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Abstract

Consider the following problem: given sets of unlabeled observations, each set with known label
proportions, predict the labels of another set of observations, possibly with known label propor-
tions. This problem occurs in areas like e-commerce, politics, spam filtering and improper content
detection. We present consistent estimators which can reconstruct the correct labels with high prob-
ability in a uniform convergence sense. Experiments show that our method works well in practice.

Keywords: unsupervised learning, Gaussian processes, classification and prediction, probabilistic
models, missing variables

1. Introduction

Different types of learning problems assume different problem settings.In supervisedlearning, we
are given sets of labeled instances. Another learning type calledunsupervisedlearning focuses on
the setting where unlabeled instances are given. Recently, it has been realized that unlabeled in-
stances when used in conjunction with a small amount of labeled instances candeliver considerable
learning performance improvement in comparison to using labeled instances alone. This leads to a
semi-supervisedlearning setting.

∗. A short version of this paper appeared in Quadrianto et al. (2008).
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(a) Supervised Learning (b) Unsupervised Learning

(c) Semi - supervised Learning (d) Learning from Proportions

Figure 1: Different types of learning problems (colors encode class labels). 1(a) -supervised
learning : only labeled instances are given; 1(b) -unsupervised learning : only un-
labeled instances are given; 1(c) -semi-supervised learning : both labeled and un-
labeled instances are given; 1(d):learning from proportions : at least as many data
aggregates (groups of data with their associated class label proportions) as there are num-
ber of classes are given.

We are interested in a learning setting where groups of unlabeled instancesare given. The
number of group is at least as many as number of classes. Each group is equipped with information
on class labelproportions. We called this informative group as aggregate (see Figure 1 for an
illustration). This type of learning problem appears in areas like e-commerce, politics, spam filtering
and improper content detection, as we illustrate below.

Assume that an internet services company wants to increase its profit in sales. Obviously send-
ing out discount coupons will increase sales, but sending coupons to customers who would have
purchased the goods anyway decreases the margins. Alternatively, failing to send coupons to cus-
tomers who would only buy in case of a discount reduces overall sales. We would like to identify
the class of would-be customers who are most likely to change their purchase decision when re-
ceiving a coupon. The problem is that there is no direct access to a sampleof would-be customers.
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Typically only a sample of people who buy regardless of coupons (those who bought when there
was no discount) and a mixed sample (those who bought when there was discount) are available.
The mixingproportionscan be reliably estimated using random assignment to control and treatment
groups. How can we use this information to determine the would-be customers?

Politicians face the same problem. They can rely on a set of always-favorable voters who will
favor them regardless, plus a set of swing voters who will make their decision dependent on what
the candidates offer. Since the candidate’s resources (finance, abilityto make election promises,
campaign time) are limited, it is desirable for them to focus their attention on that part of the demo-
graphic where they can achieve the largest gains. Previous elections can directly reveal the profile
of those who favor regardless, that is those who voted in favor where low campaign resources were
committed. Those who voted in favor where substantial resources were committed can be either
swing voters or always-favorable. So in a typical scenario there is no separate sample of swing
voters.

Likewise, consider the problem of spam filtering. Data sets of spam are likely to contain almost
pure spam (this is achieved e.g. by listing e-mails as spam bait), while user’s inboxes typically
contain a mix of spam and non-spam. We would like to use the inbox data to improveestimation
of spam. In many cases it is possible to estimate theproportionsof spam and non-spam in a user’s
inbox much more cheaply than the actual labels. We would like to use this information to categorize
e-mails into spam and non-spam.

Similarly, consider the problem of filtering images with “improper content”. Data sets of such
images are readily accessible thanks to user feedback, and it is reasonable to assume that this la-
beling is highly reliable. However the rest of images on the web (those not labeled) is a far larger
data set, albeit without labels (after all, this is what we would like to estimate the labels for). That
said, it is considerably cheaper to obtain a good estimate of theproportionsof proper and improper
content in addition to having one data set of images being of likely improper content. We would
like to obtain a classifier based on this information.

2. Problem Definition

In this paper, we present a method that makes use of the knowledge of label proportionsdirectly. As
motivated by the above examples, our method would be practically useful in many domains such as
identifying potential customers, potential voters, spam e-mails and improper images. We also prove
bounds indicating that the estimates obtained are close to those from a fully labeled scenario.

Before defining the problem, we emphasize that the formal setting is more general than the
above examples might suggest. More specifically, we may not requireany label to be known, only
their proportions within each of the involved data sets. Also the general problem is not restricted to
the binary case but instead can deal with large numbers of classes. Finally, it is possible to apply our
method to problems where thetest label proportionsare unknown, too. This simple modification
allows us to use this technique whenever covariate shift via label bias is present.

Formally, in a learning from proportions setting, we are givenn sets of observationsXi =
{

xi
1, . . . ,x

i
mi

}

of respective sample sizesmi (calibration set)i = 1, . . . ,nas well as a setX = {x1, . . . ,xm}
(test set). Moreover, we are given the fractionsπiy of labelsy∈ Y (|Y | ≤ n) contained in each set
Xi . These fractions form a full (column) rank mixing matrix,π ∈ R

n×|Y | with the constraint that
each row sums up to 1 and all entries are nonnegative. The marginal probability p(y) of the test
setX may or may not be known. Note that the label dictionariesYi do not need to be the same
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across all setsi (defineY := ∪i Yi) and we also allow forπiy = 0 if needed. It is our goal to design
algorithms which are able to obtain conditional class probability estimatesp(y|x) solely based on
this information.

As an illustration, take the spam filtering example. We haveX1 = “mail in spam box” (only
spam) andX2 = “mail in inbox” (spam mixed with non-spam). Also suppose that we may know
the proportion of spam vs non-spam in our inbox is 1 : 9. That means, we know: π1,spam=
1.0,π1,non−spam= 0,π2,spam= 0.1 andπ2,non−spam= 0.9. The test setX then may beX2 itself, for
example. Thus, the marginal probability of the test set will simply be:p(y = spam) = 0.1, p(y =
non−spam) = 0.9. The goal is to findp(spam|mail) in X. Note that, in general, our setting is dif-
ferent and more difficult than that of transduction. The latter requires atleast some labeled instances
of all classesare given. In the spam filtering example, we have no pure non-spam instances.

Key to our proposed solution is a conditional independence assumption,x ⊥⊥ i |y. In other
words, we assume that theconditionaldistribution ofx is independent of the indexi, as long as
we know the labely. This is a crucial assumption: after all, we want the distributions within each
class to be independent of which aggregate they can be found in. If this were not the case it would
be impossible to infer about the distribution on the test set from the (biased) distributions over the
aggregates.

3. Mean Operators

Our idea relies on uniform convergence properties of the expectation operator and of corresponding
risk functionals (Altun and Smola, 2006; Dudı́k and Schapire, 2006). In doing so, we are able to
design estimators with the same performance guarantees in terms of uniform convergence as those
with full access to the label information.

At the heart of our reasoning lies the fact that many estimators rely on data by solving a convex
optimization problem. We begin our exposition by discussing how this strategy can be employed in
the context of exponential families. Subsequently we state convergence guarantees and we discuss
how our method can be extended to other estimates such as Csiszar and Bregman divergences and
other function spaces.

