4Lip(9) supl| — fillo < ALip(@) g7 = 5
Thus,
supL(f) >e = L(fr)zE
feBy 2
The statement of the lemma follows directly. |

Here is an inequality that will be useful in the next proof as the mechanismdorporatingp into
the bound.
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Lemma?7 ForO<ab<1,
|al/P —pY/P| < min{]a— bja/P)~1 |a— b|1/p} :
Proof For p = 1 there is nothing to prove, so take> 1. We need to show both
|al/P —b/P| < |a—bla¥/P~1 (4)
and
ja'/P —b"P| < Ja—Db|*/". (5)

Let us show (5) first. Fozy,z, > 0, it is true thaizlp +z§ < (z1+2,)P as an immediate consequence
of the binomial theorem. Whem> b, substitutez; = (a— b)l/p, 2, = b'/P. The result follows after
simplification. The casa < b is completely symmetric so no additional work is needed. To show
(4), consider first the case> b, so that

bl/p—l > al/p—l'

Multiplying by b yieldsb®/P > al/P~1p, negating and adding! P yields
al/p _ bl/p < al/p _ al/pflb’ S0 al/p _ bl/p < (a_ b)al/pfl.

Exactly the same steps (with reversed inequalities) can be used to shbw thease. |

The benefit of using the minimum in Lemma 7 is that the first term most often giigistar bound.
In the case where it does not do so, the second term applies. An illustcdttbis inequality is
provided in Figure 8.

We now incorporate the fact that the training set is chosen randomly. Waseila generaliza-
tion of Hoeffding’s inequality due to McDiarmid, as follows:

Theorem 8 (McDiarmid, 1989) Let X, Xy, ...Xn be independent random variables under distribu-
tion DonXx. Let f: X™ — R be any function such that:

sup

X1,X2,+ Xm,X{

f(xl,...,xi,...,xm)—f(xl,...,xi’,...xm)‘ <¢g for 1<i<m.

Then for any > 0,

2¢?
P 0] 06X Xe) = B[00, X Xe)] 28} < exp( = )

and thus by the union bound,

2¢?
le,xz,..»,XmND { ’ f(X]_,Xz, 7Xm) —E[f(Xl,Xz, ,an ’ > 8} < 2€Xp<—.) .

2256



THE P-NORM PusH

0 0.5 1

Figure 8: Functions|al/P — b%P| (lower curve), |a — b|YP (upper curve), and mifa —
bja(t/P)~1 |a— b|'/P) (middle curve) versub. For this figurep = 4 anda= 0.4. One
can see that in most caséas— bjall/P)~1 is a better approximation t@!/P — b%/P| than
la—bJt/P).

Here is our main probabilistic bound drt ) for an individual f. It uses McDiarmid’s Inequality
(Theorem 8) and Lemma 7.

Lemma9 Foralle; >0, forall f € F:

Ps, ~pl s~k (L(f) > &1)
2

2 2
< 2exp{—2Kmax{if (Rtgfg(f))z(l)—l)’(%l) p}] +2exp[—€21| +InK]. (6)

p\ 1/p
(EX+~@+(p(f(x+)— f()"(k))> > .

Proof Define

X =
M =

Roo(f) = <

k

1

Now,
Ps, vpl s ~oK (L(f) > 81)
ol
= Ps,ol s ~ox (Rgf’cf (1) = Ryg(F) + Ryg(F) — REg™ () = 81)

&1 irical &1
< Pg gk (R%fi;?(f) - R;%?(Sp(f) > E) +Ps, ~pl s oK (R%?(Sp(f) - RETIL"'”Ca(f) > E)
=: termy +termp. (7)

We bound termand term of (7) separately.
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Bound on termx The following uses Lemma 7 above (translating into notation of the lemma):
S
Ro(f) —ROS(T)

p\ 1/p

= (Exfsz (Ex+~@+¢(f(x+)__f(x_))> )

1K b 1/p
- (Kkzl (Bx, 0, 0 F06) — F(%0) ) )
— al/p_bl/p < |al/p_bl/p‘ < min{’a_b|a(1/p)_l’|a_b|1/p}.

