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Abstract

Bayesian inference is intractable for many interesting e®dmaking deterministic algorithms
for approximate inference highly desirable. Unlike statltamethods, which are exact in the
limit, the accuracy of these approaches cannot be reagojpalged. In this paper we show how
low order perturbation corrections to an expectation-istest (EC) approximation can provide
the necessary tools to ameliorate inference accuracy,agd/¢ an indication of the quality of

approximation without having to resort to Monte Carlo methoFurther comparisons are given
with variational Bayes and parallel tempering (PT) combimgth thermodynamic integration on

a Gaussian mixture model. To obtain practical results wehéurgeneralize PT to temper from
arbitrary distributions rather than a prior in Bayesiarenehce.

Keywords: Bayesian inference, mixture models, expectation projpamgatxpectation consistent,
perturbation correction, variational Bayes, parallelpening, thermodynamic integration

1. Introduction

Approximate methods for Bayesian inference have recently enjoyed a limefigkttention. These
methods can be either deterministic or stochastic. Deterministic methods, whichlyypica
integration and summation problems of Bayesian marginalization into optimizatiofeprspin-
clude the Laplace approximation, mean field (or variational) methods like vardhtgayes (VB),
expectation propagation (EP), and expectation consistent (EC) and/Rikiichi approximations
(also known as loopy belief propagation or generalized belief propagafldneir attraction lies in
the precise but tractable inferences that they typically provide, but theivldhck is the lack of a
built-in sanity check, as we cannot assess the approximation error.aStmcmethods like Markov
chain Monte Carlo (MCMC) algorithms, which give exact estimates in a largaginsample limit,
lie orthogonal to deterministic methods. They are normally much slower than gteimanistic
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counterparts, but given a skilled user and enough computationalrcesostochastic methods are
capable of giving more precise answers. Whether inference eafausknown size) are acceptable
of course depends on the application in question. In statistical applicatiensight prefer simple
models which allow for exact inferences, whereas in communication systerastability is an
inherent property of communication channels and to counter this, onedrigs@ns fault tolerant
error-correcting protocols.

The problem under consideration can be stated in general terms: Weeasnied with a data
set ofN independent and identically distributed (i.i.d.) exampies: {x,}N_,, which we model by
a generative model specified by the distributjf®|8), such thap(D|8) = [, P(Xn|6). In Bayesian
inference we introduce a prior distributigai®) over model parametefs and to infer unobserved
random variables we compute different averages over the posteticbaki®n

P(8ID) = ZP(DIO)P(O) with Z= [ dOp(DI6)p(6) @

In model selection or model averaging the normalizer (marginal likelihdod)p(D) needs to be
computed for different models under consideration, thap{€)|My), m=1,...,|M|. Another
central inference is about the density at a new (test) example, the sd-pedidictive density (or
distribution):

p4D) = [ dBp(xB)p(6[) . @

This paper mostly specializes to modelling the density with a mixture model
p(x|6) = Z p(K) p(x|6k)

such that mixing proportiong(k) sum to one, an® = {p(k),6x}K ;. A mixture of Gaussians
(MoG) corresponds t@(x|6x) being Gaussian. The prior distribution and the likelihood term for
each component terp(k) p(x|6x) are chosen to be conjugate, such that their product is in the same
distribution family as the prior and thus tractable. Intractability for the mixture madees not
because integration is intractable, but because the number of terms in theahliglinood isKN.

This paper starts from the vantage point of an expectation consistepgfpoximation (Opper
and Winther, 2005) (and its algorithmic realisation by expectation propagd&®nMinka 2001a)
and substantiates these main contributions and findings:

1. We express the exact posterior distribution by an approximating distnibwtiich is given
by EC plus a series of error terms with increasing complexity. When low aaleections
are small, one might hope that the remaining contributions will also decreaséheitider,
suggesting that the approximation can be improved by retaining only the lonests in
the series. One can thus expect corrections to improve an already gpaxkianation, but
not a poor one. On the other hand, large lower order terms may indicater aporoxima-
tion, providing an error check on the approximation without having to tesdvionte Carlo
methods.

2. We derive corrections both for the marginal likelihood and the predicistribution in the
form of an expansion in terms of “clusters” of likelihood terms of the posterithis ex-
pansion resembles the loop series expansions which were derivedrfecting loopy be-
lief propagation (LBP) (Chertkov and Chernyak, 200@&n@&z et al., 2007, Sudderth et al.,
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2008)! All these methods hold in common that the correction terms are expressedras av
ages over the approximating solution and can thus be calcudfteadthe convergence of the
EP or LBP iterative scheme.

3. We show that our first order correction to the posterior can be simphesged by quantities
already computed by the EP algorithm. No further averages are needezbntrast, the
lowest non-trivial correction to the marginal likelihood is of second qraéh the number of
terms growing a®)(N?). Corrections to the marginal likelihood can be tractably computed,
for example, for models where the likelihood is a mixture distribution. Eachrof éerms
contains the originak-component mixture, such that a correction up to ondexquires the
computation of0((NK)) terms.

4. When the true distribution is multi-modal, EP will in most cases provide a looal€
mode approximation, with lower-order corrections also being local. Orteexxemple is the
K!-fold labelling symmetry of the latent space of mixture models, which may caxe)
separated modes in the posterior distribution. While the predictive distributiovaigant to
this symmetry, the log marginal likelihood usually has to be further correctedfagtor of
O(logK!), a correction that is typically much larger than a low-order perturbatiorecton.

5. Thorough empirical tests of EP validate its precision, and show erratrsithnot scale with
N. The perturbation corrected predictions are almost uniformly more préwaseEP. As a
tool for improving inference accuracy, we show in a practical exampletiesfirst nontriv-
ial correction term to the marginal likelihood approximation can make a clearelif€e in
predicting whichK maximizes the marginal likelihood, compared to when the correction was
not used.

In this paper EC or EP and its resulting corrections are compared with vaabBayes (VB),
Minka’s a-divergence message passing scheme, and a gold standard benchpzatle! temper-
ing (PT) and thermodynamic integration (TI). PT is a Markov chain MontécGMCMC) method
whose Markov chain operates on a “tempered posterior” and has wexy gpnvergence proper-
ties. Contrary to more standard Monte Carlo methods (for example Metrdipatisngs or Gibbs
sampling) it can also provide estimates of the marginal likelihood by TI, whichgalates the ex-
pected value of the log likelihood between the prior and the posterior. Tedserthe stability of
estimates obtained by TI, we give a novel generalization of PT, which ailu@gpolation of the
value of the log likelihood betweeamy choice of distribution and the posterior. A good choice may
also improve sampling when the tempered posterior exhibits phase transitigdiperties. This
choice might be obtained by some deterministic approximation, and althoughvestigated in
this paper, provides a springboard for combining deterministic and stichdsrence algorithms.

As a further example it is also shown how the “cluster” perturbation expartsin be applied
to Gaussian Process classification models, where the evaluation of infegiBés/esian marginal-
ization are not analytically tractable.

The rest of the paper follows with a description of EC and EP in Section 2tiche3 shows
an example of corrections for a marginal distribution in a Gaussian Protzssfication model.

1. An information geometrical expansion for LBP is given by Ikedale(2004), and for EP by Matsui and Tanaka
(2008). LBP can also be improved with a message passing algorithmottatts for the influence of loops (Mooij
etal., 2007).
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In Section 4 an inference algorithm is presented for mixture weights, theniéxture model with

fixed component densities, while Appendix D treats the fully multivariate Ma8tiSn 5 contains
short descriptions of PT with Tl and a generalization suitable for statistifaieince. Results are
presented for real world examples in Section 6, and we conclude in Section 7

2. Expectation Consistent Inference

Theexpectation consisteapproximation provides a framework for finding a surrogate distribution
q(8) for p(6|D) in Bayesian inference (Opper and Winther, 2009)he message passing scheme
of expectation propagatiogives rise to an identical marginal likelihood approximation, and the
following interpretation sheds light on both methods by looking at them asaft setf-consistent
approximations to marginal or predictive distributions. The outline preséwtedallows for further
perturbation correctionso be derived.

For the purpose of this paper the EC approximation rests on the obsertfatidhe predictive
densityp(x| D) in (2) can be fairly precisely approximated without averaging over theabptiste-
rior. The entire posterior can be replaced with a simpler distribug{® if it produces the correct
statistics for this average, that is,

p(|D) = [ dOp(x18)p(6]D) ~ [ dBP(x)q(®).

It is sufficient forg(6) to share some key properties, namely low order statistics, p(BhD). This
is an ambitious demand that is generally not realizable, but we can trarsfaikiple of moment
matching to the “cavity” posteriors(8| D), which correspond to reduced training séts where
then™ example has been left out. By introducing a similar approximation to the “cavigdiptive
distributions

POnIDyn) = [ 4B P(xa[8)P(B 211~ [ 0B Pp(/6)a(8)

for eachx, in the training set, a computationally efficient approximation can be derivexdshall
now rather requireq(0) to share key properties, namely lower order statistics, wébhof the
distributionsgn(6) 0 p(xa|8)a\n(6); this is explored in the next section.

2.1 EC and EP with Exponential Families

EC defines a tractable approximatiqff) through expectation consistency with eag{i6). Our
view of EC shall be narrowed to models factorizing in likelihood tep(,|0), and an exponential
family prior

p(6) = - exp(A59(6) )h(6)

ZO 0 )

whereZ, is the normalizing constan(0) is a fixed vector of the corresponding sufficient statistics—
for example for a univariate Gaussian we can chag§¢ = (8, —62/2), Ao is the associated pa-
rameter vector and the fixed functib(®) encodes additional constraints (positivity, normalizations,
etc.). The desired quality of approximation, and the possible conveniéonbéaining tractable mo-
ments, typically guide the choice @f8).

