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Abstract

We describe distributed algorithms for two widely-used topic models, namely the Latent Dirichlet
Allocation (LDA) model, and the Hierarchical Dirichet Process (HDP) model. In our distributed
algorithms the data is partitioned across separate processors and inference is done in a parallel,
distributed fashion. We propose two distributed algorithms for LDA. The first algorithm is a
straightforward mapping of LDA to a distributed processor setting. In this algorithm processors
concurrently perform Gibbs sampling over local data followed by a global update of topic counts.
The algorithm is simple to implement and can be viewed as an approximation to Gibbs-sampled
LDA. The second version is a model that uses a hierarchical Bayesian extension of LDA to di-
rectly account for distributed data. This model has a theoretical guarantee of convergence but is
more complex to implement than the first algorithm. Our distributed algorithm for HDP takes
the straightforward mapping approach, and merges newly-created topics either by matching or by
topic-id. Using five real-world text corpora we show that distributed learning works well in prac-
tice. For both LDA and HDP, we show that the converged test-data log probability for distributed
learning is indistinguishable from that obtained with single-processor learning. Our extensive ex-
perimental results include learning topic models for two multi-million document collections using
a 1024-processor parallel computer.

Keywords: topic models, latent Dirichlet allocation, hierarchical Dirichlet processes, distributed
parallel computation

1. Introduction

Very large data sets, such as collections of images or text documents, are becoming increasingly
common, with examples ranging from collections of online books at Google andAmazon, to the
large collection of images at Flickr. These data sets present major opportunities for machine learn-
ing, such as the ability to explore richer and more expressive models than previously possible, and
provide new and interesting domains for the application of learning algorithms.

However, the scale of these data sets also brings significant challenges for machine learning,
particularly in terms of computation time and memory requirements. For example, a text corpus
with one million documents, each containing one thousand words, will require approximately eight
GBytes of memory to store the billion words. Adding the memory required for parameters, which
usually exceeds memory for the data, creates a total memory requirement thatexceeds that available
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on a typical desktop computer. If one were to assume that a simple operation,such as computing
a probability vector over categories using Bayes rule, takes on the orderof 10−6 seconds per word,
then a full pass through the billion words would take 1000 seconds. Thus,algorithms that make
multiple passes through the data, for example clustering and classification algorithms, will have run
times in days for this sized corpus. Furthermore, for small to moderate sized document sets where
memory is not an issue, it would be useful to have algorithms that could take advantage of desktop
multiprocessor/multicore technology to learn models in near real-time.

An obvious approach for addressing these time and memory issues is to distribute the learning
algorithm over multiple processors. In particular, withP processors, it is somewhat trivial to address
the memory issue by distributing1P of the total data to each processor. However, the computation
problem remains non-trivial for a fairly large class of learning algorithms,namely how to combine
local processing on each processor to arrive at a useful global solution.

In this general context we investigate distributed algorithms for two widely-used unsupervised
learning models: the Latent Dirichlet Allocation (LDA) model, and the Hierarchical Dirichet Pro-
cess (HDP) model. LDA and HDP models are arguably among the most successful recent learning
algorithms for analyzing discrete data such as bags of words from a collection of text documents.
However, they can take days to learn for large corpora, and thus, distributed learning would be
particularly useful.

The rest of the paper is organized as follows: In Section 2 we review the standard derivation
of LDA and HDP. Section 3 presents our two distributed algorithms for LDA and one distributed
algorithm for HDP. Empirical results are provided in Section 4. Scalability results are presented
in Section 5, and further analysis of distributed LDA is provided in Section 6.A comparison with
related models is given in Section 7. Finally, Section 8 concludes the paper.

2. Latent Dirichlet Allocation and Hierarchical Dirichlet Process Model

We start by reviewing the LDA and HDP models. Both LDA and HDP are generative probabilistic
models for discrete data such as bags of words from text documents—in thiscontext these models
are often referred to as topic models. To illustrate the notation, we refer the reader to the graphical
models for LDA and HDP shown in Figure 1.

LDA models each ofD documents in a collection as a mixture overK latent topics, with each
topic being a multinomial distribution over a vocabulary ofW words. For documentj, we first
draw a mixing proportionθ j from a Dirichlet with parameterα. For theith word in the document,
a topiczi j = k is drawn with probabilityθk| j . Wordxi j is then drawn from topiczi j , with xi j taking
on valuew with probabilityφw|zi j

. A Dirichlet prior with parameterβ is placed on the word-topic
distributionsφk.

Thus, the generative process for LDA is given by

θ j ∼D[α], φk ∼D[β], zi j ∼ θ j , xi j ∼ φzi j . (1)

To avoid clutter we denote sampling from a Dirichletθ j ∼D[α] as shorthand for[θ1| j , . . . ,θK| j ]∼
D[α, . . . ,α], and likewise forφ. In this paper, we use symmetric Dirichlet priors for simplicity, un-
less specified otherwise. The full joint distribution over all parameters andvariables is

p(x,z,θ,φ|α,β) = ∏
j

Γ(Kα)

Γ(α)K ∏k θNk j+α−1
k| j ∏

k

Γ(Wβ)

Γ(β)W ∏w φNwk+β−1
w|k , (2)
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Figure 1: Graphical models for LDA (left) and HDP (right). Observed variables (words) are shaded,
and hyperparameters are shown in squares.

Description
D Number of documents in collection
W Number of distinct words in vocabulary
N Total number of words in collection
K Number of topics
xi j ith observed word in documentj
zi j Topic assigned toxi j

Nwk Count of word assigned to topic
Nk j Count of topic assigned in document
φk Probability of word given topick
θ j Probability of topic given documentj

Table 1: Description of commonly used variables.

whereNwk j = #{i : xi j = w,zi j = k}, and we use the convention that missing indices are summed
out. Nk j = ∑wNwk j and Nwk = ∑ j Nwk j are the two primary count arrays used in computations,
representing the number of words assigned to topick in documentj, and the number of times word
w is assigned to topick in the corpus, respectively. For ease of reading we list commonly used
variables in Table 1.

Given the observed wordsx = {xi j}, the task of Bayesian inference for LDA is to compute the
posterior distribution over the latent topic assignmentsz = {zi j}, the mixing proportionsθ j , and the
topicsφk. Approximate inference for LDA can be performed either using variational methods (Blei
et al., 2003) or Markov chain Monte Carlo methods (Griffiths and Steyvers, 2004). In this paper we
focus on Markov chain Monte Carlo algorithms for approximate inference.MCMC is widely used
as an inference method for a variety of topic models, for example Rosen-Zviet al. (2004), Li and
McCallum (2006), and Chemudugunta et al. (2007) all use MCMC for inference. In the MCMC
context, the usual procedure is to integrate out the mixturesθ and topicsφ in (2)—a procedure called
collapsing—and just sample the latent variablesz. Given the current state of all but one variablezi j ,
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the conditional probability ofzi j is

p(zi j = k|z¬i j ,x,α,β) ∝
N¬i j

wk +β

∑wN¬i j
wk +Wβ

(

N¬i j
k j +α

)

, (3)

where the superscript¬i j means that the corresponding word is excluded in the counts.
HDP is a collection of Dirichlet Processes which share the same topic distributions and can be

viewed as the non-parametric extension of LDA. The advantage of HDP is that the number of topics
is determined by the data. The HDP model is obtained by taking the following modelin the limit as
K goes to infinity. Letαk be top level Dirichlet variables sampled from a Dirichlet with parameter
γ/K. The topic mixture for each document,θ j , is drawn from a Dirichlet with parametersηαk.
The word-topic distributionsφk are drawn from a base Dirichlet distribution with parameterβ. As
in LDA, zi j is sampled fromθ j , and wordxi j is sampled from the corresponding topicφzi j . The
generative process is given by

αk ∼D[γ/K], θ j ∼ D[ηαk], φk ∼ D[β], zi j ∼ θ j , xi j ∼ φzi j .

