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Abstract
We show how to follow the path ofcross validatedsolutions to families of regularized optimization
problems, defined by a combination of a parameterized loss function and a regularization term.
A primary example is kernel quantile regression, where the parameter of the loss function is the
quantile being estimated. Even though the bi-level optimization problem we encounter for every
quantile is non-convex, the manner in which the optimal cross-validated solution evolves with the
parameter of the loss function allows tracking of this solution. We prove this property, construct
the resulting algorithm, and demonstrate it on real and artificial data. This algorithm allows us to
efficiently solve the whole family of bi-level problems. We show how it can be extended to cover
other modeling problems, like support vector regression, and alternative in-sample model selection
approaches.1

1. Introduction

In the standard predictive modeling setting, we are given atraining sampleof nexamples{x1,y1}, ...,
{xn,yn} drawn i.i.d from a joint distributionP(X,Y), with xi ∈ R

p and yi ∈ R for regression,
yi ∈ {0,1} for two-class classification. We aim to employ these data to build a modelŶ = f̂ (X)
to describe the relationship betweenX andY, and later use it to predict the value ofY given newX
values. This is often done by defining a family of modelsF and finding (exactly or approximately)
the modelf ∈ F which minimizes anempirical loss function: ∑n

i=1L(yi , f (xi)). Examples of such
algorithms include linear and logistic regression, empirical risk minimization in classification and
others.

If F is complex, it is often desirable to addregularizationto control model complexity and
overfitting. The generic regularized optimization problem can be written as:

f̂ = argmin
f∈F

n

∑
i=1

L(yi , f (xi))+λJ( f ) ,

whereJ( f ) is an appropriate model complexity penalty andλ is the regularization parameter. Given
a loss and a penalty, selection of a good value ofλ is amodel selectionproblem. Popular approaches
that can be formulated as regularized optimization problems include all versions of support vector

1. A short version of this paper appeared at ICML 2008 (Rosset, 2008).

c©2009 Saharon Rosset.



ROSSET

machines, ridge regression, the Lasso and many others. For an overview of predictive modeling,
regularized optimization and the algorithms mentioned above, see for example Hastie et al. (2001).

In this paper we are interested in a specific setup where we have a family of regularized op-
timization problems, defined by a parameterized loss function and a regularization term. A major
motivating example for this setting is regularized quantile regression (Koenker, 2005). In regular-
ized linear quantile regression we take the familyF to be all linear combinations characterized by
a coefficient vectorβ ∈ R

p and the modeling problem is

β̂(τ,λ) = argmin
β

n

∑
i=1

Lτ(yi −βTxi)+λ‖β‖q
q , 0 < τ < 1, 0≤ λ < ∞ , (1)

whereLτ, the parameterized quantile loss function, has the form:

Lτ(r) =

{

rτ r ≥ 0
−r(1− τ) r < 0

,

and is termedτ-quantile lossbecause its population optimizer is the appropriate quantile (Koenker,
2005):

argmin
c

E(Lτ(Y−c)|X = x) = quantileτ of P(Y|X = x) . (2)

Because quantile loss has this optimizer, the solution of the quantile regressionproblems for the
whole range 0< τ < 1 has often been advocated as an approach to estimating the full conditional
probability of P(Y|X) (Koenker, 2005; Perlich et al., 2007). Much of the interesting information
about the behavior ofY|X may lie in the details of this conditional distribution, and if it is not
nicely behaved(i.i.d Gaussian noise being the most commonly used concept of nice behavior), just
estimating a conditional mean or median is often not sufficient to properly understand and model
the mechanisms generatingY. The importance of estimating a complete conditional distribution,
and not just a central quantity like the conditional mean, has long been notedand addressed in
various communities, like econometrics, education and finance (Koenker, 2005; Buchinsky, 1994;
Eide and Showalter, 1998). There has been a surge of interest in the machine learning community
in conditional quantile estimation in recent years, including theoretical analyses of consistency in
quantile estimation and connections with support vector machines (Steinwart and Christmann, 2008;
Christmann and Steinwart, 2008); methodological work on algorithms for quantile regression and
their performance (Meinshausen, 2006; Takeuchi et al., 2006; Mease et al., 2007); and work on
practical uses of extreme quantile estimation for data mining applications Perlich etal. (2007).
Figure 1 shows a graphical representation ofLτ for several values ofτ, and a demonstration of the
conditional quantile curves in a univariate regression setting, where the linear model is correct for
the median, but the noise has a non-homoscedastic distribution.

On the penalty side, we typically use theℓq norm of the parameters withq∈ {1,2}. Adding a
penalty can be thought of as shrinkage, complexity control or putting a prior to express our expec-
tation that theβ’s should be small.

As has been noted in the literature (Rosset and Zhu, 2007; Hastie et al., 2004; Li et al., 2007;
Takeuchi et al., 2009) ifq ∈ {1,2} and if we fix τ = τ0, we can devisepath following (AKA
parametric programming) algorithms to efficiently generate the 1-dimensional curve of solutions
{β̂(τ0,λ) : 0 ≤ λ < ∞} . Although it has not been explicitly noted by most of these authors (a
notable exception being Takeuchi et al. 2009), it naturally follows that similar algorithms exist for
the case that we fixλ = λ0 and are interested in generating the curve{β̂(τ,λ0) : 0 < τ < 1}.
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Figure 1: Quantile loss function for some values ofτ (left) and an example where the median of
Y is linear inX but the quantiles ofP(Y|X) are not because the noise is not identically
distributed (right).

In addition to parameterized quantile regression, there are other modeling problems in the lit-
erature which combine a parameterized loss function problem with the existence of efficient path
following algorithms. These include :

1. Support vector regression (SVR, Smola and Schölkopf 2004, see Gunther and Zhu 2005 for
path following algorithm) withℓ1 or ℓ2 regularization, where the parameterε determines the
width of thedon’t careregion around 0.

2. Weighted support vector machines, where the parameter of the loss function corresponds
to reweighting the hinge loss differentially for the two classes, for example asa means for
deriving accurate probability estimates (as recently suggested by Wang etal. 2008).

3. Huberized Lasso (Rosset and Zhu, 2007) withℓ1 regularization, wherehuberizingadds ro-
bustness to the traditional squared error loss, with a tunable parameter.

An important extension of theℓ2-regularized optimization problem is tonon-linearfitting through
kernel embedding (Schölkopf and Smola, 2002). The kernelized version of Problem (1) is

f̂ (τ,λ) = argmin
f

∑
i

Lτ(yi − f (xi))+
λ
2
‖ f‖2

HK
, (3)

where‖·‖HK
is the norm induced by the positive-definite kernelK in the Reproducing Kernel Hilbert

Space (RKHS) it generates. The well knownrepresenter theorem(Kimeldorf and Wahba, 1971) im-
plies that the solution of Problem (3) lies in a low dimensional subspace spanned by the representer
functions{K(·,xi), i ∈ 1, ...,n}. Following the ideas of Hastie et al. (2004) for the support vector
machine, Li et al. (2007) have shown that theλ-path of solutions to Problem (3) whenτ is fixed can
also be efficiently generated. A similar approach was independently developed by Takeuchi et al.
(2009).

It is important to note the difference in the roles of the two parametersτ, λ. The former defines
a family of loss functions, in our case leading to estimation of different quantiles. Thus we would
typically want to build and use a model for every value ofτ. The latter is a regularization parameter,
controlling model complexity with the aim of generating a better model and avoidingoverfitting,
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and is not part of the prediction objective (at least as long as we avoid theBayesian view). We
would therefore typically want to generate a set of modelsβ∗(τ) (or f ∗(τ) in the kernel case), by
selecting a good regularization parameterλ∗(τ) for every value ofτ, thus obtaining a family of good
models for estimating the range of conditional quantiles, and consequently thewhole conditional
distribution.

This problem, of model selection to find a good regularization parameter, is often handled
throughcross-validation. In its simplest form, cross-validation entails having a second, indepen-
dent set of data{x̃i , ỹi}N

i=1 (often referred to as avalidation set), which is used to evaluate the
performance of the models and select a good regularization parameter. For a fixedτ, we can write
our model selection problem as aBi-level programmingextension of Problems (1) and (3), where
f ∗(τ) = f̂ (τ,λ∗) andλ∗ solves

min
λ

N

∑
i=1

Lcv(ỹi , f̂ (τ,λ)Tx̃i) (4)

s.t. f̂ (τ,λ) solves Problem (3) ,

whereLcv is the cross validation loss function (the bi-level formulation for Problem (1)would
be identical, withβ̂ replacing f̂ ). We will assume for now thatLcv = Lτ, in order to evaluate
the performance in estimating theτth quantile. The objective of this minimization problem is not
convex as a function ofλ. A similar non-convex optimization problem has been tackled by Kunapuli
et al. (2008) for the support vector machine, which is very similar to quantileregression from
an optimization perspective (piecewise linear objective with quadratic penalty). The fundamental
difference between their setting and ours is that they had a single bi-level optimization problem,
while we have a family of such problems, parameterized byτ. This allows us to take advantage of
internal structure to solve the bi-level problem for all values ofτ simultaneously(or more accurately,
in one run of our algorithm).

