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Abstract

We present a sound and complete graphical criterion forimgadkpendencies from the minimal
undirected independence m@pof a graphoidM that satisfies weak transitivity. Here, complete
means that it is able to read all the dependencids that can be derived by applying the graphoid
properties and weak transitivity to the dependencies uséde construction o6 and the inde-
pendencies obtained fro@ by vertex separation. We argue that assuming weak traibgiswnot
too restrictive. As an intermediate step in the derivatibthe graphical criterion, we prove that
for any undirected grap® there exists a strictly positive discrete probability dizition with the
prescribed sample spaces that is faithfulzo We also report an algorithm that implements the
graphical criterion and whose running time is considereleg@t mosO(n?(e+n)) for n nodes
ande edges. Finally, we illustrate how the graphical criteriam de used within bioinformatics to
identify biologically meaningful gene dependencies.

Keywords: graphical models, vertex separation, graphoids, wealitraity, bioinformatics

1. Introduction

A minimal undirected independence m@pof an independence mod#l is used to read indepen-
dencies that hold iM. Sometimes, howeveg can also be used to read dependencies holdidy in

For instance, iM is a graphoid that is faithful t& then, by definition, lack of vertex separation is
a sound and complete graphical criterion for reading dependenciasIravhere complete means
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that it is able to read all the dependencieddnIf M is simply a graphoid, then Bouckaert (1995)
proposes a sound and complete graphical criterion for reading deperd fromG. In this case,
complete means that it is able to read all the dependencikkstimt can be derived by applying
the graphoid properties to the dependencies used in the constructivaral the independencies
obtained fromG by vertex separation.

In this paper, we introduce a sound and complete graphical criterioralirg dependencies
from G under the assumption thit is a graphoid that satisfies weak transitivity. Here, complete
means that it is able to read all the dependenci®s that can be derived by applying the graphoid
properties and weak transitivity to the dependencies used in the congirat@Goand the indepen-
dencies obtained froi® by vertex separation. Our criterion allows reading more dependencres tha
the criterion in Bouckaert (1995) when the graphoid at hand satisfiak weansitivity. We show
that there exist important families of probability distributions that are graghend satisfy weak
transitivity. These include, for instance, the regular Gaussian probatiitbutions.

We think that the work presented in this paper can be of great intere$tefonachine learning
community. Graphs are one of the most commonly used metaphors for nejimgdaenowledge be-
cause they appeal to human intuition (Pearl, 1988). Furthermore, gaaplpsirsimonious models
because they trade off accuracy for simplicity. Consider, for instaapegsenting the independence
model induced by a probability distribution as a graph. Though this grapbicatly less accurate
than the probability distribution (the graph may not represent all the (ie)ytigncies and those
that are represented are not quantified), it also requires less spaeestored and less time to be
communicated than the probability distribution, which may be desirable featusesria applica-
tions. Thus, it seems sensible developing tools for reasoning with grépingriterion is one such
a tool: As vertex separation makes the discovery of independencies lalmémauman reasoning
by enabling to read independencies Gffvithout numerical calculation (Pearl, 1988), so does our
criterion with respect to the discovery of dependencies. There ars fidldre discovering depen-
dencies is more important than discovering independencies. It is in thigseikere we believe
that our criterion has greater potential. In bioinformatics, for instanceyddes ofG represent (the
expression levels of) some genes under study. Bioinformaticians araltypicore interested in
discovering gene dependencies than independencies, becausenegmvide contexts in which
the expression level of some genes is informative about that of somegethes, which may lead to
hypothesize dependencies, functional relations, causal relatioreffelbts of manipulation experi-
ments, etc. As we will illustrate at the end of the paper, our criterion canyehedpful in such a
scenario. Our criterion also clarifies a misconception that may exist amamgtsioinformaticians,
namely that two genes are dependent if there exists a pathbietween them. We will see that
there must exist exactly one path to draw such a conclusion. Hence, theamg®of developing
a formal criterion like ours to prevent drawing erroneous conclusi@isourse, the conclusions
drawn by our criterion may be misleadingGfis learnt from a sample, which is most likely the case
in bioinformatics. However, this has nothing to do with the correctness ofriterion, which we
prove in subsequent sections, but with the fact Ghét an estimate.

The rest of the paper is organized as follows. We start by reviewing soneepts in Section 2.
We show in Section 3 that assuming weak transitivity is not too restrictive. rdieepn Section 4
that for any undirected graph there exists a strictly positive discrete probability distribution with
the prescribed sample spaces that is faithfubtdrhis is an important result in itself as well as for
proving the completeness of the graphical criterion that we present ioB&c An algorithmic im-
plementation of the graphical criterion is described in Section 6. We illustrateatio® 7 how the
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graphical criterion works in practice with a real world example taken fr@imformatics. Finally,
we close with some discussion in Section 8.

2. Preliminaries

The definitions and results in this section are taken from Lauritzen (1B2&y] (1988) and Studgn
(2005). We use the juxtapositiofly to denoteX UY, andX to denote the singletofiX}. We use
upper-case letters to denote random variables and the same letters ircéseaie denote their
states. We us¥al(X) to denote the set of possible states of a random vardbleet U denote

a set of random variables. Unless otherwise stated, all the probabilitipdigins, independence
models and graphs in this paper are defined bvdret X, Y, Z andW denote four mutually disjoint
subsets of). An independence mod# is a set of independencies of the foKris independent of
Y givenZ. We represent that an independence idliby X 1LY |Z and that an independence is not
in M by X /LY |Z. In the latter case, we may equivalently say that the depend€ficélZ is in M.
An independence model is a graphoid when it satisfies the following fiyeepties:

e SymmetryX1lY|Z = Y 1LX|Z.

e DecompositiorX LLYW|Z = X 1LY |Z.

e Weak unionX LLYW |Z = X LLY|ZW.

e ContractionX LLY |ZW AXLUW|Z = X1LYW|Z.
e IntersectionX LLY [ZW AXLW|ZY = XL1LYW|Z.

The independence model induced by any strictly positive probability disitibis a graphoid.
Hereinafter, for the sake of simplicity, we do not make any distinction betwgamobability dis-
tribution and the independence model induced by it and, thus, we alwégsto the former. For
instance, instead of saying that the independence model of a probabititwtien p is a graphoid,
we simply say thatp is a graphoid. In this paper, we pay particular attention to strictly posi-
tive discrete probability distributions and regular Gaussian probability disionis, that is, those
whose covariance matrices are positive definite. For the strictly positiceetisprobability dis-
tributions, we assume that each random variabl¥ imnas a finite sample space with at least two
possible states. Note thatpfis a strictly positive discrete probability distribution, thpfX) and
p(X|Y =y) are uniquely defined, strictly positive and discrete. Likewisq i$ a regular Gaus-
sian probability distribution, thep(X) andp(X|Y =) are uniquely determined (by a convention)
and regular Gaussian. Moreover, any regular Gaussian probabilitipdtfon satisfies composition
XY |Z AXUW|Z = X1LYW |Z.

A path betweerX; andX, in a graphG is a sequence of distinct nodss, ..., X, (1 < n) such
that there exists an edge @Gbetween every two consecutive nodes in the sequence. Given a path
Xi,...,%q in a directed and acyclic graph (DA®), a nodeX; (1 < i < n) is a collider in the path if
Xi—1 — X < Xi+1in G. LetsefgX,Y|Z) denote thaK is separated fronY givenZ in a graphG.
Specifically,sedX,Y|Z) holds when every path i@ betweenX andY is blocked byZ. If Gis an
undirected graph (UG), then a path@betweenX andY is blocked byZ when there exists some
Z € Z in the path. IfG is a DAG, then a path i betweenX andY is blocked byZ when there
exists a nod€ in the path such that
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e eitherZ is not a collider in the path and < Z, or
e Zis acollider in the path and neith&mor any of its descendants @is in Z.

