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Abstract
We introduce novel online Bayesian methods for the identification of a family of noisy recurrent
neural networks (RNNs). We present Bayesian active learning techniques for stimulus selection
given past experiences. In particular, we consider the unknown parameters as stochastic variables
and use A-optimality and D-optimality principles to chooseoptimal stimuli. We derive myopic cost
functions in order to maximize the information gain concerning network parameters at each time
step. We also derive the A-optimal and D-optimal estimations of the additive noise that perturbs the
dynamical system of the RNN. Here we investigate myopic as well as non-myopic estimations, and
study the problem of simultaneous estimation of both the system parameters and the noise. Em-
ploying conjugate priors our derivations remain approximation-free and give rise to simple update
rules for the online learning of the parameters. The efficiency of our method is demonstrated for a
number of selected cases, including the task of controlled independent component analysis.

Keywords: active learning, system identification, online Bayesian learning, A-optimality, D-
optimality, infomax control, optimal design

1. Introduction

When studying systems ininteractiveandonline fashion, it is of high relevance to facilitate fast
information gain during the interaction (Fedorov, 1972; Cohn, 1994). Asan example, consider
experiments aiming at the description of the receptive field of different neurons. These experi-
ments look for those stimuli that maximize the response of the given neuron (deCharms et al., 1998;
Földiák, 2001). Neurons, however, might change due to the investigation, so the minimization of
interaction is highly desired. Different techniques have been developedto speed up the identifica-
tion procedure. One approach searches for stimulus distribution that maximizes mutual information
between stimulus and response (Machens et al., 2005). A recent technique assumes that the un-
known system belongs to the family of generalized linear models (Lewi et al., 2007) and treats the
parameters as probabilistic variables. Then the goal is to find the optimal stimuli by maximizing
mutual information between the parameter set and the system’s response.

This example motivates our interest in active learning (MacKay, 1992; Cohnet al., 1996; Fuku-
mizu, 1996; Sugiyama, 2006) of noisy recurrent artificial neural networks (RNNs), when we have
the freedom to interrogate the network and to measure its responses.
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In active learning, the training set may be modified by the learning process itself based on the
progress experienced so far. The goal of this modification is to maximize the expected improvement
of the precision of the estimation. This idea can for example be used to improve generalization
capability in regression and classification tasks or to better estimate hidden parameters. Theoretical
concepts have been formulated in the fields of Optimal Experimental Design, or Optimal Bayesian
Design (Kiefer, 1959; Fedorov, 1972; Steinberg and Hunter, 1984;Toman and Gastwirth, 1993;
Pukelsheim, 1993).

Although active learning is in the focus of current research interest, some relevant theoretical
issues are still unresolved. While there are promising studies showing that active learning may
outperform uniform sampling under certain conditions (Freund et al., 1997; Seung et al., 1992), in
other cases it has been proven that active learning has no advantage over non-adaptive algorithms.
For example, this is the case in compressed sensing (Castro et al., 2006a) and also for certain
function classes in the area of function approximation (Castro et al., 2006b). Even more problematic
is the observation that active learning heuristics may be less efficient than uniform sampling in some
situations (Schein, 2005).

There are several forms of active learning. The most relevant difference is in the definition of the
value of information. One of the simplest heuristics is the Uncertainty Sampling (US): US suggests
that in regression or in classification tasks one should choose those training examples, which have
the largest uncertainty in the value of the function or in the label of the class,respectively (Lewis
and Catlett, 1994; Lewis and Gale, 1994; Cohn et al., 1996). Although several US versions exist
with different measure of the uncertainty itself, they all lack robustness. The Query by Committee
method improves upon robustness (Seung et al., 1992; Freund et al., 1997): the committee of a few
models are trained on the existing training set and the next query points are selected to reduce the
disagreement among these models. The method of Roy and McCallum (2001) minimizes the direct
error, that is, it tries to choose training points to minimize the expected classification error directly.

In the literature there are other approaches, including decision theory based methods. The orig-
inal ideas were worked out in Raiffa and Schlaifer (1961) and Lindley (1971). The objective in
this method family is to choose the design such that the predicted value of a given utility function
become maximal. Numerous utility functions have been proposed. For example,if we aim to esti-
mate the unknown parameterθ, then one possible direction is the minimization of, for example, the
entropy or the standard deviation of the posterior distribution. If we minimize theentropy then we
arrive at the D-optimality principle (Bernardo, 1979; Stone, 1959). Thisprinciple is equivalent to
the information maximization method (also known as infomax principle) of Lewi et al. (2007). If
we intend to minimize the standard deviation then the result is the A-optimality principle (Duncan
and DeGroot, 1976). A special case is called the c-optimality principle (Chaloner, 1984) when the
goal is to estimate a linear projection of parameterθ (cTθ). There exist a number of other methods,
called alphabetical optimality and utility functions. For a review see, for example, Chaloner and
Verdinelli (1995). Although the original ideas belong to the field of optimal experimental design,
they have appeared also in active learning recently (MacKay, 1992; Tong and Koller, 2000; Schein
and Ungar, 2007).

Today, active learning is present almost in all fields of machine learning and there are many
popular applications on diverse areas, including Gaussian Processes(Krause and Guestrin, 2007),
Artificial Neural Networks (Fukumizu, 2000), Support Vector Machines (Tong and Koller, 2001b),
Generalized Linear Models (Bach, 2007; Lewi et al., 2007), Logistic Regression (Schein, 2005),
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learning the parameters and structure of Bayes nets (Tong and Koller, 2000, 2001a) and Hidden
Markov Models (Anderson and Moore, 2005).

Our framework is similar to the generalized linear model (GLM) approach used by Lewi et al.
(2007): we would like to choose interrogating, or ‘control’ inputs in order to (i) identify the pa-
rameters of the network and (ii) estimate the additive noise efficiently. From now on, we use the
termscontrol and interrogation interchangeably; control is the conventional expression, whereas
the word interrogation expresses our aims better. We apply online Bayesianlearning (Opper and
Winther, 1999; Solla and Winther, 1999; Honkela and Valpola, 2003; Ghahramani, 2000). For
Bayesian methods, prior updates often lead to intractable posterior distributions such as a mixture
of exponentially numerous distributions. Here, we show that, for the model studied in this paper,
computations are both tractable and approximation-free. Further, the emerging learning rules are
simple. We also show that different stimuli are needed for the same RNN modeldepending on
whether the goal is to estimate the weights of the RNN or the additive perturbation(referred to as
‘driving noise’).

In this article we investigate the D-optimality, as well as the A-optimality principles. Tothe best
of our knowledge, neither of them has been applied to the typical non-spiking stochastic artificial
recurrent neural network model that we treat here.

The contribution of this paper can be summarized as follows: We use A-optimalityand D-
optimality principles and derive cost functions and algorithms for (i) the learning of parameters of
the stochastic RNN and (ii) the estimation of its driving noise. We show that, (iii) using the D-
optimality interrogation technique, these two tasks are incoherent in the myopic (i.e., single step
look-ahead) control scheme: signals derived from this principle for parameter estimation are sub-
optimal (basically the worst possible) for the estimation of the driving noise and vice versa. (iv)
We show that for the case of noise estimation task the two principles, that is, A-and D-optimality
principles result in the same cost function. (v) For the A-optimality case, we derive equations for
the joined estimation of the noise and the parameters. On the contrary, we showalso that (vi)
D-optimality cannot be applied on the same joined task. For the case of noise estimation, (vii) a
non-myopic multiple step look-ahead heuristics is introduced and we demonstrate its applicability
through numerical experiments.

The paper is structured as follows: In Section 2 we introduce our model. Section 3 concerns
the Bayesian equations of the RNN model. In Section 4 optimal control for parameter identification
is derived from the D-optimality principle. Section 5 is about the same task, butusing the A-
optimality principle instead. Section 6 deals with our second task, when the goalis the estimation
of the driving noise of the RNN. Here we treat the D-optimality principle. Section 7 is about the
same problem, but for the A-optimality principle. We combine the two tasks for bothoptimality
principles in Section 8 and consider the cost functions for the joined estimationof the parameters
and the driving noise. All of these considerations concern myopic algorithms. In Section 9 a non-
myopic heuristics is introduced for the noise estimation task. Section 10 containsour numerical
experiments for a number of cases, including independent component analysis. The paper ends
with a short discussion and some conclusions (Section 11). Technical details of the derivations can
be found in the Appendix.
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2. The Model

Let P(e) = Ne(m,V) denote the probability density of a normally distributed stochastic variablee
with meanm and covariance matrixV. Let us assume that we haved simple computational units
called ‘neurons’ in a recurrent neural network:

r t+1 = g

(

I

∑
i=0

Fir t−i +
J

∑
j=0

B jut+1− j +et+1

)

, (1)

where{et}, the driving noise of the RNN, denotes temporally independent and identically dis-
tributed (i.i.d.) stochastic variables andP(et) =Net (0,V), r t ∈R

d represents the observed activities
of the neurons at timet. Let ut ∈ R

c denote the control signal at timet. The neural network is
formed by the weighted delays represented by matricesFi (i = 0, . . . , I ) andB j ( j = 0, . . . ,J), which
connect neurons to each other and also the control components to the neurons, respectively. Control
can also be seen as the means of interrogation, or the stimulus to the network (Lewi et al., 2007).
We assume that functiong : R

d → R
d in (1) is known and invertible. The computational units, the

neurons, sum up weighted previous neural activities as well as weightedcontrol inputs. These sums
are then passed through identical non-linearities according to Eq. (1). Our goal is to estimate the
parametersFi ∈ R

d×d (i = 0, . . . , I ), B j ∈ R
d×c ( j = 0, . . . ,J) and the covariance matrixV, as well

as the driving noiseet by means of the control signals.
In artificial neural network terms, (1) is in the form ofrate code models. This is the typical

form for RNNs, but there are methods to approximate rate code descriptionwith spike codes and
vice versa. For the case of RNNs, the best is to compare Liquid State Machine, a spike code model
of Maass et al. (2002) with the Echo State Network, the corresponding rate code model of Jaeger
(2001). Rate code, very crudely, is the low pass filtered spike code, whereas spike code can be seen
as the response of integrate-and-fire neurons. We show that analytic cost functions emerge for the
rate code RNN model. Due to the applied conjugate priors, we can calculate thehigh dimensional
integrals involved in our derivations, and hence these derivations remainapproximation-free and
give rise to simple update rules.

3. Bayesian Approach

Here we embed the estimation task into the Bayesian framework. First, we introduce the follow-
ing notations:xt+1 = [r t−I ; . . . ; r t ;ut−J+1; . . . ;ut+1], yt+1 = g−1(r t+1), A = [FI , . . . ,F0,BJ, . . . ,B0]∈
R

d×m. With these notations, model (1) reduces to a linear equation

yt = Axt +et . (2)

In order to estimate the unknown quantities (parameter matrixA, noiseet and its covariance matrix
V) in an online fashion, we rely on Bayes’ method. We assume that prior knowledge is available
and we update our posteriori knowledge on the basis of the observations. Control will be chosen
at each instant to provide maximal expected information concerning the quantities we have to esti-
mate. Starting from an arbitrary prior distribution of the parameters the posterior distribution needs
to be computed. This latter distribution, however, can be highly complex, so approximations are
applied. For example, assumed density filtering, when the computed posterioris projected to sim-
pler distributions, has been suggested (Boyen and Koller, 1998; Minka,2001; Opper and Winther,
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1999). In order to avoid approximations, we apply the method of conjugatedpriors (Gelman et al.,
2003). For matrixA we assume a matrix valued normal distribution prior.

