
Journal of Machine Learning Research 10 (2009) 907-929 Submitted 2/08; Revised 2/09; Published 4/09

Polynomial-Delay Enumeration of Monotonic Graph Classes

Jan Ramon JAN .RAMON@CS.KULEUVEN .BE

Siegfried Nijssen SIEGFRIED.NIJSSEN@CS.KULEUVEN .BE

K.U.Leuven, Dept. of Computer Science
Celestijnenlaan 200A, B-3001 Leuven

Editor: Stefan Wrobel

Abstract

Algorithms that list graphs such that no two listed graphs are isomorphic, are important building
blocks of systems for mining and learning in graphs. Algorithms are already known that solve this
problem efficiently for many classes of graphs of restrictedtopology, such as trees. In this article
we introduce the concept of a dense augmentation schema, andintroduce an algorithm that can be
used to enumerate any class of graphs with polynomial delay,as long as the class of graphs can be
described using a monotonic predicate operating on a dense augmentation schema. In practice this
means that this is the first enumeration algorithm that can beapplied theoretically efficiently in any
frequent subgraph mining algorithm, and that this algorithm generalizes to situations beyond the
standard frequent subgraph mining setting.

Keywords: graph mining, enumeration, monotonic graph classes

1. Introduction

Among the most prominent graph mining problems is the problem of finding frequent subgraphs
in databases of small graphs of any topology. This is witnessed by the largenumber of algorithms
that have been proposed for this task (Yan and Han, 2002; Borgelt and Berthold, 2002; Kuramochi
and Karypis, 2004; Inokuchi et al., 2003; Inokuchi, 2004; Huan etal., 2003; Nijssen and Kok,
2004; Leskovec et al., 2006). A fundamental problem that is addressed in all these works is how to
enumerate a set of graphs such that no two graphs in the enumerated set are isomorphic with each
other. The main motivation for this focus is that if duplicates would not be avoided, these algorithms
would access the data more often than necessary and produce results that are larger than required.

To avoid isomorphic graphs in their output, all these existing graph mining algorithms use a
methodology based on canonical codes. A canonical code is a code thatuniquely identifies a set
of isomorphic graphs. To determine if a graph should be part of the output,its canonical code is
computed, and, in some algorithms, compared with the canonical codes of graphs found before.

A fundamental problem with the canonical code based approach, however, is that we essentially
need to solve the graph isomorphism problem: if we could compute the canonical code of any
graph efficiently, we could compute the codes of two graphs to determine if they are isomorphic.
The state of the art is that no polynomial algorithm for the graph isomorphism problem is known.
Consequently, it can be shown that when the existing graph mining algorithms are enumerating
candidate subgraphs, thedelaybetween two enumerated graphs is exponential in the worst case (in
terms of the size of the largest graph enumerated).

c©2009 Jan Ramon and Siegfried Nijssen.

RAMON AND NIJSSEN

The contribution of this article is that we introduce a novel algorithm for enumerating graphs
that does not use canonical codes, and incrementally maintains data structures that ensure that no
two isomorphic graphs are listed. We show that in contrast to other algorithms for enumerating
graphs, this new algorithm outputs many classes of graphs, including arbitrary connected graphs,
with polynomial delay, which makes this algorithm theoretically more efficient thanany other graph
enumeration algorithm used in the graph mining literature.

It is important to note that our algorithm works for many classes of graphs.If we would restrict
the topology of the graphs, for instance, to only those graphs that are trees, the enumeration problem
of frequent graph mining is already known to be more efficiently solvable, and algorithms are known
(Wright et al., 1986; Nakano and Uno, 2004) and used in practice (Chiet al., 2005; Horv́ath et al.,
2006).

Even though the frequency constraint is the most popular constraint in thegraph mining litera-
ture, other constraints have been studied as well. An important property ofthe frequency constraint
is that it is monotonic w.r.t. to subgraph isomorphism: if a graph is frequent, all its subgraphs are
also frequent. In our algorithm we exploit this property to maintain data structures incrementally.
An interesting question is to what extent enumeration with polynomial delay is feasible when the
graphs to enumerate are not monotonic under the subgraph isomorphism relation. To this aim, we
developed the concept of anaugmentation schema. The augmentation schema defines relations be-
tween graphs in the space of graphs to enumerate (in the simplest case, the subgraph isomorphism
relation). We will show that enumeration with polynomial delay is possible as longas an aug-
mentation schema satisfies certain conditions, and the graphs to enumerate canbe specified using a
monotonic predicate w.r.t. the augmentation schema. We will specify our algorithmin terms of such
augmentation schemas. This makes our method general enough to be applied insettings beyond the
traditional frequent subgraph mining setting, and allows us also to enumerateboth connected and
unconnected graphs. For instance, we can also enumerate hereditary classes of graphs with bounded
degree; a class of graphs is calledhereditaryif it is monotonic under theinducedsubgraph relation,
instead of the traditional subgraph relation.

The problem of graph enumeration has not only been studied in the graph mining literature. In
particular, Goldberg showed in the early nineties that there is a polynomial delay algorithm to list
all graphs (Goldberg, 1992). We will provide more details about this algorithm in Section 3, where
we will show that this algorithm cannot be used to list graphs that satisfy a monotonic predicate, as
required in a graph mining setting. Many algorithms exist for enumerating classes of graphs without
taking into account isomorphisms, such as classes of graphs described by first order logic formulas
(Goldberg, 1993) and edge-maximal graphs with bounded branchwidth (Paul et al., 2006); it is not
known how to list these classes while taking into account isomorphisms. Heuristic implementations
exist for enumerating graphs in general (McKay, 1998), but these donot guarantee polynomial
delay.

Our algorithm uses similar ideas as the algorithm of Goldberg (1992). In particular, as our algo-
rithm maintains a data structure incrementally, our algorithm requires that all computed subgraphs
are stored. In the pattern mining setting, where we are interested in finding these graphs, this is a
common assumption.

This article is the full version of a workshop abstract (Ramon and Nijssen,2007). Compared to
the workshop abstract, in this article (1) we show how our method extends to other classes of graphs
than connected graphs and (2) we provide full details and proofs.

908

POLYNOMIAL -DELAY GRAPH ENUMERATION

The article is organized as follows. In Section 2 we introduce the problem ofsubgraph mining.
In Section 3 we show why the algorithm of Goldberg is too limited for applications ingraph mining.
In Section 4 we introduce the concept of augmentation schemas and formally define the enumeration
problems that we are addressing. In Section 5 we state our results. In Section 6 we provide a
short introduction to concepts in group theory which we need in Section 7, where we outline our
algorithm; Section 8 concludes. The proofs of our claims are given in an appendix.

2. Motivation

The main motivation for our work is the problem of efficiently mining subgraphsunder constraints.
The most common such problem is the problem of mining frequent subgraphsin a database of small
graphs. We will first give a formal definition of this problem.

A graphg is a tuple(V,E) whereV is a set of vertices andE⊆V×V is a set of edges. We denote
with V(g) the set of vertices and withE(g) the set of edges of a graphg. In this article we restrict
ourselves to unlabeled, simple graphs (i.e., undirected, unweighted, no loops, no multiple edges
between two nodes). It easy to lift these restrictions. In particular, in frequent subgraph mining it
is usually assumed that graphs have labels. However, our discussion is simplified by assuming that
we do not have labels; this is not a fundamental restriction of our methodology.

There are many ways in which one can restrict the topology of graphs. For instance, apath is
a graph in which all nodes have degree 2, except two nodes, which have degree one. Atree is a
connected graph withk nodes andk−1 edges. When we use the wordgraph, we refer to graphs
that have noapriori restriction on their topology (except being unlabeled and simple).

Between two graphs we can define the graph isomorphism and the subgraph isomorphism rela-
tions. Our definitions are as usual in the literature: two graphsg1 andg2 areisomorphiciff there is
a bijectionϕ : V(g1)→V(g2) such that(v1,v2) ∈ E(g1)⇔ (ϕ(v1),ϕ(v2)) ∈ E(g2). We denote this
by g1 ≃ϕ g2, whereϕ is the bijection between the graphs. The bijection can be omitted if this is
clear from the context.

A graphg1 is subgraph isomorphicto g2 iff there is asubgraph(V ′,E′) with V ′ ⊆ V(g2) and
E′ ⊆ E(g2), such thatg1 is isomorphic with(V ′,E′). This is denoted withg1�ϕ g2, whereϕ is the
bijection between the nodes ofg1 and the subset of nodes ofg2. A subgraph(V ′,E′) of g2 is an
induced subgraphif for all v,v′ ∈V ′ : {v,v′} ∈ E(g2)↔{v,v′} ∈ E′; in other words, all edges ing2

between nodes inV ′ are also present inE′. A graphg1 is induced subgraph isomorphicto g2 iff g1

is isomorphic with an induced subgraph ofg2.