2. A more general interpretation is possible, but for clarity we show tpesxpmation for the generative model in (1).
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The posterior will be approximated with a tractable density of the same exf@airfamily as
the prior,

a(6) = 577 P (A (0)) p(O). ©

By adding the conditiol\ = 3 ,/A\,, we allow each likelihood factop(x,|8) of the posterior in (1)
to correspond to simpler factor proportional/tg, = A — A in (3): the/Ay's therefore parameter-
ize the likelihood term contributions to the approximatfoWe here introduced a definition for
normalization as

z(na)= [d6[] [p0al0)]” exp(A"9(0)) ()

with a being a vector with elements. The cavity posteriop(6| D\ ,) should then be approximated
by a member of the same exponential family

G\n(8) O exp(AT,0(6) ) p(6) .

where/\, = A — An. This is obtained from (3) by removing a single likelihood approximation and
renormalizing.

Let 1, be a unit-vector in the™ direction. We can now formalize our concluding remayk®)
is required to share lower order statistics with tiftted distributions

Gn(0) = p(x:18) exp((A—An)T9(8)) P(6) (4)

__
Z(A—An 1n)

each of which are obtained from the posten6| D) by replacing the cavity posterior by its ap-
proximation. We therefore require consistency of the generalized montiesitss,

(@O), = (@®), . n=1,...N.

One can also show that the corresponding marginal likelihood approximatiiven by

Zec=Z(N0)[] ZA = Ans 1)

1= zino) ®)

(Minka, 2005, Opper and Winther, 2005). In Appendix A we relate thgg@ximation to variational
bounds on the marginal likelihood.

2.1.1 EXPECTATION PROPAGATION

The final expression for the EC patrtition function in (5) depends upopdhéion functions for two
distributionsg andg, in (3) and (4), and consistency on the statisg@) determines thé, param-

eters. This moment consistency can be achieved via a message passimgdri called EP, which
appear, together with VB as special cases of a more generic message passing framework recently

3. In this context the likelihood terms (factors) are sometimes referrasgisites and hence thAp's assite parameters
of site functionghat are proportional to exp @(8)) (Seeger, 2003).
4. VB finds its approximatiom(6) by lower-bounding the log marginal likelihood with Jensen’s inequalityddor
etal., 1999), giving logdys < logp(D). By writing
logZvs = —KL(d(6)|/p(6|D)) +log p(D)

the bound can be made as tight as possible by adjustiBlg this is achieved by minimizing the KL-divergence
betweer(6) andp(6|D).
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Algorithm 1 EP message passing (Minka, 2001a)
1. initialize: Set allA, to zero,Ap, < 0,n=1,...,N. This choice corresponds to initializing in
the prior, setting the sufficient statisticspie— (@(6)) )
2: repeat
3:  Randomly choose exampte and make the following update steps:
4:  Update sufficient statistics

He <(p(e)>Qn(92/\n) ’
5. Determineg(6;A\) from y, that is, solve

(9(8))4on) = H
with respect to\’ and update
A\ — N — N\ followed by A« A+AA.

The EP updates can also be damped/lay[0, 1] throughAA — y(A' — A).
6:  Updategn(0;An):
/\n — /\n +A/\ .

This update ensures that= S ,/\n; q andg, are therefore in the forms of (3) and (4). We
have no guarantee in this step tigastays a proper distribution. A robust heuristic is to skip
any update that makep improper.

7: until expectation consistena®(8)) g, e:n,) = (®(6))q@o,n) =Hholds forn=1,...,N.

proposed by Minka (2005). EP defines a specific message algorithrh itéuiatively refines each
An by minimising local Kullback-Leibler divergences Kdj,(0)|/q(8)); in other words it iteratively
performs the required moment matchi(ru;uje))q = ((p(9)>qn. EP is presented in Algorithm 1 for our
choice ofg andq,, and we shall henceforth use the terms EP and EC interchangeably.

If EP converges we will have expectation consiste(y$)), ) = (®(6))qe) = H because of
the moment matching in lines 4 and 5 of Algorithm 1. Line 6 ensuresthatlq, follow the forms
in (3) and (4). Solving fog in line 5 is analytical for most of the parameters as long@ s in
the exponential family. (In the mixture of Gaussian examples in this papehaméo solve two
independent scalar non-linear equations for Dirichlet and Wishaditilesx All other vector and
matrix parameters can be found analytically.)

EP is not guaranteed to converge, in which case double-loop algorithmisenesed. It has been
observed by Heskes and Zoeter (2002) that when EP does notrgeitge stable fixed point, even
when considerable damping (choosingmall in Algorithm 1) is used, the corresponding double-
loop algorithm has a Hessian with a significantly negative eigenvalue{gslbeen suggested that
the failure of convergence of canonical EP usually implies an inaccushtgos, with the choice
of approximating family not being rich enough (Minka, 2001a).

2.2 Perturbation Corrections

The goal of this section is to derive formal expressions for the erifotiseoEC approximation to
the marginal likelihood and the predictive distribution and to discuss wayswfthis error can be
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computed using a formal perturbation expansion. In order to expandQteproximation we use
(4) to express each likelihood term by the approximating densities as

Z(N—Nn, 1n) On(0)

Pal0) = =5 A 5 ) P(AR9@)
to find that
p(@) ] pixle) = Zeca®) ] (45 ) ©)
If we define
SRCURLL

such that‘g”(—%e)) = 1-+¢,(0), we should expedt,(0) to be on average small over a suitable measure
when the EC approximation works well. Bearing this definition in mind, the ex@atepior and the
exact marginal likelihood can be written as

p(6|D) :%q(e) |'| (1+€n(0)) and Z=ZR, (7)

with
R= /deq(e) [1(1+ex(8)) -

We expect that an expansion of posterior @rid terms ofe,(0) truncated at low orders might give
the dominant corrections to EC. Hence, we get theté2m finite) expansion

R=1+ 3 (en(®)en () + Y <£n1(6)sn2(6)sn3(9)>q+..., (8)

ni<np 4 n<dm<ng

showing that EC is correct to the first order as the tgrnten(8)), = 0 vanishes. The posterior in
(7) can be similarly expanded with

q(8) (1+ Fn&n(8) + Fny<n €y (8)€n, () +...)
1+ zn1<n2 <£nl(9)€n2(9)>q +.. ’
where we should keep as many terms in the numerator as in the denominatoeritookéep the

resulting density normalized to one.
The corresponding predictive distribution is

p(6|D) =

(9)

p(xD) = [ d6p(x(6) p(6|2)

_ Jd6a(8) p(X|8) (1+ 3n&n(6) + Ty <y nm (B)En,(6) +...)
1+Zn1<n2 <8n1(e)8n2(e)>q+"' ’

where again as many terms in the numerator as in the denominator should be éegire proper
normalization.

If the expansions in (9) and (10) are truncated, the approximation®ageiaranteed to be valid
probability distributions, since as functional approximations they may beineghlevertheless, the
quality of EC approximation is still improved, as is illustrated in Figures 1, 8, 4@, Table 1.

(10)

1269



PAQUET, WINTHER AND OPPER

2.3 Tractability of Corrections

For the case whemg, is just a finitemixtureof K simpler densities from the exponential family to
which q belongs, then the number of mixture components injttieterm of the expansion & is
just of the orderO(K1) and an evaluation of low order terms is tractable and can be computed in
O((KN)}) afterq has been found.

In other cases, an exact computation of even the low order terms mayliptcatist intractable.
If the dimensionality of necessary integrations is proportional to the ofdee@orrection one may
still resort to numerical quadratures. A different approach would lre-expand each terigy in
a different “measure of closeness” of densities which takes into attbemomentsp(0) of the
densities. This can be for example achieved in the case wifi@rés Gaussian and the statistip®)
denote just the set of all first and a subset of second moments (or cunuoliiis random variable
6. Then we could resort to the use of characteristic functjgrg andxn (k) defined through

= [aceoxm), () = [ dk & Oxa(K)

for all n. The coefficients in a formal multivariate Taylor expansion ofge@) in powers of the
vectork define (up to a factor) theumulantsof g,. Hence, the multivariate Taylor expansion of
rn(K) = logxn(k) —logx(k) in powers ofk contains only those cumulants in whighandq differ.

Thus, we may write
> /dKe'Ke 1 el ) (11)

—/dK &0 (k) <rn(K)+;r§(K) +) .

Hence, when the statistigg0) containall first andall second moments d, the integral is ex-
pressed through cumulants of order 3 and higher. In this way the ditoe &C approximation can
be expressed in terms of higher order cumulants.

If we expandry, in powers ofk, it is possible to express the integral (11) explicitly in a series
containing derivatives of increasing order of the Gausg& = [ dk eiKTex(K) with respect t®.
This is because each such derivative creates a factorthe Fourier integral via differentiations
of the exponentiadai"Te. Finally, each terng,(6) = W can then be expressed by a series of
Hermite polynomials in a standard way. This alternative expansion is intrdduc®pper et al.
(2008); its details and applications will be presented in a future paper.

2.4 First Order Correction

We have seen that in general, higher order correction terms requirerttpitation of extra expecta-
tions. Remarkably, in contrast, the first order correction to the EC pos(8jis obtained as simple
sum of terms which where already computed in the EC approximation. Hempeeyities a simple
and efficiently computable quantity to improve on EC/EP or judge its validity. A s$ttfgvard
calculation gives

PBID) ~ 5 () — (N 1)a(8) (12)

The first order correction doe®t change the moments which are consistent in EC, but provides an
approximation to nontrivial higher cumulants, which, for example, in the ohseGaussiam(0)
would bezeroin EC.
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3. Gaussian Process Classification

The cluster expansion can be applied in a limited setting to non-parametric matfeés@aussian
process prior. This section provides as an introductory case a tiorréxthe marginal distribution,
illustrating that a lower-order correction can be very accurate. Foraméy of models corrections
to other quantities of interest, for example the log marginal likelihood and pineglitistribution,
have to rely on cumulant expansions (Opper et al., 2008), and will biedtr@adetail a companion
paper.