For the case of D-optimality principle, we shall use the inverted Wishart (IW)distribution as
our prior for covariance matrixV. This is the most general known conjugate prior distribution
for the covariance matrix of a normal distribution at present. For A-optimality,however, we keep
the derivations simple and assume that the covariance matrix has diagonal structure. In turn, we
replaced the IW assumption on the prior with the distribution of the Product of Inverted Gammas
(PIG).

We define the normally distributed matrix valued stochastic variableA ∈ R
d×m by using the

following quantities:M ∈ R
d×m is the expected value ofA. V ∈ R

d×d is the covariance matrix
of the rows, andK ∈ R

m×m is the so-called precision parameter matrix that we shall modify in
accordance with the Bayesian update. MatrixK contains the estimations of the ‘Bayesian trainer’
about the precision of parameters inA. Informally, matrixK behaves as the inverse of a covariance
matrix. Upon each observation, matrixK is updated. The larger the eigenvalues of this matrix, the
smaller the variance ellipsoids of the posteriori estimations are.

BothK andV are positive semi-definite matrices. The density function of the stochastic variable
A is defined as:

NA(M ,V,K) =
|K |d/2

|2πV|m/2
exp(−1

2
tr((A−M)TV−1(A−M)K)),

where tr, | · |, and superscriptT denote the trace operation, the determinant, and transposition,
respectively (see, e.g., Gupta and Nagar, 1999; Minka, 2000). We assume thatQ∈R

d×d is a positive
definite matrix andn> 0. Using these notations, the density of the Inverted Wishart distribution with
parametersQ andn is as follows (Gupta and Nagar, 1999):

IW V(Q,n) =
1

Zn,d

1

|V|(d+1)/2

∣

∣

∣

∣

V−1Q
2

∣

∣

∣

∣

n/2

exp(−1
2

tr(V−1Q)),

whereZn,d = πd(d−1)/4
d
∏
i=1

Γ((n+1− i)/2) andΓ(.) denotes the gamma function.

Similarly, letV = diag(v) ∈ R
d×d diagonal covariance matrix with 0< v ∈ R

d diagonal values.
With the slight abuse of notation we will use later thev = diag(V) ∈ R

d term, too. Then the density
of PIG is defined as

PIGV(α,β) =
d

∏
i=1

βαi
i

Γ(αi)
v−αi−1

i exp(−βi

vi
),

whereαi > 0 andβi > 0 are the shape and scale parameters respectively.
Now, one can rewrite model (2) as follows:

P(A|V) = NA(M ,V,K), (3)

P(et |V) = Net (0,V), (4)

P(yt |A,xt ,V) = Nyt (Axt ,V), (5)

andP(V) = PIGV(α,β) or P(V) = IW V(Q,n) depending on whether we want to use A- or D-
optimality.
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4. D-Optimality Approach for Parameter Learning

Let us compute the D-optimal parameter estimation strategy for our RNN given by (1) and rewritten
into (3)-(5). Let us introduce two shorthands;θ = {A,V}, and{x} j

i = {xi , . . . ,x j}. We choose
the control value in (1) at each instant to provide maximal expected information concerning the
unknown parameters. Assuming that{x}t

1, {y}t
1 are given, according to the infomax principle our

goal is to compute

argmax
ut+1

I(θ,yt+1;{x}t+1
1 ,{y}t

1), (6)

whereI(a,b;c) denotes the mutual information of stochastic variablesa andb for fixed parameters
c. Let H(a|b;c) denote the conditional entropy of variablea conditioned on variableb and for fixed
parameterc. Note that

I(θ,yt+1;{x}t+1
1 ,{y}t

1) = H(θ;{x}t+1
1 ,{y}t

1)−H(θ|yt+1;{x}t+1
1 ,{y}t

1),

holds (Cover and Thomas, 1991) andH(θ;{x}t+1
1 ,{y}t

1) = H(θ;{x}t
1,{y}t

1) is independent from
ut+1, hence our task is reduced to the evaluation of the following quantity:

argmin
ut+1

H(θ|yt+1;{x}t+1
1 ,{y}t

1) = (7)

= argmin
ut+1

−
Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1)
Z

dθP(θ|{x}t+1
1 ,{y}t+1

1 ) logP(θ|{x}t+1
1 ,{y}t+1

1 ).

In order to solve this minimization problem we need to evaluateP(yt+1|{x}t+1
1 ,{y}t

1), the posterior
P(θ|{x}t+1

1 ,{y}t+1
1 ), and the entropy of the posterior, that is

R

dθP(θ|{x}t+1
1 ,{y}t+1

1 )
logP(θ|{x}t+1

1 ,{y}t+1
1 ), whereP(a|b) denotes the conditional probability of variablea given con-

dition b. The main steps of these computations are presented below.
Assume that the a priori distributions P(A|V,{x}t

1,{y}t
1) = N (A|M t ,V,K t) and

P(V|{x}t
1,{y}t

1) = IW V(Qt ,nt) are known. Then the posterior distribution ofθ is:

P(A,V|{x}t+1
1 ,{y}t+1

1 ) =
P(yt+1|A,V,xt+1)P(A|V,{x}t

1,{y}t
1)P(V|{x}t

1,{y}t
1)

P(yt+1|{x}t+1
1 ,{y}t

1)
,

=
Nyt+1(Axt+1,V)NA(M t ,V,K t)IW V(Qt ,nt)

R

A
R

V Nyt+1(Axt+1,V)NA(M t ,V,K t)IW V(Qt ,nt)
.

This expression can be rewritten in a more useful form: letK ∈ R
m×m andQ ∈ R

d×d be positive
definite matrices. LetA ∈ R

d×m, and let us introduce the density function of the matrix valued
Student-t distribution (Kotz and Nadarajah, 2004; Minka, 2000) as follows:

TA(Q,n,M ,K) =
|K |d/2

πdm/2

Zn+m,d

Zn,d

|Q|n/2

|Q+(A−M)K(A−M)T |(m+n)/2
.

Now, we need the following lemma:

Lemma 4.1

Ny(Ax,V)NA(M ,V,K)IW V(Q,n) =NA((MK +yxT)(xxT +K)−1,V,xxT +K)×
×IW V

(

Q+(y−Mx)(1−xT(xxT +K)−1x)(y−Mx)T ,n+1
)

×

×Ty
(

Q,n,Mx ,1−xT(xxT +K)−1x
)

.
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The proof can be found in the Appendix.
Using this lemma, we can compute the posterior probabilities. We introduce the following

quantities:

γt+1 = 1−xT
t+1(xt+1xT

t+1 +K t)
−1xt+1, (8)

nt+1 = nt +1,

M t+1 = (M tK t +yt+1xT
t+1)(xt+1xT

t+1 +K t)
−1, (9)

Qt+1 = Qt +(yt+1−M txt+1)γt+1(yt+1−M txt+1)
T . (10)

For the posterior probabilities we have determined that

P(A|V,{x}t+1
1 ,{y}t+1

1 ) = NA(M t+1,V,xt+1xT
t+1 +K t), (11)

P(V|{x}t+1
1 ,{y}t+1

1 ) = IW V (Qt+1,nt+1) , (12)

P(yt+1|{x}t+1
1 ,{y}t

1) = Tyt+1 (Qt ,nt ,M txt+1,γt+1) .

Now we are in the position to compute the entropy of the posterior distribution ofθ = {A,V} using
the following lemma:

Lemma 4.2 The entropy of a stochastic variable with density function P(A,V) =
NA(M ,V,K)IW V(Q,n) assumes the form−d

2 ln |K |+(m+d+1
2 ) ln |Q|+ f1,1(d,n), where f1,1(d,n)

depends only on d and n.

The proof can be found in the Appendix.
Lemmas 4.1 and 4.2 lead to the following corollary:

Corollary 4.3 For the entropy of a stochastic variable with posterior distribution P(A,V|x,y) it
holds that

H(A,V;x,y) = −d
2

ln |xxT +K |+ f1,1(d,n)+(
m+d+1

2
) ln |Q+(y−Mx)γ(y−Mx)T |.

We note that the following lemma also holds:

Lemma 4.4
Z

Ty (Q,n,µ,γ) ln |Q+(y−µ)γ(y−µ)T |dy

is independent from bothµ andγ,

and thus we can compute the conditional entropy expressed in (7):

Lemma 4.5

H(A,V|y;x) =
Z

p(y|x)H(A,V;x,y)dy = −d
2

ln |xxT +K |+ f1,2(Q,n,m),

where f1,2(Q,n,m) depends only onQ, n and m.
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Collecting all the terms, we arrive at the followingintriguingly simpleexpression

uopt
t+1 = argmin

ut+1

Z

p
(

yt+1|{x}t+1
1 ,{y}t

1

)

H(A,V|{x}t+1
1 ,{y}t

1,yt+1)dyt+1,

= argmin
ut+1

−d
2

ln |xt+1xT
t+1 +K t | = argmax

ut+1
xT

t+1K−1
t xt+1, (13)

where

xt+1
.
= [r t−I ; . . . ; r t ;ut−J+1; . . . ;ut+1],

and we used that|xxT +K | = |K |(1+xTK−1x) according to the Matrix Determinant Lemma
(Harville, 1997). We assume a bounded domainU for the control, which is necessary to keep
the maximization procedure of (13) finite. This is, however, a reasonable condition for all practical
applications. So,

uopt
t+1 = arg max

ut+1∈U
xT

t+1K−1
t xt+1, (14)

In what follows D-optimal control will be referred to as‘infomax interrogation scheme’. The steps
of our algorithm are summarized in Table 1.

Control Calculation
ut+1 = argmaxu∈U x̂T

t+1K−1
t x̂t+1

wherex̂t+1 = [r t−I ; . . . ; r t ;ut−J+1; . . . ;ut ;u]
setxt+1 = [r t−I ; . . . ; r t ;ut−J+1; . . . ;ut ;ut+1]

Observation
observer t+1, and letyt+1 = g−1(r t+1)

Bayesian update
M t+1 = (M tK t +yt+1xT

t+1)(xt+1xT
t+1 +K t)

−1

K t+1 = xt+1xT
t+1 +K t

nt+1 = nt +1
γt+1 = 1−xT

t+1(xt+1xT
t+1 +K t)

−1xt+1

Qt+1 = Qt +(yt+1−M txt+1)γt+1(yt+1−M txt+1)
T

Table 1: Pseudocode of the algorithm

Computation of the inverse(xt+1xT
t+1 +K t)

−1 in Table 1 can be simplified considerably by the
following recursion: letPt = K−1

t , then according to the Sherman-Morrison formula (Golub and
Van Loan, 1996)

Pt+1 = (xt+1xT
t+1 +K t)

−1 = Pt −
Ptxt+1xT

t+1Pt

1+xT
t+1Ptxt+1

. (15)

In this expression matrix inversion disappears and only a real number is inverted instead.