The concept of a parameterized family of bi-level regularized quantile regression problems is
demonstrated in Figure 2, where we see the cross-validation curves of theobjective of (4) as a
function of λ for several values ofτ on the same data set. As we can see, the optimal level of
regularization varies with the quantile, and correct choice of the regularization parameter can have
a significant effect on the success of our quantile prediction model.

The main goal of this paper is to devise algorithms for following the bi-level optimal solu-
tion path f ∗(τ) as a function ofτ, and demonstrate their practicality. Our algorithms are based on
extensions and generalizations of some of the ideas underlying the path following algorithms for 1-
dimensional paths on convex problems (Hastie et al., 2004; Li et al., 2007; Rosset and Zhu, 2007).
We concentrate our attention on the quantile regression case (both kernelized and linear), as one
where the parameterized-loss problem is well motivated and historically useful, but we also discuss
the similarities and differences in algorithms for the other examples we mentioned above. We show
that this non-convex family of bi-level programs can be solved exactly, asthe optimum among the
solutions ofO(n+N) standard (convex) path-following problems, with some additional twists. This
result is based on a characterization of the evolution of the solution pathf̂ (τ, ·) asτ varies, and on an
understanding of the properties of optimal solutions of the bi-level problem,which can only occur at
a limited set of points. We combine these insights to formulate an actual algorithm for solving this
family of bi-level programs via path-following. However, this algorithm carries a heavy computa-
tional burden. The question of whether it is practical from a computationalperspective depends on
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Figure 2: Estimated prediction error curves of Kernel Quantile Regression for some quantiles on
one data set. The errors are shown as a function of the regularization parameterλ.

the properties of the modeling problems at hand, and may also benefit greatlyfrom computational
tricks and optimization shortcuts which are not the focus of this paper. We demonstrate its ability to
successfully generate the complete set of cross-validated solutions on some illuminating simulation
problems and on two medium-size real-life data-sets.

The rest of this paper is organized as follows. In Section 2 we discuss theproperties of the
quantile regression solution pathŝf (τ,λ) and their evolution asτ changes. We then discuss in
Section 3 the properties of the bi-level optimization Problem (4) and demonstrate that the solutions
change predictably withτ. This is because the optimal solution always corresponds to a situation
where either one of the validation points is crossing the non-differentiabilityelbow in the cross
validation lossLcv, or the regularization path is going thorough aknotin its piecewise linear change.
However, due to the non-convexity of the problem, the solutions occasionally “jump” from one such
point to another. It turns out that to follow this jumpy behavior we need to follow, not one path of
solutions, but aboutN + n of them, corresponding to all possible candidates forLcv optimizers.
Bringing together all our insights leads us to formulate an algorithm in Section 4,which allows
us to follow the path of solutions{ f ∗(τ) , 0 < τ < 1} and only requires following a large but
manageable number of solution paths of problem (3) simultaneously. In Section 5 we discuss the
extension of our methodology to other scenarios, including application of our methodology to SVR.
We demonstrate our methods with a simulated and real data study in Section 6, where we show that
our approach leads to model-selection that is more efficient than previous approaches, and illustrate
the interesting behavior of KQR in practice.
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2. Quantile Regression Solution Paths

We concentrate our discussion on the kernel quantile regression (KQR)formulation in (3), with the
understanding that it subsumes the linear formulation (1) withℓ2 regularization by using thelinear
kernelK(x, x̃) = xTx̃.

We briefly survey the results of Li et al. (2007) regarding the properties of f̂ (τ, ·), the optimal
solution path of (3), withτ fixed. Similar results were independently generated by Takeuchi et al.
(2009), who concentrate on the properties off̂ (τ, ·) with λ fixed (as we elaborate below, these
problems are in fact very similar). The representer theorem (Kimeldorf and Wahba, 1971) implies
that the solution can be written as

f̂ (τ,λ)(x) =
1
λ

[

β̂0 +
n

∑
i=1

θ̂iK(x,xi)

]

. (5)

For a proposed solutionf (x) define:

• E = {i : yi − f (xi) = 0} (points onelbowof Lτ)

• L = {i : yi − f (xi) < 0} (left of elbow)

• R = {i : yi − f (xi) > 0} (right of elbow).

Then Li et al. (2007) show that the Karush-Kuhn-Tucker (KKT) conditions for optimality of a
solution f̂ (τ,λ) of problem (3) can be phrased as

• i ∈ E ⇒ −(1− τ) ≤ θ̂i ≤ τ

• i ∈ L ⇒ θ̂i = −(1− τ)

• i ∈ R ⇒ θ̂i = τ

• ∑i θ̂i = 0.

With some additional algebra, they show that for a fixedτ, there is a series ofknots, 0= λ0 < λ1 <
... < λm < ∞ such that forλ ≥ λm we havef̂ (τ,λ) = constantand forλk−1 < λ ≤ λk we have

f̂ (τ,λ)(x) =
1
λ
(

λk f̂ (τ,λk)(x)+(λ−λk)hk(x)
)

, (6)

wherehk(x) = bk
0 + ∑i∈Ek

bk
i K(x,xi) can be thought of as thedirection in which the solution is

moving for the regionλk−1 < λ ≤ λk. The knotsλk are points on the path where an observation
passes betweenE and eitherL or R , that is∃i ∈ E such that exactlyθi = τ or θi = −(1− τ).
This observation may be eitherenteringthe elbow (if it was previously inL or R ), or exiting it
(if it previously hadθi ∈ (−(1− τ),τ)).2 These insights lead Li et al. (2007) to an algorithm for
incrementally generatinĝf (τ,λ) as a function ofλ for fixed τ, starting fromλ = ∞ (where the
solution only contains the interceptβ0).

2. It is clear that the definition of an observation asenteringor exitingthe elbow is arbitrary, since an observation which
enters atλk when we are decreasingλ actually exits atλk if we choose to traverse the path while increasingλ. There
is also a possibility of more than one observation making this transition at once. With generalτ and points in general
location, this event has probability zero. As we will see, in the course of our investigation of the paths we are bound
to encounter such cases, and we will address this issue when it comes up.
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Although Li et al. (2007) suggest it is a topic for further study, it is in fact a reasonably straight
forward extension of their results to show that a similar scenario holds whenwe fix λ and allow
τ only to change. As previously mentioned, this has been recognized and used by other authors,
including Takeuchi et al. (2009) for quantile regression, and Wang etal. (2008) for weighted hinge
loss. More interestingly, the same is also true when bothτ, λ are changing togetheralong a straight
line, that is, a 1-dimensional subspace of the(τ,λ) space (this has been observed by Wang et al.
(2006) for SVR, which is very similar from an optimization perspective). The following lemma
makes this more general result concrete. The proof relies on a study of the KKT conditions in the
spirit of Li et al. (2007) and the other references above, and we omit it.

Lemma 1 Let τ(λ) = uλ + v, and denotef̂ (λ) = f̂ (τ(λ),λ). Then in the rangeΓ = {λ ≥ 0 : 0<
τ(λ) < 1} there existknotsλ0 < ... < λm such that forλk−1 < λ ≤ λk we have:

f̂ (λ)(x) =
1
λ
(

λk f̂ (λk)(x)+(λ−λk)hk(x)
)

,

where hk(x) = bk
0 + ∑i∈Ek

bk
i K(x,xi), and the directionbk =







bk
0
...

bk
|Ek|






is the solution of a set of

linear equations with|Ek|+1 unknowns:

Akbk =

(

0
rEk

)

with

Ak =

(

0 1T

1 KEk

)

,

as defined in Li et al. (2007); and rj = y j +u·
(

∑i∈Rk
K(x j ,xi)−∑i∈Lk

K(x j ,xi)
)

for j ∈ Ek.

Armed with this result, we next show the main result of this section: that the knotsthemselves
move in a (piecewise) straight line asτ changes, and can therefore betrackedasτ and the regular-
ization path change. Fix a quantileτ0 and assume thatλk is a knot in theλ-solution path for quantile
τ0. Further, letik be the observation that is passing in or out of the elbow at knotλk. Assume WLOG
that θ̂ik(τ0,λk) = τ0, that is, it is on the boundary betweenRk andEk. Let K̃Ek be the matrixKEk

with the ik column removed, and̃bk = bk with index ik removed. Letsi = ∑ j∈R ∪L∪{ik}K(xi ,x j) for
i ∈ Ek. Let sEk be the vector of all these values.

