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Abstract
A common problem of kernel-based online algorithms, such asthe kernel-based Perceptron algo-
rithm, is the amount of memory required to store the online hypothesis, which may increase with-
out bound as the algorithm progresses. Furthermore, the computational load of such algorithms
grows linearly with the amount of memory used to store the hypothesis. To attack these problems,
most previous work has focused on discarding some of the instances, in order to keep the memory
bounded. In this paper we present a new algorithm, in which the instances are not discarded, but are
instead projected onto the space spanned by the previous online hypothesis. We call this algorithm
Projectron. While the memory size of the Projectron solutioncannot be predicted before training,
we prove that its solution is guaranteed to be bounded. We derive a relative mistake bound for the
proposed algorithm, and deduce from it a slightly differentalgorithm which outperforms the Per-
ceptron. We call this second algorithm Projectron++. We show that this algorithm can be extended
to handle the multiclass and the structured output settings, resulting, as far as we know, in the first
online bounded algorithm that can learn complex classification tasks. The method of bounding the
hypothesis representation can be applied to any conservative online algorithm and to other online
algorithms, as it is demonstrated for ALMA2. Experimental results on various data sets show the
empirical advantage of our technique compared to various bounded online algorithms, both in terms
of memory and accuracy.

Keywords: online learning, kernel methods, support vector machines,bounded support set

1. Introduction

Kernel-based discriminative online algorithms have been shown to performvery well on binary
and multiclass classification problems (see, for example, Freund and Schapire, 1999; Crammer and
Singer, 2003; Kivinen et al., 2004; Crammer et al., 2006). Each of thesealgorithms works in rounds,
where at each round a new instance is provided. On rounds where the online algorithm makes a
prediction mistake or when the confidence in the prediction is not sufficient, the algorithm adds the
instance to a set of stored instances, called thesupport set. The online classification function is
defined as a weighted sum of kernel combination of the instances in the support set. It is clear that if
the problem is not linearly separable or the target hypothesis is changing over time, the classification
function will never stop being updated, and consequently, the support set will grow unboundedly.
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This leads, eventually, to a memory explosion, which limits the applicability of these algorithms
for those tasks, such as autonomous agents, for example, where data must be acquired continuously
over time.

Several authors have tried to address this problem, mainly by bounding a priori the size of
the support set with a fixed value, called abudget. The first algorithm to overcome the unlimited
growth of the support set was proposed by Crammer et al. (2003), andrefined by Weston et al.
(2005). In these algorithms, once the size of the support set reaches the budget, an instance from the
support set that meets some criterion is removed, and replaced by the new instance. The strategy
is purely heuristic and no mistake bound is given. A similar strategy is also usedin NORMA
(Kivinen et al., 2004) and SILK (Cheng et al., 2007). The very first online algorithm to have a fixed
memory budget and a relative mistake bound is the Forgetron algorithm (Dekel et al., 2007). A
stochastic algorithm that on average achieves similar performance to Forgetron, and with a similar
mistake bound was proposed by Cesa-Bianchi et al. (2006). Unlike all previous work, the analysis
presented in the last paper is within a probabilistic context, and all the boundsderived there are in
expectation. A different approach to address this problem for online Gaussian processes is proposed
in Csat́o and Opper (2002), where, in common with our approach, the instances are not discarded,
but rather projected onto the space spanned by the instances in the support set. However, in that
paper no mistake bound is derived and there is no use of the hinge loss, which often produces
sparser solutions. Recent work by Langford et al. (2008) proposed a parameter that trades accuracy
for sparseness in the weights of online learning algorithms. Nevertheless,this approach cannot
induce sparsity in online algorithms with kernels.

In this paper we take a different route. While previous work focused ondiscarding some of
the instances in order to keep the support set bounded, in this work the instances are not discarded.
Either they are projected onto the space spanned by the support set, or they are added to the support
set. By using this method, we show that the support set and, hence, the online hypothesis, is guar-
anteed to be bounded, although we cannot predict its size before training. Instead of using a budget
parameter, representing the maximum size of the support set, we introduce aparameter trading ac-
curacy for sparseness, depending on the needs of the task at hand.The main advantage of this setup
is that by using all training samples, we are able to provide an online hypothesis with high online
accuracy. Empirically, as suggested by the experiments, the output hypotheses are represented with
relatively small number of instances, and have high accuracy.

We start with the most simple and intuitive kernel-based algorithm, namely the kernel-based
Perceptron. We modify the Perceptron algorithm so that the number of stored samples needed to
represent the online hypothesis is always bounded. We call this new algorithm Projectron. The
empirical performance of the Projectron algorithm is on a par with the originalPerceptron algo-
rithm. We present a relative mistake bound for the Projectron algorithm, and deduce from it a new
online bounded algorithm which outperforms the Perceptron algorithm, but still retains all of its
advantages. We call this second algorithmProjectron++. We then extend Projectron++ to the more
general cases of multiclass and structured output. As far as we know, thisis the first bounded mul-
ticlass and structured output online algorithm, with a relative mistake bound.1 Our technique for
bounding the size of the support set can be applied to any conservativekernel-based online algo-
rithm and to other online algorithms, as we demonstrate for ALMA2 (Gentile, 2001). Finally, we
present some experiments with common data sets, which suggest that Projectron is comparable to

1. Note that converting the budget algorithms presented by other authors, such as the Forgetron, to the multiclass or the
structured output setting is not trivial, since these algorithms are inherentlybinary in nature.
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Perceptron in performance, but it uses a much smaller support set. Moreover, experiments with Pro-
jectron++ shows that it outperforms all other bounded algorithms, while using the smallest support
set. We also present experiments on the task of phoneme classification, which is considered to be
difficult and naturally with a relatively very high number of support vectors. When comparing the
Projectron++ algorithm to the Passive-Aggressive multiclass algorithm (Crammer et al., 2006), it
turns out that the cumulative online error and the test error, after online-to-batch conversion, of both
algorithms are comparable, although Projectron++ uses a smaller support set.

In summary, the contributions of this paper are (1) a new algorithm, called Projectron, which is
derived from the kernel-based Perceptron algorithm, which empirically performs equally well, but
has a bounded support set; (2) a relative mistake bound for this algorithm;(3) another algorithm,
called Projectron++, based on the notion of large margin, which outperforms the Perceptron algo-
rithm and the proposed Projectron algorithm; (4) the multiclass and structuredoutput Projectron++
online algorithm with a bounded support set; and (5) an extension of our technique to other online
algorithms, exemplified in this paper for ALMA2.

