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Abstract

We introduce novel online Bayesian methods for the ideatifim of a family of noisy recurrent
neural networks (RNNs). We present Bayesian active legrt@nhniques for stimulus selection
given past experiences. In particular, we consider the onvkrparameters as stochastic variables
and use A-optimality and D-optimality principles to choaggimal stimuli. We derive myopic cost
functions in order to maximize the information gain conéegmetwork parameters at each time
step. We also derive the A-optimal and D-optimal estimatiofithe additive noise that perturbs the
dynamical system of the RNN. Here we investigate myopic dkaseon-myopic estimations, and
study the problem of simultaneous estimation of both théesygparameters and the noise. Em-
ploying conjugate priors our derivations remain approxiorafree and give rise to simple update
rules for the online learning of the parameters. The effinjesf our method is demonstrated for a
number of selected cases, including the task of controfiddpendent component analysis.
Keywords: active learning, system identification, online Bayesiaaréng, A-optimality, D-
optimality, infomax control, optimal design

1. Introduction

When studying systems imteractiveand online fashion, it is of high relevance to facilitate fast
information gain during the interaction (Fedorov, 1972; Cohn, 1994).a&xample, consider
experiments aiming at the description of the receptive field of differentomsu These experi-
ments look for those stimuli that maximize the response of the given neurGh#des et al., 1998;
Foldiak, 2001). Neurons, however, might change due to the investigatiotihe minimization of
interaction is highly desired. Different techniques have been devekopguked up the identifica-
tion procedure. One approach searches for stimulus distribution that magimizual information
between stimulus and response (Machens et al., 2005). A recent teetaggumes that the un-
known system belongs to the family of generalized linear models (Lewi et(l7)2and treats the
parameters as probabilistic variables. Then the goal is to find the optimal stiyjnoiakimizing
mutual information between the parameter set and the system’s response.

This example motivates our interest in active learning (MacKay, 1992; €bah, 1996; Fuku-
mizu, 1996; Sugiyama, 2006) of noisy recurrent artificial neural ndtsy(RNNs), when we have
the freedom to interrogate the network and to measure its responses.
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In active learning, the training set may be modified by the learning procetishitsed on the
progress experienced so far. The goal of this modification is to maximizepleeted improvement
of the precision of the estimation. This idea can for example be used to impeoszaiization
capability in regression and classification tasks or to better estimate hiddengiars. Theoretical
concepts have been formulated in the fields of Optimal Experimental Desi@ptonal Bayesian
Design (Kiefer, 1959; Fedorov, 1972; Steinberg and Hunter, 198an and Gastwirth, 1993;
Pukelsheim, 1993).

Although active learning is in the focus of current research interesieselevant theoretical
issues are still unresolved. While there are promising studies showingdinat karning may
outperform uniform sampling under certain conditions (Freund et al.7;198ung et al., 1992), in
other cases it has been proven that active learning has no advamtagen-adaptive algorithms.
For example, this is the case in compressed sensing (Castro et al., 20d6alsa for certain
function classes in the area of function approximation (Castro et al., 2088eh more problematic
is the observation that active learning heuristics may be less efficientiifanm sampling in some
situations (Schein, 2005).

There are several forms of active learning. The most relevanteliféeris in the definition of the
value of information. One of the simplest heuristics is the Uncertainty Sampligy (U—S suggests
that in regression or in classification tasks one should choose thosedrakamples, which have
the largest uncertainty in the value of the function or in the label of the adlaspectively (Lewis
and Catlett, 1994; Lewis and Gale, 1994; Cohn et al., 1996). AlthougiraleS versions exist
with different measure of the uncertainty itself, they all lack robustneks.Query by Committee
method improves upon robustness (Seung et al., 1992; Freund et &l); f89committee of a few
models are trained on the existing training set and the next query pointslactées to reduce the
disagreement among these models. The method of Roy and McCallum (200hjzesithe direct
error, that is, it tries to choose training points to minimize the expected classifiearor directly.

In the literature there are other approaches, including decision thesed Ioeethods. The orig-
inal ideas were worked out in Raiffa and Schlaifer (1961) and Lindl®7{). The objective in
this method family is to choose the design such that the predicted value ofrawgiliy function
become maximal. Numerous utility functions have been proposed. For exahweaim to esti-
mate the unknown paramei@ythen one possible direction is the minimization of, for example, the
entropy or the standard deviation of the posterior distribution. If we minimizetitwpy then we
arrive at the D-optimality principle (Bernardo, 1979; Stone, 1959). phisciple is equivalent to
the information maximization method (also known as infomax principle) of Lewi.¢2807). If
we intend to minimize the standard deviation then the result is the A-optimality prin@plec@n
and DeGroot, 1976). A special case is called the c-optimality principle (@bgld984) when the
goal is to estimate a linear projection of paramééc’ 6). There exist a number of other methods,
called alphabetical optimality and utility functions. For a review see, for exgn@ialoner and
Verdinelli (1995). Although the original ideas belong to the field of optimadezimental design,
they have appeared also in active learning recently (MacKay, 199 dod Koller, 2000; Schein
and Ungar, 2007).

Today, active learning is present almost in all fields of machine learnidglare are many
popular applications on diverse areas, including Gaussian Prod&saese and Guestrin, 2007),
Artificial Neural Networks (Fukumizu, 2000), Support Vector Maclsii€ng and Koller, 2001b),
Generalized Linear Models (Bach, 2007; Lewi et al., 2007), Logistigréssion (Schein, 2005),
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learning the parameters and structure of Bayes nets (Tong and Kol@9, 2001a) and Hidden
Markov Models (Anderson and Moore, 2005).

Our framework is similar to the generalized linear model (GLM) approact bgd_ewi et al.
(2007): we would like to choose interrogating, @ohtrol inputs in order to (i) identify the pa-
rameters of the network and (ii) estimate the additive noise efficiently. Framomg we use the
termscontrol andinterrogationinterchangeably; control is the conventional expression, whereas
the word interrogation expresses our aims better. We apply online Bayearaing (Opper and
Winther, 1999; Solla and Winther, 1999; Honkela and Valpola, 2003h@&imaani, 2000). For
Bayesian methods, prior updates often lead to intractable posterior distnbgtich as a mixture
of exponentially numerous distributions. Here, we show that, for the moddikstin this paper,
computations are both tractable and approximation-free. Further, theiagmérgrning rules are
simple. We also show that different stimuli are needed for the same RNN rdegehding on
whether the goal is to estimate the weights of the RNN or the additive perturlfegfenred to as
‘driving noise’).

In this article we investigate the D-optimality, as well as the A-optimality principlesh&dest
of our knowledge, neither of them has been applied to the typical noingpkochastic artificial
recurrent neural network model that we treat here.

The contribution of this paper can be summarized as follows: We use A-optinaaldyD-
optimality principles and derive cost functions and algorithms for (i) the Iagrof parameters of
the stochastic RNN and (ii) the estimation of its driving noise. We show that, (iilgutie D-
optimality interrogation technique, these two tasks are incoherent in the myapjcsingle step
look-ahead) control scheme: signals derived from this principle foarpater estimation are sub-
optimal (basically the worst possible) for the estimation of the driving noisevare versa. (iv)
We show that for the case of noise estimation task the two principles, that @)dAb-optimality
principles result in the same cost function. (v) For the A-optimality case,exie@alequations for
the joined estimation of the noise and the parameters. On the contrary, weaidwmihat (vi)
D-optimality cannot be applied on the same joined task. For the case of ntirsatem, (vii) a
non-myopic multiple step look-ahead heuristics is introduced and we demenistrapplicability
through numerical experiments.

The paper is structured as follows: In Section 2 we introduce our modetio8e3 concerns
the Bayesian equations of the RNN model. In Section 4 optimal control fanpeter identification
is derived from the D-optimality principle. Section 5 is about the same taskudiog the A-
optimality principle instead. Section 6 deals with our second task, when thesghal estimation
of the driving noise of the RNN. Here we treat the D-optimality principle. Sacfigs about the
same problem, but for the A-optimality principle. We combine the two tasks for dyatiimality
principles in Section 8 and consider the cost functions for the joined estimaitive parameters
and the driving noise. All of these considerations concern myopic algusithn Section 9 a non-
myopic heuristics is introduced for the noise estimation task. Section 10 cootaimgimerical
experiments for a number of cases, including independent componalysian The paper ends
with a short discussion and some conclusions (Section 11). Technte#lbdd the derivations can
be found in the Appendix.
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2. The Model

Let P(e) = Ae(m,V) denote the probability density of a normally distributed stochastic vareable
with meanm and covariance matri¥. Let us assume that we hadesimple computational units
called neuronsin a recurrent neural network:

| J
M1 = 0 Fire—i+ ) BjUiyi—j+e41 |, (1)
(é 2,

where{&a}, the driving noise of the RNN, denotes temporally independent and idintitis-
tributed (i.i.d.) stochastic variables aR¢e ) = Ag (0,V), rt € RY represents the observed activities
of the neurons at timé Let u; € R® denote the control signal at tinte The neural network is
formed by the weighted delays represented by matfi¢éis=0,...,l) andB; (j =0,...,J), which
connect neurons to each other and also the control components to thasigaspectively. Control
can also be seen as the means of interrogation, or the stimulus to the netewileflal., 2007).
We assume that functian: RY — RY in (1) is known and invertible. The computational units, the
neurons, sum up weighted previous neural activities as well as weigbiteibl inputs. These sums
are then passed through identical non-linearities according to Eq. (I)ga@al is to estimate the
parameters; € R4d (i =0,...,1), Bj € R¥*¢ (j =0,...,J) and the covariance matrit, as well
as the driving noise, by means of the control signals.

