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Abstract

We show how to follow the path afross validatedolutions to families of regularized optimization
problems, defined by a combination of a parameterized lasstin and a regularization term.

A primary example is kernel quantile regression, where t@ameter of the loss function is the
guantile being estimated. Even though the bi-level optatidin problem we encounter for every
guantile is non-convex, the manner in which the optimal &neadidated solution evolves with the
parameter of the loss function allows tracking of this solut We prove this property, construct
the resulting algorithm, and demonstrate it on real andicdi data. This algorithm allows us to

efficiently solve the whole family of bi-level problems. Weasv how it can be extended to cover
other modeling problems, like support vector regressiod,aternative in-sample model selection
approache$.

1. Introduction

In the standard predictive modeling setting, we are givieaiaing sampleof nexamplegxi,y1}, ...,
{Xn,Yn} drawn i.i.d from a joint distributiorP(X,Y), with x; € RP andy; € R for regression,
yi € {0,1} for two-class classification. We aim to employ these data to build a mbeelf (X)
to describe the relationship betweXrandY, and later use it to predict the valueYfgiven newX
values. This is often done by defining a family of mod€lsnd finding (exactly or approximately)
the modelf € # which minimizes arempirical loss functiony " ; L(y;, f(xi)). Examples of such
algorithms include linear and logistic regression, empirical risk minimization ini6itzgton and
others.

If F is complex, it is often desirable to addgularizationto control model complexity and
overfitting. The generic regularized optimization problem can be written as:

e argfrg;niuyi, f(x)) +AI(F)

whereJ(f) is an appropriate model complexity penalty anid the regularization parameter. Given
aloss and a penalty, selection of a good valukisfamodel selectioproblem. Popular approaches
that can be formulated as regularized optimization problems include all vergf@upport vector

1. A short version of this paper appeared at ICML 2008 (Rosse8)200
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machines, ridge regression, the Lasso and many others. For an avefvieedictive modeling,
regularized optimization and the algorithms mentioned above, see for exangile etaal. (2001).

In this paper we are interested in a specific setup where we have a famiégufrized op-
timization problems, defined by a parameterized loss function and a regti@ritrm. A major
motivating example for this setting is regularized quantile regression (Koe2®@5). In regular-
ized linear quantile regression we take the fangilyto be all linear combinations characterized by
a coefficient vectop € RP and the modeling problem is

~

n
B(t,\) = arg rréinziLT(yi —B%)+A|Bd,0<T1<L,0<A< 0, 1)
i=

whereL, the parameterized quantile loss function, has the form:

rt r>0
Lr(r)_{ —r(1-1) r<0 ’

and is termed-quantile lossecause its population optimizer is the appropriate quantile (Koenker,
2005):
arg nginE(LT(Y —¢)|X =x) = quantilet of P(Y|X =X) . 2

Because quantile loss has this optimizer, the solution of the quantile regr@ssldems for the
whole range O< T < 1 has often been advocated as an approach to estimating the full conditional
probability of P(Y|X) (Koenker, 2005; Perlich et al., 2007). Much of the interesting information
about the behavior of | X may lie in the details of this conditional distribution, and if it is not
nicely behavedi.i.d Gaussian noise being the most commonly used concept of nice behaisor)
estimating a conditional mean or median is often not sufficient to properlyrstagel and model
the mechanisms generatilYg The importance of estimating a complete conditional distribution,
and not just a central quantity like the conditional mean, has long been antkdddressed in
various communities, like econometrics, education and finance (Koerd@s; Buchinsky, 1994;
Eide and Showalter, 1998). There has been a surge of interest in thénméEarning community

in conditional quantile estimation in recent years, including theoretical asslylsconsistency in
guantile estimation and connections with support vector machines (Steimdattaistmann, 2008;
Christmann and Steinwart, 2008); methodological work on algorithms fantdg@aegression and
their performance (Meinshausen, 2006; Takeuchi et al., 2006; éVietasl., 2007); and work on
practical uses of extreme quantile estimation for data mining applications Perlaih (2007).
Figure 1 shows a graphical representatio.ofor several values af, and a demonstration of the
conditional quantile curves in a univariate regression setting, where #er Iinodel is correct for
the median, but the noise has a non-homoscedastic distribution.

On the penalty side, we typically use thenorm of the parameters witlhe {1,2}. Adding a
penalty can be thought of as shrinkage, complexity control or putting atorexpress our expec-
tation that the3’s should be small.

As has been noted in the literature (Rosset and Zhu, 2007; Hastie etCd;, A&t al., 2007;
Takeuchi et al., 2009) ifj € {1,2} and if we fix T = 19, we can devisegath following (AKA
parametric programming) algorithms to efficiently generate the 1-dimensiona ofi solutions
{B(t0,A) : 0 <A <} . Although it has not been explicitly noted by most of these authors (a
notable exception being Takeuchi et al. 2009), it naturally follows that siralgorithms exist for
the case that we fix = Ap and are interested in generating the cuf@ér,Ao) : 0 <1 < 1}.
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Figure 1: Quantile loss function for some valuestdfeft) and an example where the median of
Y is linear inX but the quantiles oP(Y|X) are not because the noise is not identically
distributed (right).

In addition to parameterized quantile regression, there are other modelipigpsoin the lit-
erature which combine a parameterized loss function problem with the exdstémdficient path
following algorithms. These include :

1. Support vector regression (SVR, Smola anddBapf 2004, see Gunther and Zhu 2005 for
path following algorithm) with/1 or ¢, regularization, where the parametadetermines the
width of thedon't careregion around O.

2. Weighted support vector machines, where the parameter of the lostfofugorresponds
to reweighting the hinge loss differentially for the two classes, for exampkerasans for
deriving accurate probability estimates (as recently suggested by Wah@608).

3. Huberized Lasso (Rosset and Zhu, 2007) witlegularization, wher&uberizingadds ro-
bustness to the traditional squared error loss, with a tunable parameter.

An important extension of th&-regularized optimization problem is tmn-linearfitting through
kernel embedding (Sétkopf and Smola, 2002). The kernelized version of Problem (1) is

~

f(t.A) = argminy Le(yi — £(6)) + 511 @)

where|| - || 5 is the norm induced by the positive-definite keriieh the Reproducing Kernel Hilbert
Space (RKHS) it generates. The well knowepresenter theorerfiKimeldorf and Wahba, 1971) im-
plies that the solution of Problem (3) lies in a low dimensional subspace sgdyrthe representer
functions{K(-,x;),i € 1,...,n}. Following the ideas of Hastie et al. (2004) for the support vector
machine, Li et al. (2007) have shown that path of solutions to Problem (3) wheiis fixed can
also be efficiently generated. A similar approach was independently geeelyy Takeuchi et al.
(2009).

It is important to note the difference in the roles of the two parametexs The former defines
a family of loss functions, in our case leading to estimation of different quantilaus we would
typically want to build and use a model for every valua of he latter is a regularization parameter,
controlling model complexity with the aim of generating a better model and avomliagitting,
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and is not part of the prediction objective (at least as long as we avoiBdiesian view). We
would therefore typically want to generate a set of mogé(g) (or f*(1) in the kernel case), by
selecting a good regularization parametgt) for every value oft, thus obtaining a family of good
models for estimating the range of conditional quantiles, and consequentiyhtile conditional

distribution.

This problem, of model selection to find a good regularization parametertea dandled
throughcross-validation In its simplest form, cross-validation entails having a second, indepen-
dent set of datdX;, Vi }I., (often referred to as malidation se}, which is used to evaluate the
performance of the models and select a good regularization parameter fikedt, we can write
our model selection problem asB&level programmingxtension of Problems (1) and (3), where
f*(1) = f(1,A*) and\* solves

N A~
rr]\in i; ch(yi f (T7 )\)T)?i) 4)

s.t. f(1,A) solves Problem (3) ,

whereLcy is the cross validation loss function (the bi-level formulation for Problemw@yld

be identical, withf3 replacing f). We will assume for now thatcy = L;, in order to evaluate
the performance in estimating thith quantile. The objective of this minimization problem is not
convex as a function of. A similar non-convex optimization problem has been tackled by Kunapuli
et al. (2008) for the support vector machine, which is very similar to quarddeession from

an optimization perspective (piecewise linear objective with quadratic pgndlhe fundamental
difference between their setting and ours is that they had a single bi-lptiglipation problem,
while we have a family of such problems, parameterized.bjhis allows us to take advantage of
internal structure to solve the bi-level problem for all values simultaneouslyor more accurately,

in one run of our algorithm).

