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Abstract

Algorithms that list graphs such that no two listed graplesisomorphic, are important building
blocks of systems for mining and learning in graphs. Aldoms are already known that solve this
problem efficiently for many classes of graphs of restrid¢tgzblogy, such as trees. In this article
we introduce the concept of a dense augmentation schemtaodlce an algorithm that can be
used to enumerate any class of graphs with polynomial datalgng as the class of graphs can be
described using a monotonic predicate operating on a demggeentation schema. In practice this
means that this is the first enumeration algorithm that caapipéied theoretically efficiently in any
frequent subgraph mining algorithm, and that this algamitjeneralizes to situations beyond the
standard frequent subgraph mining setting.
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1. Introduction

Among the most prominent graph mining problems is the problem of finding frécudbgraphs
in databases of small graphs of any topology. This is withessed by thenangeer of algorithms
that have been proposed for this task (Yan and Han, 2002; BorgkBearthold, 2002; Kuramochi
and Karypis, 2004; Inokuchi et al., 2003; Inokuchi, 2004; Huamlgt2003; Nijssen and Kok,
2004; Leskovec et al., 2006). A fundamental problem that is addiessdl these works is how to
enumerate a set of graphs such that no two graphs in the enumerates isetv@orphic with each
other. The main motivation for this focus is that if duplicates would not be adyithese algorithms
would access the data more often than necessary and produce resuts theger than required.

To avoid isomorphic graphs in their output, all these existing graph miningitdgw use a
methodology based on canonical codes. A canonical code is a codenijaely identifies a set
of isomorphic graphs. To determine if a graph should be part of the outpwanonical code is
computed, and, in some algorithms, compared with the canonical codepbidoaind before.

A fundamental problem with the canonical code based approach, kaviethat we essentially
need to solve the graph isomorphism problem: if we could compute the cahoad= of any
graph efficiently, we could compute the codes of two graphs to determineyifatlecsisomorphic.

The state of the art is that no polynomial algorithm for the graph isomorphisiyigm is known.
Consequently, it can be shown that when the existing graph mining algoritteresnamerating
candidate subgraphs, thelaybetween two enumerated graphs is exponential in the worst case (in
terms of the size of the largest graph enumerated).
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The contribution of this article is that we introduce a novel algorithm for ematimg graphs
that does not use canonical codes, and incrementally maintains datargsubtat ensure that no
two isomorphic graphs are listed. We show that in contrast to other algoritmenféimerating
graphs, this new algorithm outputs many classes of graphs, includingaaylitvtnnected graphs,
with polynomial delay, which makes this algorithm theoretically more efficient #imyrother graph
enumeration algorithm used in the graph mining literature.

It is important to note that our algorithm works for many classes of grdph& would restrict
the topology of the graphs, for instance, to only those graphs that ase the enumeration problem
of frequent graph mining is already known to be more efficiently solvablatgorithms are known
(Wright et al., 1986; Nakano and Uno, 2004) and used in practicedCili, 2005; Horéth et al.,
2006).

Even though the frequency constraint is the most popular constraint grapé mining litera-
ture, other constraints have been studied as well. An important propetg &equency constraint
is that it is monotonic w.r.t. to subgraph isomorphism: if a graph is frequent, alllitgraphs are
also frequent. In our algorithm we exploit this property to maintain data stesincrementally.
An interesting question is to what extent enumeration with polynomial delay sébhfeavhen the
graphs to enumerate are not monotonic under the subgraph isomorplagionreTo this aim, we
developed the concept of @ugmentation schemahe augmentation schema defines relations be-
tween graphs in the space of graphs to enumerate (in the simplest caséydhego isomorphism
relation). We will show that enumeration with polynomial delay is possible as &ngn aug-
mentation schema satisfies certain conditions, and the graphs to enumeiagespacified using a
monotonic predicate w.r.t. the augmentation schema. We will specify our alganttemms of such
augmentation schemas. This makes our method general enough to be apgdigichiys beyond the
traditional frequent subgraph mining setting, and allows us also to enuntertteonnected and
unconnected graphs. For instance, we can also enumerate herddisapsof graphs with bounded
degree; a class of graphs is callesteditaryif it is monotonic under thenducedsubgraph relation,
instead of the traditional subgraph relation.

The problem of graph enumeration has not only been studied in the grapigrhiiarature. In
particular, Goldberg showed in the early nineties that there is a polynoniay digorithm to list
all graphs (Goldberg, 1992). We will provide more details about this dlgorin Section 3, where
we will show that this algorithm cannot be used to list graphs that satisfy atmoic predicate, as
required in a graph mining setting. Many algorithms exist for enumeratingedasgraphs without
taking into account isomorphisms, such as classes of graphs descyifiedd brder logic formulas
(Goldberg, 1993) and edge-maximal graphs with bounded branchvigdthi €t al., 2006); it is not
known how to list these classes while taking into account isomorphisms. Heuriplementations
exist for enumerating graphs in general (McKay, 1998), but theseotl@uarantee polynomial
delay.

Our algorithm uses similar ideas as the algorithm of Goldberg (1992). ticplar, as our algo-
rithm maintains a data structure incrementally, our algorithm requires thatraputed subgraphs
are stored. In the pattern mining setting, where we are interested in findisg gin@phs, this is a
common assumption.

This article is the full version of a workshop abstract (Ramon and NijsX#i). Compared to
the workshop abstract, in this article (1) we show how our method extendsdoatasses of graphs
than connected graphs and (2) we provide full details and proofs.
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The article is organized as follows. In Section 2 we introduce the problesabgfraph mining.
In Section 3 we show why the algorithm of Goldberg is too limited for applicatiogsaph mining.
In Section 4 we introduce the concept of augmentation schemas and forefatly the enumeration
problems that we are addressing. In Section 5 we state our results. tinorSé@ove provide a
short introduction to concepts in group theory which we need in Sectiorh@&emwve outline our
algorithm; Section 8 concludes. The proofs of our claims are given in jpenaiix.

2. Motivation

The main motivation for our work is the problem of efficiently mining subgraptder constraints.
The most common such problem is the problem of mining frequent subgraplistabase of small
graphs. We will first give a formal definition of this problem.

Agraphgis atuple(V,E) whereV is a set of vertices anld CV x V is a set of edges. We denote
with V (g) the set of vertices and with(g) the set of edges of a grajgh In this article we restrict
ourselves to unlabeled, simple graphs (i.e., undirected, unweighted, p®, loo multiple edges
between two nodes). It easy to lift these restrictions. In particular, quéret subgraph mining it
is usually assumed that graphs have labels. However, our discussimplgied by assuming that
we do not have labels; this is not a fundamental restriction of our methogdolog

There are many ways in which one can restrict the topology of graphsn$tance, gathis
a graph in which all nodes have degree 2, except two nodes, whiehdemree one. Areeis a
connected graph witk nodes an&k — 1 edges. When we use the wagchph we refer to graphs
that have napriori restriction on their topology (except being unlabeled and simple).

Between two graphs we can define the graph isomorphism and the shiligpamrphism rela-
tions. Our definitions are as usual in the literature: two graphendg, areisomorphiciff there is
a bijectiond : V(g1) — V(g2) such thatvq,v2) € E(91) < (¢(v1),(v2)) € E(g2). We denote this
by 91 ~¢ 02, Where¢ is the bijection between the graphs. The bijection can be omitted if this is
clear from the context.

