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Abstract

We describe distributed algorithms for two widely-used¢apodels, namely the Latent Dirichlet
Allocation (LDA) model, and the Hierarchical Dirichet Pexs (HDP) model. In our distributed
algorithms the data is partitioned across separate praxseasd inference is done in a parallel,
distributed fashion. We propose two distributed algorihfor LDA. The first algorithm is a
straightforward mapping of LDA to a distributed processetting. In this algorithm processors
concurrently perform Gibbs sampling over local data fokoWy a global update of topic counts.
The algorithm is simple to implement and can be viewed as gnoapmation to Gibbs-sampled
LDA. The second version is a model that uses a hierarchicgé®an extension of LDA to di-
rectly account for distributed data. This model has a themmeguarantee of convergence but is
more complex to implement than the first algorithm. Our distied algorithm for HDP takes
the straightforward mapping approach, and merges newelgted topics either by matching or by
topic-id. Using five real-world text corpora we show thattdimited learning works well in prac-
tice. For both LDA and HDP, we show that the converged tet-ttey probability for distributed
learning is indistinguishable from that obtained with $&agrocessor learning. Our extensive ex-
perimental results include learning topic models for twdtivmillion document collections using
a 1024-processor parallel computer.

Keywords: topic models, latent Dirichlet allocation, hierarchicdtibhlet processes, distributed
parallel computation

1. Introduction

Very large data sets, such as collections of images or text documentsa@naibg increasingly
common, with examples ranging from collections of online books at Googlédamakzon, to the
large collection of images at Flickr. These data sets present major opipiegdar machine learn-
ing, such as the ability to explore richer and more expressive models teaoysly possible, and
provide new and interesting domains for the application of learning algorithms.

However, the scale of these data sets also brings significant challergesadchine learning,
particularly in terms of computation time and memory requirements. For examplet, @otexis
with one million documents, each containing one thousand words, will requr@ximately eight
GBytes of memory to store the billion words. Adding the memory required farpaters, which
usually exceeds memory for the data, creates a total memory requiremesxdbedtls that available
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on a typical desktop computer. If one were to assume that a simple opegt@nas computing
a probability vector over categories using Bayes rule, takes on the @irdér® seconds per word,
then a full pass through the billion words would take 1000 seconds. Hhysiithms that make
multiple passes through the data, for example clustering and classificatioihatgg will have run
times in days for this sized corpus. Furthermore, for small to moderate Siweanegnt sets where
memory is not an issue, it would be useful to have algorithms that could taka@ge of desktop
multiprocessor/multicore technology to learn models in near real-time.

An obvious approach for addressing these time and memory issues is toudigsthie learning
algorithm over multiple processors. In particular, witprocessors, it is somewhat trivial to address
the memory issue by distributin@ of the total data to each processor. However, the computation
problem remains non-trivial for a fairly large class of learning algorithmasnely how to combine
local processing on each processor to arrive at a useful glohaicso

In this general context we investigate distributed algorithms for two widedgtumsupervised
learning models: the Latent Dirichlet Allocation (LDA) model, and the HieraaDirichet Pro-
cess (HDP) model. LDA and HDP models are arguably among the most stidaesent learning
algorithms for analyzing discrete data such as bags of words from atomfiext text documents.
However, they can take days to learn for large corpora, and thusibdtetl learning would be
particularly useful.

The rest of the paper is organized as follows: In Section 2 we reviewtdinelard derivation
of LDA and HDP. Section 3 presents our two distributed algorithms for LD ame distributed
algorithm for HDP. Empirical results are provided in Section 4. Scalabilityltesire presented
in Section 5, and further analysis of distributed LDA is provided in SectioA 6omparison with
related models is given in Section 7. Finally, Section 8 concludes the paper.

2. Latent Dirichlet Allocation and Hierarchical Dirichlet Process M odel

We start by reviewing the LDA and HDP models. Both LDA and HDP are giiverprobabilistic
models for discrete data such as bags of words from text documents—ogotitext these models
are often referred to as topic models. To illustrate the notation, we refegedidier to the graphical
models for LDA and HDP shown in Figure 1.

LDA models each oD documents in a collection as a mixture o¥efatent topics, with each
topic being a multinomial distribution over a vocabulary\Wfwords. For documenj, we first
draw a mixing proportior®; from a Dirichlet with parametem. For theit" word in the document,
a topicz; = kis drawn with probabilitydy ;. Wordx;; is then drawn from topig;j, with x;; taking
on valuew with probability @ ;. A Dirichlet prior with paramete is placed on the word-topic
distributionsg.

Thus, the generative process for LDA is given by

8j~Dlal, @&~DBl, z~6j Xj~ @ (1)
To avoid clutter we denote sampling from a DiricHigt D[a] as shorthand fdBy;, .. ., 8k|;] ~
Dla,...,a], and likewise forp. In this paper, we use symmetric Dirichlet priors for simplicity, un-
less specified otherwise. The full joint distribution over all parameterwvaridbles is

N j 1
p(X,Z,G,(p\O( B |_| r K I_lk k‘kjl+a I— MNK+B 17 (2)
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Figure 1: Graphical models for LDA (left) and HDP (right). Observedalaes (words) are shaded,
and hyperparameters are shown in squares.

Description
D Number of documents in collection
W | Number of distinct words in vocabulany
N Total number of words in collection
K Number of topics

x; | i observed word in document

zj | Topic assigned ta;;

Nwk | Count of word assigned to topic

N¢j | Count of topic assigned in document
@ | Probability of word given topi&

9 Probability of topic given documerjt

Table 1: Description of commonly used variables.

whereNwy; = #{i : Xij = W, zj = k}, and we use the convention that missing indices are summed
out. Nxj = YwNwkj andNwk = ¥ j Nukj are the two primary count arrays used in computations,
representing the number of words assigned to tkjmcdocumentj, and the number of times word

w is assigned to topik in the corpus, respectively. For ease of reading we list commonly used
variables in Table 1.

Given the observed words= {x;; }, the task of Bayesian inference for LDA is to compute the
posterior distribution over the latent topic assignments{z; }, the mixing proportion$;, and the
topicsqk. Approximate inference for LDA can be performed either using variatioethods (Blei
et al., 2003) or Markov chain Monte Carlo methods (Griffiths and Stey2&4). In this paper we
focus on Markov chain Monte Carlo algorithms for approximate infereM@MC is widely used
as an inference method for a variety of topic models, for example Roseet&Vi (2004), Li and
McCallum (2006), and Chemudugunta et al. (2007) all use MCMC forémfee. In the MCMC
context, the usual procedure is to integrate out the mixfiegsl topicspin (2)—a procedure called
collapsing—and just sample the latent varialde&iven the current state of all but one variahle
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the conditional probability of; is

ﬁl]
NP (N +a). )
SwNy +WB
where the superscriptij means that the corresponding word is excluded in the counts.