The concept of a parameterized family of bi-level regularized quantiless@gn problems is
demonstrated in Figure 2, where we see the cross-validation curves objitive of (4) as a
function of A for several values of on the same data set. As we can see, the optimal level of
regularization varies with the quantile, and correct choice of the regatamzparameter can have
a significant effect on the success of our quantile prediction model.

The main goal of this paper is to devise algorithms for following the bi-level optsobu-
tion path f*(1) as a function oft, and demonstrate their practicality. Our algorithms are based on
extensions and generalizations of some of the ideas underlying the patiirigllalgorithms for 1-
dimensional paths on convex problems (Hastie et al., 2004, Li et al., 2@¥&eRand Zhu, 2007).
We concentrate our attention on the quantile regression case (both kednafid linear), as one
where the parameterized-loss problem is well motivated and historicallylubef we also discuss
the similarities and differences in algorithms for the other examples we mentiboed.a\We show
that this non-convex family of bi-level programs can be solved exacthesptimum among the
solutions ofO(n+ N) standard (convex) path-following problems, with some additional twists. This
result is based on a characterization of the evolution of the solutionfjgath) ast varies, and on an
understanding of the properties of optimal solutions of the bi-level probdmich can only occur at
a limited set of points. We combine these insights to formulate an actual algorithsul¥ing this
family of bi-level programs via path-following. However, this algorithm @zsra heavy computa-
tional burden. The question of whether it is practical from a computatper@pective depends on
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Figure 2: Estimated prediction error curves of Kernel Quantile Regme$siosome quantiles on
one data set. The errors are shown as a function of the regularizatEmgtz\.

the properties of the modeling problems at hand, and may also benefit greatlgomputational
tricks and optimization shortcuts which are not the focus of this paper. Wiemtgrate its ability to
successfully generate the complete set of cross-validated solutionmerilkoninating simulation
problems and on two medium-size real-life data-sets.

The rest of this paper is organized as follows. In Section 2 we discugsrtiperties of the
quantile regression solution patti$t,A) and their evolution as changes. We then discuss in
Section 3 the properties of the bi-level optimization Problem (4) and demtm#tet the solutions
change predictably with. This is because the optimal solution always corresponds to a situation
where either one of the validation points is crossing the non-differentialeilliigw in the cross
validation losd_cy, or the regularization path is going thorougkreotin its piecewise linear change.
However, due to the non-convexity of the problem, the solutions occdlitjuenp” from one such
point to another. It turns out that to follow this jumpy behavior we need touglimt one path of
solutions, but aboulN + n of them, corresponding to all possible candidateslLfgy optimizers.
Bringing together all our insights leads us to formulate an algorithm in Sectiovhith allows
us to follow the path of solution$f*(t) , 0 < Tt < 1} and only requires following a large but
manageable number of solution paths of problem (3) simultaneously. In Bé&ctie discuss the
extension of our methodology to other scenarios, including applicationrahethodology to SVR.
We demonstrate our methods with a simulated and real data study in Sectiorré wehghow that
our approach leads to model-selection that is more efficient than preyppusaehes, and illustrate
the interesting behavior of KQR in practice.
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2. Quantile Regression Solution Paths

We concentrate our discussion on the kernel quantile regression (K6@R)lation in (3), with the
understanding that it subsumes the linear formulation (1) dittegularization by using thinear
kernelK(x,X) = X'X.

We briefly survey the results of Li et al. (2007) regarding the propmmé(T, -), the optimal
solution path of (3), witht fixed. Similar results were independently generated by Takeuchi et al.
(2009), who concentrate on the propertiesﬁ()f,-) with A fixed (as we elaborate below, these
problems are in fact very similar). The representer theorem (Kimeldaoridethba, 1971) implies
that the solution can be written as

f(T,A)(x) :%

ﬁ0+_iéiK(x,xi)] : (5)

For a proposed solutiofi(x) define:
o E£={i:y;— f(xi) =0} (points onelbowof L)
o L={i:yi— f(x) <0} (left of elbow)
o R ={i:yi— f(xj) > 0} (right of elbow).

Then Li et al. (2007) show that the Karush-Kuhn-Tucker (KKT) ditions for optimality of a
solution f (t,A) of problem (3) can be phrased as

eicE = —(1-1)<H <1

eicL = Bi=—(1-1)

eicR = Bi=1

e 5.8 =0.
With some additional algebra, they shov!that for a fixethere is a series &nots 0= Ag < A1 <
... <Am < oo such that fol > Ay, we havef (t,A) = constantand forA,_1 < A < Ax we have

f(T,A)(x) = % (Mf (T M) () + (A = A)he(x)) (6)

where h(X) = b§+ ¥ K (X,x;) can be thought of as thairection in which the solution is
moving for the regior\x_1 < A < Ax. The knotsh are points on the path where an observation
passes betweef and either or R, that isJi € £ such that exacthy; =t or 6; = —(1—1).
This observation may be eithenteringthe elbow (if it was previously irC or R), or exiting it

(if it previously had8; € (—(1—1),1)).2 These insights lead Li et al. (2007) to an algorithm for
incrementally generatingﬁ(r,)\) as a function ofA for fixed 1, starting fromA = o (where the
solution only contains the intercef).

2. Itis clear that the definition of an observatioreasgeringor exitingthe elbow is arbitrary, since an observation which
enters alk when we are decreasiigactually exits ai if we choose to traverse the path while increasinghere
is also a possibility of more than one observation making this transition at Witegeneralt and points in general
location, this event has probability zero. As we will see, in the course ihwastigation of the paths we are bound
to encounter such cases, and we will address this issue when it comes up
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Although Li et al. (2007) suggest it is a topic for further study, it is in faceasonably straight
forward extension of their results to show that a similar scenario holds wiefix A and allow
T only to change. As previously mentioned, this has been recognized addyother authors,
including Takeuchi et al. (2009) for quantile regression, and Waiad) ¢€2008) for weighted hinge
loss. More interestingly, the same is also true when bpdhare changing togethatong a straight
line, that is, a 1-dimensional subspace of the\) space (this has been observed by Wang et al.
(2006) for SVR, which is very similar from an optimization perspective).e Ttllowing lemma
makes this more general result concrete. The proof relies on a studg EKh conditions in the
spirit of Li et al. (2007) and the other references above, and we omit it.

Lemmal Lett(A) = uh+v, and denotef (A\) = f(T(A),A). Theninthe rang& = {A>0: 0<
T(A) < 1} there exisknotsAg < ... < Ay such that folg_1 < A < Ax we have:

. 1.0 -
fN)0) = 5 (e i) 00 + A = Ahe())
bg
where [(X) = b§ + 3z BK (X, i), and the directiorbk = : is the solution of a set of
k
. o bl
linear equations withE| + 1 unknowns:

()
>

0o 1
k_
A_<1 Kﬁ)’

as defined in Li et al. (2007); and = yj 4+ U- (Ticx, K(Xj,Xi) — Yicr K(Xj, Xi)) for j € E.

with

Armed with this result, we next show the main result of this section: that the kimetsselves
move in a (piecewise) straight line aghanges, and can thereforetb&ckedast and the regular-
ization path change. Fix a quantilgand assume thag is a knot in the\-solution path for quantile
To. Further, leiy be the observation that is passing in or out of the elbow atkpoassume WLOG
thatéik(To,)\k) = Tg, that is, it is on the boundary betwe&a and E. Let ng be the matrixK ¢,
with theiy column removed, anb = bX with indexiy removed. Let = Y jerucufig K(Xi,X;) for
I € Ex. Letsg, be the vector of all these values.