The rest of the paper is organized as follows: in Section 2 we state the problem definition and
the kernel-based Perceptron algorithm. Section 3 introduces Projectron,along with its theoretical
analysis. Next, in Section 4 we derive Projectron++. Section 5 presents the multiclass and structured
learning variant of Projectron++. In Section 6 we apply our technique for another kernel-based
online algorithm, ALMA2. Section 7 describes experimental results of the algorithms presented, on
different data sets. Section 8 concludes the paper with a short discussion.

2. Problem Setting and the Kernel-Based Perceptron Algorithm

The basis of our study is the well knownPerceptronalgorithm (Rosenblatt, 1958; Freund and
Schapire, 1999). The Perceptron algorithm learns the mappingf : X → R based on a set of ex-
amplesT = {(x1,y1),(x2,y2), . . .}, wherext ∈ X is called aninstanceandyt ∈ {−1,+1} is called
a label. We denote the prediction of the Perceptron algorithm as sign( f (x)) and we interpret| f (x)|
as the confidence in the prediction. We call the outputf of the Perceptron algorithm ahypothe-
sis, and we denote the set of all attainable hypotheses byH . In this paper we assume thatH is a
Reproducing Kernel Hilbert Space (RKHS) with a positive definite kernel function k : X ×X → R

implementing the inner product〈·, ·〉. The inner product is defined so that it satisfies the reproducing
property,〈k(x, ·), f (·)〉 = f (x).

The Perceptron algorithm is an online algorithm, where learning takes place inrounds. At each
round a new hypothesis function is estimated, based on the previous one. We denote the hypothesis
estimated after thet-th round byft . The algorithm starts with the zero hypothesis,f0 = 0. At each
roundt, an instancext ∈ X is presented to the algorithm, which predicts a label ˆyt ∈ {−1,+1} using
the current function, ˆyt = sign( ft(xt)). Then, the correct labelyt is revealed. If the prediction ˆyt

differs from the correct labelyt , the hypothesis is updated asft = ft−1 + ytk(xt , ·), otherwise the
hypothesis is left intact,ft = ft−1. The hypothesisft can be written as a kernel expansion according
to the representer theorem (Schölkopf et al., 2001),

ft(x) = ∑
xi∈St

αik(xi ,x), (1)

whereαi = yi andSt is defined to be the set of instances for which an update of the hypothesis
occurred, that is,St = {xi ,0≤ i ≤ t | ŷi 6= yi}. The setSt is called thesupport set. The Perceptron
algorithm is summarized in Figure 1.
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Initialize: S0 = /0, f0 = 0

For t = 1,2, . . .

Receive new instancext

Predictŷt = sign( ft−1(xt))

Receive labelyt

If yt 6= ŷt

ft = ft−1 +ytk(xt , ·) (update the hypothesis)

St = St−1∪xt (add instancext to the support set)

Else

ft = ft−1

St = St−1

Figure 1: The kernel-based Perceptron Algorithm.

Although the Perceptron algorithm is very simple, it produces an online hypothesis with good
performance. Our goal is to derive and analyze a new algorithm, which outputs a hypothesis that
attains almost the same performance as the Perceptron hypothesis, but canbe represented using
many fewer instances, that is, an online hypothesis that is “close” to the Perceptron hypothesis but
represented by a smaller support set. Recall that the hypothesisft is represented as a weighted sum
over all the instances in the support set. The size of this representation is the cardinality of the
support set,|St |.

3. The Projectron Algorithm

This section starts by deriving the Projectron algorithm, motivated by an example of a finite dimen-
sional kernel space. It continues with a description of how to calculate theprojected hypothesis
and describes some other computational aspects of the algorithm. The sectionconcludes with a
theoretical analysis of the algorithm.

3.1 Definition and Derivation

Let us first consider a finite dimensional RKHSH induced by a kernel such as the polynomial
kernel. SinceH is finite dimensional, there are a finite number of linearly independent hypotheses in
this space. Hence, any hypothesis in this space can be expressed usinga finite number of examples.
We can modify the Perceptron algorithm to use only one set of independentinstances as follows.
On each round the algorithm receives an instance and predicts its label. Ona prediction mistake, we
check if the instancext can be spanned by the support set, namely, for scalarsdi ∈ R,1≤ i ≤ |St−1|,
not all zeros, such that

k(xt , ·) = ∑
xi∈St−1

dik(xi , ·) .

If we can find such scalars, the instance is not added to the support set,but instead, the coefficients
{αi} in the expansion Equation (1) are changed to reflect the addition of this instance to the support
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set. Namely, for everyi
αi = yi +ytdi .

On the other hand, if the instance and the support set are linearly independent, the instance is added
to the set withαt = yt as before. This technique reduces the size of the support set without changing
the hypothesis. A similar approach was used by Downs et al. (2001) to simplify SVM solutions.

Let us consider now the more elaborate case of an infinite dimensional RKHSH induced by a
kernel such as the Gaussian kernel. In this case, it is not possible to finda finite number of linearly
independent vectors which span the whole space, and hence there is noguarantee that the hypothesis
can be expressed by a finite number of instances. However, we can approximate the concept of linear
independence with a finite number of vectors (Csató and Opper, 2002; Engel et al., 2004; Orabona
et al., 2007).

In particular, let us assume that at roundt of the algorithm there is a prediction mistake, and that
the mistaken instancext should be added to the support set,St−1. LetHt−1 be an RKHS which is
the span of the kernel images of the instances in the setSt−1. Formally,

Ht−1 = span({k(x, ·)|x ∈ St−1}) . (2)

Before adding the instance to the support set, we construct two hypotheses: atemporary hypothesis,
f ′t , using the functionk(xt , ·), that is, f ′t = ft−1 + ytk(xt , ·), and aprojected hypothesis, f ′′t , that
is the projection off ′t onto the spaceHt−1. That is, the projected hypothesis is that hypothesis
from the spaceHt−1 which is theclosestto the temporary hypothesis. In a later section we will
describe an efficient way to calculate the projected hypothesis. Denote byδt the distance between
the hypotheses,δt = f ′′t − f ′t . If the norm of distance‖δt‖ is below some thresholdη, we use
the projected hypothesis as our next hypothesis, that is,ft = f ′′t , otherwise we use the temporary
hypothesis as our next hypothesis, that is,ft = f ′t . As we show in the following theorem, this strategy
assures that the maximum size of the support set is always finite, regardless of the dimension of the
RKHS H . Guided by these considerations we can design a new Perceptron-like algorithm that
projects the solution onto the space spanned by the previous support vectors whenever possible. We
call this algorithmProjectron. The algorithm is given in Figure 2.

The parameterη plays an important role in our algorithm. Ifη is equal to zero, we obtain
exactly the same solution as the Perceptron algorithm. In this case, however,the Projectron solution
can still be sparser when some of the instances are linearly dependent orwhen the kernel induces a
finite dimensional RKHSH . If η is greater than zero we trade precision for sparseness. Moreover,
as shown in the next section, this implies a bounded algorithmic complexity, namely,the memory
and time requirements for each step are bounded. We analyze the effect of η on the classification
accuracy in Subsection 3.3.