A Gaussian process prior forms the cornerstone of many populararamptric Bayesian meth-
ods. It has been used to great effect on various regression asificiztion problems. A Gaussian
prior is placed on aiN-dimensional unobserved variabiefor example

p(f) = A(F;0,K),

where eaclf, is associated with an input vectay, andK is a kernel matrix with entriel(xn, Xv)
(Rasmussen and Williams, 2005). A binary classification task attaches datlabg, € {—1,+1}

to each inpuk,, and a typical prediction would be the class of a new inpugiven the dataD =
{%n,yn}N_;. Itis common to use the cumulative Normal distribution functipy) as a likelihood
for correctly classifying a data point (Opper and Winther, 2000). Thedilikod is dependent on the
unobserved, associated witl,, and hence

P(Yn|fn) = P(ynfn) .

The posterior distribution of is therefore

N
PL11) = 5 [ POl A(F:0,K).

With this factorization the site functions are chosen to depend onfgrdych that the posterior is
approximated by the same exponential family distribution (Gaussian) as the prio

N
5 le 2 :
f) Dn[lleXp<ann_23”f”) AN(f;0,K).

The notation in this section is deliberately chosen to be consistent with thatsohu®aen and
Williams (2005, chapter 3), and we refer the reader to the referen@ferample EP algorithm.
We assume that a fixed point of EP has been reachedS beta diagonal matrix containing,~
andV be a vector containing,. The posterior approximation is therefagef) = AL(f; p, Z), with
= (K145 Tandu= V.

The cavity posterior approximationg(f) = A(f;n, Z\n) arise from settingin = & =0
(giving diagonal matrixS, , and vector), ), whereZ, , can be determined with a rank one update of
Z. The tilted distributions are therefogg(f) O d\n(f) P(ynfn).

The first order correction (12) can be applied to compute a correctioe taainginal distribution
of f,, the latent function associated with a novel inputintegratingp( f.|f) with (12) yields

p(1.|D) ~ % ~(N=2)q(f.). (13)
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Figure 1: The first-order correction (13) is shown in black, wgtffi.) in blue. Full details about the
data set in question, as well as the individual terms in (13), are illustratadumeFL3 in
Appendix B. An MCMC estimate for the true marginal is overlayed in orange cames
from averagingo(f.|f) over 20,000 MCMC samples from the posterionxff |2). The
“spikiness” is a result of the variance pf f.|f) being very narrow: if the “noise-free”
latentf is given, thenf, is highly correlated withf and well determined for this example.
The first-order correction gives an excellent approximation.

Notice that corrections for the predictive distribution and log marginal likelshoannot be ex-
pressed analytically in this way. Hence numerical quadrature or an xpan terms of cumulants
(Opper et al., 2008) is required. Higher-order terms of the abovecion are also analytically
intractable.

The detailed derivation of the correction is presented in Appendix B. Eigjyorovides a sum-
mary comparison of a first-order correctiayi,f.), and a MCMC estimate of(f.|?D). The cor-
rection is very accurate and provides a much better fit than EC or EP ajligible additional
computational cost. Figure 13 in Appendix B gives further illustrations tompany Figure 1. In
Section 2.4 it was noted that the first order correction provides an xippation to nontrivial higher
cumulants which would otherwise lzeroin EC, even though the moments which are consistent in
EC are not changed. Figure 2 illustrates this observation, showing araéeapproximation of the
third cumulant for various distributiong( f.| D).

4. Mixture of Gaussians

We shall empirically examine the corrections to EP approximations through a amigta mixture
of Gaussians (MoG). Mixture models provide a more challenging testbéteHdhan the Gaussian
Process model illustrated in Section 3, as the posterior is multi-modal with many ggiesnand
the site distributions are not log-concave. For clarity we relegate the Md@dtens to Appendix
D, favouring a simpler but similar model here. As an outline to deriving arriélhgo for a MoG we
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Figure 2: For different inputs,—and hence latent functioh.—the third cumulant of the first-
order correction (13) is shown in red. It closely matches the true third nnhof
p(f.|f), which is plotted in black. The EC approximatig(f.)’s higher cumulants are
all zero. Figure 1 shows the particular approximationg.at —2, with further details
appearing in Figure 13 and Appendix B.

consider the task of inferring the mixing proportians= p(k) in a model of the form
p(x|6) = erkp(X!k) :

with p(x|k) being fixed (Minka, 2001b). Since the mixing proportions should sum t@dbieichlet

prior for Ttis is a natural choice, and Appendix C gives a detailed description of altdsepties
needed in this context. We give the explicit EP message passing updaties fioixing proportions
with fixed component densities in Algorithm 2 (this scheme is generalized tdiaglapmponents
in a straightforward way in Appendix D). Details for the required computatinrAlgorithm 2 are
given below.

4.1 Variational and Predictive Distributions

The prior—and thus also theedistribution in (3)—are Dirichlet,

with D(Tt A) given in Appendix C by (23). The parametersgareA = Ao+ 5 nAkn (heredg are
the parameters of the prior, which we include intéor simplicity).

We can also get the EC approximation to the predictive distribution both for raéewnrdx,
p(X|D) and the cavity predictive distributiom(xn|2\). For the new datum the approximation is
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straightforward using)(Tt) as an approximate posterior:
p(X|D) ~ /dnp x|T) g( Z<n‘k p(x|K) , (14)

with the mean value being
Ak
ZK/Ak/ '

For the “within data set” version we introduce the cavity distributipp(m) = D(TGA\p), using
Man = Ak —Axn, and derive a result that is very similar to the one above:

() =

PG| Dyn) = Z(Tr@q\n PO[K) - (15)

For message passing we also need expectatiogg af from (4):

On(T0) = Zn(?\\n,ln)ezw (Aeyn—1)logmy & (Zn-k _1) pr(xn|k) )

The above normalizer can easily be found by noting that

Z(M\p,0)

On(TD) = m

O\n(TD) Z TRP(X|K) ,

such that
Zn()\\na 1n) = Z()\\n,O) Z <T[k>q\n p(xn|k) .

In this simple case we haw&A,,,0) = Z,,(A\), with the normalizatiorZ,, of the Dirichlet being
given by (24) in Appendix C.

4.2 Expectations

When updatingu « <(P(9)>qn(e;/\n) in Algorithm 2 the sufficient statistics can be computed using
logZn(A\,) as a generating function:

dlog Zn()\\n

MMk 1
<|09Tﬁ<>qn = Tk\n <Iogru<>q\n n

Man Tk Mewn

(16)

where the expression f<z§rogrl'k>q\n is given by (25) in Appendix C with — A, and the “respon-
sibility” rnx was introduced as

AiynP(Xn|K)
Sk Me\nP(XalK')

nk =
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Algorithm 2 Message Passing for Mixing Proportions
1: initialize: SetA\xn 0, forn=1,...,Nandk=1,...,K, initializing q(1) to the prior. Sefy —
(logTi) oy = W(Tk o) —W(3k Tk o), Where the digamma functiap(x) is defined as lof(x) /dx

2: repeat
3:  Randomly choose examphe and make the following update steps:
4:  Update the sufficient statistics

M (10gTi) 7y = WAK—Akn) — W (Z(M—M,M) :

5. Determineq(tgA’) from y, that is, by solving(logTi) oy = Mk With respect to\. As
shown in Appendix C, this involves solving for= Y (5, W (i +a)), followed by with
=W (i +a). Update

AV <—)\|/(—)\k and Ag <—)\|/( .
6:  Updateqn (Tt An) with
)\k.,n — )\k,n + A )

ensuring thalk = Ao+ 3 nAkn.
until expectation consistenaogTi) g, ) = (109Tk) g(rpp) = K holdsvn, k.
8: Compute loggc from (5) with

~

logZec = Z logZ(A — Ao —An,1n) — (N —1)logZ(A — A, 0)

—ZIog

wherep(xn| D\) signifies the “cavity” predictive distribution from (15).

P(Xa| D\n) | +10g9Z, (Ao) +10gZ,(A) ,

5. Parallel Tempering and Thermodynamic Integration

Having considered deterministic inference algorithms, the last bit of maghiinatr we shall need
is a stochastic method to provide exact estimates in a large enough sample limiel Bargering
(PT) and thermodynamic integration (TI) are ideal for our purposesisRih efficient method of
combining separate Monte Carlo simulations to sample across different mbdesrget distri-
bution and, as a by-product, Tl can be used to estimate the normalizing mbastag marginal
likelihood.

We conclude this section with a new practical generalization of PT and Ti¢hwdan in prin-
ciple be used to combine stochastic and approximate methods. A furtherexdgakion to the
generalization is given in Appendix E.2.

5.1 Parallel Tempering (Replica Exchange)

A single MCMC simulation may run into difficulties if the target distribution is multimodale Th
chain may get stuck in a local mode, and fail to fully explore other areaseopainameter space
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that have significant probability. A conceptual solution to this problem is ¢atera series of
progressively flatter distributions through an inverse temperature ptrgfevhich ranges from
zero to one. This gives a “tempered” posterior

1
8|D,B) = = p(D|6)Pp(8) 17
p(8|D,B) Z(B)p(!)p() (17)
where the normalizing constant (partition functionkig) = [ d8 p(|8)Pp(8). The prior is recap-
tured with3 = 0, and the posterior witl = 1. We now simulaté\g replicas of (17) in parallel, each

using a8 € {Bi}i'\'jl. Let the se{3;} be ordered as a ladder wifla < Bi+1. The parameter space is
replicated\g times to{ei}:\fl, and the full target distribution that is being sampled from is

Ng 1
PU{8)) = [ 757 PR logP(161) ) p(6)

We run theNg chains independently to sample from distributiqi8|D, 3;), and add an additional
replica-exchangeMetropolis-Hastings move to swap tvigs, or equivalently two parameters, be-
tween chains. Lef6;}"®" be a parameter set with and6; swapped. The acceptance probability
of the move isp(accept = min(1, p({6;}"*")/p({6i})), and the acceptance ratio simplifies to

p({6i}"")

ey = @@ (B —Bi)(logp(D}6;) ~logp(D}6)) ) (18)
The temperatures of the two replicand j have to be close to ensure non-negligible acceptance
rates; neighboring pairs are typically taken as candidates. To fully saeséiled balance, pairs
{i,i+ 1} can be uniformly chosen, for example. With this formulation the states of thieasgre
effectively propagated between chains, and the mixing of the Markadn chéacilitated by the fast
relaxation at smalB’s.