HDP is a collection of Dirichlet Processes which share the same topic distribwtitd can be
viewed as the non-parametric extension of LDA. The advantage of HDBtithénnumber of topics
is determined by the data. The HDP model is obtained by taking the following rivotte limit as
K goes to infinity. Letok be top level Dirichlet variables sampled from a Dirichlet with parameter
y/K. The topic mixture for each documer;, is drawn from a Dirichlet with parametergoy.
The word-topic distributiongy are drawn from a base Dirichlet distribution with param@eAs
in LDA, z; is sampled frond;, and wordx;; is sampled from the corresponding tojgg . The
generative process is given by

p(zij = k|Z_‘ij,X’G,B) 0

akN@[y/KL e] ND[nak]a %ND[BL Z|J Nejy Xij N(pZ”

The posterior distribution is sampled using the direct assignment sampleiDiérdéscribed
in Teh et al. (2006). As was done for LDA, bdifandg are integrated out, arg} is sampled from
the following conditional distribution:

—ij .
) ETEIJTTB (lej” +r]0(k) , if k previously used
p(zj =Kz, x,a,,n) 0 (4)
Qnew i i
”W , if kis new.

The sampling scheme fary is also detailed in Teh et al. (2006). Note that a small amount of
probability mass proportional m, e, iS reserved for the instantiation of new topics. While HDP is
defined to have infinitely many topics, the sampling algorithm only instantiates tapioseded.

2.1 Need for Distributed Algorithms

One could argue that it is trivial to distribute non-collapsed Gibbs sampliagause sampling
of z; can happen independently given and ¢k, and therefore can be done concurrently. In the
non-collapsed Gibbs sampler, one samplegiven8; andqy, and then sampled andg givenz;;.
Furthermore, if individual documents are not spread across diffprenessors, one can marginalize
over justBj, sinced; is processor-specific. In this partially collapsed scheme, the latent kesmb
on each processor can be concurrently sampled, where the corguis®ver processors.

Unfortunately, the non-collapsed and partially collapsed Gibbs samplbiisiteslow conver-
gence due to the strong dependencies between the parameters andaldddads: Generally, we
expect faster mixing as more variables are collapsed (Liu et al., 1994jl€asd Robert, 1996).
Figure 2 shows, using one of the data sets used throughout our fzquettie log probability of
test data (measured as perplexity, which is defined in Section 4) of thealkapsed and partially
collapsed samplers converges more slowly than the fully collapsed sampler.

The slow convergence of partially collapsed and non-collapsed Gibbdesanmpotivates the
need to devise distributed algorithms for fully collapsed Gibbs samplers. loltbe/ing section
we introduce distributed topic modeling algorithms that take advantage of tleéitlsef collapsing
both8 andaq.
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Figure 2: On the NIPS data set usikg= 20 topics, the fully collapsed Gibbs sampler (solid line)
converges faster than the partially collapsed (circles) and non-callgpsngles) sam-
plers.

3. Distributed Algorithmsfor Topic Models

We introduce algorithms for LDA and HDP where the data, parameters,@ngdutation are dis-
tributed over distinct processors. We distribute theocuments oveP processors, with approx-
imately Dp = % documents on each processor. Documents are randomly assigneddesorse
although as we will see later, the assignment of documents to processorgirg from random to
highly non-random or adversarial—appears to have little influence oretludts. This indifference
is somewhat understandable given that converged results from Gibiydisg are independent of
sampling order.

We partition the words from thB documents intx = {X1,...,Xp,...,Xp} and the correspond-
ing topic assignments into= {z1, ...,zp,...,zp}, Where processqgy storesxp, the words from doc-
umentsj = (p—1)Dp+1,..., pDp, andzp, the corresponding topic assignments. Topic-document
countsNy; are likewise distributed alNj,. The word-topic countd,, are also distributed, with
each processor keeping a separate local ¢y

3.1 Approximate Distributed Latent Dirichlet Allocation

The difficulty of distributing and parallelizing over Gibbs sampling update4i€8)in the fact that
Gibbs sampling is a strictly sequential process. To asymptotically sample froposherior distri-
bution, the update of any topic assignmantcan not be performed concurrently with the update
of any other topic assignmeantj.. But given the typically large number of word tokens compared
to the number of processors, to what extent will the update of one topgnassntz; depend on

the update of any other topic assignmgnt? Our hypothesis is that this dependence is weak, and
therefore we should be able to relax the requirement of sequential saropliogic assignments
and still learn a useful model. One can see this weak dependence in térigltmmon situation.

If two processors are concurrently sampling, but sampling differemtisvin different documents
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Algorithm 1 AD-LDA
repeat
for each processqyin paralleldo
Copy global countsNyxp < Nuk
Samplez, locally: LDA-Gibbs-IterationXp, Zp, Nkjp, Nwkp: @, B)
end for
Synchronize
Update global countS¥yk < Ny + ¥ p(Nwkp— Nuk)
until termination criterion satisfied

(i.e., wij # wyjr), then concurrent sampling will be very close to sequential sampling bedae
only term affecting the order of operations is the total count of topighh in the denominator of
(3).

The pseudocode for our Approximate Distributed LDA (AD-LDA) algorittmxshown in Algo-
rithm 1. After distributing the data and parameters across processorsPDAperforms simultane-
ous LDA Gibbs sampling on each of tReprocessors. After processpihas swept through its local
data and updated topic assignmezysthe processor has modified count arrblyg, andNyxp. The
topic-document countlsl, are distinct because of the document indgxand will be consistent
with the topic assignments However, the word-topic countsy, will in general be different on
each processor, and not globally consistent withTo merge back to a single and consistent set
of word-topic counts, we perform a reduce operationN\aRp across all processors to update the
global counts. After the synchronization and update operations, eachgsor has the same val-
ues in theNykp array which are consistent with the global vector of topic assignneritste that
Nwkp is not the result oP separate LDA models running on separate data. In particular, each word
topic count array reflects all the counts, not just those local to thaepsot, so for every processor
S wkNwkp = N, whereN is the total number of words in the corpus. As in LDA, the algorithm can
terminate either after a fixed number of iterations, or based on some suitalble&CMGnvergence
metric.

We chose the nam&pproximateDistributed LDA because in this algorithm we are no longer
asymptotically sampling from the true posterior, but to an approximation of tlee gosterior.
Nonetheless, we will show in our experimental results that the approximatide imaApproxi-
mate Distributed LDA works very well.

3.2 Hierarchical Distributed Latent Dirichlet Allocation

In AD-LDA we constructed an algorithm where each processor is inugrely computing an LDA
model, but at the end of each sweep through a processor’s datasiateahglobal array of topic
countsNy is reconstructed. This global array of topic counts could be thought afarent topic
distribution, from which each processor draws its own local topic distributio

Using this intuition, we created a Bayesian model reflecting this structurédhommsin Fig-
ure 3. Our Hierarchical Distributed LDA model (HD-LDA) places a hietsr over word-topic
distributions, with®y being the global or parent word-topic distribution ag, the local word-
topic distributions on each processor. The local word-topic distributigpsare drawn fromdy
according to a Dirichlet distribution with a topic-dependent strength pararfigtéor each topic
k=1...K. The model on each processor is simply an LDA model. The generaticegsds given
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Figure 3: Graphical model for Hierarchical Distributed Latent Dirichléogation.
by:
Bk ~ g[a7 b]? Op~ g[C, d]> ejp ~ @[ap]a Dy ~ @[y]a ¢kp ~ @[Bkcbk]a (5)
Zijp ~ Bjp, Xijp ~ §zjp-