An independence mod# is faithful to an UG or DAGG whenX_LLY |Z iff sedX,Y|Z). Any
independence model that is faithful to some UG or DAG is a graphoid. Antd&p( DAG)G
is an undirected (resp. directed) independence map of an indepenuedelM whenX_LLY |Z if
sefdX,Y|Z). Moreover, an UGG is a minimal undirected independence (MUI) magvivhen

() Gis an undirected independence magvhfand
(ii) no proper subgraph d& satisfies (i).

A Markov boundary oX € U in an independence model is any subseWB(X) of U\ X such
that

(i) X1LU\ X\ MB(X)|MB(X), and
(i) no proper subset d"1B(X) satisfies (i).
If M is a graphoid, then
(i) MB(X) is unique for eaciX € U,
(i) the MUI mapG of M is unique, and
(iif) two nodesX andY are adjacent is iff X € MB(Y) iff Y € MB(X) iff X LY|U\ (XY).

A Bayesian network (BN) is a paiiG, p) whereG is a DAG andp is a discrete probability
distribution that factorizes gs= [xcu q(X|Pa(X)), whereq(X|Pa(X)) denotes a conditional dis-
crete probability distribution oX given the parents of in G, Pa(X). Recall that a nod¥ is called
a parent ofX if Y — X is in G. We denote byD(G)™" all the strictly positive discrete probability
distributions that can be represented by a BN with DBGhat is, those that factorize according to
G as indicated.

3. Weak Transitivity Graphoids

Let X, Y andZ denote three mutually disjoint subsetslbf We define a weak transitivity (WT)
graphoid as a graphoid that satisfies weak transiti¥ityY |Z A X LLY|ZV = X1V|Z VV1LY|Z
with V € U\ (XYZ). There exist important families of probability distributions that are WT
graphoids and, thus, we believe that WT graphoids are worth studymgingtance, any proba-
bility distribution that is regular Gaussian or faithful to some UG or DAG is a WApoid (Pearl,
1988; Studemp, 2005). Other interesting families of probability distributions that are WT lypajs
are presented in this section.

We say that a strictly positive discrete probability distributfphas context-specific dependen-
cies if there exists som& C U such thap(U\ W|W = w) does not have the same (in)dependencies
for all w. The theorem below proves that for any DA&G in a measure-theoretic sense (Hal-
mos, 1966), almost all the probability distributions 9(G)™ have no context-specific depen-
dencies. This result is not only relative to the DA but also to the measure considered, the
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Lebesgue measure in our case, as well as to the dimensi®{®f". For this purpose, we dis-
cuss first how we parameterize the probability distribution®ifG)". Since each probability
distribution p in D(G)™" factorizes ap = [xcuq(X|Pa(X)), p can be parameterized by param-
eterizing each probability tablg X|Pa(X)). LetVal(X) = {xy,...,Xyx)} denote then(X) possible
states of the random variabk. Let 6y pa (1 <i < n(X)) denote the parameter corresponding
to q(X = x|Pa(X) = pa) with pa € Val(Pa(X)). Note that the parameters are linearly dependent

becausezi”g)q(x = x;|Pa(X) = pa) = 1. In order to introduce properly the parameter space for
D(G)* and the Lebesgue measure on it, we make the conventio®hapa is linearly depen-
dent on the remaining parametedig o with 1 <i < n(X). Therefore, the number of linearly
independent parameters foris n = 3y y(N(X) — 1)(Myepax)N(Y)). Let Ay denote the sim-
plex {(s1,...,59) €RY:5 >0(1<i<d),y% ;s <1}. The Lebesgue measure ff wrt R

is 1/d! (Stein, 1966). Let\] denote the sef(s;,...,ss) € R :s >0(1<i<d),y%,;s < 1}.

The Lebesgue measure & wrt RY is also d!, because the difference betwepandA] has
Lebesgue measure zero. Then, the parameter spacB(f8)" is X xcu Xpaeva“Pa(x))A;_(X)_l,

whose Lebesgue measure Wtis [xcuy [Tpacvaipax)) 1/ (N(X) — L)L

Theorem 1 Let G be a DAGD(G)* has non-zero Lebesgue measure®fttwhere n is the number
of linearly independent parameters in the parametrization of the probaliktyibutions inD(G)*
described above. The probability distributionsd{G)* that are not faithful to G or have context-
specific dependencies have zero Lebesgue measuRe'wrt

Proof First, we prove that there is a one-to-one correspondence betweetethents of the pa-
rameter space foD(G)* and the probability distributions iD(G)". This will allow us later to
compute the Lebesgue measure ®Rftof a subset ofD(G)* as the Lebesgue measure &t of
the corresponding subset of the parameter spac®{@)*. Obviously, different probability dis-
tributions inD(G)™* must correspond to different elements of the parameter spade(fgy". On
the other hand, different elements of the parameter spac® (@)™ correspond to different prob-
ability distributions inD(G)*, because the values of the paramefga defining a probability
distribution p coincide with the values of the conditional probabilitigsX = x;|Pa(X) = pa) that
are computed fronp (Pearl, 1988).

To prove the first statement in the theorem it suffices to note that, as discught before the
theorem, the parameter space 9(G) " has non-zero Lebesgue measurett This implies that
D(G)" also has non-zero Lebesgue measureRirbecause, as proven above, there is a one-to-
one correspondence between the elements of the parameter spd2e&ior and the probability
distributions inD(G)*.

To prove the second statement in the theorem, we first prove that thebpitytdistributions
in D(G)* that have context-specific dependencies have zero Lebesgue eneasiP. The proof
basically proceeds in the same way as that of Theorem 7 in Meek (19@55tan by showing that
for a probability distribution inD(G)* to have context-specific dependencies, some polynomials in
the parameters in the parametrization of the probability distributior8(i8) " must be satisfied.
Specifically, these polynomials are real polynomials in real variables thaitempret as real func-
tions on a real Euclidean space that includes the parameter spat¢@r. LetW C U and let
X, Y andZ denote three disjoint subsetsdfi W. SinceG is a directed independence map of any
probability distributionp € D(G)™ (Neapolitan, 2003), for a constraint such¥al Y |Z to be true in
p(U\ W|W = w) but false inp(U\ W|W = w’), two conditions must be met. FirsggX,Y|ZW)
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must not hold inG and, second, the following equations must be satisfied:
p(x =XY=y,Z=2W= W)p<z =z,W = W)_

pX=x,Z=z,W=w)p(Y =y,Z=2zW=w)=0 Q)

for all X, y andz. Each equation is a polynomial in the parameters in the parametrization of the
probability distributions inD(G)*, because each terg(V = v) in the equations is a polynomial

in the parametersp(V =v) = 3, p(V =v,U\V = V') where each ternp(V =v,U\V =V) is

a polynomial in the parameters, sinpe= [Txcy d(X|Pa(X)). Let each variable in the polynomials
take values irR. Then, each polynomial in Equation (1) is non-trivial, that is, not all tHaesof

the variables are solutions to the polynomial. To prove this, it suffices teeptat there exists a
probability distributionp’ € D(G)* for which the polynomial does not hold. Consider the polyno-
mial for x, y andz. Note that there exists a probability distributiph< D(G)* that is faithful toG
(Meek, 1995) and, thu¥X /LY |ZW is in p” becausseX,Y|ZW) does not hold irG. Then, there

is some instantiatior”y”z’w” of XYZW such that

p//(x — X//,Y — y//,Z — Z//,W — WI/) p//(z — ZU,W — W”)_

p/l(x — XH,Z — ZH,W — W//)p/l(Y — y/l’z — ZH,W — W//) 7£ 0

Then, by permuting the states of the random variable§, ivi, Z andW, we can transfornp” into
the desiredp’. LetV = XYZW , v = xyzw, andv’ = x"y"Z’w”. One can introduce a permutation
Ttk on the set of possible statesXffor eachX € U: For X € V, it is the transposition of the states
of X in v andv”, and the identical mapping fof € U\ V. These random variable permutations
together define a permutationof the joint sample space @f. Then,p” can be transformed by
mito p' = p” ot Note thatp’ € D(G)* becausgy” € D(G) ™, and that the parameter valuespf
are obtained from the parameter valuep6by local permutations. Finally, note the(V =v) =
p’(V =Vv") and, thus, the polynomial in Equation (1) fary andz does not hold fop'.

