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Abstract

We introduce a new technique for the analysis of kernel-dbasgression problems. The basic tools
are sampling inequalities which apply to all machine leagnproblems involving penalty terms
induced by kernels related to Sobolev spaces. They leagtiwiexieterministic results concerning
the worst case behaviour ef andv-SVRs. Using these, we show how to adjust regularization
parameters to get best possible approximation orders goession. The results are illustrated by
some numerical examples.
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1. Introduction

Support Vector (SV) machines and related kernel-based algorithms atermiearning systems
motivated by results of statistical learning theory as introduced by VapAi8&)1 The concept of
SV machines is to provide a prediction function which is accurate on the tjiméring data and
which is sparse in the sense that it can be written in terms of a typically sma#tsoiball sam-
ples, called the support vectors, as stated by Scholkopf et al. (19B&)efore, SV regression and
classification algorithms are closely related to regularized problems fromicdaspproximation
theory as pointed out by Girosi (1998) and Evgeniou et al. (2000)haldcapplied techniques from
functional analysis to derive probabilistic error bounds for SV regjoes

This paper provides a theoretical framework to derive deterministic baands for some popular
SV machines. We show how a sampling inequality by Wendland and Rieges)(280 be used
to bound the worst-case generalization error forwhend thee-regression without making any
statistical assumptions on the inaccuracy of the training data. In contrast litetlature, our error
bounds explicitly depend on the pointwise noise in the data. Thus they casetdar any subse-
guent probabilistic analysis modelling certain assumptions on the noise distnibutio

The paper is organized as follows. In the next section we recall sonefaats about reproduc-
ing kernels in Hilbert spaces. Section 3 deals with regularized approxinyatidrems in Hilbert
spaces with reproducing kernels and outlines the connection to clasSicabg&ssion (SVR) al-
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gorithms. We provide a deterministic error analysis for thend thee-SVR for both exact and
inexact training data. Our analytical results showing optimal convergeniegs in Sobolev spaces
are illustrated by numerical experiments.

2. Reproducing Kernels in Hilbert Spaces

We suppose thd is a positive definite kernel on some dom&nc RY which should contain at

least one point. To start with, we briefly recall the well known definition cé@roducing kernel in

a Hilbert space. In the following we shall use the notation that bold letterstele®ctors, that is
_ T d

V=(Vi,...,Vg) €R"

Definition 1 Let #(Q) be a Hilbert space of functions:fQ — R. A function K: Q x Q — R is
called reproducing kernel ot/ (Q), if

e K(y,") e H(Q)forally e Q and

o f(y)=(f,K(y,"))ssq forall f € #(Q)andally € Q.

For each positive definite kernkl: Q x Q — R there exists a unique Hilbert spa@g (Q) of func-
tions f : Q — R, such thaK is the reproducing kernel ok (Q) (see Wendland, 2005, Theorems
10.1 and 10.11). This Hilbert spafé (Q) is called thenative space of KThough this definition
of a native space is rather abstract, it can be shown that in some caseitleespaces coincide
with classical function spaces.

From now on we shall only consideadial kernelsK, that is,

K(x,y) =K(|[x—y]) forallx,y e R?,

where we use the same notation for the kefieRY x RY — R and for the functiork : RY — R.
We hope that this does not cause any confusion. We shall mainly focesrdimuous kernels
K el (Q), thatis,

Ky = [ IKOOldx <.

ForK € Ly (RY), we define the Fourier transforkaby
R = @072 [ Kxe™dx, wer!
R

For the cas€ = RY there is the following characterization of native spaces of certain raglinkls
K :Q — RY (Wendland, 2005, Theorem 10.12).

Theorem 2 Suppose that K C(RY) NLy(RY) is a real-valued and positive definite radial kernel.
Then the native space of K is given by

Ak (RY) {f € Lo(RY)NC(RY) :

_ f g
f7 = 2T[ d/2<7) )
PO = 0 R R e

wheref denotes the Fourier transform of f.
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DETERMINISTIC ERRORANALYSIS OF SV REGRESSION

We recall that the Sobolev spad#$(RY) onRY with s > 0 are given by
WERY) = { f € Loa(RY) : )2+ (11572 € LR } . (1)
Therefore for a radial kernel functidf whose Fourier transform decays like
Cu(1+[3)° <K < co(2+[[3)° ;5> d/2 )

for some constants;,c, > 0, the associated native spaﬁ@(Rd) is WZS(R") with an equivalent
norm. There are several examples of kernels satisfying the conditio®@(®) famous example for
fixeds e (d/2,») is theMatern kerne(Wendland, 2005)
1-s

