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Abstract

A common problem of kernel-based online algorithms, sucthakernel-based Perceptron algo-
rithm, is the amount of memory required to store the onlingdtlyesis, which may increase with-
out bound as the algorithm progresses. Furthermore, th@uational load of such algorithms
grows linearly with the amount of memory used to store theollygsis. To attack these problems,
most previous work has focused on discarding some of tharines, in order to keep the memory
bounded. In this paper we present a new algorithm, in whielirtstances are not discarded, but are
instead projected onto the space spanned by the previoine dnylpothesis. We call this algorithm
Projectron. While the memory size of the Projectron solutiannot be predicted before training,
we prove that its solution is guaranteed to be bounded. Weedarelative mistake bound for the
proposed algorithm, and deduce from it a slightly differalgorithm which outperforms the Per-
ceptron. We call this second algorithm Projectron++. Wenstiat this algorithm can be extended
to handle the multiclass and the structured output settiegsilting, as far as we know, in the first
online bounded algorithm that can learn complex classifinatisks. The method of bounding the
hypothesis representation can be applied to any consaxatiine algorithm and to other online
algorithms, as it is demonstrated for ALMAExperimental results on various data sets show the
empirical advantage of our technique compared to variouadbed online algorithms, both in terms
of memory and accuracy.

Keywords: online learning, kernel methods, support vector machinesnded support set

1. Introduction

Kernel-based discriminative online algorithms have been shown to pesferynwell on binary
and multiclass classification problems (see, for example, Freund andi®chi£99; Crammer and
Singer, 2003; Kivinen et al., 2004; Crammer et al., 2006). Each of tigsethms works in rounds,
where at each round a new instance is provided. On rounds wheralihe algorithm makes a
prediction mistake or when the confidence in the prediction is not sufficiengltforithm adds the
instance to a set of stored instances, calledstiygport set The online classification function is
defined as a weighted sum of kernel combination of the instances in thersapp It is clear that if
the problem is not linearly separable or the target hypothesis is changingirae, the classification
function will never stop being updated, and consequently, the supgontik grow unboundedly.

x. A preliminary version of this paper appeared in the Proceedings ofitrel@ternational Conference on Machine
Learning under the title “The Projectron: a Bounded Kernel-Basecepaom”.
t. Current affiliation: Toyota Technological Institute at Chicago, 604&8wood Ave., Chicago, IL 60637.
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This leads, eventually, to a memory explosion, which limits the applicability of thigeeithms
for those tasks, such as autonomous agents, for example, where datseraoguired continuously
over time.

Several authors have tried to address this problem, mainly by boundingratpegcsize of
the support set with a fixed value, calledbadget The first algorithm to overcome the unlimited
growth of the support set was proposed by Crammer et al. (2003)redingd by Weston et al.
(2005). In these algorithms, once the size of the support set reaehiesdfet, an instance from the
support set that meets some criterion is removed, and replaced by thegstancen The strategy
is purely heuristic and no mistake bound is given. A similar strategy is also insS®ORMA
(Kivinen et al., 2004) and SILK (Cheng et al., 2007). The very firdire algorithm to have a fixed
memory budget and a relative mistake bound is the Forgetron algorithm |(Be&k, 2007). A
stochastic algorithm that on average achieves similar performance taféorgend with a similar
mistake bound was proposed by Cesa-Bianchi et al. (2006). Unlikeesdiqus work, the analysis
presented in the last paper is within a probabilistic context, and all the balemided there are in
expectation. A different approach to address this problem for onlins$&an processes is proposed
in Csab and Opper (2002), where, in common with our approach, the instane@®tdiscarded,
but rather projected onto the space spanned by the instances in thetsgipdiowever, in that
paper no mistake bound is derived and there is no use of the hinge logh @ften produces
sparser solutions. Recent work by Langford et al. (2008) prapagmrameter that trades accuracy
for sparseness in the weights of online learning algorithms. Neverthéhéssgpproach cannot
induce sparsity in online algorithms with kernels.

In this paper we take a different route. While previous work focusediscarding some of
the instances in order to keep the support set bounded, in this work thadas are not discarded.
Either they are projected onto the space spanned by the support sely aréladded to the support
set. By using this method, we show that the support set and, hence lithe foypothesis, is guar-
anteed to be bounded, although we cannot predict its size before trdimstgad of using a budget
parameter, representing the maximum size of the support set, we introgacenaeter trading ac-
curacy for sparseness, depending on the needs of the task afltenthain advantage of this setup
is that by using all training samples, we are able to provide an online hyp®tligls high online
accuracy. Empirically, as suggested by the experiments, the output bgpsthre represented with
relatively small number of instances, and have high accuracy.

We start with the most simple and intuitive kernel-based algorithm, namely thelksared
Perceptron. We modify the Perceptron algorithm so that the number ofistareples needed to
represent the online hypothesis is always bounded. We call this newtligd’rojectron The
empirical performance of the Projectron algorithm is on a par with the origteateptron algo-
rithm. We present a relative mistake bound for the Projectron algorithm, eshacd from it a new
online bounded algorithm which outperforms the Perceptron algorithm,tiiutegains all of its
advantages. We call this second algoritRmjectron++. We then extend Projectron++ to the more
general cases of multiclass and structured output. As far as we knovg thesfirst bounded mul-
ticlass and structured output online algorithm, with a relative mistake bbu@dr technique for
bounding the size of the support set can be applied to any conserkativel-based online algo-
rithm and to other online algorithms, as we demonstrate for ALN@entile, 2001). Finally, we
present some experiments with common data sets, which suggest that Brojectomparable to

1. Note that converting the budget algorithms presented by other augiiotsas the Forgetron, to the multiclass or the
structured output setting is not trivial, since these algorithms are inhel@ndyy in nature.
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Perceptron in performance, but it uses a much smaller support setodorexperiments with Pro-
jectron++ shows that it outperforms all other bounded algorithms, whilgubgsmallest support
set. We also present experiments on the task of phoneme classificatioh,igsvhansidered to be
difficult and naturally with a relatively very high number of support vestdVhen comparing the
Projectron++ algorithm to the Passive-Aggressive multiclass algorithem{@er et al., 2006), it
turns out that the cumulative online error and the test error, after otdibatch conversion, of both
algorithms are comparable, although Projectron++ uses a smaller sugport s