5. A-Optimality Approach for Parameter Learning

The D-optimality principle aims to minimize the expected posteriori entropy of the parameters.
A-optimality principle differs; it measures the uncertainty by means of the variance and not the
entropy. Thus, instead of (7), the A-optimal objective function is as follows:
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uopt
t+1 = argmin

ut+1

Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1)trVar[θ|{x}t+1
1 ,{y}t+1

1 ]. (16)

whereVar[θ|F ] denotes the conditional covariance matrix ofθ given the conditionF .
To keep the calculations simple, in this case we usePIGV(αt ,βt) prior distribution for the co-

variance matrix instead ofIW V(Qt ,nt). Using the notations of (8)-(10), the posterior distributions
assume the following forms:

Lemma 5.1

P(A|V,{x}t+1
1 ,{y}t+1

1 ) = NA(M t+1,V,xt+1xT
t+1 +K t), (17)

P(V|{x}t+1
1 ,{y}t+1

1 ) = PIGV (αt+1,βt+1) ,

P(yt+1|{x}t+1
1 ,{y}t

1) =
d

∏
i=1

T(yt+1)i

(

(βt)i ,2(αt)i ,(M txt+1)i ,
γt+1

2

)

, (18)

where we used the shorthands

(αt+1)i = (αt)i +1/2,

(βt+1)i = (βt)i +((yt+1)i − (M txt+1)i)
2 γt+1

2
. (19)

The proof can be found in the Appendix.
Given thatP(V|{x}t+1

1 ,{y}t+1
1 ) belongs to thePIG family we can calculate the quantity

Var(V|{x}t+1
1 ,{y}t+1

1 ) (Gelman et al., 2003):

tr
(

Var[V|{x}t+1
1 ,{y}t+1

1 ]
)

=
d

∑
i=1

(βt+1)i

((αt+1)i −1)2((αt+1)i −2)
.

We will need the following lemma:

Lemma 5.2

tr
(

Var[A|{x}t+1
1 ,{y}t+1

1 ]
)

= tr
(

(

K t +xt+1xT
t+1

)−1
)

E[trV|{x}t+1
1 ,{y}t+1

1 ],

= tr
(

(

K t +xt+1xT
t+1

)−1
) d

∑
i=1

(βt+1)i

(αt+1)i −1
.

The proof can be found in the Appendix.
Now we can elaborate on the A-optimal cost function for parameter estimation (16):

Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1)trVar[θ|{x}t+1
1 ,{y}t+1

1 ] = (20)

=
Z

dyt+1

d

∏
i=1

T(yt+1)i

(

(βt)i ,2(αt)i ,(M txt+1)i ,
γt+1

2

)

×

×
(

tr
(

(

K t +xt+1xT
t+1

)−1
) d

∑
i=1

(βt+1)i

(αt+1)i −1
+

d

∑
i=1

(βt+1)i

((αt+1)i −1)2((αt+1)i −2)

)

,

= tr
(

(

K t +xt+1xT
t+1

)−1
)

f2,1(αt+1,βt)+ f2,2(αt+1,βt),
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where f2,1 and f2,2 depend only onαt+1, andβt . Here we used (18), (19) and Lemma 4.4.
Applying again the Sherman-Morrison formula (15) and the fact thattr[K−1

t xt+1xT
t+1K−1

t ] =

tr[xT
t+1K−1

t K−1
t xt+1], we arrive at the following expression for A-optimal parameter estimation:

uopt
t+1 = arg max

ut+1∈U

xT
t+1K−1

t K−1
t xt+1

1+xT
t+1K−1

t xt+1
, (21)

which is a hyperbolic programming task.
We can conclude that while in the D-optimality case the task is to minimize expression|(K t +

xt+1xT
t+1)

−1|, the A-optimality principle is concerned with the minimization oftr[(K t +xt+1xT
t+1)

−1].

6. D-Optimality Approach for Noise Estimation

One might wish to compute the optimal control for estimating noiseet in (1), instead of the identi-
fication problem above. Based on (1) and because

et+1 = yt+1−
I

∑
i=0

Fir t−i −
J

∑
j=0

B jut+1− j , (22)

one might think that the best strategy is to use the optimal infomax control of Table 1, since it
provides good estimations for parametersA = [FI , . . . ,F0,BJ, . . . ,B0] and so for noiseet .

Another—and different—thought is the following. At timet +1, let the estimation of the noise
be êt+1 = yt+1 −∑I

i=0 F̂t
i r t−i −∑J

j=0 B̂t
jut+1− j , whereF̂t

i (i=0,. . . ,I), andB̂t
j (j=0,. . . ,J) denote the

estimations ofF andB respectively.
Using (22), we have that

et+1− êt+1 =
I

∑
i=0

(Fi − F̂t
i )r t−i +

J

∑
j=0

(B j − B̂t
j)ut+1− j . (23)

This hints that the control should beut = 0 for all times in order to get rid of the error contribution
of matrixB j in (23).

Straightforward D-optimality considerations oppose the utilization of objective(6) for the present
task. One can optimize, instead, the following quantity:

argmax
ut+1

I(et+1,yt+1;{x}t+1
1 ,{y}t

1).

In other words, for the estimation of the noise we want to design a control signal ut+1 such that the
next output is the best from the point of view of greedy optimization of mutual information between
the next outputyt+1 and the noiseet+1. It is easy to show that this task is equivalent to the following
optimization problem:

argmin
ut+1

Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1)H(et+1;{x}t+1
1 ,{y}t+1

1 ), (24)

whereH(et+1;{x}t+1
1 ,{y}t+1

1 ) = H(Axt+1;{x}t+1
1 ,{y}t+1

1 ), becauseet+1 = yt+1−Axt+1.
In practice, we perform this optimization in an appropriate domainU. After some mathematical

calculation we can prove that the D-optimal interrogation scheme for noise estimation gives rise to
the following control:
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Lemma 6.1

uopt
t+1 = arg min

ut+1∈U
xT

t+1K−1
t xt+1. (25)

The proof of this lemma can be found in the Appendix.
It is worth noting that this D-optimal cost function for noise estimation and the D-optimal cost

function derived for parameter estimation in (13) are not compatible with eachother. Estimating
one of them quickly will necessarily delay the estimation of the other.

We shall show later (Section 9) that for larget values, expression (25) gives rise to control values
close tout = 0.

7. A-Optimality Approach for Noise Estimation

Instead of (24), our task is to compute the following quantity:

argmin
ut+1

Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1) tr
(

Var[et+1|{x}t+1
1 ,{y}t+1

1 ]
)

. (26)

We will apply the identity

NAxt+1

(

M t+1xt+1,V,
(

xT
t+1K−1

t+1xt+1
)−1
)

PIGV (αt+1,βt+1) =

=
d

∏
i=1

T(Axt+1)i



(βt+1)i ,2(αt+1)i ,(M t+1xt+1)i ,

(

xT
t+1

K−1
t+1

2
xt+1

)−1


×

×PIGV

(

αt+1 +1,βt+1 +diag[(yt+1−M txt+1)
γt+1

2
(yt+1−M txt+1)

T ]
)

,

which can be proven by using Lemma A.1. We can simplify (26) by noting that

tr
(

Var[et+1|{x}t+1
1 ,{y}t+1

1 ]
)

= tr
(

Var[Axt+1|{x}t+1
1 ,{y}t+1

1 ]
)

.

We also take advantage of the fact that

VarV [E[Axt+1|V,{x}t+1
1 ,{y}t+1

1 ]] = VarV [M t+1xt+1] = 0,

and proceed as

EV [trVar(Axt+1|V,{x}t+1
1 ,{y}t+1

1 )] = EV [tr(V⊗xT
t+1K−1

t+1xt+1|{x}t+1
1 ,{y}t+1

1 ],

= tr(E[V|{x}t+1
1 ,{y}t+1

1 ])xT
t+1K−1

t+1xt+1,

= xT
t+1K−1

t+1xt+1

d

∑
i=1

(βt+1)i

(αt+1)i −1
,

where⊗ denotes the Kronecker product. The law of total variance says that

Var[Ax] = Var[E[Ax|V]]+E[Var[Ax|V]],

and hence

trVar[Axt+1|{x}t+1
1 ,{y}t+1

1 ] = xT
t+1K−1

t+1xt+1

d

∑
i=1

(βt+1)i

(αt+1)i −1
.
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There is another way to arrive at the same result. One can apply (37) with Lemma A.1 and use

the fact that the covariance matrix of aTx(β,α,µ,K) distributed variable isβK−1

α−2 (Gelman et al.,
2003). That is, we have

trVar[Axt+1|{x}t+1
1 ,{y}t+1

1 ] =
d

∑
i=1









(βt+1)i

(

xT
t+1

K−1
t+1
2 xt+1

)

2(αt+1)i −2









.

Now, we can proceed as
Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1)tr
(

Var[et+1|{x}t+1
1 ,{y}t+1

1 ]
)

= (27)
Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1)tr(E[V|{x}t+1
1 ,{y}t+1

1 ])xT
t+1K−1

t+1xt+1 =

xT
t+1K−1

t+1xt+1

Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1)
d

∑
i=1

(βt+1)i

(αt+1)i −1
=

xT
t+1K−1

t+1xt+1

d

∑
i=1

f4((αt+1)i ,(βt)i),

where we used (18), (19) and Lemma 4.4 again. Applying the Sherman-Morrison formula one can
see that the task is the same as in (25).

8. Joint Parameter and Noise Estimation

So far we wanted to optimize the control in order to speed-up learning of either the parameters of
the dynamics or the noise. In this section we investigate the A- and D-optimality principles for the
joint parameter and noise estimation task.

8.1 A-optimality

According to the A-optimality principle, the joined objective for parameter and noise estimation is
given as:

Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1) trVar[vec(A),diag(V),et+1|{x}t+1
1 ,{y}t+1

1 ].

By means of (20), (27) and Lemma 5.2, it is equivalent to:
Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1)E[trV|xt+1
1 ,yt+1

1 ] tr
(

(

K t +xt+1xT
t+1

)−1
+xT

t+1K−1
t+1xt+1

)

.

From here, one can prove the following lemma in a few steps:

Lemma 8.1 The A-optimality principle in the joined parameter and noise estimation task givesrise
to the following choice for control:

uopt
t+1 = arg max

ut+1∈U

1+xT
t+1K−1

t K−1
t xt+1

1+xT
t+1K−1

t xt+1
. (28)

The proof can be found in the Appendix.
Thus, the task is a hyperbolic programming task, similar to (21).
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8.2 D-optimality

One of the most salient differences between A-optimality and D-optimality is that for D-optimality
we have

H(X,Y) = H(X|Y)+H(Y),

however, for A-optimality the corresponding equation does not hold in general, because:

trVar(X,Y) 6= EY[trVar(X|Y)]+ trVar(Y).