3.1 Exponential Families

Denote byX the space of observations and letY be the space of labels. Moreover, letφ(x,y) :
X ×Y → H be a feature map into a Reproducing Kernel Hilbert Space (RKHS)H with kernel
k((x,y),(x′,y′)). In this case we may state conditional exponential models via

p(y|x,θ) = exp(〈φ(x,y),θ〉−g(θ|x)) with g(θ|x) = log ∑
y∈Y

exp〈φ(x,y),θ〉 ,

where the normalizationg is called the log-partition function, often referred to as the cumulant
generating function. Note that while in general there is no need forY to be discrete, we make
this simplifying assumption in order to be able to reconstruct the class probabilities efficiently. For
{(xi ,yi)} drawn iid from a distributionp(x,y) onX ×Y the conditional log-likelihood is given by

logp(Y|X,θ) =
m

∑
i=1

[〈φ(xi ,yi),θ〉−g(θ|xi)] = m〈µXY,θ〉−
m

∑
i=1

g(θ|xi),
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where the empirical mean in feature spaceµXY is defined as in Table 2. In order to avoid overfitting
one commonly maximizes the log-likelihood penalized by a priorp(θ). This means that we need to
solve the following optimization problem

θ∗ := argmin
θ

[− log{p(Y|X,θ)p(θ)}] . (1)

For instance, for a Gaussian prior onθ, i.e. for

− logp(θ) = λ‖θ‖2 +const.,

we have

θ∗ = argmin
θ

[

m

∑
i=1

g(θ|xi)−m〈µXY,θ〉+λ‖θ‖2

]

. (2)

The problem is that in our setting we do not know the labelsyi , so the sufficient statisticsµXY cannot
be computed exactly. Note, though that the only place where the labels enter the estimation process
is via the meanµXY. Our strategy is to exploit the fact that this quantity, however, is statistically
well behaved and converges under relatively mild technical conditions atrateO(m− 1

2 ) to its expected
value

µxy := E(x,y)∼p(x,y)[φ(x,y)],

as will be shown in Theorem 3. Our goal therefore will be to estimateµxy and use it as a proxy
for µXY, and only then solve (2) with the estimated ˆµXY instead ofµXY. We will discuss explicit
convergence guarantees in Section 5 after describing how to compute the mean operator in detail.

3.2 Estimating the Mean Operator

In order to obtainθ∗ we would needµXY, which is impossible to compute exactly, since we do not
haveY. However, we know thatµXY converges toµxy. Hence, if we are able to approximateµxy then
this, in turn, will be a good estimate forµXY.

Our quest is therefore as follows: expressµxy as a linear combination over expectations with
respect to the distributions on the data setsX1, . . . ,Xn (wheren ≥ |Y |). Secondly, show that the
expectations of the distributions having generated the setsXi (µset

x [i,y′], see Table 2), can be ap-
proximated by empirical means (µset

X [i,y′], see Table 2). Finally, we need to combine both steps to
provide guarantees forµXY.

It will turn out that in certain cases some of the algebra can be sidestepped, in particular when-
ever we may be able to identify several sets with each other (e.g. the test setX is one of the calibra-
tion data setsXi) or wheneverφ(x,y) factorizes intoψ(x)⊗ϕ(y). We will discuss these simplifica-
tions in Section 4.

3.2.1 MEAN OPERATOR

Sinceµxy is a linear operator mappingp(x,y) into a Hilbert Space we may expandµxy via

µxy = E(x,y)∼p(x,y)[φ(x,y)] = ∑
y∈Y

p(y)Ex∼p(x|y)[φ(x,y)] = ∑
y∈Y

p(y)µclass
x [y,y],
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Xi ith set of observations:Xi = {xi
1, . . . ,x

i
mi
}

mi number of observations inXi

X test set of observations:X = {x1, . . . ,xm}
Y test set of labels:Y = {y1, . . . ,ym}
m number of observations in the test setX
πiy proportion of labely in seti
φ(x,y) map from(x,y) to a Hilbert Space

Table 1: Notations used in the paper.

Expectations with respect to the model:
µxy := E(x,y)∼p(x,y)[φ(x,y)]

µclass
x [y,y′] := E(x)∼p(x|y)[φ(x,y′)]
µset

x [i,y′] := E(x)∼p(x|i)[φ(x,y′)]

µclass
x [y] := E(x)∼p(x|y)[ψ(x)]
µset

x [i] := E(x)∼p(x|i)[ψ(x)]

Expectations with respect to data:
µXY := 1

m ∑m
i=1 φ(xi ,yi)

(1a) µset
X [i,y′] := 1

mi
∑x∈Xi

φ(x,y′) (known)
(1b) µset

X [i] := 1
mi

∑x∈Xi
ψ(x) (known)

Estimates:
(2) µ̂class

x = (π⊤π)−1π⊤µset
X

(3a) µ̂XY = ∑y∈Y p(y)µ̂class
x [y,y]

(3b) µ̂XY = ∑y∈Y p(y)ϕ(y)⊗ µ̂class
x [y]

(4) θ̂∗ solution of (2) forµXY = µ̂XY.

Table 2: Major quantities of interest in the paper. Numbers on the left represent the order in which
the corresponding quantity is computed in the algorithm (letters denote the variant of the
algorithm: ‘a’ for general feature mapφ(x,y) and ‘b’ for factorizing feature mapφ(x,y) =
ψ(x)⊗ϕ(y)). Lowercase subscripts refer to model expectations, uppercase subscripts are
sample averages.

where the shorthandµclass
x [y,y] is defined in Table 2. This means that if we were able to compute

µclass
x [y,y] we would be able to “reassemble”µxy from its individual components. We now show that

µclass
x [y,y] can be estimated directly.

Our conditional independence assumption,p(x|y, i) = p(x|y), yields the following:

p(x|i) = ∑
y

p(x|y, i)p(y|i) = ∑
y

p(x|y)πiy. (3)

In the above equation, we form a mixing matrixπ with the elementπiy = p(y|i). This allows us to
define the following means

µset
x [i,y′] := Ex∼p(x|i)[φ(x,y′)]

(3)
= ∑

y
πiyµclass

x [y,y′].
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Algorithm 1
Input data setsX, {Xi}, probabilitiesπiy andp(y)
for i = 1 to n and y′ ∈ Y do

Compute empirical meansµset
X [i,y′]

end for
Computeµ̂class

x = (π⊤π)−1π⊤µset
X

Computeµ̂XY = ∑y∈Y p(y)µ̂class
x [y,y]

Solve the minimization problem

θ̂∗ = argmin
θ

[

m

∑
i=1

g(θ|xi)−m〈µ̂XY,θ〉+λ‖θ‖2

]

Return θ̂∗.

Note that in order to computeµset
x [i,y′] we donot need any label information with respect top(x|i).

It is simply the expectation ofφ(·,y′) on the distribution of bagi. However, since we have at least
|Y | of those equations and we assumed thatπ has full column rank, they allow us to solve a linear
system of equations and computeµclass

x [y,y] from µset
x [i,y′] for all i. In shorthand we may use

µset
x = πµclass

x and henceµclass
x = (π⊤π)−1π⊤µset

x (4)

to computeµclass
x [y,y] for all y ∈ Y . With some slight abuse of notation we haveµclass

x and µset
x

represent thematricesof termsµclass
x [y,y′] andµset

x [i,y′] respectively. There will be as many matrices
as the dimensions ofφ(x,y), thus (4) has to be solved separately for each dimension ofφ(x,y).

Obviously we cannot computeµset
x [i,y′] explicitly, since we only havesamplesfrom p(x|i).

However the same convergence results governing the convergence ofµXY to µxy also hold for the
convergence ofµset

X [i,y′] to µset
x [i,y′]. Hence we may use the empirical averageµset

X [i,y′] as the esti-
mate forµset

x [i,y′] and from that find an estimate forµXY.

3.2.2 BIG PICTURE

Overall, our strategy is as follows: use empirical means on the bagsXi to approximate expectations
with respect to the bag distribution. Use the latter to compute expectations with respect to a given
label, and finally, use the means conditional on the label distribution to obtainµxy which is a good
proxy forµXY (see Algorithm 1), i.e.

µset
X [i,y′] −→ µset

x [i,y′] −→ µclass
x [y,y′] −→ µxy −→ µXY.

For the first and last step in the chain we can invoke uniform convergence results. The remaining
two steps in the chain follow from linear algebra. As we shall see, whenever there are considerably
more bags than classes we can exploit the overdetermined system to our advantage to reduce the
overall estimation error and use a rescaled version of (4).