In summary, the contributions of this paper are (1) a new algorithm, callgdd®an, which is
derived from the kernel-based Perceptron algorithm, which empiricatfpqmes equally well, but
has a bounded support set; (2) a relative mistake bound for this algo @ranother algorithm,
called Projectron++, based on the notion of large margin, which outpesftie Perceptron algo-
rithm and the proposed Projectron algorithm; (4) the multiclass and struaiutpdt Projectron++
online algorithm with a bounded support set; and (5) an extension of clunitpie to other online
algorithms, exemplified in this paper for ALMA

The rest of the paper is organized as follows: in Section 2 we state theepraefinition and
the kernel-based Perceptron algorithm. Section 3 introduces Projeatomg, with its theoretical
analysis. Next, in Section 4 we derive Projectron++. Section 5 presemsuhiclass and structured
learning variant of Projectron++. In Section 6 we apply our techniquexfother kernel-based
online algorithm, ALMA. Section 7 describes experimental results of the algorithms presented, on
different data sets. Section 8 concludes the paper with a short distussio

2. Problem Setting and the Kernel-Based Perceptron Algoritm

The basis of our study is the well knowPerceptronalgorithm (Rosenblatt, 1958; Freund and
Schapire, 1999). The Perceptron algorithm learns the mappintj — R based on a set of ex-
amples? = {(x1,y1), (X2,¥2),...}, wherex; € X is called annstanceandy; € {—1,+1} is called
alabel. We denote the prediction of the Perceptron algorithm ag ${gn) and we interpretf (x)|

as the confidence in the prediction. We call the outpuif the Perceptron algorithm laypothe-

sis and we denote the set of all attainable hypothese®/byn this paper we assume thaf is a
Reproducing Kernel Hilbert Space (RKHS) with a positive definite Keiurectionk : X x X — R
implementing the inner product, -). The inner product is defined so that it satisfies the reproducing
property,(k(x, ), f()) = f(x).

The Perceptron algorithm is an online algorithm, where learning takes placends. At each
round a new hypothesis function is estimated, based on the previous erdenite the hypothesis
estimated after theth round byf;. The algorithm starts with the zero hypothedis= 0. At each
roundt, an instance; € X is presented to the algorithm, which predicts a label {—1,+1} using
the current functiony; = sign(fi(x¢)). Then, the correct labsk is revealed. If the predictiog ~
differs from the correct labe), the hypothesis is updated &s= f;_1 + yik(x:,-), otherwise the
hypothesis is left intactfy = f;_;. The hypothesid; can be written as a kernel expansion according
to the representer theorem (®thopf et al., 2001),

fi(x) = Z aik(x;,x), Q)
X €5t
wherea; = y; and$; is defined to be the set of instances for which an update of the hypothesis

occurred, that is$ = {x;,0<i <t|yi #Vi}. The sets is called thesupport set The Perceptron
algorithm is summarized in Figure 1.
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Initialize: Sp=0, fo=0
Fort=12,...
Receive new instanog
Predicty; = sign(fi—1(xt))
Receive labey;
If v # Vit
ft = fi_1+wk(xt,-)  (update the hypothesis)
St =S-1UX  (add instance to the support set)

Else
fi =11
St =81

Figure 1: The kernel-based Perceptron Algorithm.

Although the Perceptron algorithm is very simple, it produces an onlinethgpis with good
performance. Our goal is to derive and analyze a new algorithm, whigdutsua hypothesis that
attains almost the same performance as the Perceptron hypothesis, lmg @presented using
many fewer instances, that is, an online hypothesis that is “close” to tloesyn hypothesis but
represented by a smaller support set. Recall that the hypothésiepresented as a weighted sum
over all the instances in the support set. The size of this representatiom ¢artlinality of the
support setl.S;|.

3. The Projectron Algorithm

This section starts by deriving the Projectron algorithm, motivated by an dgaha finite dimen-

sional kernel space. It continues with a description of how to calculaterttjected hypothesis
and describes some other computational aspects of the algorithm. The smotaudes with a
theoretical analysis of the algorithm.

3.1 Definition and Derivation

Let us first consider a finite dimensional RKH% induced by a kernel such as the polynomial
kernel. SinceA is finite dimensional, there are a finite number of linearly independent hygextie
this space. Hence, any hypothesis in this space can be expressed fisitgnumber of examples.
We can modify the Perceptron algorithm to use only one set of indepeidtances as follows.
On each round the algorithm receives an instance and predicts its lab&pi@diction mistake, we
check if the instancg; can be spanned by the support set, namely, for scdla®, 1 <i < |51/,
not all zeros, such that

k(Xt,') = Z dik(Xi,-) .

X €ES5t—1

If we can find such scalars, the instance is not added to the suppditsitstead, the coefficients
{ai} in the expansion Equation (1) are changed to reflect the addition of thisdesta the support
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set. Namely, for every
ai =VYi+Wdi.

On the other hand, if the instance and the support set are linearly irglmethe instance is added
to the set witho; = y; as before. This technique reduces the size of the support set withengiog
the hypothesis. A similar approach was used by Downs et al. (2001) to sir$Mi¥1 solutions.

Let us consider now the more elaborate case of an infinite dimensional RKi@uced by a
kernel such as the Gaussian kernel. In this case, it is not possible tafimte number of linearly
independent vectors which span the whole space, and hence thegigraatee that the hypothesis
can be expressed by a finite number of instances. However, we canxapate the concept of linear
independence with a finite number of vectors (6satd Opper, 2002; Engel et al., 2004; Orabona
et al., 2007).