The posterior distribution is sampled using the direct assignment sampler for HDP described
in Teh et al. (2006). As was done for LDA, bothθ andφ are integrated out, andzi j is sampled from
the following conditional distribution:

p(zi j = k|z¬i j ,x,α,β,η) ∝











N¬i j
wk +β

∑w N¬i j
wk +Wβ

(

N¬i j
k j +ηαk

)

, if k previously used

ηαnew
W , if k is new.

(4)

The sampling scheme forαk is also detailed in Teh et al. (2006). Note that a small amount of
probability mass proportional toαnew is reserved for the instantiation of new topics. While HDP is
defined to have infinitely many topics, the sampling algorithm only instantiates topicsas needed.

2.1 Need for Distributed Algorithms

One could argue that it is trivial to distribute non-collapsed Gibbs sampling, because sampling
of zi j can happen independently givenθ j andφk, and therefore can be done concurrently. In the
non-collapsed Gibbs sampler, one sampleszi j givenθ j andφk, and then samplesθ j andφk givenzi j .
Furthermore, if individual documents are not spread across different processors, one can marginalize
over justθ j , sinceθ j is processor-specific. In this partially collapsed scheme, the latent variableszi j

on each processor can be concurrently sampled, where the concurrency is over processors.
Unfortunately, the non-collapsed and partially collapsed Gibbs samplers exhibit slow conver-

gence due to the strong dependencies between the parameters and latent variables. Generally, we
expect faster mixing as more variables are collapsed (Liu et al., 1994; Casella and Robert, 1996).
Figure 2 shows, using one of the data sets used throughout our paper,that the log probability of
test data (measured as perplexity, which is defined in Section 4) of the non-collapsed and partially
collapsed samplers converges more slowly than the fully collapsed sampler.

The slow convergence of partially collapsed and non-collapsed Gibbs samplers motivates the
need to devise distributed algorithms for fully collapsed Gibbs samplers. In thefollowing section
we introduce distributed topic modeling algorithms that take advantage of the benefits of collapsing
bothθ andφ.
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Figure 2: On the NIPS data set usingK = 20 topics, the fully collapsed Gibbs sampler (solid line)
converges faster than the partially collapsed (circles) and non-collapsed (triangles) sam-
plers.

3. Distributed Algorithms for Topic Models

We introduce algorithms for LDA and HDP where the data, parameters, and computation are dis-
tributed over distinct processors. We distribute theD documents overP processors, with approx-
imately DP = D

P documents on each processor. Documents are randomly assigned to processors,
although as we will see later, the assignment of documents to processors—ranging from random to
highly non-random or adversarial—appears to have little influence on the results. This indifference
is somewhat understandable given that converged results from Gibbs sampling are independent of
sampling order.

We partition the words from theD documents intox = {x1, . . . ,xp, . . . ,xP} and the correspond-
ing topic assignments intoz = {z1, . . . ,zp, . . . ,zP}, where processorp storesxp, the words from doc-
umentsj = (p−1)DP +1, . . . , pDP, andzp, the corresponding topic assignments. Topic-document
countsNk j are likewise distributed asNk jp. The word-topic countsNwk are also distributed, with
each processor keeping a separate local copyNwkp.

3.1 Approximate Distributed Latent Dirichlet Allocation

The difficulty of distributing and parallelizing over Gibbs sampling updates (3)lies in the fact that
Gibbs sampling is a strictly sequential process. To asymptotically sample from theposterior distri-
bution, the update of any topic assignmentzi j can not be performed concurrently with the update
of any other topic assignmentzi′ j ′ . But given the typically large number of word tokens compared
to the number of processors, to what extent will the update of one topic assignmentzi j depend on
the update of any other topic assignmentzi′ j ′? Our hypothesis is that this dependence is weak, and
therefore we should be able to relax the requirement of sequential samplingof topic assignments
and still learn a useful model. One can see this weak dependence in the following common situation.
If two processors are concurrently sampling, but sampling different words in different documents
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Algorithm 1 AD-LDA
repeat

for each processorp in paralleldo
Copy global counts:Nwkp← Nwk

Samplezp locally: LDA-Gibbs-Iteration(xp, zp, Nk jp, Nwkp, α, β)
end for
Synchronize
Update global counts:Nwk← Nwk+∑p(Nwkp−Nwk)

until termination criterion satisfied

(i.e., wi j 6= wi′ j ′), then concurrent sampling will be very close to sequential sampling because the
only term affecting the order of operations is the total count of topics∑wNwk in the denominator of
(3).

The pseudocode for our Approximate Distributed LDA (AD-LDA) algorithmis shown in Algo-
rithm 1. After distributing the data and parameters across processors, AD-LDA performs simultane-
ous LDA Gibbs sampling on each of theP processors. After processorp has swept through its local
data and updated topic assignmentszp, the processor has modified count arraysNk jp andNwkp. The
topic-document countsNk jp are distinct because of the document index,j, and will be consistent
with the topic assignmentsz. However, the word-topic countsNwkp will in general be different on
each processor, and not globally consistent withz. To merge back to a single and consistent set
of word-topic counts, we perform a reduce operation onNwkp across all processors to update the
global counts. After the synchronization and update operations, each processor has the same val-
ues in theNwkp array which are consistent with the global vector of topic assignmentsz. Note that
Nwkp is not the result ofP separate LDA models running on separate data. In particular, each word-
topic count array reflects all the counts, not just those local to that processor, so for every processor
∑wkNwkp = N, whereN is the total number of words in the corpus. As in LDA, the algorithm can
terminate either after a fixed number of iterations, or based on some suitable MCMC convergence
metric.

We chose the nameApproximateDistributed LDA because in this algorithm we are no longer
asymptotically sampling from the true posterior, but to an approximation of the true posterior.
Nonetheless, we will show in our experimental results that the approximation made by Approxi-
mate Distributed LDA works very well.

3.2 Hierarchical Distributed Latent Dirichlet Allocation

In AD-LDA we constructed an algorithm where each processor is independently computing an LDA
model, but at the end of each sweep through a processor’s data, a consistent global array of topic
countsNwk is reconstructed. This global array of topic counts could be thought of as a parent topic
distribution, from which each processor draws its own local topic distribution.

Using this intuition, we created a Bayesian model reflecting this structure, as shown in Fig-
ure 3. Our Hierarchical Distributed LDA model (HD-LDA) places a hierarchy over word-topic
distributions, withΦk being the global or parent word-topic distribution andϕkp the local word-
topic distributions on each processor. The local word-topic distributionsϕkp are drawn fromΦk

according to a Dirichlet distribution with a topic-dependent strength parameter βk, for each topic
k = 1. . .K. The model on each processor is simply an LDA model. The generative process is given
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Figure 3: Graphical model for Hierarchical Distributed Latent Dirichlet Allocation.

by:

βk ∼ G [a,b], αp∼ G [c,d], θ jp ∼D[αp], Φk ∼D[γ], ϕkp∼D[βkΦk], (5)

zi jp ∼ θ jp, xi jp ∼ ϕzi jp p.