Thus for alle; > 0,

Ps o (RSN —RES(D) = )

< Pg ok (m {|a bjal /p)flJa—byl/p}Z%l)
= Foon (la- b > G M a-bb > 5)
= Fo o ja- b\>€1“/pma 0> (3))
_ <| E1 Rtrue(f))p 1m la—b| > (%)p)
_ < = max{ 3 (Re50)" . (3)}).
Let €1 (ptrue 1\ P-1 (E1)P
szzzmax{E(Rp,q)(f)) v(f) }
Then,

&
Pg oK (R%,“f(f) —Rpa(f) > )

2
< Pg oK (

%3 (Exen o) - 1))

Ex ~o_ (Ex+~@+(p<f(X+) — f(X,))) P _

p
>& .

p
The largest possible change%nz'k(:l (EX+N@+(p<f(x+) — f()”(k))) due to the replacement of one
negative example is/K. By McDiarmid’s inequality,

&1
P ox (RER(T) ~RES(F) = =)

2
2
< exp —2812 = 2exp(—2Ke3)
Kz
= 2 2K e Rirue ) 2P-1) (€1 2p .
= 2ol -2k (RSO (5) ) ®

2258



THE P-NORM PusH

Bound on term

Ryal(f) — R ()

K P\ /P
= (1 > (EX+N@+(p(f(x+)—f(x_)>> )

Thus for alle; > 0,

Ps, s o (RES(H) — R 1) > 2)

Ex,~0.9(10x1) = ()

1
= Ps . pl s ~oK (Kl/p’

F5 (- 10)

(p(RX)

) )
2
p(RK)

It?,)(+~@+cp(f(x+ )—f(- )—Zl(p( x)— f(- )

1
~ Kl/p

1
< Ps,upl s ook (Kl/p

< Psupl s ook (

= Ps ol s oK (3k:

It'<2X+N£,)+(p(f(x+ )—f(- )—Zl(p( xi)— f(- )

0 @ Fx) — 1(5%0) Il_zlcp(fm - ()| 2

la(RC)

We now use McDiarmid’s Inequality. The largest possible chanq]eﬂfll(P( i) — f(X )) due
to the replacement of one positive example . Thus, for allXy,

Pl 5 ot < By 0, 0(00) — 1(%0) — __ilcp(fm) - fm))' > 521)

2(%)° et
< 2exp[—I1 _2exp[—zl].

12

By the union bound over th€ negative examples:

EX+N@+(p<f(x+) — (%) ) -7 Z(p( Xi)— f(xk)>' 821>

2
< 2Kexp[—szll] :2exp[—21I +In(K)],

Ps, ol s ~oK <3k5

and thus,
1 €2
Ps, .l 5 oK (Rg}gg(f) —RIS(f) > E) < 2exp[—zll +1n K] .
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Combining this with (8) and (7) yields the statement of the lemma.

Proof (Of Theorem 2 and Theorem S)nce theB, are a cover foff, it is true that

supL(f) >€e <= dr </ suchthat sup(f)>ce.
feF feBr

First applying the union bound over balls, then applying Lemma 6 we find:

Ps, o s ~ok § SUpL(f) >¢
i feF

< Ps ol s ~ox {supL(f) > 8}

r=

IN

ZLP&N@I S ~K {L(fr) > 8/2}

We bound from above using (6) in order to prove Theorem 3 using €/2, alsoR”“e(f ) >
RIYe(f,) and additionallyRIYE(fr) > inf ey REY(f) for every fi:

Ps, vl s ~oK {supL(f) > e}

feF
€

< iZexp[—ZKmax{ (R (fr )pl),<4)2p}]+2exp[—€82I+an]
< N(T 8Lin(0 >[2exp[ 2Kmax{ mlnR”“e( ))2(p1),<2>2pH (9)
+2exp[—l+anH

2exp[ 2Kmax{ ]‘IQ;? rgfjle(F))Z(pl)«Z)zp}]

+2exp{—8I +InK”

< N(f s

Now we put everything together. The probability that there exists anf where
rical
Rgf’(f(f) > R‘;Tpp'”ca(f) +€

is at most

N <T’8Li;((p)> {Zexp[—ZK max{i(Rp,mm)z(pl), (Z)zp}] +2exp[—882l +1In K” ,
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whereRp min = infs R”“e(f). Let us choosep(z) = 1 for z< 0, ¢(z) = 0 for z> 6, and linear in
between, with slopel/e Thus, Ligg) = 1/6. Sinceg(z) < 1 forz< 6, we have:

) « | p\ 1/p
Rzgpmcal(f) _ (ik; <Ilizl(p<f(xi)—f(>~<k))> )
1 K /1l P\ VP empirical
< <Kkzl(|izll[fm)—f(ik)@])) =RoTe (f).

Thus, the probability that there exists & F where
RS 2 Rl +e

is at most

N (T,886> [Zexp[—ZK max{iz(Rp,mm)Z(pl) 7 (Z)sz +2exp[—il +In K” .