In particular, let us assume that at rouraf the algorithm there is a prediction mistake, and that
the mistaken instance should be added to the support sgt,;. Let #_1 be an RKHS which is
the span of the kernel images of the instances in thg;set Formally,

F-1 = span({k(x,-)|x € Si-1}) - 2

Before adding the instance to the support set, we construct two hypetrasmporary hypothesis
f/, using the functiork(x, -), that is, f/ = fi_1 + yik(x:,-), and aprojected hypothesisf;’, that

is the projection off/ onto the space_,. That is, the projected hypothesis is that hypothesis
from the space#;_1 which is theclosestto the temporary hypothesis. In a later section we will
describe an efficient way to calculate the projected hypothesis. Den@etthy distance between
the hypotheses) = f’ — f/. If the norm of distance|&|| is below some threshold, we use
the projected hypothesis as our next hypothesis, thdt is, f’, otherwise we use the temporary
hypothesis as our next hypothesis, thatis; f/. As we show in the following theorem, this strategy
assures that the maximum size of the support set is always finite, reggodine dimension of the
RKHS #. Guided by these considerations we can design a new Perceptron-likéhaiy that
projects the solution onto the space spanned by the previous supporswebenever possible. We
call this algorithmProjectron The algorithm is given in Figure 2.

The parameten plays an important role in our algorithm. ff is equal to zero, we obtain
exactly the same solution as the Perceptron algorithm. In this case, hotheM@rpjectron solution
can still be sparser when some of the instances are linearly dependemtiothe kernel induces a
finite dimensional RKHSH.. If n is greater than zero we trade precision for sparseness. Moreover,
as shown in the next section, this implies a bounded algorithmic complexity, naimeiyemory
and time requirements for each step are bounded. We analyze the éffeonahe classification
accuracy in Subsection 3.3.

3.2 Practical Considerations

We now consider the problem of deriving the projected hypothigsiis a Hilbert space#, induced
by a kernel functiork(-,-). Recall thatf! is defined asf{ = f; + yik(x;,-). Denote byR_f{ the
projection of f{ € # onto the subspacgt_1 C #. The projected hypothesi§’ is defined as
f' = B_1f/. Schematically, this is depicted in Figure 3.

Expandingf{ we have

f' = R_1f{ = R 1 (fioa+yik(x,-)) .
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Initialize: Sp=0, fo=0
Fort=12,...
Receive new instanog
Predicty; = sign( fi_1(Xt))
Receive labey;
If vt # %
Setf/ = fi_1+yik(x;,-)  (temporary hypothesjs
Setf/” = f/ projected onto the spack_;  (projected hypothesjs
Setd = /' — f/

If [[&]l <n
fi= 1
St=St-1
Else
fi=1
S =8%-1UXt  (addx; to the support set)
Else
fr="f1
St=S-1

Figure 2: The Projectron Algorithm.

The projection is a linear operator, hence

f' = fio1 + yP_ak(Xt, ") . (3)

Recall that, = f{" — f/. By substitutingf/’ from Equation (3) and; we have
& = fi' — f{ = wR_1k(Xt,-) — yek(xt,-) - (4)

The projection off{ € # onto a subspacgt_; C H is defined as the hypothesis #{_, closest
to f{. Hence, letyy,cs , djk(X;j,-) be an hypothesis itt_1, whered = (dy,...,d5_,) is a set of
coefficients, withd; € R. The closest hypothesis is the one for which it holds that

2
2 .
8= m

> dik(xj,-) —k(x,-)

XjESt-1

(5)

Expanding Equation (5) we get

||6t|12:nrbin< > didik(xj;,x) -2 djk(XJ>Xt)+k(Xt,Xt)>‘

Xi,Xj€St-1 XjESt-1
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Figure 3: Geometrical interpretation of the projection of the hypothgsanto the subspac{_;.

Let us defineK;_; € RI-1-1 to be the matrix generated by the instances in the suppost_sgt
that is, {K_1}i j = k(xi,x;j) for everyx;,x; € 5—1. Let us also definé; € R to be the vector
whosei-th element id;, = k(x;,X;). We have

|\6[H2:rr;jin(dTKt,ld—Zdit+k(xt,xt)) : (6)
Solving Equation (6), that is, applying the extremum conditions with respettt@ obtain
d* = K ke ()
and, by substituting Equation (7) into Equation (6),
18117 = k(xe. %) —k{ d* . (8)
Furthermore, by substituting Equation (7) back into Equation (3) we get

ft// — ft71+yt Z di(XJ’) . (9)

XjESt-1

We have shown how to calculate both the distaficend the projected hypothesi§. In summary,
one needs to computeE according to Equation (7), and plug the result either into Equation (8) to
obtaind, or into Equation (9) to obtain the projected hypothesis.

In order to make the computation more tractable, we need an efficient methaftutate the
matrix inversionkK; ! iteratively. The first method, used by Cauwenberghs and Poggio Y2600
incremental training of SVMs, directly updates the inverse matrix. An efficiay to do this,
exploiting the incremental nature of the approach, is to recursively ufitataverse matrix. Using
the matrix inversion lemma it is possible to show (see, e.g.,6Caadl Opper, 2002) that after the
addition of a new samplé;  becomes

0
-1 : 1 d*
K—1: Kt—l : 4 |: :| d*T -1
: o| "Rl 1! ]
0 00
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Input: new instance, K(_ll, and the support set_1

- Setky = (K(x1,Xt),K(X2,%), - -, K(X5_4,%t))

- Solved* = K ki

- Set||&]|% = K(x¢, %) — k{ d*

- The projected hypothesis f§' = fi_1+ ¥t 3 x,e5_, djK(X}, ")

- Kernel inverse matrix for the next round

0
-1 : 1 a*
t o | | 1! )

11°]

Output: the projected hypothesif’, the measuré; and the kernel invers
matrix K 2.

Figure 4: Calculation of the projected hypothegis

whered* and||&]|? are already evaluated during the previous steps of the algorithm, aslgiven
Equation (7) and Equation (8). Thanks to this incremental evaluation, the tmplexity of the
linear independence check @ |$;_1|%), as one can easily see from Equation (7). Note that the
matrix K;_; can be safely inverted since, by incremental construction, it is alwdiysafik.

An alternative way to derive the inverse matrix is to use the Cholesky detigmoof K;_1
and to update it recursively. This is known to be numerically more stable ihectly updating the
inverse. In our experiments, however, we found out that the metheemed here is as stable as
the Cholesky decomposition.