3.2 Practical Considerations

We now consider the problem of deriving the projected hypothesisf ′′t in a Hilbert spaceH , induced
by a kernel functionk(·, ·). Recall thatf ′t is defined asf ′t = ft + ytk(xt , ·). Denote byPt−1 f ′t the
projection of f ′t ∈ H onto the subspaceHt−1 ⊆ H . The projected hypothesisf ′′t is defined as
f ′′t = Pt−1 f ′t . Schematically, this is depicted in Figure 3.

Expandingf ′t we have

f ′′t = Pt−1 f ′t = Pt−1( ft−1 +ytk(xt , ·)) .
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Initialize: S0 = /0, f0 = 0

For t = 1,2, . . .

Receive new instancext

Predictŷt = sign( ft−1(xt))

Receive labelyt

If yt 6= ŷt

Set f ′t = ft−1 +ytk(xt , ·) (temporary hypothesis)

Set f ′′t = f ′t projected onto the spaceHt−1 (projected hypothesis)

Setδt = f ′′t − f ′t
If ‖δt‖ ≤ η

ft = f ′′t
St = St−1

Else

ft = f ′t
St = St−1∪xt (addxt to the support set)

Else

ft = ft−1

St = St−1

Figure 2: The Projectron Algorithm.

The projection is a linear operator, hence

f ′′t = ft−1 +ytPt−1k(xt , ·) . (3)

Recall thatδt = f ′′t − f ′t . By substitutingf ′′t from Equation (3) andf ′t we have

δt = f ′′t − f ′t = ytPt−1k(xt , ·)−ytk(xt , ·) . (4)

The projection off ′t ∈ H onto a subspaceHt−1 ⊂ H is defined as the hypothesis inHt−1 closest
to f ′t . Hence, let∑x j∈St−1

d jk(x j , ·) be an hypothesis inHt−1, whered = (d1, . . . ,d|St−1|) is a set of
coefficients, withdi ∈ R. The closest hypothesis is the one for which it holds that

‖δt‖
2 = min

d

∥

∥

∥

∥

∥

∑
x j∈St−1

d jk(x j , ·)−k(xt , ·)

∥

∥

∥

∥

∥

2

. (5)

Expanding Equation (5) we get

‖δt‖
2 = min

d

(

∑
xi ,x j∈St−1

d jdik(x j ,xi)−2 ∑
x j∈St−1

d jk(x j ,xt)+k(xt ,xt)

)

.
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δt

f ′′

t

f ′

t

ft−1
Ht−1

Figure 3: Geometrical interpretation of the projection of the hypothesisf ′′t onto the subspaceHt−1.

Let us defineK t−1 ∈ R
t−1×t−1 to be the matrix generated by the instances in the support setSt−1,

that is,{K t−1}i, j = k(xi ,x j) for everyxi ,x j ∈ St−1. Let us also definekt ∈ R
t−1 to be the vector

whosei-th element iskti = k(xi ,xt). We have

‖δt‖
2 = min

d

(

dTK t−1d−2dTkt +k(xt ,xt)
)

. (6)

Solving Equation (6), that is, applying the extremum conditions with respect tod, we obtain

d⋆ = K−1
t−1kt (7)

and, by substituting Equation (7) into Equation (6),

‖δt‖
2 = k(xt ,xt)−kT

t d⋆ . (8)

Furthermore, by substituting Equation (7) back into Equation (3) we get

f ′′t = ft−1 +yt ∑
x j∈St−1

d⋆
j k(x j , ·) . (9)

We have shown how to calculate both the distanceδt and the projected hypothesisf ′′t . In summary,
one needs to computed⋆ according to Equation (7), and plug the result either into Equation (8) to
obtainδt , or into Equation (9) to obtain the projected hypothesis.

In order to make the computation more tractable, we need an efficient method to calculate the
matrix inversionK−1

t iteratively. The first method, used by Cauwenberghs and Poggio (2000) for
incremental training of SVMs, directly updates the inverse matrix. An efficient way to do this,
exploiting the incremental nature of the approach, is to recursively updatethe inverse matrix. Using
the matrix inversion lemma it is possible to show (see, e.g., Csató and Opper, 2002) that after the
addition of a new sample,K−1

t becomes

K−1
t =











0

K−1
t−1

...
0

0 · · · 0 0











+
1

‖δt‖2

[

d⋆

−1

]

[

d⋆T −1
]
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Input: new instancext , K−1
t−1, and the support setSt−1

- Setkt =
(

k(x1,xt),k(x2,xt), . . . ,k(x|St−1|,xt)
)

- Solved⋆ = K−1
t−1kt

- Set‖δt‖
2 = k(xt ,xt)−kT

t d⋆

- The projected hypothesis isf ′′t = ft−1 +yt ∑x j∈St−1
d⋆

j k(x j , ·)

- Kernel inverse matrix for the next round

K−1
t =











0

K−1
t−1

...
0

0 · · · 0 0











+
1

‖δt‖2

[

d⋆

−1

]

[

d⋆T −1
]

Output: the projected hypothesisf ′′t , the measureδt and the kernel inverse
matrixK−1

t .

Figure 4: Calculation of the projected hypothesisf ′′t .

whered⋆ and‖δt‖
2 are already evaluated during the previous steps of the algorithm, as givenby

Equation (7) and Equation (8). Thanks to this incremental evaluation, the time complexity of the
linear independence check isO(|St−1|

2), as one can easily see from Equation (7). Note that the
matrixK t−1 can be safely inverted since, by incremental construction, it is always full-rank.

An alternative way to derive the inverse matrix is to use the Cholesky decomposition of K t−1

and to update it recursively. This is known to be numerically more stable than directly updating the
inverse. In our experiments, however, we found out that the method presented here is as stable as
the Cholesky decomposition.

Overall, the time complexity of the algorithm isO(|St |
2), as described above, and the space

complexity isO(|St |
2), due to the storage of the matrixK−1

t , similar to the second-order Perceptron
algorithm (Cesa-Bianchi et al., 2005). A summary of the derivation off ′′t , the projection off ′t onto
the space spanned bySt−1, is described in Figure 4.

3.3 Analysis

We now analyze the theoretical aspects of the proposed algorithm. First, wepresent a theorem
which states that the size of the support set of the Projectron algorithm is bounded.

Theorem 1 Let k:X ×X →R be a continuous Mercer kernel, withX a compact subset of a Banach
space. Then, for any training sequenceT = {(xi ,yi)}, i = 1,2, · · · and for anyη > 0, the size of the
support set of the Projectron algorithm is finite.

