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Abstract

Many collective classification (CC) algorithms have beeovai to increase accuracy when in-
stances are interrelated. However, CC algorithms must tefutly applied because their use of
estimated labels can in some cases decrease accuracys arttbie, we show that managing this
label uncertainty througbautiousalgorithmic behavior is essential to achieving maximahust
performance. First, we descriloautious inferencand explain how four well-known families of
CC algorithms can be parameterized to use varying degrershfcaution. Second, we introduce
cautious learningand show how it can be used to improve the performance of alamysCC al-
gorithm, with or without cautious inference. We then eviduzautious inference and learning for
the four collective inference families, with three locassifiers and a range of both synthetic and
real-world data. We find that cautious learning and cautiafexence typically outperform less
cautious approaches. In addition, we identify the dataatttaristics that predict more substantial
performance differences. Our results reveal thatdegree of caution used usually has a larger im-
pact on performance than the choice of the underlying imesealgorithm Together, these results
identify the most appropriate CC algorithms to use for patér task characteristics and explain
multiple conflicting findings from prior CC research.

Keywords: collective inference, statistical relational learningpeoximate probabilistic infer-
ence, networked data, cautious inference

1. Introduction

Traditional methods for supervised learning assume that the instanceslasbified are indepen-
dent of each other. However, in many classification tasks, instancdsecagiated. For example,
hyperlinked web pages are more likely to have the same class label thanegnpakes. Such
autocorrelation (correlation of class labels among interrelated instarnxisty im a wide variety
of data (Neville and Jensen, 2007; Macskassy and Provost, 208IQdiimg situations where the
relationships are implicit (e.g., email messages between two people are likeréotshics).
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Collective classification (CC) is a method for jointly classifying related instsind® do so,
CC methods employ eollective inferencalgorithm that exploits dependencies between instances
(e.g., autocorrelation), enabling CC to often attain higher accuracies #ditianal methods when
instances are interrelated (Neville and Jensen, 2000; Taskar et &;, Ritsen et al., 2004; Sen
et al., 2008). Several algorithms have been used for collective irferarcluding relaxation label-
ing (Chakrabarti et al., 1998), the iterative classification algoritl@A) (Lu and Getoor, 2003a),
loopy belief propagationLBP) (Taskar et al., 2002), Gibbs samplin@ibbg (Jensen et al., 2004),
and variants of the weighted-vote relational neighbor algoritmvRN (Macskassy and Provost,
2007).

During testing, all collective inference algorithms exploit relational featbeesed on uncertain
estimation of class labels. This test-time label uncertainty can diminish accuradg tvo related
effects. First, an incorrectly predicted label during testing may negatinttience the predictions
of its linked neighbors, possibly leading to cascading inference erobrsNeville and Jensen,
2008). Second, the training process may learn a poor model for test-tieverick, because of the
disparity between the training scenario (where labels are known anihgena the test scenario
(where labels are estimated and hence possibly incorrect). As a resildtGhhas many potential
advantages, in some cases CC'’s label uncertainty may actually causscgdoudecrease compared
to non-relational approaches (Neville and Jensen, 2007; Sen andrG#06; Sen et al., 2008).

In this article, we argue that managing this test-time label uncertainty throughiéas” al-
gorithmic behavior is essential to achieving maximal, robust performancededéibe two com-
plementary cautious strategies. Each addresses the fundamental pobliddal uncertainty, but
separately targets the two manifestations of the problem described abirgt. c&utious infer-
enceis an inference process that attends to the uncertainty of its intermediatepteld@tions.
For example, existing algorithms such@ibbsor LBP accomplish cautious inference by sampling
from or directly reasoning with the estimated label distributions. These tasbsigre cautious
because they prevent less certain label estimates from having subst#higice on subsequent
estimations. Alternatively, we show how variants of a simpler algoritl@A, can perform cautious
inference by appropriately favoring more certain information. Secceuatjous learningefers to a
training process that ameliorates the aforementioned train/test disparigticupar, we introduce
PLUL (Parameter Learning for Uncertain Labels), which uses starmlasd-validation techniques,
but in a way that is new for CC and that leads to significant performaneengabes. In particu-
lar, PLUL is cautious because it prevents the algorithm from learning a Infrode the (correctly
labeled) training set that overestimates how useful relational featurebemihen computed with
uncertain labels from the test set.

We consider four frequently-studied families of CC algorithiA, Gibbs LBP, andwvRN
For each family, we describe algorithms that use varying degrees of gali@rence and explain
how they all (except for the relational-onlyvRN can also exploit cautious learning via PLUL.
We then evaluate the variants of these four families, with and without PLUtr, @wide range of
synthetic and real-world data sets. To broaden the evidence for alistege evaluate three local
classifiers that are used by some of the CC algorithms, and also comparst agaon-relational
baseline.

While recent CC studies describe complementary results and make some celaigatisons,
they omit important variations that we consider here (see Section 3). Mardbe scope and/or
methodology of previous studies leaves several important questionswei@d. For instance,
Gibbsis often regarded as one of the most accurate inference algorithms,aanoebn shown
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to work well for CC (Jensen et al., 2004; Neville and Jensen, 2007%o0,lfwhy did Sen et al.
(2008) find no significant difference betwe&ibbsand the much less sophisticat€ziA? Second,
we earlier reported thaCA¢ (a cautious variant diCA) outperforms bottGibbsandICA on three
real-world data sets (McDowell et al., 2007a). Why wol@i: outperformGibbs and for what
data characteristics al€Ac’s gains significant? We answer these questions and more in Section 8.

We hypothesize thatautious CC algorithms will outperform more aggressive CC approaches
when there exists a high probability of an “incorrect relational inferencghich we define as a pre-
diction error that is due to reasoning with relational features (i.e., an ti@bdoes not occur when
relational features are removed). Two kinds of data characteristicsaigeithe likelihood of such
errors. First, when the data characteristics lead to lower overall clagifiaccuracy (e.g., when
the non-relational attributes are not highly predictive), then the competational feature values
will be less reliable. Second, when a typical relational link is highly preddivg., as occurs when
the data exhibits higrelational autocorrelatioi), then the potential effect of any incorrect predic-
tion is magnified. As the magnitude of either of these data set characteristieasas, cautious
algorithms should outperform more aggressive algorithms by an increasiognt.

Our contributions are as follows. First, we describe cautious inferamth@wv four commonly-
used families of existing CC inference algorithms can exhibit more or less nauliecond, we
introduce cautious learning and explain how it can help compensate foath&dst disparity that
occurs when a CC algorithm uses estimated class labels during testing. Waiidentify the data
characteristics for which these cautious techniques should outperforenaggressive approaches,
as introduced in the preceding paragraph and discussed in more detaitionS6. Our experi-
mental results confirm that cautious approaches typically do outperfescéaitious variants, and
that these effects grow larger when there is a greater probability ofrawtarelational inference.
Moreover, our results reveal that in most caesdegree of caution used has a larger impact on
performance than the choice of the underlying inference algorithmarticular, the cautious algo-
rithms perform very similarly, regardless of wheth€Ac or Gibbsor LBP is used, although our
results also confirm that, for some data characteristics, inferencé-BRiperforms comparatively
poorly. These results suggest that in many cases the higher computatonakxity ofGibbsand
LBPis unnecessary, and that the much falfi: should be used instead. Finally, our results and
analysis enable us to answer the previously mentioned questions regafdling

The next two sections summarize collective classification and related waktio 4 then
explains why CC needs to be cautious and describes cautious inferehtEeing in more detail.

In Section 5, we describe how caution can be specifically used by théaimilres of CC inference
algorithms. Section 6 then describes our methodology and hypothesesonSépresents our
results, which we discuss in Section 8. We conclude in Section 9.

2. Collective Classification: Description and Problem Defiition

In this section, we first motivate and define collective classification (C@)th&h describe different
approaches to CC, different CC tasks, and our assumptions for thig artic

2.1 Problem Statement and Example

In many domains, relations exist among instances (e.g., among hyperlinkeplages, social net-
work members, co-cited publications). These relations may be helpfuldssification tasks, such
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as predicting the topic of a publication or the group membership of a persalelit al., 2007).
More formally, we consider the following task (based on Macskassy ambBt, 2006):

Definition 1 (Classification of Graph-based Data) Assume we are given a grapi\GE, X,Y,C)
where V is a set of nodes, E is set of (possibly directed) edgesieachis an attribute vector for
nodeveV, eachYeY is alabel variable for y and C is the set of possible labels. Assume further
that we are given a set of “known” value$Yor nodes  c V, so that ¥ = {yi|vi € VK}. Thenthe
task is to infer ¥, the values of Yfor the remaining nodes with “unknown” values{\=V —VK),

or a probability distribution over those valués.

For example, consider the task of predicting whether a web page beloagsdfessor or a stu-
dent. Conventional supervised learning approaches ignore the linkonsland classify each page
using attributes derived from its content (e.g., words present in the.pafgerefer to this approach
asnon-relational classificationin contrast, a technique foglational classificatiorwould explicitly
use the links to construct additional relational features for classificatign, for each page, includ-
ing as features the words from hyperlinked pages). This additionahmaftion can potentially in-
crease classification accuracy, though may sometimes decrease pecswag! (Chakrabarti et al.,
1998). Alternatively, even greater (and usually more reliable) incseeae occur when the class
labelsof the linked pages are used instead to derive relevant relationaldedfleansen et al., 2004).
However, using features based on these labels is challenging, becameer all of the labels are
initially unknown, and thus typically must be estimated and then iteratively refinedme way.
This process of jointly inferring the labels of interrelated nodes is knovaobective classification
(CC).

Figure 1 summarizes an example execution of a simple CC algoii@¥applied to the binary
web page classification task. Each step in the sequence displays a §faphreodes, where each
node denotes a web page, and hyperlinks among them. Each node hss lalwddy;; the set of
possible class labels &= {P, S}, denotingprofessorsindstudentsrespectively. Three nodes have
unknownlabels ¥V = {vi,v»,v4}) and one node haskmownlabel ¥X = {vs}). In the initial state
(step A), no labey; has yet been estimated for the node¥'th so each is set tmissing(indicated
by a question mark). Each node has three binary attributes (repressritgd Nodes invV also
have two relational features (one per class), represented by the fediach feature denotes the
number of linked nodes (ignoring link direction) that have a particular dédoss.

In step B, some classifier (not shown) estimates class labels for nodesising only the (non-
relational) attributes. These labels, along with the known Igthehre used in step C to compute
the relational feature value vectors. For instance, in stefp €, (1 2) becauser, links to nodes
with one currenP label and two currerfslabels. In step D, a classifier re-estimates the labels using
both attributes and relational features, which changes the predicteafabeln step E, relational
feature values are re-computed using the new labels. Steps D and Epkanuatil a termination
criterion is satisfied (e.g., convergence, number of iterations).

This example exhibits how relational value uncertainty occurs with CC. Ftarins, the feature
vector f1 is (1 0) in step C but later becomé® 1). Thus, intermediate predictions use uncertain
label estimates, maotivating the need to cautiously use such estimates.

1. VK may be empty. In addition, a separate training graph may be provide&eszion 2.3.

2780



CAUTIOUS COLLECTIVE CLASSIFICATION

A.) Initial State

D.) Classify (use attrs. & rel. feats.)

V3

B.) Classify (use attributes only)

E.) Re-compute rel. feat.

values
V3

C.) Compute rel. feature values

Vi Vs V3
beRd 0101] pepd 0101 %= CICIE
V v E:n.a. V v E:n.a. V v E:n.a.
1 2 — 1 2 — 1 2 —
_ Ys— _ Ys— Y3—
e e S R B e N .l N S
f1=[7]7] =[7]7] f1=[7]7] ,=[7]7] f1=[1]0] f,=[1]2]
vi=[?] v=[?] Vg vi=[P] =[P Vy vi=[P] v=[P] Vy
%= KK %= CIKIE P 0 1)1 |
7=17) i =[217] % =[]
Y4= YF@ Y4=

%= CICE ;= CICIEN
fi=na fi=na
V4 V, _ V4 V2 -
28l S| 2 =B
%= HEd| |- O <= QA | - B0 (repeat steps Dand E...)
i =0 5=[12] vl fi=[0[1] £=[1]12] VI
YF@ VF@ 4 YFE YF 4
%= CIEE %= CIEEN
% =[111] f,=[0]2]
Y4= y4:

Figure 1: Example operation 6€A, a simple CC algorithm. Each step (A thru E) shows a graph of
4 linked nodes (i.e., web pages). “Known” values are are shown in whit@iea black
background; this includes all attribute valugsand the class labgk for vs. Estimated
values are shown instead with a white background.

2.2 Algorithms for Collective Inference

For some collective inference tasks, exact methods such as junctior(khessg and Darwiche,

1996) or variable elimination (Zhang and Poole, 1996) can be applied.et#ywthese methods
may be prohibitively expensive to use (e.g., summing over the remaining kacafigurations is

intractable for modest-sized graphs). Some research has focusedtmdmthat further factorize
the variables, and then apply an exact procedure such as beliegptmpa(Neville and Jensen,
2005), min-cut partition (Barzilay and Lapata, 2005), or methods forirsplguadratic and linear
programs (Triebel et al., 2007). In this article, we consider only apprate collective inference
methods.

We consider three primary types of approximate collective inferenceitiga, borrowing
some terminology from Sen et al. (2008):

e Local classifier-based methodsk-or these methods, inference is an iterative process whereby
alocal classifierpredicts labels for each nodeWY using both attributes and relational fea-
tures (derived from the current label predictions), and theplkctive inferencalgorithm
recomputes the class labels, which will be used in the next iteration. Exanfplas type
of CC algorithm includdCA (used in the example above) a@@ibbs Local classifiers that
have been used include Naive Bayes (Jensen et al., 2004), relgtiobability trees (Neville
et al., 2003a), k-nearest neighbor (McDowell et al., 2007b), andtiogegression (Sen et al.,
2008). Typically, a supervised learner induces the local classifier fn@ training set using
both attributes and relational features.
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e Global formulation-based methods. These methods train a classifier that seeks to opti-
mize one global objective function, often based on a Markov random(fietrushin, 1968;
Besag, 1974). As above, the classifier uses both attributes and reldé¢ianaes for infer-
ence. Examples of these algorithms include loopy belief propagation andtielalabeling.
These do not use a separate local classifier; instead, the entire algisriteed for both train-
ing (e.g., to learn the clique potentials) and inference. See Taskar eD@2)(@nd Sen et al.
(2008) for more details.

e Relational-only methods.Recently, Macskassy and Provost (2007) demonstrated that, when
some labels are known (i.@y/X| > 0), algorithms that usenly relational information can in
some cases perform very well. We consider several variants of thethigdhey described,
WVRML (weighted-vote relational neighbor, with relaxation labeling). This algoritom-c
putes a new label distribution for a node by averaging the current distritsuof its neighbors.

It does not require any training.

With local classifier methods, learning the classifier can often be done igle giass over the
data, does not require running collective inference, and in fact ipamtent of the collective infer-
ence procedure that will be used. In contrast, for global methods thedtassifier and inference
algorithm are effectively unified. As a result, learning for a global metteggiires committing to
and actually executing a specific inference algorithm, and thus can be foudr than with a local
classifier-based method.

All of these algorithms jointly classify interrelated nodes using some iteratveegs. Those
that propagate from one iteration to the next a single label for each medmbedhard-labeling
methods. Methods that instead propagate a probability distribution over fsébfgoclass labels
are calledsoft-labelingmethods (cf., Galstyan and Cohen, 2007). All of the local classifiezebas
methods that we examine are hard-labeling metRo8sft-labeling methods, such as variants of
relaxation labeling, are also possible but require that the local classifiable to reason directly
with label distributions, which is more complex than the label aggregation &turfes typically
done with approaches liIKEA or Gibbs Section 6.6 provides more detail on these features.

2.3 Task Definitions and Focus

Collective classification has been applied to two types of inference taamkeIn theout-of-sample
task, wherevX is empty, and then-sample task, wherevK is not empty. Both types of tasks
may emerge in real-world situations (Neville and Jensen, 2005). Priorevookit-of-sample tasks
(Neville and Jensen, 2000; Taskar et al., 2002; Sen and Getoor) a88fme that the algorithm is
also provided with a training grapBr, that is disjoint from the test graph. For instance, a model
may be learned over the web-graph for one institution, and tested on thgraselb of another.
For in-sample tasks, where some label&iare known, CC can be applied to the single graph

G (Macskassy and Provost, 2007; McDowell et al., 2007a; Sen et &8; ZBallagher et al., 2008);
within-networkclassification (Macskassy and Provost, 2006) involves training on trse&sf ¢ G
with known labels, and testing by running inference over the entire griipis.task simulates, for
example, fraud detection in a single large telecommunication network wherecsuities/nodes are

2. We could also considewvRNg, which is a soft-labeling method, to be a local classifier-based methceit alb
simple one that ignores attributes and does no learning. However,gdlication we list relational-only methods as a
separate category in the list above because our results will show theyhafte rather different performance trends.

2782



CAUTIOUS COLLECTIVE CLASSIFICATION

known to be fraudulent. Another in-sample task (Neville and Jensen, Bagi¢; and Getoor, 2008;
Neville and Jensen, 2008) assumes a separate training Graplwhere a model is learned from
Grr and inference is performed over the test gr&twhich includes both labeled and unlabeled
nodes. For both tasks, predictive accuracy is measured only for taealed nodes.