Thus, the theorem has been proved. A tighter bound is obtained if wedlditfarently at (9):
instead of usingR{4*(fr) > infrey RIF(T), we could stop aRiF(fr) > mine RI¥(fr) and then
choose the f; } to maximize minRIF(r).

Theorem 2 follows directly from the statement of Theorem 3. |

10.1 1-Dimensional Illustration

As discussed earlier, since most of the valueRpf comes from a small portion of the domain,
more examples are needed to compensate. Let us give a 1-dimensionatibustvhere this is
the case. Almost half the distribution (proportlépr £) consists of negative examples uniformly
distributed on[—1,0]. Almost half the distribution (proportioé — £) are positive examples uni-
formly distributed on[0,1]. An €/2 proportion of the distribution are positive examples distributed
on [—2,—1], and the remaining/2 are negative examples ¢h 2]. Drawing a training set of size

m from that distribution, with probability1l — €)™, all examples will be drawn from-1, 1], miss-

ing the essential part of the distribution. Let the hypothesis sgacensist of one monotonically
increasing function, and one monotonically decreasing function. Assutfmingst set is large and
represents the full distribution, the correct function to mininizgy on the test set is the decreasing
function. However, with high probabilityl — €)™, the increasing function will be (wrongly) chosen,
achieving on the training seéRnax = 0, but on the test set, the worst possible vdgx = |. Thus,
Rmax relies heavily on as-sized portion of the input space. Contrast this with behavior of the AUC,
which is hardly affected by this portion of the input space, and is close tithLhigh probability

for both training and testing.

11. Proof of Theorem 4

We will use a theorem of Della Pietra et al. (2002), and we will follow theirrdidins leading
to this theorem. Consider a functign: SC ®'K — [—, o] (unrelated to thep of the proof of
Theorem 3). We will use this function to define a Bregman distance anddeoram optimization
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problem related to this Bregman distance. The dual of this optimization problérmeaalmost
exactly the same as minimization Bf, exp due to our choice ofp. The theorem of Della Pietra
et al. (2002) will then provide a kind of uniqueness of the minimizer. The wtiffgtult part of this
theorem is finding the functiogand showing that the conditions of the framework are satisfied.
Let us first give the definition of a Bregman distance with respect to fumgiiand then define
the primal and dual optimization problems. Téffective domairof ¢, denoted),, is the set of
points wherepis finite. The functionpis proper if there is nop such thatp(p) = — and at least
somep with @(p) # . (Do not confuse the vectqr € R ' with the scalar powep. Entries of
p will always be indexed by to avoid confusion.) A proper functiom is essentially smooth
it is differentiable on the interior of the domain (i) and if lim,|O¢(p;)| = + (element-wise)
wheneverp, is a sequence in ifl), converging to a point on the boundary. Assume that the
function @ is Legendre meaning that it is closed (lower semi-continuous), convex and propér, a
additionally that intAy) is convex, andp is essentially smooth and strictly convex on(ikf). The
Bregman Distancassociated witlpis By : Ag x int(Ag) — [0, ] defined as:

By(p,q) :=@(p) — @(q) — (De(q),p —a).

Fix a vectorpg € Ay. The feasible sefor po with respect to matritM € R'*"is: 2 = {p €
R'™®|p™ = p{M}. This will be the domain of the primal problem. The primal problem is to find,
for fixed go € Ay:

argmin,.»By(p, do)- (primal problem)

Now we lead up to the definition of the dual problem. Tlegendre-Bregman Conjugadssociated
with @is £y : int(Ag) x RN — R U {0} defined as:

o(a,V) := sup((v.p) ~ By(p.) ).

pehy
Note that for fixedy, the Legendre-Bregman conjugate is exactly the convex conjug&ig o).
The Legendre-Bregman Projectida the argument of the sup whenever it is well-defined, namely,
Ly int(Ag) x R — Ay is defined by:
Ly(0,V) = argmameﬂq,(w, P)— Bcp(p,q)),
whenever this is well-defined. Della Pietra et al. (2002) have shown that:
Lo(a,V) = (09)H(Op(q) +V). (10)

The dual problem can also be viewed as a minimization of a Bregman distanogelyy it can be
shown (cf. Proposition 2.7 of Della Pietra et al., 2002) that the dual otagectin be written in terms

of Ly(qo,V) :
(V. Po) —o(do. V) = B(Po, Go) — Bo( Po, Le(dlo,V))-

Thus, since the first term on the right is not a functiovaihe dual problem can be written:

argmax ¢« Bo(po, do) — B(p<p0, ch(QON))
= argmin,cgx B(p<po,£(p(qo,v)>, (dual problem)
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where we have assumed in the domairvdhatAy = R and wherey® is the convex conjugate
of @. We will rewrite the domain of the dual problem as the cl@ssdefined as follows. For the
o € Ap andM € R fixed in the primal problem, theegendre-Bregman projection family for
0o andM s defined by:

Q(do.M) = {0 € Agld = Lo(Go, —~MA) for someA € £"}.