Kl = s 115 K- 1).
where X denotes the Bessel function of the third kind. In our examples, howesefpcus on
Wendland’s functiongWendland, 2005). They are very convenient to implement since they are
compactly supported and piecewise polynomials. Such nice reprodudingl«ere so far only
available for certain choices of the space dimensi@and the decay parametefsee Wendland,
2005), but a recent result by Schaback (2009) covers almostsals @i practical interest. We shall
explain some more properties of these kernels in the experimental pargc@n3.0, and refer to
the recent monograph by Wendland (2005) for details.
In order to establish the equivalence of native spaces and Sobolezsspa bounded domains one
needs certain extension theorems for Sobolev functions on boundedddsee Wendland, 2005).

Definition 3 LetQ c RY be a domain. We define the Sobolev spaces of integer orders &s
WK(Q) = {f € Lp(Q) : f has weak derivativesTf € L,(Q) of order|a| < k}
with the norm
1/2
: 2
HUHW2'<(Q) = ( z HDGU‘LZ(Q)> .
laj<k
For fractional smoothness=s k+ o with 0 < 0 < 1 and ke N we define the semi-norm

1/2
. |D%u(x) — Du(y)|?
|Ulws(q) = ( > /Q/Q 42 dxdy |

=k X =Yl

and set
1/2
wi(@) i {ue Lo : (1ulige +lufga) <o}

In the case& = RY this space is known to be equivalent to the space given by (1) in termsideéFo
transforms (for more details on these spaces, see Wloka, 1982). Fidatigland (2005) proves the
following equivalence for domains having Lipschitz boundaries. Rougpéaking, a se@ ¢ RY

has a Lipschitz boundary if its boundary is locally (in a suitable direction) taplgof a Lipschitz
function such thaf) lies completely on one hand-side of this graph (see Brenner and Scot), 199
Then there is the following theorem (see Wendland, 2005, Cor. 10.48).
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Theorem 4 Suppose that K L1 (RY) has a Fourier transform that decays &b+ |-||3) S for s >
d/2. Suppose tha® has a Lipschitz boundary. Then

Ak (Q) =W5(Q)

with equivalent norms.

3. Regularized Problems in Native Hilbert Spaces

In the native Hilbert spaces we consider the following learning or regg@meblem. We assume that
we are given (possibly only approximate) function valyes..,yn € R of an unknown function
f € Ak (Q) on some scattered poirks= {xV,... . xN} c Q, thatisf (x())) ~y; for j=1,...,N.

In the following we shall use the notation that bold letters denote vectorssthat (v, ... ,vd)T €
RY.

To control accuracy and complexity of the reconstruction simultaneouslyse the optimization
problem

min sz(‘( ) - y,‘) Zcusng&(g), 3)

eeR*

whereC > 0 is a positive parameter amd denotes a positive function which may be parametrized
by a positive real number. We point out that¥; need not be a classical loss function. Therefore
we shall give some proofs of results which were formulated by SchékkgfSmola (2002) in the
case olV; being a loss function.

Theorem 5 (Representer theorem)If (sxy,€*) is a solution of the optimization problem (3), then
there exists a vectow € RN such that

Sy () = w,-K(x“'),-) :

thatis sy € span{K (x,-),...,K (xN ) 1.
Proof For the readers’ convenience, we repeat the proof from SchodaghBSmola (2002) in our

specific situation. Everg c Ak (Q) can be decomposed into two pasts- |+ s,, wheres is

contained in the linear span ¢K (xV),.),...,K (xN)..)}, ands, is contained in the orthogonal
complement, that iésH,sQM(Q) = 0. By the reproducing property of the kerr€lin the native
space, the problem (3) can be rewritten as

QQ‘TSL*ZV%KSH, ( )>> y,D 2CHS“H;&(Q)JF%HSLH?\&(Q)

eeR™
Therefore a solutiofisk y,£*) of the optimization problem (3) satisfig¢syy) , = 0, which implies
sxy € spar{ K (xV,-),... . K (xN),)}. ]

Since the proof of Theorem 5 does not depend on the minimality with respethi®result holds
also true ife is a fixed parameter instead of a primal variable. To be precise we statedhiisag a
corollary.
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Corollary 6 If sx y is a solution of the optimization problem

i *ZVF'( (xV) - yJD 2(:”5”3&@)’ @)

with € € R* being a fixed parameter, thep g € span{K (xV),-),...,K (xN,)}.

The representer theorems can be used to reformulate infinite-dimengningization problems of
the forms (3) or (4) in a finite-dimensional setting (see Scholkopf and S2002).