4. Special Cases

In some cases the calculations described in Algorithm 1 can be carried out more efficiently. They
arise whenever the matrixπ has special structure or whenever the test set and one of the training
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sets coincide. Moreover, we may encounter situations where the fractionsof observations in the test
set are unknown and we would like, nonetheless, to find a good proxy for µXY.

4.1 Minimal Number of Sets

Assuming that|Y | = n and thatπ has full rank it follows that(π⊤π)−1π⊤ = π−1. Hence we can
obtain the proxy forµXY more directly viaµclass

x = π−1µset
x .

4.2 Testing on One of the Calibration Sets

Note that there is no need for requiring that the test setX be different from one of the calibration sets
(vide example in Problem Definition). In particular, whenX = Xi the uncertainty in the estimate of
µXY can be greatly reduced provided that the estimate ofµXY as given in (4) contains a large fraction
of the mean of at least one of the classes. We will discuss this situation in more detail when it comes
to binary classification since there the advantages will be most obvious.

4.3 Special Feature Map

Whenever the feature mapφ(x,y) factorizes intoψ(x)⊗ϕ(y) we can simplify calculation of the
means considerably. More specifically, instead of estimatingO(|Y | ·n) parameters we only require
calculation ofO(n) terms. The reason for this is that we may pull the dependency ony out of the
expectations. Definingµclass

x [y],µset
x [i], andµset

X [i] as in Table 2 allows us to simplify

µ̂XY = ∑
y∈Y

p(y)ϕ(y)⊗ µ̂class
x [y] whereµ̂class

x = (π⊤π)−1π⊤µset
X . (5)

Here the last equation is understood to apply to the vector of meansµx := (µ[1], . . . ,µ[n]) andµX ac-
cordingly. A significant advantage of (5) is that we only need to performO(n) averaging operations
rather thanO(n· |Y |). Obviously the cost of computing(π⊤π)−1π⊤ remains unchanged but the latter
is negligible compared to the operations in Hilbert Space. Note thatψ(x) ∈ R

D denotes an arbitrary
feature representation of the inputs, which in many cases can be defined implicitly via a kernel
function. As the joint feature mapφ(x,y) factorizes intoψ(x)⊗ϕ(y), we can write the inner prod-
uct in the joint representation as〈φ(x,y),φ(x′,y′)〉 = 〈ψ(x),ψ(x′)〉〈ϕ(y),ϕ(y′)〉 = k(x,x′)k(y,y′). In
general, the kernel function on inputs and labels can be different. Specifically, for a label diag-
onal kernelk(y,y′) = δ(y,y′), the standard winner-takes-all multiclass classification is recovered
(Tsochantaridis et al., 2005). With this setting, the input featureψ(x) can be defined implicitly via
a kernel function by invoking the Representer Theorem (Schölkopf and Smola, 2002).

4.4 Binary Classification

One may show (Hofmann et al., 2006) that the feature mapφ(x,y) takes on a particularly appealing
form of φ(x,y) = yψ(x) wherey∈ {±1}. This follows since we can always re-calibrate〈φ(x,y),θ〉
by an offset independent ofy such thatφ(x,1)+φ(x,−1) = 0.

If we moreover assume thatX1 only contains class 1 andX2 = X contains a mixture of classes
with labels 1 and−1 with proportionsp(1) =: ρ and p(−1) = 1− ρ respectively, we obtain the
mixing matrix

π =

[

1 0
ρ 1−ρ

]

⇒ π−1 =

[

1 0
−ρ
1−ρ

1
1−ρ

]

.
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Plugging this into (5) yields

µ̂XY = ρµset
X [1]− (1−ρ)

[

−ρ
1−ρµset

X [1]+ 1
1−ρµset

X [2]
]

= 2ρµset
X [1]−µset

X [2]. (6)

Consequently, taking a simple weighted difference between the averages on two sets, e.g. one set
containing spam whereas the other one containing an unlabeled mix of spam and non-spam, allows
one to obtain the sufficient statistics needed for estimation.

4.5 Overdetermined Systems

Assume that we have significantly more bagsn than class labels|Y |, possibly with varying numbers
of observationsmi per bag. In this case it would make sense to find a weighting of the bags suchthat
those which are largest and most relevant for the test set are given thehighest degree of importance.
Instead of stating the problem as one of solving a linear system we now restate it as one of solving
an approximation problem. To simplify notation we assume that the feature map factorizes, i.e. that
φ(x,y) = ψ(x)⊗ϕ(y). A weighted linear combination of the squared discrepancy between the class
means and the set means is given by

minimize
µclass

x

n

∑
i=1

wi

∥

∥

∥

∥

∥

µset
X [i]− ∑

y∈Y
πiyµclass

x [y]

∥

∥

∥

∥

∥

2

, (7)

wherewi are some previously chosen weights which reflect the importance of each bag. Typically

we might choosewi = O(m
− 1

2
i ) to reflect the fact that convergence between empirical means and

expectations scales withO(m− 1
2 ). Before we discuss specific methods for choosing a weighting, let

us review the statistical properties of the estimator.

Remark 1 (Underdetermined Systems)Similarly, when we have less bags n than class labels|Y |,
we can state the problem as one of solving a regularized least squares problem as follows

minimize
µclass

x

n

∑
i=1

∥

∥

∥

∥

∥

µset
X [i]− ∑

y∈Y
πiyµclass

x [y]

∥

∥

∥

∥

∥

2

+λΩ(µclass
x [y]∀y∈ Y ).

For example, we can letΩ(µclass
x [y]∀y ∈ Y ) = ∑y∈Y

∥

∥µclass
x [y]−µclass

x [y+1]
∥

∥

2
. This makes sense

whenever different labels have related means µclass
x [y].

5. Convergence Bounds

The obvious question is how well ˆµXY manages to approximateµXY and secondly, how badly any
error in estimatingµXY would affect the overall quality of the solution. We approach this problem
as follows: first we state the uniform convergence properties ofµXY and similar empirical operators
relative toµxy. Secondly, we apply those bounds to the cases discussed above, and thirdly, we show
that the approximate minimizer of the log-posterior has a bounded deviation from what we would
have obtained by knowingµXY exactly. Much of the reasoning follows the ideas of Altun and Smola
(2006).
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5.1 Uniform Convergence for Mean Operators

An important tool in studying uniform convergence properties of randomvariables are Rademacher
averages (Ledoux and Talagrand, 1991; Mendelson, 2002). Theyare needed to state the key results
in our context.

Definition 2 (Rademacher Averages)Let X be a domain and p a distribution onX and assume
that X := {x1, . . . ,xm} is drawn iid from p. Moreover, letF be a class of functionsX → R.
Furthermore denote byσi Rademacher random variables, i.e.{±1} valued with zero mean. The
Rademacher average is

Rm(F , p) := EXEσ

[

sup
f∈F

∣

∣

∣

∣

∣

1
m

m

∑
i=1

σi f (xi)

∣

∣

∣

∣

∣

]

.

This quantity measures the flexibility of the function classF —in our case linear functions inφ(x,y).
Altun and Smola (2006) state the following result:

Theorem 3 (Convergence of Empirical Means)Denote byφ : X →B a map into a Banach space
B, denote byB∗ its dual space and letF the class of linear functions onB with boundedB∗ norm
by 1. Let R> 0 such that for all f∈ F we have| f (x)| ≤ R. Moreover, assume that X is an m-
sample drawn from p onX . For ε̄ > 0 we have that with probability at least1−exp(−ε̄2m/2R2)
the following holds:

‖µX −µx‖B ≤ 2Rm(F , p)+ ε̄.

For k≥ 0 we only have a failure probability of1−exp(−ε̄2m/R2).

Theorem 4 (Bartlett and Mendelson 2002)WheneverB is a Reproducing Kernel Hilbert Space

with kernel k(x,x′) the Rademacher average can be bounded from above by Rm(F )≤m− 1
2 [Ex[k(x,x)]]

1
2 .