From this generative process, we derive Gibbs sampling equations for HD-LDA. The derivation
is based on the Teh et al. (2006) sampling schemes for Hierarchical Dirichlet Processes. As was
done for LDA, we start by integrating outϕ and θ. The collapsed distribution ofzp and xp on
processorp is given by:

p(zp,xp|αp,β,Φ) =∏
j

[

Γ(Kαp)

Γ(Njp +Kαp)
∏

k

Γ(Nk jp +αp)

Γ(αp)

]

∏
k

[

Γ(βk)

Γ(Nkp+βk)
∏
w

Γ(Nwkp+βkΦw|k)

Γ(βkΦw|k))

]

. (6)

From this we derive the conditional probability for sampling a topic assignmentzi jp . Unlike
AD-LDA, the topic assignments on any processor are now conditionally independent of the topic
assignments on the other processors givenΦ, thus allowing each processor to samplezp concur-
rently. The conditional probability ofzi jp is

p(zi jp = k|z¬i jp
p ,x,αp,β,Φ) = (N¬i jp

k jp +αp)
(N¬i jp

wkp +βkΦw|k)

(N¬i jp
kp +βk)

.

The full derivation of the Gibbs sampling equations for HD-LDA is providedin Appendix A,
which lists the complete set of sampling equations forαp, βk, andΦk.

The pseudocode for our Hierarchical Distributed LDA algorithm is givenin Algorithm 2. Each
variable in this model is either local or global, depending on whether inference for the variable
is computed locally on a processor or globally, requiring information from allprocessors. Local
variables includeα, θ, ϕ, z, andx. Global variables includeβ andΦ. Each processor uses Gibbs
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sampling to sample its local variables concurrently. After each sweep through the processor’s data,
the global variables are sampled. Note that, unlike AD-LDA, HD-LDA is performing strictly correct
sampling for its model.

HD-LDA can be viewed as a mixture model withP LDA mixture components with equal mixing
weights. In this view the data have been hard-assigned to their respectiveclusters (i.e., processors),
and the parameters of the clusters are generated from a shared prior distribution.

Algorithm 2 HD-LDA
repeat

for each processorp in paralleldo
Samplezp locally: LDA-Gibbs-Iteration(xp, zp, Nk jp, Nwkp, αp, βkΦk)
Sampleαp locally

end for
Synchronize
Sample:βk, Φk

Broadcast:βk, Φk

until termination criterion satisfied

3.3 Approximate Distributed Hierarchical Dirichlet Processes

Our third distributed algorithm, Approximate Distributed HDP, takes the same approach as AD-
LDA. Processors concurrently run HDP for a single sweep through their local data. After all of
the processors sweep through their data, a synchronization and updatestep is performed to create a
single set of globally-consistent word-topic countsNwk. We refer to the distributed version of HDP
as AD-HDP, and provide the pseudocode in Algorithm 3.

Unlike AD-LDA, which uses a fixed number of topics, individual processors in AD-HDP may
instantiate new topics during the sampling phase, according to the HDP sampling Equation (4).
During the synchronization and update step, instead of treating each processor’s new topics as dis-
tinct, we merge new topics that were instantiated on different processors.Merging new topics helps
limit unnecessary growth in the total number of topics and allows AD-HDP to produce more of a
global model.

Algorithm 3 AD-HDP
repeat

for each processorp in paralleldo
Samplezp locally: HDP-Gibbs-Iteration(xp, zp, Nk jp, Nwkp, αkp, β, γ, η)
ReportNwkp, αkp to master node

end for
Synchronize
Update global counts (and merge new topics):Nwk← Nwk+∑p(Nwkp−Nwk)
αk← (∑p αkp)/P
Sample:η, αk, γ
Broadcast:Nwk, αk, γ, η

until termination criterion satisfied
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Figure 4: The simplest method to merge new topics in AD-HDP is by integer topic label.

There are several ways to merge newly created topics on each processor. A simple way—
inspired by AD-LDA—is to merge new topics based on their integer topic label. Amore compli-
cated way is to match new topics across processors based on topic similarity.

In the first merging scheme, new topics are merged based on their integer topic label. For exam-
ple, assume that we have three processors, and at the end of a sweep through the data, processor one
has 8 new topics, processor two has 6 new topics, and processor threehas 7 new topics. Then dur-
ing synchronization, all these new topics would be aligned by topic label andtheir counts summed,
producing 8 new global topics, as shown in Figure 4.

While this merging of new topics by topic-id may seem suboptimal, it is computationally simple
and efficient. We will show in the next section that this merging generally works well in practice,
even when processors only have a small amount of data. We suggest that even if the merging by
topic-id is initially quite random, the subsequent dynamics align the topics in a sensible manner. We
will also show that AD-HDP ultimately learns models with similar perplexity to HDP, irrespective
of how new topics are merged.

We also investigate more complicated schemes for merging new topics in AD-HDP,beyond the
simple approach of merging by topic-id. Instead of aligning new topics basedtopic-id it is possible
to align new topics using a similarity metric such as symmetric Kullback-Leibler divergence. How-
ever, finding the optimal matching of topics in the case whereP > 2 is NP-hard (Burkard and Çela,
1999). Thus, we consider approximate schemes: bipartite matching using a reference processor,
and greedy matching.

In the bipartite matching scheme, we select a reference processor and perform bipartite matching
between every processor’s new topics and the set of new topics of the reference processor. The
bipartite match is computed using the Hungarian algorithm, which runs inO(T3), producing an
overall complexity ofO(PT3) whereT is the maximum number of new topics on a processor. We
implemented this scheme but did not find any improvement over AD-HDP with merging by topic-id.

In the greedy matching scheme, new topics on each processor are sequentially compared to a
global set of new topics. This global set is initialized to the first processor’s set of new topics. If
a new topic is sufficiently different from every topic in the global set, the number of topics in the
global set is incremented; otherwise, the counts for that new topic are added to those from the closest
match in the global set. A threshold is used to determine whether a new topic is sufficiently different
from another topic. The worst case complexity of this algorithm isO(P2T2)—this is the case where
every new topic is found to be different from every other new topic in the global set. Increasing this
threshold will make it more likely for new topics to merge with the topics already in theglobal set
(instead of incrementing the set), causing the expected running time of this merging algorithm to
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Algorithm 4 Greedy Matching of New Topics for AD-HDP
Initialize global set of new topics,G, to be processor 1’s set of new topics
for p = 2 to Pdo

for topic t in processor p’s set of new topicsdo
Initialize score array
for topicg in G do

score[g] = symmetric-KL-divergence(t,g)
end for
if min(score)< thresholdthen

Add t ’s counts to the topic inG corresponding to min(score)
else

AugmentG with the new topict
end if

end for
end for

KOS NIPS WIKIPEDIA PUBMED NEWSGROUPS
Dtrain 3,000 1,500 2,051,929 8,200,000 19500
W 6,906 12,419 120,927 141,043 27,059
N 467,714 2,166,058 344,941,756 737,869,083 2,057,207
Dtest 430 184 - - 498

Table 2: Characteristics of data sets used in experiments.

be linear in the number of processors. The pseudocode of this greedy matching scheme is shown in
Algorithm 4. This algorithm is run after each iteration of AD-HDP to produce aglobal set of new
topics. We show in the next section that this greedy matching scheme significantly improves the
rate of convergence for AD-HDP.