In artificial neural network terms, (1) is in the form aite code modelsThis is the typical
form for RNNs, but there are methods to approximate rate code descnpitiorspike codes and
vice versa. For the case of RNNSs, the best is to compare Liquid State Maahspike code model
of Maass et al. (2002) with the Echo State Network, the correspondiegoae model of Jaeger
(2001). Rate code, very crudely, is the low pass filtered spike codereah spike code can be seen
as the response of integrate-and-fire neurons. We show that analstifuoctions emerge for the
rate code RNN model. Due to the applied conjugate priors, we can calculdigthdimensional
integrals involved in our derivations, and hence these derivations regipaioximation-free and
give rise to simple update rules.

3. Bayesian Approach

Here we embed the estimation task into the Bayesian framework. First, we ioérdloe follow-
ing notationsX; 1 = [re_1;...;r;Ut_341;..;Uts1), Yer1 = 9 2(res1), A=[Fi,...,Fo,B3,...,Bg] €
RI*™ With these notations, model (1) reduces to a linear equation

Vi = AXi{+a. (2)

In order to estimate the unknown quantities (parameter matrpoiseg and its covariance matrix
V) in an online fashion, we rely on Bayes’ method. We assume that priorlkdge is available
and we update our posteriori knowledge on the basis of the observatmmrol will be chosen
at each instant to provide maximal expected information concerning theitiegmwe have to esti-
mate. Starting from an arbitrary prior distribution of the parameters the pastéstribution needs
to be computed. This latter distribution, however, can be highly complex, mm@dmations are
applied. For example, assumed density filtering, when the computed po#egiojected to sim-
pler distributions, has been suggested (Boyen and Koller, 1998; M2WKH,; Opper and Winther,
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1999). In order to avoid approximations, we apply the method of conjugaied (Gelman et al.,
2003). For matriXA we assume a matrix valued normal distribution prior.

For the case of D-optimality principle, we shall use the inverted Wishart @\fyibution as
our prior for covariance matri¥. This is the most general known conjugate prior distribution
for the covariance matrix of a normal distribution at present. For A-optimddawever, we keep
the derivations simple and assume that the covariance matrix has diagootirstrun turn, we
replaced the IW assumption on the prior with the distribution of the Productvefited Gammas
(PIG).

We define the normally distributed matrix valued stochastic varidbie R9*™ by using the
following quantities:M € RY*™ is the expected value df. V € R99 is the covariance matrix
of the rows, andK € R™™M s the so-called precision parameter matrix that we shall modify in
accordance with the Bayesian update. Makixontains the estimations of the ‘Bayesian trainer’
about the precision of parametersAin Informally, matrixK behaves as the inverse of a covariance
matrix. Upon each observation, matixis updated. The larger the eigenvalues of this matrix, the
smaller the variance ellipsoids of the posteriori estimations are.

BothK andV are positive semi-definite matrices. The density function of the stochastbier
A is defined as:

_ K92 1 Ty-1
Na(M,V,K) = WGXF’(—EU((A —M)'VHA-M)K)),
wheretr, |-|, and superscripT denote the trace operation, the determinant, and transposition,

respectively (see, e.g., Gupta and Nagar, 1999; Minka, 2000). SMeestha € R9*9 is a positive
definite matrix anah > 0. Using these notations, the density of the Inverted Wishart distribution with
parameter§) andn is as follows (Gupta and Nagar, 1999):

1 1 n/2
- Zd \V|(d+1)/2

vV-1Q

IWy(Q,n) >

expl— 5t (V1Q)),

d
whereZ, g = 1@@-9/4 [ I((n+1—1i)/2) andr (.) denotes the gamma function.
i=1

Similarly, letV = dialg(v) € R4 diagonal covariance matrix with v € RY diagonal values.
With the slight abuse of notation we will use later the: diag(V) € RY term, too. Then the density
of PIG is defined as

Qi

d [ .
PIGy(a,B) = l] r(i]i)viailexq_s:)7

whereda; > 0 and3; > 0 are the shape and scale parameters respectively.
Now, one can rewrite model (2) as follows:

P(Q‘V) - 9\[&(07\/)7 (4)
P(YtlA X, V) = A (AXt,V), (5)

andP(V) = PI1G,(a,B) or P(V) = Iy (Q,n) depending on whether we want to use A- or D-
optimality.
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4. D-Optimality Approach for Parameter Learning

Let us compute the D-optimal parameter estimation strategy for our RNN gyvélr) Bnd rewritten
into (3)-(5). Let us introduce two shorthand®= {A,V}, and{x}! = {x,...,xj}. We choose
the control value in (1) at each instant to provide maximal expected informatincerning the
unknown parameters. Assuming tHat!, {y}} are given, according to the infomax principle our
goal is to compute

argmanl (0,ye+1; {x} ™ Y1), (6)

wherel (a, b; c) denotes the mutual information of stochastic variablesdb for fixed parameters
c. LetH(alb;c) denote the conditional entropy of variataeonditioned on variable and for fixed
parametec. Note that

10,y 1; O35 {Y YD) = H(0; (357 {y ) —H(Olye 1 OG5 {y 1),

holds (Cover and Thomas, 1991) aHdd; {x}\*, {y}}) = H(8; {x}},{y}}) is independent from
Ut+1, hence our task is reduced to the evaluation of the following quantity:

argr m|nH (O]ye1; (X3 {y)) = 7)
= argmin- / dyes1P(yesa DSy 1) / doP(6{x}™, {y}i™) logP(61{x} " {y}1"™).

In order to solve this minimization problem we need to eval®dg, 1| {x},™, {y}}), the posterior
POI{x}\1, {y}i"™), and the entropy of the posterior, that i§doP(@{x}\"™ {y}\"™)
logP(8|{x}\"*, {y}}"™), whereP(a|b) denotes the conditional probability of varialiven con-
dition b. The main steps of these computations are presented below.
Assume that thea priori distributions P(A|V,{x}},{y}}) = A(AM,V,K;) and
P(VI{x}},{y}}) = IW\y(Q,n;) are known. Then the posterior distributionébfs:
P(A,V‘{X}thl, {y}thl) — P(yt-‘rl‘A?Va XH—l) P(A’V7 {)t(};-a {y}tl)P(VHx}t ) {y}tl) ’
POy (X} 5 YY)
NGe.1 (AXt11, V)N (M, V, K) T Wy (Qt, 1)
Ja v A1 (A1, V) NA (M, VK TWy (Qe, )

This expression can be rewritten in a more useful formKlet R™™ andQ < R9%¢ be positive
definite matrices. Lef € R9*™ and let us introduce the density function of the matrix valued
Student-t distribution (Kotz and Nadarajah, 2004; Minka, 2000) as fetlow

K92 Zn mg Q"2
T2 Zng |Q+ (A —M)K(A—M)T|(mn)/2’

Now, we need the following lemma:

Ta(Q,n,M,K) =

Lemma 4.1
A (AX, V)AL (M, V, K) T Wy (Q,n) = Na (MK 4 yxT)(xxT +K) ™1V, xxT +-K) x
 IWy <Q+(y—Mx)(1—xT(xxT+K) x) (y —Mx)T,n+1) x
x Ty (Q,n,Mx, 1—x" (xx" +K)x).
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The proof can be found in the Appendix.
Using this lemma, we can compute the posterior probabilities. We introduce thwifailo
guantities:

Vit = 1= (XX g+ Ko) X, (8)
N = e+l
Mgz = (MiKe+YeeaxX(s ) (Xeaxg s +Ke) ™, 9)
Quir = Qtt(Yer1—MiXesn) Vera (Yers —Mixesn) ' (10)

For the posterior probabilities we have determined that

PAIV, O30 AYIE™Y = MM, Vo Xeaxtg +Ky), (11)
PVIIXFTTEYITY) = 1%y (Quir i), (12)
P(yt+1‘{x}t1+lv {Y}tl) = Ty, (Qt,Mt,MXes1, Ver1) -

Now we are in the position to compute the entropy of the posterior distributi@r-of A,V } using
the following lemma:

Lemma4.2 The entropy of a stochastic variable with density functionAR) =
Aa(M,V,K)I Wy (Q,n) assumes the form3In [K |+ (™2HL) In|Q| + fy1(d,n), where §41(d,n)
depends only on d and n.

The proof can be found in the Appendix.
Lemmas 4.1 and 4.2 lead to the following corollary:

Corollary 4.3 For the entropy of a stochastic variable with posterior distributiofARPV |x,y) it
holds that

m+d+1

5——)IN[Q+(y = MX)y(y —Mx)"|.

H(A,V;x,y) = —g In \xxT + K|+ fra(d,n) +(

We note that the following lemma also holds:

Lemma4.4

[ @0y Q-+ (y— vy — )y
is independent from both andy;,

and thus we can compute the conditional entropy expressed in (7):

Lemma 4.5
d
H(A,V]y;x) = / P H(A,Vix,y)dy = —ZIn Xx" + K|+ f12(Q,n,m),
where f2(Q,n,m) depends only oQ, n and m.
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Collecting all the terms, we arrive at the followingriguingly simpleexpression

uPy = argmin | p (yea X33 {y}1) HOA VIO (Y yera)dye,
= arg mip—g In |Xe1x¢ 1 + K| = arg melv«Lle X1, (13)
where
Xt41 = [Fe—1;- . T;Ut—3415 -+ Uty 1],

and we used thapxx” +K| = |[K|(14+x"K~1x) according to the Matrix Determinant Lemma
(Harville, 1997). We assume a bounded doma@irfor the control, which is necessary to keep
the maximization procedure of (13) finite. This is, however, a reasonablditon for all practical
applications. So,
uPP) = arg maxx{, K xei1, (14)

Ur1€U
In what follows D-optimal control will be referred to aafomax interrogation schemeThe steps
of our algorithm are summarized in Table 1.