Theorem 2 Any knotAx moves linearly as changes. That is, there exists a constansuch that

for quantileto + o there is a knot in thé-solution path at\x + cd, for & € [—¢&, vk, a non-empty
neighborhood of 0. cis determined through the solution of another sgt&f + 1 linear equations

with || 4+ 1 unknowns N
Bk< b > _( —(1R) +] 2] +1) )
Cx —Sz, ’

Bk—<o 0 )
1 Ry —yg )
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And the fit at this knot progresses as

f(T0+6,Ak+Ck6) = A —l:-LCké (Akf(Ak,To)(X) +5hk(X)) (7)
h() =B+ § BKOGx)+ Y Kex). 8)
i€ Be—ix ie LURU{ix}

Proof For smalld, themodifiedknot should be characterized By =19+ 6, and£, R , £ remaining
the same. If we can find & such that this holds for quantile + & andA = A + ¢o, and also
the KKT conditions are maintained, we have our knot for quartile- 8. Assume this can be
accomplished by moving in a directidn as in Equations (7) and (8). For the KKT conditions to
hold we need to maintain:

C1. f(T0+5,Ak+Ck6)(Xi) =vi, VieE
C2. 6i(To+ 8, M+ cd) = B (1o, A) +3, Vie LUR Uik}

C3. Sicn—fig B = —[LUR U{ik}]
where C1 maintains the observationsZirat the elbow, C2 maintains the equality requirements on
8 for the observations it U R, (and the one on the boundary), and C3 maintains the constraint that
the®'s sum to 0.
We can express C1 in terms of Equations (7) and (8) and condition C2:

f(to+0,Ak+Cd)(X) =Y, VieE
& hk(Xi):E)5+ Z Blj(K(Xj,Xi)+ z K(xj,xi):ckyi , VieE, 9)
jeB—ik jeLURU{i}

where the last term on the RHS of (9) accounts for the changes ié,-tb\fhich C2 implies for
j € LUR U{ix}.
Now, by combining C3 and (9) into one set of equations in matrix notation, wingeesult of

the theorem: K AL —(R|+|L|+1)
< G ) - (%) ( —Sz, >

and moving in the direction of the solution of this matrix equation as in (7,8) maintaenkKi
conditions and the observation at the elbow, hence is a knot onsbéution path for quantile + &
for every (small enoughy.

|

This theorem tells us that we can in fact track the knots in the solution efficiastlghanges.
We still have to account for various typeseafentghat can change the direction the knot is moving
in. The valued; for a point inE, — {ix} can reach or —(1—1), or a point in£ U X may reach the
elbow E. These events correspondknots crossingsthat is, the knoky is encountering another
knot (which is tracking the other event). There are &sot birthevents, andnots mergesvents,
which are possible but rare, and somewhat counter-intuitive. We tlefatetails of how these are
identified and handled to the detailed algorithm description (Appendix A).n\ehg of these events
occurs, the set of knots has to be updated and their directions havedahleulated using Lemma
1, Theorem 2 and the new identity of the s&ts., ® and the observatioip. This in essence allows
us to map the whole 2-dimensional solution surfa¢e ).
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3. The Bi-level Optimization Problem

Our next task is to show how our ability to track the knots ekanges allows us to track the solution
of the bi-level optimization Problem (4) ashanges. The key to this step is the following result.

Theorem 3 When the cross validation loss is the quantile loss (i.€yE Ly), then any minimizér
of (4) is always either at a knot in thepath for thist or a point where a validation observation
crosses the elbow. In other words, one of the two following statement$oidst

e Misaknot:Ji e {1..n} s.t. f(T,A\*(1))(x;) =y and®; € {1,—(1—1)}, or
e \*is avalidation crossingdi € {1...N} s.t. f (T, \* (1)) (%) = ¥

Proof Define E,i{ in the obvious way, as the sets of validation observations with negative and
positive residuals, respectively, for a given model. Fiand consider the cross validation loss for a
given value of\:

~

N
LeD) = -;ch(yi’ fNE) =5 A-0(EN &) )+ 3 TG~ F) (%) =

ieL ieR
= 1Y u-(L-DYy-t1y fOu) (%) +(1=1) 5 F) (%) +
i€R. ieL = 7
(A=A o g . o . .
o | T Y () = T () + (1=1) (%) = F () (%0))

ieR ieL

wherek is such thabg_1 <A < A (where the list ofA 's now combines both knots and validation
crossings), and we take advantage of the representation in (6). Feolastitwo rows we can see
thatLc, is monotone in\ as long as’ 9{ are fixed (i.e., no validation crossing occurs) dnds
fixed (i.e., no knot is encountered). Therefore any local (or globdfemum must be at a knot or a
validation crossing. |

Corallary 4 Given the complete solution path foe 1g, the solutions of the bi-level Problem (4)
for a range of quantiles arounty can be obtained by following the paths of the knots and the
validation crossings only, aschanges.

To implement this corollary in practice, we have two main issues to resolve:
1. How do we follow the paths of the validation crossings?

2. How do we determine which one of the knots and validation crossings ig toive optimal
for every value oft?

The first question is easy to answer when we consider the similarity betwe&ndhfollowing
problem we solve in Theorem 2 and the validation crossing following probleneach case we

3. In pathological cases there may be a “segment” of minimizers. Inasis it can be shown that such a segment will
always be flanked by points described in the theorem.
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have a set oélbowobservations whose fit must remain fixedtahanges, but whos®values may
vary; sets., R, whosef are changing in a pre-determined manner withut whose fit may vary
freely; and one special observation whidaracterizeghe knot or validation crossing. The only
difference is that in a knot this isl@order observation from the training set, so both its fit and its
6 are pre-determined, while in the case of validation crossing iviglidation observation, whose
fit must remain fixed (at thelbow), but which does not even havdaalue. Taking all of this into
account, it is easy to show the following result, closely related to TheoreAs8ume there is a
validation crossing ak, for quantileto, and that validation set observatignis the one crossing
the elbow, that is, A
f(to,Av)(Xj,) =0.

Let sg,,Kg,,bg, be defined as in Theorem 2 (with,} = @ for definition of s). Let ky =
(K(Xg,,Xj,)) be a Ix |E,| vector of the kernel evaluationsi, for the elbow observation function-
als.

Proposition 5 A, moves linearly ag changes. That is, there exists a constaptsdch that for
quantileto + 0 there is a validation crossing in the-solution path at\, + d,0, for d € [—¢&y, V],

a non-empty neighborhood of 0, @& determined through the solution of a set|8f| + 2 linear

equations with £, | + 2 unknowns:

(8- ( (KZ%L) )

0O I 0
BY = 1 K 5 —YE .
1 kv _ij

Furthermore, the solutiorﬁ(ro+6, Av+Cy0) is given by:

with

~

1 ~
"

h(x) =bg+ 3 BIK(xx)+ 5 K(xXi).
i€Ey ieLUR
The proof relies on following the same steps as the proof of Theorem B amditted for brevity.
The second question we have posed requires us to explicitly expresalithation loss (i.e.,
L; on the validation set) at every knot and validation crossing in term eb we can compare
them and identify the optimum at every valuedofUsing the representation in (7) we can write the
validation lossfor a knotk (denotef¥(3) = f(To+ &, A+ d)):

S Le(§i F48) (%) =
=—(1-10-8) § (i — f“(B)(%) + (10 +8) Y (i — *(&)(%)) =

ieL ieR

N
= _;ch(% f*(0)(%)) +8Y I5i — £*(0)(%i)| +

)

Ak +Cd . (10)

| ~(1-10-8) ¥ (K (0) (%) — (%)) + (To+8) Y (ef(0)(%) — hw(%i))

ieL ieR
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A similar expression can be derived for validation crossings (WAtfey, he replaced byfY, dy, hy
in the obvious way). These are rational function®efith quadratic expressions in the numerator
and linear expressions in the denominator. Our cross-validation taskeceszfbrmulated as the
identification of the minimum of these rational functions among all knots and v@liderossings,
for every value oft in the currentsegmentwhere the directionky, h, of all knots and validation
crossings are fixed (and therefore so are the coefficients in the ddtimicions). This is dower-
envelopdracking problem, which has been extensively studied in the literatureif@hdrAgarwal
1995 and references therein). The algorithms developed mostly cotddira common-sense ap-
proach of maintaining the order of the validation loss scores from smallesgtstaidentifying the
T values where elements with neighboring scanest(i.e., obtain identical score); and whenever a
meeting occurs, re-calculating only the relevant crossing points, thabise thf the elements that
changed order and their immediate neighbors. We also have to re-calautzdeo$ the validation
loss scores whenever amenthappens on the training solution path (likkresot crossing

To calculate the meeting point of two elements with neighboring scores (assw®&What
they are two knotg, 1) we find the zeros of the cubic equation obtained by requiring equality éor th
two rational functions of the form (10) corresponding to the two elementitingy the expression
in (10) for bothk andl, and requiring equality gives us the cubic equation:

0= )\k)\|(|0k—|0|)+ (11)
[N+ M) 10k —107) + Ak (1ak — 1ay) + Ay (ToL R — Lex) — Ak(ToL R, — L&)]
+52[CkC| (|0k —loj ) + (Ck)\| + q)\k)(lak — Ia|) +

+0i (ToLR« — Le&x) + AILR« — c(ToLR — L&) — AkLR]
+53[CkC| (Iak —lg ) + LR — CkLR|] ,

where;:

0= 3 Lol F(O)R)
3= 3 19— F4O)%)

LRc= 3 (af (0)(%) — (%) + 3 (e (0) (%) — hw())
el ieR
Lex = Z(CKf"(O)(f(i) — h(%)) ,

ieL

with similar expressions for the elements with subsdrig¢rived in the obvious way. The smallest
non-negative solution fad is the one we are interested in.