4. Support Vector Regression

As a first optimization problem of the form (3) we consider th8VR which was introduced by
Scholkopf et al. (2000). The functiof (x) = x| +&v is related to Vapnik'-intensive loss func-

tion (Vapnik, 1995)
B 0 iflx<e
|X’€_{ x| —€ if|x|>¢ "’

but has an additional term with a positive parameterThe associated optimization problem is
calledv-SVR and takes the form

_min, *ZH ) —yi] +evt o I8y ©)

seR+

Theorem 7 The optimization problem (5) possesses a solu('téifﬂ/,e*).

Proof This follows from a general result by Micchelli and Pontil (2005). Thiekjpem (5) is
equivalent to the optimization problem

_min —Z\ (x1) - J\ +62v+—HSHM< 6)
éeR

If we set# := Ak (Q) x R we can define an inner product @ by
<h1, h2>:,_[ = <f1, f2>9\6<(9) +2Cv <I’1, I’2>R

for hy = (fj,rj), j = 1,2. To make# a space of functions we use the canonical identification of
R W|th the space of constant functiof’s— R. The Hilbert space# then has the reproducing
kNerneIK = (K, ﬁl) wherel denotes the constant function which maps everything to 1, that is
K((x,r),(y,s)) = K(x,y) +1/(2Cv) for all r,s € R. With this notation the problem (6) can be
rewritten as

: 1 2
Tin, Q' (1x(5.8) + 5 (S ) )

where -
Ix(s,8) == <s(x(1)),...,s(x('\')),6> e RN+1
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and
QRYIR, Q(pd)= Nz\pJ Yilg-

SinceQ’ is continuous oRN*1 for all y € RN, the problem (7) possesses a solution as shown by
Micchelli and Pontil (2005). |

If we introduce the slack variablé€s&* € RN, the representer theorem gives us an equivalent finite-
dimensional problem which was considered by Scholkopf et al. (2000).

14 N
—w' K C
Wrggk SW'Kw + < Z (&+&; )

& EeRN
ecR™
subjectto (Kw);—y; < &+§j,
(—Kw);+y; < e+§&],
i:€ >0, €>0 for1<j<N, (8)

where

K = <K <X(i)vx(j)>>i j=1.N

denotes the Gram matrix of the kerrkel We will use this equivalent problem for implementation
and our numerical tests.

A particularly interesting problem arises if we skip the parametand lete be fixed. Then the
optimization problem (8) takes the form

1 1N
min w Kw +C— Z EJ+E
weRN le
E*,EeRN

subjectto (Kw);—y; < e+§j,
(—Kw);+y; < e+&,
i€ = 0 forl<j<N. (9)

Scholkopf et al. (2000) called this problegrSVR. Similarly to thev-SVR, the problem (9) can
be formulated as a regularized minimization problem in a Hilbert space (Eugemial., 2000),
namely

S %‘( ) 3], + 6 IslB - (10)

Like the v-SVR, this optimization problem possesses a solution (see Micchelli and F2oab,
Lemma 1).

5. A Sampling Inequality

We shall employ a special case dd@mpling inequalityntroduced by Wendland and Rieger (2005).
It requires the following assumptions which we need from now on. @et RY be a bounded
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domain with Lipschitz boundary that satisfies an interior cone condition. A gof@as said to
satisfy an interior cone condition with radius> 0 and angled < (0,7) if for every x € Q there is
a unit vector€ (x) such that the cone

C(x,&(x),0,r):= {x+)\y AAS RY, lyll, = 1,yTE(x) > cog0),A € [O,r]}

is contained iQ. In particular, a domain which satisfies an interior cone condition canwetdnay
outward cusps. We shall assume for the rest of this papeftlsatisfies an interior cone condition
with radiusRmax and angled. We shall derive estimates that are valid only if the training points are
sufficiently dense i2. To make this condition precise, we will need a slightly unhandy constant
which depends only on the geometry®@f namely (see Wendland, 2005)

sin (2 arCS|n(4(1s+";ine) ) > sin®
8 (1+sin <2 arcsin(%))) (1+sin@)
Suppose tha is a radial kernel function such that the native Hilbert spad¢ isfnorm-equivalent
to a Sobolev space, thatdg (Q) =WJ (Q). Here we assume that — 1 | > d/2, where we use the

notation|t| := max{n € N : n < t} fort > 0. Furthermore, leX = {x,... . xN} c Q be afinite
set with sufficiently small fill distance