Control Calculation
o —1a
Upr1 = argmaxeqX{, 1Ky R

whereXi 1 = [rt—1;...;rt;Ut—J4+1; .. - Ug; U]
SetXer1 = [Ft—1;. MUty 15 .. Uty U]
Observation

observery,1, and letyy, 1 = g~ (r¢.1)
Bayesian update
Mey1 = (MKt +YepaXg) (XXt +Ke) ™t
Kis1 = Xea1X( g + Ky
Np=n+1
Yerr = 1=X{ g (XX + Ke) e
Qt+1 = Qt+ (Y41 — MtXt41) Vet (Y1 — MtXt+1)T

Table 1: Pseudocode of the algorithm

Computation of the inversg.1x{, ; + K¢)~* in Table 1 can be simplified considerably by the
following recursion: letP; = K%, then according to the Sherman-Morrison formula (Golub and
Van Loan, 1996)

PtXt+1XtT+1Pt

- 15
1+ X;r+1PtXt+1 ( )

T -1
Pei1 = (Xer1Xe1 +Ke) " =Py
In this expression matrix inversion disappears and only a real numbeeigéthinstead.

5. A-Optimality Approach for Parameter Learning

The D-optimality principle aims to minimize the expected posteriori entropy of thanpeters.
A-optimality principle differs; it measures the uncertainty by means of the vegiand not the
entropy. Thus, instead of (7), the A-optimal objective function is as falow
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Ut = argmin dye1P(yera| 3T {yFotrvar[8] {x} ™ {y} 1. (16)

whereVar[0| 7| denotes the conditional covariance matridajiven the conditiornf .

To keep the calculations simple, in this case weB$&,, (o, B;) prior distribution for the co-
variance matrix instead af#/y (Qy, n;). Using the notations of (8)-(10), the posterior distributions
assume the following forms:

Lemmab5.1
P(A‘Va{x}tlﬂa{y}tlﬂ) = %(Mt+17V,Xt+1XtT+1+Kt), (17)
P(V\{X}tfla{y}tlﬂ) = TIGV (41, Bt41),
PO DT () = rlfrym s (B2, M B1) s

where we used the shorthands

(a1)i = (ew)i+1/2
Bk = (Bi+ ()i — Moyt (19)
The proof can be found in the Appendix.

Given thatP(V|{x}\™* {y}'"™) belongs to thePIG family we can calculate the quantity
Var(V[{x}\™,{y}}"?) (Gelman et al., 2003):

d
tr (Var[V[{x}\2, {y}irY) Izl o 18[+l()at+1)i_2>‘
We will need the following lemma:
Lemmab5.2
tr (Var/A[{x}t 2 {y}irY) = tr((Kt+xt+1xtT+1)_l) Eftrv g5 {y3i,

d .
- (e ) 5 A

The proof can be found in the Appendix.
Now we can elaborate on the A-optimal cost function for parameter estimagjn (

/ dye+ 1P (X} {yYtrvaro[ (35 (v} = (20)
= /dyt+1 |_|Tyt+l ( (at)lv(MtXtJrl) ,Vt;) X

d
T -1 (Bria)i ,3t+1)
X (tr ((Kt +Xt+lxt+1) ) at+l -1 Z[ at—i—l (at+l)i — 2)) ;

-1
= tf((Kt+Xt+1XtT+1) )f271(at+1,ﬁt)+fz,z(at+1ﬁt),
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wheref; 1 and f, > depend only o1, and3;. Here we used (18), (19) and Lemma 4.4.

Applying again the Sherman-Morrison formula (15) and the fact ttt'{m(lxt+1xtT+1K(1] =
tr[xtTHK(lK(lxtH], we arrive at the following expression for A-optimal parameter estimation:
opt XtT+1KflelXt+1

u’? = arg max
1 U+1€U 1+X;r+1Kt_1Xt+1 ’

(21)

which is a hyperbolic programming task.
We can conclude that while in the D-optimality case the task is to minimize expreskiom
Xi+1%{,1) " *|, the A-optimality principle is concerned with the minimizatiortof K¢ + ;1 1) 2.

6. D-Optimality Approach for Noise Estimation

One might wish to compute the optimal control for estimating nejse (1), instead of the identi-
fication problem above. Based on (1) and because

| J
&4+1=Ytr1— ZjFirt_i — Z)Bjut-s—l—ja (22)
i= =

one might think that the best strategy is to use the optimal infomax control ¢ Talsince it
provides good estimations for parametars- [Fy,...,Fo,By,...,Bg] and so for noise.
Another—and different—thought is the following. At time- 1, let the estimation of the noise
be@i1=yi1— SoFir-i— ¥ Btj U1 j, whereF! (i=0,... 1), andl§tj (i=0,...,J) denote the
estimations of andB respectively.
Using (22), we have that

[ J
ar1—ai1=YF—F)rei+ ¥ (Bj—BY)uaj. (23)
2, F Pt 2 (B8
This hints that the control should le = 0 for all times in order to get rid of the error contribution
of matrixBj in (23).
Straightforward D-optimality considerations oppose the utilization of objefivior the present
task. One can optimize, instead, the following quantity:

a9 mall)d (v, Yerns PG YD)

In other words, for the estimation of the noise we want to design a contrwlsig, 1 such that the
next output is the best from the point of view of greedy optimization of mutdafimation between
the next outpuy; ;1 and the noise., 1. Itis easy to show that this task is equivalent to the following
optimization problem:

argmin / dye+ 1Py {3 Y DH (e DT V3T, (24)
whereH (ev1; {X}7, {y}1™) = H(Axe 1 {x}1™, {y}i"), becaus@ 1 = yr 11— Axes1.
In practice, we perform this optimization in an appropriate donfaifter some mathematical

calculation we can prove that the D-optimal interrogation scheme for ndiseagi®n gives rise to
the following control:

524



BAYESIAN INTERROGATION FORPARAMETER AND NOISE IDENTIFICATION

Lemma 6.1

opt _ in w7 k-1
Ui g =arg min Xe, Ky "Xeq1. (25)
Ur1€U

The proof of this lemma can be found in the Appendix.

It is worth noting that this D-optimal cost function for noise estimation and tlepfimal cost
function derived for parameter estimation in (13) are not compatible with ethedr. Estimating
one of them quickly will necessarily delay the estimation of the other.

We shall show later (Section 9) that for latgealues, expression (25) gives rise to control values
close tou; = 0.

7. A-Optimality Approach for Noise Estimation

Instead of (24), our task is to compute the following quantity:
argmin [ dye.aP(yesa {337 {y o) tr (Varea (X} {y}™) (26)
We will apply the identity

, -1
Nax:1 (Mt+1Xt+17V7 (XK iXer) ) PIG\ (aty1,Bt11) =

d Kfl -1
= _rlquXHl)i ((5t+1)|,2(at+1)|7(Mt+1Xt+1)|a (X;thglxtﬂ) ) X
i=

xXPIG, (at+1 +1, 81 +diag(Yer1 — MiXer1) L;(Ytﬂ — MtXt+1)T]) :

which can be proven by using Lemma A.1. We can simplify (26) by noting that
tr (Varle 1 [{x}5" {y}17]) = tr (VarlAxe 1 (31 {y 1) -
We also take advantage of the fact that
Vary [E[Axt 1V, (X317 {y )] = Var [Myyaxe.a] =0,
and proceed as
Evitrvar(Axe |V, (X} YD) = Evltr(Vex{ Kihxea {3 {y,
= tr(ENV AT T DX K X,

d
T -1 (Br+1)i
= XK Lx St £
t+1M™N 1 t+1iZ\ (at+1)i 1

where® denotes the Kronecker product. The law of total variance says that
Var[Ax| = Var[E[AX|V]] + E[Var[Ax|V]],
and hence
(Br+1)i

d
trvar(Axe 1 (3T AV = XK e Y =0
[Axe 1 {3 AV T = X KX 2 (onyn)i— 1
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There is another way to arrive at the same result. One can apply (37) aitima A.1 and use

the fact that the covariance matrix of (B, a, u,K) distributed variable is%%l (Gelman et al.,
2003). That is, we have

Kfl
) Lod (Br+a)i <XtT+1t2+lXt+1>
trvar[Axe 1 [{x}7 ™ {y}iH] =
[AXta[{x} " {y} ] i; 2(o41)i—2

Now, we can proceed as
[ POl (X (Pt (Varlesa 0L 1Y) = (27)
[ e aPOa XK Rt VIO DK xe =

d .
WF K1y /d p XLyt (Bri)i
KXo | dYeraP(Yera {X}] {y}l)i; (an)i—1

d
X{ KX Zl fa((cr1)i, (B)i),
i=

where we used (18), (19) and Lemma 4.4 again. Applying the Shermansi@loformula one can
see that the task is the same as in (25).

8. Joint Parameter and Noise Estimation

So far we wanted to optimize the control in order to speed-up learning of ¢iitbgparameters of
the dynamics or the noise. In this section we investigate the A- and D-optimalitigdga for the
joint parameter and noise estimation task.

8.1 A-optimality

According to the A-optimality principle, the joined objective for parameter asidenestimation is
given as:

/ dye 1Py {X) 1T {y}h) trvarvedA), diag(V), e 1 {X} 1™ {y 15",

By means of (20), (27) and Lemma 5.2, it is equivalent to:

-1 _
/dyt+1p(yt+l‘{x}t1+la {YYDERrV X yiH]tr ((Kt +Xt+1x;r+1) +X;r+1Kt+11Xt+1) .
From here, one can prove the following lemma in a few steps:

Lemma 8.1 The A-optimality principle in the joined parameter and noise estimation task gaees
to the following choice for control:
opt 1+XI+1K;1Klet+1

u =arg max
t+1 Ut1€U l+X;r+lK':_lXt+1

(28)

The proof can be found in the Appendix.
Thus, the task is a hyperbolic programming task, similar to (21).