Proof The proof of this theorem follows the same lines as the proof of Theorem 3.1in Engel et al.
(2004). From the Mercer theorem it follows that there exists a mappingφ : X → H ′, whereH ′ is
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an Hilbert space,k(x,x′) = 〈φ(x),φ(x′)〉 andφ is continuous. Given thatφ is continuous and thatX
is compact, we obtain thatφ(X ) is compact. From the definition ofδt in Equation (5) we get that
every time a new basis vector is added we have

η2 ≤ ‖δt‖
2 = min

d

∥

∥

∥

∥

∥

∑
x j∈St−1

d jk(x j , ·)−k(xt , ·)

∥

∥

∥

∥

∥

2

≤ min
d j

∥

∥d jk(x j , ·)−k(xt , ·)
∥

∥

2

= min
d j

∥

∥d jφ(x j)−φ(xt)
∥

∥

2
≤
∥

∥φ(x j)−φ(xt)
∥

∥

2

for any 1≤ j ≤ |St−1|. Hence from the definition of packing numbers (Cucker and Zhou, 2007,
Definition 5.17), we get that the maximum size of the support set in the Projectron algorithm is
bounded by the packing number at scaleη of φ(X ). This number, in turn, is bounded by the
covering number at scaleη/2, and it is finite because the set is compact (Cucker and Zhou, 2007,
Proposition 5.18).

Note that this theorem guarantees that the size of the support set is bounded, however it does not
state that the size of the support set is fixed or that it can be estimated before training.

The next theorem provides a mistake bound. The main idea is to bound the maximum number
of mistakes of the algorithm, relative to any hypothesisg∈ H , even chosen in hindsight. First, we
define the loss with a marginγ ∈ R of the hypothesisg on the example(xt ,yt) as

ℓγ(g(xt),yt) = max{0,γ−ytg(xt)}, (10)

and we define the cumulative loss,Dγ, of g on the firstT examples as

Dγ =
T

∑
t=1

ℓγ(g(xt),yt) .

Before stating the bound, we present a lemma that will be used in the rest of our proofs. We will use
its first statement to bound the scalar product between a projected sample and the competitor, and
its second statement to derive the scalar product between the current hypothesis and the projected
sample.

Lemma 2 Let (x̂, ŷ) be an example, witĥx ∈ X andŷ∈ {+1,−1}. If we denote by f(·) an hypoth-
esis inH , and denote by q(·) any function inH , then the following holds

ŷ〈 f ,q〉 ≥ γ− ℓγ( f (x̂), ŷ)−‖ f‖ · ‖q−k(x̂, ·)‖ .

Moreover, if f(·) can be written as∑m
i=1 αik(xi , ·) with αi ∈ R andxi ∈ X , i = 1, · · · ,m, and q(·) is

the projection of k(x̂, ·) onto the space spanned by k(xi , ·), i = 1, · · · ,m, then

ŷ〈 f ,q〉 = ŷ f(x̂) .

Proof The first inequality comes from an application of the Cauchy-Schwarz inequality and the
definition of the hinge loss in Equation (10). The second equality follows from the fact that〈 f ,q−
k(x̂, ·)〉 = 0, becausef (·) is orthogonal to the difference betweenk(x̂, ·) and its projection onto the
space in whichf (·) lives.

With these definitions at hand, we can state the following bound for Projectron.
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Theorem 3 Let (x1,y1), · · · ,(xT ,yT) be a sequence of instance-label pairs wherext ∈ X , yt ∈
{−1,+1}, and k(xt ,xt) ≤ 1 for all t. Assume that the Projectron algorithm is run withη ≥ 0.
Then the number of prediction mistakes it makes on the sequence is bounded by

‖g‖2

(1−η‖g‖)2 +
D1

1−η‖g‖
+

‖g‖
1−η‖g‖

√

D1

1−η‖g‖

where g is an arbitrary function inH , such that‖g‖ < 1
η .

Proof Define the relative progress in each round as∆t = ‖ ft−1−λg‖2−‖ ft −λg‖2, whereλ is a
positive scalar to be optimized. We bound the progress from above and below, as in Gentile (2003).
On rounds where there is no mistake,∆t equals 0. On rounds where there is a mistake there are
two possible updates: eitherft = ft−1 + ytPt−1k(xt , ·) or ft = ft−1 + ytk(xt , ·). In the following we
start bounding the progress from below, when the update is of the formertype. In particular we set
q(·) = Pt−1k(xt , ·) in Lemma 2 and useδt = ytPt−1k(xt , ·)− ytk(xt , ·) from Equation (4). Letτt be
an indicator function for a mistake on thet-th round, that is,τt is 1 if there is a mistake on roundt
and 0 otherwise. We have

∆t = ‖ ft−1−λg‖2−‖ ft −λg‖2 = 2τtyt〈λg− ft−1,Pt−1k(xt , ·)〉− τ2
t ‖Pt−1k(xt , ·)‖

2

≥ τt

(

2λ−2λℓ1(g(xt),yt)− τt‖Pt−1k(xt , ·)‖
2−2λ‖g‖ · ‖δt‖−2yt ft−1(xt)

)

. (11)

Moreover, on every projection update‖δt‖≤ η, and‖Pt−1k(xt , ·)‖≤ 1 by the theorem’s assumption,
so we have

∆t ≥τt

(

2λ−2λℓ1(g(xt),yt)− τt −2ηλ‖g‖−2yt ft−1(xt)
)

.

We can further bound∆t by noting that on every prediction mistakeyt ft−1(xt)≤ 0. Overall we have

‖ ft−1−λg‖2−‖ ft −λg‖2 ≥ τt

(

2λ−2λℓ1(g(xt),yt)− τt −2ηλ‖g‖
)

. (12)

When there is an update without projection, similar reasoning yields that

‖ ft−1−λg‖2−‖ ft −λg‖2 ≥ τt

(

2λ−2λℓ1(g(xt),yt)− τt

)

,

hence the bound in Equation (12) holds in both cases.
We sum overt on both sides, remembering thatτt can be upper bounded by 1. The left hand

side of the equation is a telescoping sum, hence it collapses to‖ f0−λg‖2−‖ fT −λg‖2, which can
be upper bounded byλ2‖g‖2, using the fact thatf0 = 0 and that‖ fT −λg‖2 is non-negative. Finally,
we have

λ2‖g‖2 +2λD1 ≥ M (2λ−2ηλ‖g‖−1) , (13)

whereM is the number of mistakes. The last equation implies a bound onM for any choice ofλ > 0,
hence we can take the minimum of these bounds. From now on we can suppose thatM > D1

1−η‖g‖ .