From (18), the acceptance probability depends on the difference &etlogp(|6;) and
logp(D|6i+1), and for some swaps to be accepted this difference should not be “tgatiege
should be amverlapof some of the log likelihood evaluations of adjacent chains, as illustrated in
Figure 3. For a simulation at inverse temperafjrdefine the mean evaluation of the log likelihood
as

(logp(18)); = | dBlogp(0[6) p(6|D.) .

If we knew the variance in cha 03 = ([log p(ﬂ)|6)]2>[3 —(log p(@|6)>[23, then it can be shown that
temperatures should be chosen according to the de@Qéfty O op (Iba, 2001). This is obviously
difficult, as oﬁ is not known in advance, and has to be estimated. Good results can beedchie

under the assumptiom% 0 1/B? (the equivalent of assumingcanstantheat capacity in a physical
system), giving @eometrigprogression, hence choosifig/Bi;1 constant (Kofke, 2002).

5.2 Thermodynamic Integration

The samples from parallel tempering can be used for model comparisegdi@r 2005, Skilling,
1998), as the marginal likelihood can be obtained from tempering. Firstigenthat the integral

/ldlogZ(B) _ /1dBoHogZ(B) — logZ(1) —logZ(0) = logZ(1) = log p(D)
0 0 B
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log {p(D|0)p(0)/q(0)}

Figure 3: The density of logp(2|0)p(0)/q(8)} under replicas at different temperatures,
p(8|D,B), defined in (20). These densities correspond to “energy histogramd fol-
lowing (18) there should be an overlap between adjacent replicas etetifftempera-
tures, so that acceptance of configuration or parameter swaps is afiowe€dr interest,
the log marginal likelihood log(9) is indicated with ax. The color bar indicates the
inverse temperatur@ This illustration comes from thgalaxy data set wittK = 3 com-
ponents.

is equal to the log marginal likelihood, fs= 0 gives the prior, which integrates to one. We therefore
have to determine the derivati\%logZ(B). By taking the derivative of the log normalizer (log
partition function), we see that it evaluates as an average over theiposter

dlogZ(p)
dp

The log marginal likelihood equals

1
=75 | d@1ogp(D16) x p(0[8)Pp(6) = (logp(D16)),

logp(D) = | "dB (logp(D}6)), (19)

and can be numerically estimated from the Markov chain sample{@i(t]f} represents the samples
for tempering parametd, then the expectation is approximated with

.
(log p(fD|6)>Bi ~ % leog p(D|eY) .
=

We assume that a burn-in sample is discarded in the sumtovAs a set of chains are run in
parallel at different inverse temperatures=; < --- < By, = 1, the integral can be evaluated
numerically by interpolating thilg expectations between zero and one (say with a piecewise cubic
Hermite interpolation, available as partidt | ab and other standard software packages), and using
for example the trapesium rule to obtain the desired result. Figure 4 illustratesogp(D) is
estimated.
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B
Figure 4: The log likelihood averagemgp(D|0)), are estimated from each of the MCMC sim-
ulations at temperaturef}; }, and interpolated, so that Equation (19)’s integral can be
evaluated numerically. This illustration comes from ga¢axy data set witiK = 3 com-
ponents.

Parallel tempering can be domemplementaryo any Monte Carlo method at a single tem-
perature. Appendix E presents Gibbs sampling to sample fs@1D,3) for the MoG problem.

5.3 A Practical Generalization of Parallel Tempering

The success of the interpolation obtainifieg p(|8))g, illustrated in Figure 4, is dependent on the
slope
d{logp(2[0))p _ d*logZ(B) _
dB - dp? — B
at3 =~ 0. Consider the following thought exercise: Imagine a non-informatifa{ialy wide) prior
atB = 0. Samples from this prior will strictly speaking have an infinite variangeWith 8 ~ 0
we introduce the likelihood, practically infinitely decreasing the varianceuofsamples, causing
(logp(2[6))g to asymptotically diverge at zero. As we narrow our prior the change imtein
should be less rapid, and this motivates a generalization of PT and T| saatokdlget a more stable
interpolation.
We introduce a new distributiog(8), which might be a narrower version of the prior, and
modify (17) to

B
p(8]D,B) = 2(1[3) [p(@w)g’g] q6) . (20)

The log marginal likelihood can, as before, be determined with

logp(D) = /old[3<log p(D|0) + IogEES%B .
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It is evident that setting)(8) = p(8|D) gives an integral over a constant function, @) =
fold[3<log p(D))g. This suggests a wealth of possibilities of approximatnig|2) with q(6) to
effectively combine deterministic methods of inference with Markov chairtsis fomes with a
cautionary note as VB, for example, may givej@®) that captures (lower-bounds) a mode of a
possibly multimodal posterior, causing PT to lose its pleasing property ofdkstation at high
temperatures. In our results presented in Section 6, we have found itetelpadequate to use a
narrower version of the prior where necessary. Appendix E coasludth a short generalization to
sample from (20) for the MoG problem.

6. Results

Low order corrections provide the tools to both improve inference acguead to give an indi-
cation of the quality of approximate solutions. We illustrate and elaborate oa thaisns, with

comparisons between various deterministic and stochastic methods, thraughattiical discus-
sion. Data is viewed as being observed from a mixture mp@e8) = 5X | i AL(x; W, [ 1), as is

discussed in Appendices D, E, and F. A Dirichlet prior is placedtcand Normal-Wishart priors
on  andry; the approximating distributiog(8) = q(0) [« A(1«, k) follows the same distribution
as the prior.

6.1 Modes and Symmetries

Mixture models are invariant under component relabelling, witk!agrowth in the number of
permutations also manifesting itself in symmetries in the posterior density. In aidegpriating
later results, we present some basic understanding of VB, EP, and #®mv corrections under
this property. Our aim in this section is to use simple toy posteriors to facilitate ssicuon
the behavior ofy under various scenarios and discuss how that might affect the estimétioa o
marginal likelihood and predictive distribution.

The labelling of hidden units of a two-layer neural network gives rise orsgtries similar to
those observed in mixture models. For neural networks a statistical meslzaailysis shows that
for smallN the posterior is uni-modal and “star-like,” as convex combinations ofnpaters with
high posterior value which are equivalent under permutations will alse hagh density (Engel
et al., 1992). The symmetry is broken into equivalent disconnected modisdeN.

For mixture models we can analyze the situation witgierestricted to approximate the pos-
terior in one of the symmetric modes, as what will typically be the solution for b&rakd EP/C
whenN is large. Minimizing the KL-divergence K{g||p) leads to a solution wherg is propor-
tional to p within the mode (and by construction zero otherwise). If ther&amodes contributing
equally to the normalizer anglis restricted to one of them, theys normalizer is a factor oK!
smaller thanp’s and consequently Klg||p) = logK! at the minimum (Bishop, 2006, page 484).
However,groupsof equivalent modes are often present. A simple example is a 3-component mix
ture with three “clusters” of data. If each component is associated withstecluhere are 3! la-
belling symmetries. Another VB or EP fixed point may prune one mixture comydaee MacKay
2001 for VB and Figure 11 for EP), leaving one component to cover tusters of data, and one
component the other; this solution hgst another3! labelling symmetries, albeit possibly with a
lesser contribution to the normalizer. In effect the correction is ratf@ygK!), as illustrated in
Figure 9. A useful approximation would be to correct the marginal likelihesténate by a factor
of K! when N is large. The predictive distribution is invariant under the symmetry and wi§f thu

1279



PAQUET, WINTHER AND OPPER

N=7 7 N=14 7 N =40 | N=7 7 N=14 7 N =40

narrower prior: broader prior:
g Ex <o @ H H <o @
® ©
Hi \m_ 1 %_
S0 — _
) @ &
N
. —
/ \\\
g 2 2 @ “,,/ ‘‘‘‘ ol @ . @ - 4
N A ] ’ ) i ’ ’ i /|N ‘ i : : i : : A — \:.N

Table 1: A comparison between the VB (top row), and EC (middle row) aqmetionsq(6), and a first order correction to the EC ap-
proximation (bottom row). Data is assumed to come from a two-component mixttirenly the mean® = {p, b2} unknown.
Under various priors and data set sizes we show the postBpD) in thin black lines, with the VB, EC, and first-order corrected
approximations overlaid in thicker lines. The first order correction integrt one but is not guaranteed to be nonnegative (bottom
row); dashed red lines are used to demarcate the regions of paransstemgpere the correction dips below zero.
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Figure 5: Symmetries and averages: The likelihp@d{py, pz}) = 0.4A((X; pg, 1) + 0.6 (X; o, 1)
is plotted as red contours for the novel observat«'an% at the arrow in the top figure.
Observingx centres the likelihood function &k, x) along they—» axis in the bottom fig-
ure. Thepredictive density (x| D) is average of the likelihood over thémodalposterior
(black contours), while thapproximatepredictive density is the average of the likelihood
function over thauni-modalEC approximation (overlaid in blue). The near-symmetry of
the posterior implies that each mode contributes approximatgfyits mass. When the
EC approximation putall its mass on one mode, and the modes are well separated, the
two predictive densities are therefore similar. The top figure shows thebrtiiceen the
true and approximatp(x|?D); the discrepancy at negatixas due to the fact that the pos-
terior is not perfectly symmetrical (e.g., when= —2 its likelihood is centred at (-2,-2)
and overlaps less with the EC mode).

not be greatly affected bg approximating only one mode, as is shown in Figure 5. For small to
intermediate values dfl the situation is less clear, as the following example illustrates.