526



BAYESIAN INTERROGATION FORPARAMETER AND NOISE IDENTIFICATION

8.2 D-optimality

One of the most salient differences between A-optimality and D-optimality is dn@-optimality
we have
H(X,Y) =H(X]Y) +H(Y),

however, for A-optimality the corresponding equation does not hold iemgérbecause:
trvVar(X,Y) # Ey[trvar(X|Y)] +trvar(Y).

An implication—as we shall see below—is that we cannot use the D-optimalityijpleénfor the
joint parameter and noise estimation task. For D-optimality our cost functioldvioeu

argmin [ dyesaP(yea [ {77 V(A V, @[ {57 {117,
but the following equality holds:

H(A,V, e (X} AV = HA VIS Ay + Hiasa A VX {y ),

and sincea 1 = Yi41 — A1, therefore the last terd (e, 1A, V{x}"1, {y}}™!) = —o. The first
term is a finite real number, thus we can conclude that the D-optimality costidaris constant
—oo, and therefore the D-optimality principle does not suit the joint parametenaisd estimation
task.

9. Non-myopic Optimization

Until now, we considered myopic methods for the optimization of control, thakésaimed to
determine the optimum of the objective only for the next step. In this sectiorshe® a non-
myopic heuristics for the noise estimation task (25).

The optimization of the derived objective functiodHKt‘lxtH, is simple, provided th&; is
fixed during the optimization afi;, 1. If so, then the optimization task is quadratic. To see this, let

us partition matrix<; as follows:
KiL K2
Kt = <Kt21 Kt22> )

whereK{! € RIxd K21 ¢ Rm-dxd K22 ¢ RM-dxm-d |t js easy to see that if domaiti in (25) is
large enough then

uPPy = (K#) K. (29)

It occurs, however, that the objectixérth‘lel may be improved by considering multiple-
step lookaheads. In this case malixcan be subject to changesdtht‘lxtH, because it depends
on previous control inputsy, ..., U; derived from previous optimization steps.

We propose a two-step heuristics for the long-term minimization of exprex@'QK(lxtH.
During the firstt-step long stage, we focus only on the minimization of the quahﬁfyl|. Then,
if this quantity |K;!| becomes small, we start the second stage: we conkigéras given and
search for control that minimizes quant'pt}T/HK(lel, so we now apply the rule of (29). Thus,
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this method ‘sacrifices’ the firgt steps in order to achieve smaller costs later; this heuristic opti-
mization is non-myopic. More formally, we use the strategy of Table 1 in therfgt&ps in order to
decrease quantit);!| fast. Then after this-steps, we switch to the control method of (29). This
will decrease the cost function (25) further. We will call this non-gyemderrogation heuristics
introduced for noise estimatidm-infomax noise interrogation'This non-myopic heuristics admits
that parameter estimation of the dynamics is the prerequisite of noise estimatansbemproper
parameter estimation makes apparent noise, and thus the heuristics sacsafags for parameter
estimation.

In Section 10 we will empirically show that using this non-myopic strategy, aftézps we can
achieve smaller cost values in (25)—as well as better performance imemaestimation—than
using the greedy competitors. The compromise is that in thetfisggps the performance of the
non-myopic control can be worse than that of the other control methods.

We note that in tha-infomax noise interrogation, for large switching timeand for larget
values, |K?2| will be large, and hence—according to (29)—the optimafor interrogation will
be close td). (In Section 10 we will show this empirically.) A reasonable approximation of the
‘T-infomax noise interrogation’ is to use the control given in Table 1tfsteps and to switch to
zero-interrogatioronwards. This scheme will be called titezero interrogation'scheme.

10. Numerical lllustrations

We illustrate by numerical simulations the power of A- and D-optimizations.

10.1 Generated Data

This section provides numerical experiments for parameter and noise estisnaticartificially
generated toy problems.

10.1.1 ARAMETER ESTIMATION

We investigated the parameter estimation capability of the D- and A-optimal iné¢iwag Matrix

F ¢ R9%9 has been generated as a random orthogonal matrix multiplied by 0.9 so thetgh&udes
of its eigenvalues remained below 1. Random marixR9*¢ was generated from standard normal
distribution. Elements of the diagonal covariance matfixf noisee were generated from the
uniform distribution ovef0, 1]. The process is stable under these conditions.

To study whether or not the D- and A-optimal interrogations are able to estilmateue pa-
rameters we measured the averages of the squared deviations of thetniageshandB and the
means of their posterior estimations, respectively. The square rootssef @stimations are the
mean squared errors (MSE). One might use other options to measwnparte. For examplé;
norm could be replaced by thg norm and the variance of the posterior estimations could also be
added as the complementary information for the bias.

We examined the following strategies: (i) D-optimal control of Table 1 vzith- [—, 8], which
defines a-dimensional hypercube. The valued®ivas set to 50. (ii) A-optimal control of (21) with
the samety, (iii) zero control:u; = 0 € R® t, (iv) random controly; € [—8, 8| generated randomly
from the uniform distribution in the-dimensional hypercube, (v) control defined by (25) for noise
estimation, called ‘noise control’, (vi) 25-zero control and (vii) 75-zesatrol defined in Section 9.
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For solving the quadratic problem of (14) and (25) we used a subspesteegion procedure,
which is based on the interior-reflective Newton method described by ColanLi (1996). Its
implementation is available in the Matlab Optimization toolbox. However, the optimizatiknrtas
(21) is more involved: Generally, the optimization of a constrained hyperpmigramming task is
quite difficult. We tried the gradient ascent method, but its convergenueaagd to be very slow
and we got poor results. In this case, it was more efficient to apply a simpéixod as follows:
we know that the optimal solution of (21) lies at the boundarytbf Thus, we chose one corner
of hypercubeti randomly with uniform distribution and moved greedily to the neighboring asrne
with the best improvement in the objective. This procedure was iterated ontilecgence. The
method was efficient for our special simple optimization domain.

We investigated two distinct cases. In the first case wel setl0 < ¢ = 40; the dimension of
the observations is smaller than the dimension of the control. By contrast, ithiiecase we set
d =40> c=10. Results are shown in Fig. 1 (a-b) and in Fig. 2 (a-b). We separadd3ik values
of matricesB andF. According to the figure, zero control may give rise to early and suddeps
in the MSE values of matrik. Not surprisingly, however, zero control is unable to estimate matrix
B. For both types of matrices as well as tbx ¢ and ford > ¢, the D-optimal procedure produced
the smallest MSE after about 50 online estimations, but the A-optimal methdukeckaery similar
levels only a few iterations later. As can be expectezkro control, which is identical to D-optimal
control in the firstt steps fell behind D-optimal control aftersince it changes the objective and
estimates the noise and not the parameters afterwards.

For statistical significance studies, we introduced the concept of aeoarglation curves. We
use Fig. 1 to explain this concept. There are 7 curves in Fig. 1 eaclsesireg the averages of
25 computer runs. Error bars make the curves incomprehensible anthiteeyhe correlations
that may be present between the errors. We note that the relative drtiercurves is of interest
for us. However, it is possible that in each run the relative order of tinees was the same and
the overlap of the error bars—which originates from the large diffasietween the individual
runs—hides this important piece of information. We treat this problem as felldw each time
instant 1<t < 250 and for all I< i < j <25 we compute the empirical (linear, or rank) correlation
of the 7 curves of thé#" and ji" experiment and take the average of thex2Z4/2 = 300 values.
The most significant case gives rise to 1 for each of the 300 correlatiatss, the 25 experiments
agree in the height of the curves at that time instant, or in their relative ingdefor the case
of rank correlation. If there is any single experiment out of 25 that yced different heights
or orders then the average correlation becomes smaller than 1. Fomignclwosen curves the
average correlation is 0. Results can be seen in Fig. 1 (c-d) and Figl)Zdclinear Pearson and
for Kendal rank correlations, respectively. The curves demondinateafter about 50 steps, the
correlations, in particular the linear correlation is almost 1. This means thautires behaved
similarly in a considerable portion of the experiments. The slightly differentipgcshown by the
linear correlation and the rank correlation could be due to the fact thaetifiemance of the A and
D-optimal control is very similar after some time, and their ordering may chaftege, dhus giving
rise to changes in the ranks in different experiments.

10.1.2 NDISEESTIMATIONS

In Section 7 we showed that A- and D-optimality principles result in the samduwaion.
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Figure 1: Mean Square Error of the estimated parameters for diffepatriot strategies and the sig-
nificance of the curves. Magnitude of MSE as a function of time is averfag@® runs. Dimension
of the control is 10F € R40%40 B ¢ R4%<10_ (3): MSE of the estimated matrix (b): MSE of the
estimated matriB. (c): The average correlation curves for the estimatioR.ofd): The average
correlation curves for the estimation Bf For details see the text.

We investigated the noise estimation capability of the interrogation in (25) forciases. The
first set of experiments illustrates that the estimation of driving neider larget values barely
differs if we replace tha-infomax noise interrogatiomith the t-zero interrogationscheme. Pa-
rameters were the same as above and the MSE of the noise estimation was dorRgstdts are
shown in Fig. 3: for the case af= 21, cost function (25) of the-zero interrogation is higher than
that of t-infomax interrogation. However, for valugs= 51 and 81 the performances of the two
schemes are approximately identical. Given thaero andr-infomax noise interrogation behave
similarly for larget values, we compare thezero interrogation scheme with other schemes in our
numerical experiments.