So instead of considering the minimizer with respect tave will instead consider the minimizer
with respect tay € Q. In order to proceed, a few more technical conditions are requiredelya

e Al. @is Legendre.
o A2. Ay = R'K whereg" is the convex conjugate gf

e A3. By extends to a functioBy, : Ay x Ay — [0, 0] such thaBy(p,q) is continuous irp and
g, and satisfie8q(p,q) =0 iff p=q.

o A4, Lyextends to a functiory: Ay x R'K — Ag satisfyingLy: (q,0) = g, such thatZ(q, V)
andBgy(Ly(q,V),q) are jointly continuous i andv.

e A5. By(p, ) iscoercivefor everyp € Ag\int(Ay), where a functiorf : S— [—o, o] is coercive
if the level set§q € §f(q) < c} are bounded for everyc R..

We now state Proposition 3.2 of Della Pietra et al. (2002) which will give uguemess within
the closure of the s&@, DefineQ as the closure of) in R'X.

Theorem 10 (Della Pietra et al., 2002) Lep satisfy A1.-A5. and suppose thaj,go € Ay with
Bo(Po,do) < o. Then there exists a uniqug € A, satisfying the following four properties:

1. g €PN (i
2. By(p,q) =By(p,q") +Bo(q*,q) foranyp € P andg € Q
3. q* = argmin,cxBe(p,do) (primal problem)
4. g* = argmin,c 5By(Po,d) (dual problem)
Moreover, any one of these four properties determatesniquely.

If we can prove that our objective function fits into this framework, we aae part (4) of this
theorem to provide uniqueness in the closure of thasevhich will be related to our sa’. Let
us now do exactly this.

Consider the following functiop: R — [—e0, co]:

= 5 V(0 _ . Clik
®a) == %q.kv(q.k,q% wherey(qi,q) := In <p1/p(zi/ =Y /p> :

We extend the definition tQS(,LK by the conventions 0In& 0 andaiy(qgik,q) = 0 whenevergyk =0
for all i. Thus,Ag is now R!X. The boundary in our case is whegg equals O for one or mori&
pairs. We must now show thetis Legendre.

2263



RuUDIN

Lemma 11 gis strictly convex irfint(4y), where, are vectors inR /¥ with strictly positive entries.
The proof is in the Appendix.
Lemmal2 @is Legendre.

Proof @ is proper since there is ng such thatg(q) = —. In order to achieve this, the term
inside the logarithm must be exactly zero. When that happgins; 0, and by our convention,
gikY(dik,q) = 0, thus the entirék term is zero rather thar. It can be verified thag is lower
semi-continuous. Also, if,) = R!% which is convex. We have already shown tiges strictly
convex on intdy) in Lemma 11, and by our definition @f on the boundary, it is convex af,.

We now show thatp is essentially smooth with respect to the boundary. Consider the following
calculation for the gradient afin int(Ay):

o _0p(q) 1 Qlik 1 _
(D(p(q))lk - aqik - p+|n (pl/p(zi/qi/k)(pl)/p> - p+y(qlkaq)v (11)

sincey(qik,q) — —o asgik — 0, @is essentially smooth. All the conditions have now been checked.
[ |

Also, we require the following:

Lemma 13 Conditions Al.-A5. are obeyed.

The proof of this lemma is in the Appendix.
Proof (Of Theorem 4) et us compute the quantities above for our functigmamely we would
like to find the spac& and the dual objectivBy(po, ). Using (11) it can be shown that:

p-1
((09)Y(2)), = pea /P (Z e(%fkl/p)> .