Theorem 2 Any knotλk moves linearly asτ changes. That is, there exists a constant ck such that
for quantileτ0 + δ there is a knot in theλ-solution path atλk +ckδ, for δ ∈ [−εk,νk], a non-empty
neighborhood of 0. ck is determined through the solution of another set of|Ek|+1 linear equations
with |Ek|+1 unknowns

Bk
(

b̃k

ck

)

=

(

−(|R |+ |L |+1)
−sEk

)

,

with

Bk =

(

0 1T 0
1 K̃Ek −yEk

)

.
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And the fit at this knot progresses as

f̂ (τ0 +δ,λk +ckδ) =
1

λk +ckδ
(

λk f̂ (λk,τ0)(x)+δhk(x)
)

(7)

hk(x) = b̃k
0 + ∑

i∈Ek−ik

b̃k
i K(x,xi)+ ∑

i∈L∪R ∪{ik}
K(x,xi) . (8)

Proof For smallδ, themodifiedknot should be characterized byθik = τ0+δ, andL ,R ,E remaining
the same. If we can find ack such that this holds for quantileτ0 + δ andλ = λk + ckδ, and also
the KKT conditions are maintained, we have our knot for quantileτ0 + δ. Assume this can be
accomplished by moving in a directionhk as in Equations (7) and (8). For the KKT conditions to
hold we need to maintain:

C1. f̂ (τ0 +δ,λk +ckδ)(xi) = yi , ∀i ∈ E

C2. θ̂i(τ0 +δ,λk +ckδ) = θ̂i(τ0,λk)+δ , ∀i ∈ L ∪R ∪{ik}

C3. ∑i∈Ek−{ik} b̃k
i = −|L ∪R ∪{ik}|

where C1 maintains the observations inE at the elbow, C2 maintains the equality requirements on
θ̂ for the observations inL ∪R (and the one on the boundary), and C3 maintains the constraint that
the θ̂’s sum to 0.

We can express C1 in terms of Equations (7) and (8) and condition C2:

f̂ (τ0 +δ,λk +ckδ)(xi) = yi , ∀i ∈ E

⇔ hk(xi) = b̃k
0 + ∑

j∈Ek−ik

b̃k
jK(x j ,xi)+ ∑

j∈L∪R ∪{ik}
K(x j ,xi) = ckyi , ∀i ∈ E , (9)

where the last term on the RHS of (9) accounts for the changes in theθ̂ j which C2 implies for
j ∈ L ∪R ∪{ik}.

Now, by combining C3 and (9) into one set of equations in matrix notation, we get the result of
the theorem:

(

b̃k

ck

)

=
(

Bk
)−1

(

−(|R |+ |L |+1)
−sEk

)

and moving in the direction of the solution of this matrix equation as in (7,8) maintains the KKT
conditions and the observation at the elbow, hence is a knot on theλ-solution path for quantileτ+δ
for every (small enough)δ.

This theorem tells us that we can in fact track the knots in the solution efficientlyasτ changes.
We still have to account for various types ofeventsthat can change the direction the knot is moving
in. The valueθi for a point inEk−{ik} can reachτ or −(1− τ), or a point inL ∪R may reach the
elbowE . These events correspond toknots crossings, that is, the knotλk is encountering another
knot (which is tracking the other event). There are alsoknot birthevents, andknots mergeevents,
which are possible but rare, and somewhat counter-intuitive. We deferthe details of how these are
identified and handled to the detailed algorithm description (Appendix A). When any of these events
occurs, the set of knots has to be updated and their directions have to be re-calculated using Lemma
1, Theorem 2 and the new identity of the setsE ,L ,R and the observationik. This in essence allows
us to map the whole 2-dimensional solution surfacef̂ (τ,λ).
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3. The Bi-level Optimization Problem

Our next task is to show how our ability to track the knots asτ changes allows us to track the solution
of the bi-level optimization Problem (4) asτ changes. The key to this step is the following result.

Theorem 3 When the cross validation loss is the quantile loss (i.e., LCV= Lτ), then any minimizer3

of (4) is always either at a knot in theλ-path for thisτ or a point where a validation observation
crosses the elbow. In other words, one of the two following statements musthold:

• λ∗ is a knot:∃i ∈ {1...n} s.t. f̂ (τ,λ∗(τ))(xi) = yi andθi ∈ {τ,−(1− τ)}, or

• λ∗ is avalidation crossing: ∃i ∈ {1...N} s.t. f̂ (τ,λ∗(τ))(x̃i) = ỹi

Proof Define L̃ , R̃ in the obvious way, as the sets of validation observations with negative and
positive residuals, respectively, for a given model. Fixτ, and consider the cross validation loss for a
given value ofλ:

Lcv(λ) :=
N

∑
i=1

Lcv(ỹi , f̂ (λ)(x̃i)) = ∑
i∈L̃

(1− τ)( f̂ (λ)(x̃i)− ỹi)+ ∑
i∈R̃

τ · (ỹi − f̂ (λ)(x̃i)) =

= τ ∑
i∈R̃

yi − (1− τ) ∑
i∈L̃

yi − τ ∑
i∈R̃

f̂ (λk)(x̃i)+(1− τ) ∑
i∈L̃

f̂ (λk)(x̃i)+

+
(λ−λk)

λ



−τ ∑
i∈R̃

(hk(x̃i)− f̂ (λk)(x̃i))+(1− τ) ∑
i∈L̃

(hk(x̃i)− f̂ (λk)(x̃i))





wherek is such thatλk−1 ≤ λ ≤ λk (where the list ofλ.’s now combines both knots and validation
crossings), and we take advantage of the representation in (6). From the last two rows we can see
that Lcv is monotone inλ as long asL̃ , R̃ are fixed (i.e., no validation crossing occurs) andhk is
fixed (i.e., no knot is encountered). Therefore any local (or global) extremum must be at a knot or a
validation crossing.

Corollary 4 Given the complete solution path forτ = τ0, the solutions of the bi-level Problem (4)
for a range of quantiles aroundτ0 can be obtained by following the paths of the knots and the
validation crossings only, asτ changes.

To implement this corollary in practice, we have two main issues to resolve:

1. How do we follow the paths of the validation crossings?

2. How do we determine which one of the knots and validation crossings is going to be optimal
for every value ofτ?

The first question is easy to answer when we consider the similarity between the knot following
problem we solve in Theorem 2 and the validation crossing following problem.In each case we

3. In pathological cases there may be a “segment” of minimizers. In this case it can be shown that such a segment will
always be flanked by points described in the theorem.
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have a set ofelbowobservations whose fit must remain fixed asτ changes, but whosêθ values may
vary; setsL ,R whoseθ̂ are changing in a pre-determined manner withτ, but whose fit may vary
freely; and one special observation whichcharacterizesthe knot or validation crossing. The only
difference is that in a knot this is aborderobservation from the training set, so both its fit and its
θ̂ are pre-determined, while in the case of validation crossing it is avalidationobservation, whose
fit must remain fixed (at theelbow), but which does not even have aθ̂ value. Taking all of this into
account, it is easy to show the following result, closely related to Theorem 2.Assume there is a
validation crossing atλv for quantileτ0, and that validation set observationjv is the one crossing
the elbow, that is,

f̂ (τ0,λv)(x̃ jv) = 0 .

Let sEv,KEv,bEv be defined as in Theorem 2 (with{iv} = Φ for definition of s). Let kv =
(K(XEv, x̃ jv)) be a 1×|Ev| vector of the kernel evaluations atx̃ jv for the elbow observation function-
als.

Proposition 5 λv moves linearly asτ changes. That is, there exists a constant dv such that for
quantileτ0 + δ there is a validation crossing in theλ-solution path atλv + dvδ, for δ ∈ [−εv,νv],
a non-empty neighborhood of 0. dv is determined through the solution of a set of|Ev|+ 2 linear
equations with|Ev|+2 unknowns:

Bv
(

b̃v

dv

)

=





−(|R |+ |L |)
−sEv

−s̃jv





with

Bv =





0 1T 0
1 KEv −yEv

1 kv −ỹ jv



 .

Furthermore, the solution̂f (τ0 +δ,λv +cvδ) is given by:

f̂ (τ0 +δ,λv +cvδ) =
1

λv +cvδ
(

λv f̂ (λv,τ0)(x)+δhv(x)
)

hv(x) = b̃v
0 + ∑

i∈Ev

bv
i K(x,xi)+ ∑

i∈L∪R
K(x,xi) .

The proof relies on following the same steps as the proof of Theorem 2 andis omitted for brevity.
The second question we have posed requires us to explicitly express the validation loss (i.e.,

Lτ on the validation set) at every knot and validation crossing in terms ofδ, so we can compare
them and identify the optimum at every value ofδ. Using the representation in (7) we can write the
validation lossfor a knotk (denotef k(δ) = f̂ (τ0 +δ,λk +ckδ)):

∑N
i=1 Lcv(ỹi , f k(δ)(x̃i)) =

= −(1− τ0−δ) ∑
i∈L̃

(ỹi − f k(δ)(x̃i))+(τ0 +δ) ∑
i∈R̃

(ỹi − f k(δ)(x̃i)) =

=
N

∑
i=1

Lcv(ỹi , f k(0)(x̃i))+δ∑
i

|ỹi − f k(0)(x̃i)|+
δ

λk +ckδ
· (10)

·



−(1− τ0−δ) ∑
i∈L̃

(ck f k(0)(x̃i)−hk(x̃i))+(τ0 +δ) ∑
i∈R̃

(ck f k(0)(x̃i)−hk(x̃i))



 .