Our approximation error can be bounded as follows. From the triangle inequality we have:

‖µ̂XY−µXY‖ ≤ ‖µ̂XY−µxy‖+‖µxy−µXY‖ .

For the second term we may employ Theorem 3 directly. To bound the first term note that by
linearity

ε := µ̂XY−µxy = ∑
y

p(y)
[

(π⊤π)−1π⊤ε̂
]

y,y
, (8)

where we define the “matrix” of coefficients

ε̂
[

i,y′
]

:= µset
x [i,y′]−µset

X [i,y′]. (9)

In the more general case of overdetermined systems we have

ε = ∑
y

p(y)
[

(π⊤Wπ)−1π⊤Wε̂
]

y,y
.
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Now note that all̂ε [i,y′] also satisfy the conditions of Theorem 3 since the setsXi are drawn iid
from the distributionsp(x|i) respectively. We may bound each term individually in this fashion and
subsequently apply the union bound to ensure that alln · |Y | components satisfy the constraints.
Hence each of the terms needs to satisfy the constraint with probability 1− δ/(n|Y |) to obtain an
overall bound with probability 1−δ. To obtain bounds we would need to bound the linear operator
mappingε̂ into ε.

Note that this statement can be improved since all errorsε̂[i,y′] andε̂[ j,y′] for i 6= j are indepen-
dent of each other simply by the fact that each bagXi was sampled independently from the other.
We will discuss this in the context of choosing a practically useful value ofW below.

5.2 Special Cases

A closed form solution in the general case is not particularly useful sinceit depends heavily on
the kernelk, the mixing proportionsπ and the class probabilities on the test set. However, for a
number of special cases it is possible to provide more detailed explicit analysis: firstly the situation
whereφ(x,y) = ψ(x)⊗ϕ(y) and secondly, the binary classification setting whereφ(x,y) = yψ(x)
andX2 = X, where much tighter bounds are available.

5.3 Special Feature Map with Full Rank

Here we only need to deal withn rather than withn×|Y | empirical estimates, i.e.µset
X [i] vs.µset

X [i,y′].
Hence (8) and (9) specialize to

ε = ∑
y

p(y)
n

∑
i=1

ϕ(y)⊗
[

(π⊤π)−1π⊤
]

yi
ε̂[i]

ε̂ [i] := µset
x [i]−µset

X [i].

Assume that with high probability eacĥε[i] satisfies‖ε̂[i]‖ ≤ ci (we will deal with the explicit
constantsci later). Moreover, assume for simplicity that|Y | = n and thatπ has full rank (otherwise
we need to follow through on our expansion using(π⊤π)−1π⊤ instead ofπ−1). This implies that

‖ε‖2 = ∑
i, j

〈ε̂[i], ε̂[ j]〉×∑
y,y′

p(y)p(y′)k(y,y′)
[

π−1]

yi

[

π−1]

y′ j

≤ ∑
i, j

cic j

∣

∣

∣

[

π−1]⊤Ky,pπ−1
∣

∣

∣

i j
, (10)

whereKy,p
y,y′ = k(y,y′)p(y)p(y′). Combining several bounds we have the following theorem:

Theorem 5 Assume that we have n sets of observations Xi of size mi , each of which drawn from dis-
tributions with probabilitiesπiy of observing data with label y. Moreover, assume that k((x,y),(x′,y′))=
k(x,x′)k(y,y′) ≥ 0 where k(x,x) ≤ 1 and k(y,y) ≤ 1. Finally, assume that m= |X|. In this case the
mean operator µXY can be estimated bŷµXY with probability at least1−δ with precision

‖µXY− µ̂XY‖ ≤
[

2+
√

log((n+1)/δ)
]

×
[

m− 1
2 +

[

∑
i, j

m
− 1

2
i m

− 1
2

j

∣

∣

∣

[

π−1]⊤Ky,pπ−1
∣

∣

∣

i j

]
1
2
]

.

Proof We begin our argument by noting that both forφ(x,y) and for ψ(x) the corresponding
Rademacher averagesRm for functions of RKHS norm bounded by 1 is bounded bym− 1

2 . This
is a consequence of all kernels being bounded by 1 in Theorem 4 andk≥ 0.
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Next note that in Theorem 3 we may setR= 1, since for‖ f‖ ≤ 1 andk((x,y),(x,y)) ≤ 1 and
k(x,x) ≤ 1 it follows from the Cauchy Schwartz inequality that| f (x)| ≤ 1. Solvingδ ≤ exp−mε2

for ε yieldsε ≤ m− 1
2

[

2+
√

log(1/δ)
]

.

Finally, note that we haven+ 1 deviations which we need to bound: one betweenµXY and
µxy, and n for each of theε[i] respectively. Dividing the failure probabilityδ into n+ 1 cases

yields bounds of the formm− 1
2

[

2+
√

log((n+1)/δ)
]

and m
− 1

2
i

[

2+
√

log((n+1)/δ)
]

respec-

tively. Plugging all error terms into (10) and summing over terms yields the claim and substituting
this back into the triangle inequality proves the claim.

5.4 Binary Classification

Next we consider the special case of binary classification whereX2 = X. Using (6) we see that the
corresponding estimator is given by

µ̂XY = 2ρµset
X [1]−µset

X [2].

Sinceµ̂XY shares a significant fraction of terms withµXY we are able to obtain tighter bounds as
follows:

Theorem 6 With probability1−δ (for 1 > δ > 0) the following bound holds:

‖µ̂XY−µXY‖ ≤ 2ρ
[

2+
√

log(2/δ)
]

[

m
− 1

2
1 +m

− 1
2

+

]

,

where m+ is the number of observations with y= 1 in X2.

Proof Denote byµ[X+] andµ[X−] the averages over the subsets ofX2 with positive and negative
labels respectively. By construction we have that

µXY = ρµ[X+]− (1−ρ)µ[X−]

µ̂XY = 2ρµset
X [1]−ρµ[X+]− (1−ρ)µ[X−].

Taking the difference yields 2ρ [µset
X [1]−µ[X+]]. To prove the claim note that we may use Theorem 3

both for
∥

∥µset
X [1]−Ex∼p(x|y=1)[ψ(x)]

∥

∥ and for
∥

∥µ[X+]−Ex∼p(x|y=1)[ψ(x)]
∥

∥. Taking the union bound
and summing over terms proves the claim.

The bounds we provided show that ˆµXY converges at the same rate toµxy asµXY does, assuming that
the sizes of the setsXi increase at the same rate asX.

5.5 Overdetermined Systems

Given the optimal value of weightingW, the class mean can be reconstructed as a solution of a
weighted least square problem in (7) and this minimizer is given by

µ̂class
x = (π⊤Wπ)−1π⊤Wµset

X whereW = diag(w1, . . . ,wn) andwi > 0.

It is easy to see that whenevern = |Y | and π has full rank there is only one possible solution
regardless of the choice ofW. For overdetermined systems the choice ofW may greatly affect the
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quality of the solution and it is therefore desirable to choose a weighting whichminimizes the error
in estimatingµXY.

In choosing a weighting, we may take advantage of the fact that the errorsε̂[i] are independent
for all i. This follows from the fact that all bags are drawn independently of each other. Moreover,
we know thatE[ε̂[i]] = 0 for all i. Finally we make the assumption thatk(y,y′) = δ(y,y′), that is, that
the kernel in the labels is diagonal. In this situation our analysis is greatly simplified and we have:

ε = ∑
y

ϕ(y)⊗ p(y)(π⊤Wπ)−1πWε̂

and henceE
[

‖ε‖2
]

=
n

∑
i=1

∑
y

E
[

‖ε̂[i]‖2
]

W2
ii

[

π⊤
i (π⊤Wπ)−1

]2

y
p2(y).

Using the assumption thatE
[

‖ε̂[i]‖2
]

= O(m−1
i ) we may find a suitable scale of the weight vectors

by minimizing

n

∑
i=1

∑
y

W2
ii

mi

[

π⊤
i (π⊤Wπ)−1

]2

y
p2(y) (11)

with respect to the diagonal matrixW. Note that the optimal value ofW dependsboth on the
mixtures of the bagsπi andon the propensity of each classp(y). That is, being able to well estimate
a class which hardly occurs at all is of limited value.