In fact, if M ≤ D1
1−η‖g‖ then the theorem trivially holds. The minimum of Equation (13) as a function

of λ occurs at

λ∗ =
M(1−η‖g‖)−D1

‖g‖2 .
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By our hypothesis thatM > D1
1−η‖g‖ we have thatλ∗ is positive. Substitutingλ∗ into Equation (13)

we obtain
(D1−M(1−η‖g‖))2

‖g‖2 −M ≤ 0 .

Solving forM and overapproximating concludes the proof.

This theorem suggests that the performance of the Projectron algorithm is slightly worse than
that of the Perceptron algorithm. Specifically, if we setη = 0, we recover the best known bound for
the Perceptron algorithm (see for example Gentile, 2003). Hence the degradation in the performance
of Projectron compared to Perceptron is related to11−η‖g‖ . Empirically, the Projectron algorithm and
the Perceptron algorithm perform similarly, for a wide range of settings ofη.

4. The Projectron++ Algorithm

The proof of Theorem 3 suggests how to improve the Projectron algorithm toimprove upon the
performance of the Perceptron algorithm, while maintaining a bounded support set. We can change
the Projectron algorithm so that an update takes place not only if there is a prediction mistake, but
also when the confidence of the prediction is low. We refer to this latter case as amargin error, that
is, 0< yt ft−1(xt) < 1. This strategy is known to improve the classification rate but also increases
the size of the support set (Crammer et al., 2006). A possible solution to this obstacle is not to
update on every round in which a margin error occurs, but only when there is a margin error and the
new instancecan be projectedonto the support set. Hence, the update on round in which there is a
margin error would in general be of the form

ft = ft−1 +ytτtPt−1k(xt , ·) ,

with 0 < τt ≤ 1. The last constraint comes from the proof of Theorem 3, where we upper boundτt

by 1. Note that settingτt to 0 is equivalent to leaving the hypothesis unchanged.
In particular, disregarding the loss term in Equation (11), the progress∆t can be made positive

with an appropriate choice ofτt . Whenever this progress is non-negative the worst-case number
of mistakes decreases, hopefully along with the classification error rate ofthe algorithm. With this
modification we expect better performance, that is, fewer mistakes, but without any increase of the
support set size. We can even expect solutions with a smaller support set, since new instances can
be added to the support set only if misclassified, hence having fewer mistakes should result in a
smaller support set. We name this algorithmProjectron++. The following theorem states a mistake
bound for Projectron++, and guides us in how to chooseτt .

Theorem 4 Let (x1,y1), · · · ,(xT ,yT) be a sequence of instance-label pairs wherext ∈ X , yt ∈
{−1,+1}, and k(xt ,xt) ≤ 1 for all t. Assume that Projectron++ is run withη > 0. Then the
number of prediction mistakes it makes on the sequence is bounded by

‖g‖2

(1−η‖g‖)2 +
D1

1−η‖g‖
+

‖g‖
1−η‖g‖

√

max

(

0,
D1

1−η‖g‖
−B

)
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where g is an arbitrary function inH , such that‖g‖ < 1
η ,

0 < τt < min







2
ℓ1( ft−1(xt),yt)−

‖δt‖
η

‖Pt−1k(xt , ·)‖2 ,1







and

B = ∑
{t:0<yt ft−1(xt)<1}

τt

(

2ℓ1( ft−1(xt),yt)− τt‖Pt−1k(xt , ·)‖
2−2

‖δt‖

η

)

> 0 .

Proof The proof is similar to the proof of Theorem 3, where the difference is thatduring rounds in
which there is a margin error we update the solution whenever it is possible to project ensuring an
improvement of the mistake bound. Assume thatλ ≥ 1. On rounds when a margin error occurs, as
in Equation (11), we can write

∆t +2τtλℓ1(g(xt),yt) ≥ τt
(

2λ− τt‖Pt−1k(xt , ·)‖
2−2λ‖δt‖ · ‖g‖−2yt ft−1(xt)

)

> τt

(

2

(

1−
‖δt‖

η

)

− τt‖Pt−1k(xt , ·)‖
2−2yt ft−1(xt)

)

= τt

(

2ℓ1( ft−1(xt),yt)− τt‖Pt−1k(xt , ·)‖
2−2

‖δt‖

η

)

, (14)

where we used the bounds on‖g‖ andλ. Let βt be the right hand-side of Equation (14). A sufficient
condition to haveβt positive is

τt < 2
ℓ1( ft−1(xt),yt)−

‖δt‖
η

‖Pt−1k(xt , ·)‖2 .

Constrainingτt to be less than or equal to 1 yields the update rule in the theorem.
Let B = ∑{t:0<yt ft−1(xt)<1} βt . Similarly to the proof of Theorem 3, we have

λ2‖g‖2 +2λD1 ≥ M (2λ−2ηλ‖g‖−1)+B . (15)

Again, the optimal value ofλ is

λ∗ =
M(1−η‖g‖)−D1

‖g‖2 .

We can assume thatM(1−η‖g‖)−D1 ≥ ‖g‖2. In fact, if M < ‖g‖2+D1
1−η‖g‖ , then the theorem trivially

holds. With this assumption,λ∗ is positive and greater than or equal to 1, satisfying our initial
constraint onλ. Substituting this optimal value ofλ into Equation (15), we have

(D1−M(1−η‖g‖))2

‖g‖2 −M +B≤ 0 .

Solving forM concludes the proof.
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The proof technique presented here is very general, in particular it canbe applied to the Passive-
Aggressive algorithm PA-I (Crammer et al., 2006). In fact, removing the projection step and up-
dating on rounds in which there is a margin error, withft = ft−1 + ytτtk(xt , ·), we end up with the

condition 0< τt < min
{

2ℓ1( ft−1(xt),yt)
‖k(xt ,·)‖2 ,1

}

. This rule generalizes the PA-I bound wheneverR= 1

andC = 1, however the obtained bound substantially improves upon the original bound in Crammer
et al. (2006).

The theorem gives us some freedom for the choice ofτt . Experimentally we have observed that
we obtain the best performance if the update is done with the following rule

τt = min







ℓ1( ft−1(xt),yt)

‖Pt−1k(xt , ·)‖2 ,2
ℓ1( ft−1(xt),yt)−

‖δt‖
η

‖Pt−1k(xt , ·)‖2 ,1







.

The added term in the minimum comes from ignoring the term−2‖δt‖
η and in finding the maximum

of the quadratic equation. Notice that the term‖Pt−1k(xt , ·)‖
2 in the last equation can be practically

computed askT
t d⋆, as can be derived using the same techniques presented in Subsection 3.2.