In Table 1 we illustrate a number of posterior distributions, with the VB and Efogimations
overlaid. We also overlay the first order correctiom|t6), given from (12) byp(8| D) ~ 3 ,0an(8) —
(N—1)q(8). For Table 1 all parameters but the means were kept fixed, such thakwitR the
approximationg(8) = q(p1)q(ke) is a factorised Gaussian. Both component variances were equal,
and we usedm, o) = (0.4,0.6). The modes are thus not completely symmetric but this set-up still
illustrates the points made above well. We chose the component varianictesdise) such that the
posterior modes overlap whéhis small, with bimodality arising ald increases. We will see in the
following sections that even thougtis a rather crude approximation to the posterior the predictions
for the predictive distribution are fairly precise.

The correction given by (12) integrates to one but is not guaranteed tmibnegative, as it
follows from discarding the higher order terms in (7). The first orderemiion to the predictive
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Data set size N

(a) With overlapping mixture components, damped EP does not neitgsea-
verge for smalN (e.g., EP failed, in the sense that tf¥ @rder correction cannot
be computed, on all 30 random data sets of size 8). The corrections ae
erage (blue line) large for broadly overlapping posterior modes, a0EP not
necessarily lock onto one of them.
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(b) With well separated clusters thB%brder corrections indicate for whidk,

on average, EP prefers a modal solution. Note the better convergeR&efor
largerN, with on average stabler fixed points than Figure 6(a). This is reflected
in the corrections being close to zero.

Figure 6: The second order term of (8) on 3600 random data sets.

density, however, usually remains nonnegative because it &vemrageof p(x|0) over (12). This
underlines the fact that average properties will not be strongly affdotémprecision in approxi-
mating distributions.

Other local minima that we did not show in Table 1 wasKosmall, whereq(p1) remains as
broad as the prior and the component is effectively pruned, wifilg), on the other hand, caters
for both mixture components (MacKay, 2001).

6.2 Corrections

The illustrations in Table 1 suggest that the lowest nontrivial correctiangpcovide insight into
the quality of approximation, as we expect corrections to be small for gpptbaimations. To
illustrate this claim, 30 random data s&by were drawn for each sizd = 1,...,60 according to
Dn ~ p(x), with p(x) being a three-component mixture with= (0.2,0.3,0.5) andyu= (—2,0,2).
Two cases were used for the variance: firsﬁ[g/,1 = 0.5 provides a model with overlapping mixture
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. . . . . .
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Figure 7: The growth of loggc for the random data sefBy used to obtain Figure 6(b).

components; secondli],lzl = 0.1 gives a model with components that are further separated. EP
was run with damping = 0.5, and the second order corrections to the log marginal likelihood
approximations were computed where possible (i.e., EP converged, eecAppendices D and F.

Figures 6(a) and 6(b) illustrate the “overlapping” and “separate” e¥@snphowing that when
N is small compared to ldg!, and the posterior is “starlike” and comparatively unimodal, EP often
fails, and the nature of the problem is reflected in the large correctionenWiecomes large EP
often converges (to one & equivalent modes); small corrections immediately tell us that solution
is close to exact, apart from here a Kigcorrection to the marginal likelihood.

We also observe that the corrections do not scale Mjttvhereas the free energy ldgc does,
as shown in Figure 7. This is an important property, as it means that the cqofadipproximation
does not deteriorate with increasiNg

When the observatiorBy ~ p(x) are i.i.d. we expect that Ia€:c/N, by its form as an empirical
average ovelN terms, should converge to a non-randogmasN — . In fact a linear scaling
logZec — czN is observed in Figure 7. When and whether the expected corre¢tigR) ,, =
cr(N) — 0 asN — o (and hence EP becomes exact) is an open question. This does not seem tru
for Figure 6(a): If the the posterior modes were well-separated thelarge N, a change in one
mean parameter in a factorized approximation will not greatly affect the.otfhén this case, the
means are close compared to the standard deviations of the normal detigtim®an parameters
will stay correlated also for large data sets, and the corrections will pemtisstay bigger for large
N.

6.3 Toy Example

To illustrate the difference between EC and VB, and show additional gaimsgerturbation correc-
tions, we generated a small data $¢tf 7) from a mixture of two Gaussians. The hyperparameters
followed that of Section 6.4.

Under two model assumptions we show in Figure 8 that EC or EP (labeled “E@iles a
predictive density that is generally closer to the truth than that given byBaBh example in the
toy data set was duplicated (see Figure 8(b)) to show that this gain desreader larger data sets;
this decrease is due to the predictive density being an avergxfg|6j over now more concentrated
VB and EC posterior approximations. Secondly, meaningful improvementseachieved through
perturbation corrections. Figure 8(d) shows a second order tiomeo the log marginal likelihoods
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Figure 8: Predictive densitiggx| D, My ) given by VB, EC, and a perturbation correction (EC+R),
with accompanying log marginal likelihood estimates and MCMC “truth” baseliNese
that if we “correct” with a factor lo¢! we get very close to the “truth” for VB and to a
even higher degree for EC. EC+R overshoots in two cases but that badigcause the
perturbation corrected posterior is actually multi-modal. The lower figure&int@ 8(c)
show theratio between each of the approximate predictive densities and the “truth.”

of the examples in question, labeled “EC+R” (see Appendix F). A lowenbtda the log marginal
likelihood is provided by VB. The improvement is also visible when we are eored with the
predictive density, for which we show a first order correction.
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6.4 A Practical Comparison

In this section we draw a comparison between the approximate log marginaldietifand predic-
tive distributions given by VB, EP, and various corrections, and us@atons given by PT and Tl
as a benchmark. For interest we also include results from an implementatos éfin Minka’'s
generala-divergence message passing scheme for this problem, but refer thesiatereader to
Minka (2005) for further details. Finding a VB approximation follows diredtlym the expectation
maximisation algorithm given by Attias (2000), with a slightly different paraniedéon of the
Wishart distribution.

From the results that follow, we observe that the growth ofdpas a function of model size,
gives a characteristic “Ockham hill” (defined in more detail later in this sextiohere the “peak”
of the hill indicates the model with highest approximatepo®). This graph can be used for model
comparison or selection, as its form closely matches the MCMC evaluation pf4og We will
also see that, following Section 6.1’s discussion, the discrepancy betwlegd estimate and the
true logp(?) grows as the model size is increased. Furthermore, the EC approximatenayi
predictive distribution that is closer to the truth than VB, with the gain decrgasith increasing
N. We will show that a principled algorithm initialization can circumvent many spgritmcal
minima in the log marginal likelihood estimate. If completely arbitrary initialization scheanes
implemented, one may note that the number of local solutions is influenced bydtteofithe prior
distribution, withmorelocal minima arising under broader prior distributions.

The data sets under investigation have been well studied, for exampleicbsréson and
Green (1997) for a reversible jump MCMC, and by Corduneanu andBi§?001) for variational
Bayesian model selection: tigalaxy data set contains the velocities (in 1000s of km/second) of 82
galaxies, diverging from our own, in the Corona Borealis regionathigity data set contains the log
measured acid neutralizing capacity indices for 155 lakes in North-c&¥disabnsin (USA); then-
zymedata set contains enzymatic activity measurements, for an enzyme involvedchiretabolism
of carcinogenic substances, taken from 245 unrelated individualsjdHaithful data set contains
222 observation pairs consisting of eruption time and waiting time to the nexti@rufrom the
Old Faithful Geyser in the Yellowstone National Park.

6.4.1 THE APPROXIMATE LOG MARGINAL LIKELIHOOD

Ockham hills are useful for visualizing log marginal likelihood estimates foetao$ plausible
models with increasing explanatory power, for example, mixture models witeasorgK. The
largest estimates of |&f for the various models typically form a hill, peaking at the “optimal”
model. As models becomesscomplex, the hill falls steeply due to a poorer explanation of the
data. Fomorecomplex models the plots show a slower downward trend, as an improvemextain d
fit is counterbalanced by a penalty from a larger parameter space irsiBaywarginalization. For
mixture models this downward trend is even slower when the true log margiraisgdered; this is
mainly due to the number of modes in the true posterior increasing with the nufrdimenponents,
with an approximation possibly only capturing one of them.

In the case of VB, the log approximation provides a lower bound to the marginal likelihood
p(D|M), and this quantity is often used for model selection (Beal and Ghahrant3, Bishop
and Svenen, 2003, Corduneanu and Bishop, 2001). The model with the largesidhs typi-
cally kept, although the bound can also be used for model averagingrdkess of our method of

5. Rasmussen and Ghahramani (2001) present an account wtlistheia “Ockham plateaus.”
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Figure 9: Ockham hills for various data sets. VB is shown as red sqwaﬁe% as magenta trian-
gles, EC/P as blue circles, and EC+R as green diamonds. An estimatep¢figtix )
found by PT and Tl is shown as a line. The effect of@ogK!) correction on any of
the approximate solutions can be seen by comparing them against the -tiashadt
of logp(D|Mk) — logK!. (For Figure 9(d)'sK = 6 the EP andx = % schemes did not
converge.)

approximation, poor local minima in the objective function have to be avoidedder do obtain
meaningful results.

Figure 9 shows such hills for the marginal likelihood approximations for riffedata sets for
VB, a = % message passing, EP, and a second-order perturbation correctierpridr hyperpa-
rameters wer@dygo =1, mgo =0, ko = 102, ao =1 andByo = 0.11. For Figure 9(d) we took
Bko =[0.11,0.01;001,0.11]. For each of the model®f, with K mixture components, the figures
show twenty approximations for each method, with the colour intensity of datkqrresponding
to the frequency of reaching different approximations fordodg=ach plot is complemented with
estimates of log(D|Mx). The estimates—shown as lines—were obtained form an average over
ten PT and TI simulations, with two standard deviation error bars also betwgnsh
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Finally, it is evident that the “true peak” in Figure 9(a) does not match tla pbtained by
approximate inference. Without having to resort to MCMC and TI, thersg¢éooder correction for
K = 3 already confirms that the approximation might be inadequate.