2482



BI-LEVEL PATH FOLLOWING

A similar expression can be derived for validation crossings (withf k,ck,hk replaced byf v,dv,hv

in the obvious way). These are rational functions ofδ with quadratic expressions in the numerator
and linear expressions in the denominator. Our cross-validation task can be re-formulated as the
identification of the minimum of these rational functions among all knots and validation crossings,
for every value ofτ in the currentsegment, where the directionshk,hv of all knots and validation
crossings are fixed (and therefore so are the coefficients in the rational functions). This is alower-
envelopetracking problem, which has been extensively studied in the literature (Sharir and Agarwal
1995 and references therein). The algorithms developed mostly conformto the common-sense ap-
proach of maintaining the order of the validation loss scores from smallest to largest; identifying the
τ values where elements with neighboring scoresmeet(i.e., obtain identical score); and whenever a
meeting occurs, re-calculating only the relevant crossing points, that is, those of the elements that
changed order and their immediate neighbors. We also have to re-calculate some of the validation
loss scores whenever aneventhappens on the training solution path (like aknot crossing).

To calculate the meeting point of two elements with neighboring scores (assume WLOG that
they are two knotsk, l ) we find the zeros of the cubic equation obtained by requiring equality for the
two rational functions of the form (10) corresponding to the two elements. Writing the expression
in (10) for bothk andl , and requiring equality gives us the cubic equation:

0 = λkλl (lok− lol )+ (11)

+δ[(λkcl +λl ck)(lok− lol )+λkλl (lak− lal )+λl (τ0LRk−Lek)−λk(τ0LRl −Lel )]

+δ2[ckcl (lok− lol )+(ckλl +cl λk)(lak− lal )+

+cl (τ0LRk−Lek)+λl LRk−ck(τ0LRl −Lel )−λkLRl ]

+δ3[ckcl (lak− lal )+cl LRk−ckLRl ] ,

where:

lok =
N

∑
i=1

Lcv(ỹi , f k(0)(x̃i))

lak = ∑
i

|ỹi − f k(0)(x̃i)|

LRk = ∑
i∈L̃

(ck f k(0)(x̃i)−hk(x̃i))+ ∑
i∈R̃

(ck f k(0)(x̃i)−hk(x̃i))

Lek = ∑
i∈L̃

(ck f k(0)(x̃i)−hk(x̃i)) ,

with similar expressions for the elements with subscriptl derived in the obvious way. The smallest
non-negative solution forδ is the one we are interested in.

Figure 3 gives a simple illustration of the process of following the validation lossscores, and
identifying their optimum, while updating the directions of the knots and validation crossings as
events occur. It shows the set of training and validation loss scores fortwo knots and the validation
loss only for one validation crossing. The training loss is shown in solid lines,and the validation
loss in dashed lines. Assuming these are the only three candidates in Theorem 3, the figure shows in
bold the lower envelope which defines the optimal cross validation solution at every value ofτ. As
we can see, in this example the first (left) switch is between two knots as a result of a knot crossing,
while the second (right) is a result of a validation crossing becoming optimal. Itshould be noted,
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Figure 3: Illustration of the process of lower envelope tracking, in the presence of two knots and
one validation crossing being tracked. See text for details.

that the linearity of the solid and dashed lines in Figure 3 is for illustration simplicity,and is not a
realistic depiction of the non-linear evolution of the loss asτ varies, as discussed above.

4. Algorithm Overview

Bringing together all the elements from the previous sections, we now give asuccinct overview
of the resulting algorithm (Algorithm 1). Since there is a multitude of details, we defer a detailed
pseudo-code description of our algorithm to Appendix A.

The algorithm follows the knots of theλ-solution path asτ changes using the results of Section
2, and keeps track of the cross-validated solution using the results of Section 3. Every time an
eventhappens (like a knot crossing), the direction in which two of the knots are moving has to be
changed, or knots have to be added or deleted. Between these events, the evolution of the cross-
validation objective at all knots and validation crossings has to be sorted and followed. Their order
is maintained and updated whenever crossings occur between them.

4.1 Approximate Computational Complexity

Looking at Algorithm 1, we should consider the number of steps of the two loops and the complexity
of the operations inside the loops. Even for a “standard”λ-path following problem for fixedτ, it is in
fact impossible to rigorously bound the number of steps in the general case, but it has been argued
and empirically demonstrated by several authors that the number of knots in the path behaves as
O(n), the number of samples (Rosset and Zhu, 2007; Hastie et al., 2004; Li et al., 2007). In our
case the outer loop of Algorithm 1 implements a 2-dimensional path following problem, that can
be thought of as followingO(n) 1-dimensional paths traversed by the knots of the path. It therefore
stands to reason (and we confirm it empirically below) that the outer loop typically hasO(n2)
steps whereeventshappen. The events in the inner loop, in turn, have to do with theN validation
observations meeting theO(n) knots. So a similar logic would lead us to assume that the number
of meeting events (counted by the inner loop) should be at mostO(nN) total for the whole running
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Algorithm 1: Main steps of our algorithm

Input: The entireλ-solution path for quantileτ0; the bi-level optimizerλ∗(τ0)
Output: Cross-validated solutionsf ∗(τ) for τ ∈ [τ0,τend]
Initialization: Identify all knots and validation crossings in the solution path forτ0; Find1

direction of each knot according to Theorem 2 ;
Find direction of each validation crossing according to Proposition 5;2

Create a listM of knots and validation crossings sorted by their validation loss ;3

Let λ∗(τ0) be the one at the bottom of the listM, and f ∗(τ0) accordingly ;4

Calculate future meeting of each pair of neighbors inM by solving the cubic equation5

implied by (10);
Setτnow = τ0 ;6

while τnow < τend do7

Find valueτ1 > τnow where first knot crossing occurs;8

Find valueτ2 > τnow where first knot merge occurs;9

Find valueτ3 > τnow where first knot birth occurs;10

Setτnew = min(τ1,τ2,τ3);11

while τnow < τnew do12

Find valueτ4 > τnow where first future meeting (order change) inM occurs;13

Find valueτ5 > τnow where first validation crossing birth occurs;14

Find valueτ6 > τnow where first validation crossing cancelation occurs;15

Setτnext = min(τ4,τ5,τ6,τnew);16

Updateλ∗(τ), f ∗(τ) for τ ∈ (τnow,τnext) as the evolution of the knot or validation17

crossing attaining the minimalLcv in M (i.e., the one atλ∗(τnow)) ;
UpdateM according to the first event (order change, birth, cancelation);18

Update the future meetings of the affected elements using (10);19

Setτnow = τnext;20

end21

Update the list of knots according to the first event (knot crossing, birth, merge) ;22

Update the directions of affected knots using Theorem 2 ;23

end24

of the algorithm (i.e., many iterations of the outer loop may have no events happening in the inner
loop). Each iteration of either loop requires a re-calculation of up to three directions (of knots or
validation crossings), using Theorem 2 or Proposition 5. These calculations involve updating and
inverting matrices that are roughly|E | × |E | in size (where|E | is the number of observations in
the elbow). However note that only one row and column are involved in the updating, leading
to a complexity ofO(n+ |E |2) for the whole direction calculation operation, using the Sherman-
Morrison formula (Sherman and Morrison, 1949) for updating the inverse. In principle,|E | can be
equal ton, although it is typically much smaller for most of the steps of the algorithm, on the order
of

√
n or less. So we assume here that the loop cost is betweenO(n) andO(n2).

Putting all of these facts and assumptions together, we can estimate the algorithm’s computa-
tional complexity’stypicaldependence on the number of observations in the training and validation
set as ranging betweenO(n2 ·max(n,N)) andO(n3 ·max(n,N)). Clearly, this estimation procedure
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falls well short of a formal “worst case” complexity calculation, but we offer it as an intuitive guide
to support our experiments below and get an idea of the dependence of running time on the amount
of data used.

We have not considered the complexity of the lower envelope tracking problem in our analysis,
because it is expected to have a much lower complexity (number of order changes
O(max(n,N) log(max(n,N))) and each order change involvesO(1) work).

5. Extensions

In this section we discuss some of the possible extensions of our algorithm. First we discuss the
design of algorithms that are similar in spirit for other parameterized loss function problems, in
particular for support vector regression (ε-SVR) andHuberizedleast squares regression. We then
move on to the use of in-sample model selection criteria instead of cross validation. Finally, we
address the issue of possible non-monotonicity inτ, noted by previous authors (Koenker, 2005;
Takeuchi et al., 2006). We demonstrate how our algorithm can be naturallyextended to amend this
situation.

5.1 Support Vector Regression and Weighted Support Vector Machines

One possible view of regularizedε-SVR (Smola and Scḧolkopf, 2004) is similar to the quantile
regression problem forτ = 0.5:

f̂ (ε,λ) = argmin
f

∑
i

Lε(yi − f (xi))+
λ
2
‖ f‖2

HK
(12)

where the parameterized loss functionLε is piecewise linear and symmetric around zero, with a
don’t careregion of size 2ε:

Lε(r) =







r − ε r ≥ ε
0 −ε < r < ε
−r − ε r ≤−ε

.