We note in passing that the condition on whetherxt can be projected ontoHt−1 on margin error
may stated asℓ1( ft−1(xt),yt) ≥

‖δt‖
η . This means that if the loss is relatively large, the progress is

also large and the algorithm can afford “wasting” a bit of it for the sake ofprojecting.
The algorithm is summarized in Figure 2. The performance of the Projectron++ algorithm, the

Projectron algorithm and several other bounded online algorithms are compared and reported in
Section 7.

5. Extension to Multiclass and Structured Output

In this section we extend Projectron++ to the multiclass and the structured output settings (note that
Projectron can be generalized in a similar way). We start by presenting the more complex decision
problem, namely the structured output, and then we derive the multiclass decision problem as a
special case.

In structured output decision problems the set of possible labels has a unique and defined struc-
ture, such as a tree, a graph or a sequence (Collins, 2000; Taskar etal., 2003; Tsochantaridis et al.,
2004). Denote the set of all labels asY = {1, . . . ,k}. Each instance is associated with a label from
Y . Generally, in structured output problems there may be dependencies between the instance and
the label, as well as between labels. Hence, to capture these dependencies, the input and the output
pairs are represented in a common feature representation. The learning task is therefore defined as
finding a functionf : X ×Y → R such that

yt = argmax
y∈Y

f (xt ,y) . (16)

Let us generalize the definition of the RKHSH introduced in Section 2 to the case of structured
learning. A kernel function in this setting should reflect the dependenciesbetween the instances
and the labels, hence we define the structured kernel function as a function on the domain of the
instances and the labels, namely,kS : (X × Y )2 → R. This kernel function induces the RKHS
H S, where the inner product in this space is defined such that it satisfies the reproducing property,
〈kS((x,y), ·), f 〉 = f (x,y).
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Initialize: S0 = /0, f0 = 0

For t = 1,2, . . .

Receive new instancext

Predictŷt = sign( ft−1(xt))

Receive labelyt

If yt 6= ŷt (prediction error)

Set f ′t = ft−1 +ytk(xt , ·)

Set f ′′t = Pt−1 f ′t
Setδt = f ′′t − f ′t
If ‖δt‖ ≤ η

ft = f ′′t
St = St−1

Else

ft = f ′t
St = St−1∪xt

Else If yt = ŷt andyt ft−1(xt) ≤ 1 (margin error)

Setδt = Pt−1k(xt , ·)−k(xt , ·)

If ℓ1( ft−1(xt),yt) ≥
‖δt‖

η (check if thext can be projected ontoHt−1)

Setτt = min

{

ℓ1( ft−1(xt),yt)
‖Pt−1k(xt ,·)‖2 ,2

ℓ1( ft−1(xt),yt)−
‖δt‖

η
‖Pt−1k(xt ,·)‖2 ,1

}

Set ft = ft−1 +ytτtPt−1k(xt , ·)

St = St−1

Else

ft = ft−1

St = St−1

Else

ft = ft−1

St = St−1

Figure 5: The Projectron++ Algorithm.

As in the binary classification algorithm presented earlier, the structured output online algorithm
receives instances in a sequential order. Upon receiving an instance, xt ∈ X , the algorithm predicts a
label,y′t , according to Equation (16). After making its prediction, the algorithm receives the correct
label,yt . We define the loss suffered by the algorithm on roundt for the example(xt ,yt) as

ℓS
γ( f ,xt ,yt) = max{0,γ− f (xt ,yt)+max

y′t 6=yt

f (xt ,y
′
t)},
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and the cumulative lossDS
γ as

DS
γ =

T

∑
t=1

ℓS
γ( f ,xt ,yt) .

Note that sometimes it is useful to defineγ as a functionγ : Y ×Y → R describing the discrepancy
between the predicted label and the true label. Our algorithm can handle such a label cost function,
but we will not discuss this issue here (see Crammer et al., 2006, for further details).

As in the binary case, on rounds in which there is a prediction mistake,y′t 6= yt , the algorithm
updates the hypothesisft−1 by addingk((xt ,yt), ·)− k((xt ,y′t), ·) or its projection. When there is
a margin mistake, 0< ℓS

γ( ft−1,xt ,yt) < γ, the algorithm updates the hypothesisft−1 by adding
τtPt−1(k((xt ,yt), ·)−k((xt ,y′t), ·)), where 0< τt < 1 and will be defined shortly. Now, for the struc-
tured output case,δt is defined as

δt = k((xt ,yt), ·)−k((xt ,y
′
t), ·)−Pt−1

(

k((xt ,yt), ·)−k((xt ,y
′
t), ·)

)

.

The analysis of the structured output Projectron++ algorithm is similar to that provided for the
binary case. We can easily obtain the generalization of Lemma 2 and Theorem4 as follows

Lemma 5 Let (x̂, ŷ) be an example, witĥx ∈ X and ŷ ∈ Y . Denote by f(·) an hypothesis inH S.
Let q(·) ∈H S. Then the following holds for any y′ ∈ Y :

〈 f ,q〉 ≥ γ− ℓS
γ( f , x̂, ŷ)−‖ f‖ ·

∥

∥q−
(

k((x̂, ŷ), ·)−k((x̂,y′), ·)
)∥

∥ .

Moreover if f(·) can be written as∑m
i=1 αik((xi ,yi), ·) with αi ∈ R andxi ∈ X , i = 1, · · · ,m, and q is

the projection of k((x̂, ŷ), ·)−k((x̂,y′), ·) in the space spanned by k((xi ,yi), ·), i = 1, · · · ,m, we have
that

〈 f ,q〉 = f (x̂, ŷ)− f (x̂,y′) .

Theorem 6 Let (x1,y1), · · · ,(xT ,yT) be a sequence of instance-label pairs wherext ∈ X , yt ∈ Y ,
and‖k((xt ,y), ·)‖ ≤ 1/2 for all t and y∈ Y . Assuming that Projectron++ is run withη > 0, the
number of prediction mistakes it makes on the sequence is bounded by

‖g‖2

(1−η‖g‖)2 +
DS

1

1−η‖g‖
+

‖g‖
1−η‖g‖

√

max

(

0,
DS

1

1−η‖g‖
−B

)

where g is an arbitrary function inH S, such that‖g‖ < 1
η ,

a = Pt−1
(

k((xt ,yt), ·)−k((xt ,y
′
t), ·)

)

0 < τt < min







2
ℓS

1( ft−1,xt ,yt)−
‖δt‖

η

‖a‖2 ,1







B = ∑
{t:0<ℓS

1( ft−1,xt ,yt)<1}

τt

(

2ℓS
1( ft−1,xt ,yt)− τt‖a‖2−2

‖δt‖

η

)

> 0 .