We now wish to computé,,. First, let us compute a term that appears often:

Zk—1/p wherezy = (D(p(q) +V)ik = ; —|—y(qik,q) + Vik can be rewritten:

ezik*l/p = exp |:; _ ; _’_y(qlk’q) +Vik:| — Vikey(Qikyq)'

Thus from (10),

p-1
Lo(Q,V)ik = pekelaicd (Zevi’key(qi/kﬂ)>
|

= pec Gk Y i €7k -
~ P SR s, G P07 \ pR(s g )PP
(p-1) 1
_ Vik (Y. Virk (),
- ea(ea) gomn a2
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In our case, we choogp to be constantjok = qo for all i, k. We can now obtaim;

(p-1)
Q(q07 M) = {qq — e*(MA)ik (Z e(MA)w) |(:):I 5 for some\ € Rn}
i

In order to make the last fraction become 1, we chapse 1(P-1. We now need only to define
po in order to define the dual problem. In our case, we chgse 0 so that the dual objective

function isBy(0,q). Let us choose € Q, that is,qi = e~ MV (zi,e‘('\"”i/k)(pfl) and substitute
using (11) and the definitions gfandBy,:

By(0,d) = @(0)—@(q)—(De(q),0—q)
= —<P(Q)+0I Oe(q)

= —(q)+ Zq.kw(q

“apfee)e)”

1 P 1
_ —(MN)ik _
= E e =—-R A).
p g <| > p p7exp( )

Thus, we have arrived at exactly the objective function for our algoritin other words, the
function @ was carefully chosen so that the dual objective would be exactly as viredyisnodulo
the constant factor /Jp which does not affect minimization.

_Part 4 of Theorem 10 tells us that the objective function of our algoritrsrahaique minimizer
in Q as long as A1.-A5. are obeyed, which holds from Lemma 13. It remainstordigow that a
vector inQ yields a unique vector iQ’. Consider a sequence of vectorsJrdefined element-wise

1
by gk = e (MNei (E/e (M), '/k) ™ such thatg, — q as/ — . Then consider the sequence

defined by:
Qeik (M), ik
CEVCA
(ZI qél/k)
By definition of Q/, each vector in this sequence is@Qi This sequence converges pointwise to

W € Q/, or if g = 0, then thek!" component of the sequence converges to 0. Since we
are in a finite dimensional space, nam&y<, pointwise convergence is sufficient. |

It was unnecessary to state the primary objedBy@, qo) explicitly to prove the theorem, how-
ever, we state it in order to compare with the relative entropy case vhere Recall thatyg is the
constant vector with entrig8~*. Thus,(J¢(do) )ik = 3 +V(do, do) = 5 +In(qo/ [P P(1go) P~ 1/P]) =

%(1— In p) for all ik.
Bo(P,do) = @(P)—®(do) — (0®(qo), P — do)
- <p<p>—<mcp<qo>,p>+;Ipqupw(Dcp(qo))ikZpiH;lpK

_ Pik 1 T
= me |:p1/p z p|/k) o 1/p:| p(l—lnp)%plk‘i‘*pl K.
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For p = 1 this reduces exactly to the relative entropy case.

One interesting note is how to find a functipto suit such a problem; when we introduced it, we
gave no indication of the techniques required to find such a function. Indkis, we discovered the
function@again via convex duality. We knew the desired dual problem was preciselgbjective
Rp.exp: thus, we were able to recover the primal problem by convex conjugatimdouble dual in
this case is the objective itself. From there, the funcpavas obtained by analogy with the relative
entropy case.

12. Conclusions

We have provided a method for constructing a ranked list where coessctt the top of the list is
most important. Our main contribution is a general set of convex objectivtituns determined
by a loss¢ and price functiorg. A boosting-style algorithm based on a specific family of these
objectives is derived. We have demonstrated the effect of a numbéfes&dt price functions, and

it is clear, both theoretically and empirically, that a steeper price functiooertdrates harder at the
top of the list.
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Appendix A.

We provide proofs of Lemma 11 and Lemma 13.

Proof (Of Lemma 11) First, rewrite:

w03 | (g ) e (o) 252 (3 n (30

The middle term is linear so it does not affect convexity of the sum. It iscéesffi to prove convexity
of the following function, sincep would then be a sum (ové®) of convex functions. Defing :

Rl — R as follows, forq € R :

o g )

Thus, the Hessian is:
of(q) 1 1-p 1

=5 _,+—r )
090q G P Y0y
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To show that the Hessian is positive definite, we showwHat#w > 0 whenevemw # 0.

1

2
_ of B -p _
%W'WZ 000G ZWZ + p (Z WI) Yidi

) (3) a9 )]

Now, consider the Cauchy-Schwarz inequality, used in the following way:

(3) =G <l o= () (2).