5.6 Stability Bounds

To complete our reasoning we need to show that our bounds translate into guarantees in terms of the
minimizer of the log-posterior. In other words, estimates using the correct mean µXY vs. its estimate
µ̂XY do not differ by a significant amount. For this purpose we make use of Altunand Smola (2006,
Lemma 17).

Lemma 7 Denote by f a convex function onH and let µ, µ̂ ∈ H . Moreover letλ > 0. Finally
denote byθ∗,∈H the minimizer of

L(θ,µ) := f (θ)−〈µ,θ〉+λ‖θ‖2

with respect toθ and θ̂∗ the minimizer of L(θ̂, µ̂) respectively. In this case the following inequality
holds:

∥

∥θ∗− θ̂∗∥
∥ ≤ λ−1‖µ− µ̂‖ . (12)

This means that a good estimate forµ immediately translates into a good estimate for the minimizer
of the approximate log-posterior. This leads to the following bound on the riskminimizer.

Corollary 8 The deviation betweenθ∗, as defined in (1) and̂θ∗, the minimizer of the approximate

log-posterior usinĝµXY rather than µXY, is bounded by O(m− 1
2 +∑i m

− 1
2

i ).

Finally, we may use Altun and Smola (2006, Theorem 16) to obtain bounds on the quality of θ̂∗

when considering how well it minimizes thetruenegative log-posterior. Using the bound

L(θ̂∗,µ)−L(θ∗,µ) ≤
∥

∥θ̂∗−θ∗∥
∥‖µ̂−µ‖

yields the following bound for the log-posterior:
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Corollary 9 The minimizer̂θ∗ of the approximate log-posterior usingµ̂XY rather than µXY incurs a
penalty of at mostλ−1‖µ̂XY−µXY‖2.

5.7 Stability Bounds under Perturbation

Denote 1∈ {1}|Y | as the vector of all ones and 0∈ {0}|Y | as the vector of all zeros. Let∆ be the
perturbation matrix such that the perturbed mixing matrixπ̃ is related to the original mixing matrix
π by π̃ = π+∆. Note that the perturbed mixing matrixπ̃ still needs to have non-negative entries and
each row sums up to 1,π̃1= 1. The stochasticity constraint on the perturbed mixing matrix imposes
special structure on the perturbation matrix, i.e. each row of perturbation matrix must sum up to 0,
∆1= 0. Let θ̂∗ be the minimizer of (2) with mean ˆµXY approximated via mixing matrixπ. Similarly,
defineθ̃∗ for µ̃XY with mixing matrix π̃. We would like to bound the distance

∥

∥θ̂∗− θ̃∗∥
∥ between

the minimizers. Our perturbation bound relies on Lemma 7 and on the fact that wecan bound the
errors made in computing an (pseudo-) inverse of a matrix:

Lemma 10 (Stability of Inverses) For any matrix norm‖.‖ and full rank matricesπ andπ+∆, the
error between the inverses ofπ andπ+∆ is bounded by

∥

∥π−1− (π+∆)−1
∥

∥ ≤
∥

∥π−1
∥

∥

∥

∥(π+∆)−1
∥

∥‖∆‖ .

Proof We use the following identityπ−1− (π+∆)−1 = (π+∆)−1∆π−1. The identity can be shown
by left multiplying both sides of equation with(π + ∆). Finally, by submultiplicative property of a
matrix norm, the inequality

∥

∥π−1∆(π+∆)−1
∥

∥ ≤
∥

∥π−1
∥

∥‖∆‖
∥

∥(π+∆)−1
∥

∥ follows.

Theorem 11 (Stability of Pseudo-Inverses: Wedin 1973)For any unitarily invariant matrix norm
‖.‖ and full column rank matricesπ andπ+∆, the error between the pseudo-inverses ofπ andπ+∆
is bounded by

∥

∥π†− (π+∆)†
∥

∥ ≤ µ
∥

∥π†
∥

∥

σ∞

∥

∥(π+∆)†
∥

∥

σ∞ ‖∆‖ ,

where µ denotes a scalar constant depending on the matrix norm,‖.‖σ∞ denotes the spectral norm
of a matrix, and the pseudo-inverseπ† defined asπ† := (π⊤π)−1π⊤.

Proof See Wedin (1973, Theorem 4.1) for a proof.

Remark 12 For full rank matrices, the constant term µ in Theorem 11 is equal to unity regardless
of the matrix norm considered (Wedin, 1973).

First, we would like to bound the difference between ˆµXY andµ̃XY, i.e. εp := µ̂XY− µ̃XY. For the
special feature map with full rank, this translates to

εp = ∑
y

p(y)
n

∑
i=1

ϕ(y)⊗
[

π−1− π̃−1]

yi µ
set
X [i]

‖εp‖2 = ∑
i, j

〈

µset
X [i],µset

X [ j]
〉

×
[

(π−1− π̃−1)⊤Ky,p(π−1− π̃−1)
]

i j
.
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Lemma 13 Define Ky,p := V⊤
y,pVy,p. With the spectral norm‖.‖σ∞ and a full rank mixing matrixπ,

the following bound holds:

‖µ̂XY− µ̃XY‖σ∞ ≤ ‖Vy,p‖σ∞
∥

∥π−1
∥

∥

σ∞ ‖∆‖σ∞
∥

∥(π+∆)−1
∥

∥

σ∞

[

∑
i, j

〈

µset
X [i],µset

X [ j]
〉

]
1
2

. (13)

Proof We first upper bound
[

(π−1− π̃−1)⊤Ky,p(π−1− π̃−1)
]

i j by
∥

∥(π−1− π̃−1)⊤Ky,p(π−1− π̃−1)
∥

∥

σ∞. We factorizeKy,p asV⊤
y,pVy,p sinceKy,p is a positive (semi-)

definite matrix. The elementKy,p
y,y′ = k(y,y′)p(y)p(y′) is obtained by multiplying a kernelk(y,y′)

with a rank-one kernelk′(y,y′) = p(y)p(y′) wherep is a positive function. This conformal trans-
formation preserves the positive (semi-) definiteness ofKy,p (Scḧolkopf and Smola, 2002). Thus,
∥

∥(π−1− π̃−1)⊤Ky,p(π−1− π̃−1)
∥

∥

σ∞ ≤
∥

∥Vy,p(π−1− π̃−1)
∥

∥

2
σ∞ ≤

[

‖Vy,p‖σ∞
∥

∥(π−1− π̃−1)
∥

∥

σ∞

]2 ≤
[

‖Vy,p‖σ∞
∥

∥π−1
∥

∥

σ∞ ‖∆‖σ∞
∥

∥(π+∆)−1
∥

∥

σ∞

]2
. The last inequality

follows directly from Lemma 10.

Corollary 14 Define Ky,p := V⊤
y,pVy,p. With the spectral norm‖.‖σ∞ and a full column rank mixing

matrix π, the following bound holds:

‖µ̂XY− µ̃XY‖σ∞ ≤
√

2‖Vy,p‖σ∞
∥

∥π†
∥

∥

σ∞ ‖∆‖σ∞
∥

∥(π+∆)†
∥

∥

σ∞

[

∑
i, j

〈

µset
X [i],µset

X [ j]
〉

]
1
2

. (14)

Proof Similar to Lemma 13 with the constant factorµ in Theorem 11 equals to
√

2 for a spectral
norm.

Combining Lemma 13 for the full rank mixing matrix case (or Corollary 14 for the full column
rank mixing matrix case) with Lemma 7, we are ready to state the stability bound under perturbation:

Lemma 15 (Stability Bound under Perturbation) The distanceεs between the two minimizers,
θ̂∗ and θ̃∗, is bounded by

εs ≤ λ−1‖µ̂XY− µ̃XY‖ .