From this generative process, we derive Gibbs sampling equation®fdA. The derivation
is based on the Teh et al. (2006) sampling schemes for Hierarchical IBirlefocesses. As was
done for LDA, we start by integrating odt and6. The collapsed distribution af, andxp on
processop is given by:

r(Kap) " (Nkjp+0p)
P(zp:Xpl0tp: B, @) =[ | [r(ij+|z0‘p) l;' 'I_(J(z‘p) :

j
(Bk) I (Nwkp+ Bk Puik)
D [F(NkmL Bk) U I (Bc®wik)) }

(6)

From this we derive the conditional probability for sampling a topic assignmgnt Unlike
AD-LDA, the topic assignments on any processor are now conditionallyper#ent of the topic
assignments on the other processors gi®erhus allowing each processor to sampjeconcur-
rently. The conditional probability of;j, is

Ny + Bk®uij)
(Nip'® +Br)
The full derivation of the Gibbs sampling equations for HD-LDA is providedppendix A,
which lists the complete set of sampling equationsofgrBx, anddy.
The pseudocode for our Hierarchical Distributed LDA algorithm is giveAlgorithm 2. Each
variable in this model is either local or global, depending on whether inderéor the variable

is computed locally on a processor or globally, requiring information fronptessors. Local
variables includex, 6, ¢, z, andx. Global variables includ@ and®. Each processor uses Gibbs

p(zllp = k|zaijpax7apv B> CD) = (Nlalé)p +ap)
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sampling to sample its local variables concurrently. After each sweep thtbagrocessor’s data,
the global variables are sampled. Note that, unlike AD-LDA, HD-LDA is pieriing strictly correct
sampling for its model.

HD-LDA can be viewed as a mixture model wiHLDA mixture components with equal mixing
weights. In this view the data have been hard-assigned to their respdatters (i.e., processors),
and the parameters of the clusters are generated from a shared pributies.

Algorithm 2 HD-LDA
repeat
for each processqrin paralleldo
Samplez,, locally: LDA-Gibbs-IterationXp, zp, Nkjp, Nwkp: 0p, Bk®xk)
Samplea locally
end for
Synchronize
Sample:Bk, Pk
Broadcastf, Pk
until termination criterion satisfied

3.3 Approximate Distributed Hierarchical Dirichlet Processes

Our third distributed algorithm, Approximate Distributed HDP, takes the samebagpipras AD-
LDA. Processors concurrently run HDP for a single sweep through liheal data. After all of
the processors sweep through their data, a synchronization and stefats performed to create a
single set of globally-consistent word-topic couNg. We refer to the distributed version of HDP
as AD-HDP, and provide the pseudocode in Algorithm 3.

Unlike AD-LDA, which uses a fixed number of topics, individual proa@ssn AD-HDP may
instantiate new topics during the sampling phase, according to the HDP sampligida (4).
During the synchronization and update step, instead of treating eaahsports new topics as dis-
tinct, we merge new topics that were instantiated on different procedderging new topics helps
limit unnecessary growth in the total number of topics and allows AD-HDP tduym® more of a
global model.

Algorithm 3 AD-HDP
repeat
for each processqrin paralleldo
Samplez, locally: HDP-Gibbs-Iteration(, zp, Nkjp, Nwkp, Okp, B: Y, N)
ReportNwkp, Okp to master node
end for
Synchronize
Update global counts (and merge new topi®)i «— Nwk+ zp(l\lwkp— Nuyk)
Ok — (3 pOkp)/P
Sample:n, ak, Y
BroadcastNy, 0k, Y, N
until termination criterion satisfied
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New Topics
T1L T2 T3 T4 T5 T6 T7 T8

Processor 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Processor 2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ +

Processor 3 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Merged Topics ‘ ’ ‘ ‘ ‘ ‘ ’ ‘ ‘

Figure 4: The simplest method to merge new topics in AD-HDP is by integer topgt lab

There are several ways to merge newly created topics on each mocdssimple way—
inspired by AD-LDA—is to merge new topics based on their integer topic labehote compli-
cated way is to match new topics across processors based on topic similarity.

In the first merging scheme, new topics are merged based on their inteipdatmd. For exam-
ple, assume that we have three processors, and at the end of a sweegp the data, processor one
has 8 new topics, processor two has 6 new topics, and processoh#s&eew topics. Then dur-
ing synchronization, all these new topics would be aligned by topic labdhaiidcounts summed,
producing 8 new global topics, as shown in Figure 4.

While this merging of new topics by topic-id may seem suboptimal, it is computatioriadples
and efficient. We will show in the next section that this merging generally sverddl in practice,
even when processors only have a small amount of data. We suggestéhaf the merging by
topic-id is initially quite random, the subsequent dynamics align the topics in éokemanner. We
will also show that AD-HDP ultimately learns models with similar perplexity to HDPspeztive
of how new topics are merged.

We also investigate more complicated schemes for merging new topics in ADdeRéhd the
simple approach of merging by topic-id. Instead of aligning new topics Hapéctid it is possible
to align new topics using a similarity metric such as symmetric Kullback-Leiblerglivere. How-
ever, finding the optimal matching of topics in the case wirere2 is NP-hard (Burkard and Cela,
1999). Thus, we consider approximate schemes: bipartite matching usafgrance processor,
and greedy matching.

In the bipartite matching scheme, we select a reference processoréordydapartite matching
between every processor’s new topics and the set of new topics oéfibremce processor. The
bipartite match is computed using the Hungarian algorithm, which ru®(i¥), producing an
overall complexity ofO(PT2) whereT is the maximum number of new topics on a processor. We
implemented this scheme but did not find any improvement over AD-HDP with ngebgitopic-id.

In the greedy matching scheme, new topics on each processor ar@tsgtyueompared to a
global set of new topics. This global set is initialized to the first procé&sset of new topics. If
a new topic is sufficiently different from every topic in the global set, thelber of topics in the
global set is incremented; otherwise, the counts for that new topic aeel&dlthose from the closest
match in the global set. A threshold is used to determine whether a new topifiésestify different
from another topic. The worst case complexity of this algorith@(B2T?)—this is the case where
every new topic is found to be different from every other new topic in tbbal set. Increasing this
threshold will make it more likely for new topics to merge with the topics already imgkbleal set
(instead of incrementing the set), causing the expected running time of thisngaigorithm to
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Algorithm 4 Greedy Matching of New Topics for AD-HDP
Initialize global set of new topics;, to be processor 1's set of new topics
for p=2to Pdo
for topict in processor p’s set of new topide
Initialize score array
for topicgin Gdo
scorefy] = symmetric-KL-divergence(q)
end for
if min(score) thresholdthen
Addt’s counts to the topic it corresponding to min(score)

else
AugmentG with the new topid
end if
end for
end for
KOS NIPS | WIKIPEDIA PUBMED | NEWSGROUPS
Dtrain 3,000 1,500 2,051,929, 8,200,000 19500
w 6,906 12,419 120,927 141,043 27,059
N 467,714| 2,166,058 344,941,756 737,869,083 2,057,207
Dtest 430 184 - - 498

Table 2: Characteristics of data sets used in experiments.

be linear in the number of processors. The pseudocode of this greédyingescheme is shown in
Algorithm 4. This algorithm is run after each iteration of AD-HDP to produggcodal set of new
topics. We show in the next section that this greedy matching scheme sigiyficaproves the
rate of convergence for AD-HDP.