The loss is parameterized byε. From an optimization perspective, this problem is very similar to
KQR, with a piecewise linear loss and an RKHS norm penalty. The solution canbe represented as in
(5), and the KKT conditions for optimality of solutions of (12) in terms of coefficients of representer
functions have been formalized and used to designλ-path following algorithms by Gunther and Zhu
(2005). For example, if we define for a proposed solutionf (x) of ε-SVR:

• L = {i : yi − f (xi) < −ε} (points on left ofleft elbowof Lε)

• EL = {i : yi − f (xi) = −ε} (left elbow)

• C = {i : |yi − f (xi)| < ε} (don’t care region)

• ER = {i : yi − f (xi) = ε} (right elbow)

• R = {i : yi − f (xi) > 0} (right of right elbow),

Then the Karush-Kuhn-Tucker (KKT) conditions for optimality of a solutionf̂ (ε,λ) of Problem
(12) can be phrased as:
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• i ∈ C ⇒ θ̂i = 0

• i ∈ L ⇒ θ̂i = −1

• i ∈ R ⇒ θ̂i = 1

• i ∈ EL ⇒ −1≤ θ̂i ≤ 0

• i ∈ ER ⇒ 0≤ θ̂i ≤ 1

• ∑i θ̂i = 0.

Wang et al. (2006) have noted thatε-paths (with fixedλ) can similarly be followed. Because of the
fundamental similarity in the optimization setting, all our results regarding behavior of λ-paths and
knots asτ changes in quantile regression (e.g., Theorem 2) can be adapted in a reasonably straight
forward manner to follow paths and knots ofλ-solution paths inε-SVR, asε varies.

There is, however, a fundamental difference in the statistical setting between parameterized
quantile loss and parameterizedε-SVR loss. While every quantile loss function defines an interest-
ing modeling problem of estimation of a given conditional quantile, there is no such clear motivation
for varyingε. Furthermore, there is no obvious way in which the cross validation loss should change
with ε, if at all. In most cases, it seemsε is viewed more as another tuning parameter for a single
modeling problem (likeλ), than a parameter defining a range of loss functions, each of its own in-
dependent interest. In this situation, the only motivation for solving the rangeof bi-level problems
parameterized byε may be as a way to efficiently traverse the entire(ε,λ) solution space in search
of a single “best” prediction model. It may therefore be appropriate to use asingle cross validation
objectiveLcv independent ofε. If we chooseLcv = Lτ=0.5 (the symmetric quantile loss, sometimes
called absolute loss), then our observations on the bi-level path following problem (e.g., Theorem 3)
would require slight modifications, but the ideas would carry through to theε-SVR case in a straight
forward manner.

An interesting recent development is the proposal of weighted support vector machines for
probability estimation by Wang et al. (2008). Their proposed approach calls for fitting weighted
versions of the support vector machine, with a range of relative weights applied to the two classes,
as a provably valuable approach for estimating probabilities. We omit the detailsfor brevity, but note
that like the SVR case above, extending our bi-level approach to this problem is straight forward.

5.2 ℓ1-regularized Huberized Squared Loss

Rosset and Zhu (2007) suggested the use of robust versions of squared error loss withℓ1 regular-
ization, as an approach for combining computational efficiency and robustness to long-tailed error
distribution. Huber’s loss function is quadratic for small absolute residuals, then continues linearly
as the residuals move away from zero, while maintaining differentiability. It is parameterized with
ahuberizing point t:

Lt(r) =

{

r2 |r| < t
2t|r|− r2 otherwise

.

The algorithm proposed in Rosset and Zhu (2007) forλ-path following can be thought of as an
extension of the LARS-Lasso algorithm proposed for the Lasso (squared error loss withℓ1 penalty)
by Efron et al. (2004). The loss function is differentiable, there is no concept ofelbow(although
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there are still knots), the KKT conditions are quite different, and if we also use a differentiableLcv,
the cross validation procedure would be affect as well. However, the general reasoning of this paper
can still be applied to build bi-level path following algorithms for the Huberized lasso problem, and
to choose goodt,λ combinations.

5.3 Use of In-sample Model Selection Criteria

Li et al. (2007) follow the literature in proposing two model selection criteria for selectingλ∗ for
a fixed value ofτ, when there is no validation sample. These are Schwartz information criterion
(SIC, Schwarz, 1978) and generalized approximate cross validation (GACV, Yuan, 2006). Both of
these use the model’s effective degrees of freedom (DF) as a complexitymeasure which penalizes
the empirical error. Following Zou et al. (2007), Li et al. (2007) show that an unbiased estimate of
DF is the size of the elbow|E |. Thus, they arrive at following SIC and GACV approximations:

SIC(λ) = log

(

1
n

n

∑
i=1

Lτ(yi − f̂ (τ,λ)(xi))

)

+
logn
2n

|E | (13)

GACV(λ) =
∑n

i=1Lτ(yi − f̂ (τ,λ)(xi))

n−|E | . (14)

If we were to adopt these measures (or similar ones) for model selection instead of the cross
validation approach using an independent validation set, tracking the optimalsolutionλ∗(τ) requires
no extra work besides following the knots of the solution (as described in Sections 2, 4). This is
guaranteed by the following simple result:

Proposition 6 For any fixedτ, the minimizerλ∗(τ) of SIC, GACV and any similar model selection
criterion which is monotone in both∑n

i=1Lτ(yi − f̂ (τ,λ)(xi)) and |E |, is always at one of the knots
of the solution path.

Proof The loss is monotone between knots (e.g., from looking at Equation 6), while|E | is fixed.

Thus, if we wish to use SIC or similar measures for selectingλ∗(τ), the inner loop of Algorithm 1
(lines 12-21) can be omitted and replaced with a simple tracking of the value of SIC at the knots
that are being followed. Since the algorithmic complexity of applying SIC/GACV isreduced com-
pared to cross validation, and given the ongoing debates in the literature onthe merits of in-sample
versus out-of-sample model selection, it may often be beneficial to apply these in-sample methods
in addition, or even instead of, cross validation. We demonstrate and compare performance of the
two approaches in Section 6 below.

5.4 Addressing Quantile Crossings

The problem of quantile crossing, as formulated by Koenker (2005), is that for any fixedλ (in
particularλ = 0 in the linear quantile regression case, which is the one that Koenker (2005) concen-
trates on), the prediction̂f (τ,λ)(x) may not be non-decreasing inτ for a fixedx. That is, we may
haveτ0 < τ1 and f̂ (τ0,λ)(x) > f̂ (τ1,λ)(x), which can never be true of the corresponding population
conditional quantiles, of course.

Takeuchi et al. (2006) address this problem by constraining the solutionto comply with the
monotonicity requirement over afinite set of “interesting” quantiles. Their approach cannot work
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in our case, since our algorithm is local in nature and generates the solutions for the complete space
of (τ,λ) values. However, we can offer a partial remedy to the quantile crossing problem through
observation of the guaranteed sub-optimality of the resulting solutions, and aconsequentenvelope
trackingmodification. The main motivation is the following:

Proposition 7 Assumeτ0 < τ1 and f̂ (τ0,λ)(x) > f̂ (τ1,λ)(x) for someλ,x. Then either

EY|X=xLτ0(Y, f̂ (τ0,λ)(x)) ≥ EY|X=xLτ0(Y, f̂ (τ1,λ)(x)) . (15)

or
EY|X=xLτ1(Y, f̂ (τ0,λ)(x)) ≤ EY|X=xLτ1(Y, f̂ (τ1,λ)(x)) (16)

Thus, we can always improve the predictive quality of eitherf̂ (τ0,λ) or f̂ (τ1,λ) by eliminating the
non-monotonicity.

Proof In what follows we eliminate the explicit conditioning in the expectations. All expectations
are with regard to the distributionP(Y|X = x). Denote byc0 andc1 the τ0 andτ1 quantiles re-
spectively ofP(Y|X = x). By definition,c0 ≤ c1. We also assumêf (τ0,λ)(x) > f̂ (τ1,λ)(x). We
hereafter denote these two fitted value byf̂0, f̂1 respectively for brevity. This gives us three possible
scenarios:

1. f̂1 ≥ c0. In this case (15) holds, since:

ELτ0(Y, f̂0) = τ0

Z

y≥ f̂0
y− f̂0dP(y|x)+(1− τ0)

Z

y< f̂0
−y+ f̂0dP(y|x)

= τ0

Z

y≥ f̂0
P(Y ≥ y|x)dy+(1− τ0)

Z

y< f̂0
P(Y ≤ y|x)dy

= ELτ0(Y, f̂1)+
Z f̂0

f̂1
[(1− τ0)P(Y ≤ y|x)− τ0P(Y ≥ y|x)]dy

≥ ELτ0(Y, f̂1) ,

where the inequality on the last line is becauseP(Y ≤ y|X = x) ≥ τ0 in the rangef̂1 ≤ y≤ f̂0
(by our assumption thatc0 ≤ f̂1 < f̂0).

2. f̂0 ≤ c1. By the same line of argument in this case (16) holds.