4. Experiments

The purpose of our experiments is to investigate how our distributed topic model algorithms, AD-
LDA, HD-LDA and AD-HDP, perform when compared to their sequential counterparts, LDA and
HDP. We are interested in two aspects of performance: the quality of the model learned, measured
by log probability of test data; and the time taken to learn the model. Our primary data sets for these
experiments were KOS blog entries, from dailykos.com, and NIPS papers,from books.nips.cc.
We chose these relatively small data sets to allow us to perform a large numberof experiments.
Both data sets were split into a training set and a test set. Size parameters forthese data sets
are shown in Table 2. For each corpus,D is the number of documents,W is the vocabulary size
and N is the total number of words. Two larger data sets WIKIPEDIA, from en.wikipedia.org,
and PUBMED, from pubmed.gov were used for speedup experiments, described in Section 5. For
precision-recall experiments we used the NEWSGROUPS data set, taken from the UCI Machine
Learning Repository. All the data sets used in this paper can be downloaded from the UCI Machine
Learning Repository (Asuncion and Newman, 2007).
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Using the KOS and NIPS data sets, we computed test set perplexities for a range of topicsK, and
for numbers of processors,P, ranging from 1 to 3000. The distributed algorithms were initialized by
first randomly assigning topics to words inz, then counting topics in documents,Nk jp, and words in
topics,Nwkp, for each processor. For each run of LDA, AD-LDA, and HD-LDA,a sample was taken
at 500 iterations of the Gibbs sampler, which is well after the typical burn-in period of the initial
200-300 iterations. For each run of HDP and AD-HDP, we allow the Gibbs sampler to run for 3000
iterations, to allow the number of topics to grow. In our perplexity experiments,multiple processors
were simulated in software by separating data, running sequentially througheach processor, and
simulating the global synchronization and update steps. For the speedup experiments, computations
were run on 64 to 1024 processors on a 2000+ processor parallel supercomputer.

The following set of hyperparameters was used for the experiments, where hyperparameters are
shown as variables in squares in the graphical models in Figures 1 and 3. For AD-LDA we setα =
0.1 andβ = 0.01. For AD-HDP we setβ = 0.01, η ∼Gamma(2,1) andγ ∼Gamma(10,1). While
η andγ could have also been fixed, resampling these hyperparameters allows formore robust topic
growth, as described by Teh et al. (2006). For LDA and AD-LDA we fixed the hyperparametersα
andβ, but these priors could also be learned using sampling.

Selection of hyperparameters for HD-LDA was guided by our experience with AD-LDA. For
AD-LDA, ∑wNwkp≈

N
K , but for HD-LDA ∑wNwkp≈

N
PK , so we choosea andb to make the mode

of βk = (P−1)N
PK to simulate the inclusion of global counts inNwkp as is done in AD-LDA. We set

γ = 2/K, because it is important to scaleγ by the number of topics to prevent oversmoothing when
the counts are spread thinly among many topics. Finally, we choosec andd to make the mode of
αp = 0.1, matching the value ofα used in our LDA and AD-LDA experiments. Specifically, we set:

a = (P−1)N
PK , b = 1, c = 0.1∗10+1 andd = 0.1.

To systematically evaluate our distributed topic model algorithms, AD-LDA, HD-LDA and
AD-HDP, we measured performance using test set perplexity, which is computed as Perp(xtest) =
exp(− 1

Ntest logp(xtest)). For every test document, half the words at random are designated forfold-
in, and the remaining words are used as test. The document mixtureθ j is learned using the fold-in
part, and log probability of the test words is computed using this mixture, ensuring that the test
words are not used in estimation of model parameters. For AD-LDA, the perplexity computation
exactly follows that of LDA, since a single set of topic countsNwk are saved when a sample is taken.
In contrast, allP copies ofNwkp are required to compute perplexity for HD-LDA. Except where
stated, perplexities are computed for all algorithms usingS= 10 samples from the posterior from
ten independent chains using

logp(xtest) = ∑
j,w

Ntest
jw log

1
S∑

s
∑
k

θs
k| jφ

s
w|k, θs

k| j =
α+Ns

k j

Kα+Ns
j
, φs

w|k =
β+Ns

wk

Wβ+Ns
k
. (7)

This perplexity computation follows the standard practice of averaging overmultiple chains when
making predictions with LDA models trained via Gibbs sampling, as discussed in Griffiths and
Steyvers (2004). Averaging over ten samples significantly reduces perplexity compared to using a
single sample from one chain. While we perform averaging over multiple samples to improve the
estimate of perplexity, we have also observed similar relative results acrossour algorithms when we
use a single sample to compute perplexity.

Analogous perplexity calculations are used for HD-LDA and AD-HDP. WithHD-LDA we ad-
ditionally compute processor-specific responsibilities, since test documentsdo not belong to any
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particular processor, unlike the training documents. Each processor learns a document mixtureθ jp

using the fold-in part for each test document. For each processor, thelikelihood is calculated over
the words in the fold-in part in a manner analogous to (7), and these likelihoods are normalized to
form the responsibilities,rp. To compute perplexity, we compute the likelihood over the test words,
using a responsibility-weighted average of probabilities over all processors:

logp(xtest) = ∑
j,w

Ntest
jw log∑

p

rp

S ∑
s

∑
k

θs
k| jpφs

w|kp

where θs
k| jp =

αp +Ns
k jp

Kαp +Ns
jp

, φs
w|kp =

βkΦw|k +Ns
wkp

βk +Ns
kp

.

Computing perplexity in this manner prevents the possibility of seeing or using test words during
the training and fold-in phases.

4.1 Perplexity

The perplexity results for KOS and NIPS in Figure 5 clearly show that the model perplexity is
essentially the same for the distributed models AD-LDA and AD-HDP atP = 10 andP = 100 as
their single-processor versions atP = 1. The figures show the test set perplexity, versus number of
processors,P, for different numbers of topicsK for the LDA-type models, and also for the HDP-
models which learn the number of topics. TheP = 1 perplexity is computed by LDA (circles) and
HDP (triangles), and we use our distributed algorithms—AD-LDA (crosses), HD-LDA (squares),
and AD-HDP (stars)—to compute theP= 10 andP= 100 perplexities. The variability in perplexity
as a function of the number of topics is much greater than the variability due to thenumber of
processors. Note that there is essentially no perplexity difference between AD-LDA and HD-LDA.
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Figure 5: Test perplexity on KOS (left) and NIPS (right) data versus number of processors P.P = 1
corresponds to LDA and HDP. AtP = 10 andP = 100 we show AD-LDA, HD-LDA and
AD-HDP.