The graph isomorphism andsubgraph isomorphism problems should not be confused with each
other. Thesubgraph isomorphism problem is known to be NP complete, while the graph isomor-
phism problem is believed to be in a complexity class of its own. For both problemsin general no
polynomial algorithm is known (K̈obler et al., 1993).

The problem of frequent subgraph mining can now be formalized as follows. Given is a database
of graphs,DB = {g1,g2, . . . ,gn}, and a thresholdt. Then we are interested in finding all graphsg
for which the support is higher than or equal tot. Thesupportof a graphg is the number of graphs
in DB with whichg is subgraph isomorphic.

This frequent subgraph mining problem can be generalized by replacingthe minimum frequency
constraint with other predicates. For instance, a predicate could involve an additional maximum size
constraint.

909

RAMON AND NIJSSEN

A predicate on graphs is calledmonotonicif all subgraphs of a graph that satisfies the predicate,
will also all satisfy the predicate.1 The support constraint and the maximum size constraint are
examples of predicates that are monotonic under subgraph isomorphism.

The problem of constraint-based subgraph mining is closely related to the problem of frequent
item set mining. Many algorithms have been developed to tackle the frequent item set mining
problem, the most well-known being the APRIORI algorithm (Agrawal et al., 1996). Both frequent
graph mining algorithms and frequent item set mining algorithms are consideredto be constraint-
basedpatternmining algorithms. Constraint-based pattern mining algorithms look for patterns in a
pattern languageL , and assume that these patterns are ordered using a partial order relation ≤ on
L . In the case of graph mining,≤ is usually the subgraph isomorphism relation.

Many algorithms for pattern mining are level-wise (breadth-first) enumerationalgorithms. These
algorithms assume that thesizeof a pattern in the language is well-defined, and look for the pat-
terns by listing them increasing in size. A high-level description of such an algorithm is given in
Algorithm 1.

Algorithm 1 Level-Wise Pattern Miner

Require: A pattern languageL and a monotonic predicatep
Ensure: output allg∈ L with p(g)

1: C1← patterns of size 1
2: k← 1
3: while Ck 6= /0 do
4: Fk←{g∈ Ck|p(g)}
5: GenerateCk+1 fromFk

6: k← k+1
7: end while
8: Output

S

kFk

In this algorithm,Fk contains the patterns of sizek that satisfy the predicate. In line 4 it is
determined which candidates of sizek satisfy the predicate. In frequent pattern mining, this line
requires access to the data, and can be most time consuming. It is therefore essential thatCk be as
small as possible.

The main focus of this article is on the computation that needs to be performed in line 5. In this
line new candidates should be generated. This generation should ensurethe following:

• by repeatedly generating new candidates we should be able to enumerate allpatterns in the
pattern space, in our case the space of all unlabeled, simple graphs;

• to ensure that the algorithm is as efficient as possible, we should not insert two patterns in
Ck+1 that are equivalent with each other; in our case, we should avoid inserting two graphs
that are isomorphic;

• we should not insert patterns inCk+1 for which we can know beforehand thatp will not be
true; in our case, we should exploit the monotonicity ofp to avoid inserting graphs of which
a subgraph is not included inFk.

1. We adopt here the terminology most common in graph theory. Some authors in the data mining literature use the
term ‘anti-monotonic’.

910

POLYNOMIAL -DELAY GRAPH ENUMERATION

In the graph mining setting, the second and third requirements are difficult, asthe second require-
ment requires us to solve a graph isomorphism problem, and the third requirement involves a sub-
graph isomorphism problem.

Algorithm 1 has applications beyond traditional frequent subgraph mining.For instance, if we
are interested in computing a decomposition graph kernel between two graphs which counts the
number ofnon-isomorphicsubgraphs that two graphs have in common, we could compute this
kernel by providing algorithm 1 a database of two graphs as input and a threshold oft = 2. The size
of the output is the desired kernel value.

Similarly, we could be interested in enumerating alldifferentgraphs that include one node in a
network (Leskovec et al., 2006). In this case, the input of Algorithm 1 consists of one graph with
all nodes up to a certain threshold distance from the node of interest, and the subgraph isomorphism
should be restricted such that only bijections are considered in which at least one node in the pattern
is mapped to the special node in the data.

In all cases, the essential problem of enumerating graphs without duplicates remains. Several
algorithms have been proposed in the literature to address this graph enumeration problem. The
main idea that has been employed, is that for every graph, we can compute acanonicalcode, that is,
a code that is unique for all graphs that are isomorphic. The level-wise graph miners AGM (Inokuchi
et al., 2003) and FSG (Kuramochi and Karypis, 2004) define a canonical code from adjacency
matrices. Essentially, all subgraphs are stored in a data structure that is indexed according to this
canonical code, and duplicates are avoided by computing for every candidate the canonical code.
The approaches of AGM and FSG differ in their definition ofsize: AGM grows graphs by adding
nodes, FSG by adding edges.

Other graph miners search depth-first, but their enumeration strategy caneasily be modified for
use in a level-wise algorithm (Yan and Han, 2002; Huan et al., 2003; Nijssen and Kok, 2004). Also
these algorithms use a canonical code, but do not require the use of an indexed data structure. An
algorithm for enumerating graphs surrounding a node in a network was proposed by Leskovec et al.
(2006). Again, this algorithm used a canonical code.

Unfortunately, currently no polynomial algorithm is known to compute a canonical code; if one
was known, we would be able to solve the graph isomorphism problem in polynomial time. Overall,
this means that in all existing graph mining algorithms exponential time can be spentbetween two
graphs that are inserted in the set of candidates.

Enumeration algorithms for which this is not the case, that is, algorithms that solve an enumera-
tion problem such that between any two enumerated solutions polynomial time is spent (in terms of
the largest enumerated solution), are known as algorithms withpolynomial delay. To the best of our
knowledge, all algorithms that have been proposed in the graph mining literature for enumerating
graphs in general do not have polynomial delay. Only for restricted classes of graphs, such as trees
and outerplanar graphs, algorithms with polynomial delay are known (Chi et al., 2005; Horv́ath
et al., 2006).

However, the fact that graph isomorphism is not known to be polynomially computable, does
not imply that graph enumeration cannot be solved with polynomial delay. Even though ignored
in the data mining and machine learning literature, a polynomial algorithm for enumerating graphs
does exist and was proposed by Goldberg (1992).

The problem with this algorithm is that it solves a rather simple enumeration problem: given
a bound on the size of the graphs to enumerate, Goldberg’s algorithm lists allgraphs of this size
with polynomial delay. In the case of data mining and machine learning, we are dealing with more

911

RAMON AND NIJSSEN

complicated monotonic constraints that are data-dependent. We will show in thenext section that we
can create databases such that the set of graphs to enumerate does notfulfill the basic assumptions
that need to be satisfied in Goldberg’s algorithm. Even worse, we will see that this type of data is
very common.

It should be stressed that this paper only studies the candidate generationof graph mining al-
gorithms; it does not study the frequency evaluation. For general graphs the frequency evaluation
also takes exponential time; a general frequent graph miner which uses our enumeration algorithm
will still have exponential delay due to the fact that frequency evaluation isstill exponential. This
article proposes an improvement only of the candidate generation phase. The key insight is that we
devised a graph enumeration algorithm which does not use canonical codes to perform this task.

3. Goldberg’s Algorithm

In this section we briefly discuss the key points in the algorithm of Goldberg (1992), which shows
why this algorithm cannot be used in a pattern mining setting.

Goldberg’s algorithm aims at listing all graphs withn nodes, and makes a distinction between
easy and hard graphs. Easy is a graphg that satisfies at least one of these two properties:

• g has a vertex with degreen−1, that is, at least one vertex is connected to all other vertices;

• g has only one vertex, sayv, of maximum degree andg−v is rigid, that is, the graphg−v has
only one isomorphism with itself (called the identity automorphism in Section 6).

An example of a graph that is never rigid, is a path.
Let E(n) be the set of easy graphs withn nodes, andU(n) the set of all graphs withn nodes,

then it was shown by Goldberg that
2|E(n)| ≥ |U(n)|.

This property implies that a large fraction of the graphs to enumerate are in fact easy. It was then
shown thatE(n) can be listed with polynomial delay, and thatH(n) = U(n)\E(n) can be listed in
O(n4|U(n)|) time steps, where|U(n)| is exponential inn but linear in the number of solutions. The
main idea is then to interleave these two methods. The method which lists easy graphs, makes sure
that the delay is polynomial. The other method is allowed to spend an exponentialnumber of steps
between consecutive graphs, but these steps are spread over several iterations of the method that
lists easy graphs. Effectively this gives an algorithm with polynomial delay.