It is clear from (13) and (14) that the stability of our algorithm under perturbation will depend on
the size of the perturbation and on the behavior of the (pseudo-) inverseof the perturbed mixing
matrix. Note that by the triangle inequality, the distance in (12) can be decomposed as

∥

∥θ∗− θ̂∗∥
∥ ≤

∥

∥θ∗− θ̃∗∥
∥+

∥

∥θ̃∗− θ̂∗∥
∥ and the second term in RHS vanishes whenever the size of perturbation∆ is

zero.

6. Extensions

We describe two types of extensions on our proposed estimator: function spaces and unknown label
proportions on the test sets. We will discuss both of them in turn.
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6.1 Function Spaces

Note that our analysis so far focused on a specific setting, namely maximum-a-posteriori analysis in
exponential families. While this is a common and popular setting, the derivations are by no means
restricted to this. We have the entire class of (conditional) models described by Altun and Smola
(2006) and Dud́ık and Schapire (2006) at our disposition. They are characterized via

minimize
p

−H(p) subject to‖Ez∼p [φ(z)]−µ‖ ≤ ε.

Here p is a distribution,H is an entropy-like quantity defined on the space of distributions, and
φ(z) is some evaluation map into a Banach space. This means that the optimization problem can
be viewed as an approximate maximum entropy estimation problem, where we do not enforce ex-
act moment matching ofµ but rather allowε slack. In both Altun and Smola (2006) and Dudı́k
and Schapire (2006) the emphasis lay onunconditionaldensity models: the dual of the above op-
timization problem. In particular, it follows that forH being the Shannon-Boltzmann entropy, the
dual optimization problem is the maximum a posteriori estimation problem, which is what we are
solving here.

In the conditional case,p denotes the collection of probabilitiesp(y|xi) and the operator
Ez∼p [φ(z)] = 1

m ∑m
i=1Ey|p(y|xi) [φ(xi ,y)] is the conditional expectation operator on the set of obser-

vations. Finally,µ = 1
m ∑m

i=1 φ(xi ,yi), that is, it describes the empirical observations. We have two
design parameters:

6.1.1 FUNCTION SPACE

Depending on which Banach Space norm we may choose to measure the deviation betweenµ and
its expectation with respect top in terms of e.g. theℓ2 norm, theℓ1 norm or theℓ∞ norm. The latter
leads to sparse coding and convex combinations. This means that instead ofsolving an optimization
problem of the form of (2) we would minimize expression of the form

m

∑
i=1

g(θ|xi)−m〈µXY,θ〉+λ‖θ‖p
B∗ ,

wherep ≥ 1 andB∗ is the Banach space of the natural parameterθ which is dual to the spaceB
associated with the evaluation functionalsφ(x,y). The most popular choice forB∗ is ℓ1 which leads
to sparse coding (Candes and Tao, 2005; Chen et al., 1995).

6.1.2 ENTROPY AND REGULARITY

Depending on the choice of entropy and divergence functionals we obtain a range of diverse estima-
tors. For instance, if we were to choose theunnormalizedentropy instead of the entropy, we would
obtain algorithms more akin to boosting. We may also use Csiszar and Bregmann divergences. The
key point is that our reasoning of estimatingµXY based on an aggregate of samples with unknown
labels but known label proportions is still applicable.

6.2 Unknown Test Label Proportions

In many practical applications we may not actually know the label proportionson the test set. For
instance, when deploying the algorithm to assess the spam in a user’s mailboxwe will not know
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what the fraction would be. Nor is it likely that the user would be willing or able or trustworthy
enough to provide a reliable estimate. This means that we need to estimate those proportions in
addition to the class meansµclass

x .
We may use a fairly straightforward simplification of the covariate shift correction procedure of

Huang et al. (2007) in this context. The basic idea is to exploit the fact that there the mapp(x) →
µ[p(x)] = Ex[ψ(x)] is injective for characteristic kernels (Sriperumbudur et al., 2008). Examples
of such a characteristic kernel is Gaussian RBF, Laplacian, andB2n+1-splines. This means that as
long as the conditional distributionsp(x|y) are different for different choices ofy we will be able
to recover the test label proportions by the simple procedure of minimizing the distance between
µ[p] and∑y αyµ[p(x|y)]. While we may not have access to the true expectations we are still able to
estimateµclass

x [y] for all y∈ Y . This leads to the optimization problem

minimize
α

∥

∥

∥

∥

∥

1
m

m

∑
i=1

ψ(xi)− ∑
y∈Y

αyµ
class
X [y]

∥

∥

∥

∥

∥

2

(15)

subject toαy ≥ 0 and ∑
y∈Y

αy = 1.

Here the sum is taken over the elements of the test set, that isx j ∈ X. Very similar bounds to those
by Huang et al. (2007) can be obtained and they are omitted for the sake ofbrevity as the reasoning
is essentially identical.

Note that obviously (15) may be usedseparatelyfrom the previous discussion, that is, when the
training proportions are known but the test proportions are not. However, we believe that the most
significant benefit is obtained in using both methods in conjunction since many practical situations
exhibit both problems simultaneously.

7. Related Work and Alternatives

While being highly relevant in practice, the problem has not seen as much attention by researchers
as one would expect. Some of the few works which cover a related subjectare those by Chen et al.
(2006) and Musicant et al. (2007), and by Kück and de Freitas (2005). We hope that our work will
stimulate research in this area as relevant problems are fairly widespread.

7.1 Transduction

In transduction one attempts to solve a related problem: the patternsxi on the test set are known,
usually also some label proportions on the test set are known but obviously the actual labels on the
test set arenot known. One way of tackling this problem is to perform transduction by enforcing a
proportionality constraint on the unlabeled data, e.g. via a Gaussian Process model (G̈artner et al.,
2006; Mann and McCallum, 2007).

At first glance these methods might seem applicable for our problem but they do require that we
have at least some labeled instances ofall classesat our disposition which need to be drawn in an
unbiased fashion. This is clearly not the case in our setting. That said, it iswell possible to use our
setting in the context of transduction, that is, to replace the unknown meanµtest

XY on the test set by the
empirical estimate on the training set. Such strategies lead to satisfactory performance on par with
(albeit not exceeding) existing transduction approaches.
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7.2 Self Consistent Proportions

Kück and de Freitas (2005) introduced a more informative variant of the binary multiple-instance
learning, in which groups of instances are given along with estimates of the fraction of positively-
labeled instances per group. The authors build a fully generative model of the process which deter-
mines the assignment of observations to individual bags. Such a procedure is likely to perform well
when a large number of bags is present.

In order to deal with the estimation of the missing variables a MCMC sampling procedure is
used. While K̈uck and de Freitas (2005) describe the approach only for a binary problem, it could
be extended easily to multiclass settings.

In a similar vein, Chen et al. (2006) and Musicant et al. (2007) also use aself-consistent ap-
proach where the conditional class estimates need to match the observed ones. Consequently it
shares the same similar drawbacks, since we typically only have as many sets as classes.

7.3 Conditional Probabilities

A seemingly valid alternative approach is to try building a classifier forp(i|x) and subsequently
recalibrating the probabilities to obtainp(y|x), e.g. viap(y|i). At first sight this may appear promis-
ing since this method is easily implemented by most discriminative methods. The idea would be to
reconstructp(y|x) by

p(y|x) = ∑
i

πiy p(i|x).

However, this is not a useful estimator in our setting for a simple reason: it assumes the conditional
independencey⊥⊥ x | i, which obviously does not hold. Instead, we have the property thati ⊥⊥ x| y,
that is, the distribution overx for a given class label does not depend on the bag. This mismatch in
the probabilistic model can lead to disastrous estimates as the following simple example illustrates:

Example 1 Assume thatX ,Y = {1,2} and that p(y = 1|x = 1) = p(y = 2|x = 2) = 1. In other
words, the estimation problem is solvable since the classes are well separated. Moreover, assume
that π is given by

π =

[

0.5− ε 0.5+ ε
0.5 0.5

]

for 0 < ε ≪ 1.