CQ =

ax -

h:=hx g :=supmin
' xeQxeX

The fill distance can be interpreted geometrically as the radius of the |drgkstith center in
Q that does not contain any of the poixtd),...,.x(N), It is a useful quantity for the deterministic
error analysis in Sobolev spaces. The dase0 implies thatX = {x,...,xN)} is dense i, and
therefore convergence is studied for the limit> 0 which means that the domaihis equally filled
with points fromX. Let us explain the relation to the usual error bounds in terms of the number
of pointsN. In the case of regularly distributed points we have thatcN—a with some constant
¢ > 0 (Wendland, 2005). Therefore the liniit— O is equivalent to the limiN — oo which is the
more intuitive meaning of asymptotic convergence. But there is a drawbiacle, the error bounds
in terms ofN depend crucially on the space dimensnwhile error bounds in terms of the fill
distanceh are dominated by the smoothness of the function to be learned. We will comment o
this again later for the special error bounds we consider here. Weusigathe following result by
Wendland and Rieger (2005).

Theorem 8 Suppos& c RY is a bounded domain with Lipschitz boundary that satisfies an interior
cone condition. Let be a positive real number witht — %J > % and letl < g < «. Then there
exists a positive constant € 0 such that for all discrete sets X Q with sufficiently small fill
distance h= hy o < Co1~2 the inequality

_d(i_1
Uiy < € (W28 lullg ) + ulx )

holds for all ue W; (Q), where we use the notatidgt) . := max{0,t}.

=0,

We shall apply this theorem to the residual functibr- sxy of the functionf € W; (Q) to be
recovered and a solutiosx y € W5 (Q) of the regression problem. In our applications we shall
focus on the two main cases= « andq = 2. Other cases can be treated analogously. It will turn
out that we get optimal convergence rates in the noiseless case. émpeesf noise the resulting
error will explicitly be bounded in terms of the noise in the data.

2121



RIEGER AND ZWICKNAGL

6. v-SVR with Exact Data

In order to derive error bounds for theSVR optimization problem (5) we shall apply Theo-
rem 8 to the residuaf — s§2>y where (sgz’)y,s*) denotes a solution to the problem (5) f¥r:=

{xW,...,xN1 c qandy € RN. In this section we consider exact data, that is
f(xm):yj forj=1,...,N (11)

for a functionf € W} (Q) = Ak (Q). As pointed out by Wendland and Rieger (2005) we first need
a stability and a consistency estimate for the squﬁé}p

Lemma 9 Under the assumption (11) concerning the data, we find that for everysiluion
(ng)y,s*) to problem (5) satisfies

HSQ},)y\x -y

%

IN

f and
(@ 1l @

N 2 *
< — . — .
o S 2 1113 (@) T € - (L= Nv)

Proof We denote the objective function of the optimization problem (5) by
HY, (s, €) := 1 ‘s(x(j)) — ‘ +vs+i|]s\\2 (12)
cv(88) =y J; il oc I8l @) -

and the interpolant té with respect toX andK with I¢, that isl¢|x =y and
It € span{K (xW,-),...,K (xN),.) }. With this notation we have

) 1 1
<HL, (S§<V)y8 ) <HE, (11,0) = 55 15 0 < 5 | PR

W) ||?
Xy Ak (Q)

=
2C
since||l¢ Hﬂ\&(Q) < || fllag(q) (Wendland, 2005), which implies the first claim.
Furthermore we have for=1,...,N

Sgy,)y(x(i)>—>’i‘ < 1%1

* N 2 %
NHéV(H,O)—i—S (l_NV) < i HlfHM(Q)—I-E (1—NV)

s (x“)> —yj‘ e <NHY, (sﬁ’)y,e*) +€ (1—Nv)

e*

IA

IN

N *
< 1|3 )+ € (1—Nv)

which finishes the proof. |

With Theorem 8 we find immediately the following result.

Theorem 10 Suppos&  RY is a bounded domain with Lipschitz boundary that satisfies an inte-
rior cone condition. Let be a positive real number witht — %J > % and1 < g < . We suppose
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f e WS (Q) with f (xV) =y;. Let (s%,s*) be a solution of the#-SVR. Then there is a constant

€ > 0, which depends on, d andQ but not on f or X, such that the approximation error can be
bounded by

-4

for all discrete sets X Q with fill distance h=hy o < Cot 2

o T—d(1-1) N 5 )
L@ §C<2h 274 +HfHW2r<Q)+2C||f|yW21(Q)+(1—Nv).g)

Proof Combining Lemma 9 and Theorem 8 leads to

LW o ey, g
Hf H¥ o) = C<h Sxy )+Hy Xl
< &9, : -5
< C(h a ||wa2(Q)Jr Q) +Hy Xy 0
~ _(d_d N »
< C(ZhT (8-3), HfHW‘(Q 2C||fH\%Vz‘(Q)+(l_NV>€> '