It is clear that this method fundamentally relies on the property that many graphs are ‘easy’.
This property does not hold for sets of graphs defined by a monotonic predicate. Let us illustrate
this for the monotonic constraint that every node in a graph has a degree of at most three. Ifn > 3,
it is easily seen that

• as the degree is at most 3, the number of graphs that contain a vertex that isconnected to all
other vertices is independent ofn;

• every graphg that contains a single nodev of maximum degree 3, consists, after removal of
v, only of a set of (possibly unconnected) paths, henceg−v is not rigid.

Consequently,E(n) is a constant independent ofn, while U(n) grows withn. The condition of
Goldberg’s approach is therefore not satisfied for this class of graphs.

912

POLYNOMIAL -DELAY GRAPH ENUMERATION

Moreover, to list all graphs inH(n) in time O(n4|U(n)|), it is assumed that the average size of
the automorphism groups of the elements ofU(n) is bounded. However, one can find subclasses for
which this bound is not polynomial.

The most popular application of graph mining algorithms is in chemistry (Horváth et al., 2006).
Most of the graphs in these databases have a degree bounded by four, and a majority of the subgraphs
that need to be enumerated have a degree bounded by three. Thus, we do not believe that the
conditions for Goldberg’s method are satisfied in such data.

4. Problem Statement

Our problem setting has two parameters:

• an augmentation operator, which takes as input a graph, and outputs a setof augmentations of
this graph, and whose closure, starting from a given set of graphs, describes a class of graphs;

• a predicate which restricts this class.

For instance, the augmentation operator can be used to describe the class of connected or uncon-
nected graphs, while the boolean predicate can restrict this class furtherto those graphs that have
bounded degree.

More formally, we will denote byVE the set that contains all pairs(rV , rE) where rV is a
set of vertices andrE a set of edges (not necessarily between vertices inrV). We will use set
operators on elements ofVE to denote the corresponding operations on their components, for
example,(rV , rE)∪ (r ′V , r ′E) = (rV ∪ r ′V , rE ∪ r ′E). Again,V(r) andE(r) describe the components of
an elementr ∈ VE . An augmentation operatorρ+ is a function that takes as input a graph, and
outputs a set of descriptions of possible augmentations. This set is a subset of VE . Every element
r ∈ ρ+(g) describes a new graph(V(g)∪V(r),E(g)∪E(r)), abbreviated byg+ r, that we call a
child of g.

An example of an augmentation operator is

ρ+
t (g) = {({vnew},{{v,vnew}}) |v∈V(g)};

wherevnew is a new vertex (not belonging toV(g)). This operator adds a new vertex and connects
it to an existing vertex. We can use this operator to describe the set of all (connected) trees. The
minimal graph on which we apply the operator is in this case the graph with one node⊤t = ({v}, /0);
in general, when we use one graph as the minimal element, we will denote this initialgraph with⊤.

The following operator enumerates all graphs:

ρ+
a (g) = {({vnew}, /0)}∪{(/0,{{v1,v2}})|v1,v2 ∈V(g)∧{v1,v2} 6∈ E(g)}. (1)

with ⊤a = (/0, /0), while the following allows for enumerating all connected graphs:

ρ+
c (g) = ρ+

t (g)∪{(/0,{{v1,v2}})|v1,v2 ∈V(g)∧{v1,v2} 6∈ E(g)}. (2)

with ⊤c = ({v}, /0).
As we can see in these examples, the vertices occurring in edgesE(r) do not have to occur in

V(r). Still it is useful to determine the entire set of vertices involved in an augmentation. For this
we use the notationV∗, that is,V∗(r) = V(r)∪{v | ∃e∈ E(r) : v∈ e}. Observe that the example

913

RAMON AND NIJSSEN

operators output a number of augmentations that is bounded by a polynomialin the size ofg, and
that for eachr, the size of the setV∗(r) is bounded by a constant.

The class of graphs defined by taking the closure of the augmentation operator on the minimal
element is denoted byLρ+ (which we shorten further toLa andLc for the classes defined byρ+

a
andρ+

c). The operatorρ+ defines an ancestry relation between the graphs. This relation is a partial
order.

The second parameter of our problem setting is a predicatep on graphs. The set of graphsg in
Lρ+ such thatp(g) is true is denoted byLρ+,p. We only consider predicates that cannot distinguish
between isomorphic graphs, that is, ifg≃ g′ thenp(g) = p(g′). We call a predicatemonotonicw.r.t.
an augmentation operatorρ+ if for every graphg ∈ Lρ+,p it also holds thatg′ ∈ Lρ+,p for every
g′ that is an ancestor ofg. For instance, the predicate that tests if a graph has bounded degree, is
monotonic underρ+

a as defined in (1).
In this article, we consider the following problem.

Problem 1 Given are an augmentation operatorρ+ and a predicate p which is monotonic w.r.t.
ρ+. Then, enumerate all elements inLρ+,p such that exactly one representative of every equivalence
class under isomorphism ofLρ+,p is enumerated.

In the next section we determine a set of sufficient conditions on the augmentation operator and the
monotonic predicate that have to be fulfilled in order to obtain an algorithm with polynomial delay.

5. Main Result

The augmentation operator that we introduced in the previous section, generates the children of a
graph. Our algorithm relies on the existence of an operator which can inverse this operator. We call
this operator areduction operator. The reduction operator generates theparentsof a graph.

Formally, the definition of a reduction operator is similar to that of an augmentationoperator;
the input of a reduction operatorρ− is a single graph, its output consists of a subset ofVE . We
call each elementr ∈ ρ−(g) a reduction ofg. It defines a graph(V(g)\V(r),E(g)\E(r)), which is
abbreviated byg− r.

For instance, in the case of connected graphs, we can define the following reduction operator:

ρ−c (g) = {r | r = (/0,{{v1,v2}})∧{v1,v2} ∈ E(g)∧{v1,v2} is in a cycle}

{r | r = ({v1},{{v1,v2}})∧{v1,v2} ∈ E(g)∧v1 has degree 1} (3)

Let L be a class of graphs. Then, an augmentation schema onL is a pair (ρ+,ρ−) of an
augmentation operatorρ+ and a reduction operatorρ−, such that

• ∀g∈ L ,∀r ∈ ρ+(g) : g+ r ∈ L ∧g∩ r = (/0, /0), that is,ρ+(g) contains augmentations that can
be added tog to obtain a larger graph (child);

• ∀g∈ L ,∀r ∈ ρ−(g) : g− r ∈ L ∧ r ⊆ g, that is,ρ−(g) contains reductions that can be removed
from g to obtain a parent;

• ∀g ∈ L ,∀r ∈ ρ+(g) : r ∈ ρ−(g+ r), that is, the effects of the additionsr ∈ ρ+(g) can be
inverted by a deletion fromρ−(g+ r);

914

POLYNOMIAL -DELAY GRAPH ENUMERATION

• ∀g∈ L ,∀r ∈ ρ−(g) : ∃r ′ ∈ ρ+(g− r),∃ϕ :
(

(g− r)+ r ′ ≃ϕ g
)

∧
(

Ig−r ⊆ ϕ
)

, that is, deletions
r ∈ ρ−(g) can be inverted by additions fromρ+(g− r). HereIg−r = {(v,v) | v∈V(g− r)} is
the identity permutation over the vertices ofg− r;

• ∀g1,g2 ∈ L : g1 ≃ϕ g2⇒ ∀r ∈ ρ+(g1) : ϕ(r) ∈ ρ+(g2), that is,ρ+ (and hence alsoρ−(g)) is
invariant to isomorphisms.

Given a graphg and two reductionsr1, r2 ∈ ρ−(g), we are interested in applying bothr1 andr2

to g. However, sometimes this is not possible directly. Consider for instance the class of connected
graphsLc, the graphg = ({1,2,3},{{1,2},{2,3},{3,1}}), and the reductionsr1 = (/0,{{1,2}})
andr2 = (/0,{{2,3}}). We havef1 = g− r1 = ({1,2,3},{{2,3},{3,1}}). We cannot applyr2 to f1
as this would result in a graph which is not inLc due to the isolated node 2;r2 is not an allowed
reduction ing− r1. We can however map the reductionr2 to a reduction that is allowed; instead of
r2 we use({2},{{2,3}}), which is a valid deletion fromf1. This translation ofr2 to the context
of g− r1 for ρ−c is denoted byr2 ↑

g
c r1. More formally, for connected graphsLc, we definer2 ↑

g
c r1

to be equal tor2, except in the case wherer1 = (/0,{v,u1}), r2 = (/0,{v,u2}) andv has degree 2, in
which caser2 ↑

g
c r1 = r2∪ ({v}, /0). Then,(g− r1)−

(

r2 ↑
g
c r1

)

= ({1,3},{{1,3}}).
We now more formally introduce the properties of these reduction translators. A reduction

translator is an operator· ↑· · mapping graphsg and reductionsr1, r2 ∈ ρ−(g) to a new reduction
r2 ↑

g r1 satisfying
∀g, r1, r2 : r2⊆ r2 ↑

g r1, (4)

that is, after the translator is applied the reduction can only become larger,

∀g, r1, r2 : r1∩ (r2 ↑
g r1) = (/0, /0), (5)

that is, no element is removed twice, and

∀g, r1, r2 : (r2 ↑
g r1)∪ r1 = (r1 ↑

g r2)∪ r2, (6)

that is, reversing the order does not affect which vertices and edgesare removed.
To allow for an efficient enumeration of graphs by our algorithm, we require that the augmenta-

tion schema of the class of graphs fulfills adensityproperty. This property is based on thegraph of
parents. The graph of parentsGoPρ−,↑(g) of a graphg is defined as follows:

• V(GoPρ−,↑(g)) = ρ−(g), that is, every reduction forg corresponds to a vertex in its graph of
parents.