Here, p(i|x) is useless for estimating p(y|x), since we will only exceed random guessing by at mostε.
On the other hand, it is easily possible to obtain a good estimate for µXY by our proposed procedure.

The reason for this failure can be found in the following expansion

p(y|x) = ∑
i

p(y|x, i)p(i|x) 6= ∑
i

p(y|i)p(i|x) sincep(y|x, i) 6= p(y|i). (16)

The problem with (16) is that the estimator does not really attempt to compute the probability p(y|x),
which we are interested in but instead, it attempts to discern which mixture distribution pi the ob-
servationx most likely originated from. For this to work we would need good probability estimates
as thebasisof reweighting. Our approach tackles the problem at the source by recalibrating the
sufficient statistics directly.
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7.4 Reduction to Binary

For binary classification and real-valued classification scores we may resort to a rather straightfor-
ward heuristic: build a classifier which is able to distinguish between the setsX1 andX2 and subse-
quently threshold labels such that the appropriate fraction of observations inX1 andX2 matches the
proper labels. The intuition is that since the bagsX1 andX2 do contain some information about how
the two classes differ, we should be able to use this information to distinguish between different
class labels.

It is likely that one might be able to obtain a proper reduction bound in this context. However,
extensions to multi-class are highly nontrivial. It also turns out that even in the binary case this
method, while overall fairly competitive, is inferior to our approach.

7.5 Density Estimation

One way of obtainingp(x|i) is to carry out density estimation. While, in principle, this approach is
flawed because of the incorrect conditional independence assumptions, it can still lead to acceptable
results whenever each of the bags contains one majority class. This allows us to obtain

p(x|y) = ∑
i

[

π−1]

yi p(x|i).

To re-calibrate the probability estimates Bayes’ theorem is invoked to compute posterior proba-
bilities. Since this approach involves density estimation it tends to fail fairly catastrophically for
high-dimensional data due to the curse of dimensionality. These problems arealso manifest in the
experiments.

8. Experiments

Data Sets: We use binary and three-class classification data sets from the UCI repository1 and the
LibSVM site.2 If separate training and test sets are available, we merge them before performing
nested 10-fold cross-validation. Since we need to generate as many splits as classes, we limit
ourselves to three classes.

For the binary data sets we use half of the data forX1 and the rest forX2. We also remove all
instances of class 2 fromX1. That is, the conditional class probabilities inX2 match those from the
repository, whereas inX1 their counterparts are deleted.

For three-class data sets we investigate two different partitions. In scenario A we use class 1
exclusively inX1, class 2 exclusively inX2, and a mix of all three classes weighted by(0.5·p(1),0.6·
p(2),0.7· p(3)) to generateX3. In scenario B we use the following splits





c1 ·0.4· p(1) c1 ·0.2· p(2) c1 ·0.2· p(3)
c2 ·0.1· p(1) c2 ·0.2· p(2) c2 ·0.1· p(3)
c3 ·0.5· p(1) c3 ·0.6· p(2) c3 ·0.7· p(3)



 .

Here the constantsc1,c2 andc3 are chosen such that the probabilities are properly normalized. As
before,X3 contains half of the data.

1. UCI can be found athttp://archive.ics.uci.edu/ml/ .
2. LibSVM can be found athttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/ .
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Model Selection: As stated, we carry out anested10-fold cross-validation procedure: 10-
fold cross-validation to assess the performance of the estimators; within each fold, 10-fold cross-
validation is performed to find a suitable value for the parameters.

For supervised classification, i.e. discriminative sorting, such a procedure is quite straightfor-
ward because we can directly optimize for classification error. For kernel density estimation (KDE),
we use the log-likelihood as our criterion.

Due to the high number of hyper-parameters (at least 8) in MCMC, it is difficult to perform
nested10-fold cross-validation. Instead, we choose thebestparameters from a simple 10-fold
crossvalidation run. In other words, we are giving the MCMC method an unfair advantage over our
approach by reporting the best performance during the model selection procedure.

Finally, for the re-calibrated sufficient statistics ˆµXY we use the estimate of the log-likelihood on
the validation set as the criterion for cross-validation, since no other quantity, such as classification
errors is readily available for estimation.

Algorithms: For discriminative sorting we use an SVM with a Gaussian RBF kernel whose
width is set to the median distance between observations (Schölkopf, 1997); the regularization pa-
rameter is chosen by cross-validation. The same strategy applies for our algorithm. For KDE, we
use Gaussian kernels. Cross-validation is performed over the kernel width. For MCMC, 10000
samples are generated after a burn-in period of 10000 steps (Kück and de Freitas, 2005).

Optimization: Bundle methods (Smola et al., 2007; Teo et al., 2007) are used to solve the
optimization problem in Algorithm 1. For our regularized log-likelihood, the solver converges toε
precision inO(log(1/ε)) steps.

Results: The experimental results are summarized in Table 3. Our method outperforms KDE
and discriminative sorting. In terms of computation, our approach is somewhat more efficient, since
it only needs to deal with a smaller sample size (onlyX rather than the union of allXi). The training
time for our method is less than 2 minutes for all cases, whereas MCMC on average takes 15 minutes
and maybe even much longer when the number of active kernels and/or observations are high. Note
that KDE fails on two data sets due to numerical problems (high dimensional data).

Our method also performs well on multiclass data sets. As described in Section 5.2, the quality
of our minimizer of the negative log-posterior depends on the mixing matrix and this is noticeable
in the reduction of performance for the dense mixing matrix (scenario B) in comparison to the
better conditioned sparse mixing matrix (scenario A). In other words, for illconditionedπ even our
method has its limits, simply due to numerical considerations of effective sample size.

Unknown test label proportions: In this experiment, we use binary and three-class classifi-
cation data sets with the same split procedure as in the previous experiment but we select testing
examples by a biased procedure to introduce unknown test label proportions. To describe our bi-
ased procedure, consider a random variableξi for each point in the pool of possible testing samples
whereξi = 1 means thei-th sample is being included andξi = 0 means the sample is discarded.
In our case, the biased procedure only depends on the labely, i.e. P(ξ = 1|y = 1) = 0.5 and
P(ξ = 1|y = −1) = 1.0 for binary problems andP(ξ = 1|y = 1) = 0.6, P(ξ = 1|y = 2) = 0.3,
andP(ξ = 1|y = 3) = 0.1 for three-class problems. We then estimate the test proportion by solv-
ing the quadratic program in (15) with interior point methods (or any other successive optimization
procedure). Since we are interested particularly to assess the effectiveness of our test proportion es-
timation method, in solving (15) we assume that we can computeµclass