In Section 6, we will address three types of tasks (i.e., out-of-samplesespasample, and
dense in-sample). This is similar to the set of tasks addressed in some prevauations (e.g.,
Neville and Jensen, 2007, 2008; Bilgic and Getoor, 2008) and subssomesothers (e.g., Neville
and Jensen, 2000; Taskar et al., 2002; Sen and Getoor, 2006). iIWewdirectly address the
within-network task, but the algorithmic trends observed from our in-sam@kiations should be
similar?

2.4 Assumptions and Limitations

In this broad investigation on the utility of caution in collective classification, w&erseveral
simplifying assumptions. First, we assume data is obtained passively rathexdtsely (Rattigan
et al., 2007; Bilgic and Getoor, 2008). Second, we assume that noelé®@mogeneous (e.g., all
represent the same kind of object) rather than heterogeneous (Newlle 2003a; Neville and
Jensen, 2007). Third, we assume that links are not missing, and nebd mderred (Bilgic and
Getoor, 2008). Finally, we do not attempt to increase autocorrelation Wiaitpees such as link
addition (Gallagher et al., 2008), clustering (Neville and Jensen, 260pypblem transformation
(Tian et al., 2006; Triebel et al., 2007).

Our example in Figure 1 employs a simple relational feature (i.e., that countsithieen of
linked nodes with a specific class label). However, several other tyfjpegations exist. For ex-
ample, Gallagher and Eliassi-Rad (2008) describe a topology of feapes,tincluding structural
features that are independent of node labels (e.g., the number of lielgitbors of a given node).
We focus on only three simple types of relational features (see Sectigrad)eave broader in-
vestigations for future work. Likewise, for CC algorithms that learn, wsuase that training is
performed just once, which differs from some prior work where thenkedwimodel is updated in
each iteration (Lu and Getoor, 2003b; Gurel and Kersting, 2005).

3. Related Work

Besag (1986) originally described the “Iterated Conditional ModesM(l@lgorithm, which is a
version of thelCA algorithm that we consider. Several researchers have reporteétipoy-
ing inter-instance relations in CC algorithms can significantly increase predigticuracy (e.g.,
Chakrabarti et al., 1998; Neville and Jensen, 2000; Taskar et al2; 200and Getoor, 2003a).
Furthermore, these algorithms have performed well on a variety of tagifsas identifying secu-
rities fraud (Neville et al., 2005), ranking suspicious entities (MacskaaslyProvost, 2005), and
annotating semantic web services (Hel3 and Kushmerick, 2004).

In each iteration, a CC algorithm predicts a class label (or a class distriptdicgach node and
uses it to determine the next iteration’s predictions. Although using labdigti@ns from linked
nodes (instead of using the larger number of attributes from linked nedeapsulates the influence
of a linked node and simplifies learning (Jensen et al., 2004), it can Ibdepmatic. For example,

3. Indeed, we performed additional experiments where we repeadihe synthetic data of Sen et al. (2008), but then
transformed the task from their within-network variant to a variant thes asseparate graph for training (as done in
this article), and obtained results similar to those they reported.
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iterating with incorrectly predicted labels can propagate and amplify erMesille and Jensen,
2007; Sen and Getoor, 2006; Sen et al., 2008), diminishing or evegingdaccuracy compared
to non-relational approaches. In this article, we examine the data chés@cse(and algorithmic
interactions) for which these issues are most serious and explain htitausaapproaches can ame-
liorate them.

The performance of CC compared to non-relational learners depesaltygon the data char-
acteristics. First, for CC to improve performance, the data must exkibiional autocorrelation
(Jensen et al., 2004; Neville and Jensen, 2005; Macskassy arasRr2007; Rattigan et al., 2007;
Sen et al., 2008), which is correlation among the labels of related instaleese and Neville,
2002). Complex correlations can be exploited by some CC algorithms, capfarimstance the
notion “Professors primarily have out-links to Students.” In contrast, ith@lsst kind of corre-
lation ishomophily(McPherson et al., 2001), in which links tend to connect nodes with the same
label. To facilitate replication, Appendix A defines homophily more formally.

A second data characteristic that can influence CC performarmrtgisute predictivenesd-or
example, if the attributes are far less predictive than the selected relagatatds, then CC algo-
rithms should perform comparatively well vs. traditional algorithms (Jems$exh., 2004). Third,
link densityplays a role (Jensen and Neville, 2002; Neville and Jensen, 2005;t 8&n2008); if
there are few relations among the instances, then collective classificationffeaiitte benefit.
Alternatively, algorithms such dsBP are known to perform poorly when link density is very high
(Sen and Getoor, 2006). Fourth, an important factor isaheled proportion(the proportion of test
nodes that have known labels). In particular, if some node labels avenkfiigX | > 0), these labels
may help prevent CC estimation errors from cascading. In addition, if staital number of la-
bels are known, simpler relational-only algorithms may be the most effectieough additional
data characteristics exist that can influence the performance of CGtlahgsr such aslegree of
disparity (Jensen et al., 2003) amdsortativity(Newman, 2003; Macskassy, 2007), we concentrate
on these four in our later evaluations.

Compared to this article, prior studies provide complementary results and maleerslevant
comparisons, but do not examine important variations that we consider Rer instance, Jensen
et al. (2004) only investigate a single collective inference algorithm, anckkéssy and Provost
(2007) focus on relational-only (univariate) algorithms. Sen et al.§288sess several algorithms
on real and synthetic data, but do not examine the impact of attribute pvediess or labeled pro-
portion. Likewise, Neville and Jensen (2007) evaluate synthetic andla¢a| but vary data char-
acteristics (autocorrelation and labeled proportion) for only the synthat#; do not considdCA,
and considetBP only for the synthetic data. In addition, only one of these prior studiesilldev
and Jensen, 2000) evaluates an algorithm relaté@Ag, which is a simple cautious variant i A
that we show has promising performance. Moreover, these studiestdidmpare algorithms that
vary only in their degree of cautious inference, or use cautious learning

4. Types of Caution in CC and Why Caution is Important

Section 3 described how collective classification exploits label predictiony tm increase ac-
curacy, but how iterating with incorrectly predicted labels can sometimesagade and amplify
errors. To address this problem, we recently proposed the use ofzmutference for CC (Mc-
Dowell et al., 2007a). We defined an inference algorithm to be cautiousaiight to “explicitly
identify and preferentially exploit the more certain relational information.” atldition, we ex-
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plained that a variant dCA that we here callCAc is cautious because it selectively ignores class
labels that were predicted with less confidence by the local classifi@ioBsty, Neville and Jensen
(2000) introduced a simpler versibof ICA: but compared it only with non-relational classifiers.
We showed thallCAc can outperformlCA andGibbs but did not identify the data conditions under
which such gains hold.

In this article, we expand our original notion of caution in two ways. First,oneaden our
idea of cautious inferencéo encompass several other existing CC inference techniques that seek
the same goal (managing prediction uncertainty). Recognizing the behlssiimilarities between
these different algorithms helps us to better assess the strengths amessEskof each algorithm
for a particular data set. Second, we introduesitious learning a technique that ameliorates
prediction uncertainty even before inference is applied, which cartantialy increase accuracy.
Below we detail these two types of caution.

e A CC algorithm exhibitautious inferenceif its inference process attends to the uncertainty
of its intermediate label predictions. Usually, this uncertainty is approximatetheipos-
terior probabilities associated with each predicted label. For instance, dgofttam may
exercise cautious inference by favoring predicted information that basifecertainty (higher
confidence). This is the approach takenlByc, which uses only the most certain labels at
the beginning of its operation, then gradually incorporates less certalicgioas in later it-
erations. Alternatively, instead of always selecting the most likely class flabeach node
(like ICA andICAc), Gibbsre-samples the label of each node based on its estimated distribu-
tion. This re-sampling leads to more stochastic variability (and less influemicepiles with
less certain predictions. Finally, soft-labeling algorithms li&&P, relaxation labeling, and
WVRNMN directly reason with the estimated label distributions. For instameBN_ averages
the estimated distributions of a node’s linked neighbors, which gives moueindé to more
certain predictions.

e A CC algorithm exhibitautious learningif its training process is influenced by recogniz-
ing the disparity between the training set (where labels are known andngental the test
scenario (where labels may be estimated and hence incorrect). In paytictdiational fea-
ture may appear to be highly predictive of the class when examining the traieir{g.g., to
learn conditional probabilities or feature weights), yet its use may actuathgdse accuracy
if its value is often incorrect during testing. In response, one apprisaotensure that appro-
priate training parameters are cross-validated using the actual testingamnde.g., with
estimated test labels). We use PLUL to achieve this goal.

The next section describes how these general ideas can be applieat, duax experimental
results demonstrate when they lead to significant performance improvements.

5. Applying Cautious Inference and Learning to Collective Céssification

The previous section described two types of caution for CC. Each attematievt@te potential
estimation errors in labels during collective inference. Cautious inferemd¢ecautious learning
can often be combined, and at least one is used or is applicable to evesig@@hm known to

4. Their algorithm is likd CAc, except that it does not consider how to favor “known” labels fkofn
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us. In this section, we provide examples of how both types can be applidddayibing specific
CC algorithms that exploit cautious inference (Sections 5.1-5.4), anddayibimg how PLUL can
complement these algorithms with cautious learning (Section 5.5). Section 5.6ifoesses the
computational complexity of these algorithms.

We describe and evaluate four families of CC inference algorithi@gs, Gibbs LBP, and
wWVRN® Among local classifier-based algorithms, we chiga andGibbsbecause both have been
frequently studied and often perform well. As a representative glabadflation-based algorithm,
we choselLBP instead of relaxation labeling because previous studies (Sen and G#6@r,Sen
et al., 2008) found similar performance, with in some cases a slight edg8Ror=inally, we select
WVRN because it is a good relational-only baseline for CC evaluations (Mayskeasl Provost,
2007).

Table 1 summarizes the four CC families that we consider. Within each familyvaaiant use
more cautious inference than the variant listed below it. Cautious variantarafesd algorithms
are given a “C” subscript (e.dCAc), while non-cautious variants of standard algorithms are given
a “NC” subscript (e.g.Gibbsyc). For the latter case, our intent is not to demonstrate large perfor-
mance “gains” for a standard algorithm vs. a new non-cautious variainty lisolate the impact of
a particular cautious algorithmic behavior on performance. While the resylhotebe a theoret-
ically coherent algorithm (e.gGibbsyc, unlike Gibbs is not a MCMC algorithm), in every case
the resultant algorithrdoesperform well under data set situations where caution is not critical (see
Section 7). Thus, comparing the performance of the cautious vs. ndiows variants allows us to
investigate the data characteristics for which cautious behavior is more imgforta

5.1 ICA Family of Algorithms

Figure 2 displays pseudocode 1@A, ICAc, andICAk,, depending on the setting of the parameter
AlgType We describe each in turn.

5.1.1I1CA

In Figure 2, step 1 is a “bootstrap” step that predicts the class laléleach node vV using
only attributes ¢onf; records the confidence of this prediction, BOA ignores this information).
The algorithm then iterates (step 2). During each iterali®i, selects all available labels (step 3),
computes the relational features’ values based on these labels (steg #jea re-predicts the class
label of each node using both attributes and relational features (stafié)iterating, hopefully to
convergence, step 6 returns the final set of estimated class labels.

Types of Caution Used:Steps 3-4 of CA use all available labels for feature computation (including
estimated, possibly incorrect labels) and step 5 picks the single most likelydabach node based
on the new predictions. In these steps, uncertainty in the predictions igaynbinus)CA does not

5. TechnicallywvRNby itself is a local classifier, not an inference algorithm, but for brevigyrefer to the family of
algorithms based on this classifier (suchwadRNg ) aswvRN

6. Section 7 shows that the non-cautious varié@s, Gibbsyc, andLBRyc perform similarly to each other. Thus, our
empirical results would change little if we compared all of the cautious algosithgainst the more standdfciA.
However, the results foBibbsand LBP would then concern performance differences between distinct algmith
due to conjectured but unconfirmed differences in algorithmic progerig instead comparinGibbsvs. Gibbsgyc
andLBP vs. LBRyc, we more precisely demonstrate that the cautious algorithms benefisfreaifically identified
cautious behaviors.
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| Name

| Cautious Inf.? |

Key Features

| Type |

Evaluated by? |

mated.

Local classifier-based methods that iteratively classify nodesijsiding a final graph state

ICA: Favors  more| Relational features depend only agnHard | Neville and Jensen (2000);
conf. labels “more confident” estimated labels; McDowell et al. (2007a)
later iterations loosen confidenge
threshold.
ICAkn Favors known| First iteration: rel. features dependHard | McDowell et al. (2007a)
labels only on known labels. Later iterations:
use all labels.
ICA Not cautious Always use all labels, known and esti-Hard | Lu and Getoor (2003a); Sep

and Getoor (2006); McH

Dowell et al. (2007a,b)

Local classifier-based algorithms that compute conditional probhilities for eac

likely label instead of sampling.

h node

ICA.

Global formulation algorithms b

ased on loopy belief propagation (LBP

chooses single most likely label to use
for next round of messages.

Relational-only algorithms

bels are used. Instead, initialize nodes
in VY by sampling from the prior labe
distribution.

WVRNrL Reasons with| Computes new distribution by avef- Soft | Macskassy and Provost
estimated aging neighbors’ label distributions; (2007); Gallagher et al
distribution combines old and new distributions (2008)
via relaxation labeling.
WVRNca+c Favors nodeg Initializes nodes invY to missing | Hard | Macskassy and Provost
closer to known| Computes most likely label by averag- (2007); similar to Galstyan
labels ing neighbors’ labels, ignoringiss- and Cohen (2007)
ing labels.
WVRNcainc | Not cautious Like wwRNca+c, but nomissingla- | Hard | —

Table 1: The ten collective inference algorithms considered in this articleledi into four fami-

lies. Hard/soft refers to hard-labeling and soft-labeling (see Sectign 2.2

perform cautious inference. However, it may exploit cautious learnitegim the classifier models

that are used for inferenct, andMaR).

5.1.2 ICAc

Gibbs Samples from| Ateach step, classifies usiali neigh- | Hard | Jensen et al. (2004); Neville
estimated bor labels, then samples new la- and Jensen (2007); Sen et al.
distribution bels from the resultant distributions. (2008)
Records new labels to produce fingl
marginal statistics.
Gibbsyc Not cautious Like Gibbs but always pick most Hard | None, but very similar to

LBP Reasons with| Passes continuous-valued messageSoft | Taskar et al. (2002); Neville
estimated between linked neighbors until con- and Jensen (2007); Sen et al.
distribution vergence. (2008)

LBRc Not cautious Like LBP, but each node always Hard | —

In steps 3-4 of Figure 2ACA assumes that the estimated node labels are all equally likely to be
correct. WhenAlgTypeinstead selectBCAc, the inference becomes more cautious by only con-
sidering more certain estimated labels. Specifically, step 3 “commits™Mhtmly the besim of
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ICA _classify (V, E, X, YK, Magr, Ma,n, AlgTypé=

/1 V=nodes E=edgesX=attribute vectorsy=labels of known nodef = {yi|vi € VK})

I Mar=local classifier (uses attributes and relatioi)=classifier that uses only attributes
/I n=# of iterations AlgType=ICAc, ICAkn, or ICA

1 for eachnodev; € VY do // Bootstrap: estimate labgl for each node
(yi,conf) «— Ma(X) /I using attributes only
2 forh=0tondo
3 /I Select node labels to use for computing relational featalues, store i’
if (AlgType=ICAc) /I ForICAc: use known andn most confident
m«— [VY|-(h/n) Il estimated labels, gradually increase

Y YK U {yilv € VY Arank(conf,) < m}
else if(h = 0) and AlgType=ICAkn)

Y — YK Il For ICAkn(first iteration): usenly known labels
else Il For ICAkn, (after first iteration) andiCA: useall

Y —YKU{yilv eVY} /I labels (known and estimated)
4 for gach nodev; € VY do

f, < calcRelatFeat®/,E,Y’) /I Compute feature values, using labels selected above
5 for eachnodey; € VY doﬂ /I Re-predict most likely label, using attributes

(yi,conf) — Magr(X, fi) /I and relational features
6 return {yi|v cVY} I/ Return predicted class label for each node

Figure 2: Algorithm foriCA family of algorithms. We use = 10 iterations.

the current estimated labels; other labels are consideissingand thus ignored in the next step.
Step 4 computes the relational features using only the committed labels, andctispifies using
this information. Step 3 gradually increases the fraction of estimated labeksréhadmmitted per
iteration (e.g., ih=10, from 0%, 10%, 20%,..., up to 100%). Node label assignments committed in
an iterationh are not necessarily committed again in iteratioh 1 (and may in fact change).