Overall, the time complexity of the algorithm B(|5|?), as described above, and the space
complexity isO(]5|2), due to the storage of the matkx %, similar to the second-order Perceptron
algorithm (Cesa-Bianchi et al., 2005). A summary of the derivatioff’othe projection off/ onto
the space spanned By 1, is described in Figure 4.

3.3 Analysis
We now analyze the theoretical aspects of the proposed algorithm. Firgiresent a theorem
which states that the size of the support set of the Projectron algorithruiiglbd.

Theorem 1 Letk: X x X — R be a continuous Mercer kernel, witha compact subset of a Banach
space. Then, for any training sequerie= {(xi,yi)},i = 1,2,--- and for anyn > 0, the size of the
support set of the Projectron algorithm is finite.

Proof The proof of this theorem follows the same lines as the proof of Theorein &dgel et al.
(2004). From the Mercer theorem it follows that there exists a mappinyj — #’, where#’ is
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an Hilbert spacek(x,x’) = (@(x), ®(x")) and@is continuous. Given thagis continuous and that
is compact, we obtain thai X) is compact. From the definition & in Equation (5) we get that
every time a new basis vector is added we have

2

n° < &> = min < min|[dik(x;,) — k(x|
]

Z djk(Xj,-) — k(Xt,-)

XjESt-1

= min|ldjetx;) — 90)|* < [fotx;) — 90|

for any 1< j <|&-1|. Hence from the definition of packing numbers (Cucker and Zhou, 2007
Definition 5.17), we get that the maximum size of the support set in the Prajeatgorithm is
bounded by the packing number at scgl®f @(X). This number, in turn, is bounded by the
covering number at scalg/2, and it is finite because the set is compact (Cucker and Zhou, 2007,
Proposition 5.18). |

Note that this theorem guarantees that the size of the support set is dphodever it does not
state that the size of the support set is fixed or that it can be estimated baiaing.

The next theorem provides a mistake bound. The main idea is to bound the maxinmber
of mistakes of the algorithm, relative to any hypothesés #, even chosen in hindsight. First, we
define the loss with a margine R of the hypothesig on the exampléx;, y;) as

fy(9(Xt), Yt) = max{0,y— yeg(xt) }, (10)

and we define the cumulative log3,, of g on the firstT examples as

.
Dy = tZlgy(g(xt)’yt) :

Before stating the bound, we present a lemma that will be used in the rastpfanfs. We will use
its first statement to bound the scalar product between a projected sardpleearompetitor, and
its second statement to derive the scalar product between the curpathésis and the projected
sample.

Lemma 2 Let(X,y) be an example, witk € X andy € {+1,—1}. If we denote by () an hypoth-
esis in#, and denote by (@) any function in#{, then the following holds

y(f,a) = y—£4,(F(%),9) — [|f[| - [[a—k(X, )] -
Moreover, if f(-) can be written ag ™ ; aik(xi, ) with a; € R andx; € X,i=1,---,m, and ¢-) is
the projection of kX, -) onto the space spanned bixk-),i =1,--- ,m, then
y(f,a) =yf(X) .

Proof The first inequality comes from an application of the Cauchy-Schwaraalidyg and the
definition of the hinge loss in Equation (10). The second equality follows fiwe fact that f,q—
k(X,-)) = 0, becausd (-) is orthogonal to the difference betwek(X, -) and its projection onto the
space in whichf (-) lives. [ |

With these definitions at hand, we can state the following bound for Projectro
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Theorem 3 Let (X1,¥1), -+, (XT,yr) be a sequence of instance-label pairs wheres X, y €
{—1,+1}, and Kx,x) < 1 for all t. Assume that the Projectron algorithm is run with> 0.
Then the number of prediction mistakes it makes on the sequence is tdoynde

gl N D1 N e]l D1
(1-nllg?  1-nlgll  1-nlglly 1—n]g

where g is an arbitrary function itt, such that|g|| < %

Proof Define the relative progress in each rounddas- || f,_1 — Ag||? — || f — Ag||%, whereA is a
positive scalar to be optimized. We bound the progress from above towl las in Gentile (2003).

On rounds where there is no mistake,equals 0. On rounds where there is a mistake there are
two possible updates: eithér= f;_1 + yiP_1k(xt,-) or fy = fi_1 + ytk(Xt,-). In the following we
start bounding the progress from below, when the update is of the faymerIn particular we set
g(-) = R_1K(xt,-) in Lemma 2 and us& = y;P_1K(xt,-) — yik(Xt,-) from Equation (4). Let; be

an indicator function for a mistake on théh round, that ist; is 1 if there is a mistake on round

and 0 otherwise. We have

A = || fior = Ag||* = || f — Ag||® = 2Tyt (Ag — i1, R_1k(X;, ) — 2[R 1k (X, ) [|?
> Tt (2)\ — 2M1(9(%), ) — Tel|R—ak (X, ) |2 — 279l - (|8 ]| — 2yt ft—l(xt>> . (11)

Moreover, on every projection updat& || < n, and||R_1k(x:,-)|| < 1 by the theorem’s assumption,
so we have

8= (2A— 2Ma(gx), %) — T — 21 gl — 2 feea(x) ) -

We can further bound; by noting that on every prediction mistaje;_1(x;) < 0. Overall we have

e =Agl? = 1 = Agl? = T (2 — 2Ata(9(x), ) — T~ 21Allg]]) - (12)

When there is an update without projection, similar reasoning yields that

2 =Ag2 = 1o = Agl? > w (21 = M1 (g0x). 30) — ),

hence the bound in Equation (12) holds in both cases.

We sum ovet on both sides, remembering thmtcan be upper bounded by 1. The left hand
side of the equation is a telescoping sum, hence it collapsef toAg||® — || fr — Ag||%, which can
be upper bounded B\?||g||?, using the fact thafy = 0 and that| fr — Ag||? is non-negative. Finally,
we have

M[|g]*+2\D1 > M (2 — 2nAl|g]| - 1), (13)
whereM is the number of mistakes. The last equation implies a bourM for any choice ok > 0,
hence we can take the minimum of these bounds. From now on we can supptd > #ﬁgl\

In fact, ifM <
of A occurs at

- nl\gl\ then the theorem trivially holds. The minimum of Equation (13) as a function

\_ M2-njg]) -
lgl?
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By our hypothesis tha¥l > %\ﬁgl\ we have thah* is positive. Substituting* into Equation (13)
we obtain

(D1 —M(1-nligl}))*
[e]lis

Solving forM and overapproximating concludes the proof. |

—-M<O0.