Let sol(x,y,z,w) denote the set of solutions to the polynomial in Equation (1)xfor andz.
Then,sol(x,y, z,w) has zero Lebesgue measure Rftbecause it consists of the solutions to a non-
trivial polynomial in real variables (Okamoto, 1973). Lsdl = Uy v z w UwNxy.zSOI(X,Y,Z,W)
and recall from above that the outer-most union only involves those ¢asehichseg X, Y |ZW )
does not hold inG. Then,sol has zero Lebesgue measure ®f, because the finite union and
intersection of sets of zero Lebesgue measure has zero Lebesgueearneas Consequently, the
probability distributions inD(G)* that have context-specific dependencies correspond to a set of
elements of the parameter space #fG)* that has zero Lebesgue measure ®#tbecause it
is contained insol. Since, as proven above, this correspondence is one-to-one, dhabgity
distributions inD(G)™ that have context-specific dependencies also have zero Lebesgserenea
wrt R".

To finish the proof of the second statement, it suffices to note that (i) thepildy distributions
in D(G)* that are not faithful ta@G have zero Lebesgue measure ®ft because they are a subset
of the probability distributions that factorize according3dut are not faithful tas, and these have
zero Lebesgue measure et (Meek, 1995), (ii) the probability distributions #»(G)* that have
context-specific dependencies have zero Lebesgue measure' ast proven above, and (iii) the
union of the probability distributions in (i) and (ii) has zero Lebesgue meastrR", because the
finite union of sets of zero Lebesgue measure has zero Lebesguereneasu |
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Figure 1: Chain graphs in Example 1.

c:’: R

The theorem below proves that the marginals and conditionals of a strictifvpadiscrete
probability distribution that is a WT graphoid and has no context-specifiertigncies are WT
graphoids too.

Theorem 2 Let p be a strictly positive discrete probability distribution that is a WT graphoid.
Then, gU\ W) for anyW C U is a WT graphoid. If p has no context-specific dependencies, then
p(U\W|W = w) for anyw andW C U is a WT graphoid.

Proof LetX, Y andZ denote three mutually disjoint subsetdbfW. Then X 1LY |Z isin p(U\W)
iff X1LY|Z isin pand, thusp(U\ W) satisfies the WT graphoid properties becapsatisfies them.
Now, note thatp(U \ W|W = w) is uniquely defined becauseis strictly positive. Furthermore, if
p has no context-specific dependencies, tehY |Z is in p(U\ W|W = w) iff XLLY|ZW isin p.
Then,p(U\ W|W = w) satisfies the WT graphoid properties becapsatisfies them. |

In a nutshell, Theorem 1 proves that for any D&Gin the measure-theoretic sense explained
above, almost all the probability distributions2’(G)* are faithful toG and, thus, are WT graphoids
(Pearl, 1988). On the other hand, the combination of Theorems 1 and&sgtat, in the measure-
theoretic sense explained above, all the marginals and conditionals of aihts probability
distributions inD(G)* are WT graphoids. Finally, we give an example that shows that not all the
probability distributions that are WT graphoids are either regular Gaussitaithful to some UG
or DAG.

Example 1 Let p be a strictly positive discrete probability distribution that is faithful to the DAG
in the left-hand side of Figure 1 and that has no context-specific depeiederSuch a probabil-

ity distribution exists due to Theorem 1 and, moreover, it is a WT graph@dr(PL988). Then,
p(X,Y,Z,V,A,B,C|W = w) for any w, which is uniquely defined because p is strictly positive, is a
WT graphoid by Theorem 2. However, this conditional probability distrilbuttoneither regular
Gaussian nor faithful to any UG or DAG, because it is discrete and faithful tahiaén graph in

the right-hand side of Figure 1 (Chickering and Meek, 200Zj&et al., 2006).

4. Reading Independencies

By definition, sepis sound for reading independencies from the MUI n@&apf a WT graphoid
M, that is, it only identifies independencieshh In the regular Gaussian casgpin G is also
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complete in the sense that it identifies all the independenciék tinat are shared by all the WT
graphoids for whichG is the MUI map, because (i) it is proven in &nicka and Maiis (2007) that
there exist regular Gaussian probability distributions that are faithf@l &nd (ii) such probability
distributions are WT graphoids (Studer2005),G is their MUI map, and they only have the inde-
pendencies thagepidentifies fromG. In this section, we extend this result to the case where
discrete. Specifically, we prove that there exist strictly positive discretegbility distributions that
are faithful toG for any sample spaces (with at least two possible states) of the randizbleaiin
U. Again, such probability distributions are WT graphoids (Pearl, 19883, their MUI map, and
they only have the independencies thapidentifies fromG. Therefore, whet is discretese pin

G is also complete in the sense that it identifies all the independenchgtiat are shared by all
the WT graphoids for whicl@ is the MUI map. These completeness results, in addition to being
important in themselves, are crucial for reading as many dependengiessible fromG, as we
will see in the next section.

Theorem 3 Let G be an UG. Let us assume that the sample space of each randailerén U
is prescribed and has at least two possible states. Then, there exististly §iositive discrete
probability distribution with the prescribed sample spaces for the random biasain U that is
faithful to G.

Proof Create an extended DAB of G as follows. For each edge—Y in G, create an auxiliary
discrete random variabMky. Let W denote all the auxiliary random variables created. Hdie
a DAG overUW with no edges. For each edfe—Y in G addX — Wy < Y to H. No more
edges are added té. It is easy to see that for any three mutually disjoint subXet andZ of U,
sefgX,Y|ZW) in H iff segX,Y|Z)in G.

Let p(U,W) denote any strictly positive discrete probability distributior?iH)* that is faith-
fulto H and has no context-specific dependencies. Such a probability distrileutiis by Theorem
1. Now, fix anyw and note thap(U|W = w) is uniquely defined becausgU, W) is strictly posi-
tive. LetX, Y andZ denote three mutually disjoint subsetsbf Then, X LLY|Z is in p(U|W = w)
iff XLLY|ZW isin p(U,W) iff segX,Y|ZW) in H iff segX,Y|Z) in G. Then,p(UW =w) is
faithful to G. Obviously,p(U|W = w) is strictly positive and discrete. [ |

Note that the theorem above proves that there exists a strictly positivetgigeobability dis-
tribution that is faithful toG for any sample spaces (with at least two possible states) of the random
variables inU. This result is therefore stronger than Theorem 11 in Geiger and @8883), which
proves that there exists a strictly positive discrete probability distribution tHattigul to G for
some sample spaces (with at least two possible states) of the random aridble

The theorem above proves that, wHens discrete sepin the MUI mapG of a WT graphoid
M is complete for any sample spaces of the random variablels where complete means that it
is able to identify all the independencieshhthat are shared by all the WT graphoids for whigh
is the MUI map. Howeversepin G is hot complete if this is understood as being able to identify
all the independencies M. Actually, no sound criterion for reading independencies fi@rs
complete in the latter sense. An example follows.