ICAc requires some kind of confidence measwan(f; in Figure 2) to determine the “begti of
the current label assignments (those with the highest confidence Jrafk"adopt the approach of
Neville and Jensen (2000) and use the posterior probability of the mostdilkesly for each nodeas
conf;. In exploratory experiments, we found that alternative measures (eobalglity difference
of the top two classes) produced similar results.
Types of Caution Used:ICAc favors more confident information by ignoring nodes whose labels
are estimated with lower confidence. Step 3 executes this preferencé, affdcts the algorithm
in several ways. First, omitting the estimated labels for some nodes causetativnal feature
value computation in step 4 to ignore those less certain labels. Since this compfaatics more
reliable label assignments, subsequent assignments should also be lmabte.r&econd, if any
node links only to nodes witmissinglabels, then the computed value of the relational features for
that node will also benissing Section 6.5 describes how the classifier in Step 5 handles this case.
Third, recall that a realistic CC scenario’s test set may have links to naitte&known labels; these
nodes, represented M, provide the “most certain” labels and thus may aid classificaliGic
exploitsonly these labels for iteration= 0. In this case, step 3 ignores all estimated labels (every
estimate folvY), but step 4 can still compute some relational feature values based om kaiosls
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Gibbs_classify (V, E, X,YX,Magr, Ma, n, ng,C, AlgTypé=

/1 V=nodes E=edgesX=attribute vectorsy=labels of known nodesf = {yi|vi € VK})

I Mar=local classifier (uses attributes and relatioi)=classifier that uses only attributes
/I n=# of iterationsng= “burn-in” iters.,C=set of class label#lgType=Gibbsor Gibbsyc

1 for eachnodey; € VY do // Bootstrap: estimate label prokfs.
Bi — Ma(X) /I for each node, using attributes only
2 for eachnodey, € VY do /I Initialize statistics
foreachceC
statdi][c] — O
3 forh=1tondo /I Repeat fon iterations

for eachnodev; € VY do
4 switch (AlgType:
case(Gibbs: y; « sam pIeDis(Bi) /I Sample next label from distribution
case(Gibbsyc): Vi < argmaxec bi(c) // Or, pick most likely label from dist.

5 if (h> ng) statsi,y;] « statgi,yi] +1 /I Record stats. on chosen label
6 Y —YKU{yilvi eVY} /I Compute feature values, using known
for gach nodev; € VY do /I labels and labels chosen in step 4
fi — computeRelatFeaturég E,Y’)
7 for gach nodey; gVU do /I Re-estimate label probs., using
by — Magr(X;, i) /I attributes and relational features
8 return stats /I Return marginal stats. for each node

Figure 3: Algorithm for Gibbs sampling. Thousands of iterations are typicaigded.

from VK. Thus, the known labels influence the first classification in step 5, bafgreestimated
labels are used, and in subsequent iterations. Fin@lA; can also benefit from PLUL.

5.1.3 ICAkn

The above discussion highlighted two different effects fi@#: favoring more confident esti-
mated labels vs. favoring known labels fraffi. An interesting variant is to favor the known labels
in the first iteration (just likdCAc), but then use all labels for subsequent iterations (just @s).
We call this algorithmCAk, (“ICA+Known”).

Types of Caution Used:ICAkn, favors only known nodes. It is thus more cautious thHaA, but
less cautious thalCAc. It can also benefit from cautious learning via PLUL.

5.2 Gibbs Family of Algorithms

Figure 3 displays pseudocode for Gibbs sampliBipbg and the non-cautious varia@®ibbsyc.
We describe each in turn.

5.2.1 Gibbs

In Figure 3, step 1 (bootstrapping) is identical to step 1 ofl@ algorithms, except that for each
nodey; the classifier must output a distributi@containing the likelihood of each class, not just
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the most likely class. Step 2 initializes the statistics that will be used to compute thmatatgss
probabilities for each node. In step 4, within the loop, the algorithm probatéity samples the
current class label distribution of each node and assigns a singleyjdizsed on this distribution.
This label is also recorded in the statistics during Step 5 (after thenfiigtrations are ignored for
“burn-in”). Step 6 then selects all labels (known labels and those justledjrgnd uses them to
compute the relational features’ values. Step 7 re-estimates the postesoiablal probabilities
given these relational features. The process then repeats. Whewotlespterminates, the statistics
recorded in step 5 approximate the marginal distribution of class labelsranetarned by step 8.
Types of Caution Used:Like ICAc, Gibbsis cautious in its use of estimated labels, but in a different
way. In particular]JCAc exercises caution in step 3 by ignoring (at least for some iterations) labels
that have lower confidence. In contrastbbsexercises caution by sampling, in step 4, values from
each node’s predicted label distribution—causing nodes with lower pi@dimonfidence to reflect
that uncertainty via higher fluctuation in their assigned labels, yielding lesiqgtive influence on
their neighbors. Gibbs can also benefit from cautious learning via PLUL.

We expeciGibbsto perform better thalCAc, since it makes use of more information, but this
requires careful confirmation. In additioBjbbsis considerably more time intensive thED¥Ac or
ICA (see Section 5.6).

5.2.2 Gibbsyc

Gibbsgyc is identical toGibbsexcept that instead of sampling in step 4, it always selects the most
likely label. This change maké&3ibbsyc deterministic (unlikeGibbg, and make&ibbsyc behave
almost identically tdCA. In particular, observe that after any number of iteratibris < h < n),
ICA and Gibbsyc will have precisely the same set of current label assignments for ewely. n
However,ICA's result is the final set of label assignments, whefaidbs,c's result is the marginal
statistics computed from these time-varying assignments. For a given dafd@détconverges to
an an unchanging set of label assignments, then for sufficiently ta@bbsc’s final result (in
terms of accuracy) will be identical I€A’s. If, however, some nodes’ labels continue to oscillate
with ICA, thenlCA andGibbsyc will have different results for some of those nodes.

Types of Caution Used: Just likeICA, Gibbsyc uses all available labels for relational feature
computation, and always picks the single most likely label based on the resicfions. Thus,
Gibbsyc does not perform cautious inference, though it can benefit froriczeulearning to learn
the classifiera andMag.

5.3 LBP Family of Algorithms

This section describes loopy belief propagatibBP) and the non-cautious varianBRyc.

5.3.1LBP

LBP has been a frequently studied technique for performing approximatemter and has been
used both in early work on CC (Taskar et al., 2002) and in more recehtaions (Sen and Getoor,
2006; Neville and Jensen, 2007; Sen et al., 2008). Most works thdy B8P for CC treat the
entire graph, including attributes, as a pairwise Markov random field @&eg..and Getoor, 2006;
Sen et al., 2008) and then justibBP as an example of a variational method (cf., Yedidia et al.,
2000). The basic inference algorithm is derived from belief propagdBearl, 1988), but applied
to graphs with cycles (McEliece et al., 1998; Murphy et al., 1999).
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LBP performs inference via passing messages from node to node. In f@rtiu,;(c) repre-
sents node;’s assessment of how likely it is that nodghas a true label of class In addition,
@ (c) represents the “non-relational evidence” (e.g., based only on attjlfates having clasg,
andyij (¢, c) represents the “compatibility function” which describes how likely two nodetass
c andc’ are linked together (in terms of Markov networks, this represents the titmctions
defined by the pairwise cliques of linked class nodes). Given these tw@fskinctions, Yedidia
et al. (2000) show the belief that nodkas clas€ can be calculated as follows:

bi(c) = a@(c) k|_| m_i(c) Q)
eN;

wherea is a normalizing factor to ensure thfit.c bi(c) = 1 andN; is the neighborhood function
defined as:

N, = {VjB(Vi,Vj) S E} .

The messages themselves are computed recursively as:

m_jc)=a ((g(c’)lpij(c’,c) [

ceC keNi\ j

”kﬂi(cl)> : 2)

Observe that the message frono j incorporates the beliefs of all the neighbors @R;) except j
itself. m_;(c) is the “new” value ofm_,j(c) to be used in the next iteration.

For CC, we need a model that generalizes from the training nodes to tietest. The above
equations do not provide this, since they have node-specific potemtildas (i.e. pjj is specific
to noded andj). Fortunately, we can represent each potential function as a log-toearination
of generalizable features, as commonly done for such Markov netwerls Della Pietra et al.,
1997; McCallum et al., 2000a). More specifically for CC, Taskar et202) used a log-linear
combination of functions that indicate the presence or absence of parttwiautes or other fea-
tures. Several papers (e.g., Sen and Getoor, 2006; Sen et al. l2z8@3)escribed a general model
on how to accomplish this, but do not completely explain how to perform the otatipn. For a
slight loss in generality (e.g., assuming that our nodes are represeraesirhple attribute vector),
we now describe how to perforirBP for CC on an undirected graph. In particular, My be the
number of attributesDy, be the domain of attributie, andw, , x be a learned weight indicating how
strongly a value ok for attributeh indicates that a given node has clasén addition, letf;(h,k)=1
iff the ht" attribute of node isk (i.e., X = k). Then

@(c) = exp( > expwenk) fi(h, k)))

he {T-Na} KED,

which is a special case of logistic regression. We likewise define similarddameights of the
form we ¢ that indicate how likely a node with labelis linked to a node with labef, yielding the
compatibility function

Pij(c,c’) = expWee) -
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LBP _classify (V,E,X,YX,w,C,N, AlgTypd=
/I V=nodes E=edgesX=attribute vectorsy=labels of known nodesf = {yi|vi € VK})
Il w=learned paramsC=set of class label$y=neighborhood functAlgTypeLBP or LBR\c

1 foreach (v;,vj) € E such thav; € VY do Il Initialize all messages
for eachce Cdo
if (v e VK) I/ 1f class is knownY;), set message to its
mM_j(C) <« a-expwyc) /Il final, class-specific value
else /I Otherwise, message starts with same value
m_j(c) —a Il for every class, but will vary later
2 while (messages are still changing)
3 for each (vi,v;) € E such thav; € VY do // Perform message passing
for eachce Cdo
m_;(c) — aYoec (@ (C)eXpWe c) Mkenj Mk—i(C))
4 for each (v, vj) € E such thay; € VY do
if (AlgType=LBP) I/l For LBP, copy nhew messages for use in
mi—j(c) < m_,;(c) Il next iteration
else
c — argmax;ec(m’_)j (©) I/ For LBRyc, select most likely label for node
for eachce Cdo Il Treat selected label the same as a “known”
m_j(C) < expWe c) /I label for use in the next iteration
5 for eachnodeyv; € VY do /l Compute final beliefs
for eachce Cdo
bi (C) — ag (C) HKGNi My (C)
6 return {b} /l Return final beliefs

Figure 4: Algorithm for loopy belief propagation (LBR).is a normalization factor.

As desired, the compatibility function is now independent of specific noddifaes, that is, it
depends only upon the class labendc’, noti and j. We use conjugate gradient descent to learn
the weights (cf., Taskar et al., 2002; Neville and Jensen, 2007; Sénz1@8).

Finally, we must consider how to handle messages from nodes with a “Kndasgs label.
Suppose node has known clasy;. This is equivalent to having a nhode where the non-relational
evidencep(c) = 1 if cisy; and zero otherwise. Singgis known, nodey; is not influenced by its
neighbors. In that case, using Equation 2 (with an empty neighborhoddef@roduct) yields:

m-j(c) = GCZC(MC/NJ” (c';c) = a-Wij (yi,C) = a-expwyc) - 3)

Given these formulas, we can now present the complete algorithm in FigureStep 1, the
messages are initialized, using Equation g ifs a known node; otherwise, each value is sait to
(creating a uniform distribution). Steps 2-4 performs message pasdihganvergence, based on
Equation 2. Finally, step 5 computes the final beliefs using Equation 1 anél sttyrns the results.
Types of Caution Used:Like Gibbs LBP exercises caution by reasoning based on the estimated
label uncertainty, but in a different manner. Instead of sampling fronestienated distribution,
LBP in step 3 directly updates its beliefs using all of its current beliefs, so thaneihebeliefs
reflect the underlying uncertainty of the old beliefs. In particular, thisethamty is expressed
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WVRN RL _classify (V, YK, n,C, bprior, N, )=
/I V=nodes)K=labels of known node& = {yi|vi € VK}), n=# of iterations
Il C=set of class label$yrior=class priorsN=neighborhood functl;=decay factor
1 for gach nodev; € VK do /I Create belief vector for each known label
bj — makeBelie fsFromKnownClas€|,y;) /I (all zeros except at index for clagd
for gachpodevi eVvY do /I Create initial beliefs for unknown labels
bi < bprior I/l (using class priors as initial setting)
2 forh=0tondo I/ Iteratively re-compute beliefs
3 for eachnodev; € VY do /l Compute new distribution for each node
b — N Sy b; /I by averaging neighbors’ distributions
4 for eachnodev; € VV do I/l Perform simulated annealing
b — Mb; + (1—Mb;
5 return {blv; €VY} I/ Return belief distribution for each node

Figure 5: Algorithm forwvRNg . Based on Macskassy and Provost (2007), wenus€l00 itera-
tions with a decay factor df = 0.99.

by the continuous-valued numbers that represent each mesgagelLBP can also benefit from
cautious learning with PLUL,; in this case, PLUL influences g x andw. ¢ weights that are
learned (see Section 6.4).

5.3.2 LBRc

LBR\c is identical toLBP except that after the new messages are computed in step 3, in step 4
LBRyc picks the single most likely label to represent the message fronto v;. LBRyc then treats

¢’ as equivalent to a “known” labg] for v; and re-computes the appropriate messggg (c) using
Equation 3.

Types of Caution Used:Like ICA andGibbsyc, LBRyc is non-cautious because it uses all available
labels for relational feature computation and always picks the single molst el based on the

new predictions. In essence, the “pick most likely” step transforms thidagwélingLBP algorithm

into the hard-labeling.BRyc algorithm, removing cautious inference just as the “pick most likely”
step did forGibbsyc. However,LBRyc, like LBP, can still benefit from cautious learning with
PLUL.

5.4 wvRN Family of Algorithms

Figure 5 displays pseudocode fovRNg, a soft-labeling algorithm. For simplicity, we present the
related, hard-labeling variami®/RNca.c andwvRNcanc Separately in Figure 6. Each of these is
a relational-only algorithm; Section 7.9 will discuss variants that incorpotatbiae information.
5.4.1 wRMN_

WVRM (Weighted-Vote Relational Neighbor, with relaxation labeling) is a relationdf-€C al-
gorithm that Macskassy and Provost (2007) argued should be evedids a baseline for all CC
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WVRN _ICA classify(V,YX,n,C,Bprior, N, AlgTy pd=
/I V=nodes)X=labels of known node&/ = {yi|vi € VK}), n=# of iters.,C=class labels
I Bprior=class priorsN=neighborhood functiorAlgTypewVvRNca.c or WRNcane

1 for eachnodey; € VY do

switch (AlgType: /I Set initial value for unknown labels...

case(WvRNcaic): i« '? /I ...start labels amissing

case(WvRNca+ne): y; <+ sam pIeDis(Bprior) /I ...or sample label from class priors
2 forh=0tondo /I Iteratively re-label the nodes
3 for eachnodev; € VY do

N —{vjeNlyj # '? } // Find all nonmissingneighbors

if (|N/| >0) /I New label is the most common label

y, —argmaxcc | {vj € N'ly; =c} | /I amongst those neighbors

elsey, =y; [/l 1f no such neighbors, keep same label
4 for eachnodev; € VY do Il After all new labels are computed,

Vi — Vi /I update to store the new labels
5 return {yi|vi € VY} I/ Return est. class label for each node

Figure 6: Algorithm fomwRNca,c andwvRNcane. Thisis a “hard labeling” version afvRNg ;
each of the 5 steps corresponds to the same numbered step in Figure Seiwve 100
iterations.

evaluations. At each iteration, each nadgpdates its estimated class distribution by averaging the
current distributions of each of its linked neighbovevRNg, ignores all attributes (non-relational
features). ThuswvRMN, is useful only if the test set links to some nodes with known labels to
“seed” the inference process. Macskassy and Provost showetthihaimple algorithm can work
well if the nodes exhibit strong homophily and enough labels are known.

Step 1 ofwvRNg, (Figure 5) initializes a belief vector for every node, using the known labels
for nodes invKk, and a class prior distribution for nodes\iY. For each node, step 3 averages the
current distributions of its neighbors, while step 4 performs simulated &ngda ensure conver-
gence. Step 5 returns the final beliefs. For simplicity, we omit edge weightstfie algorithm’s
description, since our experiments do not use them.

Types of Caution Used:SincewvRNgy. computes directly with the estimated label distributions, it
exercises cautious inference in the same manneB&s However, unlike the other CC algorithms,
it does not learn from a training set, and thus cautious learning with PLdk dot apply.

5.4.2 wWRNca+c AND WWRNca+NC

Figure 6 presents a hard-labeling alternativevidRNy . Each of the five steps mirror the corre-
sponding step in the description @i/RNg . In particular, for nodeys;, step 3 computes the most
common label among the neighborswf(the hard-labeling equivalent of averaging the distribu-
tions), and step 4 commits the new labels without annealing.

However, with a hard-labeling algorithm, the initial labels for each noderneary important.
The simplest approach would be to initialize every node to have the most comberirlam the
prior distribution. However, that approach could easily produce intextinlegions of labels that
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that were incorrect but highly self-consistent; leading to errors evenwnany known labels were
provided. Instead, Macskassy and Provost (2007) suggest initgbzioh node; € VY to missing
(indicated in Figure 6 by a question mark), a value that is ignored duringlagitins. They call the
resulting algorithm wvRN-ICA; here we refer to it @/RNca.c. A missingabel remains for node
v; after iterationh if during that iteration every neighbor of was alsamissing

Alternatively, a simpler algorithm is to always compute with all neighbor labels@dmitialize
any tomissing, but initialize each label iV by sampling from the prior distribution. We call this
algorithmwvRNca ne. This process is the hard-labeling analoguaeRNg, 's approach: instead
of initializing eachnode with the prior distribution, wittwRNca. nc Sampling initializes thentire
setso that it represents, in aggregate, the prior distribution.