X [y] directly, i.e. the instances
are labeled. The mean square error rates of test proportions for several binary and three-class data
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Data MM KDE DS MCMC BA
ionosphere 18.4±3.2 17.5±3.2 12.2±2.6 18.0±2.1 35.8
iris 10.0±3.6 16.8±3.4 15.4±1.1 21.1±3.6 29.9
optdigits 1.8±0.5 0.7±0.4 9.8±1.2 2.0±0.4 49.1
pageblock 3.8±2.3 7.1±2.8 18.5±5.6 5.4±2.8 43.9
pima 27.5±3.0 34.8±0.6 34.4±1.7 23.8±1.8 34.8
tic 31.0±1.5 34.6±0.5 26.1±1.5 31.3±2.5 34.6
yeast 9.3±1.5 6.5±1.3 25.6±3.6 10.4±1.9 39.9
wine 7.4±3.0 12.1±4.4 18.8±6.4 8.7±2.9 40.3
wdbc 7.8±1.3 5.9±1.2 10.1±2.1 15.5±1.3 37.2
sonar 24.2±3.5 35.2±3.5 31.4±4.0 39.8±2.8 44.5
heart 30.0±4.0 38.1±3.8 28.4±2.8 33.7±4.7 44.9
breastcancer 5.3±0.8 14.2±1.6 3.5±1.3 4.8±2.0 34.5
australian 17.0±1.7 33.8±2.5 15.8±2.9 30.8±1.8 44.4
svmguide3 20.4±0.9 27.2±1.3 25.5±1.5 24.2±0.8 23.7
adult 18.9±1.2 24.5±1.3 22.1±1.4 18.7±1.2 24.6
cleveland 19.1±3.6 35.9±4.5 23.4±2.9 24.3±3.1 22.7
derm 4.9±1.4 27.4±2.6 4.7±1.9 14.2±2.8 30.5
musk 25.1±2.3 28.7±2.6 22.2±1.8 19.6±2.8 43.5
german 32.4±1.8 41.6±2.9 37.6±1.9 32.0±0.6 32.0
covertype 37.1±2.5 41.9±1.7 32.4±1.8 41.1±2.2 45.9
splice 25.2±2.0 35.5±1.5 26.6±1.7 28.8±1.6 48.4
gisette 10.3±0.9 † 12.2±0.8 50.0±0.0 50.0
madelon 44.1±1.5 † 46.0±2.0 49.6±0.2 50.0
cmc 37.5±1.4 43.8±0.7 45.1±2.3 46.9±2.6 49.9
bupa 48.5±2.9 50.8±5.1 40.3±4.9 50.4±0.8 49.7

protein A 43.3±0.4 48.9±0.9 N/A 65.5±1.7 60.6
protein B 46.9±0.3 55.2±1.5 N/A 66.1±2.1 60.6
dna A 14.8±1.2 28.1±0.6 N/A 39.8±2.6 41.6
dna B 31.3±1.3 30.4±0.7 N/A 41.5±0.1 41.6
senseit A 19.8±0.1 44.2±0.0 N/A ‡ 44.2
senseit B 21.1±0.1 44.2±0.0 N/A ‡ 44.2

Table 3: Classification error on UCI/LibSVM data sets. Errors are reported in mean± standard
error. The best result and those not significantly worse than it, are highlighted in boldface.
We use a one-sided paired t-test with 95% confidence.MM: Mean Map (our method);
KDE: Kernel Density Estimation;DS: Discriminative Sorting (only applicable for binary
classification);MCMC: the sampling method;BA: Baseline, obtained by predicting the major
class. †: Program fails (too high dimensional data - onlyKDE). ‡: Program fails (large data
sets - onlyMCMC).
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sets are presented in Table 4. The results show that our proportion estimation method works reason-
ably well.

Overdetermined systems:Here we are interested to assess the performance of our estimator
with optimized weights when we have more data setsn than class labels|Y | with varying number
of observationsmi per data set. We simulate the problem in binary settings with the following split
(n = 8)

























c1 ·0.25· p(1) c1 ·0.10· p(2)
c2 ·0.15· p(1) c2 ·0.10· p(2)
c3 ·0.05· p(1) c3 ·0.20· p(2)
c4 ·0.05· p(1) c4 ·0.10· p(2)
c5 ·0.05· p(1) c5 ·0.00· p(2)
c6 ·0.05· p(1) c6 ·0.05· p(2)
c7 ·0.05· p(1) c7 ·0.15· p(2)
c8 ·0.35· p(1) c8 ·0.30· p(2)

























and the split (n = 6) in three-class settings is as follows

















c1 ·0.30· p(1) c1 ·0.10· p(2) c1 ·0.00· p(3)
c2 ·0.10· p(1) c2 ·0.10· p(2) c2 ·0.20· p(3)
c3 ·0.05· p(1) c3 ·0.00· p(2) c3 ·0.05· p(3)
c4 ·0.05· p(1) c4 ·0.20· p(2) c4 ·0.05· p(3)
c5 ·0.00· p(1) c5 ·0.05· p(2) c5 ·0.10· p(3)
c6 ·0.50· p(1) c6 ·0.55· p(2) c6 ·0.60· p(3)

















.

We use BFGS to obtain the optimal weights of the minimization problem in (11). We perform 10-
fold cross validation with respect to the log-likelihood. The error rates arepresented in Table 5. For
all cases except one, the estimator with optimized weights improves error rates compared with the
unweighted one.

Binary data sets

Data MSE
australian 0.00804±0.00275
breastcancer 0.00137±0.00063
adult 0.00610±0.00267
derm 0.00398±0.00175
gisette 0.00331±0.00108
wdbc 0.00319±0.00103

Three-class data sets

Data MSE
protein 0.00290±0.00066
dna 0.00339±0.00075
senseit 0.00072±0.00031

Table 4: Unknown test label proportion case. Square errors of estimating the test proportions on
UCI/LibSVM data sets. The 10-run errors are reported in mean± standard error.

Stability of Mixing Matrices: Lastly, we are interested to assess the performance of our pro-
posed method when the given mixing matrixπ are perturbed so that they do not exactly match
how the data is generated. We used binary classification data sets and defined the perturbed mixing
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Binary data sets

Data unweighted weighted
wdbc 23.29±2.68 14.22±1.79
australian 34.44±4.03 29.58±3.71
svmguide3 24.28±2.20 18.50±1.73
gisette 8.77±1.05 7.69±0.51
splice 33.43±1.65 21.12±2.59

Three-class data sets

Data unweighted weighted
protein 57.46±0.02 57.46±0.02
senseit 28.25±2.60 23.51±0.78
dna 20.01±1.26 16.80±1.19

Table 5: Overdetermined systems. Errors of weighted/unweighted estimatorsfor overdetermined
systems on UCI/LibSVM data sets. The 10-fold cross validation errors arereported in
mean± standard error. The numbers in boldface are significant with 95% confidence
(one-sided paired t-test).

matrix as

π̃ = π+∆ =

[

1 0
ρ 1−ρ

]

+

[

−ε1 ε1

ε2 −ε2

]

.

We variedε1∈{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} andε2∈{0.0,0.1,0.3,0.5} and mea-
sured the performance as a function of the size of the perturbation,η = ‖∆‖2 = tr(∆⊤∆). Note that
unperturbed mixing matrix refer to the case of{ε1,ε2} = {0,0}. The experiments are summarized
in Figure 2. The results suggest that for a reasonable size of perturbations, our method is stable.

9. Conclusion

In this paper we obtained a rather surprising result, namely that it is possibleto consistently recon-
struct the labels of a data set if we can only obtain information about the proportions of occurrence
of each class (in at least as many data aggregates as there are classes). In particular, we proved that
up to constants, our algorithm enjoys the same rates of convergence afforded to methods which have
full access to all label information.

This finding has significant implications with regard to the amount of privacy afforded by sum-
mary statistics. In particular, it implies that whenever accurate summary statisticsexist and when-
ever the available individual statistics are highly dependent on the summarized random variable we
will be able to perform inference on the summarized variable with a high degree of confidence. In
other words, some techniques used to anonymize observations, e.g. demographic data, may not be
really safe (at least when it is possible to estimate the missing information, provided enough data).

Recently Chiaia et al. (2007) applied a summarization technique to infer drug use based on
the concentration of metabolites in the sewage of cities, suburbs or at an even more finely grained
resolution. While this only provides aggregate information about the proportions of drug users,
such data, in combination with detailed demographic information might be used to perform more
detailed inference with regard to the propensity of individuals to use controlled substances. It is in
these types of problem where our method could be applied straightforwardly.
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Figure 2: Performance accuracy of binary classification data sets (n = |Y | = 2) as a function of
the amount of perturbation applied to the mixing matrix,‖∆‖2 = tr(∆⊤∆) with ∆ = π̃−
π. 2(a): Adult, 2(b): Australian and 2(c): Breastcancer data sets.x-axis denotes‖∆‖2

as a function ofε1 ∈ {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. Color coded plots
denote‖∆‖2 as a function ofε2 ∈ {0.0,0.1,0.3,0.5}, for example red colored plot refers
to performance when only label proportions of the first set are perturbed.
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