Substituting back,

v * (5] (£42) (20) 5 (2)-(243) (22)
B <zi1qi> ; (.ZW'> '

Recall that equality in Cauchy-Schwarz is only achieved when vecterdegendent, that is, for
somea € R, w; = agq; for all i. Since the elements af are all strictly positive, ifw, = ag;, then

at the same time we cannot haygw; = 0. Thus, when equality holds in Cauchy-Schwarz, then
(5i w;)? > 0 unlessw = 0. Thus, whether the Cauchy-Schwarz inequality is strict or not, we have:

- > 0 whenevew # 0.

W of
% I éawaq

Thus,@is strictly convex. |

Proof (Of Lemma 13ondition Al. was proven in Lemma 12. To show A2., note that:

p—1
(¢°(v))ik = peVk=1/P) <z e(vi’kl/p)> '

ThUS,Aqf = KIK.
For A3., let us simplify using (11), where this calculation is validfiog € Ay x int(Ag):

By(p,d) = @p)—@(q)—Dp(aq)-(p—a)

= 3 PuY(PHoP) — ) — 5 (P i) = 3 Pic¥(Gh, ) + ()

Zp.k( Pik, P) — (qn«q)) :) (Pik — Giik)- (13)
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Now we consider the boundary. If for sorikepair, pi = 0 then letpi (Y(pik, P) — Y(ik,d)) = O for
all g. If for someik pair, pik 7 0 and additionallyjx = 0 we defineBy(p, ) = . This completes our
definition of By on the boundary o /€. Let us prove thaBy(p,q) = 0 impliesp = g. Considering
the interior,B, can only be 0 at a minimum since it is non-negative. A necessary conditidyfo
to be at a minimum is fodBg(p, q) /dpik = O for all ik:

0By(p.q) _, p-1

vik 0= =
dpPik p

1
+Y(Pik, P) — Y(0lik, d) — o = Vik y(pi,p) — Y(Gik,q) =

It is true thaty(pik, p) — Y(dik,q) = O for pairik implies thatpi = gi. To see this, note that one can
determinepic directly from they(pi, p) values as follows. Set := p*/Pexp(y(pi.p)). Now,

p-1
Zi (Z Zi’k) = Pik-
|

Hence,Vik,y(pi,p) — Y(dik,d) = 0 implies thatp = g. Consider now the boundary. If for aiily,
pik # 0 andg = 0 thenBy(p,q) =« # 0. So, ifBy(p,q) = 0, then whenever = 0 we must have
pik = 0. On the other hand, ik = 0, there will be a contribution tBy(p,q) of %qik, implying that
ik must be 0 in order foBy(p,q) = 0. Thus, A3. holds.

We now show A4. Let us define the boundary valuesdgrIf for somek we havey; gk =0,
then let(Ly(q,V))ik = O for all i. Otherwise, (12) can be used as written. Thus, we always have
Ly(d,0) =g, and Ly(q, V) is jointly continuous ing andv. Now consideBg(Ly(d,V),q). Let us
simplify this expression in the interior, starting from (12) and (13) and usiagotation{ L } for
the vector{ Ly(q, V) }ik-

Bo(L,0) = Zle( Y(Lik, L) — (q|k,Q)> ; (Lik — Qi)

B Lik /p(zi,qi/k)mfl)/p 1
N Zbk (pl/p(z L) (P~1/ ik L e

p—1
I ek afic (T ekan) P (ﬁ) (S ain) P 7P
— %le n )p_l](pl)/p Ok
l

p

= ZLikVik — B Z(le — Gik)-

Thus, sinceLy is jointly continuous ing andv, By is jointly continuous ing andv.

For A5., we need to show thB(p, -) is coercive, meaning that the level §gtc Ay : By(p,q) <
c} is bounded, withp € Ag\int(Ay) which are vectors irR/X with at least one entry that is 0.
Recall that we use the convention 0la0. Consider from (13), using the fact that for akypair,

(Lik — Qik)
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Inqi(kp—l)/p < In (2| qik)(p_l)/p:

By(p,d) = Zpik(v(pik,p)v(qik,q)); (Pik — Ok

1 .
= Z — PikY(%lik, o) + BQik + function(p)

(p-1)/p

1 .
z Z_pik In ik + pik In (Olik ) + plk + function(p)
|

1 .
= o % —pik INgik + gik + function(p).

Since logarithms grow slowly, one can choosegualarge enough so that this sum exceeds any
fixed constant, regardless of the values of the otlyg’s. Thus, the sefq € Ay : By(p,q) < c} is
bounded. We are done checking the conditions. |
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