4. Experiments

The purpose of our experiments is to investigate how our distributed topicl mlggeithms, AD-
LDA, HD-LDA and AD-HDP, perform when compared to their sequent@lmterparts, LDA and
HDP. We are interested in two aspects of performance: the quality of thel feadeed, measured
by log probability of test data; and the time taken to learn the model. Our primtaygsdts for these
experiments were KOS blog entries, from dailykos.com, and NIPS pafvers, books.nips.cc.
We chose these relatively small data sets to allow us to perform a large nofmé&egperiments.
Both data sets were split into a training set and a test set. Size parametéisderdata sets
are shown in Table 2. For each corpsjs the number of documentgy is the vocabulary size
andN is the total number of words. Two larger data sets WIKIPEDIA, from eripeiftia.org,
and PUBMED, from pubmed.gov were used for speedup experimensisloed in Section 5. For
precision-recall experiments we used the NEWSGROUPS data set, takerthie UCI Machine
Learning Repository. All the data sets used in this paper can be dowdldade the UCI Machine
Learning Repository (Asuncion and Newman, 2007).
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Using the KOS and NIPS data sets, we computed test set perplexities fayeaoftopicK, and
for numbers of processomB, ranging from 1 to 3000. The distributed algorithms were initialized by
first randomly assigning topics to wordszanthen counting topics in documenbd;p, and words in
topics,Nwkp, for each processor. For each run of LDA, AD-LDA, and HD-LD#sample was taken
at 500 iterations of the Gibbs sampler, which is well after the typical burreiiog of the initial
200-300 iterations. For each run of HDP and AD-HDP, we allow the Gibivgpka to run for 3000
iterations, to allow the number of topics to grow. In our perplexity experimemigtjple processors
were simulated in software by separating data, running sequentially theagfhprocessor, and
simulating the global synchronization and update steps. For the spequennesnts, computations
were run on 64 to 1024 processors on a 2000+ processor pargitetsunputer.

The following set of hyperparameters was used for the experimentse\uiperparameters are
shown as variables in squares in the graphical models in Figures 1 and ADALDA we seta =
0.1 andp = 0.01. For AD-HDP we se = 0.01,n ~Gammad2,1) andy ~Gammd10,1). While
n andy could have also been fixed, resampling these hyperparameters allowsr®robust topic
growth, as described by Teh et al. (2006). For LDA and AD-LDA wedixhe hyperparametens
and3, but these priors could also be learned using sampling.

Selection of hyperparameters for HD-LDA was guided by our expeeievith AD-LDA. For
AD-LDA, 5 Nukp~ % but for HD-LDA ¥ ,, kapw pr» SO we choosa andb to make the mode

of Bx = (P;,?N to simulate the inclusion of global counts Mykp as is done in AD-LDA. We set
y=2/K, because it is important to scajdy the number of topics to prevent oversmoothing when
the counts are spread thinly among many topics. Finally, we choasdd to make the mode of
ap = 0.1, matching the value af used in our LDA and AD-LDA experiments. Specifically, we set:
a=" N h—1,¢c=01%10+1andd=0.1.

To systematlcally evaluate our distributed topic model algorithms, AD-LDA, HBiXLand
AD-HDP, we measured performance using test set perplexity, whicmipeted as Pefp!®s) =
exp(— =109 p(x'®sY). For every test document, half the words at random are designatésider
in, and the remaining words are used as test. The document méstigdearned using the fold-in
part, and log probability of the test words is computed using this mixture, iagstivat the test
words are not used in estimation of model parameters. For AD-LDA, thaepétly computation
exactly follows that of LDA, since a single set of topic couN{x are saved when a sample is taken.
In contrast, allP copies ofNykp are required to compute perplexity for HD-LDA. Except where
stated, perplexities are computed for all algorithms u€rg10 samples from the posterior from
ten independent chains using

1 o+ Ng; B-+NS
log p(x'®®) = theSquéZZeﬁ\j@v\k, BEU = 7KG+NJJ-S’ qﬁv\k WB+ Nks (7)

This perplexity computation follows the standard practice of averagingraudtiple chains when
making predictions with LDA models trained via Gibbs sampling, as discussedifiitiSrand
Steyvers (2004). Averaging over ten samples significantly reducesegity compared to using a
single sample from one chain. While we perform averaging over multiple sartplenprove the
estimate of perplexity, we have also observed similar relative results amroakyorithms when we
use a single sample to compute perplexity.

Analogous perplexity calculations are used for HD-LDA and AD-HDP. VAi-LDA we ad-
ditionally compute processor-specific responsibilities, since test documentst belong to any
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particular processor, unlike the training documents. Each processos @a@ocument mixtur@;,
using the fold-in part for each test document. For each processdikelirood is calculated over
the words in the fold-in part in a manner analogous to (7), and these likeha@ normalized to
form the responsibilities,,. To compute perplexity, we compute the likelihood over the test words,
using a responsibility-weighted average of probabilities over all procgss

r
logp(x'*%) = 3 Nj&log y gp > Zeﬁ\jp‘%kp
i 55

where ekljp:Kaeristp’ Gaip = B+ NS,

Computing perplexity in this manner prevents the possibility of seeing or usihg¢eds during
the training and fold-in phases.

4.1 Perplexity

The perplexity results for KOS and NIPS in Figure 5 clearly show that theeinpekrplexity is
essentially the same for the distributed models AD-LDA and AD-HDP at10 andP = 100 as
their single-processor versionsRat 1. The figures show the test set perplexity, versus number of
processorsP, for different numbers of topicK for the LDA-type models, and also for the HDP-
models which learn the number of topics. TRe- 1 perplexity is computed by LDA (circles) and
HDP (triangles), and we use our distributed algorithms—AD-LDA (crgsd$¢B-LDA (squares),
and AD-HDP (stars)—to compute tife= 10 andP = 100 perplexities. The variability in perplexity

as a function of the number of topics is much greater than the variability due touthber of
processors. Note that there is essentially no perplexity difference det@-LDA and HD-LDA.

KOS Data Set NIPS Data Set

1800

2000 T
K=10
k=8 o ® B 1900f Q ) s}
17001 1
18001
K=20 (0]
16001 k=16 (o) ] [~ 1 17001 & e 1
2 QO LpbA élGOO* ] O oA
% X AD-LDA'X K=40 o ® ® X AD-LDA
= 15001 ka2 16 = 1 HD-LDAG HD-LDA
5 = HOP 5§ L | HDP
& = Ap-topd 1500 AD-HDP
K=80
14001 - K=64 o fa] o 1 14001 o B B
13001
13001 1
HOP A > * 1200 pp A Y Y
1200 - - - 1100 - - -
P=1 P=10 P=100 P=1 P=10 P=100

Number of Processors Number of Processors

Figure 5: Test perplexity on KOS (left) and NIPS (right) data versus rmunmobprocessors P =1
corresponds to LDA and HDP. & = 10 andP = 100 we show AD-LDA, HD-LDA and
AD-HDP.

Even in the limit of a large number of processors, the perplexity for the disedbalgorithms
matches that for the sequential version. In fact, in the limiting case of jusdooement per
processorP = 3000 for KOS and® = 1500 for NIPS, we see that the perplexities of AD-LDA are
generally no different to those of LDA, as shown in the rightmost point anearve in Figure 6.
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KOS Data Set NIPS Data Set
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Figure 6: AD-LDA test perplexity versus number of processors up tditthiing case of number
of processors equal to number of documents in collection. Left plot sipanplexity for
KOS and right plot shows perplexity for NIPS.