2657



ORABONA, KESHET AND CAPUTO

As in Theorem 4 there is some freedom in the choice ofτt , and again we set it to

τt = min







ℓS
1( ft−1,xt ,yt)

‖a‖2 ,2
ℓS

1( ft−1,xt ,yt)−
‖δt‖

η

‖a‖2 ,1







.

In the multiclass decision problem case, the kernelk((x1,y1),(x2,y2)) is simplified to
δy1y2k(x1,x2), whereδy1y2 is the Kronecker delta. This corresponds to the use of a different pro-
totype for each class. This simplifies the projection step, in factk((xt ,yt), ·) can be projected only
onto the functions inSt−1 belonging toyt , the scalar product with the other functions being zero.
So instead of storing a single matrixK−1

t−1, we need to storem matrices, wherem is the number of
classes, each one being the inverse matrix of the Gram matrix of the functionsof one class. This
results in improvements in both memory usage and computational cost of the algorithm. To see
this suppose that we havem classes, each withn vectors in the support set. Storing a single matrix
means having a space and time complexity ofO(m2n2) (cf. Section 3), while in the second case the
complexity isO(mn2). We use this method in the multiclass experiments presented in Section 7.

6. Bounding Other Online Algorithms

It is possible to apply the technique in the basis of the Projectron algorithm to any conservative
online algorithm. A conservative online algorithm is an algorithm that updates itshypothesis only
on rounds on which it makes a prediction error. By applying Lemma 2 to a conservative algorithm,
we can construct a bounded version of it with worst case mistake bounds. As in the previous proofs,
the idea is to use Lemma 2 to bound the scalar product of the competitor and the projected function.
This yields an additional term which is subtracted from the marginγ of the competitor.

The technique presented here can be applied to other online kernel-based algorithms. As an
example, we apply our technique to ALMA2 (Gentile, 2001). Again we define two hypotheses: a
temporary hypothesisf ′t , which is the hypothesis of ALMA2 after its update rule, and a projected
hypothesis, which is the hypothesisf ′t projected on the setHt−1 as defined in Equation (2). Define
the projection errorδt asδt = f ′t − f ′′t . The modified ALMA2 algorithm uses the projected hypoth-
esis f ′′t whenever the projection error is smaller than a parameterη, otherwise it uses the temporary
hypothesisf ′t . We can state the following bound

Theorem 7 Let (x1,y1), · · · ,(xT ,yT) be a sequence of instance-label pairs wherext ∈ X , yt ∈
{−1,+1}, and k(xt ,xt) ≤ 1 for all t. Let α, B and C∈ R

+ satisfy the equation

C2 +2(1−α)BC= 1 .

Assume ALMA2(α;B,C) projects every time the projection error‖δt‖ is less thanη ≥ 0, then the
number of prediction mistakes it makes on the sequence is bounded by

Dγ

γ−η
+

ρ2

2
+

√

ρ4

4
+

ρ2

γ−η
Dγ +ρ2

whereγ > η, ρ = 1
C2(γ−η)2 , and g is an arbitrary function inH , such that‖g‖ ≤ 1.

Proof The proof follows the original proof presented in Gentile (2001). Specifically, according
to Lemma 2, one can replace the relationyt〈g,k(xt , ·)〉 ≥ γ− ℓγ(g(xt),yt) with yt〈g,Pt−1k(xt , ·)〉 ≥
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Data Set Samples Features Classes Kernel Parameters

a9a(Platt, 1999) 32561 123 2 Gaussian 0.04
ijcnn1 (Prokhorov, 2001) 49990 22 2 Gaussian 8
news20.binary(Keerthi et al., 2005) 19996 1355191 2 Linear -
vehicle(Duarte and Hu, 2004) 78823 100 2 Gaussian 0.125
synthetic(Dekel et al., 2007) 10000 2 2 Gaussian 1
mnist(Lecun et al., 1998) 60000 780 10 Polynomial 7
usps(Hull, 1994) 7291 256 10 Polynomial 13
timit (subset) (Lemel et al., 1986) ∼ 150000 351 39 Gaussian 80

Table 1: Data sets used in the experiments

γ−η− ℓγ(g(xt),yt), and further substituteγ−η for γ.

7. Experimental Results

In this section we present experimental results that demonstrate the effectiveness of the Projec-
tron and the Projectron++ algorithms. We compare both algorithms to the Perceptron algorithm,
the Forgetron algorithm (Dekel et al., 2007) and the Randomized Budget Perceptron (RBP) algo-
rithm (Cesa-Bianchi et al., 2006). For Forgetron, we choose the state-of-the-art “self-tuned” variant,
which outperforms all of its other variants. We used the PA-I variant of thePassive-Aggressive algo-
rithm (Crammer et al., 2006) as a baseline algorithm, as it gives an upper bound on the classification
performance of the Projectron++ algorithm. All the algorithms were implemented inMATLAB us-
ing the DOGMA library (Orabona, 2009).

We tested the algorithms on several standard machine learning data sets:2 a9a, ijcnn1, news20.binary,
vehicle (combined), usps, mnist. We also used a synthetic dataset and the acoustic-phonetic dataset
timit. The synthetic dataset was built in the same way as in Dekel et al. (2007). It is composed of
10000 samples taken from two separate bi-dimensional Gaussian distributions. The means of the
positive and negative samples are(1,1) and(−1,−1), respectively, while the covariance matrices
for both are diagonal matrices with(0.2,2) as their diagonal. The labels are flipped with a proba-
bility of 0.1 to introduce noise. The list of the data sets, their characteristics and the kernels used,
are given in Table 1. The parameters of the kernels were selected to havethe best performance
with the Perceptron and were used for all the other algorithms to result in a fair comparison. The
C parameter of PA-I was set to 1, to give an update similar to Perceptron and Projectron. All the
experiments were performed over five different permutations of the training set.

Experiments with one setting ofη. In the first set of experiments we compared the online
average number of mistakes and the support set size of all algorithms. BothForgetron and RBP
work by discarding vectors from the support set, if the size of the support set reaches the budget
size, B. Hence for a fair comparison, we setη to some value and selected the budget sizes of
Forgetron and RBP to be equal to the final size of the support set of Projectron. In particular, in
Figure 6, we setη = 0.1 in Projectron and ended up with a support set of size 793, henceB = 793.
In Figure 6(a) the average online error rate for all algorithms on thea9adata set is plotted. Note
that Projectron closely tracks Perceptron. On the other hand Forgetronand RBP stop improving

2. Downloaded fromhttp://www.sie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/ .
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Figure 6: Average online error (left) and size of the support set (right) for the different algorithms
on a9adata set as a function of the number of training samples (better viewed in color).
B is set to 793,η = 0.1.

after reaching the support set sizeB, around 3400 samples. Moreover, as predicted by its theoretical
analysis, Projectron++ achieves better results than Perceptron, even with fewer number of supports.