A graphg; is subgraph isomorphito g; iff there is asubgraph(V’,E’) with V/ C V(g) and
E’ C E(92), such that is isomorphic with(V’,E’). This is denoted witly; <¢ g, where¢ is the
bijection between the nodes gf and the subset of nodes gf. A subgraph(V’,E’) of g, is an
induced subgrapff for all v,v e V' : {v,V} € E(g2) <« {v,V'} € E’; in other words, all edges igy
between nodes i’ are also present i’. A graphg; is induced subgraph isomorphio g, iff g;
is isomorphic with an induced subgraphgaf

The graph isomorphism arsditgraph isomorphism problems should not be confused with each
other. Thesulgraph isomorphism problem is known to be NP complete, while the graph isomor-
phism problem is believed to be in a complexity class of its own. For both probtegeneral no
polynomial algorithm is known (Kbler et al., 1993).

The problem of frequent subgraph mining can now be formalized as f®lI@iven is a database
of graphs,DB = {g1,02,...,0n}, and a thresholt. Then we are interested in finding all graghs
for which the support is higher than or equat tdhesupportof a graphg is the number of graphs
in DB with which g is subgraph isomorphic.

This frequent subgraph mining problem can be generalized by repldg&mginimum frequency
constraint with other predicates. For instance, a predicate could invok@ditional maximum size
constraint.
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A predicate on graphs is calledonotonidf all subgraphs of a graph that satisfies the predicate,
will also all satisfy the predicate. The support constraint and the maximum size constraint are
examples of predicates that are monotonic under subgraph isomorphism.

The problem of constraint-based subgraph mining is closely related todb&pr of frequent
item set mining. Many algorithms have been developed to tackle the frequenséemining
problem, the most well-known being the APRIORI algorithm (Agrawal et &B6). Both frequent
graph mining algorithms and frequent item set mining algorithms are consitteleticonstraint-
basedpatternmining algorithms. Constraint-based pattern mining algorithms look for patterns in a
pattern languagé, and assume that these patterns are ordered using a partial ordenrg€latio
L. In the case of graph mining; is usually the subgraph isomorphism relation.

Many algorithms for pattern mining are level-wise (breadth-first) enumeratigmithms. These
algorithms assume that tlsézeof a pattern in the language is well-defined, and look for the pat-
terns by listing them increasing in size. A high-level description of suchgorithm is given in
Algorithm 1.

Algorithm 1 Level-Wise Pattern Miner

Require: A pattern languagé& and a monotonic predicafe
Ensure: output allg € £ with p(g)

(1 < patterns of size 1

k—1

while ¢k # 0 do
F—1{9€ Glp(9)}
Generate 1 from %
k—k+1

end while

OutputUy F«

In this algorithm, 7 contains the patterns of sizethat satisfy the predicate. In line 4 it is
determined which candidates of sikesatisfy the predicate. In frequent pattern mining, this line
requires access to the data, and can be most time consuming. It is thessfenda thaty be as
small as possible.

The main focus of this article is on the computation that needs to be performed B lin this
line new candidates should be generated. This generation should grestwdowing:

e by repeatedly generating new candidates we should be able to enumepteats in the
pattern space, in our case the space of all unlabeled, simple graphs;

¢ to ensure that the algorithm is as efficient as possible, we should not iwsepatterns in
(k+1 that are equivalent with each other; in our case, we should avoid irngénmgraphs
that are isomorphic;

e we should not insert patterns @k, 1 for which we can know beforehand thatwill not be
true; in our case, we should exploit the monotonicitypdb avoid inserting graphs of which
a subgraph is not included t#.

1. We adopt here the terminology most common in graph theory. Sotheraun the data mining literature use the
term ‘anti-monotonic’.
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In the graph mining setting, the second and third requirements are difficatte a&econd require-
ment requires us to solve a graph isomorphism problem, and the third regmirénvolves a sub-
graph isomorphism problem.

Algorithm 1 has applications beyond traditional frequent subgraph miioginstance, if we
are interested in computing a decomposition graph kernel between twosgndqth counts the
number ofnon-isomorphicsubgraphs that two graphs have in common, we could compute this
kernel by providing algorithm 1 a database of two graphs as input arréshibid ot = 2. The size
of the output is the desired kernel value.

Similarly, we could be interested in enumeratingdifferentgraphs that include one node in a
network (Leskovec et al., 2006). In this case, the input of Algorithmrisisis of one graph with
all nodes up to a certain threshold distance from the node of interest,@rdligraph isomorphism
should be restricted such that only bijections are considered in whichsableanode in the pattern
is mapped to the special node in the data.

In all cases, the essential problem of enumerating graphs without digglicmains. Several
algorithms have been proposed in the literature to address this graph atiomeroblem. The
main idea that has been employed, is that for every graph, we can congauterdcalcode, that is,
a code that is unique for all graphs that are isomorphic. The level-wégdgniners AGM (Inokuchi
et al., 2003) and FSG (Kuramochi and Karypis, 2004) define a casocide from adjacency
matrices. Essentially, all subgraphs are stored in a data structure tha¢xedhdccording to this
canonical code, and duplicates are avoided by computing for evedydzde the canonical code.
The approaches of AGM and FSG differ in their definitionsife AGM grows graphs by adding
nodes, FSG by adding edges.

Other graph miners search depth-first, but their enumeration strateg@asiynbe modified for
use in a level-wise algorithm (Yan and Han, 2002; Huan et al., 2003; Nimse Kok, 2004). Also
these algorithms use a canonical code, but do not require the use afexedihdata structure. An
algorithm for enumerating graphs surrounding a node in a network veaeged by Leskovec et al.
(2006). Again, this algorithm used a canonical code.

Unfortunately, currently no polynomial algorithm is known to compute a ceabnode; if one
was known, we would be able to solve the graph isomorphism problem ingraightime. Overall,
this means that in all existing graph mining algorithms exponential time can belsgergen two
graphs that are inserted in the set of candidates.

Enumeration algorithms for which this is not the case, that is, algorithms tha&t aolgnumera-
tion problem such that between any two enumerated solutions polynomial timenis(Bpterms of
the largest enumerated solution), are known as algorithmspelimomial delay To the best of our
knowledge, all algorithms that have been proposed in the graph mining litefatuenumerating
graphs in general do not have polynomial delay. Only for restrictedetasf graphs, such as trees
and outerplanar graphs, algorithms with polynomial delay are known (Cdili,e2005; Horath
et al., 2006).

However, the fact that graph isomorphism is not known to be polynomiatypeable, does
not imply that graph enumeration cannot be solved with polynomial delayn Ehaigh ignored
in the data mining and machine learning literature, a polynomial algorithm for ewmtingegraphs
does exist and was proposed by Goldberg (1992).

The problem with this algorithm is that it solves a rather simple enumeration pmolgeen
a bound on the size of the graphs to enumerate, Goldberg’s algorithm ligiaphs of this size
with polynomial delay. In the case of data mining and machine learning, wesateg with more
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complicated monotonic constraints that are data-dependent. We will showriexthsection that we
can create databases such that the set of graphs to enumerate do##ltio¢ basic assumptions
that need to be satisfied in Goldberg’s algorithm. Even worse, we will se¢hibaype of data is
very common.

It should be stressed that this paper only studies the candidate genefagi@ph mining al-
gorithms; it does not study the frequency evaluation. For generahgtéye frequency evaluation
also takes exponential time; a general frequent graph miner which useswmeration algorithm
will still have exponential delay due to the fact that frequency evaluatistilixponential. This
article proposes an improvement only of the candidate generation pHas&eY insight is that we
devised a graph enumeration algorithm which does not use canoniea ttogerform this task.