Figure 3 gives a simple illustration of the process of following the validation $osses, and
identifying their optimum, while updating the directions of the knots and validatioasimgs as
events occur. It shows the set of training and validation loss scoréwddinots and the validation
loss only for one validation crossing. The training loss is shown in solid lizved,the validation
loss in dashed lines. Assuming these are the only three candidates inMit&dhe figure shows in
bold the lower envelope which defines the optimal cross validation solutioreat ealue oft. As
we can see, in this example the first (left) switch is between two knots aslaakaknot crossing,
while the second (right) is a result of a validation crossing becoming optimaholild be noted,
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Figure 3: lllustration of the process of lower envelope tracking, in thegmee of two knots and
one validation crossing being tracked. See text for details.

that the linearity of the solid and dashed lines in Figure 3 is for illustration simplamitg,is not a
realistic depiction of the non-linear evolution of the losg aaries, as discussed above.

4. Algorithm Overview

Bringing together all the elements from the previous sections, we now ghe@nct overview
of the resulting algorithm (Algorithm 1). Since there is a multitude of details, vierdedetailed
pseudo-code description of our algorithm to Appendix A.
The algorithm follows the knots of thesolution path as changes using the results of Section

2, and keeps track of the cross-validated solution using the results tb58c Every time an
eventhappens (like a knot crossing), the direction in which two of the knots arengdas to be
changed, or knots have to be added or deleted. Between these evermgoltition of the cross-
validation objective at all knots and validation crossings has to be sortetbbowed. Their order

is maintained and updated whenever crossings occur between them.

4.1 Approximate Computational Complexity

Looking at Algorithm 1, we should consider the number of steps of the twaslaad the complexity

of the operations inside the loops. Even for a “standargath following problem for fixed, it is in

fact impossible to rigorously bound the number of steps in the generallmasise has been argued
and empirically demonstrated by several authors that the number of knots path behaves as
O(n), the number of samples (Rosset and Zhu, 2007; Hastie et al., 2004; ILj 20@7). In our
case the outer loop of Algorithm 1 implements a 2-dimensional path followinggmglihat can

be thought of as followin@(n) 1-dimensional paths traversed by the knots of the path. It therefore
stands to reason (and we confirm it empirically below) that the outer loopatyypibas O(n?)
steps wher@eventshappen. The events in the inner loop, in turn, have to do with\tivalidation
observations meeting th@(n) knots. So a similar logic would lead us to assume that the number
of meeting events (counted by the inner loop) should be at @@¥X) total for the whole running
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Algorithm 1. Main steps of our algorithm

Input: The entire\-solution path for quantileg; the bi-level optimizeA* (1)
Output: Cross-validated solution§'(t) for T € [To, Tend
1 Initialization: Identify all knots and validation crossings in the solution pathrfpiFind
direction of each knot according to Theorem 2 ;
Find direction of each validation crossing according to Proposition 5;
Create a lisM of knots and validation crossings sorted by their validation loss ;
Let A\*(1p) be the one at the bottom of the Igt, and f*(1p) accordingly ;
Calculate future meeting of each pair of neighborMity solving the cubic equation
implied by (10);
SetThow=To ;
while Thow < Tengdo
Find valuety > Tnhow Where first knot crossing occurs;
Find valuet, > 1,0y Where first knot merge occurs;
10 Find valuets > thqw Where first knot birth occurs;
11 SetThew = MiN(T1,T2,13);
12 while Thow < Tnew dO

g b~ W N

© 00 N O

13 Find valuet, > thow Where first future meeting (order changeMnoccurs;

14 Find valuets > 1h0w Where first validation crossing birth occurs;

15 Find valuetg > Thow Where first validation crossing cancelation occurs;

16 SetTnext = MiN(T4,Ts, T6, Tnew);

17 Updater*(1), f*(1) for T € (Thow, Tnext) &S the evolution of the knot or validation
crossing attaining the miniméky in M (i.e., the one ak*(Tnow)) ;

18 UpdateM according to the first event (order change, birth, cancelation);

19 Update the future meetings of the affected elements using (10);

20 SetTnow = Tnext

21 end

22 Update the list of knots according to the first event (knot crossing,, biréhge) ;
23 Update the directions of affected knots using Theorem 2 ;
24 end

of the algorithm (i.e., many iterations of the outer loop may have no events tiaggda the inner
loop). Each iteration of either loop requires a re-calculation of up to thireetibns (of knots or
validation crossings), using Theorem 2 or Proposition 5. These calmsdatigolve updating and
inverting matrices that are roughl| x |‘£| in size (whereE| is the number of observations in
the elbow). However note that only one row and column are involved in tiatiqy, leading

to a complexity ofO(n+-|E|?) for the whole direction calculation operation, using the Sherman-
Morrison formula (Sherman and Morrison, 1949) for updating the irvers principle,|£| can be
equal ton, although it is typically much smaller for most of the steps of the algorithm, on ther or
of \/n or less. So we assume here that the loop cost is bet@@®randO(n?).

Putting all of these facts and assumptions together, we can estimate the algodtimputa-
tional complexity'stypical dependence on the number of observations in the training and validation
set as ranging betwed(n? - max(n,N)) andO(n®- max(n,N)). Clearly, this estimation procedure
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falls well short of a formal “worst case” complexity calculation, but wiepft as an intuitive guide
to support our experiments below and get an idea of the dependengenaig time on the amount
of data used.

We have not considered the complexity of the lower envelope trackindgmnab our analysis,
because it is expected to have a much lower complexity (humber of ordemgeha
O(max(n,N)log(max(n,N))) and each order change involv@$1) work).

5. Extensions

In this section we discuss some of the possible extensions of our algorithet.wirdiscuss the
design of algorithms that are similar in spirit for other parameterized losgidunproblems, in
particular for support vector regressian{VR) andHuberizedleast squares regression. We then
move on to the use of in-sample model selection criteria instead of cross valid&iically, we
address the issue of possible nhon-monotonicity,imoted by previous authors (Koenker, 2005;
Takeuchi et al., 2006). We demonstrate how our algorithm can be nataxdéigded to amend this
situation.

5.1 Support Vector Regression and Weighted Support Vector Machines

One possible view of regularizedSVR (Smola and Sditkopf, 2004) is similar to the quantile
regression problem far= 0.5:

~

f(e,N) :argrrfﬂnz Le(yi — f(xi))+%\|f||§4< (12)

where the parameterized loss functibnis piecewise linear and symmetric around zero, with a

don't careregion of size 2:
r-¢ r>e
Le(r)=<¢ O —E<r<e

—r—e r<-—¢

The loss is parameterized lay From an optimization perspective, this problem is very similar to
KQR, with a piecewise linear loss and an RKHS norm penalty. The solutiobeegpresented as in
(5), and the KKT conditions for optimality of solutions of (12) in terms of caédfints of representer
functions have been formalized and used to desigath following algorithms by Gunther and Zhu
(2005). For example, if we define for a proposed solufi¢x) of e-SVR:

L=Ai:yi— f(x) < —€} (points on left ofleft elbowof L)

Er={i:yi— f(xi) = —¢} (left elbow

C={i:|yi— f(x)| <€} (don’t care region)
Eg ={i:yi— f(xi) =€} (right elbow)
R ={i:yi— f(x) > 0} (right of right elbow),

Then the Karush-Kuhn-Tucker (KKT) conditions for optimality of a solutifijg,A) of Problem
(12) can be phrased as:
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icCc = 6,=0

eiclL = éi:-—l

i€ER = 6 =1

icE, = —-1<6<0

eicEy = 0<Z éifgl
o Z|é|:0

Wang et al. (2006) have noted tleapaths (with fixed\) can similarly be followed. Because of the
fundamental similarity in the optimization setting, all our results regarding behaliepaths and
knots ast changes in quantile regression (e.g., Theorem 2) can be adapted soaably straight
forward manner to follow paths and knots)ekolution paths ire-SVR, asc varies.