AD-HDP instantiates fewer topics but produces a similar perplexity to HD@.allerage num-
ber of topics instantiated by HDP on KOS was 669 while the average numbspio$ instantiated
by AD-HDP was 490 = 10) and 471 ® = 100). For NIPS, HDP instantiated 687 topics while
AD-HDP instantiated 569K = 10) and 569 P = 100) topics. AD-HDP instantiates fewer topics
because of the merging across processors of newly-created tope&siriilar perplexity results for
AD-HDP compared to HDP, despite the fewer topics, is partly due to the measmall probability
mass in many of the topics.

Despite no formal convergence guarantees, the approximate distribgtedhens, AD-LDA
and AD-HDP, converged to good solutions in every single experimenhéimore than one hun-
dred) we conducted using multiple real-world data sets. We also tested bradlistributed LDA
algorithms with adversarial/non-random distributions of topics acrosepsots using synthesized
data. One example of an adversarial distribution of documents is whdregleaoment only uses a
single topic, and these documents are distributed such that progesslyrhas documents that are
about topicp. In this case the distributed topic models have to learn the correct Babpfcs, even
though each processor only sees local documents that pertain to jusftthedopics. We ran mul-
tiple experiments, starting with 1000 documents that were hard-assigKed kD topics (i.e., each
document is only about one topic), and distributing the 1000 documentsPoxet0 processors,
where each processor contained documents belonging to the same tognal@gy is one proces-
sor only having documents about sports, the next processor onlyghdeguments about arts, and
so on). The perplexity performance of AD-LDA and HD-LDA under thaslversarial/non-random
distribution of documents was as good as the performance when the ddsunere distributed
randomly, and as good as the performance of single-processor LDA.

To demonstrate that the low perplexities obtained from the distributed algorithtindPw-
100 processors are not just due to averaging effects, we split th® dbFpus into one hundred
15-document collections, and ran LDA separately on each of theseddindiections. The test
perplexity atk = 40 computed by averaging 100-separate LDA models was 2117, sigtiifican
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higher than the® = 100 test perplexity of 1575 for AD-LDA and HD-LDA. This shows that a
baseline approach of simple averaging of results from separate poosggerforms much worse
than the distributed coordinated learning algorithms that we propose in thés pap

4.2 Convergence

One could imagine that distributed algorithms, where each processor @dytse@wn local data,
may converge more slowly than single-processor algorithms where the diibas. Consequently,
we performed experiments to see whether our distributed algorithms werergomy at the same
rate as their sequential counterparts. If the distributed algorithms wevergamg slower, the com-
putational gains of parallelization would be reduced. Our experimentsstenty showed that the
convergence rate for the distributed LDA algorithms was just as fast as thothe single processor
case. As an example, Figure 7 shows test perplexity versus iteration @fithe sampler for the
NIPS data aK = 20 topics. During burn-in, up to iteration 200, the distributed algorithms are ac
tually converging slightly faster than single processor LDA. Note that onatiten of AD-LDA or
HD-LDA on a parallel multi-processor computer only takes a fraction (atib)sof the wall-clock
time of one iteration of LDA on a single processor computetr.

23001

—©—-LDA
—%— AD-LDA P=10
2200 =% =AD=LDA P=100
—5—HD-LDA P=10
-B-HD-LDA P=100

2000

Perplexity

1900

1800

1700F

50 100 150 200 250 300 350 400
Iteration

Figure 7: Convergence of test perplexity versus iteration for the disddbalgorithms AD-LDA
and HD-LDA using the NIPS data set akd= 20 topics.

We see slightly different convergence behavior in the non-parametiic nopdels. AD-HDP
converges more slowly than HDP, as shown in Figure 8, due to AD-HD&is\haveraging of new
topics resulting from merging by topic-id (i.e., no matching). This slower cgeree may partially
be a result of the lower number of topics instantiated. The number of nevstiogi@antiated in one
pass of AD-HDP is limited to the maximum number of new topics instantiated on argrooessor.
For example, in the right plot, after 500 iterations, HDP has instantiated 36 teghereas AD-
HDP has instantiated 21® & 100) and 250R = 10) topics. Correspondingly, at 500 iterations,
the perplexity of HDP is lower than the perplexity of AD-HDP. After three temnd iterations, AD-
HDP produces the same perplexity as HDP, which is reassuring becandieates that AD-HDP
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is ultimately producing a model that has the same predictive ability as HDP. Véevelas similar
result for the NIPS data set.

One way to accelerate the rate of convergence for AD-HDP is to match genlrated topics
by similarity instead of by topic-id. Figure 9 shows that performing the greeatghing scheme for
new topics as described in Algorithm 4 significantly improves the rate of cganee for AD-HDP.
In this experiment, we used a threshold of 2 for determining topic similarity. Tiheber of topics
increases at a faster rate for AD-HDP with matching, since the greedy imgtstheme is more
flexible in that the number of new topics at each iteration is not limited to the maximuomberof
new topics instantiated on any one processor. The results show thae#wygnatching scheme
enables AD-HDHP = 100 to converge almost as quickly as HDP. In practice, only a few newstopic
are generated locally on each processor each iteration, and so the ciomalitaverhead of this
heuristic matching scheme is minimal relative to the time for Gibbs sampling.

1800 1000
—A—HDP
—#%— AD-HDP P=10 900(
1700 -%-AD-HDP P=100
800f
700f
16001 8
2 S 600
2 e
2 1500 S s00¢
@ g g
o \ E 400f == X
1400+ "\ 2 — -
300( H7
200F X
1300 . —A—HDP
10018 % —#— AD-HDP P=10
-%-AD-HDP P=100
1200 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Iteration Iteration

Figure 8: Results for HDP versus AD-HDP with no matching. Left plot shtest perplexity versus
iteration for HDP and AD-HDP. Right plot shows number of topics versuatiten for
HDP and AD-HDP. Results are for the KOS data set.

To further check that the distributed algorithms were performing compatabiyeir single
processor counterparts, we ran experiments to investigate whethestiis ere sensitive to the
number of topics used in the models, in case the distributed algorithms’ perfoemasorsens when
the number of topics becomes very large. Figure 10 shows the test pgrlemputed on the
NIPS data set, as a function of the number of topics, for the LDA algorithmsdixed number of
processor® = 10 (the results for the KOS data set were quite similar and therefore nehghbhe
perplexities of the different algorithms closely track each other as nunfliepias, K, increases.
In fact, in some cases HD-LDA produces slightly lower perplexities tharetbbsingle processor
LDA. This lower perplexity may be due to the fact that in HD-LDA test perjijeis computed
using P sets of topic parameters, thus it has more parameters than AD-L[e&dofii the data.

4.3 Precision and Recall

In addition to our experiments measuring perplexity, we also performedsmetecall calculations
using the NEWSGROUPS data set, where each document’s correspomsiisgroup is the class
label. In this experiment we use LDA and AD-LDA to learn topic models on theitrg data. Once
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Figure 9: Results for HDP versus AD-HDP with greedy matching. Left ghmws test perplexity
versus iteration for HDP and AD-HDP. Right plot shows number of topécsus iteration
for HDP and AD-HDP. Results are for the KOS data set.
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Figure 10: Test perplexity versus number of topics using the NIPS dat8sg).

the model is learned, each test document can be treated as a "queeyg thik goal is to retrieve
relevant documents from the training set. For each test document, thedgrdgdnments are ranked
according to how probable the test document is under each training dotsimexture8; and the
set of topicsp. From this ranking, one can calculate mean average precision andrateathe
ROC curve.