At first glance the term containing® seems to be odd because it could be uncontrollable. But
according to Chang and Lin (2002) we can at least assin®ebe bounded by

e < 1 ( max yI - m|n y,)
2 \i=1,.., i=1,...,

If this inequality is not satisfied, the problem (8) possesses only the tswlations= 0 which is
not interesting. Furthermore, we see that¢héerm occurs with a factofl — Nv), which can be
used to control this term. If we choose> % the term(1—Nv)e* vanishes or is even negative.
The parametey is a lower bound on the fraction of support vectors (see Scholkogf,etGD0),
and hence = 1/N means to get at least one support vector, that is a non-trivial solutioce #e
are not interested in the case of trivial solutions, the conditignl/N is a reasonable assumption.
On the other hand, we can use the results from Lemma 9 to derive a mordtaxgbier bound on
e =¢*(C,v, f) by

N ]
—C||f||M< +€(1—Nv) .

If we assume > 1/N, this leads to

N

e (Cv,f) < m | f ”9\4(

Note that these bounds cannot be used for a better parameter chateeywsimvould need to rear-
range this inequality and solve f@ror v. This would only be possible if there were lower bounds
on¢* as well. Moreover, the paramet@rappears in our error bound as a fac%rwhich implies
that we expect convergence only in the c@se . In this case* will be small, as can be deduced
from problem (8).

2123



RIEGER AND ZWICKNAGL

We shall now make our bounds more explicit for the case of quasi-unifadistsibuted points. In
this case the number of poirtsand the fill distancé are related to each other by

aNYVd<h<cNYd (13)
wherec; andc,; denote positive constants (see Wendland, 2005, Proposition 14.1).

Corollary 11 In case of quasi-uniform exact data we can choose the problem pteestaes

NI llwg o _ 1
C= Tz() ~ D g ) andv > 5
to get
|- = CHF gy < N3 g
or as N
= W)y (9 (e 1
C prer: h HfHWZ(Q) andv > N
to get
SO X141
[0 ]gy = CF 1 lugia) < N7 I lluga

for all discrete sets X_ Q with fill distance h=hyx o < Cot~?, with generic positive constan®
which depend onm, d, Q but not on f or X.

Note that these bounds yield arbitrarily high convergence ordersjdaeavhat the functions are
smooth enough, that isis large enough. Therefore they are in this setting better than the usual
minimax rateN~z+ (see Stone, 1982). In the following we shall only give our error estimates
terms of the fill distancé rather than in terms of the number of poitNs This is due to the fact
that the approximation ratein h is independent of the space dimenstnHowever it should be
clear how the approximation rates translate into error estimates in terkhénahe case of quasi-
uniform data due to the inequality (13). Note that the parameter choice in sieeofarbitrary,
non-uniformly distributed data can be treated analogously.

Corollary 11 shows, that the solution of theSVR leads to the same approximation orders with
respect to the fill distancle as classical kernel-based interpolation (see Wendland, 2005). But the
v-SVR allows for much more flexibility and less complicated solutions. Our numegsalts will
confirm these convergence rates.

7. v-SVR with Inexact Data

In this section we denote again t(p%,e*) the solution to the problem (5) for a set of points

X :={xb,... . xN1 c Qandy € RN, but we allow the given data to be corrupted by some additive
errorr = (ry,...,rn), that means

f@m):w+n for j=1,...,N, (14)
where isf € WJ (Q) = Ak (Q). Note that there are no assumptions concerning the error distribution.

As in the previous section we have to show a stability and a consistency estintlag¢efollowing
form.
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Lemma 12 Under the assumption (14) concerning the data sqution(sEX)y, s*) to the optimiza-
tion problem (5) satisfies for every X and for alp> 0

W) 2c N 2
’SX,y o < Wzl‘rj‘e—FZCVS‘i‘HfHM(Q) and
N
‘ng)y*yuewm : Z rile +VNe+(2=Nv)e + 5 1T )

Proof Again, we denote the interpolant fowith respect toX andK by I and usd—lcy:yv as defined
in Equation (12). Then we have for alt> 0

1 1
\Y * 2
=

7y

Ak (Q)

which implies

Y

’ < | % S Irj|, +2Cve + | f[|5

Moreover we have for all=1,...,N and alle > 0

6

IA
M

IN

NRE, (53067) +(2-Nv)e'