Even in the limit of a large number of processors, the perplexity for the distributed algorithms
matches that for the sequential version. In fact, in the limiting case of just onedocument per
processor,P = 3000 for KOS andP = 1500 for NIPS, we see that the perplexities of AD-LDA are
generally no different to those of LDA, as shown in the rightmost point in each curve in Figure 6.
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Figure 6: AD-LDA test perplexity versus number of processors up to thelimiting case of number
of processors equal to number of documents in collection. Left plot shows perplexity for
KOS and right plot shows perplexity for NIPS.

AD-HDP instantiates fewer topics but produces a similar perplexity to HDP. The average num-
ber of topics instantiated by HDP on KOS was 669 while the average number oftopics instantiated
by AD-HDP was 490 (P = 10) and 471 (P = 100). For NIPS, HDP instantiated 687 topics while
AD-HDP instantiated 569 (P = 10) and 569 (P = 100) topics. AD-HDP instantiates fewer topics
because of the merging across processors of newly-created topics. The similar perplexity results for
AD-HDP compared to HDP, despite the fewer topics, is partly due to the relatively small probability
mass in many of the topics.

Despite no formal convergence guarantees, the approximate distributed algorithms, AD-LDA
and AD-HDP, converged to good solutions in every single experiment (ofthe more than one hun-
dred) we conducted using multiple real-world data sets. We also tested both our distributed LDA
algorithms with adversarial/non-random distributions of topics across processors using synthesized
data. One example of an adversarial distribution of documents is where each document only uses a
single topic, and these documents are distributed such that processorp only has documents that are
about topicp. In this case the distributed topic models have to learn the correct set ofP topics, even
though each processor only sees local documents that pertain to just oneof the topics. We ran mul-
tiple experiments, starting with 1000 documents that were hard-assigned toK = 10 topics (i.e., each
document is only about one topic), and distributing the 1000 documents overP = 10 processors,
where each processor contained documents belonging to the same topic (ananalogy is one proces-
sor only having documents about sports, the next processor only having documents about arts, and
so on). The perplexity performance of AD-LDA and HD-LDA under these adversarial/non-random
distribution of documents was as good as the performance when the documents were distributed
randomly, and as good as the performance of single-processor LDA.

To demonstrate that the low perplexities obtained from the distributed algorithms with P =
100 processors are not just due to averaging effects, we split the NIPS corpus into one hundred
15-document collections, and ran LDA separately on each of these hundred collections. The test
perplexity atK = 40 computed by averaging 100-separate LDA models was 2117, significantly
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higher than theP = 100 test perplexity of 1575 for AD-LDA and HD-LDA. This shows that a
baseline approach of simple averaging of results from separate processors performs much worse
than the distributed coordinated learning algorithms that we propose in this paper.

4.2 Convergence

One could imagine that distributed algorithms, where each processor only sees its own local data,
may converge more slowly than single-processor algorithms where the data isglobal. Consequently,
we performed experiments to see whether our distributed algorithms were converging at the same
rate as their sequential counterparts. If the distributed algorithms were converging slower, the com-
putational gains of parallelization would be reduced. Our experiments consistently showed that the
convergence rate for the distributed LDA algorithms was just as fast as those for the single processor
case. As an example, Figure 7 shows test perplexity versus iteration of theGibbs sampler for the
NIPS data atK = 20 topics. During burn-in, up to iteration 200, the distributed algorithms are ac-
tually converging slightly faster than single processor LDA. Note that one iteration of AD-LDA or
HD-LDA on a parallel multi-processor computer only takes a fraction (at best 1

P) of the wall-clock
time of one iteration of LDA on a single processor computer.
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Figure 7: Convergence of test perplexity versus iteration for the distributed algorithms AD-LDA
and HD-LDA using the NIPS data set andK = 20 topics.

We see slightly different convergence behavior in the non-parametric topic models. AD-HDP
converges more slowly than HDP, as shown in Figure 8, due to AD-HDP’s heavy averaging of new
topics resulting from merging by topic-id (i.e., no matching). This slower convergence may partially
be a result of the lower number of topics instantiated. The number of new topics instantiated in one
pass of AD-HDP is limited to the maximum number of new topics instantiated on any oneprocessor.
For example, in the right plot, after 500 iterations, HDP has instantiated 360 topics, whereas AD-
HDP has instantiated 210 (P = 100) and 250 (P = 10) topics. Correspondingly, at 500 iterations,
the perplexity of HDP is lower than the perplexity of AD-HDP. After three thousand iterations, AD-
HDP produces the same perplexity as HDP, which is reassuring because itindicates that AD-HDP
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is ultimately producing a model that has the same predictive ability as HDP. We observe a similar
result for the NIPS data set.

One way to accelerate the rate of convergence for AD-HDP is to match newlygenerated topics
by similarity instead of by topic-id. Figure 9 shows that performing the greedymatching scheme for
new topics as described in Algorithm 4 significantly improves the rate of convergence for AD-HDP.
In this experiment, we used a threshold of 2 for determining topic similarity. The number of topics
increases at a faster rate for AD-HDP with matching, since the greedy matching scheme is more
flexible in that the number of new topics at each iteration is not limited to the maximum number of
new topics instantiated on any one processor. The results show that the greedy matching scheme
enables AD-HDPP= 100 to converge almost as quickly as HDP. In practice, only a few new topics
are generated locally on each processor each iteration, and so the computational overhead of this
heuristic matching scheme is minimal relative to the time for Gibbs sampling.
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Figure 8: Results for HDP versus AD-HDP with no matching. Left plot shows test perplexity versus
iteration for HDP and AD-HDP. Right plot shows number of topics versus iteration for
HDP and AD-HDP. Results are for the KOS data set.

To further check that the distributed algorithms were performing comparablyto their single
processor counterparts, we ran experiments to investigate whether the results were sensitive to the
number of topics used in the models, in case the distributed algorithms’ performance worsens when
the number of topics becomes very large. Figure 10 shows the test perplexity computed on the
NIPS data set, as a function of the number of topics, for the LDA algorithms and a fixed number of
processorsP= 10 (the results for the KOS data set were quite similar and therefore not shown). The
perplexities of the different algorithms closely track each other as number of topics,K, increases.
In fact, in some cases HD-LDA produces slightly lower perplexities than those of single processor
LDA. This lower perplexity may be due to the fact that in HD-LDA test perplexity is computed
using P sets of topic parameters, thus it has more parameters than AD-LDA to better fit the data.

4.3 Precision and Recall

In addition to our experiments measuring perplexity, we also performed precision/recall calculations
using the NEWSGROUPS data set, where each document’s correspondingnewsgroup is the class
label. In this experiment we use LDA and AD-LDA to learn topic models on the training data. Once
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Figure 9: Results for HDP versus AD-HDP with greedy matching. Left plotshows test perplexity
versus iteration for HDP and AD-HDP. Right plot shows number of topics versus iteration
for HDP and AD-HDP. Results are for the KOS data set.
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Figure 10: Test perplexity versus number of topics using the NIPS data set (S=5).

the model is learned, each test document can be treated as a ”query”, where the goal is to retrieve
relevant documents from the training set. For each test document, the training documents are ranked
according to how probable the test document is under each training document’s mixtureθ j and the
set of topicsφ. From this ranking, one can calculate mean average precision and area under the
ROC curve.