Figure 11 shows the mean average precision and the area under theuR@CGichieved by
LDA and AD-LDA, plotted versus iteration. LDA performs slightly better thaB-ADA for the
first 20 iterations, but AD-LDA catches up and converges to the same avesage precision and
area under the ROC curve as LDA. This again shows that our distribaratlgd version of LDA
produces a very similar result to the single-processor version.

1816



DISTRIBUTED ALGORITHMS FORTOPIC MODELS

0.161 0.9r

0.14r

o

=

N
T

0.75¢
0.1r 0.7r

0.651

Mean Average Precision

06F
0.06[ g4 -©-LDA -6-LDA

@ —%— AD-LDA P=10 0.55p —%—AD-LDA P=10
—&— AD-LDA P=100 —8—-AD-LDA P=100

Mean Area Under ROC Curve

0 10 20 ] 30 40 50 %% 10 20 ] 30 40 50
Iteration Iteration

Figure 11: Precision/recall results: (left) Mean average precision@ét/AD-LDA. (right) Area

under the ROC curve for LDA/AD-LDA.

5. Scalability

The primary motivation for developing distributed algorithms for LDA and HDBikave highly
scalable algorithms, in terms of memory and computation time. Memory requiremeeisdien
both memory for data and memaory for model parameters. The memory for theoddes withN,
the total number of words in the corpus. The memory for the parameters is iimtee number
of topicsK, which is either fixed for the LDA models or learned for the HDP models. Tére p
processor per-iteration time and space complexity of LDA and AD-LDA amve in Table 3.
AD-LDA's memory requirement scales well as collection sizes grow, sxathile corpus size\
andD) can get arbitrarily large, which can be offset by increasing the numbprocessorspP,
the vocabulary siz&/ will tend to asymptote, or at least grow more slowly. Similarly the time
complexity scales well since the leading order téti is divided byP.

The communication cost of the reduce operation, denotédlinythe table, represents the time
taken to perform the global sum of the count differef§cgNykp— Nwk). This is executed in log
stages and can be implemented efficiently in standard language/protodolssd®|, the Message
Passing Interface. Because of the additidtal term, parallel efficiency will depend o% with
increasing efficiency as this ratio increases. Space and time complexity-afDADare similar to
that of AD-LDA, but HD-LDA has bigger constants. For a given numtifdopics,K, we argue that
AD-HDP has similar time complexity as AD-LDA.

We performed large-scale speedup experiments with just AD-LDA instead three of our
distributed topic modeling algorithms because AD-LDA produces very simigalteto HD-LDA,
but with significantly less computation. We expect that relative speeddiprpemce for HD-LDA
and AD-HDP should follow that for AD-LDA.

LDA AD-LDA
Space| N+K(D+W) | §(N+KD)-+KW
Time NK INK+KW+C

Table 3: Space and time complexity of LDA and AD-LDA.
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Figure 12: Parallel speedup results for 64 to 1024 processors on multimdilioument data sets
WIKIPEDIA and PUBMED.

We used two multi-million document data sets, WIKIPEDIA and PUBMED, foesiop exper-
iments on a large-scale supercomputer. The supercomputer used wasDatd 5.6 TFlop teras-
cale machine at San Diego Supercomputer Center built from 265 IBM P8&fy&ompute nodes.
We implemented a parallel version of AD-LDA using the Message Passinddogeprotocol. We
ran AD-LDA on WIKIPEDIA usingK = 1000 topics and PUBMED using = 2000 topics dis-
tributed overP = 64,128 256,512 and 1024 processors. The speedup results, shown in Figure 12,
show relatively high parallel efficiency, with approximately 700 times spedduWIKIPEDIA
and 800 times speedup for PUBMED when usihg: 1024 processors, corresponding to parallel
efficiencies of approximately 0.7 and 0.8 respectively. This speedumipuied relative to the
time per iteration when using = 64 processors (i.e., & = 64 processors speedup=64), since it
is not possible, due to memory limitations, to run these models on a single procéhsitiple
runs were timed for both WIKIPEDIA and PUBMED, and the resulting variatiotiming was less
than 1%, so error bars are not shown in the figure. We see slightly higinallgd efficiency for
PUBMED versus WIKIPEDIA because PUBMED has a larger amounbofgutation per unit data
communicatedgy .

This speedup dramatically reduces the learning time for large topic models.vifere to learn
aK = 2000 topic model for PUBMED using LDA on a single processor, it woutguine over 300
days instead of the 10 hours required to learn the same model using AD>h 824 processors. In
our speedup experiments on these large data sets, we did not directhjgatekgtency or commu-
nication bandwidth effects. Nevertheless, one could expect that if thencmication time becomes
very long compared to the computation time, then it may be worth doing multiple Gibiysling
sweeps on a processor’s local data before performing the synzation and global update step.
In Section 6 we further examine this question of frequency of synchaitoirs. The relative time
for communication versus computation also effects the weak scaling of piaedlan, where the
problem size increases linearly with the number of processors. Wetekpegarallel efficiency
will be relatively constant for weak scaling sin% is constant.
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In addition to the large-scale speedup experiments run on the 1024spoogmarallel super-
computer, we also performed small-scale speedup experiments for ADeH@R 8-node parallel
cluster running MPI. Using the NIPS data set we measured parallel effieeof 0.75 and 0.5 for
P =4 andP = 8. The latter result on 8 processors means that the HDP model for NiPBeca
learned four times faster than on a single processor.

6. Analysisof Approximate Distributed L DA

Finally, we investigate the dynamics of AD-LDA learning using toy data to gdahén insight
into how AD-LDA is working. While we have shown experimental results shgvthat AD-LDA
produces models with similar perplexity and similar convergence rates to LOD&nit obvious
why this algorithm works so well in practice. Our toy example Was- 3 words andK = 2 topics.

We generated document collections according to the LDA generativeggaiven by (1). We
chose a low dimension vocabulawy, so that we could plot the evolution of the Gibbs sampler on a
two-dimensional word-topic simplex. We first generated data, then leanoéels using LDA and
AD-LDA.

The left plot of Figure 13 shows tHe, distance between the model’s estimate of a particular
topic-word distribution and the true distribution, as a function of Gibbs iterafmmboth single-
processor LDA and AD-LDA withP = 2. LDA and AD-LDA have qualitatively the same three-
phase learning dynamics. The first four or so iterations (lakelédlize) correspond to somewhat
random movement close to the randomly initialized starting point. In the nexe glzdeledourn-
in) both algorithms rapidly move in parameter space toward the posterior modkfirfatly after
burn-in (labeledstationary both are sampling around the mode. In the right plot we show the sim-
ilarity between AD-LDA and LDA samples taken from the equilibrium distributidmere plotted
on the two-dimensional planar simplex corresponding to the three-worddigpitution.

0.4

| ——LDA
0.35 itialize —e—AD-LDA procl 0.475f
——AD-LDA proc2

0.47¢ topic mode

0.465

L1 norm

0.46}
0.455
0.45}
b Py, 0445/ > LDA
0 20 40 60 80 100 ‘ ‘ ‘ O AD-LDA
Iteration 08 081 08 083 084 085

Figure 13: (Left)L; distance to the mode for LDA and fér= 2 AD-LDA. (Right) Closeup of 50
samples ofp (projected onto the topic simplex) taken from the equilibrium distribution,
showing the similarity between LDA aritl= 2 AD-LDA. Note the zoomed scale in this
figure.