6.4.2 THE EFFECT OF AGOOD INITIALIZATION

Finding the best VB/EP solution is strongly seed-dependent in the prolesidered here. In this
council of despair an educated guess may take us a long way: many rinée@ab minima in the
VB/EP objective functions can be suppressed with a good algorithm initializatio

We base our factor initializations around a scaled version of the solutiomettay the VB
expectation maximisation algorithm,

expN0(©)) Dexp( [ dzatz)0gpixa218))

which was seeded with a data clustering based on the k-means algbrittms. is illustrated in
Figure 9.

When using an “out of the box” EP scheme, starting with a slight asymmetricthebis later
corrected for, many lower minima are also found. The same behavior atiggsthe VB parameters
are randomly initialized. Figure 10 shows more local minima than Figure 9(d)trenresults in
Bishop (2006, chapter 10), where the same principled initial guess for&&Bused.

The canonical EP scheme (and indeee- %) sometimes did not converge to a fixed point.
This is evident in Figure 10 and has been observed in practice (Mink4d,a20when EP does not
converge, the reason can be traced back to the approximating family bgirog enatch to the exact
posterior distribution.

6.4.3 THE PREDICTIVE DISTRIBUTION

Given a specific modefM, the predictive distribution can be approximated by usaig ?) ~
/dep(x/8)q(B), as is shown for example in Figure 11. The final predictive distributiomgtyo
depends on whether or not a global minimum in the objective function in ($)kan found, as
is clear from Figure 11. To illustrate how much the approximate predictiveildititn differs
from the true predictive distribution, the figures shpy|?) obtained from an average over ten
thousan = 1 samples from a parallel tempered Markov chain. Figure 12 shows thagzigved
by EC/P over VB, and in turn the further improvement from a perturbatiorection to the EC
approximation (see Appendix F).

7. Conclusion and Outlook

In this paper we presented a method for computing systematic correctionsapdE@ximations in
Bayesian inference. These corrections are useful not only in impr@gtimates like log marginal
likelihood and predictive density approximations, but can also providetinsitp the quality of an
approximation in polynomial time. When the corrections are large the EC appat&n may be

6. Similar to Appendix Ezindicates latent variables, with(6, z| D) approximated by(6)q(z). We point the interested
reader to Attias (2000).
7. Markus Sverisn, personal communication.
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Figure 11: EP can have more than one stable fixed point: The predictivibalidn p(x| D, M3),
from two differentapproximations for thgalaxy data set. FoK = 3 under narrower
prior in Figure 10, we see three local maxima of the EC objective function)intlie
predictive distribution shown on tHeft coincided with lo@Zgc = —2438, whereas the
approximation on theight coincided with a much higher Ia§c = —2324. The true
predictive distribution, obtained from an average over a PT MCMC sarigpihown

with a dotted line.

guestioned or discarded, and we hope to address the question of haerieisn practice in future

work.

A juxtaposition of VB, EC and EP, PT with TI, and EC with corrections, wasgiin the
context of Gaussian mixture models. We argued that EC can give improtemer VB, and can
in turn be improved through a perturbation expansion. Throughout ther maur “gold standard”
was given by PT, and we presented possible ways of improving it. We Ji&eltb include better
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Figure 12: The ratio between each of the approximate predictive densitieha MCMC “truth”
of p(x|D, Mz) for thegalaxy data set. This figure corresponds to Figure 11 (right).

MCMC algorithms in this rich tapestry of methods: PT is not the best choicedar first-order
phase transitions. In Figure 3 the high probability regions are very diffeabove and below the
transition at ~ 0.5, suggesting multicanonical sampling as a viable alternative, since it aims at
sampling from a distribution that is flat in the log likelihood and will thereforehaate this “bottle-
neck.”

The choice of a unimodaj(0) to capture the characteristics of a typically multimogéd| D)
also leads to various questions. When there are symmetries in the pararaegenvgh overlapping
modes, we may ask whether or not we would achieve a better predictiggydanth EC, say, if
the approximation is restricted to one mode. In the case wh@i@) is multimodal (largeN) then
fairly general arguments suggest that we should correct the margiekthtkd estimate by a factor
of Kl—higher order corrections may clarify for whid¢thand under which conditions this transition
will typically take place.

One way be improve the approximation is to generadji@® for example by including a small
fraction of the data points (similar to the proposed generalization of PT)eMenvthat poses an
additional problem an the matching of moments step in EP message passing detsonecom-
plicated.

Finally, we focused on a MoG where the lower order terms in the corre&iare tractable.
For models where this is not the caBsan be expanded in terms of the higher order cumulants of
gn(6) andq(B). This approach will be presented in a companion paper.
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Appendix A. Bounds on the Marginal Likelihood

It is interesting to compare the marginal likelihood approximation (5) with the avendoy a

variational approximation. Here one would use the fact that the reIatlvepgr(Iog pﬁé%) >q >0

to approximate the free energylogZ by the upper bound

q(8)
“logz= <'°g<p<e> Pl >q'

To compare with (5) we use the definition (3) to get

Z(N—Nn, 1)

o= (Pxal®)exp( ~ A7) ) -

After inserting this expression into (5), taking logs and applying Jengegrgiality we arrive at

exp( 32A19(6)) a(0)
Soores <log ( M1 P(/0) ) >q_|ogz(/\’o) ) <log<p<9>”np<xn|e>) >q’

where in the last step we have usggi\, = A. This shows that if one would use the distribution
q(08) derived from EC within the variational approximation, the EC approximatitiezes a lower
free energy. Since approximating densities in the variational approximatiluswally differ from
the EC result (by the way they are optimised) this does not imply that variafi@eénergies are
always higher than the EC counterpart. Also we cannot draw any canlabout the relation to
the true free energy.

Appendix B. Gaussian Process Classification

This appendix provides the details of the derivation of first order ctome to marginal distribution
p(f.|D) for Gaussian process classification, as introduced in Section ¥, betthe kernel vector
with entriesk(x.,X,) for all n, andk. = k(x,, x,). It is well-established that

b=k K™y,
o? =k, -kl (K+S 1)k,
wherep(f,|f) = A(f.; k] K1, k. —k]K~1k,) was averaged ovey( f). To determineg(f.), we

have to average(f.|f) overgn(f): a lengthy derivation shows that the required integr&f.) =
Jdfp(f.|f)an(f) simplifies to

Yn mn“*)) Ynl\nin . 2

fi)=00 —==L O ————— . ,0,.5)s 22

qn( ) < m / 1+Z\n;n,n 8 N< Hen \n) ( )
Pl*\n = K-erilu\m

0.8y =K —K (K+§) k. .
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the marginalg(f.) is shown as a gray error bar for a (which are not Gaussian) used in (13) are respec-
novel data point atx, = —2 (dashed red line). Pos- tively shown in dashed blue and (thick solid) orange.
itive examplesx, are indicated with &, and nega- These distributions are accumulated into the correc-
tive examples with a<. At eachx, an error bar from tion shown in Figure 1. To observe the influence of
N (fy; K of\n) in (22) is shown for comparison. An the non-linear “weight-function” off, in (22), the
exclusion of a negative example brings the density oflistributionsA((f.; p\p, Gf\n) which are shown in
the mean functiorf, closer to zero; an exclusion of the Figure 13(a) are plotted as (thin) black lines.

the positive example at, = 0 increases the certainty

about the class of..

Figure 13: An illustration of all the terms occurring in the first-order cdroecin (13) for an ex-
ample data set.

This “tilted” predictive marginal in (22) has exactly the same forng@s) in (21), except for its
use ofy andSn, and the nonlinear “weight” that is still a function &f, so that,( f.) is ultimately
non-Gaussiarz, .y, andy, n,n denote element®, n) andnin ,, andp .

In the ratio of cumulative Normals in (22) we have

2
\41::z\mmn“E?§*a
#\N
N(fe —Han)
mn(f*) = u\n;n+ 0'72\n ,
#\N

where we defing = kT K~'c,, with ¢, being columm of %,

When compariny, andZ, n, » in the numerator and denominator in (22), we see\thé close
to %\ yn,n Whenevem is small compared to,,,. Functionmy(f.) adjustsy ., with a termlinear
in how far f, differs from the Gaussian mean in (22), and is similarly close t@ whenn is small
compared t@? .

Figure 13 provides an illustration of how the correction in (13) works. Basgd exponential
kernelk(Xn,Xv) = aexp(— 3%, — X |2/¢?) was used, witra being the (positive) amplitude, arfd

8. This representation is chosen for simplicity, althoéghcontains a zero on its diagonal.

1291



PAQUET, WINTHER AND OPPER

the characteristic length-scale of the latent function. In Figure 13 the nadsgj(f.) anddn(f.)
are shown, leading to the first-order correction originally shown in Figure

Appendix C. Useful Distributions in the Exponential Family

In this paper we use the Dirichlet, Normal-Gamma and Normal-Wishart distritsutisrihe MoG
problem. For these distribution have to 1) compute their sufficient statistits;, @essage passing
solve the inverse problem: given the sufficient statistics we must solve dgpatameters of the
distribution and 3) for the predictions with the mixture models compute their pregldistribution.

C.1 Dirichlet

The Dirichlet distribution over the probability simplex STk = 1, is commonly used in two
contexts: here as a prior over mixing proportions in the mixture model, ang@sréposterior for
the parameters of multinomial distribution. We denote the Dirichlet with paramigtdngs

D(TA) = 5 t)\)ezk@k” logTk 5 (an—1> , (23)
~ Mkl ()
Z,(\) = Pl (24)

C.1.1 SUFFICIENT STATISTICS

The sufficient statistic of the Dirichlet is

(logm) = ak)%)\zlf()\) =P — W (ZM) , (25)

wherey is the digamma-functiodlogl™ (x) /dx.

C.1.2 INVERSE

In line 5 of the Algorithms 1 and 2 we have to solve the inverse problem: giversttistics
mx = (logTy) find the parameters. This can be done effectively by first solving for

=y (ZM) =y (Z wl(w+a)>

by Newton’s method, and then settivg:= W~*(m+a).