Types of Caution Used:wvRNca nc always uses the estimated label of every node, without regard
for how certain that estimate is. Thus, it does not exhibit cautious inferétmeever, WRNca ¢
does exhibit cautious inference, although this effect was not distusserior work with this
algorithm. In particular, during the first iteratiow/RNca..c uses only the certain labels frov¥,
since all nodes itYY are markednissing These known labels are used to estimate labels for every
node inVV that is directly adjacent to some node\if. In subsequent iterationsyvRNca..c
uses both labels frodX and labels fron¥V that have been estimated so far. However, the labels
estimated so far are likely to be more reliable than later estimations, since the fabetr are
from nodes that were closer to at least one known label. Thus, in a mamiar to ICA:'s
gradual commitment of labels based on confidemo&RNcac gradually incorporates more and
more estimated labels into its computation, where more confident labels (those tddsown
nodes) are incorporated sooner. This effect cawsd@Nca ¢ to exploit estimated labels more
cautiously.

5.5 Parameter Learning for Uncertain Labels (PLUL)

CC algorithms typically train a local classifier on a fully-labeled training set, trenthat local
classifier with some collective inference algorithm to classify the test setrtuimiately, this results
in asymmetric training and test phases: since all labels are known in the trphrisg, the learning
process sees no uncertainty in relational feature values, unlike the reftidgting. Moreover,
the classifier’s training is unaffected by the type of collective inferemgerihm used, and how
(if at all) that collective algorithm attempts to compensate for the uncertaintgtihated labels
during testing. Consequently, the learned classifier may tend to prodacegtonates of important
parameters related to the relational features (e.g., feature weights, coalditiobabilities). Even
for CC algorithms that do not use a local classifier, but instead take algppeoach that learns
over the entire training graph (as witlBP and relaxation labeling), the same fundamental problem
occurs: if autocorrelation is present, then parameters learned oveilthiabeled training set tend
to overstate the usefulness of relational features for testing, where tstitabels must be used.

To address these problems, we developed PLUL (Parameter Learnikmdertain Labels).
PLUL is based on standard cross-validation techniques for performiognated parameter tuning
(e.g., Kohavi and John, 1997). The key novelty is not in the crossataial mechanism, but in the
selection ofwhichparameters should be tuned amlay. To use PLUL, we must first select or create
an appropriate parameter that controls the amount of impact that relateatalds have on the
resultant classifications. In principle, PLUL could search a multi-dimenbkjmarameter space, but
for tractability we select a single parameter that affects all relational fstlor instance, when

2795



McDOWELL, GUPTA AND AHA

PLUL *lea‘rn (CCtypeF)ﬂ | p7VTI'7 ETI’7 xTI'uYThVH 9 EH 9 XH 7YH):

/I CCtype=CC alg. to useP=set of parameter values to considgrlabeled proportion to use
IV, Exr, X7r, Y1 = Vertices, edges, attributes, and labels from traininglgrap

II'V4,En, Xy, Yq = vertices, edges, attributes, and labels from holdout graph

1 Y, = keepSomelLabglp,Yu) /I Randomly seledp% of labels to keep; discard others
2 bestParam— 0 /I Initialize variables to track best parameter so far
bestAcc— —1
3 foreachpePdo /I lterate over every parameter value
4 /I Learn complete CC classifier from fully-labeled tramittata, influenced bp
cc=learnCC_classifieCCty peVrr, Err, X1r, Y11, P)
5 /I Run CC on holdout graph (with some known labg|3$ and evaluate accuracy
acc— executeCC.inferencécc, Vi, En, Xu,Y)
6 /I Remember this parameter if it's the best so far
if (acc> bestAcg
bestParam— p
bestAce— acc
7 return bestParam /l Return best parameter found over the holdout graph

Figure 7: Algorithm for Parameter Learning for Uncertain Labels (PLUL)e holdout graph is
derived from the original training data and is disjoint from the graph thasésl later for
testing.

using a k-nearest-neighbor rule as the local classifier, we employ PLEdjtist the weightvg of
relational features in the node similarity function. PLUL performs automatedduwy repeatedly
evaluating different values of the selected parameter, as used by thelassifier, together with
the collective inference algorithm (or the entire learned modelB#). For each parameter value,
accuracy is evaluated on a holdout set (a subset of the training s&t). then selects the parameter
value that yields the best accuracy to use for testing.

Figure 7 summarizes these key steps of PLUL and some additional details, niéites that
proper use of PLUL requires a holdout set that reflects the test sditioms. Thus, step 1 of the
algorithm removes some or all of the labels from the holdout set, leaving calyatime percentage
of labels (p%) that are expected in the test set. Second, running CC inference veth pamameter
value may require re-learning the local classifier (foA or Gibbg or the entire learned model (for
LBP). This is shown in step 4 of Figure 7. Alternatively, for Naive Bayes orelarest-neighbor
local classifiers, the existing classifier can simply be updated to reflecethparameter value.

We expect PLUL'’s utility to vary based upon the fraction of known labiglsthat are available
to the test set. If there are few such labels, there is more discrepanaydretiae training and test
environments, and hence more need to apply PLUL. However, if thenmang such labels, then
PLUL may not be useful.

Because almost all CC algorithms learn parameters based in some way omatlfsiiures,
PLUL is widely applicable. In particular, Table 2 shows how we select ganaguiate relational
parameter to apply PLUL for different CC algorithms. The top of the tablerdess how to apply
PLUL to a local classifier that is designed to be used with a CC algorithm@Reor Gibbs The
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Local Classifier (or CC | Parameter set by PLUL (per re- | Values tested by PLUL (default in

algorithm) lational feature) bold)
Naive Bayes (NB) Hyperparametera for Dirichlet | 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
prior 1024, 2048, 4096

Logistic Regression (LR) | Varianceo? of Gaussian prior 5, 10, 20, 40, 80, 160, 320, 640
1280, 2560, 512

k-Nearest Neighbor (KNN) Weightwg 0.01, 0.03, 0.0625, 0.125, 0.25, 0.5,
0.75,1.0,2.0
LBP Varianceo? of Gaussian prior 5, 10, 20, 100, 200, 1000, 10000,

100000, 1000000

Table 2: The classifiers (NB, LR, and KNN) and CC algorititBR) used in our experiments for
which PLUL can be applied to improve performance. The second column lestiseth
relational parameters that we identified for PLUL to learn, while the last colsimows
the values that PLUL considers in its cross-validation.

last row demonstrates how it can instead be applied to a global algorithirtBReFor instance, for
the NB classifier, most previous research has used either no prioiropked aplacian (“add one”)
prior for each conditional probability. By instead using a Dirichlet prioe¢kerman, 1999), we can
adjust the “hyperparametet’of the prior for each relational feature. Larger valuea tfanslate to
less extreme conditional probabilities, thus tempering the impact of relatiaatatés. For the kNN
classifier, reducing the weight of relational features has a similar retteffFor the LR classifier
and theLBP algorithm, both techniques involve iterative MAP estimation. Increasing thesvalu
of the variance of the Gaussian prior for relational features causesthesponding parameter to
“fit” less closely to the training data, again making the algorithm more cautious isé®fisuch
relational features.

While the core mechanism of PLUL—cross-validation tuning—is common, teabnridjke
PLUL to explicitly compensate for the bias incurred from training on a fullyelet set while
testing using estimated labels have not been previously used for CC. iblpassception is Lu and
Getoor (2003a), who appear to have used a similar technique to tune arm@lgtizameter, but,
in contrast to this work, they did not discuss its need, the specific progeduthe performance
impact.

PLUL attempts to compensate for the bias incurred from training on the tyrfelbeled train-
ing set. Alternatively, Kou and Cohen (2007) describe a “stacked modat’ltlarns based on
estimated, rather than true labels. While the original goal of this stackedagpwas to produce a
more time-efficient algorithm, Fast and Jensen (2008) recently demoundinatehis technique, by
eliminating the bias between training and testing, does indeed reduce “icddvexs.” This reduced
bias enables the stacked models to perform comparably to Gibbs samplingheugh the stacked
model is a simpler, non-iterative algorithm that consequently has higheitgdrias. Interestingly,
Fast and Jensen (2008) note that the stacked model performs an “img@igitimg of local and
relational features,” as with PLUL. The stacked model accomplishes thigtyyng the learning
and inference procedure, whereas PLUL modifies only the learniragguoe, and thus works with
any inference algorithm that relies on a learned model.
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5.6 Computational Complexity and the Cost of Caution

For learning and inference, all of the CC algorithms (variant$G#, Gibbs wvRN andLBP)
use space that is linear in the number of nodes/instarigés (CA and Gibbs have significant
similarities, so we consider their time complexity first. For these two algorithms, thendaot
computation costs for inference stem from the time to compute relational featndethe time to
classify each node with the local classifier. Typically, nodes are coedi¢éo a small number of
other instances, so the first costO$§N; ) per iteration. For the second cost, the time per iteration is
O(N)) for NB and LR, andD(N?) for KNN. However, the number of iterations varies significantly.
Based on previous work (Neville and Jensen, 2000; McDowell et ad7&0 we set = 10 for
variants oflCA; more iterations did not improve performance. In contr@dbbstypically requires
thousand®f iterations.

Adding or removing cautious inference I8A and Gibbsdoes not significantly change their
time complexity. In particularGibbsyc has the same complexity &ibbs ICAc introduces an
additional cost, compared €A, of O(N;logN ) per iteration to sort the nodes by confidence.
However, in practice classification time usually dominates. Therefore, th@lbeomputational
cost per iteration for all variants ®€A andGibbsare roughly the same, but the larger number of
iterations for variants oBibbsmakes them much more time-expensive thaa, ICAkn, or ICA:.

LBP does not explicitly compute relational features, but its main loop iterates thvaighbors
of each node, thus again yielding a cost@(N,) per iteration under the same assumptions as
above. We found thatBP inference was comparable in cost to thatlGA, which agrees with
Sen and Getoor (2007). However, training tH&P classifier is much more expensive than training
the other algorithmslCA andGibbsonly require training the local classifier, which involves zero
to one passes over the data for KNN and NB, and a relatively simple optimiZati&iR. On the
other hand, trainingtBP with conjugate gradient requires executlr8P inference many times. We
found this training to be at least an order of magnitude slower than the dtfweitlams, as also
reported by Sen and Getoor (200)BRyc has the same theoretical and practical time results as
LBP.

wVRNis the simplest CC algorithm, since it requires no feature computation and thetdgey
of each iteration is a simple average over the neighbors of each noddthsravious algorithms,
assuming a small number of neighbors for each node yields a total time pé&oitextO(N; ). Prior
work (Macskassy and Provost, 2007) suggested using a somewgetnamber of iterations (100)
than withICA. Nonetheless, in practicgvRNs simplicity makes it the fastest algorithm.

Finally, all of the algorithms, except fawvRN can be augmented with cautious learning via
PLUL. Executing PLUL requires repeatedly running the CC algorithm witfedsht values of the
selected parameter. We used 9-13 different parameter values, armithercost of PLUL vs. not
using PLUL is about one order of magnitude.

6. Evaluation Methodology

This section describes our hypotheses and the method that we use tdestizna

6.1 Hypotheses

Table 3 summarizes our five hypotheses. As described in Section 1, wet@gutious behaviors
to be more important when there is a higher probability of incorrect relatinfeakence. Thus, each
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Data characteristic Type of caution Hypothesis: relative gain of caution
considered will increase as value of characteristic...
Autocorrelation Inference ...increases (H1)
Attribute predictiveness Inference ...decreases (H2)
Link density Inference ...decreases (H3)
Labeled proportion Inference ...decreases (H4)
| Labeled proportion | Learning | ...decreases (H5)

Table 3: The five hypotheses that we investigate.

hypothesis varies one data characteristic that impacts the likelihood of sweh. eln particular,
hypotheses H1-H4 vary a data characteristic to measure the impact ofusauierence, which
Section 7 will evaluate for different pairs of cautious and non-cautioiggeénce algorithms. We
define the “relative gain of cautious inference” as the difference letilee accuracies of two such
algorithms (e.g.Gibbsvs. Gibbsyc). Hypothesis H5 also varies a data characteristic, but does so
to measure the “relative gain of cautious learning” (i.e., comparing perfarenaith vs. without
PLUL).

e H1: The relative gain of cautious inference increases with increasingutocorrelation.
Larger autocorrelation implies that relations are more predictive, and widldreed as such
by the classifier. This magnifies the impact that an error in a predicted labehave on
linked nodes. Therefore, we expect cautious inference algorithms t@wagtassification
by a greater margin in such cases.

e H2: The relative gain of cautious inference increases with decreagjnattribute predic-
tiveness @p). Decreaseap implies a greater potential of errors/uncertainty in the predicted
labels. The effect of cautiously using uncertain labels should be giaatech cases.

e H3: The relative gain of cautious inference increases with decreaginlink density (Id).
When the number of links is high, a single mispredicted label has relatively littlecihoma
its neighbors. As the number of links decreases, however, a single ditgfye can cause
larger relational feature uncertainty, increasing the need for caution.

e H4: The relative gain of cautious inference increases with decreagirlabeled proportion
(Ip). Whenlp is high, only a few of each node’s neighbors have estimated labels (neost ar
known with certainty). Consequently, there is less uncertainty in relatieaalffe values, and
less need to use estimated labels cautiously.

e H5: The relative gain of cautious learning with PLUL increases with deceasing labeled
proportion(Ip). As with H4, wherlp is high there is less uncertainty in the relational features.
Thus there is less disparity between the fully correct training set (wlessifier parameters
were learned) and the test set. Consequently, we expect PLUL, whichensates for any
such disparity, to matter less whkmis high.

6.2 Tasks

We will evaluate three general tasks (see Section 2.3):
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| Parameter | Abbrev. | Values tested (defaults in bold) |
Nodes per graph [\ 250
Number of class labels Nc 5
Number of attributes Na 10
Degree of homophily dh 0.1,0.2,0.3,0.4,0.5,0.6,7,0.8,0.9
Link density Id 0.1,0.2 0.3,0.4,0.5,0.6,0.7,0.8,0.9
Attribute predictiveness  ap 0.1,0.2,0.3,0.4,0.9.6,0.7,0.8,0.9
Labeled proportion Ip 0%, 10%, 20%, 40%50%, 60%, 80%

Table 4. Synthetic data parameters. Defaults were chosen based ages/éom Cora and Cite-
seer, two commonly studied data sets for CC.

1. Out-of-sample task: Here the test set does not contain or link to any known nodes, as with
Neville and Jensen (2000), Taskar et al. (2002), and Sen and G2611).

2. Sparse in-sample task:Here some of the test nodes, but only a few, have known labels
(we use 10%). We focus particularly on this task, because some reseagrgue that it
is the most realistic scenario, since often networks are large, and aggkiirinvn labels is
expensive (Bilgic and Getoor, 2008). This was the primary scenarisidered by the recent
work of McDowell et al. (2007a,b), Bilgic and Getoor (2008), and Gdlkxcet al. (2008).

3. Dense in-sample taskHere a substantial number of test nodes may have known labels (we
use 50%). This task was the one recently evaluated by Sen et al. (2008).

6.3 Data

We evaluate the hypotheses over both synthetic and real-world data bets we describe below.
We use the synthetic data to highlight how different data characteristiest dlffe relative gain of
cautious behaviors, then the real-world data sets to validate these findings.

6.3.1 SYNTHETIC DATA

We use a synthetic data generator (see Table 4) with two components: la Geaprator and an
Attribute Generator. The Graph Generator has four inphtgthe number of nodes/instanceksl;
(the number of classesld (the link density), andlh (the degree of homophily). For each link,
dh controls the probability that the linked nodes have the same class label; hajhes yield
higher autocorrelation (see Appendix A for details). The final numbéink$ is approximately
N;/(1—1d), and the final link degrees follow a power law distribution, which is common ah re
networks (Bollolas et al., 2003). The Graph Generator is identical to that used by SkI(28G8);
see that article for more detail.

To make this a practical study, we chose default parameter values that mianéctgristics of
two frequently studied CC data sets, Cora and Citeseer (McDowell et @ra28leville and Jensen,
2007; Sen et al., 2008). In particul&k;:=5 classes and Table 4 shows additional default values. We
choseN,=250 nodes, a smaller value than with Cora/Citeseer, to reduce CC exetnterbut
larger values did not change the performance trends.
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The Attribute Generator generates NAY binary attributes. Our design for it is motivated by our
observations of common CC data sets. We found that, unlike synthetic mode s ys®r studies,
different attributes vary in their utility for class prediction. To simulate this, wsoaiate each
attributeh with a particular classy, wherem=h mod N, and vary the strength of each attribute’s
predictiveness based on the valuehofin particular, for nodey; with classy;, the probability that
vi's ht" attributex;, has value 1 depends upon the clgsas follows:

0.15+(ap—0.15)- gy  ifk=hmod Nt

o Joa if k= (h—1) mod Nt
P(th = 1\Y| = Ck) - 0.05 ifk= (h—|— l) mod N
0.02 otherwise

The first line indicates that, wheyn (= c) is the class associated with attributdi.e., k =
h mod N), thenP(xn = 1|yi = ¢) ranges from 0.15 foh = 0 to ap (a constant representing the
strength of attribute predictiveness) to= 9. As a result, each of the five classes has two attributes
associated with that class, but some classes have associated attribuges thate useful for pre-
diction. Howeverx, may also be 1 whew is some other class besides an “associated class”; the
next three lines encode this class ambiguity. This ambiguity/noise is based obsmivations of
Cora and Citeseer and is similar to the binomial distribution used by Sen et@8)(20

Finally, we use a parameter for test set generation cgl€thbeled proportion), which is the
proportion of test nodes with known labels. We use default valugs=6f0, |p=10%, andp=50%
for the three tasks defined in Section 6.2. Nodes to be labeled are seladtadhly at random
from the test set until the desired valuelpfis reached. In contrast, some real data sets are likely
to exhibit non-uniform clustering of known nodes. We conjecture theh slata sets will have a
smaller “effective”lp, since each known node will have, on average, fewer direct ctionedo
unknown nodes. For instance, a data set Witf10% may behave more like a data set Wjith5%
where the labels are more uniformly distributed. Such effects should neir@ in future work.