The left plot of Figure 14 depicts the same trajectory shown in Figure 13lefected onto the
topic simplex. This plot shows the paths in parameter space of each mod#ieaszine three-phase
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learning dynamics: taking a few small steps near the starting point, moving ue tautghsolution,
and then sampling near the posterior mode for the rest of the iterationsaétoiGebbs iteration,
the parameters corresponding to each of the two individual processatshose parameters after
merging, are shown for AD-LDA. One can see the alternating pattern osaparate (but close)
parameter estimates on each processor, followed by a merged estimatesétieedlihat after the
initial few iterations, the individual processor steps and the merge stdpreaclted in a move
closer to the mode. One might worry that the AD-LDA algorithm would get tealpgiose to the
initial starting point, for example, due to repeated label switching or oscillddehavior of topic
labeling across processors. In practice we have consistently otsiiatethe algorithm quickly
discards such configurations due to the stochastic nature of the movkscmes$ onto a consistent
and stable labeling that rapidly moves it toward the posterior mode. The fiteady illustrates
that LDA and AD-LDA have qualitatively similar learning dynamics. The righttpn Figure 14
illustrates the same qualitative behavior as in the left plot, but now ferl0 processors.

Interestingly, across a wide range of experiments, we observed thaatiamce in the AD-
LDA word-topic distribution samples is typically only about 70% of the variamc&DA topic
samples. Since the samplers are not the same it makes sense that the pemiance differs
(i.e., is underestimated) by the parallel sampler. We expect less variareeskeAD-LDA ignores
fluctuations in the bulk olN,k. Nonetheless, all of our experiments indicate that the posterior mode
and means found by the parallel sampler are essentially the same as thuséydhe sequential
sampler.
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topic mode topic mode
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Figure 14: (Left) Projection of topics onto simplex, showing convergdocemode forP = 2.
(Right) Same as left plot, but with = 10.

Another insight can be gained by thinking of LDA as an approximation to sgihdescent in
the space of assignment variablesOn a single processor, one can view Gibbs sampling during
burn-in as a stochastic algorithm to move up the likelihood surface. With multipteepsors, each
processor computes an upward direction in its own subspace, keepiotpeldirections fixed.
The global update step then recombines these directions by vector-adiditioa same way as one
would compute a gradient using finite differences. This is expected toduegeade as long as the
surface is locally convex or concave, but will break down at saddietg. We conjecture AD-LDA
works reliably because saddle points are unstable and rare becaymsestéeor is usually highly
peaked for LDA models and high-dimensional count data sets.
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Figure 15: Averagé.; error in word-topic distribution versus P for AD-LDA.

While we see similar perplexities for AD-LDA compared to LDA, we could furtask if the
AD-LDA algorithm is producing any bias in its estimates of the model paramelertest this, we
performed a series of experiments where we generated synthetic dateccatding to the LDA
generative process, with known word-topic distributigris We then learned LDA and AD-LDA
models from each of the simulated data sets. We computed the expected vialeidDELDA top-
icsE() and compared this to two reference valugs;,one based on the true distributiages = ¢,
the other based on multiple LDA sampl@gss = E[@.pa]. Figure 15 shows that AD-LDA is much
closer to the LDA topic€E[@ pa] than either are to the true topigs, telling us that the sampling
variation in learning LDA models from finite data sets is much greater than tietioarbetween
LDA and AD-LDA on the same data sets.

6.1 When Does AD-L DA Fail?

In all of our experiments thus far, we have seen that our distributedidg learn models with
equivalent predictive power as their non-distributed counterpartsveMer, when global synchro-
nizations are done less frequently (i.e., when the synchronization stedasnped after multiple
Gibbs sampling sweeps through local data), the distributed algorithms magrgerte suboptimal
solutions.

When the synchronization interval is increased dramatically, it is possibkede DA to con-
verge to a suboptimal solution. This can happen because the topics (witintledérgeger label) on
each processor can drift far apart, so that tégpim one processor diverges from togion another
processor. In Figure 16, we show the results of an experiment on K@gvgynchronizations only
occur once every 100 iterations. A8k 2 processors, AD-LDA performs significantly worse than
LDA. The P = 2 processor case is the worst case for AD-LDA, since one half of taéweords on
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each processor have the freedom to drift. In contrast, Wwheril00 processors, each processor can
only locally modify 1/108" of the topic assignments, and so the topics on each processor can not
drift far from the global set of topic counts at the previous iteration. Bifgamatching significantly
improves the perplexity in the = 2 processor case, suggesting that the lack of communication has
indeed caused the topics to drift apart. Fortunately, topic drifting becorsesfea problem as
more processors are used, and can be eliminated by frequent syzelion. It is also important

to note that AD-LDAP = 2, where processors synchronize after every iteration, givestéeshe
identical results as LDA. Our recommendation in practice is to perform thehsgnization and
count updates after each iteration of the Gibbs sampler. As shown earttex raper, this leads

to performance that is essentially indistinguishable from LDA. Since most nmaltiegsor comput-

ing hardware will tend to have communication bandwidth matched to procgssed $i.e., faster
and/or more processors usually come with a faster communication netwgnkhyrenizing after
each iteration of the Gibbs sampler will usually be the optimal strategy.
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Figure 16: Test perplexity versus iteration where synchronizationsgegtywrocessors only occur
every 100 iterations, KO¥ = 16.

7. Related Work

Approximate inference for topic models such as LDA and HDP can be dastieusing a variety
of methods, the most common being variational methods and Markov chain [@arite methods.
Previous efforts to parallelize these algorithms have focused on variatetiaods, which are often
straightforward to cast in a distributed framework. For example, Blei §280D2) and Nallapati
et al. (2007) describe distributed variational EM methods for LDA. In tHstributed variational
approach, the computationally expensive E-step is easily parallelizeddeettee document-specific
variational parameters are independent. Wolfe et al. (2008) investigafatallelization of both
the E and M-steps of variational EM for LDA, under a variety of computmark topologies.
In these cases the distributed version of LDA produces identical result® teequential version
of the algorithm. However, memory for variational inference in LDA scakeM&, whereM is
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the number of distinct document-word pairs in the corpus. For typical Eniglisguage corpora,
the total number of words in the corpus is less than twice the number of distnatrebnt-word
pairs N < 2M), soM can be considered on the orderNf SinceM is usually much larger than
the number of documentB), this memory requirement MK is not nearly as scalable as that the
memory requirement dfl + DK for MCMC methods.

Parallelized versions of various machine learning algorithms have alsalbeeloped. Forman
and Zhang (2000) describe a parallel k-means algorithm, and W. Koykadew N. Vlassis (2005)
describe an asynchronous parallel EM algorithm for Gaussian mixtuneinga A parallel EM
algorithm for Probabilistic Latent Semantic Analysis, implemented using GooblajgReduce
framework, was described in Das et al. (2007). A review of how tolledicze an array of standard
machine learning algorithms using MapReduce was presented by Chu2Q@f).( Rossini et al.
(2007) presents a framework for statisticians that allows for the paraihepating of independent
tasks within the R language.