This theorem suggests that the performance of the Projectron algorithighitysworse than
that of the Perceptron algorithm. Specifically, if we get 0, we recover the best known bound for
the Perceptron algorithm (see for example Gentile, 2003). Hence thaddipn in the performance
of Projectron compared to Perceptron is relategtg—. Empirically, the Projectron algorithm and
the Perceptron algorithm perform similarly, for a wide range of settingg of

4. The Projectron++ Algorithm

The proof of Theorem 3 suggests how to improve the Projectron algoritiimpmve upon the
performance of the Perceptron algorithm, while maintaining a bounded gigghoWe can change

the Projectron algorithm so that an update takes place not only if there édlcjiwn mistake, but
also when the confidence of the prediction is low. We refer to this latter caseargin error, that

is, 0< vt fi_1(Xt) < 1. This strategy is known to improve the classification rate but also increases
the size of the support set (Crammer et al., 2006). A possible solution toldkiaate is not to
update on every round in which a margin error occurs, but only whee te@ margin error and the
new instancean be projecteanto the support set. Hence, the update on round in which there is a
margin error would in general be of the form

fr = fio1 + BT R—1K(Xt, ) ,

with 0 < 1; < 1. The last constraint comes from the proof of Theorem 3, where werdpundr;
by 1. Note that setting; to O is equivalent to leaving the hypothesis unchanged.

In particular, disregarding the loss term in Equation (11), the prodxesan be made positive
with an appropriate choice af. Whenever this progress is non-negative the worst-case number
of mistakes decreases, hopefully along with the classification error rétbe elgorithm. With this
modification we expect better performance, that is, fewer mistakes, budwidmy increase of the
support set size. We can even expect solutions with a smaller supp®@inee new instances can
be added to the support set only if misclassified, hence having fewer essshlould result in a
smaller support set. We name this algoritRmjectron++. The following theorem states a mistake
bound for Projectron++, and guides us in how to chopse

Theorem 4 Let (x1,y1), -+, (X7,yT) be a sequence of instance-label pairs wheyec X, y; €
{—1,+1}, and Kx;,x;) < 1 for all t. Assume that Projectron++ is run witlh > 0. Then the
number of prediction mistakes it makes on the sequence is bounded by

gl D1 e]l ( D )
+ + max{ 0,—— —B
(I-nlgh?  1-nlgl 1-nlgl 1-nllg|

2653



ORABONA, KESHET AND CAPUTO

where g is an arbitrary function it#, such that|g|| < %,

O (1 (x),y) — 180
0< T <min{ 2 N1
‘ { IR—1k(x;, )2

and

B= z Tt <2€1(ft1(Xt)7yt)_.['[’Pt1k(xta')”2_2W> >0.
{t:0<yt fr—1 (%) <1} n

Proof The proof is similar to the proof of Theorem 3, where the difference isdiahg rounds in
which there is a margin error we update the solution whenever it is possibtejerpensuring an
improvement of the mistake bound. Assume that 1. On rounds when a margin error occurs, as
in Equation (11), we can write

D¢+ 201 (9(%), W) > Tt (20— Tel|R—1k (X, ) [ = 2A[1& || - 19| — 2v fe—1.(xt) )
> Tt <2 <1— H?{”) —Tt||R—1K(Xt, ) || — 2%t ft—l(Xt)>
= T <2€1(ft1(xt),yt) _TtHPtlk(Xta')Hz_zH?][”)a (14)

where we used the bounds pgi| andA. Let 3 be the right hand-side of Equation (14). A sufficient
condition to have; positive is

f(fealx).n) —

<2
t IR 1k(x;, )2

Constraining; to be less than or equal to 1 yields the update rule in the theorem.
LetB =3 (t:0cy fis(x)<1} Pt- Similarly to the proof of Theorem 3, we have

M?(|g|? +2AD1 > M (2A —2nA[lg] — 1) +B.. (15)

Again, the optimal value of is

\._ M(1-n]g)) - Dy
_ ) -Ds
lol

We can assume thad(1—n||g||) — D1 > ||g||?. In fact, if M < ”ﬂ;ﬁf, then the theorem trivially

holds. With this assumptior\* is positive and greater than or equal to 1, satisfying our initial
constraint or\. Substituting this optimal value @f into Equation (15), we have

(D1 —M(2-n|g|)?
lgll?

Solving forM concludes the proof. |

-M+B<O0.
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The proof technique presented here is very general, in particular itecapplied to the Passive-
Aggressive algorithm PA-I (Crammer et al., 2006). In fact, removing tlogeption step and up-
dating on rounds in which there is a margin error, with= f;_1 + yiTtk(xt, -), we end up with the

condition 0< 1y < min{ZW,l}. This rule generalizes the PA-I bound wheneRet 1
andC = 1, however the obtained bound substantially improves upon the originatho@rammer
et al. (2006).

The theorem gives us some freedom for the choicg.dExperimentally we have observed that

we obtain the best performance if the update is done with the following rule
C(Foa (), y) (o (X). 1) — HTH 1
IR-1k(xe, ) 12" [[R-ak(xe, )2

Tt = min

The added term in the minimum comes from ignoring the temi{fl‘—” and in finding the maximum

of the quadratic equation. Notice that the teff_1k(x;,-)||? in the last equation can be practically
computed a&{ d*, as can be derived using the same techniques presented in Subsection 3.2

We note in passing that the condition on whetkeran be projected ont#_; on margin error
may stated ag; (fi—1(Xt), %) > ”?l‘—”. This means that if the loss is relatively large, the progress is
also large and the algorithm can afford “wasting” a bit of it for the sakerojecting.

The algorithm is summarized in Figure 2. The performance of the Projectralgorithm, the
Projectron algorithm and several other bounded online algorithms areatechpnd reported in
Section 7.