Figure 11 shows the mean average precision and the area under the ROC curve achieved by
LDA and AD-LDA, plotted versus iteration. LDA performs slightly better than AD-LDA for the
first 20 iterations, but AD-LDA catches up and converges to the same meanaverage precision and
area under the ROC curve as LDA. This again shows that our distributed/parallel version of LDA
produces a very similar result to the single-processor version.
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Figure 11: Precision/recall results: (left) Mean average precision forLDA/AD-LDA. (right) Area
under the ROC curve for LDA/AD-LDA.

5. Scalability

The primary motivation for developing distributed algorithms for LDA and HDP isto have highly
scalable algorithms, in terms of memory and computation time. Memory requirements depend on
both memory for data and memory for model parameters. The memory for the datascales withN,
the total number of words in the corpus. The memory for the parameters is linear in the number
of topicsK, which is either fixed for the LDA models or learned for the HDP models. The per-
processor per-iteration time and space complexity of LDA and AD-LDA are shown in Table 3.
AD-LDA’s memory requirement scales well as collection sizes grow, because while corpus size (N
andD) can get arbitrarily large, which can be offset by increasing the numberof processors,P,
the vocabulary sizeW will tend to asymptote, or at least grow more slowly. Similarly the time
complexity scales well since the leading order termNK is divided byP.

The communication cost of the reduce operation, denoted byC in the table, represents the time
taken to perform the global sum of the count difference∑p(Nwkp−Nwk). This is executed in logP
stages and can be implemented efficiently in standard language/protocols such as MPI, the Message
Passing Interface. Because of the additionalKW term, parallel efficiency will depend onNPW, with
increasing efficiency as this ratio increases. Space and time complexity of HD-LDA are similar to
that of AD-LDA, but HD-LDA has bigger constants. For a given numberof topics,K, we argue that
AD-HDP has similar time complexity as AD-LDA.

We performed large-scale speedup experiments with just AD-LDA instead of all three of our
distributed topic modeling algorithms because AD-LDA produces very similar results to HD-LDA,
but with significantly less computation. We expect that relative speedup performance for HD-LDA
and AD-HDP should follow that for AD-LDA.

LDA AD-LDA
Space N+K(D+W) 1

P(N+KD)+KW
Time NK 1

PNK+KW+C

Table 3: Space and time complexity of LDA and AD-LDA.
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Figure 12: Parallel speedup results for 64 to 1024 processors on multi-million document data sets
WIKIPEDIA and PUBMED.

We used two multi-million document data sets, WIKIPEDIA and PUBMED, for speedup exper-
iments on a large-scale supercomputer. The supercomputer used was DataStar, a 15.6 TFlop teras-
cale machine at San Diego Supercomputer Center built from 265 IBM P655 8-way compute nodes.
We implemented a parallel version of AD-LDA using the Message Passing Interface protocol. We
ran AD-LDA on WIKIPEDIA usingK = 1000 topics and PUBMED usingK = 2000 topics dis-
tributed overP = 64,128,256,512 and 1024 processors. The speedup results, shown in Figure 12,
show relatively high parallel efficiency, with approximately 700 times speedup for WIKIPEDIA
and 800 times speedup for PUBMED when usingP = 1024 processors, corresponding to parallel
efficiencies of approximately 0.7 and 0.8 respectively. This speedup is computed relative to the
time per iteration when usingP = 64 processors (i.e., atP = 64 processors speedup=64), since it
is not possible, due to memory limitations, to run these models on a single processor. Multiple
runs were timed for both WIKIPEDIA and PUBMED, and the resulting variation in timing was less
than 1%, so error bars are not shown in the figure. We see slightly higher parallel efficiency for
PUBMED versus WIKIPEDIA because PUBMED has a larger amount of computation per unit data
communicated,NPW.

This speedup dramatically reduces the learning time for large topic models. If we were to learn
a K = 2000 topic model for PUBMED using LDA on a single processor, it would require over 300
days instead of the 10 hours required to learn the same model using AD-LDAon 1024 processors. In
our speedup experiments on these large data sets, we did not directly investigate latency or commu-
nication bandwidth effects. Nevertheless, one could expect that if the communication time becomes
very long compared to the computation time, then it may be worth doing multiple Gibbs sampling
sweeps on a processor’s local data before performing the synchronization and global update step.
In Section 6 we further examine this question of frequency of synchronizations. The relative time
for communication versus computation also effects the weak scaling of parallelization, where the
problem size increases linearly with the number of processors. We expect that parallel efficiency
will be relatively constant for weak scaling sinceNPW is constant.
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In addition to the large-scale speedup experiments run on the 1024-processor parallel super-
computer, we also performed small-scale speedup experiments for AD-HDPon an 8-node parallel
cluster running MPI. Using the NIPS data set we measured parallel efficiencies of 0.75 and 0.5 for
P = 4 andP = 8. The latter result on 8 processors means that the HDP model for NIPS can be
learned four times faster than on a single processor.

6. Analysis of Approximate Distributed LDA

Finally, we investigate the dynamics of AD-LDA learning using toy data to get further insight
into how AD-LDA is working. While we have shown experimental results showing that AD-LDA
produces models with similar perplexity and similar convergence rates to LDA, itis not obvious
why this algorithm works so well in practice. Our toy example hasW = 3 words andK = 2 topics.
We generated document collections according to the LDA generative process given by (1). We
chose a low dimension vocabulary,W, so that we could plot the evolution of the Gibbs sampler on a
two-dimensional word-topic simplex. We first generated data, then learnedmodels using LDA and
AD-LDA.

The left plot of Figure 13 shows theL1 distance between the model’s estimate of a particular
topic-word distribution and the true distribution, as a function of Gibbs iteration, for both single-
processor LDA and AD-LDA withP = 2. LDA and AD-LDA have qualitatively the same three-
phase learning dynamics. The first four or so iterations (labeledinitialize) correspond to somewhat
random movement close to the randomly initialized starting point. In the next phase (labeledburn-
in) both algorithms rapidly move in parameter space toward the posterior mode. And finally after
burn-in (labeledstationary) both are sampling around the mode. In the right plot we show the sim-
ilarity between AD-LDA and LDA samples taken from the equilibrium distribution—here plotted
on the two-dimensional planar simplex corresponding to the three-word topicdistribution.
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Figure 13: (Left)L1 distance to the mode for LDA and forP = 2 AD-LDA. (Right) Closeup of 50
samples ofφ (projected onto the topic simplex) taken from the equilibrium distribution,
showing the similarity between LDA andP= 2 AD-LDA. Note the zoomed scale in this
figure.

The left plot of Figure 14 depicts the same trajectory shown in Figure 13 left,projected onto the
topic simplex. This plot shows the paths in parameter space of each model, andthe same three-phase
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learning dynamics: taking a few small steps near the starting point, moving up to the true solution,
and then sampling near the posterior mode for the rest of the iterations. For each Gibbs iteration,
the parameters corresponding to each of the two individual processors, and those parameters after
merging, are shown for AD-LDA. One can see the alternating pattern of twoseparate (but close)
parameter estimates on each processor, followed by a merged estimate. We observed that after the
initial few iterations, the individual processor steps and the merge step each resulted in a move
closer to the mode. One might worry that the AD-LDA algorithm would get trapped close to the
initial starting point, for example, due to repeated label switching or oscillatorybehavior of topic
labeling across processors. In practice we have consistently observed that the algorithm quickly
discards such configurations due to the stochastic nature of the moves andlatches onto a consistent
and stable labeling that rapidly moves it toward the posterior mode. The figureclearly illustrates
that LDA and AD-LDA have qualitatively similar learning dynamics. The right plot in Figure 14
illustrates the same qualitative behavior as in the left plot, but now forP = 10 processors.