Example 2 Let p be a discrete probability distribution that is faithful to the D& — Z,Y — Z}.
Such a probability distribution exists (Meek, 1995). Let G denote the Ml ofigp, namely the
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complete UG. Note that p is not faithful to G. However, by Theorem 3, tkests @ discrete prob-
ability distribution g that is faithful to G. As proven in Pearl (1988), p antigre WT graphoids.
Let us assume that we are dealing with p. Then, no sound criterion caoiuzte XLLY |0 by just
studying G because this independence does not holf ang it is impossible to know whether we
are dealing with p or pon the sole basis of G.

5. Reading Dependencies

In this section, we propose a sound and complete criterion for readirmpdepcies from the MUI
mapG of a WT graphoid. Here, complete means that it is able to read all the dapsesi¢hat can
be derived by applying the WT graphoid properties to the dependersgesinithe construction of
G and the independencies obtained frGy sep

We define the dependence base of an independence odidnotedbagM), as the set of
dependencieX /LY |U\ (XY) with X,Y € U. Recall from Section 2 thaX andY are adjacent in
the MUI map ofM iff XAY|U\ (XY). If M is a WT graphoid, then additional dependencies in
M can be derived frohagM) via the WT graphoid properties. For this purpose, we rephrase the
WT graphoid properties as follows. LEt Y, Z andW denote four mutually disjoint subsets 0f
SymmetryY /1X|Z = X /LY |Z. DecompositiorX /LY |Z = X /LYW |Z. Weak unionX /LY |ZW =
XAYW|Z. ContractionX /LYW |Z = X /Y |ZW Vv X/LW|Z is problematic for deriving new de-
pendencies because it contains a disjunction in the right-hand side asdit thwould be split into
two properties: Contractiond /LYW |Z AXLLY |ZW = X JLW|Z, and contractionX /LYW |Z A X
HUWI|Z = XAY|ZW. Likewise, intersectiolXX LYW |Z = XY |[ZW VvV X/LAW|ZY gives rise to
intersectionIX LYW |Z A X 1LY |ZW = X AW |ZY, and intersectionX /LYW |[Z AXLUW|ZY =
X/AY|ZW. Note that intersectionl and intersection2 are equivalent and, thusferto them
simply as intersection. Finally, weak transitivi§/lV|Z AV LY |Z = XAY|Z v X LY|ZV with
V e U\ (XYZ) gives rise to weak transitivityX 1V |Z AV LY |Z AXLLY |Z = XY |ZV, and weak
transitivity2 X LV |Z AV LY |Z AX LLY|ZV = X [LY|Z. The independence in the left-hand side of
any of the properties above holds if the correspondiagstatement holds in the MUI map of
M. This is the best solution we can hope for because, as discussed imSkstpin G is sound
and complete in the sense that it identifies all and only the independendiethiat are shared by
all the WT graphoids for whicl® is the MUI map. Moreover, this solution does not require more
information aboutM than what it is available, becau§&ecan be constructed frotnagM). We
denote bysedG) all the sepstatements holding in the MUI map. We define the WT graphoid

closure ofbagM) wrt sedG), denotedNthaesf(G)), as the set of dependencieshag M) plus those
that can be derived from it aree {G) by applying the WT graphoid properties. We now introduce

our criterion for reading dependencies from the MUI map of a WT grapho

Definition 4 LetX, Y andZ denote three mutually disjoint subsetslbf Let cor{X,Y|Z) denote
that X is connected to¥ givenZ in an UG G. Specifically, cdiX,Y|Z) holds when there exist
some X € X and X%, € Y such that there exisexactly one path in G between and X, that is not
blocked by(X \ X1)(Y \ Xn)Z.

As an illustrative example afon, consider the UG in Figure 2. Songen statements holding
in that graph areon(A, B|CD), con(AC,BD|0), con(A,BCD|0) andcon(A,BD|0) because in each
of these statement there exists a single path beteamdB or D that is not blocked by the rest of
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Figure 2: UG to illustrate the definition @br con(A,B|CD), con(AC,BD|0), con(A,BCD|0) and
con(A,BD|0) hold in the graph, wherea®n(A, B|0) andcon(A, B|D) do not hold.

the nodes in the statement. On the other hand, smnatatements that do not hold in the graph
under consideration am®n(A, B|0) andcon(A, B|D), because in both cases there exist several paths
betweerA andB that are not blocked by the rest of the nodes in the statement. Note thatdke pla
the nodes take in the statement matters: For instaaréA, BD|0) holds butcon(A, B|D) does not.

We now prove thaton is sound for reading dependencies from the MUI n@apf a WT

graphoidM, that is, it only identifies dependenciesih Actually, it only identifies dependen-
cies inW'I::S‘(i,\%). Hereinafter, we abbreviate a path ..., X, in an UG asXq .

Theorem 5 Let M be a WT graphoid and G its MUl map. Then, con in G only identifiesrakgpe

cies in W aesf‘,\%).

Proof We first prove that ifX;, is the only path inG betweenX; and X, that is not blocked by
Y C U\ X1, thenXy /1X,|Y is inW'I;JSaeS(“,\%). In other words, we prove tha /1 X,|Y can be derived
from bagM) andseG) using the WT graphoid properties. We prove it by induction avewe
first prove it forn = 2. LetW denote all the nodes id \ X;.2\ Y that are not separated fro
givenXoY in G. SinceX; andX; are adjacent i3, X3 /L X|U \ X1-2 and, thus Xy W /L X (U \ X312\
Y \W)|Y due to weak union and symmetry. This together ve#ig{ XagW,U \ X12\ Y \ W|X2Y),
which follows from the definition ofV, implies X;W /LX,|Y due to contractionl. Note thatlif\
X122\ Y \W = 0, thenX;W /L Xz(U\ X1:2\ Y \ W)|Y directly impliesX;W /L X;|Y. In any case, this
dependence together wile W, X2|X1Y ), because otherwise there exist several unblocked paths
in G betweenX; andX; which contradicts the definition &f, impliesX; /L X;|Y due to contractionl
and symmetry. Note that W = 0, thenX;W /L X;|Y directly impliesXp /LXo|Y.

Let us assume as induction hypothesis that the statement that we are praldsfpr alln < m.
We now prove it fom = m. Since the pathX;., andX,.,, contain less thamnodes and/ blocks all
the other paths it betweerX; andX; and betweeX, andX.,, because otherwise there exist several
unblocked paths i betweenX; and Xy, which contradicts the definition of, thenX; /L X;|Y and
Xo 1 Xm|Y due to the induction hypothesis. This together g Xz, Xm|Y X2), which follows from
the definition ofX;.,, andY, implies Xy /1 Xqy|Y due to weak transitivity2.

Let X, Y andZ denote three mutually disjoint subsetslf If con(X,Y|Z) holds inG, then

there exist som&; € X andX, € Y such thaty /1X,| (X \ X1)(Y \ Xn)Z is in Wﬁ:q“,\%) due to the
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paragraph above and, thu§/LY |Z is also inW'I'tf:S’(i,\%) due to weak union and symmetry. |

We now prove thatonis complete for reading dependencies from the MUI @apf a WT
graphoidM, in the sense that it identifies all the dependencids that follow from the information
aboutM that is available, namely the dependenciebag M), the independencies BedG), and
the fact thai is a WT graphoid.

Theorem 6 Let M be a WT graphoid and G its MUI map. Then, con in G identifies all themep
dencies in W as(“,\%).