An implication—as we shall see below—is that we cannot use the D-optimality principle for the
joint parameter and noise estimation task. For D-optimality our cost function would be

argmin
ut+1

Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1)H(A,V,et+1|{x}t+1
1 ,{y}t+1

1 ),

but the following equality holds:

H(A,V,et+1|{x}t+1
1 ,{y}t+1

1 ) = H(A,V|{x}t+1
1 ,{y}t+1

1 )+H(et+1|A,V{x}t+1
1 ,{y}t+1

1 ),

and sinceet+1 = yt+1−Axt+1, therefore the last termH(et+1|A,V{x}t+1
1 ,{y}t+1

1 ) = −∞. The first
term is a finite real number, thus we can conclude that the D-optimality cost function is constant
−∞, and therefore the D-optimality principle does not suit the joint parameter andnoise estimation
task.

9. Non-myopic Optimization

Until now, we considered myopic methods for the optimization of control, that is,we aimed to
determine the optimum of the objective only for the next step. In this section, weshow a non-
myopic heuristics for the noise estimation task (25).

The optimization of the derived objective function,xT
t+1K−1

t xt+1, is simple, provided thatK t is
fixed during the optimization ofut+1. If so, then the optimization task is quadratic. To see this, let
us partition matrixK t as follows:

K t =

(

K11
t K12

t
K21

t K22
t

)

,

whereK11
t ∈ R

d×d,K21
t ∈ R

m−d×d, K22
t ∈ R

m−d×m−d. It is easy to see that if domainU in (25) is
large enough then

uopt
t+1 = (K22

t )−1K21
t r t . (29)

It occurs, however, that the objectivexT
t+1K−1

t xt+1 may be improved by considering multiple-
step lookaheads. In this case matrixK t can be subject to changes inxT

t+1K−1
t xt+1, because it depends

on previous control inputsu1, . . . ,ut derived from previous optimization steps.
We propose a two-step heuristics for the long-term minimization of expressionxT

t+1K−1
t xt+1.

During the firstτ-step long stage, we focus only on the minimization of the quantity|K−1
t |. Then,

if this quantity |K−1
t | becomes small, we start the second stage: we considerK−1

t as given and
search for control that minimizes quantityxT

t+1K−1
t xt+1, so we now apply the rule of (29). Thus,
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this method ‘sacrifices’ the firstτ steps in order to achieve smaller costs later; this heuristic opti-
mization is non-myopic. More formally, we use the strategy of Table 1 in the firstτ steps in order to
decrease quantity|K−1

t | fast. Then after thisτ-steps, we switch to the control method of (29). This
will decrease the cost function (25) further. We will call this non-greedy interrogation heuristics
introduced for noise estimation‘τ-infomax noise interrogation’. This non-myopic heuristics admits
that parameter estimation of the dynamics is the prerequisite of noise estimation, because improper
parameter estimation makes apparent noise, and thus the heuristics sacrifices τ steps for parameter
estimation.

In Section 10 we will empirically show that using this non-myopic strategy, afterτ steps we can
achieve smaller cost values in (25)—as well as better performance in parameter estimation—than
using the greedy competitors. The compromise is that in the firstτ steps the performance of the
non-myopic control can be worse than that of the other control methods.

We note that in theτ-infomax noise interrogation, for large switching timeτ and for larget
values,|K22

t | will be large, and hence—according to (29)—the optimalut for interrogation will
be close to0. (In Section 10 we will show this empirically.) A reasonable approximation of the
‘τ-infomax noise interrogation’ is to use the control given in Table 1 forτ steps and to switch to
zero-interrogationonwards. This scheme will be called the‘τ-zero interrogation’scheme.

10. Numerical Illustrations

We illustrate by numerical simulations the power of A- and D-optimizations.

10.1 Generated Data

This section provides numerical experiments for parameter and noise estimations on artificially
generated toy problems.

10.1.1 PARAMETER ESTIMATION

We investigated the parameter estimation capability of the D- and A-optimal interrogation. Matrix
F∈R

d×d has been generated as a random orthogonal matrix multiplied by 0.9 so that themagnitudes
of its eigenvalues remained below 1. Random matrixB∈R

d×c was generated from standard normal
distribution. Elements of the diagonal covariance matrixV of noiseet were generated from the
uniform distribution over[0,1]. The process is stable under these conditions.

To study whether or not the D- and A-optimal interrogations are able to estimatethe true pa-
rameters we measured the averages of the squared deviations of the true matricesF andB and the
means of their posterior estimations, respectively. The square roots of these estimations are the
mean squared errors (MSE). One might use other options to measure performance. For example,L2

norm could be replaced by theL1 norm and the variance of the posterior estimations could also be
added as the complementary information for the bias.

We examined the following strategies: (i) D-optimal control of Table 1 withU = [−δ,δ]c, which
defines ac-dimensional hypercube. The value ofδ was set to 50. (ii) A-optimal control of (21) with
the sameU, (iii) zero control:ut = 0∈R

c ∀t, (iv) random control:ut ∈ [−δ,δ]c generated randomly
from the uniform distribution in thec-dimensional hypercube, (v) control defined by (25) for noise
estimation, called ‘noise control’, (vi) 25-zero control and (vii) 75-zerocontrol defined in Section 9.
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For solving the quadratic problem of (14) and (25) we used a subspacetrust-region procedure,
which is based on the interior-reflective Newton method described by Coleman and Li (1996). Its
implementation is available in the Matlab Optimization toolbox. However, the optimization task in
(21) is more involved: Generally, the optimization of a constrained hyperbolicprogramming task is
quite difficult. We tried the gradient ascent method, but its convergence appeared to be very slow
and we got poor results. In this case, it was more efficient to apply a simplexmethod as follows:
we know that the optimal solution of (21) lies at the boundary ofU. Thus, we chose one corner
of hypercubeU randomly with uniform distribution and moved greedily to the neighboring corners
with the best improvement in the objective. This procedure was iterated until convergence. The
method was efficient for our special simple optimization domain.

We investigated two distinct cases. In the first case we setd = 10< c = 40; the dimension of
the observations is smaller than the dimension of the control. By contrast, in the other case we set
d = 40> c= 10. Results are shown in Fig. 1 (a-b) and in Fig. 2 (a-b). We separated the MSE values
of matricesB andF. According to the figure, zero control may give rise to early and suddendrops
in the MSE values of matrixF. Not surprisingly, however, zero control is unable to estimate matrix
B. For both types of matrices as well as ford < c and ford > c, the D-optimal procedure produced
the smallest MSE after about 50 online estimations, but the A-optimal method reached very similar
levels only a few iterations later. As can be expected,τ-zero control, which is identical to D-optimal
control in the firstτ steps fell behind D-optimal control afterτ since it changes the objective and
estimates the noise and not the parameters afterwards.

For statistical significance studies, we introduced the concept of average correlation curves. We
use Fig. 1 to explain this concept. There are 7 curves in Fig. 1 each representing the averages of
25 computer runs. Error bars make the curves incomprehensible and theyhide the correlations
that may be present between the errors. We note that the relative order of the curves is of interest
for us. However, it is possible that in each run the relative order of the curves was the same and
the overlap of the error bars—which originates from the large differences between the individual
runs—hides this important piece of information. We treat this problem as follows. In each time
instant 1≤ t ≤ 250 and for all 1≤ i < j ≤ 25 we compute the empirical (linear, or rank) correlation
of the 7 curves of theith and j th experiment and take the average of the 25×24/2 = 300 values.
The most significant case gives rise to 1 for each of the 300 correlations, that is, the 25 experiments
agree in the height of the curves at that time instant, or in their relative orderings for the case
of rank correlation. If there is any single experiment out of 25 that produces different heights
or orders then the average correlation becomes smaller than 1. For randomly chosen curves the
average correlation is 0. Results can be seen in Fig. 1 (c-d) and Fig. 2 (c-d) for linear Pearson and
for Kendal rank correlations, respectively. The curves demonstratethat after about 50 steps, the
correlations, in particular the linear correlation is almost 1. This means that thecurves behaved
similarly in a considerable portion of the experiments. The slightly different picture shown by the
linear correlation and the rank correlation could be due to the fact that the performance of the A and
D-optimal control is very similar after some time, and their ordering may change often, thus giving
rise to changes in the ranks in different experiments.

10.1.2 NOISE ESTIMATIONS

In Section 7 we showed that A- and D-optimality principles result in the same cost function.
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Figure 1: Mean Square Error of the estimated parameters for different control strategies and the sig-
nificance of the curves. Magnitude of MSE as a function of time is averagedfor 25 runs. Dimension
of the control is 10.F ∈ R

40×40, B ∈ R
40×10. (a): MSE of the estimated matrix̂F. (b): MSE of the

estimated matrix̂B. (c): The average correlation curves for the estimation ofF. (d): The average
correlation curves for the estimation ofB. For details see the text.

We investigated the noise estimation capability of the interrogation in (25) for four cases. The
first set of experiments illustrates that the estimation of driving noiseet for largeτ values barely
differs if we replace theτ-infomax noise interrogationwith the τ-zero interrogationscheme. Pa-
rameters were the same as above and the MSE of the noise estimation was computed. Results are
shown in Fig. 3: for the case ofτ = 21, cost function (25) of theτ-zero interrogation is higher than
that of τ-infomax interrogation. However, for valuesτ = 51 and 81 the performances of the two
schemes are approximately identical. Given thatτ-zero andτ-infomax noise interrogation behave
similarly for largeτ values, we compare theτ-zero interrogation scheme with other schemes in our
numerical experiments.

In the second experiment we investigated the problem of noise estimation on a toy problem.
Parameters were set as in Section 10.1.1, and the following strategies were compared: zero control,
infomax control, random control andτ-zero control for differentτ values. Results are shown in
Fig. 4. It is clear from the figure that neither the zero control, nor the infomax (D-optimal) control
of Table 1 work for this case. If we want to have minimal MSE in approximatelyτ steps then the
best strategy is to apply theτ-zero strategy, that is, the strategy of Table 1 up toτ steps and then
to switch to zero control. Note, however, that parameter estimation requires tokeep control values
non-negligible forever (Table 1).

530



BAYESIAN INTERROGATION FORPARAMETER AND NOISE IDENTIFICATION

0 50 100 150 200 250
10

−4

10
−2

10
0

10
2

10
4

MSE F, d= 10, control dim= 40

 

 
D−optimal
A−optimal
zero
random
noise
25−zero control
75−zero control

(a)

0 50 100 150 200 250
10

−2

10
0

10
2

10
4

MSE B, d= 10, control dim= 40

 

 

D−optimal
A−optimal
zero
random
noise
25−zero control
75−zero control

(b)

0 50 100 150 200 250
0.4

0.5

0.6

0.7

0.8

0.9

1
Average correlation F, d= 10, control dim= 40

 

 

Pearson
Kendall

(c)

0 50 100 150 200 250
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Average correlation B, d= 10, control dim= 40

 

 

Pearson
Kendall

(d)

Figure 2: Mean Square Error of the estimated parameters for different control strategies and the sig-
nificance of the curves. Magnitude of MSE as a function of time is averagedfor 25 runs. Dimension
of the control is 40.F ∈ R

10×10, B ∈ R
10×40. (a): MSE of the estimated matrix̂F. (b): MSE of the

estimated matrix̂B. (c): The average correlation curves for the estimation ofF. (d): The average
correlation curves for the estimation ofB. For details see the text.