N .. N 2

< |rj|, +VNe+(1—Nv)e + 56 Illag (@)
=1

Again we can use the results from Lemma 12 to derive a more explicit upperdbone* =
£"(C,v, f,€). Note thate* depends now also on the free parameter

-y

N N
— || f € (1—Nv ri vNe .
o = 20 i+ (LN + 5 [+

If we assume > 1/N, this leads to

\ 1 N .o N

Using the sampling inequality as in the case of exact data leads to the followugaaL-norms.
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Theorem 13 We suppose & W] (Q) with f(x1)) =y;+r;. Let (sgz’;,s*) be a solution of the

V-SVR, that is the optimization problem (5). Then there is a con&tand, which depends on, d
andQ but not on f or X, such that for al > 0 the approximation error can be bounded by

~ (d _d 2C N
< —(2-3) ) -~ _ 2
L@ S C(h g @)y | ;1\r,]8+20vs+||f||wz(g)

N
. N . o»
+ gl\rj\ervNeJrs (1_NV)+2CHfHWZT(Q)-i-HI"Km(X)>

-4

for all discrete sets X Q with fill distance h=hy o < CoT 2.

Note that the choice of the “optimak leading to the best bound, depends dramatically on the
problem. We now want to assume that the data errors do not exceed thesdHitaFor this we
suppose

171l x) < < 1 llwg (o)
for a parameted > 0.
Corollary 14 If we choose the parameters as

c _ N fllag o)
N 20 ’
€ = 9, and v:%,
we get
_ (V) < < T
|15 0 <€ (7 1Flhugia) +9)
and
_ (V) < ~ de/2
|13 o <C (01 flugio) +5)

for all discrete sets X Q with fill distance h= hy o < Cq1~2, with a generic positive consta6t
which depends on, d andQ but noton f or X.

8. £-SVR with Exact Data

Since our arguments for the SVR apply similarly to thee-SVR, we skip over details and just
state the results. Note that in this case the non-negative paramstigxed in contrast to the free
variable in thev-SVR. Analogously to the notation introduced in the previous sections, wetele

by sgf)y the solution to the problem (10) fot:= {xV),... . xN} c Q andy € RN. The stability and
consistency estimates take the following form.

Lemma 15 Under the assumption (11) concerning the data, we find that for evergdXesery
fixede € R* a solution §)y to problem (10) satisfies

Sgf,)ylx -y

S

< |If and
@ = 1l @

N2
< o Il +&-

Lo (X)
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Again this leads to the following result on continudysnorms.

Theorem 16 We suppose & W} (Q) with f (x)) =y;. Let éf)y be a solution of the-SVR, that is

the optimization problem (10). Then there is a cons€nt 0, which depends on d andQ but not
ong, f or X, such that the approximation error can be bounded by

~ —d(i-1
[t o =€ (2D Uthagia + 5 110 +¢) (15)

for all discrete sets X Q with fill distance h= hy o < CQT*Z.

Applying the same arguments as in th&VR case we obtain the following corollary.

Corollary 17 If we choose

NIl ) . NIl q)
= om respectively C= omdz

the inequality (15) turns into

|18, 0 <C (3 I flugia )

respectively

Hf—sgi)y Le(Q) §é<3hr_§ Ilhwg e +8>

for all discrete sets X Q with fill distance h=hy q < Cot~?, with a generic positive constaGt
which depends on, d andQ but not on fe W (Q) or X.

The role of the paramet& is similar to the one in case of tveSVR. But unlike in the case of the
v-SVR we are free to choose the parametéie see that exact data implies that we should choose
€~ 0. The cas€ — « ande — 0 leads to exact interpolation, and the well known error bounds for
kernel-based interpolation (see Wendland, 2005) are attained.

We point out that the-SVR is closely related to the squaredbss,

_min & z\( ) —yi| 4o I (16)

This is important because foe= 0 we get the square loss. Proceeding along the lines of this section,
we find for a solutiorsgg‘;) of (16) for exact data the stability bound

"(%s

<
P 112 @)

and the consistency estimate

(ste) Vo (N g2 2\ _ YN 3

Ny — <V2| —=|f f 2¢ .
23], = V2 (36 11k +#2) < YR Il + V22

Therefore, we obtain similar approximation results fordfsgjuared loss as for tkeSVR by insert-

ing the estimates into the sampling inequalities. Similarly, the results of Section 9 ealajpied to
thee-squared loss. For the special case0, we obtain the usual least squares, which was analyzed
by Wendland and Rieger (2005) in the case of exact data, and by Rip(2@@7) in the case of
inexact data.
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9. e-SVR with Inexact Data

In this section we denote again IsSf)y the solution to the problem (10) for a set of poids=

{xV,....xN} c Qandy € RN, but we allow the given data to be corrupted by some additive error
according to assumption (14).