Proof It suffices to prove (i) that all the dependenciedag M) are identified byconin G, and
(ii) that con satisfies the WT graphoid properties. Since the first point is trivial, we prdye the
second point. LeX, Y, Z andW denote four mutually disjoint subsets 0f

e Symmetrycon(Y,X|Z) = con(X,Y|Z). Trivial.

e Decompositiorcon(X,Y|Z) = con(X, YW |Z). Trivial if W contains no node in the paki .,
incon(X,Y|Z). If W contains some node Ky, then letX,, denote the closest nodeXg that
is in Xp.;n andW. Then, the pattX;.m ensurexon(X, YW |Z) becauséX \ X1)(YW \ Xm)Z
blocks all the other paths iG betweenX; and Xq,, since(X \ X1)(Y \ Xn)Z blocks all the
paths inG betweenX; and X, exceptX;.m because otherwise there exist several unblocked
paths inG betweenX; andX,, which contradictgon(X,Y|Z).

e Weak unioncon(X,Y |[ZW) = con(X,YW|Z). Trivial becauséVN contains no node in the
pathX;.n in con(X,Y|ZW).

e ContractionlconX,YW|Z) AsefdX,Y|ZW) = con(X,W|Z). SinceZW blocks all the
paths inG betweenX andY, then the patiX;., in con(X,YW|Z) must be betweeX and
W. To prove tha¥;., ensurexon(X,W|Z), we have to prove that this is the only pathGn
betweerX; andX, that is not blocked byX \ X;)(W\ X,)Z. Assume to the contrary that there
is a second such path @ This second path cannot contain any nod¥ fior seg X, Y |ZW)
to hold. Then, this second path is not blocked(By\ X1)Y (W \ X,)Z either. However, this
contradicton(X, YW |Z), because we have found two path&ibetweenX; andX, that are
not blocked by(X \ X1)Y (W \ X,)Z.

e ContractionZon(X,YW|Z) AsegX,W|Z) = con(X,Y|ZW). SinceZ blocks all the paths
in G betweenX andW, the pathX;., in con(X,YW|Z) must be betweeX andY and, thus,
it ensurexon(X, Y |ZW).

e IntersectionconX,YW|Z) AsefdX,Y|ZW) = con(X,W|ZY). SinceZW blocks all the
paths inG betweenX andY, the pathX;., in con(X,YW|Z) must be betweeiX and W
and, thus, it ensuren(X,W|ZY).

e Weak transitivity2con(X, Xm|Z) A conXm, Y |Z) Asefd X, Y |ZXm) = con(X, Y |Z) with Xm €
U\ (XYZ). Let X;:m and Xy, denote the paths ioon(X,Xm|Z) andconXm,Y|Z), respec-
tively. Forcon(X, Xm|Z) to hold,X;.,m cannot contain any node {iX \ X1)Z. ForconXm,Y|Z)
to hold, Xmxn cannot contain any node {fY \ Xn)Z. ForsefdX,Y|ZXy) to hold, neitheiX;.m
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Figure 3: UG in Example 4.

can contain a node iM, nor X,y can contain a node iK. Consequently, neithef;., nor
Xmen is blocked by(X \ Xp) (Y \ Xn)Z.

Furthermore X;.m and Xy only intersect onX,. To see this, assume the contrary. Xet
(X # Xm) denote the closest node Xa that is in X, and Xy Then, it follows from the
paragraph above that neithéy; andX., contain a node iZ X,. However, this contradicts
sefX,Y|ZXny). ConsequentlyX;.m followed by Xmn, is a path inG betweenX; andX, that,

as shown above, is not blocked By \ X1)(Y \ X,)Z. It remains to prove that this path is
unique. Assume to the contrary that there exists a second such gatfrorseg X, Y|ZXm)

to hold, this second path must pass throXghHowever, this implies that either there exists a
second path i betweenX; andXy, that is not blocked byX \ X1)Z, or there exists a second
path inG betweenX, andX, that is not blocked byY \ X,)Z. This contradictgon(X, Xm|Z)

or conXm, Y|Z).

e Weak transitivitylcon(X, Xm|Z) AconXm, Y |Z) AsefdX,Y|Z) = con(X,Y|ZXy) with Xy €
U\ (XYZ). Trivial because the antecedent involves a contradiction: It folloars tthe proof
of weak transitivity2 thaton(X, Xm|Z) andcon(Xm, Y |Z) imply the existence of a path
between som#; € X andX, € Y that is not blocked byX \ X1)(Y \ Xn)Z, which contradicts
sepX,Y|Z).

We devote the rest of this section to some remarks on the two theorems alodedhétconin
Gis not complete if this is understood as being able to identify all the dependendie Actually,
no sound criterion for reading dependencies fr@nalone is complete in this sense. Example 2
illustrates this point. Let us now assume that we are dealing withstead of withp. Then, no
sound criterion can conclud&/LY |0 by just studyingG because this dependence does not hold in
p, and it is impossible to know whether we are dealing withr p’ on the sole basis d.

It seems natural to expect that assuming further independence fpespetl result in more de-
pendencies being readable from the MUI map of an independence nmatjehas, in the necessity
of developing a new graphical criterion that identifies them. However, thsti@lways the case
as the following example shows. First, let us define a weak transitivity amgpasition (WTC)
graphoid as a WT graphoid that satisfies composition.
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Example 3 The graphical criterion con is still sound and complete for reading depeoigs from
the MUI map G of a WTC graphoid M. Here, complete means that it is ableai aél the de-
pendencies in M that can be derived from @d$ and sepG) by applying the WTC graphoid
properties. The reason is that every dependence that follows fromasitiop also follows from
contraction1. In other words, when rephrased to derive dependgnc@mposition looks like
XAYWI|Z AXLLY|Z = XAW|Z. As before, the independence in the left-hand side holds if the
corresponding sep statement holds in G. However, if¥e¥|Z) then sepX,Y|ZW). Thus, when
composition applies so does contractionl, and both imply the same cemteguy probability dis-
tribution that is regular Gaussian or faithful to some UG or DAG is a WTC graghliBearl, 1988;
Studefy, 2005). Moreover, similarly to Theorem 2, the marginals and condition& a strictly
positive discrete probability distribution that is a WTC graphoid and has neextspecific depen-
dencies are WTC graphoids (Chickering and Meek, 2008aks al., 2006).

A sensible question to ask is whether the definition of complete in Theorem @dedwith the
definition of complete as able to identify all the dependencies shared by aWThgraphoids for
which G is the MUI map. Currently, we do not have an answer to this question, th@aghcline
to think that the definition in the theorem above is weaker than the alternagvd~on instance, if
we limit ourselves to WTC graphoids, theonin G may not identify every dependency shared by
all the WTC graphoids for whicls is the MUI map, as the following example illustrates.

Example 4 Consider any regular Gaussian probability distribution whose MUI map islifEein
Figure 3. Such probability distributions exist @&nicka and Mais, 2007). Recall that any regular
Gaussian probability distribution is a WTC graphoid. Theg/X|0 or X /1Z|0 because otherwise
X 1LY Z|0 by composition, which is a contradiction as ¢2nY Z|0) holds in G and thus XY Z|0
by Theorem 5.

Assume XLY|0. Furthermore, cofi,V|0) holds in G and thus Y1V |0 by Theorem 5. Fur-
thermore, sefX,V|Y) holds in G and thus X'V|Y. Consequently, XV |0 by weak transitivity2.
Likewise, X1W|0 when assuming XZ|0. Then, XV |0 or X/AW|0 and, thus, X1VW|0 by de-
composition. However, coX,VW|0) does not hold in G.

At the beginning of this section, we have defirsi M) as the set of dependenciEglY|U \
(XY) with X,Y € U. However, Theorems 5 and 6 remain valid if we redefiag M) as the set
of dependencieX/LY|MB(X) \ Y with X € U andY € MB(X). A proof follows. Moreover, recall
from Section 2 thaX andY are adjacent in the MUI map o iff Y € MB(X).