6.3.2 “REAL-WORLD"” DATA SETS

We consider the following five “real-world” data sets (see Table 5). Reald” is a somewhat
subjective term; however, all of the data sets are based on naturallygarestiworks and have been
used in some form for previous research on relational learning.

1. Cora (McCallum et al., 2000b): A collection of machine learning publications categorized
into seven classes. The relational links are (directed) citations.

2. Citeseer (Lu and Getoor, 2003a):A collection of research publications drawn from Cite-
Seer. The relational links are (directed) citations.

3. WebKB (Craven et al., 1998): A collection of web pages from four computer science de-
partments categorized into six classes (Faculty, Student, Staff, CowgseafghProject, or
Other). “Other” is problematic because it is too general, representingof 48é pages. Like
Taskar et al. (2002), we discarded all “Other” pages that did nat haleast three outgoing
links, yielding a total of 1541 instances of which 30% are Other. The rektiorks are the
(directed) hyperlinks among these pages.
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] | Cora CiteSeer WebKB HepTH  Terror |

Characteristics of entire graph

Instances/nodes 2708 3312 1541 2194 645
Attributes (non-relat. feats.) available 1433 3703 100 387 106
Attributes used (max) 100 100 100 100 100
Attributes used (default) 20 20 40 40 2
Link/relation directedness directed directed directed  directed undirected
Type of relational features used in,out in,out in,out,co in,out linksto
Class labels 7 6 6 7 6
Total relational features used 14 12 18 14 6
Links per node 3.9 2.7 5.8(64.6) 8.9 9.8
Autocorrelation 0.88 0.83 0.30(0.53) 0.54 0.16
Characteristics of each test set (on average)

Instances/nodes 400 400 335-469 300 150
Number of folds 5 5 4 5 3
Links per node 2.7 2.7 5.7(61.0) 4.3 12.3
Approx. link density 0.23 0.23 0.64(0.97) 0.53 0.79
Autocorrelation 0.85 0.84 0.38(0.53) 0.64 0.24
Label consistency 0.78 0.75 0.21(0.90) 0.61 0.56
Approximate homophily 0.74 0.70 0.05(0.88) 0.54 0.47

Table 5: Summary of the five real-world data sets ugedndoutfeatures compute separate values
based on incoming or outgoing links, whilakstofeatures make no such distinctiotn
features are based on virtual co-citation links; nodes A and B are linieed 6o link if
there exists some node C with outgoing links to both A and B. For WebKB, thettistic
listed is computed ignoring co-links, while the statistic in parentheses is compsitegl u
onlyco-links. Label consistency is the percentage of links connecting naittethe same
label; Appendix A defines this and approximate homophily. Section 6.9 desctiite
“default” number of attributes used.

4. HepTH: A collection of journal articles in the field of theoretical high-energy phgsite-
rived from the Proximity Hep-Th database (http://kdl.cs.umass.edu/data/h&€pthpriginal
data set did not have any single class label, but some pages were aassifieopic sub-
types. Among pages with one such subtype, we selected all articles bedogihe six
most common subtypes, yielding 1404 articles. To create a more conneafdd gre also
selected all articles with a date after 2001 that linked to at least two of thedréegelected
articles. There were 790 such articles, which we treated as having dafl@$®f “Other.”
The relational links are the (directed) citations among all 2194 articles.

5. Terror (Zhao et al., 2006): A collection of terrorist incidents, drawn from the Profile in Ter-
ror project (http://profilesinterror.mindswap.org). The incidents areuraformly distributed
into six categories: Bombing (44%), WeaponAttack (38%), Kidnappingdl#rson (2%),
NBCRAttack (1%), and OtherAttack (1%). The relational links indicate {uwuted) geo-
graphical co-location.

These data sets are intended to demonstrate CC performance on a rdatgedfaracteristics.
For instance, CC would be expected to be very helpful for Cora and&&te®here autocorrelation
is high, but not very helpful for Terror.
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6.4 CC Algorithms

We evaluate the ten algorithms listed in Table 1, fhanitent Only(CO), a non-relational baseline
that uses only attributes. For each of the four main sections in Table 1,ishene non-cautious
variant (CA, Gibbsyc, LBRyc, andwvRNcanc) and one or two cautious variant€@c, 1ICAkn,
Gibbs LBP, wwRNg, andwvRNcac). ThewvRNalgorithms also serve as a collective, relational-
only baseline.

Based on previous work (Neville and Jensen, 2000; McDowell et a7&2)0) thel CA-based
algorithms usedh = 10 iterations; more iterations did not improve performance. Gibs we
used 1500 iterations, with a random restart every 300 iterations, ance@ytie first 100 iterations
after a restart for burn-in. Additional iterations did not improve perfaroga Gibbsyc converged
in far fewer iterations because it does not sample and is deterministic; We usB0.

ForLBP, we assumed that each parameter was a priori independent and haehaezsn Gaus-
sian prior with a default uniform prior variance of = 10, which is similar to the values reported
in previous work (e.g., Sen and Getoor 2006; Neville and Jensen 20&/jsed MAP estimation
to estimate these parameters based on conjugate graafemuntrols how tightly the parameters fit
to the training data; Table 2 shows the alternative valueg ebnsidered by PLUL to constrain this
fitting for the relational parameters.

6.5 Classifiers

To account for possible variations in overall CC performance trendstalthe effect of the un-
derlying classifier, we tested three local classifiers with each CC algorithemewer applicable
(this excluded.BP andwvRN). Section 5.5 already described, for each classifier, the key relational
feature whose value is learned by PLUL; we now provide more detail oh elassifier and its
application of PLUL.

The first classifier is Naive Bayes (NB). PLUL was used to laarior the Dirichlet prior of
each relational feature. The second classifier is Logistic Regresdi®yn\({e used MAP estimation
with Gaussian priors to learn the parameters for LR; PLUL learned amppate variance? for
the prior of each relational feature. The final classifier is k-Nearegtbor (KNN); we useé=11.
When computing similarity, attributes were assigned a weight of 1. PLUL ldaireweightwg
for each relational feature. Weighted similarity was used for voting.

For each classifier, Table 2 shows the specific values consideredUily. Fhe “default” value
shown (e.g.o = 1.0 for NB) was used in two ways. First, the default was used as the paramete
value for all attributes. Second, the default was used for a manual seidtitigef parameter value
for all relational features when PLUL is not being used. When PLUL wgesd, the learned value
was used instead for the relational features.

ThelCAc algorithm requires a classifier that can ignorissingrelational feature values. KNN
and NB can do this easily: kNN by dropping the feature from the similarity ¢aticon and NB
by skipping the feature in probability computation. For LR, however, dealiitiy missing values
is a current research topic (e.g., Fung and Wrobel 1989), with typichhigues including mean
value substitution or multiple imputation. However, for CC the situation is less contipgexthe
more general case, because missing values occur only for the testlgegraelational features,
and typically only when all neighbors of a node have missing labels. Theigaw learn several
LR classifiers: one that uses all relational features, and one foragachination of features that
may be missing simultaneously (for our data, this is at most 4). Experimentalljpunel this
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to perform better than mean value substitution, though the difference wés Iséigause missing
values were rare. These results are consistent with those of Sadrahs&y and Provost (2007) on
non-relational data. Section 7.8 discusses this effect in more detail.

6.6 Node Representation

Each node is represented by a set of (non-relational) attributes atidraldeatures. Algorithms
based orLBP andwvRNreason directly with each individual link, and their algorithms thus di-
rectly define the effective relational features used. ApproachexitadCA andGibbs however,
use some kind of aggregation function to compute their relational featuresvalMle first describe
the possible aggregation functions for these features, then separegelybe the complete repre-
sentation for the synthetic and real data.

6.6.1 RELATIONAL FEATURESCONSIDERED

We considered three different types of relational features:

e Count: This type represents the number of neighbors that belong to a partitasgar d¢-or
each nodé, there is one such featufgc) per class label c. The value &fc) = Neighborg(c),
which is the number of nodes linked to nadéat have a known or current estimated label of
c. For instance, in step C of Figure fp,(P) = 1 andf,(S) = 2.

e Proportion: This feature is like “count”, except that the feature value represeatsriipor-
tion of neighbors that have a particular label, rather than the raw numlseicbfneighbors.
For this featuref;(c) = Neighborg(c) /Neighbors(x), whereNeighborg(«) is the number of
nodes linked to nodethat have any current label (known or estimated, butl@#%, exclud-
ing those nodes whose label was setiigsingbecause of low confidence). Nfeighbors(x)
is zero, therf;(c) is set tomissing.For example, if proportion features were being used, then
the feature values for step C of Figure 1 wouldfb@) = 1/3 andf,(S) = 2/3.

e Multiset: Proportion and count features aggregate the labels of a node’sboengiod to
produce a single numerical value for each possible label. During irderehis aggregate
value is then compared against the mean value from the training set (with NB)oror
compared against the aggregate values for nodes in the training set ijh Ik contrast, a
“multiset” feature uses a single multiset to represent the current labelsoofegsmeighbors.
For instance, if multiset features were used, then for step C of Figuke=1{P,S'S}. This
has the same information content as with count features, but can be expliiezently by
some local classifiers. In particular, during NB inference, each lattleéimultiset (excluding
missinglabels) is separately used to update the conditional probability that a nedeulea
labelc. This is the “independent value” approach introduced by Neville et AD3RB) and
used by Neville and Jensen (2007). However, this approach doesrectly apply to LR or
KNN.

6.6.2 SYNTHETIC DATA NODE REPRESENTATION

Each node is represented by ten binary attributes and some relationatfedBecause represen-
tation choices can affect how well a CC algorithm handles the uncertairggtiohated labels, for
each local classifier-based algorithm we considered count andrtimpielational features, as well
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as multiset features when using NB. For each trial, we evaluated the twoeerfbssible types of
relational features with cross-validation (evaluating accuracy on the liodet), then selected the
feature type with the highest accuracy to use for testing. When PLUL sed, PLUL was also

applied to each feature type; the best performance (on the holdouépetjed by PLUL for each

feature type was then used for this feature selection. Section 7.8 dasehlmh feature types were
chosen most often for each local classifier. Since there are 5 class flabtihe synthetic data and
links are undirected, there were 5 relational features when using oopnvportion features, and 1
relational feature (whose value is a multiset) when using multiset.

6.6.3 REAL-WORLD DATA NODE REPRESENTATION

For all five data sets we used binary attributes that indicated the presealssemce of a particular
word. For WebKB, these words were from the body of each HTML page selected the 100
most frequent such words, which was all that was available in our verdidhe data set. For
symmetry, and because adding more words had a small impact on performambikewise set
up the remaining data sets to select 100 words as attributes. For Cora aBdeCitdhese words
were taken from the body of the publications; as with previous work (Me&doet al., 2007a) we
selected the 100 words with the highest information gain in the training set td-os&error, the
words come from hand-written descriptions of each incident providedthétlilata set; we selected
the first 100 of the 106 available attributes. For HepTH, we selectedd loms@formation gain, the
100 highest-scoring words from the article title or the name of the corréapgournal.

For relational features, we again considered the proportion, multiset;@amt features, and
selected the best feature type using cross-validation as describeal @&dbof the data sets except
Terror had directed links. For these data sets, we computed separttmedlieature values based
on incoming and outgoing links. In addition, previous work has shown VEebKhave much
stronger autocorrelation based on co-citation links than on direct linksTagkle 5). However,
using such links can sometimes be problematic. Thus, we evaluate two datéV/¢eitdB” and
“WebKB+co”. For WebKB, algorithms use in and out links (“direct” linksfror WebKB+co,
algorithms use in, out, and co-links, exceptRNuses only co-links, as suggested by Macskassy
and Provost (2007) (see Section 7.6).

6.7 Training/Test Splits Generation

For the synthetic data, we generate training, holdout, and test graplasdtdisjoint. Likewise, for
WebKB, the data was already divided into four splits (one for each tiepat) that can be used for
cross-validation.

For the other real data sets, we must manually construct training andltesfrep the original
graph. Sen et al. (2008) suggest a technique based on snowbalirgathat involves picking
a random starting node and iteratively growing a split around that nobereathe class of the
next node to be selected is sampled from the overall class distribution. vidgwee found that
low graph connectivity often prevented the algorithm from producinga finbgraph whose class
distribution resembled the whole graph’s. Instead, we created the folldeatgique similarity-
driven snowball samplinggiven the whole grapks, pick a random starting node and add it to the
split G1. At each step, consider tfi@ntier F of G; (all those nodes not iG; that link to some node
in G1). Among all labelsc that exist inF, select the class label such that adding some node of
labelc’ to G; would maximize the similarity (inverse Euclidean distance) of the class distributions
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of G; andG. Given thisc/, randomly select some nodefnof classc’ and add it taG;. Repeat this
random selection and insertion ur@j is of the desired size.

We run this algorithm in parallel fdXs different subgraphs, usings different seeds, and permit
each node to be inserted into only one subgraph. This resus disjoint splits that have similar
class distributions and that can be used\effold cross validation. We s&is= 5 for Cora, Citeseer,
and HepTH, andNs = 3 for the smaller Terror.

Table 5 shows some of the characteristics of the generated test sets edgithal, complete
graphs. In general, the autocorrelation and number of links per nedgrailar, indicating that the
sampling procedure did not dramatically change the average characsavidtie graph. While the
splitting procedure effectively removes links, the average degree téshsets may still be greater
than with the original graph if high-degree subsets of the original aretsele

6.8 Test Procedure

We first consider the synthetic data. For each control condition (i.e., datrgted with a combina-
tion of dh, ap, Id, andlp values, see Table 4) we ran 25 random trials. For each trial, we getherate
training, holdout, and test data sets of 250 nodes each. All training isrpexél on the fully la-
beled training set. The holdout set, when not used for PLUL, was mevijledhe training set. We
measured classification accuracy on the test set, excluding all nodeswativri” labels.

For the real-world data sets, each experiment involves using all of therelbfeatures shown
in Table 5 and a fixed number of attributéda]. We varyNa from 2 to 100 (recall that for all data
sets 100 attributes were selected for experimentation). For each setfifagwé performNs-fold
cross-validation, wherlBsis 3, 4, or 5, depending on the data set. Each one of these 3 to 5 trials is
associated with one subgraph (the test set), and the remaining 2-4 ghubgoanprise the training
set. We then apply PLUL by training on half of the training set and using ther dthlf as the
holdout set. After PLUL selects the best parameter setting, we re-traireavitble training set and
evaluate accuracy on the test set. If PLUL is not used, training likewisethe whole training set.

We report results with accuracy in order to ease comprehension ofgbksrand to facilitate
comparison with some of the most relevant related work (e.g., Sen et al., RR@8kassy and
Provost, 2007). Results with area under the ROC curve (AUC) for therityagtass demonstrated
similar trends.

6.9 Statistical Analysis

We conducted two distinct types of analysis. First, to compare algorithms $angge control
condition, we used a one-tailed paired t-test accepted at the 95% cadildsel. For every such
test each “test point” is the accuracy over a single trial’s test grapheXamnple, for the synthetic
data there are 25 trials for each control condition, and thus a single teegiates 25 pairs of
accuracies (e.gICAc vs.ICA). In all cases the test graphs used by these t-tests are disjoint, for
both the synthetic and the real data.

Second, we performed linear regression slope tests. In particuldnypatheses H1-H4, we
compared two algorithms (e.dGAc vs.ICA) for each independent variab¥e(e.qg.,ld) as follows:
For each trial, we computed the difference in the algorithms’ classificatiorraies (e.g., for the
synthetic data, 225 such differences for 25 trials and 9 valule§.0fVe performed linear regression
(Y = a+bX), where the accuracy difference is the dependent varilaied X is the independent
variable (e.g.ld). The estimated value of sloge when non-zero, indicates an increasing) (
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or decreasing-{) trend. Regression producepaalue associated with the slope that indicates the
significance level for hypothesis testing; we accept when0.05. For hypothesis H5, the equations
are the same but we compare a single CC algorithm with and without PLUL.

For the synthetic data, the analysis is straight-forward and we use theathatieatjion parameters
dh, ap, Id, andlp as the independent variable for regression. Analysis for the reabdtgaequires
more explanation. For instance, each computed subgraph of a data s@ilar autocorrelation,
so regression for H1 (where autocorrelation is ¥healue) cannot be performed on a single data
set. Instead, we combine the trials of all the real data sets into one analjgi® the indepen-
dent variable is the measured autocorrelation of the correspondingedgiaesinclude WebKB,
but exclude WebKB+co because it’s not clear how to compute its autdaorewith direct links
combined with co-citation links). In addition, our results show that when at&iptedictiveness
is high, there is less need for caution. Thus, to prevent any interactem&én autocorrelation
and caution from being obscured by high attribute predictiveness, e/tewer than 100 attributes
for these experiments. In particular, for each data set we evaluatedsbbngCO algorithm with
varying numbers of attributeda, and selected the number that yields an average accuracy closest
to 50%. Table 5 shows the resulting default number of attributes for eaalseia

For H2 (attribute predictiveness), we can directly vary the number of atit$h so we can
perform regression for each data set separately. However, attpledectiveness is typically not a
linear function of the number of attributes. Thus, for H2 we performesgjon where the dependent
variable is the accuracy &fO for each trial (as a surrogate for attribute predictiveness).