In the second experiment we investigated the problem of noise estimation grpeotdem.
Parameters were set as in Section 10.1.1, and the following strategiesongrared: zero control,
infomax control, random control andzero control for different values. Results are shown in
Fig. 4. It is clear from the figure that neither the zero control, nor theniafo (D-optimal) control
of Table 1 work for this case. If we want to have minimal MSE in approximatedieps then the
best strategy is to apply thezero strategy, that is, the strategy of Table 1 up &teps and then
to switch to zero control. Note, however, that parameter estimation requikegpocontrol values
non-negligible forever (Table 1).
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Figure 2: Mean Square Error of the estimated parameters for diffepatriot strategies and the sig-
nificance of the curves. Magnitude of MSE as a function of time is averag&® runs. Dimension
of the control is 40F € R1910 B ¢ R10x40_(3): MSE of the estimated matrfx (b): MSE of the
estimated matriB. (c): The average correlation curves for the estimatioR.ofd): The average
correlation curves for the estimation Bf For details see the text.

In the third experiment we used numerical tools to support our the argumentsgde in Sec-
tion 9. We investigate the D-optimal, the zero, the random, and the greedycoaitsel of (25), as
well as the 71-zero and 101-zero controls. Results show that if we neaficathe firstt steps,
then the non-myopit — zerocontrol gives rise to the smallest MSE for the estimated noise and the
smallest values for the cost function (28}er 1 steps considering all studied control methods. Fig-
ure 5a shows the MSE of the estimated driving noise, whereas Fig. 5hsm'picc:ost<tT+1K(1xt+1.
Figure 5c is about the time dependence oflkog that supports our argument in Section 9, namely, it
may be worth to sacrifice steps at the beginning to quickly dect&ast (i.e., to decrease Idi|)
in order to estimate (25) efficiently later. The problem we studied was the saulnef@re, except
thatd = 25 andc = 25 were applied.

The fourth experiment illustrates the efficiency of the approximation of tligerfor the case
when our assumptions @are not fulfilled. Here noise was neither Gaussian nor i.i.d. ‘Noisg’
was chosen as equidistant points smoothly ‘walking’ along a 3 dimensianalgprve as a function
of time (Fig. 6a). Dimensions of observation and control were 3 and $peatively. Results are
shown in Fig. 6. Neither random control, nor infomax interrogation of TAl{Eig. 6¢), nor zero
control (Fig. 6d) could produce reasonable estimation. Howeven-#&o interrogation scheme
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Figure 3: Comparing-infomax noise and-zero interrogations. The curves are averaged for 50
runs. Dimension of the control is 15 and the dimension of the observation i@LOMSE of the
estimated noise (b): Cost function as given in (25)infomax noise’ t-zero) means that up to step
numbert strategy of Table 1 applies and then the control of Eq. (29) is followed.
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Figure 4: Mean Square Error of the estimated noise for different dostrategies. Magnitude of
MSE as a function of time is averaged for 20 runs. (a): Dimension of thiealds 40. F € R*0x40,
B € R*%10 (b): Dimension of the control is 16 € R%*10 B ¢ R1940, ‘1-zero’ means that up to
step number the strategy illustrated in Table 1 was applied and then zero control followed.

produced a good approximation for large enoughalues (Fig. 6e). Details of this illustration are
shown in Fig. 6f.

10.1.3 OINT PARAMETER AND NOISE ESTIMATIONS

In Section 8 we showed that the objective of the D-optimality principle is cohftarthe joined
parameter and noise estimation task. However, A-optimality principle provatestde cost func-
tion (Eg. (28)). Unfortunately, it leads to a hyperbolic programming tasks dptimization is hard
in most cases. One can estimate the complexity of the objective by inspectingdimaensional
cases. We show the negative logarithm of (28) for the 2 dimensionafaadéferentK matrices
(Fig. 7). In one of the cases the null vector corresponds to the minimumeade the other case
the minimum is at a boundary point of the optimization domain. Also, the cost furscéippear to
be flat in a large part of their domains, rendering gradient based metieftective.
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Figure 5: Empirical study on non-myopic controls for noise estimation. Wafisacthe firstt
steps to achieve better MSE and smaller cost function. The curves aegestever 25 runs. The
dimension of the control and the dimension of the observation is 25. (a): di8&ise estimation
for different control strategies. (b)ctTHK( x.,1 cost function for different control strategies. (c):
log|K¢| function for different control strategies.

Studies were conducted on the problem family of 10.1.1 for observation dioveth= 15 and
control dimensiorc = 30. For the optimization, we modified the simplex method that we used for
the hyperbolic task before. The single difference is that upon coeregg the best value was com-
pared with the value of the objective at the 0 point and we chose the bettéorozontrol. We have
compared this strategy with the parameter estimation strategy of the D-optimalitypfejngith
zero control strategy, with random control strategy, and withzerocontrol for severat values.
Results are shown in Fig. 8. The figure indicates that control deriwed fine A-optimality princi-
ple (28) provides superior MSE results at approximately 45 iterations &mdaiwards compared
to the othemyopictechniques, however its performance was slightly worse thandhemyopic
T-zero control fort values larger than an appropriate threshold.

Inspecting the optimal control series of the winner, we found that theitigpchooses control
values from the boundaries of the hypercube in the first 45 or so itegatitimen up to about 130
iterations it is switching between zero control and controls on the bousdartieeventually it uses
zero controls only. That is, the A-optimality principle is able to detect the neethé switch from
high control values (to determine the parameters of the dynamics) to zerologalues for noise
estimation. This automated switching behavior is a special advantage of thgmabty principle.

10.2 Controlled Independent Component Analysis

In this section we study the usefulness of our methods for auto-regeg#dR) hidden processes
with independent driving sources and we would like to find the indepdruderses that drive the
processes. This task belongs to independent component analysjs(fi@#en and Hérault, 1991,
Comon, 1994; Hyvarinen et al., 2001). Informally, we assume that auces are doubly covered:
they are the driving noise processes of AR processes which care mitdetly observed due to the
mixing with an unknown matrix. We will study our methods for this particular exarapié we
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Figure 6: Different control strategies for non i.i.d. noise. (a): origimaise. (b-e): estimated
noise using random, infomax, zero, 51-zero strategy, respectiviglyMGE for different control
strategies. In (b-e), estimations of the first 51 time steps are not shown.
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Figure 7: Negative logarithm of the objective function for the joint parameste noise estimation
task for differentK matrices. (a) the minimum point is in zero, (b) the minimum point is on the
boundary.
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Figure 8: MSE of the joint parameter and noise estimation task. Comparistwedngoint param-
eter and noise estimation using A-optimality principle, parameter estimation usinmimadity
principle, random control, zero control amd- zerocontrol for differentt values. MSE values are
averaged for 20 experiments.

assume that the processes can be exogenously controlled. Suctspsoare called ARX processes
where X stands for letter x of the word eXogenous.

The ‘classical’ ICA task is as follows: we are given temporally i.i.d. sigreals RY (t =
1,2,...,T) with statistically independent coordinates. We are unable to measure thethydlet
their mixturer; = Ce is available for observation, whe@e R99 is an unknown invertible matrix.
The task is to measure the observable signals and to estimate both mixing@atriksources;.
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There are several generalizations of this problem. Hyvarinen (12@3ntroduced an algorithm
to solve the ICA task even if the hidden sources are AR processeseagh8zabd anddrincz
(2008) generalized this problem for ARX processes in the following wergcesse < RY are
given and they are statistically independent for the different coordireatd are temporally i.i.d
signals. They generate ARX proces®y means of parametefse R9*4 B ¢ Rd*¢:

| J
S+1= Z)Fi&fi + Z)Bjuulfj +&41. (30)
= =

We assume that ARX processcan not be observed directly, but its mixture
r=Cs (31)

is observable, where mixing matrx < R9<4 js invertible,but unknown Our task is to estimate the
original independent processes also called sources, noises se&athat isg, the hidden process

s and mixing matrixC from observations;. It is easy to see that (30) and (31) can be rewritten
into the following form

| J
Myl = %CFicilrtfi + Z)CBUtHﬂ' +C& 1. (32)
i= j=

Using notations; = CFiC~%, B; = CBj, &1 = C&,1, (32) takes the form of the model (1) that we
are studying with functiolg being the identity matrix. The only difference is that in ICA tasks
assumed to be non-Gaussian, whereas in our derivations we alvwe/thesGaussian assumption.
In our studies, however, we found that the different control methad$e useful for non-Gaussian
noise, too. Furthermore, the Central Limit Theorem says that the mixture ofattiablesy, that
is, C& approximates Gaussian distributions, provided that the number of mixedlesria large
enough.

In our numerical experiments we studied the following special case:

ryr = Fri+Bu1+Cey,

where the dimension of the noise was 3, the dimension of the control was aBicésF andB
were generated the same way as before, métsvas a randomly chosen orthogonal mixing, noise
sourcesa 1 were chosen from the benchmark tasks of the fastiICA todligeyvarinen, 1999).
We compared 5 different control methods (zero control, D-optimal cbdéweloped for parameter
estimation, random control, A-optimal control developed for joint estimatiopasdameters and
noise, as well as thezero control witht=81 that we developed for noise estimation). Comparisons
are executed by first estimating the noi€m( ;) for timesT = 1,...,1000 and then applying the
JADE ICA algorithm (Cardoso, 1999) for the estimation of the noise compusr@. 1). Estimation
was executed in each fiftieth steps, but only for the preceding 300 elepfehtstime series.

The quality of separation is evaluated by means of the Amari-error (Amaai.,e1996) as
follows. LetW € R9%d pe the estimated demixing matrix, and ®t:= WC < R%9, In case

1. Found ahttp://www. cis. hut.fi/projects/icalfastical.
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of perfect separation the matr is a scaled permutation matrix. The Amari-error evaluates the
quality of the separation by measuring the ‘distance’ of ma&rifkom permutation matrices:

1 (3Gl ([ 2LGil
") 2d(d—1)izl<maxj]Gij\ ! d 1) Z max]G., 1
The Amari-errorr(G) has the property that € r(G) < 1, andr(G) =0 if and only if G is a
permutation matrix.