C.1.3 FREDICTIVE DISTRIBUTION

The Dirichlet can also be used as a prior for the parameters of the multinoistidbation. This
distribution is used multi-category either counts or sequence data. Faisgoen(Xy,...,Xq) iS a
vector of counts for each of the possildle@utcomes. For sequence date an indicator variable
being one for the outcome and zero in all other entries. The multinomial distribistio

plxim) = 2 |‘|r¢k
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where the combinatorial prefactor goes away in the sequence caseréldietive distribution for
multinomial data and Dirichlet distributed posterior is straightforward to calculsiteg the result
for the normalizer of the Dirichlet:

(Zrx)! Z,(x+2)
xih...oxg!t Z,(A)

POA) = [ dmp(xm D() =

C.2 Normal-Gamma

The Normal-Gamma (or Gauss-Gamma) model is use for a joint distribution ofliorensional
mean and precision (inverse variance) variables:

T
1 Iéy
1 —2v ey
e —— 2
Ng(p.,y;m,\),a,b) Zg\[g(m’\ha’ b) exp _b_%vrnZ y )
a—3 logy

[2nr(a)
ZNg(m,v,a,b): vV o

where this distribution is obtained by multiplying the Normal and Gamma distributions:

A(m, (vy) ) = \/gexp<—;(u— m)zvv> ,

Grab) = 1

exp((a—1)logy—by) ,
wherea andb must be positive.

C.2.1 SUFFICIENT STATISTICS

The sufficient statistics are obtained by usingz%(m,v,a, b) as a generating function for the
sufficient statistic. By taking derivatives of ldg g with respect to the parametefs, v, a, b},

M) S48~ =~
(logy) = Y(a) —logb,
—(v)=-a/b,

we can solve forpy), (2y), (y) and(logy).

C.2.2 INVERSE

We can use these expressions to solve for the parameters in terms offitierdustatistics in the
same fashion as above. We get closed form expressions for threeaoh@ters

v’ (L2y) —mé(y) ’ v’
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anda should be found from
W(a) —loga = (logy) —log(y)
by for example Newton’s method.

C.2.3 FREDICTIVE DISTRIBUTION

The predictive distribution can be calculated straightforwardly from thimabtzer and is a univari-
ate Student-t distribution:

1 2, (SPvHLarhbe0em)
V2 Zm(m,v,a,b)

:T(x; m, PV—H, 2a> ,
a v

whereT (x; W, 02, df) is a Student-t distribution with meanvariances? andds degrees of freedom:

dr+1 1 /x—p\?
2|09<1+df(0> )]
2

r(%

o)

p(xm,v,a,b) =

T (X, u, oz,df) - me

C.3 Normal-Wishart

The Normal-Wishart is the multidimensional generalization of the Normal-GammawilNesrite
the Wishart distribution over positive definite symmetric matrices in the same fotheaGamma

distribution: 4ol
W(r;a,B) Dexp<(a er) Iogdeﬂ'trBF) ,

where the degrees of freedora ghould be greater thah- 1 for the distribution to be normalizable.
The Normal-Wishart is given by

1

NW(H? r! myv,a, B) = S o Al
ZNW(m,v, a,B)

T

vm Mo 1
exp|| —3v Wry | —tr(B+ évmmT)F ,
a—9 logdet™

dd-1)/4 (2T 4z d 1-1\ _aiogdes
Z,,,(mv,aB)= <v> IE!I' <a+2>e )

C.3.1 SUFFICIENT STATISTICS

The sufficient statistics follow from a straightforward generalization oféselts from the Normal-
Gamma model:

(r)= a8,
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i) = (M)m,
(' = 3 4 rm

d
(logdet’) = z U <a+ 12_|> —logdetB .
=1

C.3.2 INVERSE

From the sufficient statistics we can get closed form expressions fpatlaeneters

M= (U L V= e Bal)

whereas should be found from
d 1—1
le <a+ 2) —dloga= (logdet’) —logdetT) .
|=

C.3.3 REDICTIVE DISTRIBUTION

A generalization of the result for the predictive distribution in one dimensidingéamultivariate
case gives:
2B v+1

pMMW@WZT(KMZ&le\)

, 2a—d+1> ,

where7 (x; W, Z, dr) is thed-dimensional multivariate Student-t distribution with mgagovariance
2 andd; degrees of freedom:

L dr+d 1 fes
Zaea 0| w01t ew)]

(%)

Appendix D. Inference for a Mixture of Gaussians

T (W2, d) =

When we have unconstraineddimensional data we can model this with a Normal (or Gaussian)

distribution,
POKI) = A0 = | g exp 50w 1)

wherep andl™ are respectively the mean vector and precision (or inverse covayiaratgx. The
conjugate prior for the mean and precision is the Normal-Wishart distributibith we describe
in appendix C. In the following we choose Gaussiaf§k, k) as components densitipgx|k) in
the mixture.
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D.1 Variational and Predictive Distributions

The q distribution follows the prior and is conveniently chosen to factorise over maxtompo-
nents:

() =q(m U A(kk, M)

with q(pk, k| Mk, Vk, &, Bk) being a Normal-Wishart distribution; see Appendix C. We can use the
same machinery as Section 4 to derive the EC approximation to the predictiieutisn and the
statistics needed for message passing.

The predictive distributiop(x| D) is again approximated by the form given in (14), witfx|k)
replaced by

2By v+1
2a—d+1 vk

p(X[K) = p(X|m, Vk, &, Bx) = T <x; m, , 2a—d+ 1) . (26)

HereT is a Student-t distribution, which we describe in greater detail in Appendix C.

Likewise, the within data set predictive distributigix,|D,,,) follows (15); only nowp(xy|k)
is replaced withp(x,|k\n), which takes the same form as (26) above, witleplaced byAp.
The Dirichlet cavity parameters are agaifl, = Ako + Y wvznAk - The other cavity parameters are
similarly defined in terms of the appropriate parameter vector componenissfancevy, nmy, =

Vk,0Mk,0 + Zn/¢nd,n’Wl<,nf-
We can again use the cavity parameters to vegiten terms ofq, .

Ay, O
n(8) = Mq\“(e) 3 TPl )

The normalizer is given by

Zn(A\n, 1n) = Z(A\n, 0) Z<T[k>q\n P(Xa[K\N) (27)

where the explicit form oZ(A\p,0) is

Z(/\\nvo) = Z@ ()\\n) I_l ZNW(W\naVk\na \n; Bk\n) :
k

D.2 Expectations

The statistics ofj,(0) for the mixture of Gaussians are computed by usingjgd. ,) from (27) as a
generating function. To simplify the derivative with respect to the predidtistributionp(xn|k\n),
we introduce another component-specific Normal-Wishart distribution

qk,n(M(v rk) D p(Xn“'lkv rk)q\n(uka rk) 9
and write the predictive distribution as a ratio between the normalizegg,aindq, !
P(Xa[K\N) =
Vi

(2m-9/2z, ., (%\HXH Vian+ 1,800+ 3, Ban+ %vk\nil (Xn— M n) (X — M) ")
ZNW (rn(\n,Vk\n, \n; Bk\n) '
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For example, fofl ) we get

1 dlogZn(A\n)
Vian dm<\n

<rkl-|k>qn = =(1- rnk)<rkUk>q\n + rnk<rkuk>qktn : (28)

where the “responsibility” (the probability of exampideing generated by theh mixture compo-
nent) is defined as

~ ANanP(Xalk\n)
APl \N)
The expectation in (28) is expressed as a weighed sum of a “prior'ceatmn over the cavity

distributionq, (i, Mk), and a “posterior” expectation ovekn (M, Mk). The other momentsy),
(W M) and(logdetTy) can be expressed as weighed sums similar to (28):

<rk>qn =(1- rnk)<rk>q\n + rnk<rk>qk,n7
(TG, = (1 k) (K Tibio) g - Pk T g -
(logdetric), = (1~ rn)(logdeti), -+ ru(logdetric),, .

(29)

nk

q

The explicit expressions for thg  are given below, whereas those fpf, can be obtained from
Appendix C:

1 1 vy -1
<|'|<>qk"n = <ak\n + 2) [Bk\n + ka\n\_: 1(Xn —Mn) (X — mk\n)T} ,
. VianMk\n + Xn
<rkuk>CIk4,n o <rk>(1k,n Vian+1

d VianMk\n =+ Xn T VianMi\n + Xn
T _
<uk rk“k>qk_n o Vidin +1 + ( Viin +1 <rk>(1k,n Vidin +1 ’

log det” s 1,
<og e k>qkn—i;w ak\n"’é‘*’T

1 vV
—log det(Bk\n + Kn

- _ _ T
2Vk\n+1(xn M n) (X0 — Mgyn) ) .

We have already seen how to solve fogTi)q,, the only difference being, in (16), which we
now take from (29).

Appendix E. Gibbs Sampling for Parallel Tempering

Parallel tempering of a mixture of Gaussian distributipg,|8) = TK_; T (%n; F;l) requires
a Monte Carlo simulation at inverse temperat@ite We can either sample from(6|D,) us-
ing a Metropolis-Hastings (MH) method, or augment the parameter space wetit Elocation
variablesz so that we can sample from(6,2 9D, ) with Gibbs sampling. We may also define
p(zD,B) = [dBp(6,2D,B), and devise a MH scheme on this distribution by making random as-
sighnment changes to

The road of Gibbs sampling is pathed with tractable conditional distributiop&o#| D, ), and
itis the one we choose. We extend the parameter space to include a binairgllateation vectog,
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for each data pointto indicate which mixture component was responsible for generating it (Riebo
and Robert, 1994); consequen#y € {0,1}, and S,z = 1. The complete joint distribution is
therefore

p(.28)p(6) = [[] [ baibric)] " p(@).