Proof It suffices to prove that, whelbagM) consists of the dependencies in the first definition,

W'I[)Saes(“,\%) includes the dependencies in the second definition, and vice versg/Yfu \ (XY),
thenX ALY (U\ (XY)\ (MB(X)\Y))[MB(X)\Y due to weak union. This together wisle g X, U \
(XY)\ (MB(X)\Y)|Y(MB(X)\Y)) implies X/LY|MB(X) \ Y due to contractionl. On the other
hand, if X/LY|MB(X) \ 'Y, thenX /LY (U \ (XY)\ (MB(X)\Y))[MB(X) \Y due to decomposition.
This together wittse X, U\ (XY)\ (MB(X)\Y)[Y(MB(X)\Y)) implies X /LY |U \ (XY) due to
intersection. [

It is proven in Becker et al. (2000) thatM is a WT graphoid whose MUI map is a forest
thenM is faithful to G. The soundness @bnallows us to give an alternative proof of this result.
Proof Assume to the contrary th#t is not faithful toG. SinceG is the MUI map of\M, the previ-
ous assumption is equivalent to assume that there exists three mutually digpsetssot), sayX,
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FirstPath(X,Y,Z,L)

CreatePointerfl.)
for each nod&V in L do
if W e Z then
Cw]=0
else
Cw]=1
P=0
Push(X,P)
9 CIX]=0
10 whileP# 0andTop(P) #Y do
11 W =NextAd|TopP),L)
12 if W= 0then
13 Pop(P)
14 else
15 if C\W| =1 then
16 PushWw,P)
17 CW] =0
18 returnP

O~NO O, WN P

Table 1:FirstPath(X,Y,Z,L).

Y andZ, such thatX LLY|Z is in M butsefX,Y|Z) does not hold irG. However, ifsegX,Y|Z)
does not hold irG, then there must exist a path@between som&; € X andX, € Y that is not
blocked by (X \ X1)(Y \ Xn)Z. Furthermore, sinc& is a forest, that must be the only pathGn
betweenX; andX, that is not blocked byX \ X;)(Y \ Xn)Z. Consequentlycon(X,Y|Z) holds inG
and, thusX/LY|Z is in M due to Theorem 5. This is a contradiction and, ttss faithful to G. B

Finally, we note that the following graphical criterion, denobed here, for reading dependen-
cies from the MUI mapG of a graphoidM is introduced in Bouckaert (1995): L&t, Y andZ
denote three mutually disjoint subsetsthfthenbou(X, Y |Z) holds when there exist somg € X
andX, € Y such thatX; € MB(X,) and eitheMB(X1) \ Xn € (X \ X1)(Y \ Xn)Z or MB(X,) \ X1 C
(X\ X1)(Y \ Xn)Z. The criterion is proven to be sound and complete, where complete meaits that
is able to identify all the dependencieshhthat can be derived frofnagM) andsegG) by apply-
ing the graphoid properties. It is clear tlanidentifies a superset of the dependencies identified
by bouwhenM satisfies weak transitivity. In such a case, theam represents an advantage over
bou As discussed in Section 3, there are important families of probability distriizitivat are
graphoids and satisfy weak transitivity.
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6. An Algorithm for Reading (In)Dependencies

In this section, we present an algorithm that jointly implemesgtpandcon We first describe in
Table 1 the algorithnfrirstPath(X,Y,Z, L) which returns a path in an UG betweenX andY that

is not blocked byZ, if such a path exists. We assume tRais represented as a set of adjacency
listsL, that is, each node i@ has an associated ordered list containing the nodes that are adjacent
to it in G. In the algorithm, the functio@reatePointerfl) creates a pointer for each adjacency
listin L. Each pointer points to the first element of the corresponding list. If the leshisty, the
pointer is NULL. The functiorNextAd [W,L) returns the element that is pointed by the pointer
created byCreatePointerfL) for the adjacency list associated to the n¥dand, then, moves the
pointer to the next element in the list. If there is no next element, the pointer vakes NULL.
NextAd jW,L) returns0 if the pointer is NULL. In the algorithmP is a stack storing the path
currently being explored. The functidgfrop(P) returns the element on the top Bf The function
Pop(P) removes the element on the topRfrom P. The functionPusiW, P) adds the nod&/ to

the top ofP. Finally, C is an array containing a binary entry for each nod&imdicating whether

the node should (1) or should not (0) be considered to exgernithe algorithm set€[W] to 0 iff

W is in Z or W was considered before and the algorithm already found a pathXréomWV that is

not blocked byZ (see lines 4 and 17). A node considered before should not be coetsidgain
because either it is still i or if it is not in P then it does not lead t¥. To see the latter point,
note that the algorithm works in a depth-first fashion: It extdh@sth a nodeéW that is adjacent to
the top element oP if W is not in the blocking seZ and has not been considered before (see lines
11, 15 and 16). WhePR cannot be extended further, the algorithm backtracks by removing the top
element ofP from P and exploring an alternative extension (see lines 12 and 13). The atgorith
ends wherP is empty, meaning that all the paths@starting withX were explored and none of
them reached without visiting Z, or when the top element & is Y, meaning that a path iG
betweernX andY that is not blocked by was found and stored iA.

FirstPath(X,Y,Z,L) is considered to run in at moS{ e+ n) time wheree andn are the number
of edges and nodes B, respectively. To see it, note that thanks to the usg edich node is pushed
into P at most once. For each noWepushed intdP, the algorithm performs as many iterations of
lines 10-17 as adjacent nodéshas plus one last iteration whvi = 0. These iterations need not
be consecutive. So, the number of iterations of lines 10-17 that the alggrihforms is bounded
from above by 2+ n. Additionally, the algorithm performs iterations of lines 2-6 to initializ€.

As described in the paragraph abo@eeatePointerf.) is considered to run i@®(n) time whereas
any other operation or function in the algorithm is considered to ru@d(i time. Consequently,
FirstPath(X,Y,Z,L) is considered to require at md3te-+ n) time.

Recall from above that we assume tii&ats represented as a set of adjacency lisend that
each of these lists is ordered. Let us now reverse the order of the eteimeach of these lists and
letL’ denote the resulting set of adjacency lists. Our premise is that produdirgn L takesO(e)
time. Obviously,L’ is also an adjacency list representation®f However,FirstPath(X,Y,Z,L)
andFirstPath(X,Y,Z,L’) return the same path iff that is the only pathGrbetweenX andY that
is not blocked byZ. We formally prove this assertion below, but first we give an example. Let
G, L andL’ be as shown in Table 2. ThefjrstPath(A,B,0,L) returns the pattA B whereas
FirstPath(A,B,0,L’) returns the pati D, E,B.

Proof First, we introduce a total order for the paths betwEeandY in G that are not blocked by
Z. For this purpose, we associate to each such path a sequence oflengthf natural numbers
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° e Adjacency listd Adjacency listd’

Node | Adjacency list Node | Adjacency list
A|BCD A|DC,B
° ° B|ACE B|ECA
' C|AB C|BA
D|AE D|EA
° E|BD E|D,B

Table 2: Example wher€irstPath(A B, 0,L) andFirstPath(A, B, 0,L") return different paths.

between 0 aneh — 1, wheren is the number of nodes iG. For a pathX = X;,..., X =Y, the
sequence ifoy,...,0¢-1,0,...,0], whereo; is the position o, 1 in the adjacency list associated to
Xi. We order the sequences lexicographically, which results in the desitted o

We now prove that if there exists a path betweeandY in G that is not blocked by, then
FirstPath(X,Y,Z, L) returns the first such a path in the order described aboveX keXy, ..., Xk =
Y denote the first such a path. It suffices to prove that at some Pa@ontains (from the bottom to
the top) the nodeX;, ..., X forany 1< j < k. We prove the result by induction over

The result is immediate for = 1. Assume as induction hypothesis that the result holds for all
i < j. We now prove the result fgr. By the induction hypothesis, at some pdin contains (from
the bottom to the top) the nodes, ... X;_;. Pushing intoP a node that is adjacent &_; and
appears befor¥; in the adjacency list associatedXp_; cannot lead to a path betwepn andX,
because that would contradict the assumption ¥hat X, ..., Xk =Y is the first path betweeK
andY in G that is not blocked by. Therefore, the algorithm will eventually pop fromevery
element pushed after tinteand, thenX; will be pushed intdP.