5. Extension to Multiclass and Structured Output

In this section we extend Projectron++ to the multiclass and the structured satpuags (note that
Projectron can be generalized in a similar way). We start by presenting tfeecmmplex decision
problem, namely the structured output, and then we derive the multiclass depisiolem as a
special case.

In structured output decision problems the set of possible labels haswewand defined struc-
ture, such as a tree, a graph or a sequence (Collins, 2000; Taskar2®03; Tsochantaridis et al.,
2004). Denote the set of all labels 2= {1,...,k}. Each instance is associated with a label from
. Generally, in structured output problems there may be dependenciesdnetine instance and
the label, as well as between labels. Hence, to capture these deperdiecieput and the output
pairs are represented in a common feature representation. The leasking ttaerefore defined as
finding a functionf : X x 9 — R such that

yr = argmaxf (xt,y) . (16)
yeY

Let us generalize the definition of the RKHS introduced in Section 2 to the case of structured
learning. A kernel function in this setting should reflect the dependeibeigeen the instances
and the labels, hence we define the structured kernel function as tiofuna the domain of the
instances and the labels, namdt?,: (X x 9/)2 — R. This kernel function induces the RKHS
HS, where the inner product in this space is defined such that it satisfiesgtaglucing property,

(k3((xy), ), F) = F(x.y).
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Initialize: Sp=0, fo=0
Fort=12,...
Receive new instanoe
Predicty; = sign(fi—1(xt))
Receive labey;
If yi #%:  (prediction erroi)
Setf{ = fi_1+wk(x,-)
Setf/ =R_1f/

Setd = " — f/
If &)l <n
f =1
St=S-1
Else
fo=f/
St=St-1UX

Else If yi =¥ andy:fi_1(x) <1  (margin error)
Set6[ = Pt,]_k(Xt, ) — k(Xt, )
If £1(fi—1(Xt), W) > H?{—” (check if thex; can be projected ontd%_;)

Sett; = min{fl(ftl(xt)syt) Zzl(f‘—l(xt)’y‘)_u?{iu ’ 1}

[R-1k(x,)[[2 [R—1k(xt,")[I?

Setfi = fi_1 +WtR_1k(Xt, )
St =81

Else
fo="11
St =51

Else
fi=fia
St=58-1

Figure 5: The Projectron++ Algorithm.

As in the binary classification algorithm presented earlier, the structutpdtanline algorithm

receives instances in a sequential order. Upon receiving an instarcg’, the algorithm predicts a
label,y;, according to Equation (16). After making its prediction, the algorithm vesehe correct
label,y;. We define the loss suffered by the algorithm on roufat the exampléx;,y;) as

f?(f,Xt,yt) = maX{Ovy_ f(bet) +;n7éaXf (Xtay{)}a

k7Yt
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and the cumulative Iosﬁ\? as
T
D$: Zléi(faxtayt) .
t=

Note that sometimes it is useful to defipas a functiory: 9 x 9 — R describing the discrepancy
between the predicted label and the true label. Our algorithm can handle $afoel cost function,
but we will not discuss this issue here (see Crammer et al., 2006, foefutétails).

As in the binary case, on rounds in which there is a prediction misggkéy:, the algorithm
updates the hypothesfs_; by addingk((xt,¥:),-) — k((Xt,t),-) or its projection. When there is
a margin mistake, & E?(ft,l,xt,yt) <y, the algorithm updates the hypothedis; by adding
TtR—1 (K((%t, W), -) — k((Xt,¥1),-)), where O< 1y < 1 and will be defined shortly. Now, for the struc-
tured output caséy, is defined as

& = k((Xt,%t),-) — K((Xt, 1), -) — R—1 (K((Xe, 1), ) — K((Xe, 1)) -

The analysis of the structured output Projectron++ algorithm is similar to tbaided for the
binary case. We can easily obtain the generalization of Lemma 2 and Thédaefiollows

Lemma5 Let (X,¥) be an example, witk € X andy € 9. Denote by {.) an hypothesis i#S.
Let o) € #S. Then the following holds for any g 9

(f.0) = y—G(5.%.9) =[] [a— (k((%.9),-) —k(%.Y),)]| -

Moreover if f(-) can be written ag " ; aik((xi,yi), ) witha; € R andx; € X,i=1,---,m, and q is
the projection of k(X,y), ) —k((X,y'),) in the space spanned by(k;,yi),-),i =1,--- ,m, we have
that

Theorem 6 Let (X1,¥1),- -+, (XT,yr) be a sequence of instance-label pairs where X, y; € 9,
and |[k((Xt,y),-)|| < 1/2for allt and ye 9. Assuming that Projectron++ is run with > 0O, the
number of prediction mistakes it makes on the sequence is bounded by

lgl? D? gl ( ? )
+ + max| O, —B
(1-nlglh>  1-nllgl ~ 1-nlgl 1—nllgll
where g is an arbitrary function itHS, such that|g|| < &,

a = P (K((XW),) — k(X6 W), )

B(fr,xy) — Bl
0<T < min{z rtho o)~ 1

2l

O
B — )3 T <2ef(ft_1,xt,yt) —Tt\lalz—Z”’> >0.
{t:0<5(fio1. %, yt) <1} !
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As in Theorem 4 there is some freedom in the choicg aind again we set it to

t 3]
Ttmin{gf(ft17Xt7yt)’2€1(ftlyxt7yt) n 71}.

a2 a2

In the multiclass decision problem case, the kerk@lxi,y1),(X2,y2)) is simplified to
dy.y,K(X1,X2), wheredy,y, is the Kronecker delta. This corresponds to the use of a different pro-
totype for each class. This simplifies the projection step, inkK&gt, y:),-) can be projected only
onto the functions ir§_1 belonging toy;, the scalar product with the other functions being zero.
So instead of storing a single mat# %, we need to storen matrices, wheren is the number of
classes, each one being the inverse matrix of the Gram matrix of the funofiome class. This
results in improvements in both memory usage and computational cost of thétaigofio see
this suppose that we haweclasses, each with vectors in the support set. Storing a single matrix
means having a space and time complexitP@i’n?) (cf. Section 3), while in the second case the
complexity isO(mr?). We use this method in the multiclass experiments presented in Section 7.