In the third experiment we used numerical tools to support our the argumentswe made in Sec-
tion 9. We investigate the D-optimal, the zero, the random, and the greedy noisecontrol of (25), as
well as the 71-zero and 101-zero controls. Results show that if we may sacrifice the firstτ steps,
then the non-myopicτ−zerocontrol gives rise to the smallest MSE for the estimated noise and the
smallest values for the cost function (25)after τ steps considering all studied control methods. Fig-
ure 5a shows the MSE of the estimated driving noise, whereas Fig. 5b depicts the costxT

t+1K−1
t xt+1.

Figure 5c is about the time dependence of log|K t | that supports our argument in Section 9, namely, it
may be worth to sacrifice steps at the beginning to quickly decrease|K−1

t | (i.e., to decrease log|K t |)
in order to estimate (25) efficiently later. The problem we studied was the same as before, except
thatd = 25 andc = 25 were applied.

The fourth experiment illustrates the efficiency of the approximation of the noise for the case
when our assumptions onet are not fulfilled. Here noiseet was neither Gaussian nor i.i.d. ‘Noise’et

was chosen as equidistant points smoothly ‘walking’ along a 3 dimensional spiral curve as a function
of time (Fig. 6a). Dimensions of observation and control were 3 and 15, respectively. Results are
shown in Fig. 6. Neither random control, nor infomax interrogation of Table1 (Fig. 6c), nor zero
control (Fig. 6d) could produce reasonable estimation. However, theτ-zero interrogation scheme
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Figure 3: Comparingτ-infomax noise andτ-zero interrogations. The curves are averaged for 50
runs. Dimension of the control is 15 and the dimension of the observation is 10. (a): MSE of the
estimated noise (b): Cost function as given in (25). ‘τ-infomax noise’ (τ-zero) means that up to step
numberτ strategy of Table 1 applies and then the control of Eq. (29) is followed.

0 50 100 150 200
10

−4

10
−2

10
0

10
2

10
4

10
6

MSE e, d= 10, control dim= 40

 

 

a 

f g h 

e 
d 

c 

b 

a, zero control
b, infomax control
c, random control
d, 11−zero control
e, 31−zero control
f,  51−zero control
g, 71−zero control
h, 91−zero control

(a)

0 50 100 150 200
10

−1

10
0

10
1

10
2

10
3

MSE e, d= 40, control dim= 10

 

 

a b 

c 

d 

e 
f 

g h 

a, zero control
b, infomax control
c, random control
d, 11−zero control
e, 31−zero control
f,  51−zero control
g, 71−zero control
h, 91−zero control

(b)

Figure 4: Mean Square Error of the estimated noise for different control strategies. Magnitude of
MSE as a function of time is averaged for 20 runs. (a): Dimension of the control is 40.F ∈ R

40×40,
B ∈ R

40×10. (b): Dimension of the control is 10.F ∈ R
10×10, B ∈ R

10×40. ‘τ-zero’ means that up to
step numberτ the strategy illustrated in Table 1 was applied and then zero control followed.

produced a good approximation for large enoughτ values (Fig. 6e). Details of this illustration are
shown in Fig. 6f.

10.1.3 JOINT PARAMETER AND NOISE ESTIMATIONS

In Section 8 we showed that the objective of the D-optimality principle is constant for the joined
parameter and noise estimation task. However, A-optimality principle provides sensible cost func-
tion (Eq. (28)). Unfortunately, it leads to a hyperbolic programming task. This optimization is hard
in most cases. One can estimate the complexity of the objective by inspecting lower dimensional
cases. We show the negative logarithm of (28) for the 2 dimensional casefor differentK matrices
(Fig. 7). In one of the cases the null vector corresponds to the minimum, whereas in the other case
the minimum is at a boundary point of the optimization domain. Also, the cost functions appear to
be flat in a large part of their domains, rendering gradient based methodsineffective.
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Figure 5: Empirical study on non-myopic controls for noise estimation. We sacrifice the firstτ
steps to achieve better MSE and smaller cost function. The curves are averaged over 25 runs. The
dimension of the control and the dimension of the observation is 25. (a): MSEof noise estimation
for different control strategies. (b):xT

t+1K−1
t xt+1 cost function for different control strategies. (c):

log|K t | function for different control strategies.

Studies were conducted on the problem family of 10.1.1 for observation dimensiond = 15 and
control dimensionc = 30. For the optimization, we modified the simplex method that we used for
the hyperbolic task before. The single difference is that upon convergence, the best value was com-
pared with the value of the objective at the 0 point and we chose the better one for control. We have
compared this strategy with the parameter estimation strategy of the D-optimality principle, with
zero control strategy, with random control strategy, and withτ− zerocontrol for severalτ values.
Results are shown in Fig. 8. The figure indicates that control derived from the A-optimality princi-
ple (28) provides superior MSE results at approximately 45 iterations and then onwards compared
to the othermyopictechniques, however its performance was slightly worse than thenon-myopic
τ-zero control forτ values larger than an appropriate threshold.

Inspecting the optimal control series of the winner, we found that the algorithm chooses control
values from the boundaries of the hypercube in the first 45 or so iterations. Then up to about 130
iterations it is switching between zero control and controls on the boundaries, but eventually it uses
zero controls only. That is, the A-optimality principle is able to detect the need for the switch from
high control values (to determine the parameters of the dynamics) to zero control values for noise
estimation. This automated switching behavior is a special advantage of the A-optimality principle.

10.2 Controlled Independent Component Analysis

In this section we study the usefulness of our methods for auto-regressive (AR) hidden processes
with independent driving sources and we would like to find the independent causes that drive the
processes. This task belongs to independent component analysis (ICA) (Jutten and Hérault, 1991;
Comon, 1994; Hyvärinen et al., 2001). Informally, we assume that our sources are doubly covered:
they are the driving noise processes of AR processes which can not be directly observed due to the
mixing with an unknown matrix. We will study our methods for this particular exampleand we
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Figure 6: Different control strategies for non i.i.d. noise. (a): originalnoise. (b-e): estimated
noise using random, infomax, zero, 51-zero strategy, respectively. (f): MSE for different control
strategies. In (b-e), estimations of the first 51 time steps are not shown.
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(a) (b)

Figure 7: Negative logarithm of the objective function for the joint parameter and noise estimation
task for differentK matrices. (a) the minimum point is in zero, (b) the minimum point is on the
boundary.
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Figure 8: MSE of the joint parameter and noise estimation task. Comparisons between joint param-
eter and noise estimation using A-optimality principle, parameter estimation using D-optimality
principle, random control, zero control andτ−zerocontrol for differentτ values. MSE values are
averaged for 20 experiments.

.

assume that the processes can be exogenously controlled. Such processes are called ARX processes
where X stands for letter x of the word eXogenous.

The ‘classical’ ICA task is as follows: we are given temporally i.i.d. signalset ∈ R
d (t =

1,2, . . . ,T) with statistically independent coordinates. We are unable to measure them directly, but
their mixturer t = Cet is available for observation, whereC∈R

d×d is an unknown invertible matrix.
The task is to measure the observable signals and to estimate both mixing matrixC and sourceset .
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There are several generalizations of this problem. Hyvärinen (1998) has introduced an algorithm
to solve the ICA task even if the hidden sources are AR processes, whereas Szabó and Lőrincz
(2008) generalized this problem for ARX processes in the following way:Processes̃et ∈ R

d are
given and they are statistically independent for the different coordinates and are temporally i.i.d
signals. They generate ARX processst by means of parametersF̃ ∈ R

d×d, B̃ ∈ R
d×c:

st+1 =
I

∑
i=0

F̃ist−i +
J

∑
j=0

B̃ jut+1− j + ẽt+1. (30)

We assume that ARX processst can not be observed directly, but its mixture

r t = Cst (31)

is observable, where mixing matrixC ∈ R
d×d is invertible,but unknown. Our task is to estimate the

original independent processes also called sources, noises or ‘causes’, that is,̃et , the hidden process
st and mixing matrixC from observationsr t . It is easy to see that (30) and (31) can be rewritten
into the following form

r t+1 =
I

∑
i=0

CF̃iC−1r t−i +
J

∑
j=0

CB̃ut+1− j +Cẽt+1. (32)

Using notationsFi = CF̃iC−1, B j = CB̃ j , et+1 = Cẽt+1, (32) takes the form of the model (1) that we
are studying with functiong being the identity matrix. The only difference is that in ICA taskset is
assumed to be non-Gaussian, whereas in our derivations we always used the Gaussian assumption.
In our studies, however, we found that the different control methods can be useful for non-Gaussian
noise, too. Furthermore, the Central Limit Theorem says that the mixture of the variables̃et , that
is, Cẽt approximates Gaussian distributions, provided that the number of mixed variables is large
enough.

In our numerical experiments we studied the following special case:

r t+1 = Fr t +But+1 +Cet+1,

where the dimension of the noise was 3, the dimension of the control was 15. MatricesF andB
were generated the same way as before, matrixC was a randomly chosen orthogonal mixing, noise
sourceset+1 were chosen from the benchmark tasks of the fastICA toolbox1 (Hyvärinen, 1999).
We compared 5 different control methods (zero control, D-optimal control developed for parameter
estimation, random control, A-optimal control developed for joint estimation ofparameters and
noise, as well as theτ-zero control withτ=81 that we developed for noise estimation). Comparisons
are executed by first estimating the noise (Cet+1) for timesT = 1, . . . ,1000 and then applying the
JADE ICA algorithm (Cardoso, 1999) for the estimation of the noise components (et+1). Estimation
was executed in each fiftieth steps, but only for the preceding 300 elementsof the time series.

The quality of separation is evaluated by means of the Amari-error (Amari etal., 1996) as
follows. Let W ∈ R

d×d be the estimated demixing matrix, and letG := WC ∈ R
d×d. In case

1. Found athttp://www.cis.hut.fi/projects/ica/fastica/.
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of perfect separation the matrixG is a scaled permutation matrix. The Amari-error evaluates the
quality of the separation by measuring the ‘distance’ of matrixG from permutation matrices:

r (G) =
1

2d(d−1)

d

∑
i=1

(

∑d
j=1

∣

∣Gi j
∣

∣

maxj
∣

∣Gi j
∣

∣

−1

)

+
1

2d(d−1)

d

∑
j=1

(

∑d
i=1

∣

∣Gi j
∣

∣

maxi
∣

∣Gi j
∣

∣

−1

)

.

The Amari-errorr(G) has the property that 0≤ r(G) ≤ 1, andr(G) = 0 if and only if G is a
permutation matrix.

Results are shown in Fig. 9. In short,τ-zero control performs slightly better than the joint
parameter and noise estimation using the A-optimality principle. We note that for A-optimality
design one does not have to worry about the duration of the parameter estimation. The performance
of the other methods were considerably worse, especially for early times.

Most importantly, we found that if we use Bayesian methods for noise separation in ARX prob-
lems then it is worth to interrogate the system actively to improve the efficiency ofthe estimation.
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Figure 9: ARX-ICA experiment. Amari-error as a function of time for different control methods.
Curves show the means of 100 experiments.