Figure 6(b) shows the growth of the support set as a function of the number of samples. While
for the PA-I and the Perceptron the growth is clearly linear, it is sub-linearfor Projectron and Pro-
jectron++: they will reach a maximum size and then they will stop growing, as stated in Theorem 1.
Another important consideration is that Projectron++ outperforms Projectron bothwith respect to
the size of the support set and number of mistakes. Using our MATLAB implementation, the run-
ning times for this experiment are∼ 35s for RBP and Forgetron,∼ 40s for Projectron and Projec-
tron++,∼ 130s for Perceptron, and∼ 375s for PA-I. Hence Projectron and Projectron++ have a
running time smaller than Perceptron and PA-I, due to their smaller support sets.

The same behavior can be seen in Figure 7, for thesyntheticdata set. Here the gain in perfor-
mance of Projectron++ over Perceptron, Forgetron and RBP is even greater.

Experiments with a range of values forη - Binary. To analyze in more detail the behavior of
our algorithms we decided to run other tests using a range of values ofη. For each value we obtain
a different size of the support set and a different number of mistakes.We used the data to plot a
curve corresponding to the percentage of mistakes as a function of the support set size. The same
curve was plotted for Forgetron and RBP, where the budget size was selected as described before.
In this way we compared the algorithms along the continuous range of budgetsizes, displaying the
trade-off between sparseness and accuracy. For the remaining experiments we chose not to show
the performance of Projectron, as it was always outperformed by Projectron++.

In Figure 8 we show the performance of the algorithms on different binarydata sets: (a)ijcnn1,
(b) a9a, (c) news20.binary, and (d)vehicle (combined). Because Projectron++ used a different
support set size for each permutation of the training samples, we plotted fivecurves, one for each
of the five permutations. RBP and Forgetron have fixed budget sizes setin advance, hence for these
algorithms we just plotted standard deviation bars, that are very small so theycan be hardly seen
in the figures. In all of the experiments Projectron++ outperforms Forgetron and RBP. One may
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Figure 7: Average online error (left) and size of the support set (right) for the different algorithms
on thesyntheticdata set as a function of the number of training samples (better viewed in
color). B is set to 103,η = 0.04.

note that there is a point in all the graphs where the performance of Projectron++ is better than
Perceptron, and has a smaller support set. Projectron++ gets closer to the classification rate of the
PA-I, without paying the price of a larger support set. Note that the performance of Projectron++
is consistently better than RBP and Forgetron, regardless of the kernel used, particularly, on the
databasenews20.binary, which is a text classification task with linear kernel. In this task the samples
are almost mutually orthogonal, so finding a suitable subspace on which to project is difficult.
Nevertheless Projectron++ succeeded in obtaining better performance.The reason is probably due
to the margin updates, which are performed without increasing the size of thesolution. Note that
a similar modification would not be trivial in Forgetron and in RBP, because theproofs of their
mistake bounds strongly depend on the rate of growth of the norm of the solution.

Experiments with a range of values forη - Multiclass. We have also considered multiclass
data sets, using the multiclass version of Projectron++. Due to the fact that there are no other
bounded online algorithms with a mistake bound for multiclass, we have extendedRBP in the
natural manner to multiclass. In particular we used themax-scoreupdate in Crammer and Singer
(2003), for which a mistake bound exists, discarding a vector at randomfrom the solution each time
a new instance is added and the number of support vectors is equal to the budget size. We name it
Multiclass Random Budget Perceptron (MRBP). It should be possible to prove a mistake bound for
this algorithm, extending the proof in Cesa-Bianchi et al. (2006). In Figure 9 we show the results
for Perceptron, Passive-Aggressive, Projectron++ and MRBP trained on (a)usps, and (b)mnistdata
sets. The results confirm the findings found for the binary case.

The last data set used in our experiments is a corpus of continuous natural speech for the task of
phoneme classification. The data we used is a subset of the TIMIT acoustic-phonetic data set, which
is a phonetically transcribed corpus of high quality continuous speech spoken by North American
speakers (Lemel et al., 1986). The features were generated from nine adjacent vectors of Mel-
Frequency Cepstrum Coefficients (MFCC) along with their first and second derivatives. The TIMIT
corpus is divided into a training set and a test set in such a way that no speakers from the training set
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Figure 8: Average online error for the different algorithms as a functionof the size of the support
set on different binary data sets.

appear in the test set (speaker independent). We randomly selected 500training utterances from the
training set. The average online errors are shown in Figure 10(a). We also tested the performance
of the algorithm on the proposed TIMIT core test set composed of 192 utterances, the results of
which are in Figure 10(b). We used online-to-batch conversion (Cesa-Bianchi et al., 2004) to
give a bounded batch solution. We did not test the performance of MRBP on the test set because for
this algorithm the online-to-batch conversion does not produce a bounded solution. We compare the
batch solution to the online-to-batch conversion of the PA-I solution. The results of Projectron++ are
comparable to those of PA-I, while the former uses a smaller support set. These results also suggest
that the batch solution is stable when varying the value ofη, as the difference in performance on
test set is less than 3%.
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Figure 9: Average online error for the different algorithms as a functionof the size of the support
set on different multiclass data sets.
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Figure 10: Average online error(a) and test error(b) for the different algorithms as a function of
the size of the support set on a subset of thetimit data set.

8. Discussion

This paper presented two different versions of a bounded online learning algorithm. The algorithms
depend on a parameter that allows one to trade accuracy for sparseness of the solution. The size
of the solution is always guaranteed to be bounded, although the size of thisbound is unknown
before the training begins. Therefore, these algorithms solve the memory explosion problem of
the Perceptron and similar algorithms. Although the size of the support set cannot be determined
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before training, practically, for a given target accuracy, the size of the support sets of Projectron or
Projectron++ are much smaller than those of other budget algorithms such asForgetron and RBP.

The first algorithm, Projectron, is based on the Perceptron algorithm. The empirical perfor-
mance of Projectron is comparable to that of Perceptron, but with the advantage of a bounded
solution. The second algorithm, Projectron++, introduces the notion of large margin and, for some
values ofη, outperforms the Perceptron algorithm, while assuring a bounded solution.The ex-
perimental results suggest that Projectron++ outperforms other online bounded algorithms such as
Forgetron and RBP, with a similar hypothesis size.

There are two unique advantages of Projectron and Projectron++. First, these algorithms can
be extended to the multiclass and the structured output settings. Second, a standard online-to-batch
conversion can be applied to the online bounded solution of these algorithms,resulting in a bounded
batch solution. The major drawback of these algorithms is their time and space complexity, which
is quadratic in the size of the support set. Trying to overcome this acute problem is left for future
work.
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