6. Bounding Other Online Algorithms

It is possible to apply the technique in the basis of the Projectron algorithmytcarservative
online algorithm. A conservative online algorithm is an algorithm that updatéyjitsthesis only
on rounds on which it makes a prediction error. By applying Lemma 2 to seceets/e algorithm,
we can construct a bounded version of it with worst case mistake boAsdis the previous proofs,
the idea is to use Lemma 2 to bound the scalar product of the competitor anojéetqut function.
This yields an additional term which is subtracted from the maygihthe competitor.

The technique presented here can be applied to other online kerndl-dlgseithms. As an
example, we apply our technique to ALMAGentile, 2001). Again we define two hypotheses: a
temporary hypothesi§’, which is the hypothesis of ALMAafter its update rule, and a projected
hypothesis, which is the hypothedisprojected on the set{_; as defined in Equation (2). Define
the projection errod; as® = f/ — f/’. The modified ALMA, algorithm uses the projected hypoth-
esisf/’ whenever the projection error is smaller than a parantgtetherwise it uses the temporary
hypothesisf/. We can state the following bound

Theorem 7 Let (x1,¥1), -+, (X7,YT) be a sequence of instance-label pairs wheyes X, y; €
{—1,+1}, and Kx¢,x;) < 1for allt. Leta, B and Ce R* satisfy the equation

C>4+2(1—-a)BC=1.

Assume ALM#a;B,C) projects every time the projection errpd|| is less tham > 0, then the
number of prediction mistakes it makes on the sequence is bounded by

Dy p*, [p* P?
——+ 5+ 5+ ——Dy+p?
y-n 2 4y vtP

wherey > n, p = -, and g is an arbitrary function i/, such that|g|| < 1.

Proof The proof follows the original proof presented in Gentile (2001). Spdifi, according
to Lemma 2, one can replace the relatig(o, k(xt,-)) > y— 6y(9(%t), yt) with y; (g, B—1K(x¢,-)) >
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| Data Set | Samples| Features| Classes| Kernel | Parameterg
a9a(Platt, 1999) 32561 123 2 | Gaussian 0.04
ijjcnnl (Prokhorov, 2001) 49990 22 2 | Gaussian 8
news20.binaryKeerthi et al., 2005) 19996 | 1355191 2 | Linear -
vehicle(Duarte and Hu, 2004) 78823 100 2 | Gaussian | 0.125
synthetiqDekel et al., 2007) 10000 2 2 | Gaussian 1
mnist(Lecun et al., 1998) 60000 780 10 | Polynomial | 7
usps(Hull, 1994) 7291 256 10 | Polynomial | 13
timit (subset) (Lemel et al., 1986) | ~ 150000 351 39 | Gaussian | 80

Table 1: Data sets used in the experiments

y—n—4y(9(%),¥), and further substitutg— n for y. [ |

7. Experimental Results

In this section we present experimental results that demonstrate theveffiests of the Projec-
tron and the Projectron++ algorithms. We compare both algorithms to the Bercefgorithm,
the Forgetron algorithm (Dekel et al., 2007) and the Randomized Budgeeiron (RBP) algo-
rithm (Cesa-Bianchi et al., 2006). For Forgetron, we choose thestdlee-art “self-tuned” variant,
which outperforms all of its other variants. We used the PA-I variant oPtssive-Aggressive algo-
rithm (Crammer et al., 2006) as a baseline algorithm, as it gives an upped bauhe classification
performance of the Projectron++ algorithm. All the algorithms were implementistNILAB us-
ing the DOGMA library (Orabona, 2009).

We tested the algorithms on several standard machine learning dataSetgcnni, news20.binary
vehicle (combinedusps mnist We also used a synthetic dataset and the acoustic-phonetic dataset
timit. The synthetic dataset was built in the same way as in Dekel et al. (203 )dmposed of
10000 samples taken from two separate bi-dimensional Gaussian distribuliba means of the
positive and negative samples dfel) and(—1,—1), respectively, while the covariance matrices
for both are diagonal matrices wif.2,2) as their diagonal. The labels are flipped with a proba-
bility of 0.1 to introduce noise. The list of the data sets, their characteristics andrtiedkased,
are given in Table 1. The parameters of the kernels were selected tdheabest performance
with the Perceptron and were used for all the other algorithms to result in @ofaparison. The
C parameter of PA-l was set to 1, to give an update similar to Perceptronrajettfon. All the
experiments were performed over five different permutations of the trpggh

Experiments with one setting ofr. In the first set of experiments we compared the online
average number of mistakes and the support set size of all algorithms.FBajbtron and RBP
work by discarding vectors from the support set, if the size of the stiged reaches the budget
size,B. Hence for a fair comparison, we sgtto some value and selected the budget sizes of
Forgetron and RBP to be equal to the final size of the support set @dfhan. In particular, in
Figure 6, we sety = 0.1 in Projectron and ended up with a support set of size 793, H&rc@93.

In Figure 6@) the average online error rate for all algorithms on &9a data set is plotted. Note
that Projectron closely tracks Perceptron. On the other hand ForgatcbRBP stop improving

2. Downloaded fronfttp://www.sie.ntu.edu.tw/ ~ ¢jlin/libsvmtools/datasets/
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Figure 6: Average online error (left) and size of the support settjrigh the different algorithms
ona9adata set as a function of the number of training samples (better viewed ir).color
Bis setto 793n =0.1.

after reaching the support set sBearound 3400 samples. Moreover, as predicted by its theoretical
analysis, Projectron++ achieves better results than Perceptron, gadewer number of supports.