3. If neither of the previous two holds, we must havef̂1 < c0 ≤ c1 < f̂0. Following the same
steps as in case 1 we write:

ELτ0(Y, f̂0) = ELτ0(Y, f̂1)+
Z f̂0

f̂1
[(1− τ0)P(Y ≤ y|x)− τ0P(Y ≥ y|x)]dy (17)

ELτ1(Y, f̂0) = ELτ1(Y, f̂1)+
Z f̂0

f̂1
[(1− τ1)P(Y ≤ y|x)− τ1P(Y ≥ y|x)]dy . (18)

AssumeELτ0(Y, f̂0) < ELτ0(Y, f̂1). It implies the integral in (17) is negative which in turn
implies that the integral in (18) is also negative, since trivially

∂
∂τ

Z f̂0

f̂1
[(1− τ)P(Y ≤ y|x)− τP(Y ≥ y|x)]dy< 0 .

This negativity impliesELτ1(Y, f̂0) < ELτ1(Y, f̂1).
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The following is an immediate consequence of Proposition 7 if we takeP(Y|x̃i) to be a point mass
atY = ỹi .

Corollary 8 If non-monotonicity holds at a validation point, that is,τ0 < τ1 and f̂ (τ0,λ)(x̃i) >
f̂ (τ1,λ)(x̃i), then either

Lτ0(ỹi , f̂ (τ0,λ)(x̃i)) ≥ Lτ0(ỹi , f̂ (τ1,λ)(x̃i))

or
Lτ1(ỹi , f̂ (τ0,λ)(x̃i)) ≤ Lτ1(ỹi , f̂ (τ1,λ)(x̃i)) .

Thus, we can improve our holdout performance at either quantileτ0 or τ1 by appropriately enforcing
monotonicity.

We conclude that eliminating non-monotonicity can improve both predictive performance and
cross validation performance. In terms of practical implications, it is easy to see (though not trivial
to implement) how our algorithm can be extended to identify quantile crossings. When these occur,
at least one knot will be moving in the ‘wrong direction’, that is, the expression in (7) will be
decreasing inδ. The algorithm will then have to keep careful tabs on the upper and lower limits
of the fit at everyλ as τ changes (the quantile-crossing gap). Discussion of the details and the
appropriate way to resolve the non-monotonicity given this envelope is left for future work.

6. Experiments

Our methodology offers a new approach for generating the full set of cross-validated kernel quantile
regression models. There are several interesting aspects of the modelingproblem in general and our
algorithm in particular that should be studied through a data-based study.

First, to evaluate the new algorithm, the efficiency of the algorithm should be compared to
alternative approaches that allow generation of complete set of solutions and cross-validation. This
includes the naivegrid-basedsearch whereby the KQR problem is solved using standard approaches
(Takeuchi et al., 2006) for a grid of values in the(τ,λ) space, and a good regularization parameter is
chosen for each value ofτ by cross-validation; and the method of Li et al. (2007), which can be used
to generate the completeλ-path at a grid ofτ-values and cross validate each path separately. As Li
et al. (2007) demonstrated clearly, theirλ-path method is far superior to the grid-based approach in
terms of computation, and so we concentrate on comparison to theλ-path approach only, and show
that our algorithm compares favorably to it in generating the full set of bi-level solutions.

Second, we may also be interested in studying properties of the modeling problem, not necessar-
ily tied to the new algorithm. Cross-validation based selection of regularization should be compared
to in-sampleapproaches such as SIC (Schwarz, 1978) and GACV (Yuan, 2006). As noted above,
all of these can be implemented in our framework. It is obvious that given thesame amount of data
for model fitting, it is better to use holdout data for model selection. However, the fair comparison
should be between integrating the validation set into the training set and implementing an in-sample
model selection approach, and using a smaller training set in a cross-validation framework.

Another interesting question about the modeling approach regards the abilityof KQR to deal
with skewed and non-homogeneous error distributions, and still generatereasonable estimates of
the underlying quantiles.

We address all of these aspects in this section.
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Figure 4: Left: The functionf (x) (solid), data points drawn from it with i.i.d normal error, and our
cross-validated estimates of quantiles 0.1,0.25,0.5,0.75,0.9 (dashed lines, from bottom
to top). Right: Evolution of optimal regularization parameterλ̂(τ), asτ varies.

6.1 Simulations

Our simulation setup starts with univariate datax ∈ [0,1] and a “generating” functionf (x) = 2 ·
(

exp(−30· (x−0.25)2)+sin(π ·x2)
)

(see Figure 4). We then letY = f (x)+ ε, where the errorsε
are independent, with a distribution that can be either:

1. ε ∼ N(0,1), that is, i.i.d standard normal errors

2. ε+(x+1)2 ∼ exp(1/(x+1)2), which gives us errors that are still independent and have mean
0, but are asymmetric and have non-constant variance, with small signal-to-noise ratio on the
higher values ofx (see Figure 5).

Figure 4 demonstrates the results of the algorithm with i.i.d normal errors, 200 training samples
and 200 validation samples and a Gaussian kernel with parameterσ = 0.2. In the left panel, we see
that the quantile estimates all capture the general shape of the true curve, with some “smoothing”
due to regularization. In the right panel we see the evolution of the optimal regularization parameter
λ̂(τ) asτ varies. We see the expected “jumpy” behavior of the optimal parameter, butwe do not
see a clear tendency to be smaller for quantiles closer to 1/2. This is somewhat surprising when
we think in terms of bias and variance (or approximation error and estimation error) in learning.
Values ofτ closer to 1/2 typically create learning problems that are “easier”, that is, variance is
smaller (Koenker, 2005), and this should in principle allow us to build more complex models (reduce
regularization), and decrease bias. A confounding factor in this analysis is the fact that the scale
of quantile error need not be comparable for different quantiles. In particular, we may expect that
loss magnitude would be larger for quantiles close to 0.5, where both types of errors get penalized
equally. If that is the case, then having the similar regularization parameter mayin fact imply less
regularization forτ close to 0.5 compared to extreme quantiles. Another interesting observation is
that whileλ∗(τ) may be jumpy, both the empirical and the validation loss may vary smoothly. This
smoothness is in fact guaranteed for the validation lossLcv, since it is easily seen that the “jumps”
are points where validation loss is equal at two knots or validation crossings.

Next we consider the computational complexity of the algorithm, and its dependence on the
number of training samples (with 200 validation samples). We compare it to the KQRalgorithm
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NTRAIN NSTEPS TIME(BI-LEVEL) TIME(L I ET AL .) BREAK-EVEN RESOLUTION

200 29238 931SEC. 2500SEC. 3000
100 12269 99SEC. 900SEC. 900
50 2249 23SEC. 480SEC. 400

Table 1: Number of steps and run times of our algorithm and of Li et al. (2007), for the whole path
from τ = 0.1 to τ = 0.9, as a function of the number of training observationsNTRAIN.
These results are based on applying Li et al. (2007) at 8000 different values ofτ. The last
column shows what resolution would give similar running times to both approaches (see
text for details).

of Li et al. (2007), who have already demonstrated that their algorithm is significantly more effi-
cient than grid-based approaches for generating 1-dimensional pathsfor fixed τ. Table 1 shows the
number of steps of the main (outer) loop of Algorithm 1 and the total run time of our algorithm for
generating the complete set of cross-validated solutions forτ ∈ [0.1,0.9] as a function of the num-
ber of training samples (with validation sample fixed at 200). Also shown is the run time for the
algorithm of Li et al. (2007), when we use it on a grid of 8000 evenly spacedτ values in[0.1,0.9]
and find the best cross validated solution by enumerating the candidates as identified in Section 3.
Our conjecture that the number of knots in the 2-dimensional path behaves like O(n2) seems to be
consistent with these results, as is the hypothesized overall time complexity dependence ofO(n3).
Since 8000 is typically an unnecessarily fine grid for practical applications, we offer in the last
column an evaluation of the comparative efficiency of the two methods in terms ofthe number of
distinct τ values that can be fitted with the Li et al. (2007) approach in roughly the same running
time as our approach. It is clear from these results that if just a small numberof τ values (say, 10)
are sufficient to address the complete problem, our approach does not carry a computational benefit.

Next, we demonstrate the ability of KQR to capture the quantiles with “strange” errors from
model 2. Figure 5 shows a data sample generated from this model and the(0.25,0.5,0.75) quantiles
of the conditional distributionP(Y|X) (solid), compared to their cross-validated KQR estimates
(dashed), using 500 samples for learning and 200 for validation (more data is needed for learning
because of the very large variance at values ofx close to 1). As expected, we can see that estimation
of the lower quantiles, and at smaller values ofx is easier, because the distributionP(Y|X = x) has
long right tails everywhere and has much larger variance whenx is big.