3. Goldberg's Algorithm

In this section we briefly discuss the key points in the algorithm of Goldber@2)1 9vhich shows
why this algorithm cannot be used in a pattern mining setting.

Goldberg’s algorithm aims at listing all graphs wittodes, and makes a distinction between
easy and hard graphs. Easy is a grgphat satisfies at least one of these two properties:

e g has a vertex with degree— 1, that is, at least one vertex is connected to all other vertices;

e ghas only one vertex, say of maximum degree angl— v is rigid, that is, the grapg— v has
only one isomorphism with itself (called the identity automorphism in Section 6).

An example of a graph that is never rigid, is a path.
Let E(n) be the set of easy graphs withhodes, andJ (n) the set of all graphs with nodes,
then it was shown by Goldberg that
2[E(n)| = [U(n)].

This property implies that a large fraction of the graphs to enumerate aretiaday. It was then
shown that(n) can be listed with polynomial delay, and th&tn) = U (n) \ E(n) can be listed in
O(n*|U(n)|) time steps, whergJ (n)| is exponential im but linear in the number of solutions. The
main idea is then to interleave these two methods. The method which lists easy, gnailes sure
that the delay is polynomial. The other method is allowed to spend an expomentiaker of steps
between consecutive graphs, but these steps are spread ovat gevations of the method that
lists easy graphs. Effectively this gives an algorithm with polynomial delay.

It is clear that this method fundamentally relies on the property that many gaeh'easy’.
This property does not hold for sets of graphs defined by a monotoedigate. Let us illustrate
this for the monotonic constraint that every node in a graph has a defgaéenost three. If > 3,
it is easily seen that

e as the degree is at most 3, the number of graphs that contain a vertexabahexted to all
other vertices is independent if

e every graphy that contains a single nodeof maximum degree 3, consists, after removal of
v, only of a set of (possibly unconnected) paths, hanees is not rigid.

ConsequentlyE(n) is a constant independent of while U (n) grows withn. The condition of
Goldberg’s approach is therefore not satisfied for this class of graph
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Moreover, to list all graphs ik (n) in time O(n*|U (n)|), it is assumed that the average size of
the automorphism groups of the elementtloh) is bounded. However, one can find subclasses for
which this bound is not polynomial.

The most popular application of graph mining algorithms is in chemistry (&tbret al., 2006).
Most of the graphs in these databases have a degree bounded, lantbamajority of the subgraphs
that need to be enumerated have a degree bounded by three. Thus, ne¢ loklieve that the
conditions for Goldberg’s method are satisfied in such data.

4. Problem Statement
Our problem setting has two parameters:

e an augmentation operator, which takes as input a graph, and outputsf asginentations of
this graph, and whose closure, starting from a given set of graphsritles a class of graphs;

¢ a predicate which restricts this class.

For instance, the augmentation operator can be used to describe thef dassexrted or uncon-
nected graphs, while the boolean predicate can restrict this class ftottierse graphs that have
bounded degree.

More formally, we will denote byl/E the set that contains all paifsy,rg) wherery is a
set of vertices andg a set of edges (not necessarily between verticas, )n We will use set
operators on elements df'E to denote the corresponding operations on their components, for
examplery,re) U (r,rg) = (v U, re Urg). Again,V(r) andE(r) describe the components of
an element € £. An augmentation operat@™ is a function that takes as input a graph, and
outputs a set of descriptions of possible augmentations. This set is d stiBSE. Every element
r € p*(g) describes a new grapV (g) UV (r),E(g) UE(r)), abbreviated by +r, that we call a
child of g.

An example of an augmentation operator is

Pt (9) = { ({Vnew}, {{V; Vnew} }) [VE V(Q) };

wherevpey is @ new vertex (not belonging ¥(g)). This operator adds a new vertex and connects
it to an existing vertex. We can use this operator to describe the set obali€cted) trees. The
minimal graph on which we apply the operator is in this case the graph with aleelhe= ({v},0);
in general, when we use one graph as the minimal element, we will denote thisgrajdd with T .

The following operator enumerates all graphs:

p;r(g) = {({VNEW}70)} U {(07 {{V17V2}})|V17V2 € V(g) A {Vl,Vz} ¢ E(g)} (1)
with T, = (0,0), while the following allows for enumerating all connected graphs:
pe (9) = P (@ U{(0,{{v1,Vv2}})|V1,v2 € V(9) A {v1,V2}  E(9)} 2

with T¢ = ({v},0).

As we can see in these examples, the vertices occurring in &jggslo not have to occur in
V(r). Still it is useful to determine the entire set of vertices involved in an augment&fior this
we use the notatiok', that is,V*(r) =V (r)u{v| Je€ E(r) : v € e}. Observe that the example
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operators output a number of augmentations that is bounded by a polynoriiialsize ofg, and
that for eaclr, the size of the s&t*(r) is bounded by a constant.

The class of graphs defined by taking the closure of the augmentaticait@pen the minimal
element is denoted by,+ (which we shorten further td,; and L for the classes defined ipz
andp/). The operatop™ defines an ancestry relation between the graphs. This relation is a partial
order.

The second parameter of our problem setting is a predjzategraphs. The set of grapgsn
Ly such thatp(g) is true is denoted by,+ ,. We only consider predicates that cannot distinguish
between isomorphic graphs, that isgif- g’ thenp(g) = p(d’). We call a predicatenonotoniow.r.t.
an augmentation operatpr- if for every graphg € L, ,, it also holds thaty € L, ,, for every
d that is an ancestor @. For instance, the predicate that tests if a graph has bounded degree, is
monotonic undep; as defined in (1).

In this article, we consider the following problem.

Problem 1 Given are an augmentation operatpr- and a predicate p which is monotonic w.r.t.
p*. Then, enumerate all elementsip: , such that exactly one representative of every equivalence
class under isomorphism daf,: , is enumerated.

In the next section we determine a set of sufficient conditions on the augtieenoperator and the
monotonic predicate that have to be fulfilled in order to obtain an algorithm wiympmial delay.

5. Main Reault

The augmentation operator that we introduced in the previous sectiomatgsthe children of a
graph. Our algorithm relies on the existence of an operator which carsettds operator. We call
this operator aeduction operator The reduction operator generates plagentsof a graph.

Formally, the definition of a reduction operator is similar to that of an augmentagierator;
the input of a reduction operatr is a single graph, its output consists of a subset/@. We
call each elemente p~(g) a reduction ofy. It defines a grapkVv(g) \V(r),E(g) \ E(r)), which is
abbreviated by —r.

For instance, in the case of connected graphs, we can define the fglmdaction operator:

P (@) = A{rfr=(0,{{ve,va}}) A {v1,vo} € E(g) A {v1,V2} isinacycld
{r|r= v}, {{v1,v2}}) A{v1,v2} € E(g) Av1 has degree 1 3

Let £ be a class of graphs. Then, an augmentation schema izna pair (p*,p~) of an
augmentation operat@r™ and a reduction operatpr, such that

e Vge LNVrept(g):g+re LAgNT = (0,0), thatis,p"(g) contains augmentations that can
be added t@ to obtain a larger graph (child);

e Vge L,Vrep (g):g—r e LAT Cg,thatis,p~(g) contains reductions that can be removed
from g to obtain a parent;

e Vge L,Vrept(g):rep (g+r), thatis, the effects of the additiomsc p*(g) can be
inverted by a deletion frorp~(g+r);
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e Vge LVrep (9 :3r'ept(g—r),3¢: ((g—r)+r" =~ g) A (lg—r € ), that is, deletions
r € p~(g) can be inverted by additions fropt (g—r). Herelg_, = {(v,v) [veV(g—r)}is
the identity permutation over the verticesgf r;

o VO1,Q0€ L:G1~ G2 = Vrept(g1) : ¢(r) € pT (o), thatis,p™ (and hence alsp~(g)) is
invariant to isomorphisms.