Interestingly, across a wide range of experiments, we observed that thevariance in the AD-
LDA word-topic distribution samples is typically only about 70% of the variancein LDA topic
samples. Since the samplers are not the same it makes sense that the posteriorvariance differs
(i.e., is underestimated) by the parallel sampler. We expect less variance because AD-LDA ignores
fluctuations in the bulk ofNwk. Nonetheless, all of our experiments indicate that the posterior mode
and means found by the parallel sampler are essentially the same as those found by the sequential
sampler.
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Figure 14: (Left) Projection of topics onto simplex, showing convergenceto mode forP = 2.
(Right) Same as left plot, but withP = 10.

Another insight can be gained by thinking of LDA as an approximation to stochastic descent in
the space of assignment variablesz. On a single processor, one can view Gibbs sampling during
burn-in as a stochastic algorithm to move up the likelihood surface. With multiple processors, each
processor computes an upward direction in its own subspace, keeping allother directions fixed.
The global update step then recombines these directions by vector-addition, in the same way as one
would compute a gradient using finite differences. This is expected to be accurate as long as the
surface is locally convex or concave, but will break down at saddle-points. We conjecture AD-LDA
works reliably because saddle points are unstable and rare because theposterior is usually highly
peaked for LDA models and high-dimensional count data sets.
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Figure 15: AverageL1 error in word-topic distribution versus P for AD-LDA.

While we see similar perplexities for AD-LDA compared to LDA, we could further ask if the
AD-LDA algorithm is producing any bias in its estimates of the model parameters.To test this, we
performed a series of experiments where we generated synthetic data setsaccording to the LDA
generative process, with known word-topic distributionsφ∗. We then learned LDA and AD-LDA
models from each of the simulated data sets. We computed the expected value ofthe AD-LDA top-
icsE(φ) and compared this to two reference values,φref one based on the true distribution,φref = φ∗,
the other based on multiple LDA samples,φref = E[φLDA ]. Figure 15 shows that AD-LDA is much
closer to the LDA topicsE[φLDA ] than either are to the true topicsφ∗, telling us that the sampling
variation in learning LDA models from finite data sets is much greater than the variation between
LDA and AD-LDA on the same data sets.

6.1 When Does AD-LDA Fail?

In all of our experiments thus far, we have seen that our distributed algorithms learn models with
equivalent predictive power as their non-distributed counterparts. However, when global synchro-
nizations are done less frequently (i.e., when the synchronization step is performed after multiple
Gibbs sampling sweeps through local data), the distributed algorithms may converge to suboptimal
solutions.

When the synchronization interval is increased dramatically, it is possible for AD-LDA to con-
verge to a suboptimal solution. This can happen because the topics (with the same integer label) on
each processor can drift far apart, so that topick on one processor diverges from topick on another
processor. In Figure 16, we show the results of an experiment on KOS where synchronizations only
occur once every 100 iterations. ForP = 2 processors, AD-LDA performs significantly worse than
LDA. The P = 2 processor case is the worst case for AD-LDA, since one half of the total words on
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each processor have the freedom to drift. In contrast, whenP = 100 processors, each processor can
only locally modify 1/100th of the topic assignments, and so the topics on each processor can not
drift far from the global set of topic counts at the previous iteration. Bipartite matching significantly
improves the perplexity in theP = 2 processor case, suggesting that the lack of communication has
indeed caused the topics to drift apart. Fortunately, topic drifting becomes less of a problem as
more processors are used, and can be eliminated by frequent synchronization. It is also important
to note that AD-LDAP = 2, where processors synchronize after every iteration, gives essentially
identical results as LDA. Our recommendation in practice is to perform the synchronization and
count updates after each iteration of the Gibbs sampler. As shown earlier inthe paper, this leads
to performance that is essentially indistinguishable from LDA. Since most multi-processor comput-
ing hardware will tend to have communication bandwidth matched to processor speed (i.e., faster
and/or more processors usually come with a faster communication network), synchronizing after
each iteration of the Gibbs sampler will usually be the optimal strategy.
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Figure 16: Test perplexity versus iteration where synchronizations between processors only occur
every 100 iterations, KOS,K = 16.

7. Related Work

Approximate inference for topic models such as LDA and HDP can be carried out using a variety
of methods, the most common being variational methods and Markov chain MonteCarlo methods.
Previous efforts to parallelize these algorithms have focused on variational methods, which are often
straightforward to cast in a distributed framework. For example, Blei et al.(2002) and Nallapati
et al. (2007) describe distributed variational EM methods for LDA. In theirdistributed variational
approach, the computationally expensive E-step is easily parallelized because the document-specific
variational parameters are independent. Wolfe et al. (2008) investigate the parallelization of both
the E and M-steps of variational EM for LDA, under a variety of computer network topologies.
In these cases the distributed version of LDA produces identical results tothe sequential version
of the algorithm. However, memory for variational inference in LDA scales as MK, whereM is
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the number of distinct document-word pairs in the corpus. For typical English-language corpora,
the total number of words in the corpus is less than twice the number of distinct document-word
pairs (N < 2M), soM can be considered on the order ofN. SinceM is usually much larger than
the number of documents,D, this memory requirement ofMK is not nearly as scalable as that the
memory requirement ofN+DK for MCMC methods.

Parallelized versions of various machine learning algorithms have also beendeveloped. Forman
and Zhang (2000) describe a parallel k-means algorithm, and W. Kowalczyk and N. Vlassis (2005)
describe an asynchronous parallel EM algorithm for Gaussian mixture learning. A parallel EM
algorithm for Probabilistic Latent Semantic Analysis, implemented using Google’sMapReduce
framework, was described in Das et al. (2007). A review of how to parallelize an array of standard
machine learning algorithms using MapReduce was presented by Chu et al. (2007). Rossini et al.
(2007) presents a framework for statisticians that allows for the parallel computing of independent
tasks within the R language.

While many of these EM algorithms are readily parallelizable, Gibbs sampling of dependent
variables (such as topic assignments) is fundamentally sequential and therefore difficult to paral-
lelize. One way to parallelize Gibbs sampling is to run multiple independent chains inparallel to
obtain multiple samples; however, this multiple-chain approach does not address the fact that the
burn-in within each chain may take a long time. Furthermore, for some applications, one is not in-
terested in multiple samples from independent chains. For example, if we wish tolearn topics for a
very large document collection, one is usually satisfied with mean values of word-topic distributions
taken from a single chain.

One can parallelize a single MCMC chain by decomposing the variables into independent non-
interacting blocks that can be sampled concurrently (Kontoghiorghes, 2005). However, when the
variables are not independent, sampling variables in parallel is not possible. Brockwell (2006)
presents a general parallel MCMC algorithm based on pre-fetching, but it is not practical for learning
topic models because it discards most of its computations which makes it relatively inefficient. It
is possible to construct partially parallel Gibbs samplers, in which the samples are independently
accepted with some probability. In the limit as this probability goes to zero, this sampler will
approach the sequential Gibbs sampler, as explained in P. Ferrari et al.(1993). However, this method
is also not practical when learning topic models because it is computationally inefficient. Younes
(1998) shows the existence of exact parallel samplers that make use of periodic synchronous random
fields. However there is no known method for constructing such a sampler.