Lemma 18 Under the assumption (14) concerning the data, for every X and exedgefc R™ a
solution éf)y to problem (10) satisfies

Et . \/Hind(( ZNCirr\s and
‘(8)

N o2
_ < i .
xylx yHewm - 2c||f”M<<Q>+i; il

Sy

IN

These bounds shall now be plugged into the sampling inequality.
Theorem 19 We suppose & W} (Q) with f (x)) =y;. Let éf)y be a solution of the-SVR, that is

the optimization problem (10). Then there is a cons€nt 0, which depends on d andQ but not
ong, f or X, such that the approximation error can be bounded by

. 11 2c N
< T d(% é) f T f T —_— i
o= C ( 1wy o [ HW N i;|rl|e

+ ||f||wr +Z|r|e+€+”rH€ )

Jr=s5],

for all discrete sets X Q with fill distance h= hy o < CoT 2

If we again assume that the error lewalioes not overrule the native space norm of the generating
function,

) <0< 1 llwg(q) -

we get the following convergence orders, for our specific choictiseoparameters.

N{| f [yt
Corollary 20 Again we assume that the error satisfies (14). If we ch@osed and C= %

NI/ F g

—-az then we find

respectively C=

IN

Hf -s9) o é (hT 1l ) +6) and

IN

Hf -y La(Q) c <hT7d/2”fHW2T(Q) +6>

for all discrete sets X_ Q with fill distance h= hy o < Cot 2, with a generic positive consta6t
which depends on, d, andQ but not on f or X.
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10. Numerical Results

In this section we present some numerical examples to support our analgtiohs, in particular
the rates of convergence in case of exact training data, and the detefctienerror levels in case
of noisy data.

10.1 Exact Training Data

Figure 1 illustrates the approximation orders in case of exact given datmaslered in Sections 6
and 8. For that, we used regular data sets generated by the respewatitierfs to be reconstructed
and employed the- and thev-SVR with the parameter choices provided in Corollaries 17 and 11,
respectively. We implemented the finite dimensional formulations of the assbciptenization
problems as described in Equations (9) and (8). As kernel functiongsed Wendland’s func-
tions for two reasons: On the one hand side they yield rather sparsa keamtricesK due to their
compact support, on the other hand side they are easy to implement singeehmgcewise poly-
nomials. Furthermore Wendland’s functions may be scaled to improve theirrivaingehaviour.

An unscaled functiork has support sugl) c B(0,1) ¢ RY. The scaling is done in such a way
that the decay of the Fourier transform is preserved, that is,

K(© (x) = ¢ 9K (%) . xeRY. (17)

By construction we haveupp(K(C)) C B(0,c), such that small choices of the scaling parameter
imply rather sparse kernel matricks® = (K (|[x —xW||));, ; . On the other hand side it
is known that the constant factor in our error estimates increa’seé“witeam:gc. This is a typical
trade-off situation between good approximation properties and goodtioondumbers of the ker-
nel matrice (9 (Wendland, 2005). We chose a scaling: 0.1 in all one-dimensional examples
and a scaling = 2 in all two-dimensional examples. Since these standard choices alreakly wo
well, there was no need for a more careful choice. To our knowledgee Hre so far no theoretical
results on the optimal scaling.

The double logarithmic plots in Figure 1 visualize the convergence ordersms & the fill dis-
tance. For that, the,-approximation errof| f —sx y[|, is plotted versus the fill distande The
convergence rates can be found as the slopes of the lines.

In subfigure 1(a) the data was generated by

f(x) = (x—05)7>*Pc W3 ([0,1]) ,

whereepsdenotes the relative machine precision in the sense of MATLAB. We usectiadion
(t)+ :=max{0,t} for all t € R. This functionf is sampled on regular grids in the unit interval
| :=[0,1] with 30 to 96 points. Note that in this case the fill distance is giveh ky1/N. We use
two different kernel functions, namely (see Wendland, 2005)

e Ki(X)=(1— |x|)§r (3x| +1) with native spac&V? ([0, 1]), and
o Ko(x) = (1—|x))3 (8\x\2+5\x| + 1) with native spac&Vg ([0,1]) .

The scaling parameter according to Equation (17) is choser=a&1. We employed the- and the
v- SVR with the parameter choices provided in Corollaries 17 and 11. Tipectge corollaries
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predict convergence rates oblfor K;, and 25 for K. In subfigure 1(a) the plots for thee and
v-SVR (almost identical) both show orders Xor K; and 24 for K.
Subfigure 1(b) shows a 2-dimensional example. The data is generatiee fiypooth function

f(xX)=sin(x1+X2) .