Results are shown in Fig. 9. In shortzero control performs slightly better than the joint
parameter and noise estimation using the A-optimality principle. We note that @ptifality
design one does not have to worry about the duration of the paramtiteatsn. The performance
of the other methods were considerably worse, especially for early times.

Most importantly, we found that if we use Bayesian methods for noise apain ARX prob-
lems then it is worth to interrogate the system actively to improve the efficientyeastimation.

10° Amari distances, d= 3, control dim= 15

= = = zero control
----- D-optimal param
"""" random control
A-optimal joint
——— 81-zero control

10 \

300 400 500 600 700 800 900 1000

Figure 9: ARX-ICA experiment. Amari-error as a function of time for diffet control methods.
Curves show the means of 100 experiments.

10.3 Model of the Furuta Pendulum

This section is concerned with more realistic simulations and investigate themebsi®f our ap-
proach. We use a model of the Furuta pendulum (e.g., Yamakita et al., 49%&)r example, In
this case, conditions of the theorems are not fulfilled and the task—in omufation—can not
be represented with a few matrices. In this simulation, we studied the D-optimahtjigie and
compared it with the random control method. We were interested in the parasstiteation task
in this example.

The two-segment Furuta pendulum problem (e.g., Yamakita et al., 1998e/G&f998) was
used. The pendulum has two links. Configuration of the pendulum is detinbiy the length
of the links and by two angles. Dynamics of the pendulum are also determynte laifferent
masses, that is, the masses of the links and the mass of the end effectthiaadoyéhe two motors,
which are able to rotate the horizontal link and the swinging link in both directidhe angles of
the horizontal and the swinging links are denotedgognd6, respectively (Fig. 10). Parameters
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Name of parameter Value Unit | Notation
Angle of swinging link rad 0
Angle of horizontal link rad (0}
Mass of horizontal link 0.072 kg My
Mass of vertical link 0.00775| kg mp
Mass of the weight 0.02025| kg M
Length of horizontal link 0.25 m la
Length of vertical link 0.4125 m lp
Coulomb friction 0.015 Nm Ts
Coulomb stiction 0.01 Nm Tc
Maximal rotation speed for both links 2 %S“O”
Approx. zero angular speed for swinging link).02 % ()8
Time intervals between interrogations 100 ms
Maximum control value 0.05 Nm 0

Table 2: Parameters of the Physical Model

of computer illustrations are provided in Table 2 for the sake of reproditiibThe state of the
pendulum is given by, 6,  andB. The magnitude of angular speegsand® was restricted to 2
rotations/s, that is, to the intervmzr—‘s",zr—‘s’t]. For the equations of the dynamics and the details of
the parameters, see, for example, the related technical report (GaRe8).

Figure 10: Furuta pendulum and notations of the different parametersass]: length,M: mass
of the end effector, subscript horizontal link, subscripp: swinging link, @: angle of horizontal
link, 8: angle of swinging link

The pendulum is a continuous dynamical system that we observe in diseret&eps. Further-
more, we assume that our observations are limited; we have only 144 |dwties@nd overlapping
sensors for observing anglesand®. In each time step these sensors form ity € R144 obser-
vations, which were simulated as follows: Space of anglesd is [0,2m) x [0, 2rm), which we
divided into 12x 12 = 144 squared domains of equal sizes. There is a Gaussian senscrexttire
of each domain. Each sensor gives maximal response 1 when &wagheRp of the pendulum are
in the center of the respective sensor, whereas the responsesgeceezording to the Gaussian

function. For example, for thé" (1 < i < 144) sensor characterized by angRs @ responsey;

scaled agj; = \/l exp(—(e_ei)zzgé“%‘“)z) and the value ob was set to 1.58 in radians. Sensors

210
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were crude but noise-free; no noise was added to the sensory otfthatmset at label 4 of Fig. 11
shows the outputs of the sensors in a typical case. Sensors satisfoetiqggeoundary conditions; if
sensoiSwas centered around zero degree in any of the directions, then itideotbesmall (around
0 radian) and large (aroundtzadian) angles. We note that the outputs of the 144 domains are
arranged for purposes of visualization; the underlying geometry ofa@heass is hidden for the
learning algorithm.

We observed these € R#* quantities and then calculated thg ; € R? D-optimal control
using the algorithm of Table 1, where we approximated the pendulum with thelihogd= Fr +
Bu,.1, F € R4 B ¢ R¥*2 Components of vectan 1 controlled the 2 actuators of the
angles separately. Maximal magnitude of each control signal was setadN0 Clearly we do
not know the best parameters ferandB in this case, so we studied the prediction error and the
number of visited domains instead. This procedure is detailed below.

First, we note that the angle of the swinging link and the angular speeds apetamipfrom
the point of view of the prediction of the dynamics, whereas the angle ofdhiedmtal link can
be neglected. Thus, for the investigation of the learning process, wighs&D space determined
by ¢,6 andf. As was mentioned above, angular speeds were restricted @eﬂé@,zgf] domain.
We divided each angular speed domain into 12 equal regions. We aldthes&2-fold division of
angleB. Counting the domains, we had £212x 12 = 1,728 rectangular block shaped domains.
Our algorithm provides estimations f6f andB; in each instant. We can use them to compute the
predicted observation vectiyr, ; = ﬁtrt + Bt Us1. Anexample is shown in inset at label 4 of Fig. 11.
We investigated thdr;,1 — fi,1|| prediction error (see Fig. 1umulated over these domaias
follows. For each of the 1,728 domain, we set the initial error value at 88lug somewhat larger
than the maximal error we found in the computer runs. Therefore the cun@ater at start was
1,728x 30=51,840.

The D-optimal algorithm does two things simultaneously: (i) it explores new danaird (ii)
it decreases the errors in the domains already visited. Thus, we me#sei@dnulated prediction
errors during learning and corrected the estimation at each step. Sociiloulated error estima-
tion at timet wase(t) = zgfsa((t) and the pendulum entered ti&domain at time + 1, then we
setec(t+1) = e(t) forallk #iandeg(t+1) atg(t+1) = ||riy1 — fry1]|. Then we computed the
new cumulated prediction error, that &t + 1) = zgfsq(t +1).

We compared the random and the D-optimality interrogation schemes. We sluogetsyof
figures, Figs. 12a and 12b, as well as Figs. 12c and 12d. The uppédepicts the results for
the full set of the 1,728 domains. It is hard for the random control to giidgoendulum to the
upper domain, so we also investigated how the D-optimal control perforras We computed the
performance for cases when the swinging link was above vertical, trat864 domains ( Figs. 12¢
and 12d).

For the full domain the number of visited domains is 456 (26%) and 818 (4@&thé random
control and the D-optimal control, respectively after 5,000 control stejgs 12a). The error drops
by 13,390 (26%) and by 24,040 (46%), respectively (Fig. 12b). WhieDkoptimal controlled
pendulum visited more domains and achieved smaller errors, the domainstirsatéon error is
about the same for the domains visited; both methods gained about 29.4%nmend.

We can compute the same quantities for the upper domains as well. The numiséedfupper
domains is 9 and 114 for the random control and for the D-optimal conggpeactively (Fig. 12c).
The decrease of error is 265 and 3,342, respectively (Fig. 12djther words, D-optimal control
gained 29.3% in each domain on average, whereas random controle@ageay gained 29.4 %,
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D-oPTIMALITY PENDULUM-SIMULATION

Figure 11: Scheme of D-optimal interrogation. (1) Contrgl; is computed from D-optimal prin-
ciple, (2) control acts upon the pendulum, (3) signals predicted beforeat step, (4) sensory
information after control step. Difference between (3) and (4) is usethkE computation of the
cumulated prediction error. (5) Parameters were updated according pse¢hdocode of Table 1.
For more details, see text.

which are very close to the previous values in both cases. In this expéribreptimal control
gains more information concerning the system to be identified by visiting newidema

This observation is further emphasized by the following data: The D-optilgpatithm discov-
ered 37 new domains in the last 500 steps of the 5,000 step experiment.t@eg®B7 domains, 20
(17) were discovered in the lower (upper) domain. By contrast, theoraradgorithm discovered 9
domains, out of which 5 (4) was in the lower (upper) domain. That is, D¥@lity principle has a
similar (roughly fourfold) lead in both the upper and lower domains, althougdimplexity of the
task is different and the relative number of available volumes is also differ¢hese two domains.
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Figure 12: Furuta experiments driven by random and D-optimality conti®tdid (dotted) line:
D-optimal (random) case. (a-b): Number of domains is 1728. (a): Visitedaihs, (b): upper
bound for cumulated estimation error in all domains, (c-d): Number of donmaB&4. (c): visited
domains for swing angle above horizontal, (d): upper bound for cuntukedémation error for
domains with swing angle above vertical. For more details, see text.

11. Discussion and Conclusions

We have treated the identification problem of recurrent neural netvasidefined by the model
detailed in (1). We applied active learning to solve this task. In particulastugied the learning
properties of the online A-optimality and D-optimality principles for parameterranige estima-
tions. We note that the D-optimal interrogation scheme is also called InfoMatxatan the liter-
ature by Lewi et al. (2007). This name originates from the cost functiahdptimizes the mutual
information.

In the generalized linear model (GLM) used by Lewi et al. (20Q7) is drawn from an expo-
nential family distribution with link functiorg and

| J
Elrir1] =9 Fire—i+ Y BjUtii—j
; i ,; jUt1-j

expected value. This model can be rewritten as

I J
re1=9 Fire—i+ ) Bjuiyr1—j | + &1, (33)
(é 2,
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where {g} is a special noise process withc RY mean. The elements of this error series are
independent of each other, but usually they moéidentically distributed. The authors modeled
spiking neurons and assumed that the main source of the noise is this spikioly,appears at the
output of the neurons and adds linearly to the neural activity. Theytigedsed the case in which

the observed quantity had a Poisson distribution. Unfortunately, in this model Bayesian equations
become intractable and the estimation of the posterior may be corruptedsbdbaulistribution is
projected to the family of normal distributions at each instant. A serious prowiéh this approach

is that the extent of the information loss caused by this approximation is netrkr@ur stochastic

RNN model
[ J
rer = 0 Z)Firt—i+Z)Bjut+1—j+Q+l ,
i= =

differs only slightly from the GLM model of (33), but it has consideralleantages, as we discuss
it later. Note that the two models assume the same form if fungfienthe identity matrix and if
the noise distribution is normal.