• For any twor1, r2 ∈ V(GoPρ−,↑(g)), the graphGoPρ−,↑(g) has edge{r1, r2} iff (r1 ↑
g r2) ∈

ρ−(g− r2) and(r2 ↑
g r1) ∈ ρ−(g− r1).

The intuition is that there is an edge between two nodes in the graph of parents, iff it is possible to
go from one parent to the other by first applying a reduction, and then applying an augmentation.
An example is shown in Figure 1.

We say that(ρ+,ρ−,↑) is a dense augmentation schema forL iff

1. (ρ+,ρ−) is an augmentation schema forL and↑ is a reduction translator.

2. for every non-minimal graphg ∈ L it holds that either the graph of parentsGoPρ−,↑(g) is
connected, org− r is a minimal element ofL for all r ∈ ρ−(g) (in most cases,g− r =⊤).

915

RAMON AND NIJSSEN

r5
r4

r1 r3

r2

r4

r2

r3

r5

gr1

c
g

(g-r1)-(r4 r1) (g-r5)-(r3 r5)
c
g

Figure 1: On the bottom-left, a connected graphg is drawn. In the middle, there is the graph of
parentsGoPρ−c ,↑c

(g). For every of its verticesr i , the correspondingg− r i of g is drawn. For the
edges{r1, r4} and{r3, r5}, the common (grand)parent is drawn. Note that there is no edge between
for exampler3 andr4 as(g− r3)− (r4 ↑

g
c r3) is not a connected graph.

Let us return to the examples of graph classes. For the class of all graphsLa, we definer1 ↑
g
a r2 =

r1. It is easy to show thatGoPρ−a ,↑a
(g) is a clique and that(ρ+

a ,ρ−a ,↑a) is a dense augmentation
schema. We can also prove for connected graphs that(ρ+

c ,ρ−c ,↑c) is a dense augmentation schema
(see the appendix for a proof).

The main result of this paper is the following:

Theorem 1 Given an augmentation operatorρ+ and a predicate p. We can solve problem 1 with
polynomial delay if the following conditions are satisfied:

• there exists a reduction operatorρ− and a reduction translator↑ such that(ρ+,ρ−,↑) is a
dense augmentation schema;

• the predicate p is monotonic w.r.t.ρ+ overLρ+ ;

• ρ+, ρ− and p can be evaluated in polynomial time in their arguments;

• the number of vertices in V∗(r) for every possible r resulting fromρ+ andρ− is bounded by
a constant.

There are many classes of graphs for which these conditions are fulfilled. Below we give a
non-exhaustive list of examples.

5.1 Monotonic Classes

Any predicatep that is monotonic w.r.t. edge and vertex deletion and that can be evaluated in
polynomial time defines a classLρ+

a ,p that satisfies the conditions of Theorem 1, as(ρ+
a ,ρ−a ,↑a) is a

dense augmentation schema, and all operations are polynomial. Hence, ouralgorithm can efficiently
enumerate all these monotonic classes.

An interesting special case are the minor-closed classes of graphs. Theminors of a graph can
be obtained by deleting edges, vertices, or identifying adjacent vertices into a single new vertex that
is adjacent to all vertices that were adjacent to any of the identified originalvertices. A class is
minor-closed if for any graphg all its minors are also included in the class. Some classes of graphs

916

POLYNOMIAL -DELAY GRAPH ENUMERATION

can be characterized by forbidden minors, that is, minors that none of thegraphs are allowed to
have. One example is the class of all planar graphs (the forbidden minors being the 5-cliqueK5 and
the complete bipartite graphK3,3). It can be determined in polynomial time if a graph contains a
given forbidden minor, and minor-closed classes of graphs are monotonic for ρ+

a .

5.2 Connected Graphs

It is proven in the appendix that the augmentation schema(ρ+
c ,ρ−c ,↑c) is dense and its operators

are polynomial. It follows that connected graphs can be enumerated with polynomial delay. Any
predicate which is closed under edge and vertex deletion is also monotonic w.r.t. ρ+

c . Therefore, for
any monotonic predicatep, our algorithm can list all connected graphs satisfyingp with polynomial
delay.

5.3 Hereditary Classes with Bounded Degree

A predicatep is hereditary iff for every graphg1 such thatp(g1) holds,p(g2) holds for anyinduced
subgraphg2 of g1. As pointed out in Section 2, aninducedsubgraph must contain all edges between
a selected set of nodes in the original graph. A hereditary predicate is monotonic w.r.t. the following
augmentation operator:

ρ+
h (g) =

{(

{vnew},{{vnew,v
′}|v′ ∈V}

)

| V ⊆V(g)
}

,

where againvnew is a new vertex not inV(g). The corresponding reduction operator should remove
every single vertex as well as all edges emanating from it. It can be shownthat the resulting augmen-
tation schema is dense. However, the augmentation operatorρ+

h outputs a number of augmentations
exponential in the size of the input. If we restrict ourselves to graphs with bounded degree, however,
we can enumerate the resulting class with polynomial delay.

One example is the class of claw-free graphs. A graph is called claw-freeif the graph

({v1,v2,v3,v4},{{v1,v2},{v1,v3},{v1,v4}})

is not one of its induced subgraphs. Claw-freeness is not a monotonic property inLρ+
a
, as a subgraph

of a graph without claws can contain a claw: for instance, consider the cliqueK5; this graph does
not have a claw as induced subgraph (all its induced subgraphs also being cliques), but many of its
(ordinary) subgraphs are claws.

In general, claw-freeness is a hereditary property, as every induced subgraph of a graph without
claws, is claw-free. To the best of our knowledge no polynomial algorithmis currently known
for enumerating all claw-free graphs even if we do allow for duplicates (Goldberg, 1992). Our
algorithm partially solves this problem by allowing for listing all claw-free graphs with bounded
degree.

6. Automorphism Groups and Bases

In order to avoid enumerating duplicates, we will use some theory on automorphism groups. In this
section, we will briefly review the necessary concepts.

An automorphism of a graphg is an isomorphism betweeng and itself. We will denote the
identity automorphism withIg. In Figure 2, a graphgex with 8 vertices is shown, together with

917

RAMON AND NIJSSEN

1

2

3 4 5 6

7

8

1

2

3 4 5 6

7

8

1

2

3 4 5 6

7

8

1

2

3 4 5 6

7

8

1

2

3 4 5 6

7

8

1

2

3 4 5 6

7

8

ϕ

ϕϕ

ϕ

ϕ
3

2

1 4

5

ϕ
6

Figure 2: A graphgex and 6 of its automorphisms.

six of its automorphisms. An automorphism is a permutation of the vertices ofg. The set of all
automorphisms ofg equipped with composition of permutations forms a permutation group acting
onV(g). This group is called the automorphism group ofg, which we denote withAut(g).

Let P be a permutation group and letS⊆ P. We sayS is a set of generators ofP iff every
element ofP can be written as a composition of elements ofS. We denote this fact withP =<
S>. For example, in Figure 2,{ϕ1,ϕ2,ϕ3,ϕ5} is a (non-minimal) set of generators ofAut(gex).
Automorphismϕ4 can be composed byϕ4 = ϕ3◦ϕ1◦ϕ3. ϕ6 can be composed asϕ6 = ϕ1◦ϕ3◦ϕ1.

Let P be a permutation group acting onV and letv∈V. The stabilizer ofv in P is the subgroup
Pv = {ϕ∈P | ϕ(v) = v}. Consider for example the automorphism groupP=Aut(C5) on the 5-cycle
graphC5 = ({v1,v2,v3,v4,v5},{{v1,v2},{v2,v3},{v3,v4},{v4,v5}}). This group has 10 elements,
each of which can be decomposed by (possibly) a mirror permutation{(v1,v1),(v2,v5), (v5,v2),
(v3,v4),(v4,v3)} and rotations (0, 1 or more applications of{(v1,v2),(v2,v3),(v3,v4), (v4,v5),
(v5,v1)}). For any vertexv ∈ C5, the stabilizerPv contains precisely 2 elements. E.g.,Pv3 con-
tains the identity permutation and the mirror{(v3,v3),(v4,v2),(v2,v4),(v1,v5),(v5,v1)}

One can apply the definition of stabilizers recursively; we will denote withPv1,...,vk the stabilizer
of vk in Pv1,...,vk−1. A sequence of pointsB = [v1 . . .vn] of V is called abasefor permutation group
P iff Pv1,...,vn−1 only contains the identity permutation. For example, in Figure 2,B1 = [3,1,6,8] is a
base forgex. Indeed, only the identity automorphismIgex leaves all four vertices 1, 3, 6 and 8 fixed.
Also B2 = [3,1,6,8,2,4,5,7] is a base forgex.