Given a graplg and two reductionss, rz € p~(g), we are interested in applying bathandr;
to g. However, sometimes this is not possible directly. Consider for instancdetbeaf connected
graphsZ, the graphg = ({1,2,3},{{1,2},{2,3},{3,1}}), and the reductions; = (0,{{1,2}})
andry = (0,{{2,3}}). We havef; =g—r1 = ({1,2,3},{{2,3},{3,1}}). We cannot apply, to f;
as this would result in a graph which is notig due to the isolated node 2; is not an allowed
reduction ing—r;. We can however map the reductignto a reduction that is allowed; instead of
r, we use({2},{{2,3}}), which is a valid deletion fronf;. This translation of to the context
of g—ry for pg is denoted by, 12 r1. More formally, for connected graph, we definer, 1814
to be equal ta,, except in the case wherg= (0,{v,u;}), ro = (0,{v,u2}) andv has degree 2, in
which case 181y =rU ({v},0). Then,(g—r1) — (r2 18r1) = ({1,3},{{1,3}}).

We now more formally introduce the properties of these reduction translafoneduction
translator is an operater|” - mapping graphg and reductionss,r, € p~(g) to a new reduction
r, 19rq satisfying

Vg,ri,r2:r2 Cra19ry, 4)

that is, after the translator is applied the reduction can only become larger,
Vg,r1,r2: 11N (r219r1) = (0,0), (5)
that is, no element is removed twice, and
Vg, r1,r2: (r219r) Urg = (ry 19r2) Ury, (6)

that is, reversing the order does not affect which vertices and eslgeemoved.

To allow for an efficient enumeration of graphs by our algorithm, we reghat the augmenta-
tion schema of the class of graphs fulfillsl@nsityproperty. This property is based on teaph of
parents The graph of parentsoR,- ;(g) of a graphg is defined as follows:

e V(GoRy- 1(9)) = p~(g), that is, every reduction fay corresponds to a vertex in its graph of
parents.
e For any twory,rz € V(GoRy- 1(g)), the graphGoR,- ;(g) has edgegry,ra} iff (r119r2) €
P (g—rz)and(rz 19r1) € p~(g—ra).
The intuition is that there is an edge between two nodes in the graph of paifants possible to
go from one parent to the other by first applying a reduction, and thplyiag an augmentation.

An example is shown in Figure 1.
We say thatp™,p~, 7) is a dense augmentation schemaAaiff

1. (p™,p) is an augmentation schema forand? is a reduction translator.
2. for every non-minimal grapl € L it holds that either the graph of parer@®R,- ;(g) is

connected, og—r is a minimal element of. for allr € p~(g) (in most casegy—r =T).
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Figure 1: On the bottom-left, a connected grapis drawn. In the middle, there is the graph of
parentsGoPpE,Tc(g). For every of its vertices;, the corresponding — r; of g is drawn. For the
edges{ri,rs} and{rs,rs}, the common (grand)parent is drawn. Note that there is no edge between
for examplers andrs as(g—r3) — (ra 12 r3) is not a connected graph.

Let us return to the examples of graph classes. For the class of albgtaphe defing 13r, =
ri. Itis easy to show tha®oP,_ ; (9) is a clique and thatpy,ps,1a) is a dense augmentation
schema. We can also prove for connected graphgpiiap; , ¢) is a dense augmentation schema
(see the appendix for a proof).

The main result of this paper is the following:

Theorem 1 Given an augmentation operatpr™ and a predicate p. We can solve problem 1 with
polynomial delay if the following conditions are satisfied:

e there exists a reduction operatpr and a reduction translatof such that(p™,p~,1) is a
dense augmentation schema;

e the predicate p is monotonic w.ri" over L,+;
e p",p~ and p can be evaluated in polynomial time in their arguments;

e the number of vertices in\(r) for every possible r resulting frop™ andp~ is bounded by
a constant.

There are many classes of graphs for which these conditions are fulflletbw we give a
non-exhaustive list of examples.

5.1 Monotonic Classes

Any predicatep that is monotonic w.r.t. edge and vertex deletion and that can be evaluated in
polynomial time defines a clagy; , that satisfies the conditions of Theorem 1(@s,p;,Ta) isa
dense augmentation schema, and all operations are polynomial. Henakyayithm can efficiently
enumerate all these monotonic classes.

An interesting special case are the minor-closed classes of graphsnifities of a graph can
be obtained by deleting edges, vertices, or identifying adjacent vertices gingle new vertex that
is adjacent to all vertices that were adjacent to any of the identified origértites. A class is
minor-closed if for any graph all its minors are also included in the class. Some classes of graphs
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can be characterized by forbidden minors, that is, minors that none gfrdipds are allowed to
have. One example is the class of all planar graphs (the forbidden migiogsthe 5-cliquéls and

the complete bipartite grapks 3). It can be determined in polynomial time if a graph contains a
given forbidden minor, and minor-closed classes of graphs are maadoomp; .

5.2 Connected Graphs

It is proven in the appendix that the augmentation schépgap; , ¢) is dense and its operators
are polynomial. It follows that connected graphs can be enumerated withgooial delay. Any
predicate which is closed under edge and vertex deletion is also monotanipiv.iTherefore, for
any monotonic predicate, our algorithm can list all connected graphs satisfypngith polynomial
delay.

5.3 Hereditary Classeswith Bounded Degree

A predicatep is hereditary iff for every grapb; such thatp(g;) holds, p(g.) holds for anyinduced
subgraphg, of g;. As pointed out in Section 2, anducedsubgraph must contain all edges between
a selected set of nodes in the original graph. A hereditary predicate isominav.r.t. the following
augmentation operator:

pﬁ(g) = {({Vnew}v{{vnew,\/}‘\/ EV}) |V gv(g)}v

where agaivyewis a new vertex not i (g). The corresponding reduction operator should remove
every single vertex as well as all edges emanating from it. It can be sihathe resulting augmen-
tation schema is dense. However, the augmentation opgatmutputs a number of augmentations
exponential in the size of the input. If we restrict ourselves to graphs withded degree, however,
we can enumerate the resulting class with polynomial delay.

One example is the class of claw-free graphs. A graph is called claviftteegraph

({v1,Vv2,V3,Va}, {{V1,V2},{v1,V3},{Vv1,Va}})

is not one of its induced subgraphs. Claw-freeness is not a monotamienty inL, as a subgraph
of a graph without claws can contain a claw: for instance, consider theedfigj this graph does
not have a claw as induced subgraph (all its induced subgraphs atgpdiiques), but many of its
(ordinary) subgraphs are claws.

In general, claw-freeness is a hereditary property, as every iddudsgraph of a graph without
claws, is claw-free. To the best of our knowledge no polynomial algorighicurrently known
for enumerating all claw-free graphs even if we do allow for duplicateddi@rg, 1992). Our
algorithm partially solves this problem by allowing for listing all claw-free drapvith bounded
degree.