There is, however, a fundamental difference in the statistical setting betparameterized
guantile loss and parameterize®VR loss. While every quantile loss function defines an interest-
ing modeling problem of estimation of a given conditional quantile, there isclodear motivation
for varyinge. Furthermore, there is no obvious way in which the cross validation lossdsbloange
with ¢, if at all. In most cases, it seeradgs viewed more as another tuning parameter for a single
modeling problem (lik\), than a parameter defining a range of loss functions, each of its own in-
dependent interest. In this situation, the only motivation for solving the rahbelevel problems
parameterized by may be as a way to efficiently traverse the ent&g\) solution space in search
of a single “best” prediction model. It may therefore be appropriate to sssgée cross validation
objectiveL., independent of. If we choose.c, = L;—g5 (the symmetric quantile loss, sometimes
called absolute loss), then our observations on the bi-level path followatdem (e.g., Theorem 3)
would require slight modifications, but the ideas would carry through te-®B¥R case in a straight
forward manner.

An interesting recent development is the proposal of weighted suppotbivmachines for
probability estimation by Wang et al. (2008). Their proposed approdthfoa fitting weighted
versions of the support vector machine, with a range of relative weiglplged to the two classes,
as a provably valuable approach for estimating probabilities. We omit the detailsvity, but note
that like the SVR case above, extending our bi-level approach to thiggpnab straight forward.

5.2 ¢1-regularized Huberized Squared L oss

Rosset and Zhu (2007) suggested the use of robust versionsarkedaerror loss withf; regular-

ization, as an approach for combining computational efficiency and trdssto long-tailed error
distribution. Huber’s loss function is quadratic for small absolute residtiaa continues linearly
as the residuals move away from zero, while maintaining differentiability. larameterized with

ahuberizing point t
r? ri<t
L(r) = { Ir|

2tr| —r? otherwise

The algorithm proposed in Rosset and Zhu (2007)Mgrath following can be thought of as an
extension of the LARS-Lasso algorithm proposed for the Lasso (edueror loss withf; penalty)
by Efron et al. (2004). The loss function is differentiable, there is naept ofelbow (although
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there are still knots), the KKT conditions are quite different, and if we assoaudifferentiablé.y,
the cross validation procedure would be affect as well. However, thergereasoning of this paper
can still be applied to build bi-level path following algorithms for the Huberizeddgroblem, and
to choose gootl A combinations.

5.3 Use of In-sample M odel Selection Criteria

Li et al. (2007) follow the literature in proposing two model selection criteviasklectingh* for

a fixed value oft, when there is no validation sample. These are Schwartz information criterion
(SIC, Schwarz, 1978) and generalized approximate cross validatid@\{Gruan, 2006). Both of
these use the model’s effective degrees of freedom (DF) as a compieadtyure which penalizes
the empirical error. Following Zou et al. (2007), Li et al. (2007) shoat #n unbiased estimate of
DF is the size of the elbowE|. Thus, they arrive at following SIC and GACV approximations:

logn

g (ﬁ;u(yi - <r,A><xi>>> + Ly (13
GACV()\) — zp—lLT():;:|Z-|[)A)(XI)) (14)

SIC(A)

If we were to adopt these measures (or similar ones) for model selectigadnsf the cross
validation approach using an independent validation set, tracking the ogtiln&ibnA* (1) requires
no extra work besides following the knots of the solution (as describeddtioBs 2, 4). This is
guaranteed by the following simple result:

Proposition 6 For any fixedrt, the minimizer?\*(rA) of SIC, GACV and any similar model selection
criterion which is monotone in bothii ; L(yi — f(t,A)(x;)) and ||, is always at one of the knots
of the solution path.

Proof The loss is monotone between knots (e.g., from looking at Equation 6), #jile fixed.H

Thus, if we wish to use SIC or similar measures for selecking), the inner loop of Algorithm 1
(lines 12-21) can be omitted and replaced with a simple tracking of the valukCadtShe knots
that are being followed. Since the algorithmic complexity of applying SIC/GACéduced com-
pared to cross validation, and given the ongoing debates in the literattine amerits of in-sample
versus out-of-sample model selection, it may often be beneficial to ap@yg thesample methods
in addition, or even instead of, cross validation. We demonstrate and cempedormance of the
two approaches in Section 6 below.

5.4 Addressing Quantile Crossings

The problem of quantile crossing, as formulated by Koenker (2005),aisftin any fixedA (in
particularh = 0 in the linear quantile regression case, which is the one that Koenkes)(@60cen-
trates on), the predictioﬁ(r,)\)(x) may not be non-decreasingirfor a fixedx. That is, we may
havety < 11 and f (1o, A)(x) > f(T1,A)(x), which can never be true of the corresponding population
conditional quantiles, of course.

Takeuchi et al. (2006) address this problem by constraining the solitiocomply with the
monotonicity requirement overfanite set of “interesting” quantiles. Their approach cannot work
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in our case, since our algorithm is local in nature and generates the selfdaidhe complete space
of (t,A) values. However, we can offer a partial remedy to the quantile crossatmem through
observation of the guaranteed sub-optimality of the resulting solutions, eodsaquengénvelope
trackingmaodification. The main motivation is the following:

Proposition 7 Assume < T and f (o, A)(x) > f(T1,A)(x) for some, x. Then either
Eyx—xLro (Y, (10, A) (X)) > Eyjx—xL (Y, f(T2,A)(x)) . (15)

or

Eyx=xLt, (Y, f(T0,A) (X)) < Ey|x=xLr, (Y, f(11,A) (X)) (16)
Thus, we can always improve the predictive quality of eitf{es,A) or f(t1,)A) by eliminating the
non-monotonicity.

Proof In what follows we eliminate the explicit conditioning in the expectations. All exqt#ons
are with regard to the distributioR(Y|X = x). Denote bycy andc; the 1o and1; quantiles re-
spectively ofP(Y|X = x). By definition,co < c;. We also assumé(to,A)(x) > f(11,A)(x). We
hereafter denote these two fitted valuefbyf; respectively for brevity. This gives us three possible
scenarios:

1. f1 > co. In this case (15) holds, since:

Blo(Y.fo) = 10/ _y=fodPlyix)+(1-T0) [ —y+ fodPlyk
<

y=fo y<fo
= [ PY2ypNdy+(1-10) [ P(Y <yx)dy
y>fo y<fo

— ELy(Y, f)+ /f ° (1= 10)P(Y < yIX) — ToP(Y > y[x)]dy

v

ELy, (Y, f1),

where the inequality on the [ast IiAne is becaBg¥ < y|X =X) >T1pin the rangefl <y< fo
(by our assumption thay < f; < fp).

2. fo < cl. By the same line of argument in this case (16) holds.

3. If neither of the previous two holds, we must hdye< co < ¢1 < fo. Following the same
steps as in case 1 we write:

- - fo

ELo(Y,fo) = ELy(Y,f)+ [ [(1-T0P(Y <yp)—ToP(Y 2ypldy  (17)
- - fo

ELy(Y.fo) = BLy(Y.f)+ [ (1= 1)P(Y <yl ~TiP(Y > yldy.  (18)

AssumeELq (Y, fo) < ELq, (Y, ﬂ). It implies the integral in (17) is negative which in turn
implies that the integral in (18) is also negative, since trivially

fi

o 7 1a-0P(Y <y ~TP(Y 2 yio] dy< 0.
1

This negativity implieELy, (Y, fo) < ELy, (Y, f1).
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The following is an immediate consequence of Proposition 7 if we RikeX;) to be a point mass
aty = V.
Corollary 8 If non-monotonicity holds at a validation point, that ig < t1 and f(To,A)(%) >

~

f(t1,A) (%), then either
Leo (5, f(T0.A) (%)) = Leo (5, F(T2,A) (%))
or

Lo, (5, F(10. M) (%)) < Ley (5, F(12,0) (%)) -
Thus, we can improve our holdout performance at either quanyite T, by appropriately enforcing
monotonicity.