Figure 6p) shows the growth of the support set as a function of the number of samfuleile
for the PA-I and the Perceptron the growth is clearly linear, it is sub-lifeaProjectron and Pro-
jectron++: they will reach a maximum size and then they will stop growing, sedsia Theorem 1.
Another important consideration is that Projectron++ outperforms Projebuoth with respect to
the size of the support set and number of mistakes. Using our MATLAB impitatien, the run-
ning times for this experiment are 35s for RBP and Forgetron, 40s for Projectron and Projec-
tron++, ~ 130s for Perceptron, and 375s for PA-I. Hence Projectron and Projectron++ have a
running time smaller than Perceptron and PA-I, due to their smaller suppert se

The same behavior can be seen in Figure 7, fosihreheticdata set. Here the gain in perfor-
mance of Projectron++ over Perceptron, Forgetron and RBP is egategr

Experiments with a range of values forn - Binary. To analyze in more detail the behavior of
our algorithms we decided to run other tests using a range of valugskafr each value we obtain
a different size of the support set and a different number of mistakiesused the data to plot a
curve corresponding to the percentage of mistakes as a function ofgpersget size. The same
curve was plotted for Forgetron and RBP, where the budget size Weasteskas described before.
In this way we compared the algorithms along the continuous range of bsidgst displaying the
trade-off between sparseness and accuracy. For the remainingnesmpis we chose not to show
the performance of Projectron, as it was always outperformed byd@raje-+.

In Figure 8 we show the performance of the algorithms on different bidaty sets: (a)cnnl,
(b) a9a, (c) news20.binaryand (d)vehicle (combined) Because Projectron++ used a different
support set size for each permutation of the training samples, we plottecufives, one for each
of the five permutations. RBP and Forgetron have fixed budget sizesashtance, hence for these
algorithms we just plotted standard deviation bars, that are very small seadheye hardly seen
in the figures. In all of the experiments Projectron++ outperforms Fangetnd RBP. One may
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Figure 7: Average online error (left) and size of the support settrigh the different algorithms
on thesyntheticdata set as a function of the number of training samples (better viewed in
color). Bis set to 103n = 0.04.

note that there is a point in all the graphs where the performance of Ronjee is better than
Perceptron, and has a smaller support set. Projectron++ gets closerdaghkification rate of the
PA-1, without paying the price of a larger support set. Note that theopadnce of Projectron++

is consistently better than RBP and Forgetron, regardless of the kexea| particularly, on the
databaseews20.binarywhich is a text classification task with linear kernel. In this task the samples
are almost mutually orthogonal, so finding a suitable subspace on which jectpi® difficult.
Nevertheless Projectron++ succeeded in obtaining better performaineeeason is probably due

to the margin updates, which are performed without increasing the size sblhigon. Note that

a similar modification would not be trivial in Forgetron and in RBP, becausetbefs of their
mistake bounds strongly depend on the rate of growth of the norm of thigogolu

Experiments with a range of values forn - Multiclass. We have also considered multiclass
data sets, using the multiclass version of Projectron++. Due to the fact tvat dihe no other
bounded online algorithms with a mistake bound for multiclass, we have extdRBBdin the
natural manner to multiclass. In particular we usedrttex-scoreupdate in Crammer and Singer
(2003), for which a mistake bound exists, discarding a vector at raficonmthe solution each time
a new instance is added and the number of support vectors is equal tadiet Isize. We name it
Multiclass Random Budget Perceptron (MRBP). It should be possiblmte@ mistake bound for
this algorithm, extending the proof in Cesa-Bianchi et al. (2006). In Ei@wve show the results
for Perceptron, Passive-Aggressive, Projectron++ and MRBfettaon (a)usps and (b)mnistdata
sets. The results confirm the findings found for the binary case.

The last data set used in our experiments is a corpus of continuousl saterah for the task of
phoneme classification. The data we used is a subset of the TIMIT acptstietic data set, which
is a phonetically transcribed corpus of high quality continuous speedtesiry North American
speakers (Lemel et al., 1986). The features were generated framadjacent vectors of Mel-
Frequency Cepstrum Coefficients (MFCC) along with their first andreederivatives. The TIMIT
corpus is divided into a training set and a test set in such a way that akesgdrom the training set
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Figure 8: Average online error for the different algorithms as a funaticthe size of the support

set on different binary data sets.

appear in the test set (speaker independent). We randomly selectedibd® utterances from the
training set. The average online errors are shown in Figur@LONe also tested the performance
of the algorithm on the proposed TIMIT core test set composed of 192anttes, the results of

which are in Figure 10Qb). We used online-to-batch conversion (Cesa-Bianchi et al., 2004) to

give a bounded batch solution. We did not test the performance of MRBIedest set because for
this algorithm the online-to-batch conversion does not produce a bdwwadigion. We compare the
batch solution to the online-to-batch conversion of the PA-I solution. Thétseof Projectron++ are
comparable to those of PA-I, while the former uses a smaller support sste Tasults also suggest
that the batch solution is stable when varying the valug,ads the difference in performance on

test set is less than 3%.
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Figure 9: Average online error for the different algorithms as a funaticthe size of the support
set on different multiclass data sets.
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Figure 10: Average online errga) and test errofb) for the different algorithms as a function of
the size of the support set on a subset oftimit data set.

8. Discussion

This paper presented two different versions of a bounded onlindtggaitgorithm. The algorithms
depend on a parameter that allows one to trade accuracy for sparaéribe solution. The size
of the solution is always guaranteed to be bounded, although the size diotmsl is unknown
before the training begins. Therefore, these algorithms solve the memdosiexpproblem of
the Perceptron and similar algorithms. Although the size of the support sediche determined
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before training, practically, for a given target accuracy, the sizee§tipport sets of Projectron or
Projectron++ are much smaller than those of other budget algorithms s&cingetron and RBP.

The first algorithm, Projectron, is based on the Perceptron algorithm. ip&ieal perfor-
mance of Projectron is comparable to that of Perceptron, but with the tadyeanf a bounded
solution. The second algorithm, Projectron++, introduces the notion & laaygin and, for some
values ofn, outperforms the Perceptron algorithm, while assuring a bounded soluTioa.ex-
perimental results suggest that Projectron++ outperforms other onlimelbd algorithms such as
Forgetron and RBP, with a similar hypothesis size.

There are two unique advantages of Projectron and Projectron++, thigse algorithms can
be extended to the multiclass and the structured output settings. Secomtjadi@nline-to-batch
conversion can be applied to the online bounded solution of these algorigsuking in a bounded
batch solution. The major drawback of these algorithms is their time and spanaexity, which
is quadratic in the size of the support set. Trying to overcome this acutéepras left for future
work.
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