We do not directly evaluate H3 for the real data sets (see Section 7).

For H4 and H5 (varying labeled proportion), we directly vizyso we can compute separate
results for each data set. Moreovgrjs suitable for direct use as the dependent variable. As with
H1, we use the default number of attributes for each data set in ordeoitblaaving high attribute
predictiveness obscure the interaction of caution landVe omit nonsensical points (e.gvwRN
whenlp=0%) from all of the analyses.

Finally, for each hypothesis we also perfornpaoled analysis For the synthetic data, this
involves pooling the results of all the cautious CC algorithms, then performingldipe regression
test. For the real-world data, we pool the results across both the CC aigsiatid each of the real
data sets. In addition, to account for differences in the data sets, Wemex multiple regression
analysis that includes autocorrelation as one of the input variablespfeércdil). In particular, we
fit the data to the lin&y = a+ by X1 + boX,, whereX; is the variable in question (e.dp for H4 or
H5) andX; is the autocorrelation of the data set. T{eterm factors out differences due only to
autocorrelation, thus making the other trends more clear. The p-valusspomnding td; is then
used for hypothesis testing.

6.10 Implementation Validation

To validate the implementation of our algorithms, we replicated three differethetjc data gen-
erators: those used by Sen and Getoor (2006), Neville and Jensgf),(20d Sen et al. (2008).
We then replicated some of the experiments from these papers. Whilelsgwana CC algorithm
variants were not evaluated in any of these earlier papers, we wermaladmpare results fdCA,
Gibbs andLBP, with the LR and NB classifiers as appropriate, and found very consiseults.
Section 8.4 discusses one exception.
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LBP is the most challenging algorithm to implement and to get to converge. To deal with
such problems, Sen et al. (2008) seedl®&iP's learning process with weights learned fro@A.
Alternatively, we found that seeding with values estimated from empiricahtsoover the data,
combined with limiting the maximum step size of the search to prevent oscillationedavkll.

With these enhancementsBP achieved equivalent accuracy to that reported by Sen and Getoor
(2006), and, when PLUL was applied, significantly improved it for theesasf high homophily

and link density (wher&BP's accuracy had been very poor). In contrast, we foundltB&t could
replicate the performance of Sen et al. (2008), but that in this case Batlittle effect. Section 8.4
explains the data characteristics of that study (effectively lpyjthat led to this result.

7. Evaluation Results

This section presents our experimental results. Section 7.1 presents argurhtha results, Sec-
tion 7.2 explains how we present the detailed results, and subsequimnsedscuss these detailed
results for each hypothesis. We focus on the sparse in-sample task, atcept a hypothesis if it
is confirmed, for thép=10% case, by the pooled analysis on both the synthetic data and the real-
world data Hypotheses H4-H5 involve varyirlpg; here we accept the hypothesis if confirmed on
both the synthetic and real data.

When a local classifier is needed, all results below use NB by default. owedfthat NB'’s
performance was better or equivalent to that of LR and kNN in almosy@ése (see Section 8.4),
for both the synthetic and real data sets, and that using LR or KNN led yasirailar performance
trends. Below we mention some of the results for LR and kKNN; see the onlpendjx for more
detail. In addition, PLUL is used everywhere unless otherwise spectednalysis and motivation
in Section 7.7.

7.1 Summary of Results

Tables 6-8 summarize our overall results for hypotheses H1-H5. Eblehpgeesents results for the
synthetic data on the left and (where applicable) for the real data set® aiglth. Each reported
value represents the estimated slope of the line measuring the differen@ebetwautious and a
non-cautious CC algorithm as the corresponding x-parameter (e.g.peelation) is varied (see
Section 6.9). Only values that were statistically different from zero grerted; otherwise a dash
is shown. Bold values indicate a significant slope that supports the porréisig hypothesis. For
instance, H2 predicted that caution becomes more important as attributetipesdissdecreases
(a negative slope). Thus, Table 7 shows a minus sign for the expecisel ahal all significant,
negative slopes are shown in bold. Where possible, we show sepesalis for the out-of-sample,
sparse in-sample, and dense in-sample tasks (§sm@%, 10%, and 50%). However, to simplify
the table the real-world data results for H2 are shown only ipiti0%; Section 7.4 describes other
results.

The tables show strong support for hypotheses H1, H2, and H4 rtioydar, we accept H1, H2,
and H4 because the pooled analyses find significant slopes in the ekgeetdion; non-pooled re-
sults also demonstrate consistent support. Thus, the data support thetbkisech cautious infer-
ence algorithm outperformsts non-cautious variant by increasing amounts when autocorrelation

7. Technically, the slope results don’t by themselves show that the cawtigarithms “outperform” the non-cautious
algorithms—only that the relative performance of the cautious algorithimpi®ving in the hypothesized direction.
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D Syn. data Real-world data
o Qe Ql® SN N
Fe S £ S S L

XX W K K K K

H1: auto-correlation

ICAc vs.ICA + | +0.13 +0.13 +0.03 — +0.27 +0.15
ICAkn vs.ICA + | n.a. +0.04 +0.02| n.a. +0.15 +0.13
Gibbsvs. Gibbsyc + | +0.18 +0.15 +0.03 +0.27 +0.25 +0.15

LBPvs.LBRyc + | +0.10 +0.08 — — — —
WVRNL VS.WVRNca+NC + | na. +043 — na. +0.41 +0.07
WVRNca+c VS.WVRNcaine + | na. +0.40 — na. +0.67 +0.10
Pooled +| +0.13 +0.21 +0.01] +0.13 +0.30 +0.11

Table 6: Summary of results for hypothesis H1. All values shown reptessiope that is signifi-
cantly different from zero; values in bold support H1. For H1, ataglp value all data
sets (except WebKB+co) are used to compute a single slope value bydrésimuto-
correlation of the data set as thevalue. All algorithms used PLUL where applicable.
“n.a.” indicates that the algorithm doesn’t make sendp=2%.

Syn. data Real-world datdy= 10%)
> I}
o SO S R & o
Fo & O & g L& §FF S
T R N R
H2: attribute predictiveness
ICAc vs.ICA - | -0.10 -0.25 -0.12/ -0.60 -0.61 -0.29 — — —
ICAkn vs.ICA -| na. -0.06 -0.08/ -0.14 — -0.16 — — —
Gibbsvs. Gibbsyc - | -0.09 -0.27 -0.14{ -0.44 -050 — — — —
LBPvs.LBRc - | -0.12 -0.28 -0.05 -0.46 -0.35 — n.c. -0.29 —
Pooled -| -0.10 -0.22 -0.10 -0.23(over all real data and CC algs.)
H3: link density
ICAc vs.ICA - | -0.08 -0.09 -0.03
ICAkn vs.ICA - | n.a. +0.06-0.02
Gibbsvs. Gibbsyc - | -0.09 -0.07 -0.04 (not evaluated)
LBPvs.LBRc - | +0.12 -0.23 -0.04
WVRNRL VS.WVRNcA+NC - | n.a. -0.18 -0.05
WVRNCA+C VS.WVRNCA+NC - n.a. 0.11-0.03
Pooled -| — -0.07 -0.04

Table 7: Summary of results for hypotheses H2 and H3. As before, lakyahown represent a
slope that is significantly different from zero; values in bold supportcihreesponding
hypothesis. All algorithms used PLUL where applicable. “n.c.” indicatesr&hBP did
not converge.

is higher (H1), attribute predictiveness is lower (H2), and/or the labalegdoption is lower (H4).
In addition, the data show consistent interactions among these factomtikufar, the strength of

However, the raw accuracies do show consistent performancefgaithg cautious algorithms, so in this context the
slope results do show the cautious algorithms outperforming the othersreaging amounts.
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Syn. data Real-world data
Q> o
2 9
& ¢ R &
¢ NN GRS A
R e @ P RSO
CR P FRE W W
H4: labeled proportion (comparing cautious vs. hon-cautiais algorithm)
ICAc vs.ICA - -0.09 | -0.11 -0.14 -0.05 — — —
ICAkn vs.ICA - -0.02 | -0.06 — -0.05-029 — —
Gibbsvs. Gibbsyc - -0.11 -0.14 -0.130.05 0.28 — —
LBPvs.LBRyc - -0.05 — — — nc. — —
WVRMN VS.WVRNca NG - -0.28 | -0.37 -0.39 -0.18 — — —
WVRNca+c VS.WVRNcatne - -0.27 | -0.36 -0.32 -0.15 -0.31— +0.28
Pooled -|  -0.12 | -0.07(over all real data and CC algs.)
H5: labeled proportion (comparing with PLUL vs. without PLU L)
ICAc - -0.02 _ = = = = =
ICAkn - -0.01 - — 002 — — —
ICA - — - — — -018 — —
Gibbs - -0.02 — — -0.04 — -0.07 —
LBP - -0.03 - — — nc. — —
Pooled -| -0.02 | -0.01(over all real data and CC algs.)

Table 8: Summary of results for hypotheses H4 and H5, which both varialieéed proportion
(Ip). As before, all values shown represent a slope that is significantrelift from zero;
values in bold support the corresponding hypothesis. For H4, allitigts used PLUL
where applicable.

the dependence (the magnitude of the slope) generally decreases aglbe fpaoportion increases
from 10% to 50% (Section 7.4 discusses the differences betlpe®fb and 10% in more detail).

Table 7 shows weaker support for H3 (cautious inference gain iseseas link density de-
creases). H3 is supported by most of the synthetic data cases and lopltbé analysis folp=10%
andlp=50%, but the magnitude of the slopes indicates a weaker effect. May&maion 7.5 exam-
ines these results more closely and proposes that a more appropriatedsjpaould state that the
cautious inference gain is greatest when link density is moderate. Thiksimncis also tentatively
supported by a per-node degree analysis of the real data.

Table 8 also shows weaker support for H5. The synthetic data respieged H5 for every
algorithm exceptCA. In addition, for 18 of the 29 possible cases shown for the real data sets
the computed slope was negative, as predicted by H5. However, the ntbgoitthese slopes
indicate a weaker effect than with H1, H2, or H4. This decreased magnitncdonjunction with
the smaller number of trials for the real data, leads to only 4 of those 18 dleaelsing statistical
significance. Nonetheless, by combining trials across algorithms and dstéhsepooled analysis
does find significant (but small) negative slopes for both the syntheticemtdiata, so we accept
H5. This indicates, as expected, that cautious learning with PLUL is most iamorhenlp is
small; Section 7.7 also demonstrates that in this case PLUL can provide gighgiarformance
gains.
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In addition to these results for each hypothesis, regarding relativerpehce trends as data
characteristics vary, our results also show statistically significant difterebetween the cautious
and non-cautious algorithms for at least some of the data conditions. dHfEsences are con-
sistent with the accepted hypotheses. For instance, using the defahktsydata characteristics,
each cautious algorithm showed a significant performance gain overritsawious variant, and
the amount of this gain increased as autocorrelation increased, attrilbdietpeness decreased,
or labeled proportion decreased.

7.2 Explanation of Results Presentation

In the following sections, we present several figures that comparddgodthmic performance. In
these figures some controllable parameter is the x-axis and the y-axis istitameaccuracy for a
given algorithmic variant, averaged over all trials. For instance, Figylet8 accuracy vs. the de-
gree of homophilydh). Each figure compares cautious and non-cautious variants of a jar
algorithm:ICA, Gibbs LBP, or wvRN In addition, for the CC algorithms that use a local classifier
(ICA andGibbg, we often include results for the non-relational algoritG@ for comparison.

In each section below, we use these results to describe two kinds ofianddiyst, we accept
or reject a hypothesis, based on the pooled regression slope testn@hjisisi.confirms or fails to
confirm that the importance of the cautious technigiees changa the expected direction as some
data parameter varies, but does not evalhate importanthe cautious techniques are in improving
performance. To answer the latter question, we report on a secotysiarthat evaluates, using
paired t-tests, whether the cautious techniques perform significantly bedtethe non-cautious
alternatives (see Section 6.9).

Each figure has embedded statistical information corresponding to somesef tiests. In
particular, each non-cautious CC variant is plotted with marker, while cautious CC variants are
plotted with a triangle (where multiple cautious variants exist, two triangle oriensagienusedsy
andA). For a particular x-value, if the plotted triangle is filled in (solid color), theat tautious
variant had accuracy that was significantly different from the aocyup&the corresponding non-
cautious variant Hollow triangles instead indicate no significant difference. This notati@s oot
directly indicate other significance comparisons (e.g., between the two cautidantdCAc and
ICAkn); where necessary we describe such results in the text. For exampiguie B, the graph in
the third column of the first ronlBP atlp=0%) shows thakBP significantly outperform&BRyc
whendh=0.6 (note the filled triangle). However, fdh=0.5, LBP's small gain is not statistically
significant (hollow triangle).

Whenlp=0%, ICAkn is equivalent tdCA, so results fotCAkn are not shown. Alsd,BP with

WebKB+co did not converge due to the very high number of links, sdteefar that case are not
considered (cf., Taskar et al., 2002).

7.3 Result 1: The Relative Gain of Cautious Inference Increases witimcreasing
Autocorrelation

Table 6 reports that for H1, for the sparse in-sample thskl0%), the pooled regression analyses
found all significant positive values for the sloBe Thus, we accept H1. In addition, all the non-
pooled analyses found significant positive values. The only exceptishBP on the real data sets,
which had a positive, non-significant sloge=£ +0.03).
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Figure 8: Results for the synthetic data as the degree of homopiywéries. Section 7.2 ex-
plains how filled triangles indicate statistical significance. Some of the gairsnaat
but consistent, leading to significance, as in the bottom right graph.

Forlp=0% andip=50%, the pooled analyses and most individual analyses show the same po
tive slopes (on the real data fil@Ac vs. ICA atlp=0%, the slope wals= +0.11, but the p-value was
just over the significance threshold), as we also found with LR and kNid.réduced significance
and magnitude of the slopes whiper50% is also consistent with our expectations, since the overall
importance of caution should decreasdm#creases (see hypotheses H4 and H5). Section 7.4
explains more for th§p=0% case.

Figure 8 shows detailed performance trends for the synthetic data. Bieliecelumn presents
results for different variants of a single CC algorithi@4, Gibbs LBP, andwvRN), and each row
shows results for a different value tgif. The x-axis varies homophily (which directly increases
autocorrelation) and the y-axis reports average accuracy.

This figure confirms that when homophily is very low, CC offers little gain, #ng the cau-
tious variants perform equivalently to the non-cautious variants (aepeforwvRN to the non-
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Figure 9: Results for the synthetic data as attribute predictiveagssdries.

relational baselin€0). As the strength of relational influence (as well as the potential for iacor
relational inference) increases with higher homophily, the relative gaimeofautious methods in-
creases substantially (e.g.,|p£10%, gains for NB-based algorithms rise from 4-5%llat0.5 to
9-12% atdh=0.9). The gains from caution are statistically significant in most cases uied.3.
Results with LR and KNN show very similar trends (see online appendix).

Figure 8 also confirms that §sincreases, the cautious and non-cautious variants perform more
similarly. However, even folp=50%, the cautious variants maintain a significant, though smaller,
advantage. In the other results discussed below, the same trend ofimdey performances at
Ip=50% was evident. Likewise, the graphs fpr0% are similar to those fdp=10%. Thus, we
defer most results fdp=0% or 50% to the online appendix.

7.4 Result 2: The Relative Gain of Cautious Inference Increases adtéibute Predictiveness
(ap) Decreases

Table 7 reports that, fdp=10%, the regression analyses found all significant negative slages (
expected) for the synthetic data. Likewise, in almost all cases we founidis@nt negative slopes
for the real data sets that have substantial autocorrelation (Cora,&2jtdepTH, and WebKB+co),
except for WebKB+co (which had very erratic performance with all tgerithms). We accept H2,
because the pooled analysis found negative slopks=40% for both synthetic and real data; this
result also holds dp=0% and 50%.

Figure 9 shows detailed performance trends for the synthetic data asathie variesap. For
instance, folp=10%, when the attribute predictivenesp)(is 0.6 (the default)| CAc andGibbs
outperform their non-cautious variants by 6-7%. Howeveg@adecreases to 0.2, label uncertainty
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increases (as evidenced by the dropd@), causing the relative gain of caution to increase to 20%.
LBP shows very similar results.

Results forlp=0% are mostly similar, but with an interesting twist. In this case, the relative
gain of cautious CC increasesasdecreases, as with=10%. However, this gain peaksa=0.2
or 0.3, then declines a&p continues to decrease. When attribute predictiveness is very low, and
there are no known labels to help seed the inferencelfiz0%), then even the cautious algorithms
have difficulty exploiting relational information, and achieve accuracy omglerately above the
baselineCO. However, even in this case the cautious algorithms maintain some small, statistically
significant advantage over the their non-cautious variants (whigp=t.1 do little better thagO).
Also, observe thatCAc, Gibbs andLBP all improve substantially for thip=10% case (compared
to Ip=0%), even though onlyCAc explicitly favors the provided known labels in its inference
process. In this case, using caution appears to be the important pertarifi@ator, regardless of
what specific behavior provides that caution.