Our model is very similar to the well-studied non-linear Wiener (Celka et al.1 @0d Ham-
merstein (Pearson and Pottmann, 2000; Abonyi et al., 2000) systemsHarhmerstein model
develops according to the following dynamics

| J
Mgy1 = Z)Firt—i‘FZ)ng(uwlfj)“‘eurl-
i= =

The dynamics of the Wiener system is

| J
M1 = g(%Figl(rti)+%Bjut+lj+Q+l>a
i= =

where we assumed that functigns invertible.

The Wiener and the Hammerstein systems have found applications in a bnggdafaareas,
including financial predictions to the modeling of chemical processes. eTimeslels are special
cases of non-linear ARX (NARX) models (Billings and Leontaritis, 1981hey are popular, be-
cause they belong to the simplest non-linear systems. Using block refatasenthey are simply
the compositions of a static non-linear function and a dynamic ARX system. éslt,rtheir prop-
erties can be investigated in a relatively simple manner and they are still able & aladge class
of sophisticated non-linear phenomena.

Interesting comparisons between Wiener and Hammerstein systems cantéf&ai (2002),
Aguirre et al. (2005), and Haber and Unbehauen (1990). We natetnd8ayesian interrogation
methods can be easily transferred to both the Wiener and to the Hammersteinsys

Bayesian designs of different kinds were derived for the lineaessgon problem by Verdinelli
(2000):

y=X0+e, (34)
P(e) = Ae(0,021).

This problem is similar to ours ((3)-(5)), but while the goal of Verdinel®@®) was to find an
optimal design for the explanatory variabl&sve were concerned with the paramef¢iig 34) and
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] | Parameter Noise Joint
D-optimal || max X7, Ky I 1 | min x', K11 N/A
p aog Xerate X M Xepa B X

T T -1 T T -1
Xy 1Ko K X1 14X K K X1

A-optimal | max t min x| Kiix.1 | max -
P U 1€U 1+XtT+1Kt X1 Ui1€U 1t + U 1€U 1+X1T+1Kt X1

Table 3: Cost functions in the parameter, noise, and in the joined parameterastimation task.

the noise €) estimation tasks. In Verdinelli’s paper inverted gamma prior and vectoesgtalormal
distribution were assumed on the isotropic noise and on the explanatoriglearieespectively. By
contrast, we were interested in the matrix-valued coefficients and in denenaisotropic noises.
We used matrix-valued normal distribution for the coefficients, and in thetibral case we applied
inverted Wishart distribution for the covariance matrix of the noise. Due t@toperties of the
inverted Wishart distribution, the noise covariance matrix is not restrictedetastitropic form.
However, in the A-optimal case, we kept the derivations simple and we dgpieluct of inverted
gamma distributions for the covariance matrix as the conjugate prior.

The Bayesian online learning framework allowed us to derive analytidtsefew the myopic
optimization of the parameters as well as the driving noise. InCieptimal case the optimal
interrogation strategies for parameter (14) and noise estimation (25)ragpeattractive, intrigu-
ingly simple quadratic forms. We have shown that these two tasks are incolapaiib each
other. Parameter and noise estimations require the maximization and the minimizatixpres-
sion xtTHK(lxtH, respectively. We have shown also that D-optimality can not be applied to the
joined estimation of parameters and noise, because the correspondifighctisn is constant.

For theA-optimalityprinciple, we found that the objective of the noise estimation task is iden-
tical to that of the D-optimality principle. In this case, we were able to derinsibe results for
the joined estimation of parameters and noise, and received hyperbolic @itimitask. We also
received a similar hyperbolic optimization task for the parameter estimation problée opti-
mization of this task is non-trivial. For a simple hyper-cube domain we put #éohuristics based
on the simplex method. The different cost functions are summarized in Table 3

We found empirically in thgparameter learningask that the different objectives—that is, the
minimization of |(K¢ + X¢11%{, 1) ~%| andtr [(K¢ 4+ Xe+1%{, 1) Y], the results of the D-optimality and
A-optimality principles, respectively—exhibit similar performances (Fig. i), ). However, D-
optimality has slightly better performance and it is easier to compute, since wetoaselve a
guadratic problem only as opposed to a hyperbolic one. One of the sesahe similar perfor-
mance could be that the corresponding matrices are positive definite anthtéyuare diagonally
dominant. In this case both the trace and the determinant are dominated hyadielgonents of the
matrices.

In the noise estimatiotask, however, cost functions of the A- and D-optimality principles are
the same. The main difficulty here is the non-myopic optimization of this cost funfiigy. 3,
Fig. 4, Fig. 5, Fig. 6). The problem of non-greedy optimization of the fgktaas been left open for
both the A-optimality and the D-optimality principles. For the noise estimation taskuggested
a heuristic solution that we calladinfomax noise interrogation. Numerical experiments served to
show thatt-infomax noise interrogation overcomes several other estimation stratddiesiovel
T-infomax noise interrogation uses the D-optimal interrogation of Table 1 uysteps, and applies
the noise estimation control detailed in (25) afterwards. This heuristicea@ses the estimation
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error of the coefficients of matricésandB up to timet and thus—upon turning off the explorative
D-optimization—tries to minimize the estimation error of the value of the noise atttime. We
introduced ther-zero interrogation scheme and showed that it is a good approximation of the
infomax noise scheme for largevalues.

In thejoint noise parameter estimatidask the D-optimal principle leads to a meaningless con-
stant valued cost function. The A-optimal objective is a hyperbolic pnogning task, which is
difficult to optimize. Still, its myopic optimization gave us better results than the myopiptidral
objective derived for parameter estimation only. Interestingly, myopic #¥a interrogations be-
haved similarly to the non-myopiczero control (D-optimal parameter estimation uprtsteps,
then zero control) with emergent automatiselection. However, these myopic results were some-
what worse than the non-myopic results from theero interrogation, when was larger than an
appropriate threshold (Fig. 8).

In the field of active-learning, non myopic optimization is one of the most clgilhgrtasks so
most studies are concerned with greedy optimization only. Still, greedy optimizadi® produced
valuable results in many cases. A few studies are concerned with nedygsptimization of active
learning, but only for certain special cases (Krause and Guesti@,; Rangarajan et al., 2007).
This field is in a rather early stage at the moment.

We illustrated the working of the algorithm on artificial databases both foralenpeter estima-
tion problem and for the noise estimation task. In the first set of experimentathbase satisfied
the conditions of our theorems. We studied the robustness of the algorithstuatied the noise es-
timation problem for a situation in which the conditions of our theorems wereatisfisd, namely
when the noise was neither Gaussian nor i.i.d. In particular, we studied tKepfddlem family,
when the hidden driving sources are non-Gaussian and statisticallyeimdiexst i.i.d. processes. We
found that active control can speed-up the learning process. Fagotias the identity function in
these experiments.

We have also started to characterize the algorithm for a problem closatlity.ré/e chose the
two-link Furuta pendulum task in these studies. We used a crude discretif@mtithe pendulum,
where the underlying dynamics and the low-dimensional nature of the pnadnie both hidden.
Clearly we could express neither the ideal parameters for this case nooidethat arose as a
result of the disctretization. Thus we have studied the volume explored IBtpgimality method
as well as the magnitude of the prediction errors.

The pendulum problem demonstrated that D-optimality maximizes mutual informatier-b
ploring new areas without significant compromise in the precision of estimatithreixisited do-
mains. The discovery rate is in favor of the D-optimality algorithm, which has mifgignt lead
in both the frequently visited and the rarely visited domains, although the tagfkeiedt and the
relative number of available volumes is also different in these domains.

Our method treats the identification problem of non-linear ARX systems. We@generalize
the method to NARMAX systems in the future. Such systems have severalatfplifields, includ-
ing financial modeling and the modeling of gas turbines (Chiras et al., 200 may try to apply
these principles in a broad variety of fields, including selective laser chgnitabitz (2003), or
the analysis of brain signals ‘controlled’ by visual inputs, for examplerainbcomputer interfaces
Vaughan et al. (2003).

Finally, it seems desirable to determine the conditions under which the algoritgrmedifrom
the optimality principles are both consistent and efficient. The tractable fboomr@pproximation-
free results is promising in this respect.
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Appendix A.

In this section we provide the technical details of our derivations.

A.1 Proof of Lemma 4.1

It is easy to show that the following equations hold:

Ay (A, V)AL (ML V,K) = Aa(MFV,xxT +K)AG(Mx, V),
ANa(M,V,K)IWy(Q,n) = IWy(Q+H,n+m)7A(Q,n,M,K),

whereM* = (MK +yxT)(xxT +K)™ 1, y=1—xT(xx" +K)~2x,H = (A —M)K (A —M)T for the
sake of brevity. Then we have

2 (MX, V) T (Qu1) = Ty (Q+ (¥ — MX)y(y — Mx)T -+ 1% (Q.n, Mx.y)

and the statement of the lemma follows.