6. Automor phism Groups and Bases

In order to avoid enumerating duplicates, we will use some theory on autbisorigroups. In this
section, we will briefly review the necessary concepts.

An automorphism of a grapd is an isomorphism betweemand itself. We will denote the
identity automorphism withg. In Figure 2, a graply®™ with 8 vertices is shown, together with
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Figure 2: A graphg® and 6 of its automorphisms.

six of its automorphisms. An automorphism is a permutation of the verticgs dhe set of all
automorphisms of equipped with composition of permutations forms a permutation group acting
onV(g). This group is called the automorphism groumpthich we denote wittdut(g).

Let P be a permutation group and I8tC P. We saySis a set of generators & iff every
element ofP can be written as a composition of elementsSofWe denote this fact with =<
S>. For example, in Figure Z¢1,¢2,$3,¢5} is a (non-minimal) set of generators @ut(g®).
Automorphismd,4 can be composed hiyy = 301 0P3. dg can be composed &g = p10Pz0¢;.

Let P be a permutation group acting ¥nand letv € V. The stabilizer ok in P is the subgroup
R = {$ € P| ¢(v) =v}. Consider for example the automorphism gréup Aut(Cs) on the 5-cycle
graphCs = ({v1,V2,V3,Va, Vs }, {{Vv1,V2},{V2,V3},{Vv3,va},{Va,v5}}). This group has 10 elements,
each of which can be decomposed by (possibly) a mirror permutétianvi ), (v2,vs), (Vs,V2),
(v3,Va),(v4,v3)} and rotations (0, 1 or more applications ffvi,v2), (v2,V3), (V3,Va), (Va,Vs),
(vs,v1)}). For any vertexv € Cs, the stabilizer?, contains precisely 2 elements. E.B,, con-
tains the identity permutation and the mirddws, v3), (Va,V2), (V2,Va), (V1,Vs), (V5,V1) }

One can apply the definition of stabilizers recursively; we will denote Rith ., the stabilizer
of g in Ry, v ,- A sequence of point8 = [v;...vy] of V is called abasefor permutation group
base forg®™. Indeed, only the identity automorphidiga leaves all four vertices 1, 3, 6 and 8 fixed.
Also B, = [3,1,6,8,2,4,5,7] is a base fog®™.

Let P be a permutation group a base oP andSC P. Sis called a strong generating set related
to B= {v1,...,w} if it contains generators for all permutationshp ., for 1 <| <k. We will use
the abbreviation BSGS for a pdiB, S) whereB is a base an8is a strong generating set related to
B.

Consider the basB; = [3,1,6,8] for the groupA4ut(g®) in Figure 2. We can construct a
strong generating set by first choosing generatorsfat(g**)3 1 6,8, then choosing generators for
Aut(g¥)3 1, Aut(g*)31,6 and so on until we have generators faut(g®). Each time, we use the
generators of the subgroup and extend them to a set of generattrs farger group. In our exam-
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ple,{¢4} is a set of generators fetut(g*)3 16, Next,{d4, ¢s} is a set of generators fetut(g®)s 1
and{d4, ¢s, 91} is a set of generators fotut(g®)s. Finally, {¢4,$s,91,93,92} is a set of genera-
tors for 4ut(g®) and therefore a strong generating setBor

A BSGS can represent a permutation group acting elements using onl@(nlog(n)) genera-
tors. For example, even though in Figure 2, the automorphism groti{@®*) contains 2 3x 2% 3
2 =72 elements, only 5 generators are needed to represent it. Moreo@(n% algorithm exists
to transform a BSGS into a BSGS with a different base (Butler, 1991).igar& 2, consider the
BSGS([3,1,6,8],{d4,05,¢1,$3,42}) and suppose we want a strongly generating set for the base
[3,1,8,6]. Then, we have to combine the generatorslaf(g®)3 1 6 and Aut(g**)3 1. One possible
strongly generating set 840 ¢s, §s5, ¢1, ¢3, d2}.

In general, it is easy to see that we can reduce any strong generdtiogapermutation group
on n elements to at most(n—1)/2 elements. LeB = {vi,...,w} be a basek < n), and let§
(1 <i <£Kk) be the subset of the strong generating set containing all generatioig Vixfor all
1< j < i but mappingy; on a different element. Now for allfrom 1 tok we can do the following.
As long as any§ has more tham — i elements, there are two permutatigms p; € § such that
p1(vi) = p2(vi), and we can removp; from § and addp; o p;l to §.1. The permutation group
generated by the new strong generating &t remains the same, as any permutation requipng
in its construction can still be constructed witho leo p:1. After performing such replacements
until all § contain at most— i elements, we have a strong generating set of size atmfrost1) /2.

An important property is that given a strong generating set for some basecan efficiently
compute a strong generating set for another base. A basic step in sgcthiaage is to interchange
two vertices, that is, given a strong generating se®er {vi...v,}, find a strong generating set
for B = {vi...V{_1,Vi+1,VI,Vi42...Vy} for somel with 1 <1 < n. Let Sbe a strong generating
set withS= U}! ;S where§ contains the generators fixing (1 < j < i) and not fixingy;. The
only part of Sthat should be changed when swappingndyv; .1 in the base ar§ andS.;. Let
S =3 US,1UUigq1+1; S be the strong generating set for the new bBsewhere§ fixes vi
(1<i<l)andsg,, fixesv; (1 <i<I)andvi. One can construc§ by ensuring it contains
permutations that may. 1 on all its possible images. These images can be found with a so-called
reachability graph. This means one starts with a set of possible inhag€s;.1}, and as long as
there is a permutation ig | S which maps an elemenitc | on an element ¢ |, one adds’ tol; in
the mean time, for each elemeantone maintains a corresponding permutation. After constructing
§. one can construd§ ,; by starting with§,; = § US 1 and then removing any permutations
from it that are redundant. In this way, it is possible to find in polynomial timeang generating
set for a base in which two vertices have been swapped. By iterating tusgure, it is possible
to efficiently find a strong generating set for any new base. Note thaewsednly described one
naive strategy. In the literature, much more advanced algorithms havelmmosed, which allow
to perform these operations significantly more efficiently.

7. Algorithm Outline

Our algorithm enumerates the graph ordered by size, that is, no grapbevalitput before all its
ancestors undep™ are listed. Indeed, we can show thatif",p—,1) is a dense augmentation
schema, every graph has a unique size, that is, there is a fusctigthat maps every graph to an
integer such that for every in L, it holds thatr € p*(g) implies thatsiz§g+r) = sizgg) + 1.
This results allows us to order the graphs that we need to enumerate legel-wis
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Superficially, the idea is then as follows. We maintain graphs that we are eatimgein a
gueue. Initially, this queue contains the graphRepeatedly, we pop a graph from the queue, apply
the augmentation operator, and those children which are not equivaleny fgraph in the queue,
are pushed in the queue. Due to the level-wise enumeration, equivaphisgnust be in the queue.
We need to address two issues:

e how do we avoid that we insert a child which is equivalent to a child of anaftagph?

e how do we avoid that we insert two children of the same graph that areadepi with each
other?