We conclude that eliminating non-monotonicity can improve both predictivepednce and
cross validation performance. In terms of practical implications, it is eassg@tiough not trivial
to implement) how our algorithm can be extended to identify quantile crossingen\itiese occur,
at least one knot will be moving in the ‘wrong direction’, that is, the exgimsin (7) will be
decreasing i®. The algorithm will then have to keep careful tabs on the upper and lower limits
of the fit at everyA ast changes (the quantile-crossing gap). Discussion of the details and the
appropriate way to resolve the non-monotonicity given this envelope ilefiifure work.

6. Experiments

Our methodology offers a new approach for generating the full sebstevalidated kernel quantile
regression models. There are several interesting aspects of the mqatelitgm in general and our
algorithm in particular that should be studied through a data-based study.

First, to evaluate the new algorithm, the efficiency of the algorithm should bwaed to
alternative approaches that allow generation of complete set of solutidrg@ss-validation. This
includes the naivgrid-basedsearch whereby the KQR problem is solved using standard approaches
(Takeuchi et al., 2006) for a grid of values in tfreA) space, and a good regularization parameter is
chosen for each value oy cross-validation; and the method of Li et al. (2007), which can be use
to generate the complekepath at a grid of-values and cross validate each path separately. As Li
et al. (2007) demonstrated clearly, theipath method is far superior to the grid-based approach in
terms of computation, and so we concentrate on comparison fophaéh approach only, and show
that our algorithm compares favorably to it in generating the full set ofugtigolutions.

Second, we may also be interested in studying properties of the modelifgmratot necessar-
ily tied to the new algorithm. Cross-validation based selection of regularizaimigbe compared
to in-sampleapproaches such as SIC (Schwarz, 1978) and GACV (Yuan, 2@36hoted above,
all of these can be implemented in our framework. It is obvious that givesaime amount of data
for model fitting, it is better to use holdout data for model selection. Howéverfair comparison
should be between integrating the validation set into the training set and impleganiim-sample
model selection approach, and using a smaller training set in a crossticalitfamework.

Another interesting question about the modeling approach regards the abKR to deal
with skewed and non-homogeneous error distributions, and still genegenable estimates of
the underlying quantiles.

We address all of these aspects in this section.
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Figure 4: Left: The functiorf (x) (solid), data points drawn from it with i.i.d normal error, and our
cross-validated estimates of quantile$,0.25,0.5,0.75,0.9 (dashed lines, from bottom
to top). Right: Evolution of optimal regularization parametér), ast varies.

6.1 Simulations

Our simulation setup starts with univariate data [0,1] and a “generating” functiorf(x) = 2-
(exp(—30- (x—0.25)%) +sin(T-x?)) (see Figure 4). We then Idt= f(x) + €, where the errors
are independent, with a distribution that can be either:

1. e~N(0,1), that s, i.i.d standard normal errors

2. e+ (x+1)2~ exp(1/(x+1)?), which gives us errors that are still independent and have mean
0, but are asymmetric and have non-constant variance, with small signals® ratio on the
higher values ok (see Figure 5).

Figure 4 demonstrates the results of the algorithm with i.i.d normal errors, &dihty samples
and 200 validation samples and a Gaussian kernel with paramet€x2. In the left panel, we see
that the quantile estimates all capture the general shape of the true cithvepme “smoothing”
due to regularization. In the right panel we see the evolution of the optigalaezation parameter
A(T) ast varies. We see the expected “jumpy” behavior of the optimal parametewebdb not
see a clear tendency to be smaller for quantiles closey2o This is somewhat surprising when
we think in terms of bias and variance (or approximation error and estimatior) @r learning.
Values oft closer to ¥2 typically create learning problems that are “easier”, that is, variance is
smaller (Koenker, 2005), and this should in principle allow us to build more mmpodels (reduce
regularization), and decrease bias. A confounding factor in this dsatythe fact that the scale
of quantile error need not be comparable for different quantiles. fiticpéar, we may expect that
loss magnitude would be larger for quantiles close.& @here both types of errors get penalized
equally. If that is the case, then having the similar regularization parameteinnfegt imply less
regularization fort close to 05 compared to extreme quantiles. Another interesting observation is
that whileA*(t) may be jumpy, both the empirical and the validation loss may vary smoothly. This
smoothness is in fact guaranteed for the validation lggssince it is easily seen that the “jumps”
are points where validation loss is equal at two knots or validation crossings

Next we consider the computational complexity of the algorithm, and its depeadsn the
number of training samples (with 200 validation samples). We compatre it to the d@gRithm
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NTRAIN NSTEPS TIMHBI-LEVEL) TIME(LIETAL.) BREAK-EVEN RESOLUTION

200 29238 93EBEC. 2500sEC. 3000
100 12269 9%EC. 900sEC. 900
50 2249 23BEC. 480SsEC. 400

Table 1: Number of steps and run times of our algorithm and of Li et al.{g@0r the whole path
fromt1=0.1tot = 0.9, as a function of the number of training observatioimMRAIN.
These results are based on applying Li et al. (2007) at 8000 diffeatures oft. The last
column shows what resolution would give similar running times to both appesa@&ee
text for details).

of Li et al. (2007), who have already demonstrated that their algorithngisfisantly more effi-
cient than grid-based approaches for generating 1-dimensionalfpafhed t. Table 1 shows the
number of steps of the main (outer) loop of Algorithm 1 and the total run time élgorithm for
generating the complete set of cross-validated solutions 0j0.1,0.9] as a function of the num-
ber of training samples (with validation sample fixed at 200). Also shown isuthéime for the
algorithm of Li et al. (2007), when we use it on a grid of 8000 evenlycepa values in[0.1,0.9]
and find the best cross validated solution by enumerating the candidatentiidd in Section 3.
Our conjecture that the number of knots in the 2-dimensional path behage3(lik) seems to be
consistent with these results, as is the hypothesized overall time complexégdie oD(n%).
Since 8000 is typically an unnecessarily fine grid for practical applicatimesoffer in the last
column an evaluation of the comparative efficiency of the two methods in terthe afumber of
distinct T values that can be fitted with the Li et al. (2007) approach in roughly tive sanning
time as our approach. It is clear from these results that if just a small nushberalues (say, 10)
are sufficient to address the complete problem, our approach doesrnoacomputational benefit.

Next, we demonstrate the ability of KQR to capture the quantiles with “strangeisefrom
model 2. Figure 5 shows a data sample generated from this model afti26®.5, 0.75) quantiles
of the conditional distributiorP(Y|X) (solid), compared to their cross-validated KQR estimates
(dashed), using 500 samples for learning and 200 for validation (meaeisiaeeded for learning
because of the very large variance at valuesabse to 1). As expected, we can see that estimation
of the lower quantiles, and at smaller valuexdd easier, because the distributiB(lY|X = x) has
long right tails everywhere and has much larger variance whegibig.