10.3 Model of the Furuta Pendulum

This section is concerned with more realistic simulations and investigate the robustness of our ap-
proach. We use a model of the Furuta pendulum (e.g., Yamakita et al., 1995)as our example, In
this case, conditions of the theorems are not fulfilled and the task—in our formulation—can not
be represented with a few matrices. In this simulation, we studied the D-optimality principle and
compared it with the random control method. We were interested in the parameter estimation task
in this example.

The two-segment Furuta pendulum problem (e.g., Yamakita et al., 1995; Gäfvert, 1998) was
used. The pendulum has two links. Configuration of the pendulum is determined by the length
of the links and by two angles. Dynamics of the pendulum are also determined by the different
masses, that is, the masses of the links and the mass of the end effector as well as by the two motors,
which are able to rotate the horizontal link and the swinging link in both directions. The angles of
the horizontal and the swinging links are denoted byφ andθ, respectively (Fig. 10). Parameters
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Name of parameter Value Unit Notation
Angle of swinging link rad θ
Angle of horizontal link rad φ
Mass of horizontal link 0.072 kg ma

Mass of vertical link 0.00775 kg mp

Mass of the weight 0.02025 kg M
Length of horizontal link 0.25 m la
Length of vertical link 0.4125 m lp

Coulomb friction 0.015 Nm τS

Coulomb stiction 0.01 Nm τC

Maximal rotation speed for both links 2 rotation
s

Approx. zero angular speed for swinging link0.02 rad
s φ̇ε

Time intervals between interrogations 100 ms
Maximum control value 0.05 Nm δ

Table 2: Parameters of the Physical Model

of computer illustrations are provided in Table 2 for the sake of reproducibility. The state of the
pendulum is given byφ, θ, φ̇ andθ̇. The magnitude of angular speedsφ̇ andθ̇ was restricted to 2
rotations/s, that is, to the interval[−2rot

s ,2rot
s ]. For the equations of the dynamics and the details of

the parameters, see, for example, the related technical report (Gäfvert, 1998).

Figure 10: Furuta pendulum and notations of the different parameters.m: mass;l : length,M: mass
of the end effector, subscripta: horizontal link, subscriptp: swinging link,φ: angle of horizontal
link, θ: angle of swinging link

.

The pendulum is a continuous dynamical system that we observe in discretetime steps. Further-
more, we assume that our observations are limited; we have only 144 low resolution and overlapping
sensors for observing anglesφ andθ. In each time step these sensors form ourr(t) ∈ R

144 obser-
vations, which were simulated as follows: Space of anglesφ andθ is [0,2π)× [0,2π), which we
divided into 12×12= 144 squared domains of equal sizes. There is a Gaussian sensor at thecenter
of each domain. Each sensor gives maximal response 1 when anglesθ andφ of the pendulum are
in the center of the respective sensor, whereas the response decreased according to the Gaussian
function. For example, for theith (1 ≤ i ≤ 144) sensor characterized by anglesθi , φi responseyi

scaled asyi = 1√
2πσ exp(− (θ−θi)

2+(φ−φi)
2

2σ2 ) and the value ofσ was set to 1.58 in radians. Sensors
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were crude but noise-free; no noise was added to the sensory outputs. The inset at label 4 of Fig. 11
shows the outputs of the sensors in a typical case. Sensors satisfied periodic boundary conditions; if
sensorSwas centered around zero degree in any of the directions, then it sensed both small (around
0 radian) and large (around 2π radian) angles. We note that the outputs of the 144 domains are
arranged for purposes of visualization; the underlying geometry of the sensors is hidden for the
learning algorithm.

We observed theser t ∈ R
144 quantities and then calculated theut+1 ∈ R

2 D-optimal control
using the algorithm of Table 1, where we approximated the pendulum with the model r̃ t+1 = Fr t +
But+1, F ∈ R

144×144, B ∈ R
144×2. Components of vectorut+1 controlled the 2 actuators of the

angles separately. Maximal magnitude of each control signal was set to 0.05 Nm. Clearly we do
not know the best parameters forF andB in this case, so we studied the prediction error and the
number of visited domains instead. This procedure is detailed below.

First, we note that the angle of the swinging link and the angular speeds are important from
the point of view of the prediction of the dynamics, whereas the angle of the horizontal link can
be neglected. Thus, for the investigation of the learning process, we used the 3D space determined
by φ̇,θ andθ̇. As was mentioned above, angular speeds were restricted to the[−2rot

s ,2rot
s ] domain.

We divided each angular speed domain into 12 equal regions. We also used the 12-fold division of
angleθ. Counting the domains, we had 12×12×12= 1,728 rectangular block shaped domains.
Our algorithm provides estimations forF̂t andB̂t in each instant. We can use them to compute the
predicted observation vectorr̂ t+1 = F̂tr t +B̂tut+1. An example is shown in inset at label 4 of Fig. 11.
We investigated the‖r t+1− r̂ t+1‖ prediction error (see Fig. 11)cumulated over these domainsas
follows. For each of the 1,728 domain, we set the initial error value at 30, avalue somewhat larger
than the maximal error we found in the computer runs. Therefore the cumulated error at start was
1,728×30= 51,840.

The D-optimal algorithm does two things simultaneously: (i) it explores new domains, and (ii)
it decreases the errors in the domains already visited. Thus, we measuredthe cumulated prediction
errors during learning and corrected the estimation at each step. So, if our cumulated error estima-
tion at timet wase(t) = ∑1,728

k=1 ek(t) and the pendulum entered theith domain at timet +1, then we
setek(t +1) = ek(t) for all k 6= i andei(t +1) at ei(t +1) = ‖r t+1− r̂ t+1‖. Then we computed the
new cumulated prediction error, that is,e(t +1) = ∑1,728

k=1 ek(t +1) .
We compared the random and the D-optimality interrogation schemes. We show two sets of

figures, Figs. 12a and 12b, as well as Figs. 12c and 12d. The upper set depicts the results for
the full set of the 1,728 domains. It is hard for the random control to guidethe pendulum to the
upper domain, so we also investigated how the D-optimal control performs here. We computed the
performance for cases when the swinging link was above vertical, that is for 864 domains ( Figs. 12c
and 12d).

For the full domain the number of visited domains is 456 (26%) and 818 (47%) for the random
control and the D-optimal control, respectively after 5,000 control steps(Fig. 12a). The error drops
by 13,390 (26%) and by 24,040 (46%), respectively (Fig. 12b). While the D-optimal controlled
pendulum visited more domains and achieved smaller errors, the domain-wise estimation error is
about the same for the domains visited; both methods gained about 29.4% per domains.

We can compute the same quantities for the upper domains as well. The number ofvisited upper
domains is 9 and 114 for the random control and for the D-optimal control, respectively (Fig. 12c).
The decrease of error is 265 and 3,342, respectively (Fig. 12d). Inother words, D-optimal control
gained 29.3% in each domain on average, whereas random control, on average, gained 29.4 %,

539



PÓCZOS ANDL ŐRINCZ

Figure 11: Scheme of D-optimal interrogation. (1) Controlut+1 is computed from D-optimal prin-
ciple, (2) control acts upon the pendulum, (3) signals predicted before control step, (4) sensory
information after control step. Difference between (3) and (4) is used for the computation of the
cumulated prediction error. (5) Parameters were updated according to thepseudocode of Table 1.
For more details, see text.

which are very close to the previous values in both cases. In this experiment D-optimal control
gains more information concerning the system to be identified by visiting new domains.

This observation is further emphasized by the following data: The D-optimal algorithm discov-
ered 37 new domains in the last 500 steps of the 5,000 step experiment. Out ofthese 37 domains, 20
(17) were discovered in the lower (upper) domain. By contrast, the random algorithm discovered 9
domains, out of which 5 (4) was in the lower (upper) domain. That is, D-optimality principle has a
similar (roughly fourfold) lead in both the upper and lower domains, although the complexity of the
task is different and the relative number of available volumes is also different in these two domains.
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Figure 12: Furuta experiments driven by random and D-optimality controls.Solid (dotted) line:
D-optimal (random) case. (a-b): Number of domains is 1728. (a): Visited domains, (b): upper
bound for cumulated estimation error in all domains, (c-d): Number of domainsis 864. (c): visited
domains for swing angle above horizontal, (d): upper bound for cumulated estimation error for
domains with swing angle above vertical. For more details, see text.

11. Discussion and Conclusions

We have treated the identification problem of recurrent neural networksas defined by the model
detailed in (1). We applied active learning to solve this task. In particular, westudied the learning
properties of the online A-optimality and D-optimality principles for parameter andnoise estima-
tions. We note that the D-optimal interrogation scheme is also called InfoMax control in the liter-
ature by Lewi et al. (2007). This name originates from the cost function that optimizes the mutual
information.

In the generalized linear model (GLM) used by Lewi et al. (2007)r t+1 is drawn from an expo-
nential family distribution with link functiong and

E[r t+1] = g

(

I

∑
i=0

Fir t−i +
J

∑
j=0

B jut+1− j

)

expected value. This model can be rewritten as

r t+1 = g

(

I

∑
i=0

Fir t−i +
J

∑
j=0

B jut+1− j

)

+et+1, (33)
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where{et} is a special noise process with0 ∈ R
d mean. The elements of this error series are

independent of each other, but usually they arenot identically distributed. The authors modeled
spiking neurons and assumed that the main source of the noise is this spiking,which appears at the
output of the neurons and adds linearly to the neural activity. They investigated the case in which
the observed quantityr t had a Poisson distribution. Unfortunately, in this model Bayesian equations
become intractable and the estimation of the posterior may be corrupted, because the distribution is
projected to the family of normal distributions at each instant. A serious problem with this approach
is that the extent of the information loss caused by this approximation is not known. Our stochastic
RNN model

r t+1 = g

(

I

∑
i=0

Fir t−i +
J

∑
j=0

B jut+1− j +et+1

)

,

differs only slightly from the GLM model of (33), but it has considerable advantages, as we discuss
it later. Note that the two models assume the same form if functiong is the identity matrix and if
the noise distribution is normal.

Our model is very similar to the well-studied non-linear Wiener (Celka et al., 2001) and Ham-
merstein (Pearson and Pottmann, 2000; Abonyi et al., 2000) systems. TheHammerstein model
develops according to the following dynamics

r t+1 =
I

∑
i=0

Fir t−i +
J

∑
j=0

B jg(ut+1− j)+et+1.

The dynamics of the Wiener system is

r t+1 = g

(

I

∑
i=0

Fig
−1(r t−i)+

J

∑
j=0

B jut+1− j +et+1

)

,

where we assumed that functiong is invertible.
The Wiener and the Hammerstein systems have found applications in a broad range of areas,

including financial predictions to the modeling of chemical processes. These models are special
cases of non-linear ARX (NARX) models (Billings and Leontaritis, 1981). They are popular, be-
cause they belong to the simplest non-linear systems. Using block representation, they are simply
the compositions of a static non-linear function and a dynamic ARX system. As a result, their prop-
erties can be investigated in a relatively simple manner and they are still able to model a large class
of sophisticated non-linear phenomena.

Interesting comparisons between Wiener and Hammerstein systems can be found in Bai (2002),
Aguirre et al. (2005), and Haber and Unbehauen (1990). We note that our Bayesian interrogation
methods can be easily transferred to both the Wiener and to the Hammerstein systems.