Finally, note that if we reverse the order of the nodes in each adjacemdn lis then we
also reverse the order of the paths described above. Consequeatly,...,Xk =Y is the last
path in the order considered IByrstPath(X,Y,Z,L’). Thus,FirstPath(X,Y,Z,L’) does not return
X =Xy,...,X =Y unless that is the only path betwe¥randY in G that is not blocked by. W

The algorithm that jointly implementsepandconis as follows. IfFirstPath(X,Y, (X \ X)(Y \
X)Z,L) andFirstPath(X,Y, (X \ X)(Y \ X)Z,L’) return the same path for sotec X andY €,
thencon(X,Y|Z). On the other hand, iFirstPath(X,Y, (X \ X)(Y \ X)Z) returns no path for all
X e X andY €Y, thenseX,Y|Z). Finally, if neither of the two previous conditions is met, then
neithercon(X,Y|Z) norsefX,Y|Z). The algorithm is considered to require at mo$h?(e+n))
time.

7. An Application to Bioinformatics

Our end-goal is to apply the results in this paper to our project on atherosis gene expression
data analysis in order to learn dependencies between genes. We bedieitagmot unrealistic
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to assume that the probability distribution underlying our data satisfies stsiivity and weak
transitivity and, thus, that it is a WT graphoid. We base this belief on the folgpargument. The
cell is the functional unit of all the organisms and includes all the informatémessary to regulate
its function. This information is encoded in the DNA of the cell, which is divideéd aset of genes,
each coding for one or more proteins. Proteins are required for palgtadl the functions in the
cell. The amount of protein produced depends on the expression fael coding gene which, in
turn, depends on the amount of proteins produced by other genaefdieea dynamic BN seems to
be a relatively accurate model of the cell: The nodes represent the ged@roteins, and the edges
and parameters represent the causal relations between the gerssiexplevels and the protein
amounts. As a matter of fact, dynamic BNs have become very popular modgémefnetworks
for the last few years (Bernard and Hartemink, 2005; Friedman et &8; ¥eusmeier, 2003; Kim
et al., 2003; Murphy and Mian, 1999; Ong et al., 2002; Perrin et al.32B0u and Conzen, 2005).
It is important that the BN is dynamic because a gene can regulate some gjlitstoes and even
itself with some time delay. Since the technology for measuring the state of thenprotkes is not
widely available yet, the data in most projects on gene expression dataianmnglgdinite sample
of the probability distribution represented by the dynamic BN after marginalth@grotein nodes
out. The probability distribution with no node marginalized out is, in the meah@@retic sense
discussed in Section 3, almost surely faithful to the dynamic BN (Meek,)1&84 thus, it satisfies
weak transitivity (Pearl, 1988) and, thus, so does the probability distribatier marginalizing
the protein nodes out (see Theorem 2). The assumption that the probdisilifjpution sampled
is strictly positive is justified because measuring the state of the gene nodbsefa series of
complex wet-lab and computer-assisted steps that introduces noise in theensasts (Sebastiani
et al., 2003). Obviously, the reasoning above can be extended to iranydether molecules that,
in addition to proteins, regulate gene expression but are not measured.

In the rest of this section we focus on Gaussian graphical models (GGMENne networks,
which have received increasing attention from the bioinformatics communigyrasans to gain
insight into gene networks (Castelo and Roverato, 2006; Dobra et 84; Rshino and Waddell,
2000; Li and Gui, 2006; Séifer and Strimmer, 2005a,b; Toh and Horimoto, 2002; Waddell and
Kishino, 2000; Wang et al., 2003; Wu et al., 2003). Assume that eadonavariable inU rep-
resents (the expression level of) a gene in the network under stugunsalso that) follows a
regular Gaussian probability distributioi{(j, Z). This is a ubiquitous assumption in bioinformat-
ics. The GGM of the gene network is nothing else but the MUI maf(¢f, Z) (Lauritzen, 1996;
Whittaker, 1990). Therefore, two gen¥sandY are adjacent in the GGM K /LY |U \ (XY) or,
equivalently, iff(Z~1)xy # 0 (Lauritzen, 1996). In practicg, is unknown and the only information
about it that is available is a finite sample freRi(p, Z). The usual way of proceeding in practice
consists of two steps: First, estimatiagrom the sample and, then, making two genes adjacent in
the GGM iff the corresponding entry in the inverse of the estimatg sifgnificantly differs from
zero. We refer the interested reader to the works cited above forediffeplutions to these two
steps. Recall that regular Gaussian probability distributions are WT gidghnd, thus, that the
results obtained in the previous sections of this paper apply to GGMs ofngtwerks.

The GGM of a gene network is a powerful tool for discovering genepeddencies, because
sepis sound and complete (in the sense discussed in Section 4) for readipgncgacies from
it. However, bioinformaticians are typically more interested in discovering gipendencies,
because these provide contexts in which the expression level of sorae igeinformative about
that of some other genes which, in some cases, can lead to hypothesrelelegies, functional
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FOXA1

Figure 4: Estrogen receptor pathway.
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relations, causal relations, the effects of manipulation experiments, eamk3tocon which is
sound and complete (in the sense discussed in Section 5) for readingldaep®s from the GGM
of a gene network, such a model is now a powerful tool for discoveggme dependencies too.
We illustrate this with a real world example. In Dobra et al. (2004), a GGM 42658 nodes is
learnt from 158 breast cancer samples. Unfortunately, the GGM is neé&perted in the paper
nor available from the authors. However, the authors do report in therpghe subgraph of the
GGM that is induced by some genes that are known to be related to the estemgptor (ER)
and TFF1 genes. ER is a transcription factor that plays a key role inthraaser, and TFF1 is a
target of ER. This subgraph, depicted in Figure 4, suffices for outtridltige purposes. Note that
the graph in the figure is not necessarily the GGM over the nodes in thé.gias also worth
mentioning that the nodes in the subgraph do not correspond to gentsprobe sets. A probe
set is a collection of probes designed to measure the abundance of alpafbdlA sequence.
Since this sequence is for technical reasons usually shorter than taajesfe, a gene may have
several probe sets associated with it, each measuring the abundandéferfest subsequence of
the gene. This aims at measuring gene expression more accurately. [[Biagnfp genes have
multiple probe sets (nodes) in Figure 4: ER (ESR1, HG3125-HT3301)BNWY22376, MYBa,
MYBc, MYBd, MYBe, MYBf), AR (AR, ARa), c-MAF (MAF, MAFa), TFF3 (TFF3, TFF3a,
TFF3b), XBP (XBP1, XBP1a), and IGF1R (IGF1R, IGF1Ra). Adting to Dobra et al. (2004),
it is known that ER regulates TFF1, FOXA1L regulates TFF1, GATAS3 pbssigulates TFF1, AR
regulates ER, MAF inhibits MYB, FOXF1 possibly interacts with ER, and ARulegs IGF1R.
Had these relations been unknown, we could have obtained principlesl ahait them by just
applying con to the subgraph in Figure 4. For instanceUifdenotes all the 12558 probe sets
in the GGM, thencon enables us to conclude that the following gene dependencies hold in the
underlying probability distribution: ER is conditionally dependent on TFFtestonHG3125-
HT3301, TFFIU\ {HG3125-HT3301, U22376, MYBa, XBP1la, TFF3, TFF3b, TFFIFOXAL