Let P be a permutation group,B a base ofP andS⊆P. Sis called a strong generating set related
to B= {v1, . . . ,vk} if it contains generators for all permutations inPv1,...,vl for 1≤ l ≤ k. We will use
the abbreviation BSGS for a pair(B,S) whereB is a base andS is a strong generating set related to
B.

Consider the baseB1 = [3,1,6,8] for the groupAut(gex) in Figure 2. We can construct a
strong generating set by first choosing generators forAut(gex)3,1,6,8, then choosing generators for
Aut(gex)3,1, Aut(gex)3,1,6 and so on until we have generators forAut(gex). Each time, we use the
generators of the subgroup and extend them to a set of generators forthe larger group. In our exam-

918

POLYNOMIAL -DELAY GRAPH ENUMERATION

ple,{ϕ4} is a set of generators forAut(gex)3,1,6, Next,{ϕ4,ϕ5} is a set of generators forAut(gex)3,1

and{ϕ4,ϕ5,ϕ1} is a set of generators forAut(gex)3. Finally, {ϕ4,ϕ5,ϕ1,ϕ3,ϕ2} is a set of genera-
tors forAut(gex) and therefore a strong generating set forB.

A BSGS can represent a permutation group acting onn elements using onlyO(nlog(n)) genera-
tors. For example, even though in Figure 2, the automorphism groupAut(gex) contains 2∗3∗2∗3∗
2 = 72 elements, only 5 generators are needed to represent it. Moreover, an O(n5) algorithm exists
to transform a BSGS into a BSGS with a different base (Butler, 1991). In Figure 2, consider the
BSGS([3,1,6,8],{ϕ4,ϕ5,ϕ1,ϕ3,ϕ2}) and suppose we want a strongly generating set for the base
[3,1,8,6]. Then, we have to combine the generators ofAut(gex)3,1,6 andAut(gex)3,1. One possible
strongly generating set is{ϕ4◦ϕ5,ϕ5,ϕ1,ϕ3,ϕ2}.

In general, it is easy to see that we can reduce any strong generating set for a permutation group
on n elements to at mostn(n− 1)/2 elements. LetB = {v1, . . . ,vk} be a base (k≤ n), and letSi

(1 ≤ i ≤ k) be the subset of the strong generating set containing all generators fixing v j for all
1≤ j < i but mappingvi on a different element. Now for alli from 1 tok we can do the following.
As long as anySi has more thann− i elements, there are two permutationsp1, p2 ∈ Si such that
p1(vi) = p2(vi), and we can removep2 from Si and addp2 ◦ p−1

1 to Si+1. The permutation group
generated by the new strong generating set∪iSi remains the same, as any permutation requiringp2

in its construction can still be constructed withp2 ◦ p−1
1 ◦ p1. After performing such replacements

until all Si contain at mostn− i elements, we have a strong generating set of size at mostn(n−1)/2.
An important property is that given a strong generating set for some base, one can efficiently

compute a strong generating set for another base. A basic step in such base change is to interchange
two vertices, that is, given a strong generating set forB = {v1 . . .vn}, find a strong generating set
for B′ = {v1 . . .vl−1,vl+1,vl ,vl+2 . . .vn} for somel with 1≤ l < n. Let S be a strong generating
set withS= ∪n

i=1Si whereSi contains the generators fixingv j (1≤ j < i) and not fixingvi . The
only part ofS that should be changed when swappingvl andvl+1 in the base areSl andSl+1. Let
S′ = S′l ∪S′l+1∪

S

i 6∈{l ,l+1}Si be the strong generating set for the new baseB′, whereS′l fixes vi

(1≤ i < l) and S′l+1 fixes vi (1≤ i < l) and vl+1. One can constructS′i by ensuring it contains
permutations that mapvi+1 on all its possible images. These images can be found with a so-called
reachability graph. This means one starts with a set of possible imagesI = {vi+1}, and as long as
there is a permutation in∪n

i=l Si which maps an elementv∈ I on an elementv′ 6∈ I , one addsv′ to I ; in
the mean time, for each elementv′ one maintains a corresponding permutation. After constructing
S′l , one can constructS′l+1 by starting withS′l+1 = Sl ∪Sl+1 and then removing any permutations
from it that are redundant. In this way, it is possible to find in polynomial time a strong generating
set for a base in which two vertices have been swapped. By iterating this procedure, it is possible
to efficiently find a strong generating set for any new base. Note that we here only described one
naive strategy. In the literature, much more advanced algorithms have beenproposed, which allow
to perform these operations significantly more efficiently.

7. Algorithm Outline

Our algorithm enumerates the graph ordered by size, that is, no graph willbe output before all its
ancestors underρ+ are listed. Indeed, we can show that if(ρ+,ρ−,↑) is a dense augmentation
schema, every graph has a unique size, that is, there is a functionsizethat maps every graph to an
integer such that for everyg in Lρ+ it holds thatr ∈ ρ+(g) implies thatsize(g+ r) = size(g)+ 1.
This results allows us to order the graphs that we need to enumerate level-wise.

919

RAMON AND NIJSSEN

Superficially, the idea is then as follows. We maintain graphs that we are enumerating in a
queue. Initially, this queue contains the graph⊤. Repeatedly, we pop a graph from the queue, apply
the augmentation operator, and those children which are not equivalent toany graph in the queue,
are pushed in the queue. Due to the level-wise enumeration, equivalent graphs must be in the queue.
We need to address two issues:

• how do we avoid that we insert a child which is equivalent to a child of another graph?

• how do we avoid that we insert two children of the same graph that are equivalent with each
other?

To make these computations possible in polynomial time, we also keep all parents of the graphs
in the queue in memory. For each graph, both those in the queue and their parents, we store the
following information:

• a representation for the graphg

• for each augmentation (and reduction)r of g, we storer together with an isomorphism map-
ping ϕ = aug(g, r) (resp. ϕ = red(g, r)) such thatϕ(g+ r) (resp. ϕ(g− r)) is the stored
representative of the isomorphism class ofg+ r (resp.g− r). Until we assign theaug(g, r)
and red(g, r) variables with a value, we will assume them initializedaug(g, r) =′?′ and
red(g, r) =′?′. If p(g+ r) is false, withp the monotonic predicate of interest, we will as-
signaug(g, r) the valuenil .

• a base and strong generating set (BSGS)bsgs(g) of the automorphism groupAut(g).

We output a graph when we pop it from the queue. Furthermore, we determine the BSGS at that
point. The BSGS allows us to compute for each pair of augmentations of a graph if they result in
equivalent graphs, and thus allows us to avoid two equivalent children of the same graph from being
pushed in the queue.

To avoid that two different graphs insert children in the queue that are equivalent, we make sure
that the first parent of a child marks at least one augmentation in each of theother parents of the
child. When this alternative parent is popped from the queue later, it can use this information to
avoid pushing this child and all its equivalent children.

To prove that this procedure is polynomial, we need to show that we can compute the BSGS in
polynomial time, and that we can find all parents of a child in polynomial time. Let us start with
this second point.

One of the conditions of Theorem 1 is that the augmentation schema is dense, that is, that the
graph of parents is connected; hence we can compute a spanning tree for the graph of parents. If we
create a child, we know the parent that generated this child; by traversingthe spanning tree starting
from the reduction achieving this parent, we can traverse all possible reductions. At the same time,
for every step we take in this spanning tree, we can determine a corresponding stored parent: every
step in the graph of parents corresponds to a reduction followed by an augmentation, for which we
have stored associated permutations that point to stored representatives.

To compute the BSGS the key observation is that we can incrementally compute theBSGS of
a graph from the BSGS of one of its parents, in a similar way to the algorithm of Goldberg (1992).
Given a child and its parent, we perform a base change for the parent, such that we obtain permu-
tations in which the vertices contained in the augmentation are stabilized. This gives generators

920

POLYNOMIAL -DELAY GRAPH ENUMERATION

for all vertices in the child, except those contained in the augmentation. By traversing all parents
(as computed when the child was created), we can determine permutations andimages for these
vertices as well. The resulting set of generators can be reduced to a BSGS in polynomial time.

Details of this algorithm, including optimizations and proofs of complexity, can be found in the
appendix.