A.2 Proof of Lemma 4.2

Let veqA) denote a vector ofim dimensions where th&d(i — 1) + 1)1, ... (id)" (1 <i < m)
elements of this vector are equal to the elements ofttheolumn of matrixA € R%™ in the ap-
propriate order. Let denote the Kronecker-product. It is known that RiA) = Ax (M, V,K),
P(veqA)) = Njeqa)(veqM),V @ K1) holds (Minka, 2000). Using the well-known formula for
the entropy of a multivariate and normally distributed variable (Cover andnflsp1991) and ap-
plying the relationV ® K 1| = [V|™/|K |4, we have that

1
H(A;V) = éln|V®K_1|+d7mln(2Tre) - gln|V| —gln|K| +d7mln(2rre).

By exploiting certain properties of the Wishart distribution, we can computentrepy of distri-
bution I Wy (Q,n). The density of the Wishart distribution is defined by

Q,l n/2

M (Q.n) = o= |v[(-d-1/2
Zn,d

exp(—étr(VQ‘H) .

Let W denote the digamma function, and I‘Qg;l(d, n =-y%, W(*1=)) —din2. Replacingy ~*
with S, we have for the Jacobian tH§%| = | 95| = |S|~(@+V) (Gupta and Nagar, 1999). To proceed
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we use tha€qyy g S = nQ, andEqyyqnIn|S = In|Q| — fi3(d,n), (Beal, 2003) and substitute
them intoE 4, (q.n) IN [V, andE 4y, (g mtr (QV1):

1 _1Q n/2 1 .
ErwyeminlVl = Zna V@072 | 2 exp<—2tr(v Q)) In|VidV,
SQ

n/2 1 a1
> exp —Etr(SQ) In|S||S| ds,

1
- _ = S(d+l)/2
/ an| |

_ / g|(n-d-1)/2
Znd

= _E’Ws( “1n) In|S|,
= In|Q[+ fy3(d,n). (35)

One can also show that

n/2 1
exp<—2tr(SQ)> In|S|dS,

2

1
Z,d ]V|(d+1)/2

1
1 gid+n)/2
/Zn7d’ ‘

1
[t gn-d-1/2
/ 718

EWS -1n tl’(QS)
= tr(QQ !n)=nd. (36)

We calculate the entropy of stochastic varialllevith distribution 71, (Q,n). It follows from
Eq. (35) and Eqg. (36) that

,1Q
2

n/2
%Q exp<;tr(SQ)>tr(QS)|S|‘d‘1dS,

n/2
% exp<;tr(SQ)> tr(QS)ds

Ermontr(QVY =

n/2 1
exp(—ztr(V‘lQ)) tr(QV—1)dv

n n+d+1 1 _
HYV) = ~Emian | ~InZas)+ 0|3 = "5 IV - v 1Q>],
n_|Q n+d+l n+1 nd
= In(Zmd)—éIn 2’ In|Q| — ZLP —dIn2 +=
d+1

= —In |Q| + f14(d n)

wherefy 4(d,n) depends only od andn.
Given the results above, we complete the computation of entigpy V) as follows:

HAV) — H(A|V)+H(V):H(V)+/dVI‘WV(Q,n)H(A;V),

= [avimv@n (Finvi- Ginik |+ G inzme) ) + Hev)

d dm m d+1
= —SIIK|+ S In(2me) + (I |Q| + fra(d,m)] + =~ In[Ql + fua(d.n),

m+d+1
———)In[Q[+ fra(d;n).

This is exactly what was claimed in Lemma 4.2.

d
= —Eln\KH(
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A.3 Proof of Lemma 5.1
The proof is analogous to the D-optimality case. We need the following lemma:

Lemma A.1 LetV diagonal positive definite matrix. Lt ) denote the'f row of matrixX. Let
Ni = (Agy — M) K(AG) —M (i7;))T, Vi=1,...,d.n € RY. Then the following statement holds:

d
M(M,V,K)T[gv(a,,@) = fPIgV(a+m/2,,B+n/2) 'l_l%(iﬁ:)(ﬁi,ZGi,M(ia:),IZ).

Proof:
ANa(M,V,K)PIG (e, B) =
- 2’;%2 expl—Str(VH(A - MK ﬁ i v“ilexp(—sii),
e J;,T';:;er |i| e )
- !KZT/:M ﬁr a2 1exp(—Bi+v?i/2),
A e e e,
B
-T (|2KT[|)1n/52 r(aéz;?;/Z) G +m/i02i)m+m/zgp1gv(a +m/2,8+1n/2),

a K12 | @
|nn’ﬁ//z r(ai)(BhL(A(i’:)rf\jl(i:ga(ii:)M(i“))T)a#m/ZTIGV(a+m/2,ﬂ+n/2),
= PIG,(at+m/2,8+n/2) rl«rA(, (Bi,2ai, M ., g)

Lemma A2

AG(AX,V)NA(M,V,K)PIG, (e, B) = Na (MK +yxT)(xx™ +K)1 vV, xxT +-K) x

e <a+l/2’ﬁ+diag(y—'\/'><) (1_XT(XX;+K)1X) (Y—MX)T> x
% ,ﬁTyi <Bi,2(xi,(|\/|x)i7 1—XT(xx; +K)‘1x> |

Proof:

Ay (AX, V)AL (M, V,K)PIG, (c, 8) = Na (MK +yxT)(xx" +K) "1V, xxT +K) x
AG((Mx,V, 1 —xT (xx" +K)~2x) x
PIGy(a,B).
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A.4 Proof of Lemma 5.2
We can see thatary [E[A|V, {x}|"*, {y}}™]] = Vary[M¢, 1] = 0, and
Evitrvar(AlV, DT Y1) = Evitr(V e (Ke+xe) DIy,
= trENVIPAT T (Ke+xeax( ) 7,

d .
= tr{(K¢+ Xt+1X;r+1)_l] iZl(a(ﬁSil)—ll’

where we used th&(V|{x}\", {y}{") = PIG, (11, B41)-
The law of total variance says théar[A] = Var[E[A|V]] + E[Var[A|V]], hence

d ,3t+1

trvar[A|[{x}5 {1 = tr(Ke +xepaxteg)
= (as1)i

A.5 Proof of Lemma 6.1

To compute (24) we need the following lemma (Minka, 2000):
Lemma A.3 If P(A) = Ax (M, V,K), then RAX) = Ajax (Mx,v, (xTKflx)*).

Applying this lemma and using (11) we have that

P(Axea|V, {3 AV = N (Mt+1xt+1,V, (XtT+1Kt_+11Xt+1)71) - (37)
We introduce the notations
Kir = (X;r+1Kt:r11Xt+1) - €ER, (38)
A1 = 1+ (AXee1—MgraXern)” (Kt+1Qf+11)(AXt+1 —MgyiXe1) €R.
Exploit the fact that

ANa(M,V,K)IWy(Q,n) = Iy (Q+H,n+m)Za(Q,n,M,K),
and use (12) for the posterior distribution (37) and get

P(AXe 1| (XTI = Taces (Quits Nt MigaXes 1, Kisa)

1
_ a2 1/2 () ) megt
= IKi3Qual
+1t+l F(”””l d) t41
2

The Shannon-entropy of this distribution according to Zografos an@didgh (2005) can be written
as:

d -
H(AXty1; {X}t1+la {y}t1+1) = f31(d,Ney1) + 5 |09‘Kt+11| +109|Qt+1,

where

M) a1, (Mt Ny1+1-—d
f3,1(d7nt+1)——|09]_ld/2r(%141)+ 2 <LP< 2 >—W(2)>.
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Using the notations introduced in (10) and in (38), the above express@nge transcribed as
follows:

d -
H(AXtJrli{X}tle{y}tlH) = f3,1(d’nt+1)*§|09|Kt+1|+|09|Qt+1|a
d _
= f371(d7”t+1)+§|09|XtT+1(Kt+Xt+1XtT+1) Y¢1] +109|Qra,

d _
= f3,1(d7nt+l)+§|09|xtT+1(Kt+Xt+1XtT+1) Y| +

+109|Qt + (Yi+1 —MXer1) Vo1 (Vi1 — MtXt+1)T |-

Now, we are in a position to calculate (24) by applying Lemma 4.4 as beforget\taat
[ POl (L YD s (T VI =
d _
= fa2(QuMsa) + 5 log |1 (Kt +Xeyax{, 1) e,
wheref3>(Qt,nt11) depends only o, andn; ;1. We can proceed as follows

argmax (&1, yi1; {x}1", {y}2) = argminiog |ty 1 (Ke +xe1x¢.0)~Xesal,
+ +

-1 T -1
W [ k-1 Kt X 1%y 1Ky X1
t+1 t -1 t+
1+X;r+1Kt Xt+1

Y

= argminlog
Ut+1

oI K1
Xe1 1Ky Xt+1
1+x K e |

=arg mmxtHK( Xt+1-
Ut+1

= argminlog
Utt+1

This is exactly what we were to prove.

A.6 Proof of Lemma 8.1

One needs to compute the value of the integral

-1 _
/dyt+lp (Yera DS Y FDELrV Xyt ((Kt+xt+1xir+1) +X;|-+1Kt+llxt+l)-

However,

/ dyes1P(ye [ O (YY) E IV XLy
/Bt+1
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and depends only on the valuesmf, 1 andg; as a result of (19) and Lemma 4.4, and is independent
of the value ofx; ;. Thus, we arrive at the minimization of the following expression:

_1 T -1 -1 T -1
" K,l_Kt Xet1%¢ 1Ky T K,l_Kt Xe+1%4 1Kt «
1T K AT 1] K XX t
e K Xep1 o KE X1

—1 T k-1 T k-1
— ltr(k=1 —tr Kt "Xe+1Xp, 1Ky Xe 1Kt "Xe+1
o (Kt 1+xT . KL 14xT . KL ’

T X 1Kt Xer + X 1 Ke X1

= [tr(Kﬁ)

11 1
CXKOKE e | XK e
1 1 )
T+ X Ko X1 T+ X0 KT X

T -1 -1
o 1+Xt+1Kt Kt Xt+1
- -1
1+ X;I:HI_Kt Xt+1
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