To make these computations possible in polynomial time, we also keep all paféhtsgraphs
in the queue in memory. For each graph, both those in the queue and theitspave store the
following information:

e arepresentation for the gragh

e for each augmentation (and reductiorjf g, we storer together with an isomorphism map-
ping ¢ = augg,r) (resp. ¢ =red(g,r)) such thatp(g+r) (resp. ¢(g—r)) is the stored
representative of the isomorphism clasgeafr (resp.g—r). Until we assign thewug(g,r)
andred(g,r) variables with a value, we will assume them initializadg(g,r) ='? and
red(g,r) ='?. If p(g+r) is false, withp the monotonic predicate of interest, we will as-
signaug(g,r) the valuenil.

e abase and strong generating set (BSBS)$g) of the automorphism grougut(g).

We output a graph when we pop it from the queue. Furthermore, wendiatethe BSGS at that
point. The BSGS allows us to compute for each pair of augmentations of b ijridagy result in
equivalent graphs, and thus allows us to avoid two equivalent childtée same graph from being
pushed in the queue.

To avoid that two different graphs insert children in the queue thatcqrizalent, we make sure
that the first parent of a child marks at least one augmentation in each ofttbeparents of the
child. When this alternative parent is popped from the queue later, it ®anhis information to
avoid pushing this child and all its equivalent children.

To prove that this procedure is polynomial, we need to show that we canutertiye BSGS in
polynomial time, and that we can find all parents of a child in polynomial time. Bedtart with
this second point.

One of the conditions of Theorem 1 is that the augmentation schema is deatds, that the
graph of parents is connected; hence we can compute a spanning tieedoaph of parents. If we
create a child, we know the parent that generated this child; by traveéh&rgpanning tree starting
from the reduction achieving this parent, we can traverse all possihletieds. At the same time,
for every step we take in this spanning tree, we can determine a corrésgpatared parent: every
step in the graph of parents corresponds to a reduction followed bygnesatation, for which we
have stored associated permutations that point to stored representatives

To compute the BSGS the key observation is that we can incrementally comp B8 @& of
a graph from the BSGS of one of its parents, in a similar way to the algorithnolafo8rg (1992).
Given a child and its parent, we perform a base change for the pawehtitsat we obtain permu-
tations in which the vertices contained in the augmentation are stabilized. This g@anerators
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for all vertices in the child, except those contained in the augmentation. Bgrsiag all parents
(as computed when the child was created), we can determine permutatiomaaaes for these
vertices as well. The resulting set of generators can be reduced to & B®lynomial time.

Details of this algorithm, including optimizations and proofs of complexity, carobaed in the
appendix.

8. Conclusions

We introduced an algorithm for listing graphs that makes sure that no twigadept graphs are
being output. We showed that for a well-defined set of conditions on a afagaphs to enumerate,
this algorithm is correct and achieves polynomial delay. Classes of gthphcan be enumerated
with low run-time complexity are connected graphs, planar graphs, mincectlgsaphs, mono-
tonic classes of graphs in general, and hereditary classes with bodagezk. To the best of our
knowledge, this is the first algorithm to be general enough to be able to ligtathie of classes
efficiently, and for several of these classes no polynomial delay algoritas presented before. In
the appendix, we show that our algorithm runs with dely®) for the class of all graphs, which
is an improvement over the known method of Goldberg (1992), which ashiawdelay oD(n®),
wheren is the number of vertices in the largest graph that is listed.

Most pattern mining algorithms consist of a candidate generation part aimdea@stingness
evaluation part. This work contributes to the theory of pattern mining by pirayid polynomial-
delay algorithm for the first of these two common tasks. Also, our algorithmbeaised as a generic
candidate pattern generator for a wide range of algorithms for mining stegcpatterns, avoiding
the need to research specialized canonical forms and enumerationistrateg

In contrast to other graph pattern mining systems, our algorithm providie atame time a
data structure in which one can look up a pattern in polynomial time. Indegdn @i patterry,
one can construay from the empty graph by a sequence of augmentations, and then follow the
augmentation pointers through the data structure. Efficient lookup coudrgauseful when the
set of patterns resulting from a pattern mining step is queried by the usgradgdwithms taking
this set of patterns as input.

Even though its run-time complexity is favorable, the space complexity of oaritdg is an
issue. The space required is polynomial in the size of the output; givemhinaiumber of listed
graphs can be exponential, the storage requirements for large clagsaplts can be exponential.
However, in those applications where the listed graphs need to be stgnedyaisuch as applica-
tions in data analysis, this drawback is of minor concern. Moreover, we ki no other general
approaches that obtain a better space complexity.

As future work, we conjecture that the run-time complexity of our algorithm lma reduced
further, at least to a delay @(n*) for the class of all graphs and the class of connected graphs,
through the definition of a canonical representation over the graphthdrmore, we hope to re-
duce the space requirements of our algorithm in problem settings whegdl tisted graphs are
required to be stored, and plan to implement it in concrete data mining systerafly, Flieving
the constraint of bounded degree for hereditary classes remains @gsiing problem.
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Appendix A. Algorithmic Details and Proofs

In this appendix we provide details of our algorithm and proofs for osults.

A.1 Dense Augmentation Schemas

An important property of a dense augmentation schema is the following:

Lemma?2 Let L be a class of graphs, and I*,p~, 1) be a dense augmentation schema for
Then, there exists a function sizé — N such that/'g € L,Vr € p*(g) : sizdg+r) = sizdg) + 1.

Proof We will say that a graplg can be constructed from in n steps if there exists a sequence
T =00,01,-..,0n = g such thagi1 = g; +r; for somer; € p*(g;) fori=0...n—1.

We first show that there is no graghwhich both can be constructed fromin n; steps and can
be constructed front in n, steps for two distinct numberg andn,.

Assume that such a grapghexists, and consider a minimal such graplfaccording to the
order induced by the augmentation schema). Then, there exists a parefhtof g which can
be constructed fronT in n; — 1 steps, and a paregt—r’, of g which can be constructed from
T in m—1 steps. As the graph of parer@R,- ;(g) of g is connected, there must exist two
ryi,r2 € p~(g) such that(ry,rz) is an edge ofGoR,- 1(g), g—ri1 can be constructed fror in
n, steps,g—r, can be constructed from in n), steps and} # n,. As (r1,r2) is an edge of
GoRy- 1(9), (r1 19r2) e p~(g—r2) and(r2 19r1) € p~(g—r1), there exists some graghsuch that
P~ (g—r2)—(re79r2) andp~ (g—r2) — (r219r1). Letny be the number of steps needed to
constructp from T. Then, remembering that augmentation schemas are isomorphism-invariant, we
can conclude that boilp—r; andg—r, can be constructed from in n, + 1 steps. Now ag; # ny
eitherny —1# ny+1 orny — 1 # np 4 1. Without loss of generality we can assume# np+ 1. This
means thag)—r can be constructed from in bothn, + 1 andn; — 1 steps, which is a contradiction
with the assumption that is a minimal graph for which it holds that it can be constructed from
in two different numbers of steps.

Therefore, we conclude that no such graph exists. Hence, in ordestéin a functiorsize
satisfying the requirement, one can defsieg T) to be 0 and for every, siz€g) to be the number
of steps in whichy can be constructed from. |

In Section 5 we stated the following.

Lemma3 (pg,p:, Tc) is a dense augmentation schema.
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Proof We consider the different elements of the definition of a dense augmentatiema.

First, remember thap{ , p; ) was defined by Equation (2) and (3) (see page 913 and 914). This
is clearly an augmentation schema. Also, we definetf r, to be equal ta1, except in the case
wherery = (0,{v,u1}), r2 = (0,{v,up}) andv has degree 2. In that case(2 r, = ryU ({v},{}). It
is easy to see thdt satisfies Equations (4), (5) and (6), and hence is a reduction translator

It remains to be shown that for every non-minimal graph L. it holds that either the graph of
parentsGoP,_ ; (g) is connected, og —r is the minimal element of for all r € p~(g).