8. Conclusions

We introduced an algorithm for listing graphs that makes sure that no two equivalent graphs are
being output. We showed that for a well-defined set of conditions on a class of graphs to enumerate,
this algorithm is correct and achieves polynomial delay. Classes of graphs that can be enumerated
with low run-time complexity are connected graphs, planar graphs, minor closed graphs, mono-
tonic classes of graphs in general, and hereditary classes with boundeddegree. To the best of our
knowledge, this is the first algorithm to be general enough to be able to list thisrange of classes
efficiently, and for several of these classes no polynomial delay algorithm was presented before. In
the appendix, we show that our algorithm runs with delayO(n5) for the class of all graphs, which
is an improvement over the known method of Goldberg (1992), which achieves a delay ofO(n6),
wheren is the number of vertices in the largest graph that is listed.

Most pattern mining algorithms consist of a candidate generation part and aninterestingness
evaluation part. This work contributes to the theory of pattern mining by providing a polynomial-
delay algorithm for the first of these two common tasks. Also, our algorithm can be used as a generic
candidate pattern generator for a wide range of algorithms for mining structured patterns, avoiding
the need to research specialized canonical forms and enumeration strategies.

In contrast to other graph pattern mining systems, our algorithm provides atthe same time a
data structure in which one can look up a pattern in polynomial time. Indeed: given a patterng,
one can constructg from the empty graph by a sequence of augmentations, and then follow the
augmentation pointers through the data structure. Efficient lookup could bevery useful when the
set of patterns resulting from a pattern mining step is queried by the user or by algorithms taking
this set of patterns as input.

Even though its run-time complexity is favorable, the space complexity of our algorithm is an
issue. The space required is polynomial in the size of the output; given thatthe number of listed
graphs can be exponential, the storage requirements for large classes of graphs can be exponential.
However, in those applications where the listed graphs need to be stored anyway, such as applica-
tions in data analysis, this drawback is of minor concern. Moreover, we know of no other general
approaches that obtain a better space complexity.

As future work, we conjecture that the run-time complexity of our algorithm can be reduced
further, at least to a delay ofO(n4) for the class of all graphs and the class of connected graphs,
through the definition of a canonical representation over the graphs. Furthermore, we hope to re-
duce the space requirements of our algorithm in problem settings where notall listed graphs are
required to be stored, and plan to implement it in concrete data mining systems. Finally, relieving
the constraint of bounded degree for hereditary classes remains an interesting problem.

921

RAMON AND NIJSSEN

Acknowledgments

Jan Ramon and Siegfried Nijssen are post-doctoral fellows of the Fund for Scientific Research of
Flanders (FWO-Vlaanderen). Siegfried Nijssen was also supported bythe European Commission
under the 6th Framework Programme, project “Inductive Querying”, contract number FP6-516169,
and under the 7th Framework Programme FP7-ICT-2007-C FET-Open, project “Bison”, contract
number BISON-211898. We are grateful to Maurice Bruynooghe for proof-reading our final ver-
sion.

Appendix A. Algorithmic Details and Proofs

In this appendix we provide details of our algorithm and proofs for our results.

A.1 Dense Augmentation Schemas

An important property of a dense augmentation schema is the following:

Lemma 2 LetL be a class of graphs, and let(ρ+,ρ−,↑) be a dense augmentation schema forL .
Then, there exists a function size: L → N such that∀g∈ L ,∀r ∈ ρ+(g) : size(g+ r) = size(g)+1.

Proof We will say that a graphg can be constructed from⊤ in n steps if there exists a sequence
⊤= g0,g1, . . . ,gn = g such thatgi+1 = gi + r i for somer i ∈ ρ+(gi) for i = 0. . .n−1.

We first show that there is no graphg which both can be constructed from⊤ in n1 steps and can
be constructed from⊤ in n2 steps for two distinct numbersn1 andn2.

Assume that such a graphg exists, and consider a minimal such graphg (according to the
order induced by the augmentation schema). Then, there exists a parentg− r ′1 of g which can
be constructed from⊤ in n1− 1 steps, and a parentg− r ′2 of g which can be constructed from
⊤ in n2− 1 steps. As the graph of parentsGoPρ−,↑(g) of g is connected, there must exist two
r1, r2 ∈ ρ−(g) such that(r1, r2) is an edge ofGoPρ−,↑(g), g− r1 can be constructed from⊤ in
n′1 steps,g− r2 can be constructed from⊤ in n′2 steps andn′1 6= n′2. As (r1, r2) is an edge of
GoPρ−,↑(g), (r1 ↑

g r2) ∈ ρ−(g− r2) and(r2 ↑
g r1) ∈ ρ−(g− r1), there exists some graphp such that

p≃ (g− r2)− (r1 ↑
g r2) and p≃ (g− r2)− (r2 ↑

g r1). Let np be the number of steps needed to
constructp from⊤. Then, remembering that augmentation schemas are isomorphism-invariant, we
can conclude that bothg− r1 andg− r2 can be constructed from⊤ in np +1 steps. Now asn1 6= n2

eithern1−1 6= np+1 orn2−1 6= np+1. Without loss of generality we can assumen1 6= np+1. This
means thatg− r1 can be constructed from⊤ in bothnp+1 andn1−1 steps, which is a contradiction
with the assumption thatg is a minimal graph for which it holds that it can be constructed from⊤
in two different numbers of steps.

Therefore, we conclude that no such graph exists. Hence, in order toobtain a functionsize
satisfying the requirement, one can definesize(⊤) to be 0 and for everyg, size(g) to be the number
of steps in whichg can be constructed from⊤.

In Section 5 we stated the following.

Lemma 3 (ρ+
c ,ρ−c ,↑c) is a dense augmentation schema.

922

POLYNOMIAL -DELAY GRAPH ENUMERATION

Proof We consider the different elements of the definition of a dense augmentation schema.
First, remember that(ρ+

c ,ρ−c) was defined by Equation (2) and (3) (see page 913 and 914). This
is clearly an augmentation schema. Also, we definedr1 ↑

g
c r2 to be equal tor1, except in the case

wherer1 = (/0,{v,u1}), r2 = (/0,{v,u2}) andv has degree 2. In that caser1 ↑
g
c r2 = r1∪ ({v},{}). It

is easy to see that↑c satisfies Equations (4), (5) and (6), and hence is a reduction translator.
It remains to be shown that for every non-minimal graphg∈ Lc it holds that either the graph of

parentsGoPρ−c ,↑c
(g) is connected, org− r is the minimal element ofLc for all r ∈ ρ−(g).

Consider a connected graphg with at least 2 edges. We prove thatGoPρ−c ,↑c
(g) is connected.

If g is a tree, then every reduction inρ−(g) removes a leaf and the edge adjacent to it. By the
definition of↑c, r1 ↑

g
c r2 = r1 andr1 ∈ ρ−c (g− r2) will hold for any distinctr1, r2 ∈ ρ−c . So if g is a

tree,GoPρ−c ,↑c
(g) is a clique.

If g is not a tree it contains at least one simple cycleC. We can partitionρ−c (g) into two setsR1

andR2 such thatR1 contains all reductions removing an edge from the cycleC, andR2 contains all
other reductions. For anyr1 ∈R1 andr2 ∈R2, it holds that removingr2 from g− r1 does not discon-
nectg and vice-versa. So such twor1 andr2 are adjacent inGoPρ−c ,↑c

(g). Therefore,GoPρ−c ,↑c
(g)

is certainly connected if #R2 ≥ 1. On the other hand, if #R2 = 0, g is a simple cycle. In that case,
two reductions ofR1 are adjacent iff they remove two adjacent edges of the cycle. So in that case,
GoPρ−c ,↑c

(g) is a cycle and hence connected.

A.2 Algorithm

In this section we explain in more detail our algorithm. As stated in Section 7, for each graph, we
store the following information:

• a representation for the graphg

• for each augmentation and reductionr of g, we storer together with an isomorphism mapping
aug(g, r) (resp. red(g, r)) that mapsg+ r (resp. g− r), to the stored representative of their
isomorphism class. In the algorithm, we useaug(g, r) andred(g, r) as functions that return
the isomorphism. When the isomorphism is not yet computed,aug(g, r) and red(g, r) will
return′?′. If p(g+ r) is false,aug(g, r) returns the valuenil .

• a base and strong generating set (BSGS)bsgs(g) of the automorphism groupAut(g).

Algorithm 2 shows the high level algorithm. It repeatedly takes an unprocessed graphg+ r and
processes it;g+ r must be minimal according to thesizefunction from Lemma 2. A graph which
has been processed remains in memory till it is no longer needed in the computation for one of its
ancestors.

As shown by Algorithm 3, the processing of a graphg includes computing a BSGS and the
automorphism group ofg, computing reachability graphs ofAut(g) (line 3), finding isomorphic
variants of children (lines 8-12), and examining all other children ofg including constructing all
red(·, ·) and someaug(·, ·) links (lines 13-24). We will describe each of the steps of the algorithm
below.