Bayesian designs of different kinds were derived for the linear regression problem by Verdinelli
(2000):

y = Xθ +e, (34)

P(e) =Ne(0,σ2I).

This problem is similar to ours ((3)-(5)), but while the goal of Verdinelli (2000) was to find an
optimal design for the explanatory variablesθ, we were concerned with the parameter (X in 34) and
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Parameter Noise Joint

D-optimal max
ut+1∈U

xT
t+1K−1

t xt+1 min
ut+1∈U

xT
t+1K−1

t xt+1 N/A

A-optimal max
ut+1∈U

xT
t+1K−1

t K−1
t xt+1

1+xT
t+1K−1

t xt+1
min

ut+1∈U
xT

t+1K−1
t xt+1 max

ut+1∈U
1+xT

t+1K−1
t K−1

t xt+1

1+xT
t+1K−1

t xt+1

Table 3: Cost functions in the parameter, noise, and in the joined parameter noise estimation task.

the noise (e) estimation tasks. In Verdinelli’s paper inverted gamma prior and vector-valued normal
distribution were assumed on the isotropic noise and on the explanatory variables, respectively. By
contrast, we were interested in the matrix-valued coefficients and in general, non-isotropic noises.
We used matrix-valued normal distribution for the coefficients, and in the D-optimal case we applied
inverted Wishart distribution for the covariance matrix of the noise. Due to theproperties of the
inverted Wishart distribution, the noise covariance matrix is not restricted to the isotropic form.
However, in the A-optimal case, we kept the derivations simple and we applied product of inverted
gamma distributions for the covariance matrix as the conjugate prior.

The Bayesian online learning framework allowed us to derive analytic results for the myopic
optimization of the parameters as well as the driving noise. In theD-optimal case the optimal
interrogation strategies for parameter (14) and noise estimation (25) appeared in attractive, intrigu-
ingly simple quadratic forms. We have shown that these two tasks are incompatible with each
other. Parameter and noise estimations require the maximization and the minimization ofexpres-
sion xT

t+1K−1
t xt+1, respectively. We have shown also that D-optimality can not be applied to the

joined estimation of parameters and noise, because the corresponding cost function is constant.

For theA-optimalityprinciple, we found that the objective of the noise estimation task is iden-
tical to that of the D-optimality principle. In this case, we were able to derive sensible results for
the joined estimation of parameters and noise, and received hyperbolic optimization task. We also
received a similar hyperbolic optimization task for the parameter estimation problem. The opti-
mization of this task is non-trivial. For a simple hyper-cube domain we put fortha heuristics based
on the simplex method. The different cost functions are summarized in Table 3.

We found empirically in theparameter learningtask that the different objectives—that is, the
minimization of|(K t +xt+1xT

t+1)
−1| andtr[(K t +xt+1xT

t+1)
−1], the results of the D-optimality and

A-optimality principles, respectively—exhibit similar performances (Fig. 1, Fig. 2). However, D-
optimality has slightly better performance and it is easier to compute, since we need to solve a
quadratic problem only as opposed to a hyperbolic one. One of the reasons for the similar perfor-
mance could be that the corresponding matrices are positive definite and thus they are diagonally
dominant. In this case both the trace and the determinant are dominated by diagonal elements of the
matrices.

In thenoise estimationtask, however, cost functions of the A- and D-optimality principles are
the same. The main difficulty here is the non-myopic optimization of this cost function (Fig. 3,
Fig. 4, Fig. 5, Fig. 6). The problem of non-greedy optimization of the full task has been left open for
both the A-optimality and the D-optimality principles. For the noise estimation task, we suggested
a heuristic solution that we calledτ-infomax noise interrogation. Numerical experiments served to
show thatτ-infomax noise interrogation overcomes several other estimation strategies.The novel
τ-infomax noise interrogation uses the D-optimal interrogation of Table 1 up toτ-steps, and applies
the noise estimation control detailed in (25) afterwards. This heuristics decreases the estimation
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error of the coefficients of matricesF andB up to timeτ and thus—upon turning off the explorative
D-optimization—tries to minimize the estimation error of the value of the noise at timeτ +1. We
introduced theτ-zero interrogation scheme and showed that it is a good approximation of theτ-
infomax noise scheme for largeτ values.

In thejoint noise parameter estimationtask the D-optimal principle leads to a meaningless con-
stant valued cost function. The A-optimal objective is a hyperbolic programming task, which is
difficult to optimize. Still, its myopic optimization gave us better results than the myopic D-optimal
objective derived for parameter estimation only. Interestingly, myopic A-optimal interrogations be-
haved similarly to the non-myopicτ-zero control (D-optimal parameter estimation up toτ steps,
then zero control) with emergent automaticτ selection. However, these myopic results were some-
what worse than the non-myopic results from theτ-zero interrogation, whenτ was larger than an
appropriate threshold (Fig. 8).

In the field of active-learning, non myopic optimization is one of the most challenging tasks so
most studies are concerned with greedy optimization only. Still, greedy optimization has produced
valuable results in many cases. A few studies are concerned with non-greedy optimization of active
learning, but only for certain special cases (Krause and Guestrin, 2007; Rangarajan et al., 2007).
This field is in a rather early stage at the moment.

We illustrated the working of the algorithm on artificial databases both for the parameter estima-
tion problem and for the noise estimation task. In the first set of experiments the database satisfied
the conditions of our theorems. We studied the robustness of the algorithm and studied the noise es-
timation problem for a situation in which the conditions of our theorems were not satisfied, namely
when the noise was neither Gaussian nor i.i.d. In particular, we studied the ARX problem family,
when the hidden driving sources are non-Gaussian and statistically independent i.i.d. processes. We
found that active control can speed-up the learning process. Function g was the identity function in
these experiments.

We have also started to characterize the algorithm for a problem closer to reality. We chose the
two-link Furuta pendulum task in these studies. We used a crude discretization for the pendulum,
where the underlying dynamics and the low-dimensional nature of the problem are both hidden.
Clearly we could express neither the ideal parameters for this case nor thenoise that arose as a
result of the disctretization. Thus we have studied the volume explored by theD-optimality method
as well as the magnitude of the prediction errors.

The pendulum problem demonstrated that D-optimality maximizes mutual information by ex-
ploring new areas without significant compromise in the precision of estimation inthe visited do-
mains. The discovery rate is in favor of the D-optimality algorithm, which has a significant lead
in both the frequently visited and the rarely visited domains, although the task is different and the
relative number of available volumes is also different in these domains.

Our method treats the identification problem of non-linear ARX systems. We planto generalize
the method to NARMAX systems in the future. Such systems have several application fields, includ-
ing financial modeling and the modeling of gas turbines (Chiras et al., 2001).One may try to apply
these principles in a broad variety of fields, including selective laser chemistry Rabitz (2003), or
the analysis of brain signals ‘controlled’ by visual inputs, for example, in brain-computer interfaces
Vaughan et al. (2003).

Finally, it seems desirable to determine the conditions under which the algorithms derived from
the optimality principles are both consistent and efficient. The tractable form of our approximation-
free results is promising in this respect.
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Appendix A.

In this section we provide the technical details of our derivations.

A.1 Proof of Lemma 4.1

It is easy to show that the following equations hold:

Ny(Ax,V)NA(M ,V,K) = NA(M+,V,xxT +K)Ny(Mx ,V,γ),
NA(M ,V,K)IW V(Q,n) = IW V (Q+H,n+m)TA(Q,n,M ,K),

whereM+ = (MK +yxT)(xxT +K)−1, γ = 1−xT(xxT +K)−1x, H = (A−M)K(A−M)T for the
sake of brevity. Then we have

Ny(Mx ,V,γ)IW V(Q,n) = IW V(Q+(y−Mx)γ(y−Mx)T ,n+1)Ty (Q,n,Mx ,γ) ,

and the statement of the lemma follows.

A.2 Proof of Lemma 4.2

Let vec(A) denote a vector ofdm dimensions where the(d(i − 1) + 1)th, . . . ,(id)th (1 ≤ i ≤ m)
elements of this vector are equal to the elements of theith column of matrixA ∈ R

d×m in the ap-
propriate order. Let⊗ denote the Kronecker-product. It is known that forP(A) = NA(M ,V,K),
P(vec(A)) =Nvec(A)(vec(M),V⊗K−1) holds (Minka, 2000). Using the well-known formula for
the entropy of a multivariate and normally distributed variable (Cover and Thomas, 1991) and ap-
plying the relation|V⊗K−1| = |V|m/|K |d, we have that

H(A;V) =
1
2

ln |V⊗K−1|+ dm
2

ln(2πe) =
m
2

ln |V|− d
2

ln |K |+ dm
2

ln(2πe).

By exploiting certain properties of the Wishart distribution, we can compute theentropy of distri-
butionIW V(Q,n). The density of the Wishart distribution is defined by

WV(Q,n) =
1

Zn,d
|V|(n−d−1)/2

∣

∣

∣

∣

Q−1

2

∣

∣

∣

∣

n/2

exp

(

−1
2

tr(VQ−1)

)

.

Let Ψ denote the digamma function, and letf1,3(d,n) = −∑d
i=1 Ψ(n+1−i

2 ))−d ln2. ReplacingV−1

with S, we have for the Jacobian that|dV
dS |= |dS−1

dS |= |S|−(d+1) (Gupta and Nagar, 1999). To proceed
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we use thatEWS(Q,n)S = nQ, andEWS(Q,n) ln |S| = ln |Q| − f1,3(d,n), (Beal, 2003) and substitute
them intoEIW V(Q,n) ln |V|, andEIW V(Q,n)tr(QV−1):

EIW V(Q,n) ln |V| =
Z

1
Zn,d

1

|V|(d+1)/2

∣

∣

∣

∣

V−1Q
2

∣

∣

∣

∣

n/2

exp

(

−1
2

tr(V−1Q)

)

ln |V|dV,

= −
Z

1
Zn,d

|S|(d+1)/2

∣

∣

∣

∣

SQ
2

∣

∣

∣

∣

n/2

exp

(

−1
2

tr(SQ)

)

ln |S||S|−d−1dS,

= −
Z

1
Zn,d

|S|(n−d−1)/2

∣

∣

∣

∣

Q
2

∣

∣

∣

∣

n/2

exp

(

−1
2

tr(SQ)

)

ln |S|dS,

= −EWS(Q−1,n) ln |S|,
= ln |Q|+ f1,3(d,n). (35)

One can also show that

EIW V(Q,n)tr(QV−1) =
Z

1
Zn,d

1

|V|(d+1)/2

∣

∣

∣

∣

V−1Q
2

∣

∣

∣

∣

n/2

exp

(

−1
2

tr(V−1Q)

)

tr(QV−1)dV,

=
Z

1
Zn,d

|S|(d+1)/2

∣

∣

∣

∣

SQ
2

∣

∣

∣

∣

n/2

exp

(

−1
2

tr(SQ)

)

tr(QS)|S|−d−1dS,

=
Z

1
Zn,d

|S|(n−d−1)/2

∣

∣

∣

∣

Q
2

∣

∣

∣

∣

n/2

exp

(

−1
2

tr(SQ)

)

tr(QS)dS,

= EWS(Q−1,n)tr(QS),

= tr(QQ−1n) = nd. (36)

We calculate the entropy of stochastic variableV with distribution IW V(Q,n). It follows from
Eq. (35) and Eq. (36) that

H(V) = −EIW V(Q,n)

[

− ln(Zn,d)+
n
2

ln

∣

∣

∣

∣

Q
2

∣

∣

∣

∣

− n+d+1
2

ln |V|− 1
2

tr(V−1Q)

]

,

= ln(Zn,d)−
n
2

ln

∣

∣

∣

∣

Q
2

∣

∣

∣

∣

+
n+d+1

2

[

ln |Q|−
d

∑
i=1

Ψ(
n+1− i

2
))−d ln2

]

+
nd
2

,

=
d+1

2
ln |Q|+ f1,4(d,n),

where f1,4(d,n) depends only ond andn.
Given the results above, we complete the computation of entropyH(A,V) as follows:

H (A,V) = H(A|V)+H(V) = H(V)+
Z

dVIW V(Q,n)H(A;V),

=
Z

dVIW V(Q,n)

(

m
2

ln |V|− d
2

ln |K |+ dm
2

ln(2πe)

)

+H(V),

= −d
2

ln |K |+ dm
2

ln(2πe)+
m
2

[ln |Q|+ f1,3(d,n)]+
d+1

2
ln |Q|+ f1,4(d,n),

= −d
2

ln |K |+(
m+d+1

2
) ln |Q|+ f1,1(d,n).