6.2 Baseball Data and California Housing

As discussed in Perlich et al. (2007), estimating conditional quantiles is oftena modeling task that
is well grounded in practical applications. In the context of house prices, we can think of estimat-
ing a high (but not extreme4) conditional quantile as the seller’s search for a favorable bargaining
position in negotiations. Similarly for salaries, estimating a high conditional quantilecan serve as a
measure of what an employee can expect to receive optimistically (but still realistically), given his
characteristics and performance.We therefore demonstrate KQR on two well studied data sets that
correspond to such modeling problems: baseball salaries as a function ofa player’s home runs and
years of experience (He et al., 1998) and the California housing data set (Pace and Barry, 1997),

4. Extreme quantile estimation is also of interest in some contexts, but we do not demonstrate it here due to the inherent
statistical difficulty and questionable results, see some discussion in Conclusion section.
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Figure 5: Quantiles ofP(Y|X) (solid), and their estimates (dashed) for quantiles(0.25,0.5,0.75)
with the exponential error model.

which describes the median prices of houses in neighborhoods of California along with nine ex-
planatory demographic variables. We seek to demonstrate predictive performance, fitted models
and the relative performance of different model selection approaches.

For our experiments, we use a Gaussian kernel, with the parameterγ = 1 chosen based on
experimentation, to give flexible but not overly jumpy fits. We demonstrate the fit and accuracy
of model selection using CV compared to using SIC. For CV, we used 50 of the 263 players in
the data set for validation (selection ofλ̂(τ)) and 50 more for testing the accuracy of the resulting
model. Thus, 163 examples were used for training. For SIC, we used 213(training+validation)
as the training set, and applied Equation (13) for selectingλ̂(τ). Both approaches were evaluated
using the 50 test observations. In Figure 6 we show the resulting fit in both approaches, for three
different quantiles. As expected, compensation seems to be monotone in performance (home runs)
but not in experience (salary tends to increase as players gain experience, but then decreases as
they get older and performance deteriorates). As we can see, the model-selected surfaces are quite
similar between CV and SIC, though this need not be the case, as we should keep in mind that SIC
is choosing between models trained on more data. In terms of accuracy on thetest set (shown above
each plot), The results are also very comparable. When comparing the two approaches we should
also keep in mind the reduced complexity of applying SIC, and the existing literature on instability
of CV-based model selection, though this is not evident in our results.

For the California housing data set, we use only longitude and latitude as the twoexplanatory
variables in fitting KQR, to facilitate meaningful visualization of results. We modelthe log of the
median price, since the actual median fluctuates widely over the data. We use 500 observations
for training and 50 as validation for CV, 550 as training for SIC, and 500 additional observations
for testing. Figure 7 shows the results. It is clear that visualization is hampered by the fact that
California is far from being rectangular, so one corner of the plots (latitude34N, longitude 122W)
is well inside the ocean, while the other (latitude 40N, longitude 115W) is well inland from the
California border. The wild extrapolation of the fit in that direction is therefore not informative.
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Figure 6: Models selected using CV (left) and SIC (right) on the Baseball data, for three different
quantiles.
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On each plot the fit at San Francisco (red circle), Los Angeles (blue square) and Sacramento (green
triangle) are marked. We can see that the selected fits using CV and SIC arequite similar, with
possible exception to the more jumpy fit selected by SIC for quantile 0.5. The valid insights that
seem to arise out of these plots relate to the lower house values in the centralvalley of California
compared to the coastal area, and the reduced house values in the Sacramento area compared to near
by the Bay Area.

7. Conclusions and Future Work

In this paper we have demonstrated that the family of bi-level optimization Problems (4) defined
by the family of loss functionsLτ can be solved via apath followingapproach which essentially
maps the whole surface of solutionsf̂ (τ,λ) as a function of bothτ andλ and uses insights about
the possible locations of the bi-level optima to efficiently find them. This leads to a closed-form
algorithm for finding f ∗(τ) for all quantiles. We see two main contributions in this work: a. Char-
acterization of a family of non-convex optimization problems of great practical interest which can
be solved using solely convex optimization techniques and b. Formulation of a practical algorithm
for generating the full set of cross-validated solutions for the family of kernel quantile regression
problems.

We have shown how our approach can be extended to other modeling problems with a parame-
terized loss function, such as SVR, and to other versions of KQR, including using in-sample model
selection criteria and enforcing monotonicity on the resulting quantiles.

There are many other interesting aspects of our work, which we have nottouched on here,
including: development of further optimization shortcuts to improve algorithmic efficiency, inves-
tigation of the range of applicability of our algorithmic approach beyond KQR and SVR, analysis
of the use of various kernels for KQR and how the kernel parameters and kernel properties interact
with the solutions, and more extensive empirical studies.

It is of particular interest to us to investigate the bias-variance tradeoff in loss function selection.
As we have mentioned, modeling with the quantile loss functionLτ leads to estimation of theτth
quantile ofP(Y|x) in thedecision theoreticsense that the population optimizer of the loss function
is this quantile (see Equation 2). However, this by no means guarantees thata model learned from
finite data usingLτ (with or without regularization) will do well in predicting theτth quantile. In
particular, there is no guarantee that a model built using a different loss function (say,Lη, η 6= τ)
will not do better in predicting this quantile. This can be thought of in terms of bias and variance,
where the model generating quantileη is similar enough to the one for quantileτ (i.e., bias is small),
but it is “easier” to learn withLη, that is, variance is smaller, which would typically be the case if
η is closer to 1/2 thanτ (Koenker, 2005). A detailed investigation of this question is outside the
scope of the current work, but will be a natural extension.

A particularly important and difficult type of quantile estimation problems pertainsto estimation
of extremequantiles (e.g.,τ = 0.01 or τ = 0.99) which can serve as approximations for expected
extreme values of the function being estimated. These problems are typically very difficult statis-
tically, that is, hard because of the scarcity of information implicit in trying to estimate events we
rarely observe. However they are not expected to be particularly difficult algorithmically. That is,
our (and others’) KQR approaches can estimate these models, but it is notclear how useful the
results are. These observations are verified by our limited experiments (results not shown), which
yield very “jumpy” and unstable models for extreme quantiles.
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Figure 7: Synthetic maps of the models selected using CV (left) and SIC (right)on the CA housing
data, for three different quantiles. The fits at San Francisco (red circle), Los Angeles
(blue square) and Sacramento (green triangle) are marked on each map.
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Appendix A. Pseudo-code of Algorithm

Algorithm 2 and its accompanying procedures describe our implementation in some detail. This
pseudo code is meant to complete the implementation details given in the paper. We use mathe-
matical notation rather than programming commands as much as possible, to make understanding
easier. Given the complexities and intricacies involved in the complete implementation, it seems
unrealistic and probably non-useful to give an exhaustive description. Rather, we concentrate on
clarifying the general flow of the algorithm and the mathematical problems it solves at each step.
We also emphasize the aspects of the algorithm not covered in technical detail in the main text,
such as the differentiation of different types of events (knot crossing, knot merging, knot splitting).
Where the text offers the technical content, we simply refer to that point. Forexample, Theorem
2 describes the direction calculation and also implicitly the accounting orf the identities of the sets
E ,L ,R required for it. We thus simply refer back to it where relevant in the algorithm.

Some further comments on the pseudo code:

• We assume the training and validation data are “global variables” known to allprocedures.

• We usef̂ andθ̂ interchangeably, given formula (5).

• Some of the elements are not described in the most efficient implementation, whichwould
require a lot more accounting and data management. For example, the searchfor the minima
in the functionUpdateValidList does not have to be done from scratch on every call, but a list
can be maintained, and only the necessary items updated.

• The pseudo-code glosses over numerical issues which plague the actual implementation. In
particular, all equalities must have “tolerance” in the practical implementation due to machine
rounding errors. This obviously creates a problem when events on the path are bunched
together close enough that two distinct events fall within this tolerance.

• We avoid repetition of similar procedures. Thus the call to functionKnotSplitat end of Al-
gorithm 2 is replaced with a brief explanation of its near-identity to the functionKnotCross
which is already given.
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Algorithm 2: Algorithm description

Input: The entireλ-solution path for quantileτ0 characterized by itsm knotsλ = λ1, ...,λm;
the solution directionsg = g1, ...,gm as defined in (6); andi = i1, ..., im the
observations which “hit the elbow” at every knot

Output: Cross-validated solutionsf ∗(τ) for τ ∈ [τ0,τend] described as set of intervals in the
variable OPT

/* Initialization: find validation crossings, calculate cross validation
loss at knots and validation crossings, sort by it, find future
meetings of neighbors on the list, where the order changes */

SetM = InitializeValidList(τ0,λ,g);1

SetOPT = (τ0, f ∗(τ0),h∗) where f ∗(τ0) = f̂ (τ0,M.λ1), h∗ = M.h1 are from the first2

(smallest loss) entry inM;
Setτnow = τ0 ;3

Let T be the list of the fitsf = ( f̂ (τ0,λ1), ..., f̂ (τ0,λm)), regularization values4