Figures 10 and 11 provide similar results for the real data setslp#tt0%, where the x-axis
is now the number of attributes used, which correlates with overall attribeigbiveness. In
general, the trends shown are similar to those already observed fomthety data. In particular,
the graphs for Cora, Citeseer, HepTH, and WebKB all follow the samerpattaeutious algorithms
outperform non-cautious algorithms more when the number of attributes iafmvcautiousCAc
outperforms the somewhat cautid@# ). Consistent with H1, the magnitude of these gains varies
with autocorrelation: larger for Cora and Citeseer, smaller for HepTH/¥etaK B, and non-existent
for Terror (where autocorrelation is very weak).

There are two exceptions to the similarities of these results with the synthetickiegg.for
some data seSibbsand/orLBP perform noticeably worse thd@Ac; we discuss this separately in
Section 8.1. Second, WebKB+co shows fairly erratic performancdifatgorithms exceptCAxn.

In general, the co-citation links used by WebKB+co appear to be veryniaftive (peak accuracy
is much higher than with WebKB), but also potentially misleading. This may be @ifumof the
WebKB graph structure: Table 5 shows that co-citation links have a \vigty label consistency
of 0.90 (implying that classifiers will learn a strong relational dependetcgthis may be biased
by the presence of some very high degree nodes. During learning-titaton links may appear
very informative on average, but this strong dependency may lead to whisjiwas for low-degree
nodes, leading to the observed erratic behavior.

We now briefly return to the slope analysis of Table 7. For the syntheticttiataggative slopes
for H2 are significant in all cases, but generally largestgeid0%. This behavior is consistent with
our previously discussed analyses of the synthetic data: V€96, the performance of cautious
algorithms for very lowap is diminished, thus producing a smaller slope magnitude than when
Ip=10%. On the other hand, the more general observation that caution iskfsswherp is high
explains why the magnitude of the slopes is lesslg50% than forlp=10%. We found similar
trends for the real-world data sets: while Table 7 shows significant negdtipes for H2 for most
cases (excluding the erratic WebKB+co and the low autocorrelationrJevienlp=10%, results
(not shown) withlp=0% or 50% indicate slopes of reduced magnitude and/or slopes that do not
reach statistical significance. However, in both cases the pooled arstillsigdicates significant
negative slopes for H2 (-0.05 fgp=0% and -0.13 fotp=50%).

2814



CAUTIOUS COLLECTIVE CLASSIFICATION

Cora; Ip=10%

Cora; Ip=10%

Cora; Ip=10%

0.8 -
0.7 +
> 06
g
3 osf
<
—v— ICAc
0.4 ICAG| —— Gibbs ]
03 —%— ICA | —— Gibbsyc | —v— LBP |
. co —+— CO —%— LBP\d
2 5 10 20 40 60 80 100 2 5 10 20 40 60 80 100 2 5 10 20 40 60 80 100
Number of attributes Number of attributes Number of attributes
Citeseer; Ip=10% Citeseer; Ip=10% Citeseer; Ip=10%
0.8 -
0.7 -
> 06
s
3 o5t
<
—v— ICAc
0.4 ICAG| —— Gibbs ]
03l —*— ICA | —— Gibbsy | —— LBP |
. co —+— CO —%— LBP\d
2 5 10 20 40 60 80 100 2 5 10 20 40 60 80 100 2 5 10 20 40 60 80 100
Number of attributes Number of attributes Number of attributes
HepTH; Ip=10% HepTH; Ip=10% HepTH; Ip=10%
0.8 -
0.7 -
> 06 1 t 1
s ==
3 o5t : 1 t 1 1
<
—v— ICAc
0.4 ICAG| r —— Gibbs ] ]
03l —%— ICA | | —>— Gibbsy | “9— LBP |
. co —+— CO —%— LBP\d
2 5 10 20 40 60 80 100 2 5 10 20 40 60 80 100 2 5 10 20 40 60 80 100
Number of attributes Number of attributes Number of attributes
Terror; Ip=10% Terror; Ip=10% Terror; Ip=10%
0.8 -
0.7 -
2> 06
g \
3 o5t
<
L —— ICAc ] L ]
0.4 ICAKn —7/— Gibbs
03 —*— ICA | —%— Gibbsyc | —v— LBP |
- —+— Cco —+— CO —>— LBP\d
2 5 10 20 40 60 80 100 2 5 10 20 40 60 80 100 2 5 10 20 40 60 80 100

Number of attributes Number of attributes Number of attributes

Figure 10: Results for four of the real data sets as the number of attriisuasied. The x-axis
is not to scale; this is to improve readability and to yield a more linear curve for the
baselineCO algorithm, thus facilitating comparison with Figure 9. Because there are
only 3-5 trials for the real data, high variance sometimes causes substaiskto not
be statistically significant.

7.5 Result 3: The More Cautious Algorithms Outperform Non-CautiousAlgorithms when
Link Density (Id) is Moderate, But Have Mixed Results Wherld is High

For the synthetic data, the results in Table 7 support H3 for all algorithma iph&0%, for most
algorithms wherp=10%, and for only two algorithms whdp=0%. The pooled analysis finds,
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Figure 11: Results for the WebKB data sets as the number of attributes id. Wit WebKB+co,
LBP did not converge, so results are not shown.
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Figure 12: Results for the synthetic data as link densityvaries.

as expected, significant negative slopeslferl0% andp=50%. However, without corresponding
pooled results for the real data, we cannot accept H3. Moreoveresidts we present below will
suggest a revision to H3.

Figure 12 shows the results lkis varied, forlp=10%. Whenld is low to moderate (up to
Id=0.6), the cautious algorithms consistently and significantly outperform thekcautious vari-
ants. We had hypothesized that this advantage would decrease as lgity decreased, because
when the link graph is dense, the relational features are relativelyamtedf by a few incorrect
labels, and thus using such labels cautiously matter less; Figure 12 gemneflaltys this trend. In
some cases the non-cautious algorithm even outperforms the cautiouthatgadrvery highd. For
instance, atd=0.9 ICA outperforms the more cautiol€A: (though not significantly). At such
high link density, simply using all available information witBA may work better thanCAc’s
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cautious but partial use of estimated labels—provided that accuracy i€h@igh that errors are
few. In separate experiments we confirmed that if the attribute predictsgaad thus accuracy)
was lower|CAc maintained it's advantage ovEZA even wherld was very high.

While these results generally indicate, as expected, that the gain fromrcdeticeases dd
becomes high, closer examination indicates that this gain from caution peieédsvery lowld, but
at moderatdd. In particular, the gain from caution peaks wHdrs 0.2 or 0.3 forlCAc, ICAkn,
or Gibbs and whend is 0.6 forwvRMNy. andwvRNca.c. In hindsight, this effect makes sense: as
the number of links decrease, there is less relational influence, and ssystdability of incorrect
relational influence, so caution matters less. Another effect is that witkrfinks, there are fewer
opportunities for a cautious algorithm to favor one node’s predictionsanather’s.

To further analyze these trends, we turn to the real data. We did not atietiptctly vary the
link density of the real data sets, because it's not clear how to realisticalljirdc to an existing
data set, as would be necessary to create a reasonable range of Bitleddar experimentation.
However, Table 9 examines our previous results for the real data bewging the amount of cau-
tious gain broken down by the link degree of each node. This apprashrbt directly correlate
to varying the overall link density, so our conclusions are tentative, boEis provide some insight.
We focus primarily oHCAc; trends with other algorithms were similar.

The results support our previous conjectures. In particular, the calgiin generally decreases
for the highest link degrees, even going negative in some cases. Worgomost cases the cautious
gain also decreases for the lowest link degrees, resulting in a pealefoathious gain (shown in
bold if present) at moderate link degrees. These effects generally lieldatr the synthetic data
and for the real data sets that have substantial autocorrelation.

We now return to Figure 12 to consider a few possible exceptions. First,L\Bih accuracy
decreases with increasitdy is erratic, and is sometimes better witBRyc than withLBP. This is
not surprising: the short graph cycles caused by ldgiroduces great problems foBP (e.g., Sen
and Getoor, 2006; Sen et al., 2008). Even thd8R accuracies are much better than those achieved
without PLUL (see Section 7.7).

Second, two of the cautious algorithm€Ax, andwvRNca.c) performed unexpectedly well,
continuing to significantly outperform the non-cautious variants (and akemative cautious vari-
ants) at very high link density. Interestingly, these effects also occurWéhKB+co (see Fig-
ures 11 and 14), which has by far the highest link density of the realséasd In addition, the
superior performance 0CAk,, at highld remains even when the local classifier is changed to LR
or KNN (see Figure 19 in the online appendix). We suspeci@&¢,’'s advantage arises because it
both achieves a better starting point th@w\ (by favoring known labels in its first iteration) and ex-
ploits more information thatCAc (by using all estimated labels in subsequent iterations—and when
Id is high using a few erroneous labels doesn’t harm performance)wHeNca ¢, its advantage
overwvRMNy,. must arise from the key algorithmic difference: sinmeeRNca.c is a hard-labeling
algorithm, it gives all labeled nodes equal weight in the neighborhoogedhat determines the
next label for a node. When link density is high, relying on this simple awenaay be better than
WVRNg, s soft-labeling estimation, which implicitly gives more weight to nodes with moresexgr

8. At first, these strong performances seem to conflict with Macskassyrovost (2007), who generally find/RNz |
outperformswvRNcac. However, two-thirds of their data sets are variants of WebKB, but eviadir“Other”
pages have been removed from the classification task. This changs thakclassification problem easier, and thus
may explain the discrepancy. In addition, on the only other data set ughkdtimork and this article (Cora), our
performance trends are very similar.
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] | Degree 1-2  Degree 3-5 Degree 6-10 Degree 11-20

Synthetic data, using NB4+CAc

Ip= 0% 5.5% 8.2% 13.8% 8.2%
Ip=10% 5.2% 9.7% 8.6% 10.6%
Ip=50% 2.2% 4.6 % 8.9% 7.3%
Average 4.3% 75% 10.4% 8.7%
Synthetic data, using NB+%ibbs

Ip=0% 8.5% 13.6 % 18.6% 15.4%
Ip=10% 6.3% 9.7% 12.7% 10.6%
Ip=50% 2.5% 3.6% 7.4% 5.3%
Average 5.7% 9.0% 12.9% 10.5%
Real data with substantial autocorrelation, using NB4+CAc

Cora 7.9% 10.9% 10.5% -4.8%
Citeseer 15.8% 20.5% 14.6% -8.3%
WebKB+co 8.3% 9.8% 12.8% 10.0%
HepTH 1.2% -4.3% 3.3% 4.0%
Average 8.3% 9.2% 10.3% 0.2%
Other real data sets, using NB+CAc

WebKB 5.8% 1.5% -4.8% -6.0%
Terror 2.4% -5.7% 0.0% 0.0%

Table 9: Per-node degree results showing the amount of gain from #l@iéc vs. ICA or Gibbs
vs. Gibbgyc). Each value indicates the average accuracy gain from caution fooddisn
in the test set within the given link degree range (nodes with degree gteate20 were
rare, and ignored for simplicity). Within each row, a value is in bold if it représ a clear
peak, with monotonically decreasing accuracies to both the left and righiabalue.
The synthetic data used the default settings. The real data sets usethtiierdenber of
attributes andp=10%.

estimated distributions. In both cases, however, extenlding even more extreme values (e.g.,
Id=0.95) does confirm the overall trend of the amount of cautious gairedsicig at highd.

As expected, we found that these performance differences digapdpehen many known labels
were provided. In particular, at high link density alpet50%, there were only small differences
betweenlCAc, ICAkn, andICA, or betweenwvRNg, WRNca+c, andwvRNca:ne. In addition,
when PLUL was used, evdiBP andLBR\c performed on par withCA: andGibbswhenlp=50%,
despite the challenges bBP with highld.

Overall, our results suggest that a more appropriate rendering of él8dsindicate thathe
relative gain from caution will peak at some moderate valulel ofvith the precise value depending
on the CC algorithm and the other data conditions. We leave confirmation oétised hypothesis
to future work.

7.6 Result 4: The Relative Gain of Cautious Inference Increases abd Labeled Proportion
(Ip) Decreases

Table 8 reports that, dp varies, the regression analyses found all significant negative s{apes
expected) for the synthetic data. Likewise, in almost all cases we founifisimt negative slopes
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Figure 13: Results for the synthetic data as the labeled propohtipwgries.

for the real data sets with substantial autocorrelation (all except TambWebKB). We accept H4,
because the pooled analyses find all negative, significant slopes.

For the real data, the exceptions to H4’s stated trend were primarily WetdBathich had
very erratic performance with all the algorithms, and WebKB, where nérkeoslopes attained
statistical significance. In additiobBP had highly variable behavior so that only for Citeseer did
the slope approach statistical significanpe=(.053, just over the threshold).

Figure 13, for the synthetic data, shows the performance of the cautidusoa-cautious algo-
rithms converging ap increases. The cautious algorithms maintain a significant advantage until
Ip=80%. Observe thatlCAkn's curve lies between that of the more cautid@#c and the non-
cautiousliCA, while wRNgy. andwvRNcac obtain the same results with their two different ap-
proaches to caution.

Figure 14 shows results for the real data set$pas varied. This figure show results only
for wwvRN since results were previously presented for the other algorithms fginganumbers of
attributes, and thip graphs don’t add additional insight for those algorithms.

The results in Figure 14 mirror those of the synthetic data, with a few exceptidiirst,
WVRNca+c does poorly on Terror, perhaps because of the low autocorrelatesong, with We-
bKB+co,WwvRNca ¢ outperformavwRNy. whenlp is low, though the gains are not quite significant;
this effect was discussed in Section 7.5. Finally, the accurasyBiNfor WebKB goesdownwith
increasingp. WebKB with just direct links has some autocorrelation but very low labessbency
(see Table 5), because each node tends to link in certain patterns towitid@sdifferentlabel
from itself (cf., Macskassy and Provost, 2007). Algorithms basedwdRNassume homophily, not
such more complex forms of autocorrelation. Consequently, incregsiogly serves to reduce
accuracy below the majority class baseline. RunmingNwith only co-citation links, as done for
WebKB+co, works much better.

7.7 Result 5: The Relative Gain of Cautious Learning With PLUL Increass as the Labeled
Proportion (Ip) Decreases

The previous results compared cautious vs. non-cautious variantsaofieugar CC algorithm, in
all cases using PLUL. We now justify the use of PLUL and examine its impact.

The bottom of Table 8 shows the regression slope results for H5, where-dRis varies the
labeled proportionlf), and each table row compares a single CC algorithmic variant when using
PLUL vs. not using PLUL. As expected, the slope analysis found alifsgignt negative slopes for
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Figure 14: Results for variants efivRNon the real data sets, fsis varied. For the first WebKB
results wwvRNusesonly co-citation links (unlike previous results with other algorithms,
where WebKB+co used direct links and co-links together; see SectioB)6.Recall
that filled triangles indicate statistical significance, but only for comparingalsious
variant (herewvRNy. or WRNca.c) vs. the non-cautious varian¢RNca.ne)-

the synthetic data (with one exception where the p-value was close to thiedidbesalthough the
magnitude of the slopes suggests a weak trend. For the real data setsl8vbilehe 29 possible
slopes were in the expected direction, only 4 of these slopes were statisigaifjcant (recall that
the real data sets have available only 3-5 trials, making significance Hardehieve). However,
pooling the results across the data sets and algorithms yields a significativeegdope for both
the synthetic and real data, so we accept H5.

Thus, while the effect (akp varies) is smaller than with previous hypotheses, H5 indicates the
PLUL provides the most gain whdp is small. To measure the magnitude of this gain, Table 10
shows the impact of PLUL whelp=0%. Each row shows the results for a different collective
algorithm. Results are given for each algorithm both with and without PLWingawith the overall
gain from PLUL. Because PLUL interacts closely with the local classifiersinow results here for
NB, LR, and kNN for the CC algorithms that use a local classi@€.andwvRNare unaffected by
PLUL, and thus are not shown.