Consider a connected graghwith at least 2 edges. We prove tr(abl%a%(g) is connected.

If g is a tree, then every reduction p1 (g) removes a leaf and the edge adjacent to it. By the
definition of I¢, r1 18r, = rq andrq € Pc (g—r2) will hold for any distinctry,ro € p;. Soifgis a
tree,GoPR,_ ; (9) is a clique.

If gis not a tree it contains at least one simple cy&l&Ve can partitiorp; (g) into two setsR;
andR, such thaR; contains all reductions removing an edge from the c;landR, contains all
other reductions. For any € Ry andr;, € Ry, it holds that removing, from g—r; does not discon-
nectg and vice-versa. So such twe andr; are adjacent itGoR,_ ; (g). Therefore GoPR,_ , (9)
is certainly connected if®& > 1. On the other hand, if = 0, g is a simple cycle. In that case,
two reductions oR; are adjacent iff they remove two adjacent edges of the cycle. So in that ca
GoP,. ;.(9) is a cycle and hence connected. [

A.2 Algorithm

In this section we explain in more detail our algorithm. As stated in Section 7afir graph, we
store the following information:

e arepresentation for the gragh

e for each augmentation and reductioof g, we store together with an isomorphism mapping
aug(g,r) (resp.red(g,r)) that mapsgy+r (resp.g—r), to the stored representative of their
isomorphism class. In the algorithm, we wa&yg,r) andred(g,r) as functions that return
the isomorphism. When the isomorphism is not yet compuaed(g,r) andred(g,r) will
return’?. If p(g+r) is false,aug(g,r) returns the valueil.

e abase and strong generating set (BSBS)$g) of the automorphism grougut(g).

Algorithm 2 shows the high level algorithm. It repeatedly takes an unpsedegrapty—+r and
processes itg+r must be minimal according to ttezefunction from Lemma 2. A graph which
has been processed remains in memory till it is no longer needed in the compédatome of its
ancestors.

As shown by Algorithm 3, the processing of a grapincludes computing a BSGS and the
automorphism group of, computing reachability graphs ctut(g) (line 3), finding isomorphic
variants of children (lines 8-12), and examining all other childreg afcluding constructing all
red(-,-) and someuq-, ) links (lines 13-24). We will describe each of the steps of the algorithm
below.

Let us first consider what is known at the poirRGCESSGRAPH(Q,rg) is called. First, all
graphsh for which p(h) andsizgh) < sizgg) have been processed and outputted, and the values
for aug(h,-), red(h,-) andbsggh) have been computed. Second, all grapHer which p(f) and
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Algorithm 2 Highlevel algorithm

Require: a graph clasg, a monotonic predicatp and a dense augmentation scheipia, p—, 1)
Ensure: output allg € L with p(g)

1: RefQueue— {(T,(0,0))}
2: while RefQueue 0 do

3 Let (g,r) € RefQueusuch thasiz€g+r) is minimal
4 RefQueue— RefQueug {(g,r)}

5: PROCESSGRAPH(g,I)

6 Outputg

7. end while

size f) = sizgg) have either entereRe fQueueor are fully processed. In any case, all values
red(f,-) have been computed.

Let S, denote the bound on the number of vertices and edges that can occustanhraay
augmentatiom € p*(g) with g € £. Then we have the following lemma.

Lemma4 Atline 2 of Algorithm 3 one can compute a BSGS4at(g) in time Q(|V (g)[°+|V(9)[3-
P (9)]-SvY).

Proof The casg = T is trivial, so we assumg## T andrp € p~(g). A parentg—rq is known, and

so ishsggg—ro) (assizdg—rp) = siz€g) — 1 and henceg — ro has been fully processed). By per-
forming a base change, we can obtain a BSGS for the stabfliz&g)y ) which fixes all elements
inV*(rp); please note that*(r) contains all nodes involved in the reduction. Hence, we compute a
base in which all nodes involved in the reduction are fixed. This is possiti@&aO(|V (g)[°). We

can then extend the set of generators corresponding to this BSGS tofayseerators foraut(g)

by adding for every coset ofut(g)y-(r,) in Aut(g) one representative. Each such representgtive
mapsro on some differen®(rg). Graphsg—ro andg— ¢(ro) are isomorphic, which is reflected
by red(g,ro)(g—ro) =red(g,¢(ro))(g— ¢ (ro)); here,red(g, ro) returns the stored permutation for
reductionrg on graphg, which after application on the nodes and edges in ggaphg yields the
same graph as for the equivalent reductjdny). One can therefore find all such representatives
by iterating over alf € p~(g), checking whethered(g,ro)(g—ro) = red(g,r)(g—r) (all red(g, )
were computed earlier) and for all of these listing all possibilities to extedgy, r)~*oaug(g,ro)

to an automorphisrred(g,r)~toaug(g,ro)) Udo (Wheredo : V(r) — V(ro)). In total, the number

of representatives of cosets @tit(g)y- ) is bounded byp~(g)|-S,!. One can eliminate the re-
dundant automorphisms in this list in tin® |V (g)|®- |p~(g)| - Sv!). [ |

Line 3 of Algorithm 3 computes reachability grap®s which are used in line 9 of the algo-
rithm to determine if two augmentations yield isomorphic graphs. These grajihtohexploit the
knowledge of the just computed BS®Sggg) of 4ut(g). A reachability graph is computed for the
number of nodes of grapipinvolved in the augmentation. In the case of (un)connected graphs, an
augmentation involves either one or two nodes of grgplind hence a reachability graph is used
fori =1 ori = 2. Q can be computed in tim®(i - [V (g)| - |bsggg)|). As for a reduced BSGS we
have|bsggg)| < [V(g)|2, line 3 can be performed in tin@(Sy - [V (g)|¥2).
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Algorithm 3 Processing one graph

1. procedure PROCESSGRAPH(Q,Io)
2: bsggg) < ComputeBSGSg,ro)
3: Ensure reachability grap®; exists forg wherei = |V*(ro) "V (9)|,

V(Q) = (V(9))", E(Q) = {(W,0(W)) |W e V(Q) A € bsgdg)}

4 Rsor < {rep’(g)|augg,r)#7}

5: done«— FALSE

6: while not(done do

7: if Rsos # 0then

8: Letr € Rsot

o: for all r' € pT(g) s.t.3¢: (WeV(g):d(v) eV(9)) Ag+T =~ g+r' do
10: aug(g,r’) < aug(g,r)odp—t

11: Riso+ « Riso+ \ {r'}

12: end for

13: elseif Ir € p(g) : aug(g,r) ='7? then

14: S=g+r

15: (ok,s_par_list) < SEARCH.PARENTYQ',S)
16: if okA p(g) then

17: for all (r',¢’) € s_par_list do

18: f—o'(s—r);aug(f,¢’ (")) =o' *;red(sr) =o'
19: RefQueue- RefQueuel {(s,r)}
20: else
21: for all (r',¢’) € s_par_list do
22: aug(d’'(s—r’),¢'(r")) < nil
23: end if
24: Riso+ < Risor U{r}
25: else
26: done— TRUE
27 end if

28: end while
29: end procedure

It is possible that previous calls ofRBCESSGRAPH have assigned a value already to some
of the aug(g,-), and line 4 collects these augmentations so that their isomorphic variants can be
computed in lines 8-12.