While many of these EM algorithms are readily parallelizable, Gibbs sampling ehdent
variables (such as topic assignments) is fundamentally sequential anfbtbetifficult to paral-
lelize. One way to parallelize Gibbs sampling is to run multiple independent chapezatiel to
obtain multiple samples; however, this multiple-chain approach does notsadties fact that the
burn-in within each chain may take a long time. Furthermore, for some applisatae is not in-
terested in multiple samples from independent chains. For example, if we wesdriotopics for a
very large document collection, one is usually satisfied with mean valuesrdftapic distributions
taken from a single chain.

One can parallelize a single MCMC chain by decomposing the variables intpendent non-
interacting blocks that can be sampled concurrently (Kontoghiorgh@s)2®However, when the
variables are not independent, sampling variables in parallel is not pasd#vockwell (2006)
presents a general parallel MCMC algorithm based on pre-fetchibg oot practical for learning
topic models because it discards most of its computations which makes it rglatistficient. It
is possible to construct partially parallel Gibbs samplers, in which the sam@ésdependently
accepted with some probability. In the limit as this probability goes to zero, thisleanl
approach the sequential Gibbs sampler, as explained in P. Ferra(il€x98). However, this method
is also not practical when learning topic models because it is computationdfigigr. Younes
(1998) shows the existence of exact parallel samplers that make usganfip synchronous random
fields. However there is no known method for constructing such a sampler.

Our HD-LDA model is similar to the DCM-LDA model presented by Mimno and Mik@a
(2007). There the authors perform topic modeling on a collection of bbgksarning a different
topic model for each book and then clustering these learned topics togefimet global topics. In
this model, the concept of a book is directly analogous to our concept imfc@gsor. DCM-LDA
uses Stochastic EM along with agglomerative clustering to learn topics, whilé@LDA follows
a fully Bayesian approach for inference. HD-LDA also differs frothes topic hierarchies found
in the literature. The Hierarchical Dirichlet Process model of Teh et 80&2 places a deeper
hierarchical prior on the topic mixture, instead of on the word-topic distribstiorThe Pachinko
Allocation Model presented by Li and McCallum (2006) deals with a docu+specific hierarchy
of topic-assignments. These types of hierarchies do not directly facilitafep parallel Gibbs
sampling as is done in HD-LDA.
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8. Conclusions

We have proposed three different algorithms for distributing across muttipteessors Gibbs sam-
pling for LDA and HDP. With our approximate distributed algorithm, AD-LDA, s&mple from an
approximation to the posterior distribution by allowing different procesoncencurrently sample
topic assignments on their local subsets of the data. Despite having no fmnargence guar-
antees, AD-LDA works very well empirically and is easy to implement. With ourdnahical dis-
tributed model, HD-LDA, we adapt the underlying LDA model to map to the disteithprocessor
architecture. This model is more complicated than AD-LDA, but it inherits thlusonvergence
properties of Markov chain Monte Carlo. We discovered that carelection of hyperparameters
was critical to making HD-LDA work well, but this selection was clearly inforniydAD-LDA.
Our distributed algorithm AD-HDP followed the same approach as AD-LDAWith an additional
step to merge newly instantiated topics.

Our proposed distributed algorithms learn LDA models with predictive padioce that is no
different than single-processor LDA. On each processor they-ibuasind converge at the same rate
as LDA, yielding significant speedups in practice. For HDP, our distribatgorithm eventually
produced the same perplexity as the single-processor version of HiDPtdreaching the con-
verged perplexity result, AD-HDP had higher perplexity than HDP sincentrgying of new topics
by label slows the rate of topic growth. We also discovered that matchindopges by similarity
significantly improves AD-HDP’s rate of convergence.

The space and time complexity of these distributed algorithms make them scalalobeviery
large data sets, for example, collections with billions to trillions of words. Usimgrwilti-million
document data sets, and running computations on a 1024-procesatel grpercomputer, we
showed how one can achieve a 700-800 times reduction in wall-clock timexy asr distributed
approach.

There are several potentially interesting research directions that qaurséged using the algo-
rithms proposed here as a starting point. One research direction is to useanglex schemes that
allow data to adaptively move from one processor to another. The disttibateemes presented in
this paper can also be used to parallelize topic models that are based agived flem LDA and
HDP, and beyond that a potentially larger class of graphical models.
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Appendix A.

The auxiliary variable method explained in Escobar and West (1995) ahdefTal. (2006) is used
to samplean, 3, and®. To derive Gibbs sampling equations, we use the following expansions:

r(u> = 1 = 1 ! u— n—
F(u+n) T(n B(“’”)—r(n)/o U (1-0)"  dt (8)
r(ru(:)n) :Sis(”, s)(u)®  (Sis Stirling number of first kind) 9)

The first expansion follows from the definition of the Beta function, ands#emnd expansion
makes use of the Stirling number of the first kind to rewrite the factorial (demrmowitz and
Stegun, 1964).

Now we derive the sampling equation fg. Combining the collapsed distribution (6) with the
prior onay, (5) gives the posterior distribution ftnrpzl

(Kap) I (Nkjp+0p)
(@l DH[ N1p+|20‘p)r| rj(z‘p) :

Using the expansions (8,9) we introduce the auxiliary variabéexls:

c-1,—dap
p € .

Kap-1 ) _ 1
P(p,t,s)-) [Ht " tj)"e 1dt1] [I_I HS(NkjpaSka)U%]p] ap e o,
J k

The joint distribution above allows us to create sampling equationsfar, ands:

P(aplt,s,-) O

Ka Skj —1.—da
e apP| gl e G
16 e
:Gamma[chZZSkjp:d—KZbg(tj)] ;
] J

P(tj|otp, s, )DtK“P Ya—ty)Net

P(sxjpl0p, t, -) OS(Nkjp, Skjp)ap™
=Antoniak[Ngjp, o p].

The Antoniak distribution is the distribution of the number of occupied tablilg;f customers
are sent into a restaurant that follows the Chinese restaurant pmitesstrength parameterp,.
Sampling from the Antoniak distribution is done by sampliig, Bernoulli variables:

1. To avoid notational clutter, we denote conditioned-upon variables arzin@ters by a dash. These variables can be
inferred from context.
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a
. ~Bernoulli | —F— | =1.. Ny
2 I
Sjp = Z ijp'
Using the same auxiliary variable techniques, we derive sampling equatighafd®. These

variables are sampled jointly because they are dependent. The posigtribution for 3 and @
and the joint distribution with the auxiliary variableands are given by:

I (Bx) [ (Nwkp+ Bx®wik) a1t
P O] |yt () Tl %]

P(Pr. D1 t,5|-) 0 [ntfglu—tkp)“kp—l] [|‘| [ SNukp. stp><qu>Mk>SNkp]
p pw

—14-b
pate PR,

npes

Note that the set of variablesgnds) is unrelated to the set of auxiliary variables introduced for
ap. The sampling equations f@ ®, t, ands are:

P(Bk|q),t,3, *) 0

s e
P pw
:Gamma{aqL > > Swkpib— log(tep ]

P W P

e

Y+ Swkp| -
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P(tplBi, P, S, -) Ot (1 —typ)Meo™?
= Beta‘[Bkv Nkp} 9

P(Swkpl B, Pic;t, =) O S(Nukp, Swkp) (BkPuji) **°
= Antoniak|Nukp, BkPuk] -
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