This is exactly what was claimed in Lemma 4.2.
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A.3 Proof of Lemma 5.1

The proof is analogous to the D-optimality case. We need the following lemma:

Lemma A.1 Let V diagonal positive definite matrix. LetX(i,:) denote the ith row of matrixX. Let
ηi = (A(i,:)−M (i,:))K(A(i,:)−M (i,:))

T , ∀i = 1, . . . ,d. η ∈ R
d. Then the following statement holds:

NA(M ,V,K)PIGV(α,β) = PIGV(α+m/2,β +η/2)
d

∏
i=1

TA(i,:)
(βi ,2αi ,M (i,:),

K
2

).

Proof:

NA(M ,V,K)PIGV(α,β) =

=
|K |d/2

|2πV|m/2
exp(−1

2
tr(V−1(A−M)K(A−M)T))

d

∏
i=1

βαi
i

Γ(αi)
v−αi−1

i exp(−βi

vi
),

=
|K |d/2

∏d
i=1(2π)m/2vm/2

i

exp(−1
2

d

∑
i=1

1
vi

ηi)
d

∏
i=1

βαi
i

Γ(αi)
v−αi−1

i exp(−βi

vi
),

=
|K |d/2

∏d
i=1(2π)m/2

d

∏
i=1

βαi
i

Γ(αi)
v−αi−m/2−1

i exp(−βi +ηi/2
vi

),

=
|K |d/2

∏d
i=1(2π)m/2

d

∏
i=1

βαi
i

Γ(αi)

(βi +ηi/2)αi+m/2

(βi +ηi/2)αi+m/2

Γ(αi +m/2)

Γ(αi +m/2)
,v−αi−m/2−1

i exp(−βi +ηi/2
vi

),

=
|K |d/2

∏d
i=1(2π)m/2

d

∏
i=1

βαi
i Γ(αi +m/2)/Γ(αi)

(βi +ηi/2)αi+m/2

d

∏
i=1

(βi +ηi/2)αi+m/2

Γ(αi +m/2)
v−αi−m/2−1

i exp(−βi +ηi/2
vi

),

=
d

∏
i=1

|K |1/2

(2π)m/2

Γ(αi +m/2)

Γ(αi)

βαi
i

(βi +ηi/2)αi+m/2
PIGv(α+m/2,β +η/2),

=
d

∏
i=1

|K
2 |1/2

πm/2

Γ(αi +m/2)βαi
i

Γ(αi)(βi +(A(i,:)−M (i,:))
K
2 (A(i,:)−M (i,:))T)αi+m/2

PIGv(α+m/2,β +η/2),

= PIGv(α+m/2,β +η/2)
d

∏
i=1

TA(i,:)
(βi ,2αi ,M (i,:),

K
2

).

Lemma A.2

Ny(Ax,V)NA(M ,V,K)PIGV(α,β) =NA((MK +yxT)(xxT +K)−1,V,xxT +K)×

×PIGV

(

α+1/2,β +diag(y−Mx)
(1−xT(xxT +K)−1x)

2
(y−Mx)T

)

×

×
d

∏
i=1

Tyi

(

βi ,2αi ,(Mx)i ,
1−xT(xxT +K)−1x

2

)

.

Proof:

Ny(Ax,V)NA(M ,V,K)PIGV(α,β) =NA((MK +yxT)(xxT +K)−1,V,xxT +K)×
Ny((Mx ,V,1−xT(xxT +K)−1x)×

PIGV(α,β).
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A.4 Proof of Lemma 5.2

We can see thatVarV [E[A|V,{x}t+1
1 ,{y}t+1

1 ]] = VarV [M t+1] = 0, and

EV [trVar(A|V,{x}t+1
1 ,{y}t+1

1 )] = EV [tr(V⊗ (K t +xt+1xT
t+1)

−1)|{x}t+1
1 ,{y}t+1

1 ],

= tr(E[V|{x}t+1
1 ,{y}t+1

1 ])tr[(K t +xt+1xT
t+1)

−1],

= tr[(K t +xt+1xT
t+1)

−1]
d

∑
i=1

(βt+1)i

(αt+1)i −1
,

where we used thatP(V|{x}t+1
1 ,{y}t+1

1 ) = PIGV(αt+1,βt+1).
The law of total variance says thatVar[A] = Var[E[A|V]]+E[Var[A|V]], hence

trVar[A|{x}t+1
1 ,{y}t+1

1 ] = tr(K t +xt+1xT
t+1)

−1
d

∑
i=1

(βt+1)i

(αt+1)i −1
.

A.5 Proof of Lemma 6.1

To compute (24) we need the following lemma (Minka, 2000):

Lemma A.3 If P(A) =NA(M ,V,K), then P(Ax) =NAx

(

Mx ,V,
(

xTK−1x
)−1
)

.

Applying this lemma and using (11) we have that

P(Axt+1|V,{x}t+1
1 ,{y}t+1

1 ) =NAxt+1

(

M t+1xt+1,V,
(

xT
t+1K−1

t+1xt+1
)−1
)

. (37)

We introduce the notations

K̃t+1 =
(

xT
t+1K−1

t+1xt+1
)−1 ∈ R, (38)

λt+1 = 1+(Axt+1−M t+1xt+1)
T(K̃t+1Q−1

t+1)(Axt+1−M t+1xt+1) ∈ R.

Exploit the fact that

NA(M ,V,K)IW V(Q,n) = IW V (Q+H,n+m)TA(Q,n,M ,K),

and use (12) for the posterior distribution (37) and get

P(Axt+1|{x}t+1
1 ,{y}t+1

1 ) = TAxt+1

(

Qt+1,nt+1,M t+1xt+1, K̃t+1
)

,

= π−d/2|K̃−1
t+1Qt+1|−1/2 Γ(nt+1+1

2 )

Γ(nt+1+1−d
2 )

λ
nt+1+1

2
t+1 .

The Shannon-entropy of this distribution according to Zografos and Nadarajah (2005) can be written
as:

H(Axt+1;{x}t+1
1 ,{y}t+1

1 ) = f3,1(d,nt+1)+
d
2

log|K̃−1
t+1|+ log|Qt+1|,

where

f3,1(d,nt+1) = − log
Γ(nt+1+1

2 )

πd/2Γ(nt+1+1−d
2 )

+
nt+1 +1

2

(

Ψ
(

nt+1 +1
2

)

−Ψ
(

nt+1 +1−d
2

))

.
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Using the notations introduced in (10) and in (38), the above expressionscan be transcribed as
follows:

H(Axt+1;{x}t+1
1 ,{y}t+1

1 ) = f3,1(d,nt+1)−
d
2

log|K̃t+1|+ log|Qt+1|,

= f3,1(d,nt+1)+
d
2

log|xT
t+1(K t +xt+1xT

t+1)
−1xt+1|+ log|Qt+1|,

= f3,1(d,nt+1)+
d
2

log|xT
t+1(K t +xt+1xT

t+1)
−1xt+1|+

+ log|Qt +(yt+1−M txt+1)γt+1(yt+1−M txt+1)
T |.

Now, we are in a position to calculate (24) by applying Lemma 4.4 as before. Weget that

Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1)H(et+1;{x}t+1
1 ,{y}t+1

1 ) =

= f3,2(Qt ,nt+1)+
d
2

log|xT
t+1(K t +xt+1xT

t+1)
−1xt+1|,

where f3,2(Qt ,nt+1) depends only onQt , andnt+1. We can proceed as follows

argmax
ut+1

I(et+1,yt+1;{x}t+1
1 ,{y}t

1) = argmin
ut+1

log|xT
t+1(K t +xt+1xT

t+1)
−1xt+1|,

= argmin
ut+1

log

∣

∣

∣

∣

∣

xT
t+1

(

K−1
t − K−1

t xt+1xT
t+1K−1

t

1+xT
t+1K−1

t xt+1

)

xt+1

∣

∣

∣

∣

∣

,

= argmin
ut+1

log

∣

∣

∣

∣

∣

xT
t+1K−1

t xt+1

1+xT
t+1K−1

t xt+1

∣

∣

∣

∣

∣

,

= argmin
ut+1

xT
t+1K−1

t xt+1.

This is exactly what we were to prove.

A.6 Proof of Lemma 8.1

One needs to compute the value of the integral

Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1)E[trV|xt+1
1 ,yt+1

1 ]tr
(

(

K t +xt+1xT
t+1

)−1
+xT

t+1K−1
t+1xt+1

)

.

However,

Z

dyt+1P(yt+1|{x}t+1
1 ,{y}t

1)E[trV|xt+1
1 ,yt+1

1 ]

=
Z

dyt+1

d

∏
i=1

T(yt+1)i

(

(βt)i ,2(αt)i ,(M txt+1)i ,
γt+1

2

) d

∑
i=1

(βt+1)i

(αt+1)i −1
,
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and depends only on the values ofαt+1 andβt as a result of (19) and Lemma 4.4, and is independent
of the value ofxt+1. Thus, we arrive at the minimization of the following expression:

tr

[(

K−1
t − K−1

t xt+1xT
t+1K−1

t

1+xT
t+1K−1

t xt+1

)

+xT
t+1

(

K−1
t − K−1

t xt+1xT
t+1K−1

t

1+xT
t+1K−1

t xt+1

)

xt+1

]

=

[

tr(K−1
t )− tr

K−1
t xt+1xT

t+1K−1
t

1+xT
t+1K−1

t xt+1
+

xT
t+1K−1

t xt+1

1+xT
t+1K−1

t xt+1

]

,

=

[

tr(K−1
t )− xT

t+1K−1
t K−1

t xt+1

1+xT
t+1K−1

t xt+1
+

xT
t+1K−1

t xt+1

1+xT
t+1K−1

t xt+1

]

,

=
1+xT

t+1K−1
t K−1

t xt+1

1+xT
t+1K−1

t xt+1
.
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