Let us first consider what is known at the point PROCESSGRAPH(g,r0) is called. First, all
graphsh for which p(h) andsize(h) < size(g) have been processed and outputted, and the values
for aug(h, ·), red(h, ·) andbsgs(h) have been computed. Second, all graphsf for which p(f) and

923

RAMON AND NIJSSEN

Algorithm 2 Highlevel algorithm

Require: a graph classL , a monotonic predicatep and a dense augmentation schema(ρ+,ρ−,↑)
Ensure: output allg∈ L with p(g)

1: Re f Queue←{(⊤,(/0, /0))}
2: while Re f Queue6= /0 do
3: Let (g, r) ∈ Re f Queuesuch thatsize(g+ r) is minimal
4: Re f Queue← Re f Queue\{(g, r)}
5: PROCESSGRAPH(g,r)
6: Outputg
7: end while

size(f) = size(g) have either enteredRe f Queueor are fully processed. In any case, all values
red(f , ·) have been computed.

Let SV denote the bound on the number of vertices and edges that can occur at most in any
augmentationr ∈ ρ+(g) with g∈ L . Then we have the following lemma.

Lemma 4 At line 2 of Algorithm 3 one can compute a BSGS forAut(g) in time O(|V(g)|5+ |V(g)|3 ·
|ρ−(g)| ·SV !).

Proof The caseg=⊤ is trivial, so we assumeg 6=⊤ andr0 ∈ ρ−(g). A parentg− r0 is known, and
so isbsgs(g− r0) (assize(g− r0) = size(g)−1 and henceg− r0 has been fully processed). By per-
forming a base change, we can obtain a BSGS for the stabilizerAut(g)V∗(r0) which fixes all elements
in V∗(r0); please note thatV∗(r) contains all nodes involved in the reduction. Hence, we compute a
base in which all nodes involved in the reduction are fixed. This is possible intimeO(|V(g)|5). We
can then extend the set of generators corresponding to this BSGS to a setof generators forAut(g)
by adding for every coset ofAut(g)V∗(r0) in Aut(g) one representative. Each such representativeϕ
mapsr0 on some differentϕ(r0). Graphsg− r0 andg−ϕ(r0) are isomorphic, which is reflected
by red(g, r0)(g− r0) = red(g,ϕ(r0))(g−ϕ(r0)); here,red(g, r0) returns the stored permutation for
reductionr0 on graphg, which after application on the nodes and edges in graphg− r0 yields the
same graph as for the equivalent reductionϕ(r0). One can therefore find all such representatives
by iterating over allr ∈ ρ−(g), checking whetherred(g, r0)(g− r0) = red(g, r)(g− r) (all red(g, ·)
were computed earlier) and for all of these listing all possibilities to extendred(g, r)−1◦aug(g, r0)
to an automorphism(red(g, r)−1◦aug(g, r0))∪ϕ0 (whereϕ0 : V(r)→V(r0)). In total, the number
of representatives of cosets ofAut(g)V∗(r0) is bounded by|ρ−(g)| ·SV !. One can eliminate the re-
dundant automorphisms in this list in timeO(|V(g)|3 · |ρ−(g)| ·SV !).

Line 3 of Algorithm 3 computes reachability graphsQi , which are used in line 9 of the algo-
rithm to determine if two augmentations yield isomorphic graphs. These graphs help to exploit the
knowledge of the just computed BSGSbsgs(g) of Aut(g). A reachability graph is computed for the
number of nodes of graphg involved in the augmentation. In the case of (un)connected graphs, an
augmentation involves either one or two nodes of graphg, and hence a reachability graph is used
for i = 1 or i = 2. Qi can be computed in timeO(i · |V(g)|i · |bsgs(g)|). As for a reduced BSGS we
have|bsgs(g)| ≤ |V(g)|2, line 3 can be performed in timeO(SV · |V(g)|SV+2).

924

POLYNOMIAL -DELAY GRAPH ENUMERATION

Algorithm 3 Processing one graph

1: procedure PROCESSGRAPH(g,r0)
2: bsgs(g)← ComputeBSGS(g, r0)
3: Ensure reachability graphQi exists forg wherei = |V∗(r0)∩V(g)|,

V(Qi) = (V(g))i , E(Qi) = {(W,ϕ(W)) |W ∈V(Qi)∧ϕ ∈ bsgs(g)}
4: Riso+←{r ∈ ρ+(g) | aug(g, r) 6=′?′}
5: done← FALSE

6: while not(done) do
7: if Riso+ 6= /0 then
8: Let r ∈ Riso+

9: for all r ′ ∈ ρ+(g) s.t.∃ϕ : (∀v∈V(g) : ϕ(v) ∈V(g))∧g+ r ≃ϕ g+ r ′ do
10: aug(g, r ′)← aug(g, r)◦ϕ−1

11: Riso+← Riso+ \{r ′}
12: end for
13: else if ∃r ∈ ρ+(g) : aug(g, r) =′?′ then
14: s= g+ r
15: (ok,s par list)← SEARCH PARENTS(g,r,s)
16: if ok∧ p(g) then
17: for all (r ′,ϕ′) ∈ s par list do
18: f ← ϕ′(s− r ′) ; aug(f ,ϕ′(r ′)) = ϕ′−1 ; red(s, r ′) = ϕ′
19: Re f Queue= Re f Queue∪{(s, r)}
20: else
21: for all (r ′,ϕ′) ∈ s par list do
22: aug(ϕ′(s− r ′),ϕ′(r ′))← nil
23: end if
24: Riso+← Riso+∪{r}
25: else
26: done← TRUE

27: end if
28: end while
29: end procedure

It is possible that previous calls of PROCESSGRAPH have assigned a value already to some
of the aug(g, ·), and line 4 collects these augmentations so that their isomorphic variants can be
computed in lines 8-12.

Next, the while loop at line 6 runs until allaug(g, ·) values have been computed. As soon as a
new child is identified (either by previous calls to PROCESSGRAPH (line 4) or by newly examined
children (line 24) it is added toRiso+, and in the next iteration all its isomorphic variants are com-
puted. IfRiso+ is empty, ther ∈ ρ+(g) for which aug(g, r) =′?′ are isomorphic to none of ther ′ for
whichaug(g, r ′) has already been assigned a value and a new child is considered (lines 13-24).

We will first discuss the computation of isomorphic variants of anr ∈ Riso+ in line 9. Recalling
the definition, allr ′ are searched for which there is a mappingϕ such that(∀v ∈ V(g) : ϕ(v) ∈
V(g))∧g+ r ≃ϕ g+ r ′. One can do this as follows. First, use the reachability graphQi (with i =
|V∗(r)∩V(g)|) to find all possible images ofV∗(r)∩V(g) under the automorphism groupAut(g).

925

RAMON AND NIJSSEN

Algorithm 4 searchparents

1: procedure SEARCH PARENTS(g, r0, s)
2: Construct a spanning treeT for GoPρ−,↑(s), the graph of parents ofs
3: s par list←{(r0, Ig)}}
4: Perform a depth-first search ofT, starting atr0

5: for all edges(r1, r2) visited during the depth first searchdo
6: ϕ← GET PARENT(s, r1, r2)
7: if ϕ = nil then return (FALSE,s par list)
8: s par list← s par list ∪{(r2,ϕ)}
9: end for

10: return (TRUE,s par list)
11: end procedure

Algorithm 5 Get one parent

1: procedure GET PARENT(s,r1,r2)
2: ϕ f 1← ext(s par list(s, r1), Is)
3: f1← ϕ f 1(s− r1)
4: ϕp← ext(red(f1,ϕ f 1(r2 ↑

s r1)),ϕ f 1)
5: p← ϕp((s− r1)−ϕ f 1(r2 ↑

s r1))
6: Let r ′1 ∈ ρ+(p) andϕ∗ : V(ϕp(r1 ↑

s r2))→V(r ′1) such that(Ip∪ϕ∗)(ϕp(r1 ↑
s r2)) = r ′1

7: if aug(p, r ′1) = nil then returnnil
8: else returnext(aug(p, r ′1),(Ip∪ϕ∗)◦ϕp)
9: end procedure

For each of these images ofr, one can also compute one automorphismϕg ∈ Aut(g) under which
ϕg(r) corresponds to the image, by following the edges ofQi . Then, one can check for every
r ′ ∈ ρ+(g) whether there is a mappingϕr :V(r)→V(r ′) such that forϕ = ϕg∪ϕr we haveϕ(r) = r ′.
TraversingQi and computing the automorphismsϕg along the way is possible in timeO(|V(g)|i+1).
As i ≤ SV and we do this at most once for everyr ∈ ρ+(g), the total time spent here is bounded by
O(|V(g)|SV+1|ρ+(g)|).

Let us now consider the investigation of new children in lines 13-24 of Algorithm 3. For a
particular childs= g+ r, the algorithm first searches the parentsf = s− r ′ for all r ′ ∈ ρ−(s). As we
explain below, if all parents ofs satisfy the predicatep the algorithm is guaranteed to find all these
parents. Theaug(f , r ′) variables have been assigned a value and depending on whetherp holds for
s itself, thered(s, r ′) variables have been assigned a value and it is added to the data structuresand
to Re f Queue.