is conditionally dependent on TFF1 sinen(FOXAL, TFFJU\ {FOXAL, TFF3, TFF3b, TFFY),
GATAS is conditionally dependent on TFF1 sincen(GATA3, TFFU \ {GATA3, CA12, TFF3,
TFF3b, TFF3), AR is conditionally dependent on ER sincen(AR, HG3125-HT330{U \ {AR,
TFF3, CA12, MYBa, U22376, HG3125-HT33p1, MAF is conditionally dependent on MYB since
con(MAF, MYBa|U \ {MAF, FOXA1, TFF3, CA12, MYBg), FOXF1 is conditionally dependent
on ER sinceconFOXF1, HG3125-HT330U \ {FOXF1, MAFa, MAF, FOXAl, TFF3, CAl2,
MYBa, U22376, HG3125-HT330), and AR is conditionally dependent on IGF1R simos(AR,
IGF1R3U \ {AR, TFF3, CA12, MYBa, U22376, IGF1Ra Furthermoreconalso enables us to
conclude thaX /1Y |U\ {X, U22376,Y} with X,Y € {MYBa, MYBc, MYBd, MYBe, MYBf} and

X #Y, and that TFF3L TFF3a|U \ {TFF3, TFF3b, TFF3h These dependencies make sense as
they are between different probe sets of the same gene. Note thatfibaelependencies discussed
above was used in the construction of the GGM. Note also that each offibadincies discussed
above involves a conditioning set of maximum size. It is very likely that thepemidencies also
hold for smaller conditioning sets, but we cannot confirm this point witheatng) the complete
GGM the subgraph in Figure 4 is part of which, as discussed abovet &vaitable. In any case, it
is clear thatonimproves the current interpretation of GGMs of gene networks by allovaading
biologically meaningful gene dependencies.
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8. Discussion

The MUI mapG of an independence mod®l is typically used to identify independencies that
hold in M via vertex separation. However, lack of vertex separatio@ dtoes not necessarily im-
ply dependency iM. In this paper, we have studied when lack of vertex separation does imply
dependency. This should be relevant for those interested in graphichdls, as it allows to infer
from MUI maps (i.e., without numerical calculation) not only independenisigsalso dependen-
cies. Specifically, in this paper we have introduced a graphical criteatiadocon for reading
dependencies froi® whenM is a WT graphoid, that is, a graphoid that satisfies weak transitivity.
Specifically,con(X,Y|Z) holds when there exist som§ € X andX, € Y such that there exists
exactly one path il betweenX; andX, that is not blocked byX \ X1)(Y \ Xn)Z. We have proven
that the criterion is sound and complete, where complete means that it is aldel @lrthe depen-
dencies inM that can be derived by applying the WT graphoid properties to the depeies used

in the construction o6 and the independencies obtained fr@rby vertex separation. Note that our
criterion remains inconclusive if there are several unblocked pathsbatany node iiX and any
node inY, thoughX andY may be dependent giveéhin M. However, we have shown in Section 5
that neither our criterion nor any other sound criterion can identify all épeddencies iM.

Note that our criterion is antimonotone in the following sense: If some edgeadated tdG
then somecon statements may not longer hold, whereas if some edges are removed frioam
some newconstatements may hold. This antimonotone property should be taken into accooet if
is to remove "weak” edges fro® to make it sparser, because this may result in false dependencies
being identified. However, this has nothing to do with the correctness afrdaarion, something
that we have proved, but with the fact that after removing "weak” edgés an approximation
to the true MUI map. One may consider to extend our work with a measure &itlenne in the
dependencies identified by our criterion. Such a measure could betiofun€the confidence in
the dependencies used in the constructio®.0fVe have not pursued this idea further.

A work that is closely related to ours is Bouckaert (1995), which intreduke following graph-
ical criterion, denotedbou here, for reading dependencies from the MUI n@apf a graphoidM:
bouX,Y|Z) holds when there exist som§ € X andX, € Y such thatX; € MB(X,) and either
MB(X1) \ Xn € (X\ X1) (Y \ Xn)Z or MB(Xn) \ X1 € (X \ X1)(Y \ Xn)Z. In other wordsbou(X,Y|Z)
holds when there exist two nodes, oneXirand the other irY, that are neighbors iG and, more-
over, the rest of the neighbors of one of them are among the rest obtles in the statement. The
criterion is proven to be sound and complete, where complete means thatli i® atentify all
the dependencies M that can be derived by applying the graphoid properties to the depeiaden
used in the construction @ and the independencies obtained frGy vertex separation.

Althoughbouis tailored to the case whehM is a graphoid, it can obviously be applied when
M is a WT graphoid. However, there are two main differences betWweeamand our criterion that
make the latter more powerful whéh is a WT graphoid. First, our criterion does not require that
X1 is adjacent toX, in G, that is, there can be a path of length greater than one bediesmd X,.
Second, our criterion does not require than all the nodes adjacenteoXéitor X, in G are among
XYZ, that is, all the paths betweefi and X, but one can be blocked by nodes that are neither ad-
jacent toX; nor X,. Consequently, our criterion represents an advantageboterhenM is a WT
graphoid, as it allows us to identify a superset of the dependencies idddtifbou Interestingly,
WT graphoids are a rich subclass of graphoids, including any regwasstan distribution, any
probability distribution that is faithful to some UG or DAG, and all the marginal$ @anditionals
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of almost all the strictly positive discrete probability distributions that factatzerding to a DAG.
We believe that these probability distributions are encountered in many ampisand, thus, that
the work presented in this paper is of interest to the machine learning comnferiipstance, reg-
ular Gaussian distributions are ubiquitous. Likewise, it is rather usuastoraesthat the probability
distribution underlying the domain at hand is strictly positive and faithful to SDA&®, though one
may be forced to work with a marginal of it because only a subset of thesniodthe DAG are
observable. The strict positivity assumptions is usually justified by measntamers, whereas
the DAG faithfulness assumption is usually justified by the fact that many dorhairgsa causality
structure. For a more concrete case example, recall our discussidanimiotmatics applications in
Section 7.

A problem that remains open is whether our criterion is complete in the serigeitientifies
all the dependencies shared by all the WT graphoids for wBichthe MUI map. This is a problem
that we are currently studying though, as we have argued in Sectionif¢clivee to think that our
criterion only identifies a proper subset of those dependencies. Tegt@bour knowledge, there
has not been any attempt to solve this problem. As a matter of fact, one camtlinlanalogous
problem forbouand the graphoids for whic@ is the MUl map. However, such a problem is not
even mentioned in Bouckaert (1995).

Another problem we are currently working on is the development of ahgzapcriterion for
reading dependencies from the minimal directed independence maps ofapfiogds. As a first
step, we have derived such a criterion for the case where the minimatediraclependence maps
are polytrees (He, 2007).

Finally, it is worth recalling that, as an intermediate step in the derivation of riterion, we
have proved that for any UG there exists a strictly positive discrete probability distribution that
is faithful to G for any sample spaces (with at least two possible states) of the rand@blearin
U. For any DAG, an analogous result follows from Meek (1995). Bosllte are subsumed by our
recent work in Pda (2009), which proves an analogous result for chain graphs. tNateuch a
result is stronger than Theorem 7.2 in Stuglend Bouckaert (1998), which proves the result for
some sample spaces (with at least two possible states) of the random gaindbleut not for any
such sample spaces.
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