λ = (λ1, ...,λm), ratesc = (c1, ...,cm), and directionsh = (h1, ...,hm) as defined in
Theorem 2;/* Main loop */

while τnow < τend do5

Update{τnew,knew, inew, type} = FindEvent(T);6

UpdateT.λk = T.λk +(τnew− τnow)T.ck for k = 1, ...,m;7

UpdateT. fk according to (6);8

while τnow < τnew do9

Setτkeep= τnow;10

(M, change,τnow) = UpdateValidList(M,τkeep,τnew);11

if change=TRUEthen12

OPT = concatenate(OPT,(τnow, f ∗(τnow),h∗)) where f ∗(τnow) = f (τnow,M.λ1),13

h∗ = M.h1 are from the first (smallest loss) entry inM;
end14

end15

if type = crossthen /* Knot crossing of knots knew, knew+1 */16

SetT = KnotCross(T,knew,τnow);17

else if type = mergethen /* Knot merge of knew, knew+1, knew+2 */18

Remove knotsknew, knew+2 from T;19

Update setsE ,R ,L for the remaining knot (Move the observation which defined the20

two removed knots fromE toL orR );
else /* Knot split of knot knew with observation inew */21

/* Function KnotSplit would be identical to
KnotCross---identify two observations at border and find
legal directions---except that a split situation yields three
such directions, hence three knots, while a cross situation
yields two */

end22
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Procedure "IntializeValidList”: Initialization of bi-level candidate list
Input: Initial valueτ0, vector of knot valuesλ, corresponding directionsg
Output: A list M = {(rk,λk, lk,hk,τk) : k = 1, ...,m+v} sorted byl1 ≤ l2 ≤ .... ≤ lm+v,

where:
rk is an indicator in{knot, valx} whether this is a knot or a validation crossing
λk is its “location” on the path
lk is its cross validation loss
hk is its direction
τk is knot meeting point

Find knot directionsh1, ...,hm according to Theorem 2;1

/* Identify all validation crossings in the solution path for τ0 */
SetV = Φ the empty set;2

for k = 1, ...,m knots and i= 1, ...,N validation observationsdo3

if f̂ (τ0,λk−1)(x̃i) > ỹi and f̂ (τ0,λk)(x̃i) < ỹi or vice versathen4

Setλ̃ = λk
f̂ (τ0,λk)(x̃i)−gk(x̃i)

ỹi−gk(x̃i)
;5

Find the validation crossing directioñh(x) according to Proposition 5;6

Add the entry(λ̃, h̃) characterizing the validation crossing to the setV;7

end8

end9

/* Sort knots and validation crossings by their loss */
Denote the number of validation crossings byv = |V|;10

for k = 1, ...,m do11

Calculate knot validation loss:lk = ∑N
i=1Lτ0( f̂ (τ0,λk)(x̃i), ỹi);12

end13

for k = 1, ...,v do14

Calculate validation crossing loss:lm+k = ∑N
i=1Lτ0( f̂ (τ0, λ̃k)(x̃i), ỹi);15

end16

Create listM = {(rk,λk, lk,hk,τk) : k = 1, ...,m+v} sorted byl1 ≤ l2 ≤ .... ≤ lm+v, where:17

rk is an indicator whether this is a knot or a validation crossing with possible values knot18

andvalx respetively
λk is its “location” on the path19

lk is its cross validation loss20

hk is its direction21

τk is knot meeting point, defined below;22

/* Identify mtg pts of neighboring knots or valid. crossings */
for k = 1, ...,m+v−1 do23

Let τk = τ0 +δk whereδk is the minimal positive solution of the Problem (11) with24

l = k+1;
end25
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Procedure "FindEvent”: Find the next event on the path asτ changes
Input: The listT of knots and their directions
Output: Event type in{cross, merge, birth}, τnew where next event happens,knew the knot

where this event happens,inew the observation involved in the event (if a birth)
/* Next knot crossing or knot merging */

Setτ̃k = T.λk−T.λk+1
T.ck+1−T.ck

, k = 1, ...,m−1;1

Setknew = argmink=1,...,m−1{τ̃k : τ̃k > 0} ;2

Setτnew = τ̃knew if τ̃knew = τ̃knew+1 then3

type=merge; /* Knots merging 3⇒ 1 */4

else5

type=cross; /* Two knots crossing */6

end7

/* Next observation-knot crossing = knot birth */
for k = 1, ...,m do8

Seti′k = argmini=1,...,n{T.λk( f̂ (T.λk)(xi)−yi)
T.ck(yi−hk(xi))

: T.λk( f̂ (T.λk)(xi)−yi)
T.ck(yi−hk(xi))

> 0};9

Setτ′k to be the minimum attained;10

end11

Setk′ = argmink τ′k;12

if τ′k′ < τnew then13

Setτnew = τ′k′ , knew = k′, type=birth ;14

end15
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Procedure "UpdateValidList”: Find the next validation event on the path asτ changes, and
update the list if necessary

Input: Validation candidate listM, current valueτkeep, next event on main pathτnew

Output: Logical indicatorchangewhether optimum changed, Updated listM, andτnow

where next validation event happens
Set change = FALSE ;1

/* Pair of validation crossings can disappear, or a new a validation
crossing can appear, or a regular order change in the elements in M
can occur. We first identify the next order change in the list M */

Setτnow = mink=1,...,m+v−1M.τk;2

Setknow = argmink=1,...,m+v−1M.τk;3

/* Now find the next time a validation observation hits a knot ⇒ new
validation crossing */

For i = 1, ...N andk = 1...,mset∆τ(i,k) = M.λk
f̂ (τkeep,M.λk)(x̃i)−ỹi

ỹiM.ck−M.hk(x̃i)
;4

Setτ̃ = τkeep+mini=1,...,N,k=1,...,m{∆τ(i,k) : ∆τ(i,k) > 0} ;5

Set(ĩ, k̃) = argmini=1,...,N,k=1,...,m{∆τ(i,k) : ∆τ(i,k) > 0};6

if τnow > τnew and τ̃ > τnew then /* No validation event before τnew */7

τnow = τnew;8

return;9

else if τnow > τ̃ then /* New validation xing appears---add it to list */10

Setλ̃ = (τ̃− τkeep)M.ck̃ +M.λk̃ ;11

Setl̃ = ∑N
i=1Lτ̃( f̂ (τ̃, λ̃)(x̃i), ỹi);12

Set the validation xing directioñh(x) according to Proposition 5;13

Find the locationk′ in the sorted list of the cross validation lossl̃ and insert the element14

(r = valx, λ̃, l̃ , h̃) into M at locationk′ ;
Recalculateτk′−1,τk′ in M according to (11);15

Setτnow = τ̃;16

else17

/* If two validation crossings meet knot---the two disappear */
Set(merged,M) = CheckMerge(M,know);18

if merged=FALSEthen /* Usual situation: swap elements, update meetings19

*/
Swap elementsknow andknow+1 in M;20

Recalculateτknow−1,τknow,τknow+1 in M according to (11);21

if know = 1 then /* First element changed ⇒ change of optimum */22

changed = TRUE;23

end24

end25

end26
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Procedure "CheckMerge”: Find out if the validation event is in fact two validation crossings
of same observation meeting a knot and merging

Input: Validation candidate listM, index of event pointk
Output: Logical indicatormergewhether a merge occurred, updated listM
merge = FALSE;1

/* With observations in general location, τk = τk+1 in M implies
immediately that we have a merge. Two of k,k+1,k+2 are validation
crossings of the same observation, the knot is the third involved in
the crossing. If we do not assume that, more checks are required! */

if M.τk = M.τk+1 then2

merge = TRUE ;3

/* Find out which one of the entries k,k+1,k+2 in M is a knot,
delete the other two */

if M.rk = knot then4

remove entriesk+1,k+2 fromM;5

else if M.rk+1 = knot then6

remove entriesk,k+2 fromM ;7

else /* M.rk+2 = knot */8

remove entriesk,k+1 fromM ;9

UpdateM.τk−1,M.τk according to (11);10

end11
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Procedure "KnotCross”: Update directions when knots cross
Input: Knot list T, index of first of crossing knotsk, current quantileτ
Output: Updated listT
/* Identify i1, i2, the ‘‘knot’’ observations at the two knots */

Find i1, i2 s.t. θi j ∈ {τ,−(1− τ)} andyi j = f̂ (τ,T.λk+ j−1)(xi j ) for j ∈ {1,2};1

Calculate the setsE ,R ,L as defined in the text for the meeting knots (leaving out the2

“border observations”i1, i2);
Setu = k for rel = 1,2 do /* try releasing each border observation to E or L3

or R as appropriate */
Add observationirel toE and calculate directionh,c according to Theorem 2;4

/* Check sign and magnitude of birel for consistency (to maintain
θirel ∈ [−(1− τ),τ] as τ increases) */

if birel ≤ 1 and θ̂irel = τ then5

Update entryu in T with this directionh,c, setu = u+1 ;6

else if birel ≥−1 and θ̂irel = −(1− τ) then7

Update entryu in T with this directionh,c, setu = u+1 ;8

end9

if θ̂(irel) = τ then10

Add irel toR ;11

else /* θ̂(irel) = −1− τ */12

Add irel toL ;13

Calculate directionh andc according to Theorem 2;14

/* Check sign and magnitude of h(xirel) for sign consistency */

if h(xirel) < 0 and θ̂irel = τ then15

Update entryu in T with this directionh,c, setu = u+1 ;16

else if h(xirel) > 0 and θ̂irel = −(1− τ) then17

Update entryu in T with this directionh,c, setu = u+1 ;18

end19

end20
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