We can write the complete data likelihood p&D,z0) = p(D|z,0)p(z|6), and in this form the
likelihood, to the powef, multiplied by the prior over and®, is

p(D|z0)P x p(z.6) = |‘||‘|9\cxn,u,,rk ankx|‘||‘|ﬂi”k

(Note that the introduction afmovesrtto the prior.) With inverse temperature param@tére tem-
pered posterior distribution i8(8,2D,B) O p(D|z8)Pp(z 8), and can be treated as any missing-
value Gibbs sampling problem. The allocation variables are sampled with
TR b T P

St TN (% b T )P

Given the allocation variables, we define

Zok|TL W, T

_ 1
Mk = Bznk, Xy = Ne > Tk,
n
1 _ _
N = rnk 2y, = N > k(X —Xc) (%n —%)",
Q] k

to give the conditional distributions needed for sampling the mixture paranssters

Mz~ (TF7\10+ N, .. 7\K,o+éNK)>

M, |z~ AW (W, Tiomv,a,B) (30)
with
_ VoMo + Nk
Vg, 0+ Nk
V = Vi o+ Nk,
a=ako+Ny/2,

1 1 NV o( Xk — v T
B=Bxo+ -NkZk+ = kVi,0(Xi — Mico) (X — Mk o)

31
2 2 Vk,0 + Nk (31)

As p(D) = [dBdz pD,8,z), we use the samples ov@andzto estimate the average log likelihood.
If {{Tq((?, uf(tl), FS?}EZl, {z&?}ﬁzl}tll indicates the samples of chaifafter a burn-in period), then

(logp(D]6,2)) Zz Zznkl log AL (Xn l) : (32)

Notice that the samples of the mixing Weigl'rqgi) are not used in estimating the log likelihood
average over the posterior, but occur in the prior.
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E.1 A Practical Generalization (1)

The generalization of PT and Tl from Section 5.3 can be made by writing thestechposterior

distribution as
p(8,2D,B) D|'||'|f7\£xnuk, hPzkrg p(8)P q(e)t

where[,xT¢* = p(2/8)Pq(z|6)* P follows from p(z/6) = q(z/8). To do Gibbs sampling as before,
we have to determine the parameters of the “effective” prior in the ab@reaso. Here we lag(0)
be in the same family—for example a narrower version—of the prior. If sgp@tsp andg now
differentiate between the parameterp0®) andq(6), we use

Ao =BAS+ (1—PB)Ag,

BVIE,OmIE,O +(1- B)Vﬂomg,o
BVE04‘(1“B)V20 ’

Vko = BVio+ (1= B)Vio,

ako = Bago+ (1- B)agy,

aO:

_ @aRP aypd L Buko(1-BVio ol NP pd AT
Bko=PBByo+ (1 B)Bk’0+ZBVEO+(1—B)VE7o(mk’O My o) (Mo — My o)

as substitute for the usual prior in (30) and (31). The empirical expestgiven in (32) should be
generalized—simplifying the left hand side below wjife,0)/q(z,6) = p(8)/q(6)—to

(1ogp(oie.2)+10g 51 ) ~ TZ['OQDT““ ~1oga(rt’) + 3 [logp(u’.ri)

-1
loga(u). )+ 5 24, log (.1 >}].
n

E.2 A Practical Generalization (I1)

We implemented a further possible generalization, which arises from clyog&n = p(6|2’),
where?’ contains a small subset of data points frédmThis sensibly restrictg to parameter space
closer to the posterior, with the benefit that the normalizey néeds to be calculated only once.
With | 2’| being smallg can be evaluated analytically without feeling the effect of the exponentially
expanding number of terms. This brings an interesting tradeoff, as sdirg D solves our
original (difficult) problem. (Figure 3 used this choice of surrogate prigth 2’ containing 3 out
of a possible 82 data points.)

We can construaj(0) as follows: LetN’ = | 2’| be the number of data points #', so thaig(6)
expands as a sum ovg’)X terms. Allow 1...,K to be the digit set of a number system in bise
Make a lists of the first(N’)X numbers in bas&, such that each numbsconsists ofN’ digits, and
eachxy € D’ can be associated with a corresponding digsition Eachs € § therefore defines a
unique allocation for alky € D’ to clusters 1...,K (xy’s digit valug. We shall use the shorthand
D to indicate a data set with a data point to cluster allocation gives by

The surrogate prior is a weighted sum of various posteriors

a(8) = P(6I) = 3 Wep(rt) [ Pt M%)

seS
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If Zs= [d6p(B, D), the weights are determined with = Zs/ 3 ¢ Zs.

Instead of merely raising to the power - 3, we first turnq into a product amenable to
Gibbs sampling by augmenting it with binary indicator variabes {ys}ss that pick a partic-
ular component ofj; 3sys = 1. With q(y) = p(y) = [1sW&, the surrogate prior now takes the form
q(z8)q(8ly)a(y); the prior becomep(z/0)p(0) p(y). The empirical expectation in (32) generalizes
to

p(6)
aely)

<log p(D|8,2) +log

b T 2 ['09 p(") — 3 ¥4/ log (" | 2)

+y [logp(], T} — 3 & log (k) M| 2%)
S
t )~
5 A logAl (bl 7 >]].
n

Appendix F. Perturbation Corrections for Mixture of Gaussians

In this appendix we show how to compute the second-order terms of (8),

R=1+ Y (en(®)en(6)) + Y <snl(e)sn2(9)sn3(9)>q+..., (33)

N <np 4 m<mH<ng

and the first-order term in the numerator of (10),

o) — 1 80UO)PX) (15 50En(®) + Sy oy (B)em(6) ) a4
1+ Zn1<n2 <€n1(e)€n2(e)>q +..

The sum in the second order term runs over all distinct pairs and the cdtypleus grows as
O(N?). However, one would expect that the largest contribution comes frambpgoints, or more
precisely points that belong to the same component, as indicated by a lgogagibdity for the
same component. Although not done here, it is plausible to restrict the sumrtaataty include
these pairs without sacrificing much precision.

Let A = {)\,{m(,vk,ak,Bk}E:l} be the parameters that solve the EC equations. We also have
access to the parameters of each of the cavity distribufighs

For eacin the parameters af,(0) is given by the parameters pfxn|6)d,,(8), which expands
as a sum over th& mixture components. Each elemdntn the sum contains a product of a
Dirichlet density and Normal-Wishart densities. The Dirichlet parameter vector will have element
k incremented by one, and &sis associated with componektit will affect only the parameters
of thek! Normal-Wishart. Therefore, apart from the cavity paramefers we will also need for
eachk=1,... K:

Man=Man+1 and Ag =My for K £k,
\flk(\n = Vk\n + 17

~ VianMin +Xn
\n ™ Vik\n +1

a:;\n - ak\n"" %7
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1 Vkn
2V\ +1

Bﬁ\n = Bk\n (m<\n )(rn(\n - Xn)T . (35)

The normalizer ofjn(8) follows from (27) to be/ d6'p(xa|6)q\n(8') = T k(Tk)q,, P(Xa|K\N) =

F.1 Corrections for the Marginal Likelihood
A single second-order term in (33) can be evaluated with

(en(6)6r,(9)) / de qnzg;(e) 1

_ _1+ii % % »(N)Z, ()‘(k'”)
an an K=11=1 )\\nl O\\nz)

(m(_k,l) vk (kD) B(_k,l)) }

K
Z (mjavjaahB)ZN‘w | | ' 9 |

I—L ZNW Mj\ny> Vi\ngs &j\ny5 i\nl) chw(mi\nzﬂvi\lﬂz7 Aj\ny> Bi\nz)

The above sum ovéerelatesx,, to coming from a particular mixture compondqtwhile the sum
overl does the same fof,,. For a particular element in the sum okeand| we need parameters
relating to each of thg¢=1,..., K mixture components. For the Dirichlet normalizer the parameters
)\Ek") depend on whethde= |, implying that bothx,, andx,, were generated from the same mixture
component, or whethde+# |, implying thatx,, andx,, came from different mixture components.
The elements ok are:

k| i
?\E')=7\j\n1+)‘j\nz_)\i for j £k .

Whenk # | two indicesj remain to be defined; i = | we will have one remaining index to take
care of:

)\gkl) Afing T A\ = A for j =kandk#l,
)\Ekl)_)\l\nl+)\1\nz Iy for j =1 andk #1,
kI P

A =N A — A for j=k=1.

For each element in the sum overmnd| the Normal-Wishart parameters are similarly defined.
Whenj # k,| we have:

kil

) )
ViT = Vi +Vin, — Vi,

(
J
(k) _ VismMivng +VivnMjyn, = ViMm;
J

m; )
Vivm + Vi\nz —Vj
(k1) _ )
aj " =aj\n, T Aj\n, —
Bk — B 1 B L
i =BjmT 5ViNn Mj\n, M J\n1 +Bj\n, + 5Vi\nMj\n,M J\nz

_}ijjm_T 1 k) ) (k)T

—B; 2 (A I B
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As was seen for the mixture weights, we will need further definitions: wherk andk # | we
shall uselgk") =Vj\n, TVivn, —Vj5 @ similar definition follows wherj = I. Finally, whenj =k =1
we find thatvgk") =Vj\n, T Vj\n, —Vj- The other Normal-Wishart parameters follow the same route.

The correction evaluates iB(N?K?) complexity.

F.2 Corrections for the Predictive Distribution

From (34) we can compute a first-order correction to the predictive disinib with p(x|D) ~
/deq(B)p(x|0)(1+ T hen(0)), which we rewrite as

P4D) ~ Y [ dOp(x8)as(8) ~ (N—1) [ dOp(x)q(6).

Each predictive density in the above equation simplifies as

ManAnn . I e

1 e hent D) 5o PO PO il ke~
| dep(x8)an(e) - 722 Mt DM ) ke
(ZK’ }\k’\n + 1) Sk )‘k’\n PlXn PIX[Xn, =1.

We have seen how to compytéx,|k\n) in (26) and the discussion that followed it; we similarly de-
fine p(x|I\n). Density p(x|x,, k\n) is again the Student-t distribution of (26), but ndws replaced
with A from (35). The correction evaluates iNNK?) complexity.
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