This function f is sampled on regular grids in the unit interval= [0, 1]2 with 16 to 144 points.
Note that in this case the fill distance is givenlbs \% We use three different kernel functions,
namely (see Wendland, 2005)

o K3(x) = (1—|x|)7% (4]x]| + 1) with native spac&sS ([0,1]?) ,
o Ka(x)=(1—|x|NS (35HXH2+18HXH +3> with native spac&\5- ([0,1]?), and

o Ks(x)=(1—[x])2 (32”x||3+ 25|x |2+ 8||x|| + 1) with native spacaViés ([0,1]2) .

The kernel functions were scaled by= 2 according to Equation (17). For the sake of simplicity
we employed only th@-SVR with the parameter choices provided in Corollary 11. The predicted
convergence rates in the fill distanbere 15 for K3, 2.5 for K4 and 35 for Ks. The numerical
experiments show orders8lfor K3, 2.8 for K4 and 37 for Ks. Therefore, the numerical examples
support our analytical results.

-4

—nuK3
==nu K4
==nu K5

‘ ‘ " ‘ ‘ ‘ ‘ ‘ ‘ ‘
55 -5 45 -4 22 -2 -18 -16 -14 -12 -1 -08 06

(a) Data generated by W23(I) on regular grids in. v-  (b) Data generated by smooth function on regular grids in
ande-SVR yield orders T7 for Ky, and 24 for K,. Scaling  12. v-SVR yields orders B for K3, 2.8 for Ka, and 37 for
parametec = 0.1. Ks. Scaling parametar= 2.

Figure 1: Logarithm of thé.-approximation error plotted versus the logarithm of the fill distance
h for exact training data.

10.2 Inexact Data

Figure 2 shows examples for the case of noisy data. The plots shol,thpproximation error

| —sxyll_ versus the fill distanch. For simplicity we concentrated on the case of thR8VR in

the one dimensional setting. We used the noise model given by Equatiqrit{ad)sy = f +r.

In Subfigure 2(a) the functioffi(x) = sin(10x) is sampled on regular grids of 2 to 56 points in
[0,1]. The data is disturbed by an errowhich is normally distributed with mean zero and standard
deviation 001. As kernel function we usk;, and the parameters of tleSVR are chosen as in

2130



DETERMINISTIC ERRORANALYSIS OF SV REGRESSION

Corollary 14. The plot shows that for— 0 the error remains of the same order of magnitude as the
error level||r |, .

In Subfigure 2(b) the functiof(x) = sin(10x) is sampled on regular grids of 5 to 56 points in the
unit intervall = [0,1]. Here, the data is corrupted by an erroed.01, where the sign of the error

is chosen randomly with equal likelihood for plus and minus. As kerneltfonave useK; with

c= 0.3, and the parameters of theSVR are chosen as in Corollary 14. The plot shows thak the
approximation error converges to a constant of the order of magnitutie efror level foh — 0.

0.7 T T T T T T T 0.7

0.61 1 0.61

0.5r 1 0.5r

0.4 1 0.4

0.3 q 0.3r

0.2r 1 0.2r

0.1 q 01r

&

0 h 1 1 1 1 1 1 0
0 002 004 006 008 0.1 012 014 016 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

(a) Data disturbed by random error with mean zero an¢b) Data disturbed by random sign deterministic error
standard deviation.01. Approximation error foh — 0  +0.01. Approximation error converges to a constant of
reaches the error level and remains bounded of the sartiee order of magnitude of the error level for— 0.

order of magnitude as the error level.

Figure 2:L-approximation error versus fill distance in case of inexact data.

11. Summary and Outlook

We proved deterministic worst-case error estimates for kernel-basesssean algorithms. The
main ingredient are sampling inequalities. We provided a detailed analysisarrilyefv- and the
€-SVR for both exact and inexact training data. However, the same tagsapply to all machine
learning problems involving penalty terms induced by kernels related to Sodjudees. If the func-
tion to be reconstructed lies in the reproducing kernel Hilbert space @& KHan infinitely smooth
kernel such as the Gaussian or an infinite dot product kernel, a simdirsambased on sampling
inequalities can be done, leading to exponential convergence rateRi¢gme and Zwicknagl 2008
and Zwicknagl 2009 for first results in this direction).

So far, our error estimates depend explicitly on the pointwise noise in theagtataye do not make
any assumptions on the noise distribution. Future work should incorpaatalglistic models on
the noise distribution to yield estimates for the expected error.
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