6.2 Baseball Data and California Housing

As discussed in Perlich et al. (2007), estimating conditional quantiles is afteodeling task that

is well grounded in practical applications. In the context of house prigesxan think of estimat-

ing a high (but not extrent® conditional quantile as the seller’s search for a favorable bargaining
position in negotiations. Similarly for salaries, estimating a high conditional quaaiileserve as a
measure of what an employee can expect to receive optimistically (but atiitieally), given his
characteristics and performance.We therefore demonstrate KQR on thstwaéed data sets that
correspond to such modeling problems: baseball salaries as a functigsiayfer’'s home runs and
years of experience (He et al., 1998) and the California housing da{Raee and Barry, 1997),

4. Extreme quantile estimation is also of interest in some contexts, but wat demonstrate it here due to the inherent
statistical difficulty and questionable results, see some discussion in Gmrchection.
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Quantiles oP(Y|X) (solid), and their estimates (dashed) for quant{l@5,0.5,0.75)
with the exponential error model.

which describes the median prices of houses in neighborhoods of Califong with nine ex-
planatory demographic variables. We seek to demonstrate predictivaparfce, fitted models
and the relative performance of different model selection approaches

For our experiments, we use a Gaussian kernel, with the parametdr chosen based on
experimentation, to give flexible but not overly jumpy fits. We demonstrate tlandi accuracy
of model selection using CV compared to using SIC. For CV, we used 50ea28B players in
the data set for validation (selection %ft)) and 50 more for testing the accuracy of the resulting
model. Thus, 163 examples were used for training. For SIC, we use@r2ii@ing+validation)
as the training set, and applied Equation (13) for selectiftg. Both approaches were evaluated
using the 50 test observations. In Figure 6 we show the resulting fit in ippitoaches, for three
different quantiles. As expected, compensation seems to be monotonéamyarce (home runs)
but not in experience (salary tends to increase as players gain exqerisut then decreases as
they get older and performance deteriorates). As we can see, the ssbeletied surfaces are quite
similar between CV and SIC, though this need not be the case, as we skeplihkmind that SIC
is choosing between models trained on more data. In terms of accuracytestthet (shown above
each plot), The results are also very comparable. When comparing thepsmaahes we should
also keep in mind the reduced complexity of applying SIC, and the existing literatuinstability
of CV-based model selection, though this is not evident in our results.

For the California housing data set, we use only longitude and latitude as thexplanatory
variables in fitting KQR, to facilitate meaningful visualization of results. We mdiuelog of the
median price, since the actual median fluctuates widely over the data. Wé@oisehServations
for training and 50 as validation for CV, 550 as training for SIC, and Sdditeonal observations
for testing. Figure 7 shows the results. It is clear that visualization is hadg®r the fact that
California is far from being rectangular, so one corner of the plots (latiddd& longitude 122W)
is well inside the ocean, while the other (latitude 40N, longitude 115W) is welhéhfeom the
California border. The wild extrapolation of the fit in that direction is themefoot informative.
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Bi-LEVEL PATH FOLLOWING

On each plot the fit at San Francisco (red circle), Los Angeles (blugrsjjand Sacramento (green
triangle) are marked. We can see that the selected fits using CV and Stfitgesimilar, with
possible exception to the more jumpy fit selected by SIC for quantile 0.5. Thkingights that
seem to arise out of these plots relate to the lower house values in the salitnalof California
compared to the coastal area, and the reduced house values in the&w#orarea compared to near
by the Bay Area.

7. Conclusions and Future Work

In this paper we have demonstrated that the family of bi-level optimization Pnsb{4) defined

by the family of loss function&; can be solved via path followingapproach which essentially
maps the whole surface of solutiorﬁsr,)\) as a function of bothr andA and uses insights about
the possible locations of the bi-level optima to efficiently find them. This leads tosad:form
algorithm for findingf*(t) for all quantiles. We see two main contributions in this work: a. Char-
acterization of a family of non-convex optimization problems of great prddatitarest which can

be solved using solely convex optimization techniques and b. Formulationrattigal algorithm

for generating the full set of cross-validated solutions for the family ofiddequantile regression
problems.

We have shown how our approach can be extended to other modelingmeolith a parame-
terized loss function, such as SVR, and to other versions of KQR, ingdudiimg in-sample model
selection criteria and enforcing monotonicity on the resulting quantiles.

There are many other interesting aspects of our work, which we haveoached on here,
including: development of further optimization shortcuts to improve algorithnficieficy, inves-
tigation of the range of applicability of our algorithmic approach beyond KQ&® VR, analysis
of the use of various kernels for KQR and how the kernel parameterkeanel properties interact
with the solutions, and more extensive empirical studies.

It is of particular interest to us to investigate the bias-variance tradeof§aflmction selection.
As we have mentioned, modeling with the quantile loss fundtipfeads to estimation of theth
quantile ofP(Y|x) in the decision theoretisense that the population optimizer of the loss function
is this quantile (see Equation 2). However, this by no means guaranteesrttuatel learned from
finite data usind-; (with or without regularization) will do well in predicting theth quantile. In
particular, there is no guarantee that a model built using a different lossién (sayL,, n # 1)
will not do better in predicting this quantile. This can be thought of in terms of &l variance,
where the model generating quantilés similar enough to the one for quantiléi.e., bias is small),
but it is “easier” to learn withL,, that is, variance is smaller, which would typically be the case if
n is closer to ¥2 thant (Koenker, 2005). A detailed investigation of this question is outside the
scope of the current work, but will be a natural extension.

A particularly important and difficult type of quantile estimation problems pertaigstimation
of extremeguantiles (e.g.1 = 0.01 ort = 0.99) which can serve as approximations for expected
extreme values of the function being estimated. These problems are typioailgliffecult statis-
tically, that is, hard because of the scarcity of information implicit in trying to estimatatewe
rarely observe. However they are not expected to be particularlyudiffigorithmically. That is,
our (and others’) KQR approaches can estimate these models, but it ¢eenothow useful the
results are. These observations are verified by our limited experimeststgraot shown), which
yield very “jumpy” and unstable models for extreme quantiles.
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Appendix A. Pseudo-code of Algorithm

Algorithm 2 and its accompanying procedures describe our implementatiomma detail. This
pseudo code is meant to complete the implementation details given in the papese\Wethe-
matical notation rather than programming commands as much as possible, to rdakgtamding
easier. Given the complexities and intricacies involved in the complete implementaseems
unrealistic and probably non-useful to give an exhaustive descripRather, we concentrate on
clarifying the general flow of the algorithm and the mathematical problems iesat each step.
We also emphasize the aspects of the algorithm not covered in technichliri¢it® main text,
such as the differentiation of different types of events (knot cros&imgt merging, knot splitting).
Where the text offers the technical content, we simply refer to that pointeXxample, Theorem
2 describes the direction calculation and also implicitly the accounting orf thétiderof the sets
E, L,R required for it. We thus simply refer back to it where relevant in the algorithm.

Some further comments on the pseudo code:

¢ We assume the training and validation data are “global variables” known pocgiédures.
e We usef and® interchangeably, given formula (5).

e Some of the elements are not described in the most efficient implementation, vudniddh
require a lot more accounting and data management. For example, thefsednehminima
in the functionUpdateValidList does not have to be done from scratch on every call, but a list
can be maintained, and only the necessary items updated.

e The pseudo-code glosses over numerical issues which plague thkimgigenentation. In
particular, all equalities must have “tolerance” in the practical implementatiemncdwmachine
rounding errors. This obviously creates a problem when events onatiheape bunched
together close enough that two distinct events fall within this tolerance.

e We avoid repetition of similar procedures. Thus the call to funcootSplitat end of Al-
gorithm 2 is replaced with a brief explanation of its near-identity to the fund€iootCross
which is already given.
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Algorithm 2: Algorithm description

Input: The entireh-solution path for quantiley characterized by itmmknotsA = A1, ...,Am;
the solution directiong = g, ..., gm as defined in (6); and=ix, ..., in the
observations which “hit the elbow” at every knot

Output: Cross-validated solution§'(t) for T € [T, Tend described as set of intervals in the

variable OPT

/* Initialization: find validation crossings, calculate cross validation

| oss at knots and validation crossings, sort by it, find future
meetings of neighbors on the list, where the order changes *|
1 SetM = InitializeValidList(to, A, g);
2 SetOPT = (1o, f*(T0), h*) wheref*(1o) = f(To,M.A1), h* = M.h; are from the first
(smallest loss) entry iM;
3 Setthow=To;
4 Let T be the list of the fits = (f(To,A1), ..., f(To,Am)), regularization values
A= (A1,...,Am), ratesc = (cy, ...,Cm), and direction$ = (hy, ..., hy) as defined in
Theorem 2/ * Main | oop */
5 while Thow < Tengdo
6 Update{tnew, Knews inews type} = FindEventT);
7 UpdateT Ak = T.Ak+ (Thew— Tnow) T-Ck fork=1,...,m;
8 UpdateT. fx according to (6);
9 while Thow < Tnew dO

10 SetTkeep= Tnows

1 (M, changelnow) = UpdateValidListl, Tkeep Tnew);