Next, the while loop at line 6 runs until allug(g, -) values have been computed. As soon as a
new child is identified (either by previous calls te ®CESSGRAPH (line 4) or by newly examined
children (line 24) it is added tBisq., and in the next iteration all its isomorphic variants are com-
puted. IfRso. is empty, the € p™(g) for whichaug(g,r) ='? are isomorphic to none of théfor
whichaug(g,r’) has already been assigned a value and a new child is considered (ligds 13

We will first discuss the computation of isomorphic variants of @Riso. in line 9. Recalling
the definition, allr’ are searched for which there is a mappihguch that(vv e V(g) : §(v) €
V(g)) Ag+r ~4 g+r’. One can do this as follows. First, use the reachability g@pfwith i =
[V*(r)nV(g)|) to find all possible images &f*(r) NV (g) under the automorphism grougut(g).

925



RAMON AND NIJSSEN

Algorithm 4 searchparents
1. procedure SEARCH.PARENTY, fo, S)

2: Construct a spanning trdefor GoR,- ;(s), the graph of parents &f
3: spar_list < {(ro,lg)}}

4: Perform a depth-first search ©f starting atg

5: for all edgeq(ry,rp) visited during the depth first seardo

6: ¢ < GET_PARENT(S,r1,I2)

7 if & = nil then return EALSE,s_par_list)

8: s_par_list — s_par_listU{(r2,¢)}

9 end for

10: return (TRUE,s_par_list)
11: end procedure

Algorithm 5 Get one parent
1. procedure GET_PARENT(S,r1,r2)
2: d1 — ext(s_par_list(s,r1),ls)
: f1 —¢r1(s—r1)

3
4 ¢p—ext(red(f, ¢r1(r21°r1)), ¢ 1)

5 pOp((s—r1)—dri(r21°ra))

6: Letr} € p™(p) andd. : V($p(r1 15r2)) — V(r}) such thafl,Ud.)(dpp(r1 15r2)) =1}
7. ifaug(p,ry) = nil then returnnil

8: elsereturnext(aug(p,ry), (IpUd.) o dp)

9: end procedure

For each of these images fone can also compute one automorphiggre Aut(g) under which
$g(r) corresponds to the image, by following the edgeQpf Then, one can check for every
r’ € p*(g) whether there is a mappirg : V(r) — V(r’) such that fo = ¢gU ¢, we havep(r) =r'.
TraversingQ; and computing the automorphisigalong the way is possible in tin@(|V (g)|*+1).
Asi < S, and we do this at most once for everg p*(g), the total time spent here is bounded by
O(IV(9)[¥*p*(9)]).

Let us now consider the investigation of new children in lines 13-24 of Adgor 3. For a
particular childs= g+r, the algorithm first searches the parehts s—r’ forallr’ € p~(s). As we
explain below, if all parents df satisfy the predicate the algorithm is guaranteed to find all these
parents. Thaug(f,r’) variables have been assigned a value and depending on wipdtbkts for
sitself, thered(s,r’) variables have been assigned a value and it is added to the data straotlires
to RefQueue

Finding other parents of a proposed chsle- g+ r is detailed in Algorithms 4 and 5. Before
analysing this procedure and its consequences, we first explain semedsmas. The key intuition
that enables an efficient enumeration is that we can efficiently identify treafly enumerated)
parentsf, of the candidate graphitogether with a suitable isomorphism mappinguch thats—

r, ~¢ fo for every reductiorr, € p~(s) by using the knowledge from Equation (6) that one can
obtainp = (s—ry) — (r2 75r1) also by removing the parts in a different ordgr:= (s—ry) —

(r1 1°r2). Therefore, in Algorithm 5 we first remove somgee p~(s) to obtain a known parerfy

of s, then go to a grand-pareptby removing a (translated) from f1, and then go downwards

926



PoLYNOMIAL -DELAY GRAPH ENUMERATION

f1 Ts
r \ | N
s > p
r s
2 fy fﬁfz

/ N

Figure 3: Searching for parents

again fromp to the unknown parent, (see Figure 3 for an illustration). In order to construct an
isomorphism betwees— r, and f,, isomorphisms betwees+-r; and f;, betweenf; — (r2 15r7)
and p and betweemp+ (r1 1°r2) and f, are first extended to cover the full set of vertices ¢the
ext(-,-) function), and then composed (line 8).

In Algorithm 5 we have the following notation. L&t and¢; be bijections between sets of
vertices. Thenext(¢,, 1) is a bijection that maps anyfor which ¢1(x) is in the domain ofp, on
$2(d1(X)) and maps any otheron a new vertex.

Now we return to the details of Algorithms 4 and 5. First, remember that for sedamgmen-
tation schema, the graph of parents of a particular graph is connectedefdite, it is possible in
line 2 of Algorithms 4 to construct a spanning tree for it. Algorithm 4 attempts tetcoct in
s_par_list a mapping from reductionse p~ (s) to isomorphism mappings between the graphs
and the representatives of their isomorphism class which were outmreb&¥e know already the
isomorphism mapping between- rop = g and the representative of its isomorphism class, which
is g itself (line 3). Now, if for some; € p~(s) we know an isomorphism mapping betwesnr;
and its representativg, and if for some other, € p~, the graphs—r, satisfiesp and has been
listed earlier, then Algorithm 5 will provide us with an isomorphism mapping bethseea, and its
representative, as discussed above.

Then there are two possible cases. On the one hand, if there is a plasevitioh did not fulfil
the predicatg and hence was not listed earlier, we will not find that parent: line 7 of Atlgor
5 will detect this and returnil, which will cause also Algorithm 4 to retunLSE. On the other
hand, if all parents of fulfil predicatep, the search along the spanning tree will eventually provide
an isomorphism mapping betwesand the representatives®f r for all r € p~(s).

The complexity of this search can be assessed as follows: Algorithm 5 isitedeance for
everyr’ € p~(s) and contains operations on permutations that can be performed i®fijviés)|).
Assuming that} can be performed efficiently, that a good data structure is buif'qip) in order
to be able to perform line 6 of Algorithm 5 efficiently, thigt™ (s)| can be bounded b®(|p~(g)|)
and that|V (s)| can be bounded b@(|V(g)|), we can therefore conclude that Algorithm 4 can be
performed in timeD(|p~(9)|- [V (g9)|). These assumptions are not very strong and hold for our two
example augmentation schen{@g,p;, Ta) and(pd, pg , Tc). Algorithm 4 is ran at most once for
everyr € p*(g), for a total complexity o©O(|p*(g)|- [V (9)|- [P~ (9)])-

In summary, this appendix has provided an informal proof of the following.

Theorem 5 Under the assumptions stated in Theorem 1, Algorithm 2 correctly lists foy @
morphism class of graphs g for whiclig) = TRUE exactly one representative, and the time needed
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for outputting the next graph g is bounded b{\>(g)|>+ [V (9)|3- [p~(9)|- Sv! +Sv - [V (9)|¥ 2 +
V(@[> et (@)l +IpT (@) V(9 [P (9)])-

This bound is polynomial for a constag.

For example, for enumerating connected graphs with the scligma;,1¢), Sy = 2. There-
fore, this algorithm enumerates classes of connected graphs inCifég)|°) for each output
graphg in the worst case. A similar result can be shown for enumerating (a monaobset of)
all graphs with(pZ,p3, Ta)-

Our conjecture is that this complexity can be improved furthed v (g)|4).
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