Finding other parents of a proposed childs= g+ r is detailed in Algorithms 4 and 5. Before
analysing this procedure and its consequences, we first explain some basic ideas. The key intuition
that enables an efficient enumeration is that we can efficiently identify the (already enumerated)
parentsf2 of the candidate graphs together with a suitable isomorphism mappingϕ such thats−
r2 ≃ϕ f2 for every reductionr2 ∈ ρ−(s) by using the knowledge from Equation (6) that one can
obtain p = (s− r1)− (r2 ↑

s r1) also by removing the parts in a different order:p = (s− r2)−
(r1 ↑

s r2). Therefore, in Algorithm 5 we first remove somer1 ∈ ρ−(s) to obtain a known parentf1
of s, then go to a grand-parentp by removing a (translated)r2 from f1, and then go downwards

926

POLYNOMIAL -DELAY GRAPH ENUMERATION

Figure 3: Searching for parents

again fromp to the unknown parentf2 (see Figure 3 for an illustration). In order to construct an
isomorphism betweens− r2 and f2, isomorphisms betweens− r1 and f1, betweenf1− (r2 ↑

s r1)
andp and betweenp+(r1 ↑

s r2) and f2 are first extended to cover the full set of vertices ofs (the
ext(·, ·) function), and then composed (line 8).

In Algorithm 5 we have the following notation. Letϕ2 andϕ1 be bijections between sets of
vertices. Then,ext(ϕ2,ϕ1) is a bijection that maps anyx for which ϕ1(x) is in the domain ofϕ2 on
ϕ2(ϕ1(x)) and maps any otherx on a new vertex.

Now we return to the details of Algorithms 4 and 5. First, remember that for a dense augmen-
tation schema, the graph of parents of a particular graph is connected. Therefore, it is possible in
line 2 of Algorithms 4 to construct a spanning tree for it. Algorithm 4 attempts to construct in
s par list a mapping from reductionsr ∈ ρ−(s) to isomorphism mappings between the graphss− r
and the representatives of their isomorphism class which were output before. We know already the
isomorphism mapping betweens− r0 = g and the representative of its isomorphism class, which
is g itself (line 3). Now, if for somer1 ∈ ρ−(s) we know an isomorphism mapping betweens− r1

and its representativef1, and if for some otherr2 ∈ ρ−, the graphs− r2 satisfiesp and has been
listed earlier, then Algorithm 5 will provide us with an isomorphism mapping between s− r2 and its
representativef2 as discussed above.

Then there are two possible cases. On the one hand, if there is a parent of s which did not fulfil
the predicatep and hence was not listed earlier, we will not find that parent: line 7 of Algorithm
5 will detect this and returnnil , which will cause also Algorithm 4 to returnFALSE. On the other
hand, if all parents ofs fulfil predicatep, the search along the spanning tree will eventually provide
an isomorphism mapping betweens and the representatives ofs− r for all r ∈ ρ−(s).

The complexity of this search can be assessed as follows: Algorithm 5 is executed once for
everyr ′ ∈ ρ−(s) and contains operations on permutations that can be performed in timeO(|V(s)|).
Assuming that↑ can be performed efficiently, that a good data structure is built onρ+(p) in order
to be able to perform line 6 of Algorithm 5 efficiently, that|ρ−(s)| can be bounded byO(|ρ−(g)|)
and that|V(s)| can be bounded byO(|V(g)|), we can therefore conclude that Algorithm 4 can be
performed in timeO(|ρ−(g)| · |V(g)|). These assumptions are not very strong and hold for our two
example augmentation schemas(ρ+

a ,ρ−a ,↑a) and(ρ+
c ,ρ−c ,↑c). Algorithm 4 is ran at most once for

everyr ∈ ρ+(g), for a total complexity ofO(|ρ+(g)| · |V(g)| · |ρ−(g)|).
In summary, this appendix has provided an informal proof of the following.

Theorem 5 Under the assumptions stated in Theorem 1, Algorithm 2 correctly lists for every iso-
morphism class of graphs g for which p(g) = TRUE exactly one representative, and the time needed

927

RAMON AND NIJSSEN

for outputting the next graph g is bounded by O(|V(g)|5 + |V(g)|3 · |ρ−(g)| ·SV ! +SV · |V(g)|SV+2 +
|V(g)|SV+1|ρ+(g)|+ |ρ+(g)| · |V(g)| · |ρ−(g)|).

This bound is polynomial for a constantSV .
For example, for enumerating connected graphs with the schema(ρ+

c ,ρ−c ,↑c), SV = 2. There-
fore, this algorithm enumerates classes of connected graphs in timeO(|V(g)|5) for each output
graphg in the worst case. A similar result can be shown for enumerating (a monotonicsubset of)
all graphs with(ρ+

a ,ρ−a ,↑a).
Our conjecture is that this complexity can be improved further toO(|V(g)|4).

References

Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri Verkamo.
Fast discovery of association rules. InAdvances in Knowledge Discovery and Data Mining.
AAAI/MIT Press, 1996.

Christian Borgelt and Michael R. Berthold. Mining molecular fragments: Finding relevant sub-
structures of molecules. InICDM, pages 51–58, 2002.

Gregory Butler.Fundamental algorithms for permutation groups, volume 559 ofLecture Notes in
Computer Science. Springer-Verlag, 1991.

Yun Chi, Richard R. Muntz, Siegfried Nijssen, and Joost N. Kok. Frequent subtree mining - an
overview.Fundam. Inform., 66(1-2):161–198, 2005.

Leslie A. Goldberg. Efficient algorithms for listing unlabeled graphs.Journal of Algorithms, 13(1):
128–143, 1992.

Leslie A. Goldberg. Polynomial space polynomial delay algorithms for listing families of graphs.
In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing (STOC’93),
pages 218–225, New York, NY, USA, 1993. ACM Press.

Tamás Horv́ath, Jan Ramon, and Stefan Wrobel. Frequent subgraph mining in outerplanar graphs.
In Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 197–206, Philadelphia, PA, August 2006.

Jun Huan, Wei Wang, and Jan Prins. Efficient mining of frequent subgraphs in the presence of
isomorphism. InICDM, pages 549–552. IEEE Computer Society, 2003.

Akihiro Inokuchi. Mining generalized substructures from a set of labeled graphs. InICDM, pages
415–418. IEEE Computer Society, 2004.

Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. Complete mining offrequent patterns from
graphs: Mining graph data.Machine Learning, 50(3):321–354, 2003.

Johannes K̈obler, Uwe Scḧoning, and Jacobo Torán. The Graph Isomorphism Problem: Its Struc-
tural Complexity. Birkhäuser, 1993.

Michihiro Kuramochi and George Karypis. An efficient algorithm for discovering frequent sub-
graphs.IEEE Trans. Knowl. Data Eng., 16(9):1038–1051, 2004.

928

POLYNOMIAL -DELAY GRAPH ENUMERATION

Jure Leskovec, Ajit Singh, and Jon M. Kleinberg. Patterns of influencein a recommendation net-
work. In Advances in Knowledge Discovery and Data Mining, 10th Pacific-Asia Conference
(PAKDD), pages 380–389, 2006.

Brendan D. McKay. Isomorph-free exhaustive generation.Journal of Algorithms, 26:306–324,
1998.

Shin-ichi Nakano and Takeaki Uno. Constant time generation of trees withspecified diameter.
In Juraj Hromkovic, Manfred Nagl, and Bernhard Westfechtel, editors, Proceedings of the 30th
International Workshop on Graph Theoretical Concepts in Computer Science, volume 3353 of
Lecture Notes in Computer Science, pages 33–45. Springer-Verlag, 2004.

Siegfried Nijssen and Joost N. Kok. A quickstart in frequent structuremining can make a difference.
In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 647–652, 2004.

Christophe Paul, Andrzej Proskurowski, and Jan A. Telle. Generatinggraphs of bounded branch-
width. In Proceedings of the 32nd International Workshop on Graph Theoretical Concepts in
Computer Science, volume 4271 ofLecture Notes in Computer Science, pages 206–216, 2006.

Jan Ramon and Siegfried Nijssen. General graph refinement with polynomial delay. InProceedings
of the Workshop on Mining and Learning with Graphs (MLG’07), 2007.

Robert A. Wright, Bruce Richmond, Andrew Odlyzko, and Brendan D. McKay. Constant time
generation of free trees.SIAM Journal on Computing, 15(2):540–548, 1986.

Xifeng Yan and Jiawei Han. gSpan: Graph-based substructure pattern mining. InProceedings of
the 2002 IEEE International Conference on Data Mining (ICDM 2002), pages 721–724, Japan,
2002. IEEE Computer Society.

929