12 if change=TRUEhen

13 OPT = concatenat@OPT, (Thow, f*(Tnow), h*)) wheref*(Thow) = f(Tnow, M.A1),

h* = M.h; are from the first (smallest loss) entryNt

14 end

15 end

16 if type = crosghen /* Knot crossing of knots Kknew, Knew+1 */

17 SetT = KnotCrossT, Knew, Tnow);

18 elseif type = mergehen [* Knot nerge of knews Knew+ 1, Knew+2 */

19 Remove knot&new, Knew:2 fromT;

20 Update set&, R, L for the remaining knot (Move the observation which defined the
two removed knots fronE to L or R);

21 else I* Knot split of knot Kkpew With observation inew */

/* Function Knot Split would be identical to
Knot Cr oss---identify two observations at border and find
legal directions---except that a split situation yields three
such directions, hence three knots, while a cross situation
yields two */
22 end
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Procedure"IntializeValidLi st”: Initialization of bi-level candidate list

Input: Initial valuetg, vector of knot valueg\, corresponding directiorg
Output: Alist M = {(rg, Ak, Ik, hk, Tk) : k=1,...,m+v} sorted byl; <> < ... <lpyv,
where:
re is an indicator in{ knot, valX} whether this is a knot or a validation crossing
Ak is its “location” on the path
I is its cross validation loss
hy is its direction
Tk is knot meeting point
1 Find knot directiond, ..., hy, according to Theorem 2;
/* ldentify all validation crossings in the solution path for Tg *|
2 SetV = @ the empty set;
3 for k=1,....mknots and i 1, ...,N validation observationdo
if f(to,Ak_1)(%i) > ¥ and f (10, A) (%;) < ¥ or vice versahen
3 f(To. M) (%) — gk (%) .
Seth = Ay el 0% ~
Find the validation crossing directidiix) according to Proposition 5;
Add the entry(i\, ﬁ) characterizing the validation crossing to the\ggt
end
end
/* Sort knots and validation crossings by their |oss *|
10 Denote the number of validation crossings\by |V
1 fork=1,....mdo
12 Calculate knot validation los$; = SN ; Lt, (f(To, Ak) (%), %i);
13 end
14 for k=1,...,vdo .
15 Calculate validation crossing lodg; k = zi’\‘zl LTO(f(TO,)\k)(ii),yi);
16 end
17 Create listM = {(r, Ak, Ik, g, Tk) 1 k=1,...,m+Vv} sorted byl; <> < .... <lpnyv, Where:
18 rg is an indicator whether this is a knot or a validation crossing with possible s/kihat
andvalx respetively
19 Ak is its “location” on the path
20 g is its cross validation loss
21 hyisits direction
22 Tk is knot meeting point, defined below;
/* ldentify ntg pts of neighboring knots or valid. crossings */
23 for k=1,....m+v—1do
24 Let tx = 1o + Ok Wheredy is the minimal positive solution of the Problem (11) with
l =k+1;
25 end

N

© 00 N o O
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Procedure " Fi ndEvent ”: Find the next event on the path agshanges

Input: The listT of knots and their directions
Output: Event type in{cross, merge, birth, Thew Where next event happengey the knot
where this event happerigew the observation involved in the event (if a birth)

~N o o A~ W N

/* Next knot crossing or knot nerging *|
Setfy —% k=1,..,m—1;
Setknew =argmin-a,.., m—l{Tk >0} ;
SetTnew = Tkyey I Thyew = Tknew+1 thEN

type=merge; /* Knots nerging 3=1 */
ese

type=cross /* Two knots crossing */
end
/* Next observation-knot crossing = knot birth *|

g8 for k=1,....mdo
g , TACF(TA) )W)+ TACFT M) () )
o  Setii, =argmin_;__n{ chk = khk(x|)) ; TAC khk(XI) > 0};

10 Setr, to be the minimum attained;
11 end

12 Setk’ =argminTy;

13 if Tj, < Tnewthen

14 SetThew = Ty, knew = K/, type=birth ;
15 end
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Procedure" Updat eVal i dLi st ”: Find the next validation event on the pathtashanges, and
update the list if necessary

Input: Validation candidate lisé, current valueleep NEXt €VENt ON Main pattew
Output: Logical indicatorchangewhether optimum changed, Updated Nt andtpqw
where next validation event happens
1 Set change = FALSE ;

/* Pair of validation crossings can di sappear, or a new a validation
crossing can appear, or a regular order change in the elements in M
can occur. We first identify the next order change in the list M */

2 Setthow = MiNk=1,...myv—1M.Tg;
3 Setknow = argmin-1....myv—1M.T;

/[* Now find the next time a validation observation hits a knot = new
val i dation crossing *|

4 Fori=1,..Nandk=1..,msetAt(i,k) = M-M%W;

5 SetT = Tkeep+ MiNi=1,_ Nk=1,..m{AT(i,K) : At(i,k) > 0} ;
(

.....

6 Set(i,k) = argmin_1.._nk1...m{AT(i,K) : At(i,k) > 0};

7 if Thow > Thew @NdT > Thew then /* No validation event before Thew */
8 Thow = TNEW;

9 return;

10 elseif Tnow > T then /* New validation xing appears---add it to list */

11 Seth = (T — TkeepM.CL+M.AL;

12 Setl = yN Le(f(T,A) (%), 5); N

13 Set the validation xing direction(x) according to Proposition 5;

14 Find the locatiork’ in the sorted list of the cross validation Idsand insert the element
(r =valx A, I, h) into M at locationk’;

15 Recalculatay _1,Tx in M according to (11);

16 Setthow =T1;

17 else
/* If two validation crossings nmeet knot---the two di sappear */

18 Set(mergedM) = CheckMergd{l, know);

19 if merged=FALSEhen /* Usual situation: swap elenents, update nmeetings

*/
20 Swap elementknow andknow + 1 in M;
21 Recalculatey,,,,—1, Tk Tkoow-+1 IN M according to (11);
22 if kKnow = 1then I* First element changed = change of optinum */
23 changed = TRUE;
24 end
25 end
26 end
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Procedure " CheckMer ge”: Find out if the validation event is in fact two validation crossings
of same observation meeting a knot and merging

Input: Validation candidate lis¥, index of event poink
Output: Logical indicatormergewhether a merge occurred, updated Nt
1 merge = FALSE;
/* Wth observations in general location, Tx=Tkr1 in M inplies
i mredi ately that we have a nerge. Two of kk+1,k+2 are validation
crossings of the same observation, the knot is the third involved in
the crossing. If we do not assune that, nmore checks are required! */
2 if M.y = M.y, 1 then
3 merge = TRUE ;
/* Find out which one of the entries kk+1,k+2in M is a knot,
delete the other two */
if M.rx = knotthen
remove entriek+ 1, k+ 2 from M;
eseif M.rg,.1 = knotthen
remove entrie&, k+ 2 fromM ;
else [* M.rgio =knot */
remove entrieg, k+ 1 fromM ;
10 UpdateM.ty_1,M.1¢ according to (11);
11 end

© 00 N O O b
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Procedure " Knot Cr 0ss”: Update directions when knots cross

Input: Knot list T, index of first of crossing knots, current quantila
Output: Updated lisfT
[* Identify iq, ip, the ‘‘knot’’ observations at the two knots x|
1 Findiy, iz s.t.6, € {1,—(1-1)} andy;, = f (1, T Ak j_1)(x;)) for j € {1,2};
2 Calculate the set®, R , L as defined in the text for the meeting knots (leaving out the
“border observationsiy, i»);
3 Setu=k forrel=1,2do /* try rel easing each border observation to € or L
or R as appropriate */
4 Add observationye to £ and calculate directioh, c according to Theorem 2;
/* Check sign and magnitude of b, for consistency (to maintain
Bi, € [—(1—1),T] as T increases) *|

5 ifb, <1and;  =Tthen

6 Update entryu in T with this directionh,c, setu=u+1;

7 dseifb,, > —1and8;_ = —(1—1) then

8 Update entryu in T with this directionh,c, setu=u+1;

9 end

10 if B(ire)) =T then

1 Addi to R;

12 dse [* O(irel) = —1—T1 */
13 Add i to L;

14 Calculate directiom andc according to Theorem 2;

/* Check sign and magni tude of h(x;,) for sign consistency */

15 ifh(x,) <0and8;_ =1 then

16 Update entryu in T with this directionh,c, setu=u+1;

17 dseif h(xi,) > 0and6;, = —(1—1) then

18 Update entryu in T with this directionh,c, setu=u-+1;

19 end
20 end
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