Our HD-LDA model is similar to the DCM-LDA model presented by Mimno and McCallum
(2007). There the authors perform topic modeling on a collection of booksby learning a different
topic model for each book and then clustering these learned topics togetherto find global topics. In
this model, the concept of a book is directly analogous to our concept of a processor. DCM-LDA
uses Stochastic EM along with agglomerative clustering to learn topics, while our HD-LDA follows
a fully Bayesian approach for inference. HD-LDA also differs from other topic hierarchies found
in the literature. The Hierarchical Dirichlet Process model of Teh et al. (2006) places a deeper
hierarchical prior on the topic mixture, instead of on the word-topic distributions. The Pachinko
Allocation Model presented by Li and McCallum (2006) deals with a document-specific hierarchy
of topic-assignments. These types of hierarchies do not directly facilitate proper parallel Gibbs
sampling as is done in HD-LDA.
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8. Conclusions

We have proposed three different algorithms for distributing across multipleprocessors Gibbs sam-
pling for LDA and HDP. With our approximate distributed algorithm, AD-LDA, wesample from an
approximation to the posterior distribution by allowing different processorsto concurrently sample
topic assignments on their local subsets of the data. Despite having no formalconvergence guar-
antees, AD-LDA works very well empirically and is easy to implement. With our hierarchical dis-
tributed model, HD-LDA, we adapt the underlying LDA model to map to the distributed processor
architecture. This model is more complicated than AD-LDA, but it inherits the usual convergence
properties of Markov chain Monte Carlo. We discovered that careful selection of hyperparameters
was critical to making HD-LDA work well, but this selection was clearly informedby AD-LDA.
Our distributed algorithm AD-HDP followed the same approach as AD-LDA, but with an additional
step to merge newly instantiated topics.

Our proposed distributed algorithms learn LDA models with predictive performance that is no
different than single-processor LDA. On each processor they burn-in and converge at the same rate
as LDA, yielding significant speedups in practice. For HDP, our distributed algorithm eventually
produced the same perplexity as the single-processor version of HDP. Prior to reaching the con-
verged perplexity result, AD-HDP had higher perplexity than HDP since themerging of new topics
by label slows the rate of topic growth. We also discovered that matching newtopics by similarity
significantly improves AD-HDP’s rate of convergence.

The space and time complexity of these distributed algorithms make them scalable to run very
large data sets, for example, collections with billions to trillions of words. Using two multi-million
document data sets, and running computations on a 1024-processor parallel supercomputer, we
showed how one can achieve a 700-800 times reduction in wall-clock time by using our distributed
approach.

There are several potentially interesting research directions that can bepursued using the algo-
rithms proposed here as a starting point. One research direction is to use more complex schemes that
allow data to adaptively move from one processor to another. The distributed schemes presented in
this paper can also be used to parallelize topic models that are based on or derived from LDA and
HDP, and beyond that a potentially larger class of graphical models.
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Appendix A.

The auxiliary variable method explained in Escobar and West (1995) and Teh et al. (2006) is used
to sampleα, β, andΦ. To derive Gibbs sampling equations, we use the following expansions:

Γ(u)

Γ(u+n)
=

1
Γ(n)

B(u,n) =
1

Γ(n)

Z 1

0
tu−1(1− t)n−1dt (8)

Γ(u+n)

Γ(u)
=

n

∑
s=0

S(n,s)(u)s (S is Stirling number of first kind) (9)

The first expansion follows from the definition of the Beta function, and thesecond expansion
makes use of the Stirling number of the first kind to rewrite the factorial (see Abramowitz and
Stegun, 1964).

Now we derive the sampling equation forαp. Combining the collapsed distribution (6) with the
prior onαp (5) gives the posterior distribution forαp:1

P(αp| ) ∝∏
j

[

Γ(Kαp)

Γ(Njp +Kαp)
∏

k

Γ(Nk jp +αp)

Γ(αp)

]

αc−1
p e−dαp.

Using the expansions (8,9) we introduce the auxiliary variablest ands:

P(αp, t,s| ) ∝

[

∏
j

t
Kαp−1
j (1− t j)

Njp−1dt j

][

∏
j

∏
k

S(Nk jp,sk jp)α
sk jp
p

]

αc−1
p e−dαp.

The joint distribution above allows us to create sampling equations forαp, t, ands:

P(αp|t,s, ) ∝

[

∏
j

t
Kαp
j

][

∏
j

∏
k

αsk jp
p

]

αc−1
p e−dαp

=Gamma

[

c+∑
j
∑
k

sk jp;d−K ∑
j

log(t j)

]

,

P(t j |αp,s, ) ∝ t
Kαp−1
j (1− t j)

Njp−1

=Beta[Kαp,Njp],

P(sk jp|αp, t, ) ∝S(Nk jp,sk jp)α
sk jp
p

=Antoniak[Nk jp,αp].

The Antoniak distribution is the distribution of the number of occupied tables ifNk jp customers
are sent into a restaurant that follows the Chinese restaurant processwith strength parameterαp.
Sampling from the Antoniak distribution is done by samplingNk jp Bernoulli variables:

1. To avoid notational clutter, we denote conditioned-upon variables and parameters by a dash. These variables can be
inferred from context.
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sl
k jp∼Bernoulli

[

αp

αp + l −1

]

l = 1. . .Nk jp,

sk jp =∑
l

sl
k jp.

Using the same auxiliary variable techniques, we derive sampling equations for β andΦ. These
variables are sampled jointly because they are dependent. The posterior distribution for β andΦ
and the joint distribution with the auxiliary variablest ands are given by:

P(βk,Φk| ) ∝∏
p

[

Γ(βk)

Γ(Nkp+βk)
∏
w

Γ(Nwkp+βkΦw|k)

Γ(βkΦw|k)

][

∏
w

Φγ−1
w|k

]

βa−1
k e−bβk,

P(βk,Φk, t,s| ) ∝

[

∏
p

tβk−1
kp (1− tkp)

Nkp−1

][

∏
p

∏
w

S(Nwkp,swkp)(βkΦw|k)
swkp

]

[

∏
k

∏
w

Φγ−1
w|k

]

βa−1
k e−bβk.

Note that the set of variables (t ands) is unrelated to the set of auxiliary variables introduced for
αp. The sampling equations forβ, Φ, t, ands are:

P(βk|Φ, t,s, ) ∝

[

∏
p

tβk
kp

][

∏
p

∏
w

(βk)
swkp

]

βa−1
k e−bβk

=Gamma

[

a+∑
p

∑
w

swkp;b−∑
p

log(tkp)

]

,

P(Φk|βk, t,s, ) ∝

[

∏
p

∏
w

Φswkp

w|k

]

[

∏
w

Φγ−1
w|k

]

=Dirichlet

[

γ+∑
p

swkp

]

,

P(tkp|βk,Φk,s, ) ∝ tβk−1
kp (1− tkp)

Nkp−1

=Beta[βk,Nkp] ,

P(swkp|βk,Φk, t, ) ∝S(Nwkp,swkp)(βkΦw|k)
swkp

=Antoniak
[

Nwkp,βkΦw|k
]

.
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