In general, we found that PLUL improved performance, sometimes suiaditarbut the data
regions where such substantial gains occur vary by classifier an@a@lgbrithm. For instance,
Column A of Table 10 shows results for the default synthetic data settinge, AEUL improves
performance for almost all algorithms. In particular, the gains range f608% to 10.8%, with an
average of 4.0%, and are significantin 9 of the 14 cases. Column B sbsults where the attribute
predictiveness is 0.3 (instead of the default 0.6). In this case, the gantodPLUL are almost
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A.) Default settings | B.) Low attr. predictiveness C.) High link density
With PLUL? | PLUL | With PLUL? PLUL With PLUL? PLUL
Yes No Gain | Yes No Gain Yes No Gain
Using the NB local classifier
ICAC 789 77.8 1.1 | 582 525 5.7 80.6 72.0 8.6
ICA 723 T72.6 -0.3 | 47.7 46.8 0.9 77.0 75.4 1.6
Gibbs 81.8 815 0.3 | 60.6 55.9 4.7 80.8 79.2 1.6
Gibbsyc | 71.8  71.1 0.7 | 46.7 46.0 0.7 76.4 74.2 2.2
Using the LR local classifier
ICA: 78.6 74.1 45 56.8 43.2 13.6 829 73.9 9.0
ICA 70.8 68.5 2.3 485 444 4.1 70.8 725 -1.7
Gibbs 765 729 3.6 52.3 50.8 15 776 77.8 -0.2
Gibbsyc | 70.3 65.3 5.0 48.4 43.2 5.2 714 713 0.1
Using the kNN local classifier
ICAC 74.1 69.0 51 514 39.2 12.2 785 65.4 13.1
ICA 71.7 64.2 7.5 48.4 41.0 7.4 75.2 74.7 0.5
Gibbs 73.9 70.0 3.9 544 48.1 6.3 80.3 79.7 0.6
Gibbsyc | 71.7 61.3 104 | 47.7 38.9 8.8 75.0 74.0 1.0
Using LBP
LBP 77.8 76.4 14 | 557 279 27.8 69.7 215 48.2
LBR«c 739 63.1 108 | 455 244 21.1 543 31.2 23.1

Table 10: Impact of PLUL on accuracy with the synthetic data, for CC #lgos where PLUL
applies, atp=0%. Gains in bold are statisticaly significant.

all larger, ranging from 0.7% to 27.8% (average of 8.6%), and are gignifin 11 of 14 cases.
These results are consistent with H2: when attributes are less predicthe dass label, cautious
techniques, including PLUL, become more important. Finally, column C shosudtsevhere the
link density is now 0.7 (instead of the default 0.2); here the gains due to Rirbimore varied.
ForICAc, PLUL remains important and matters even more than with the default data seWergs
conjecture that this is because with so many links, relational influence caadspery quickly in
the graph, and thus the PLUL process is very important to ensurint3Agts confidence measure
selects the most reliable predictions during the first few iterations. Indeeeh Ip is instead set
to 10% (thus providing more certain estimates for the early iterations), PLdanbe much less
important forICAc. LBP has known issues with high link density, but PLUL helps substantially to
ameliorate them. For the other algorithms, the increased link density leads tolRuiHg a minor
impact, consistent with H3.

Table 11 shows similar results for the real data sets, where results fox @b sets have
been pooled together. Since we cannot directly vary link density, we thstemav results with two
conditions. On the left is the “fewer attributes” case; here each datasestits default number
of attributes, as explained in Section 6.9. On the right is the case wheralatcket uses 100
attributes.

Compared to results with the synthetic data, Table 11 shows less evidenbe &ffectiveness
of PLUL with the real data sets. While all algorithms show a gain from usinglRlddly about
half of the gains are statistically significant. To explain, consider that PLOtksvbest when the
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Fewer attributes(default) More attributes(100)
With PLUL? PLUL With PLUL? | PLUL
Yes No Gain Yes No Gain
ICAC 56.8 56.1 0.7 68.6 68.1 0.5
ICA 545 52.3 2.2 65.7 64.9 0.8
Gibbs 53,5 50.1 3.4 67.0 66.1 0.9
Gibbsyc | 55.5 53.0 2.5 66.5 65.6 09
LBP 499 443 5.6 65.2 584 6.8
LBRc 46.0 42.1 3.9 635 564 7.1

Table 11: Accuracy results showing the impact of using PLUL with the ra&@l. dEach value shows
results pooled over the six real data setdpa0%, using NB where applicable. Gains in
bold are statistically significant.

holdout set used for learning is most similar to the test set. With the syntheticsdatasimilarity
is likely, because the two graphs are generated from the same distributarever, with the real
data, splitting an arbitrary graph into multiple subgraphs, even while seekin@itatain similar
class distributions, may nonetheless produce subgraphs with importareddes (e.g., in auto-
correlation), leading to sub-optimal parameter choices by PLUL. Futurk iwsmeeded to explore
these issues.

Nonetheless, the evidence suggests that in most cases for the reaintimetis data PLUL
improves performance. Moreover, for every algorithm there was sopeedi/data for which not
using PLUL led to very poor performance. Thus, applying PLUL in all of other experiments
seemed advisable for maximizing performance and for ensuring the matsttdguomparisons.

7.8 Choice of Relational Feature Types

Section 6.6 described how each trial selected a type of relational featuse td-or completeness,
Table 12 summarizes how often each type of feature was chosen. Iraf¢ine best feature type (as
chosen by cross-validation) varied based on the local classifier nsktth@ data conditions. How-
ever, Table 12 shows that for NB, multiset features were dominant, iefipdar the more cautious
algorithms (chosen 76-96% of the time 1@Ac andGibbg. With kNN, proportion features were
dominant, while with LR count features were chosen most often but piopdeatures were also
fairly common, especially with highl. These results suggest that an analyst should most likely use
multiset with NB, use proportion with KNN, and consider the data conditiond¢otsefeature type
for LR.

The superiority of multiset features, when they were applicable, is integdsticause they are
“cautious” features that simply ignore nodes with no known or predictesl [@ee Section 6.6.1).
Likewise, Section 6.5 reported that LR witBA: performed best when missing feature values
were ignored (by using a separate classifier trained without the missingdsp These results
are consistent with Saar-Tsechansky and Provost (2007), wimdl figar non-relational data) this
“reduced-feature model” approach to be superior to commonly usedagps based on imputa-
tion. For a non-relational setting, their results thus demonstrate the sutyesfa more “cautious”
approach to handling missing values during testing. For relational domaénsowd imagine tak-
ing this idea of ignoring missing/estimated values even further, e.g., usingsifielaghat ignored
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A) ICAC B.)ICA C.)Gibbs

Mult. Count Prop.| Mult. Count Prop.| Mult. Count Prop.
Synthetic data, using the NB local classifier
Default 96% 0% 4% | 72% 0% 28% | 100% 0% 0%
Low ap 88% 0% 12% | 20% 4% 76% | 92% 0% 8%
HighId 48% 0% 52% | 80% 0% 20% | 96% 0% 4%
Average 77% 0% 23% | 57% 1% 41% | 96% 0% 4%
Synthetic data, using the LR local classifier
Default n.a. 92% 8% n.a. 80% 20% n.a. 80% 20%
Low ap n.a. 52% 48% | n.a. 60% 40% n.a. 68% 32%
HighId n.a. 80% 20% | n.a. 52% 48% n.a. 48% 52%
Average n.a. 75% 25% | n.a. 64% 36% n.a. 65% 35%
Synthetic data, using the kNN local classifier
Default n.a. 0% 100%| n.a. 0% 100%| n.a. 0% 100%
Low ap n.a. 0% 100%| n.a. 12% 88% n.a. 0% 100%
HighId n.a. 0% 100%| n.a. 0% 100%| n.a. 0% 100%
Average n.a. 0% 100%| n.a. 4% 96% n.a. 0% 100%
Real data, using the NB local classifier
Cora 97.5% 25% 0.0%| 70.0% 17.5% 12.5% 100.0% 0.0% 0.0%
Citeseer 925% 25% 5.0%| 57.5% 32.5% 10.0% 100.0% 0.0% 0.0%
WebKB+co | 84.4% 0.0% 15.6% 65.6% 34.4% 0.0%| 71.9% 12.5% 15.69
WebKB 53.1% 40.6% 6.3%| 31.3% 56.3% 125% 75.0% 21.9% 3.1%
HepTH 85.0% 12.5% 2.5%| 62.5% 25.0% 12.5% 70.0% 27.5% 2.5%
Terror 50.0% 8.3% 41.7% 50.0% 25.0% 25.0% 41.7% 16.7% 41.7%
Average 77.1% 11.1% 11.8% 56.1% 31.8% 12.1% 76.4% 13.1% 10.5%

Table 12: The relational feature type (multiset, count, or proportion)eshby cross-validation.
For the synthetic data, results are shown with the default settings, with lowusttrib
predictivenessgp=0.3), and with high link densityd=0.7). For the real data, results are
shown averaged across all the data points shown in Figures 10 and 11.

the estimated label of a linked node but instead directly used its non-relatéatates. However,

Jensen et al. (2004) demonstrated that such an approach is gendeaity ito the approaches we
consider in this article (label-based features with collective inferenegguse of the much larger
number of model parameters that must be learned for the former case.

7.9 Variants of wwvRN

Most prior research involvingevRN has usedvwwRN(, the variant suggested as a relational-only
baseline by Macskassy and Provost (2007). However, algorithnesl loelsvwRNneed not necessar-
ily be relational-only. For instance, Macskassy (2007) described aitpod for adding additional
links to the graph between nodes that appeared similar based on their atridlieznatively, we
could imagine, fomvvRNg, initializing each node’s predicted label probabilities based upon the
output of an attribute-only local classifier (instead of using class prsdoae in Figure 5). Unfor-
tunately, this idea does not work well for a “soft” algorithm sucmafk N, because after iterating
many times the current state is almost completely determined by the known labelgemunt
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Figure 15: Results for the synthetic data whemndRNeeqis added for comparison. Because of the
multiple possible comparisons, filled triangles are not used here to indicatéicahtis
significance.

of the starting state (Macskassy and Provost, 2005). While in principle tbidgm could be ad-
dressed via learning an appropriate decay paramet@d stopping point, this forfeits much of the
simplicity of wwvRN

In contrast tovvRNg, with a hard-labeling algorithm such asRNca-c, the initial conditions
do matter. In particular, we evaluateatRNeeg an algorithm that behaves just like/RNca.c, ex-
cept that each node’s predicted label is initialized to the most likely labeiqteeidoy an attribute-
only NB classifier. Non-relational information thus “seeds” the infergmmeess but is then not
explicitly used again. To the best of our knowledge, this algorithm hasew®n previously consid-
ered for CC.

Figure 15 shows a variety of results for the synthetic data; results with #hela¢ga showed
similar trends. OverallWwvRNgeqoutperformswvRNg (especially wherp is low), which is to be
expected sinC&VRNgeqUses more informationwvRNeeqgenerally underperformiCAc, which
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is also to be expected sind€Ac both uses predicted labels cautiously (whileRNeeqtreats all
predictions equally) and continues to use both attribute and relational infomadter the first iter-
ation. The differences wittCA¢ are largest whedhis low (wherewvRNs homophily assumption
is violated) or when attribute predictiveness is high (sweRNeequses the attributes only at ini-
tialization). HowevenvvRNgeqoutperforms all of the other shown algorithms when link density is
high. This case is analogous to the results Withg , from Section 7.5: if accuracy and link density
are high (and homophily is present), then caution with relational informationnoilye necessary,
and this case shows that continuing to use non-relational information atialization may also
not be necessary. Overall, the results indicate theRN¢eqis not likely to be a strong contender
as a general purpose CC algorithm, but they do demonstrate an effeafivi® add non-relational
information towvRNbased algorithms.

7.10 Impact of the Default Values for Synthetic Data Generation

The synthetic data evaluated above was generated with the default pasadesieribed in Table 4.
Conceivably, our choice of default values could have an importaettedin the results. While our
evaluation of multiple real data sets has already helped to validate the synttatiesults, we also
carried out an extensive exploration with other default values. Forriostavhen varyingd, we
experimented with all combinations ap= {0.4, 0.6, 0.8, dh= {0.5, 0.7, 0.9, andlp={0%, 10%,
50%}. For tractability, we only evaluated variantsI@fA, since the above results show th@tc
produced the best or nearly the best results for all synthetic andatesets, and that other cautious
algorithms usually behaved liIKEA:.

The trends were highly consistent with the results we report and agreewitaccepted hy-
potheses. For instance, if the defaaftis very high, the results for varyindh showed a much
smaller slope for the relative impact of cautid@Ac vs ICA. The only default value that notice-
ably changed any result was already reported in Section 7.5: apevas small (e.g., 0.4), the
unusual advantage ¢€A over ICA: observed at very highd disappeared. Thus, we believe the
trends in our results are robust over a wide range of data characteristic

8. Discussion

In this section we compare results with different families of algorithms, examaewuérall effec-
tiveness of caution, and use our results to explain the findings of somieyseesearch.

8.1 Comparisons Across Algorithmic Families

Section 7 focused on comparing cautious vs. non-cautious variants withisathe algorithmic
family. We now briefly compare across these families. We focus on the algurithat have been
most frequently used in previous workCA, Gibbs LBP, andwvRN. We also include the less
studiedICAc, since our results show that it has very strong performance. Wetrgpexgific results
for Ip=10%; comparisons were similar fp=0%, while all of the algorithms perform very similarly
whenlp=50%.

WVRM's performance depends on homophily, link density, gmdn our studywvRNg was
thus competitive with the other CC algorithms when homophily aniyevas high, or when the
attributes were not very predictive. On the other hameRNg, requires that some labels are known
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in the test set, so it is not applicable whpsr0% (the out-of-sample taskivwRNgegWould be an
alternative.

For the synthetic data, the cautious algorith@isc, Gibbs andLBP had remarkably similar
performance. Among the thre&jbbshad a small but sometimes significant performance advan-
tage. For instance, across the results for varygih@t I[p=10% shown in Figure 8Gibbsoutper-
formed ICAc by an average of 1.0% (significantly fdh>0.6) andLBP by an average of 0.7%
(significantly for 0.4<dh<0.7). NeitherlCAc nor LBP had consistent, significant gains over the
other, except that botBibbsandICA: had substantial, significant gains oxé8P when attribute
strength was very low (gains of 5-8%) or when link density was high (gafiig-25%). However,
all three algorithms did have substantial, significant gain$GA, except for whemhwas very low
or whenld was very high. For instance, across the varidhsevels, GibbsoutperformedCA by
0.9-11.2% (all significantly) except for a loss of 0.1%dat0.1. Thus, based on the synthetic data
results|CAc, Gibbs andLBP usually achieve similar accuracies, despite their use of very different
approaches to caution.

On the real data setlCAc, Gibbs andLBP likewise performed similarly. However, there are
two kinds of differences that should be noted. First, there were a fease#s on whiclh.BP and/or
Gibbsperformed noticeably worse th&#@Ac. In particularGibbshas poor performance on HepTH
and WebKB+co. In both cases, this is likely due to issues of high link densighKB has very
many co-citation links; HepTH has fewer links but some nodes have vehydggree). High link
density can lead to extreme probabilities, wh&ibbsis known to perform poorly. While this
was not a particular problem with the synthetic data (perhaps becausaittisgrand test graphs
were more similar), NB is well known for producing polarized probabilitiesame cases. PLUL
does help, for instance, improving performance on HepTH and Web&Bycan average of 4%
and 15%, respectively, in Figures 10 and 11. Nonetheless, perfoenaith Gibbslags that of
ICAc or ICA, which are not so influenced by extreme probabilities. We experimented with mo
and/or longeiGibbschains but this did not improve performance. However, this is one casgewh
the LR classifier performed better than NB: it appears to produce lesszealgrobabilities than
NB, leading to improved performance wi@ibbs(see Figures 24 and 27 in the online appendix).
Similarly, LBP, which struggles with high link density, also has problems with HepTH (and likely
would have low performance with WebKB+co, had it ever converged)veith Cora. Its difficulty
with Cora is surprising and possibly indicates that the conjugate gradiamhgalid not perform
adequately, despite our attempts (cf., Sen et al., 2008). HoweBBrlid perform well on Citeseer,
which has similar characteristics.

Second, in contrast to the small advantage3idrbson the synthetic data, for the real d&Tac
holds a small advantage. For instance, in Figurd@B¢ outperformsGibbson average by 1% for
Cora and 2.4% for Citeseer, though not significantly. For HepTH andBebo, whereGibbshad
trouble, the gains averaged 5.4% and 21.0%, respectively, and weificsigt for HepTH when
the number of attributes was smdIlCA: was also robust: it was the only algorithm to outperform
ICA on average for every real data set considered. Moreover, ussuits pooled over all six data
sets,ICA: had moderate gains VECA, Gibbs LBP, andwvRNg,, both at the default number of
attributes (where the gains were significant) and using 100 attributesdordeda set. Comparing
to just Gibbsand LBP, ICA: had a pooled gain of 4.9% and 7.8%, respectively, with the default
number of attributes, and 1.8% and 4.5%, respectively, with 100 attributes.
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8.2 Cautious Behavior as a Predictor of Performance

The previous section identified some of the situations in which the algorithmsrpexd similarly

or differently. However, if we exclude the extreme data conditions sugbrgdow attribute predic-
tiveness or high link density, a more remarkable finding emeitipesamount of cautious inference
used by an algorithm strongly predicts its relative performangéis finding is especially inter-
esting because the precise type of cautious inference seems to matter littlethGhebsynthetic
and the real data sets, in most case8c, Gibbs andLBP perform alike, while the non-cautious
ICA, Gibbsyc, andLBR¢ also perform similarly to each other (and at lower accuracy levels than
the cautious algorithms). However, when many test labels are knownlff)ighe need for caution
decreases, and the differences between these two groups greatly ldiminis

This effect can also be seen in other CC variants. For instandeik_ andwvRNca i c perform
similarly, despite their very different approaches to caution, and they datiperform the non-
cautiouswvRNcane. Likewise, in almost every case the somewhat-cautl@Qix, attained an
accuracy between that of the more cautitb8¢c and the non-cautiou€A.

Thus, the amount of cautious inference seems to be the biggest factoediféting those algo-
rithms that use attributes, much more so than whether some kil@lobér Gibbsor LBP is used.
Likewise, when attributes are not used, as with the variante/&N caution also appears to be the
largest factor in predicting relative performance.

8.3 Limitations of Cautious Inference

While our results show that the cautious use of relational information caifisaly boost perfor-
mance, adding more caution to an algorithm is not always beneficial. Inyartithe most extreme
form of relational caution is to not use any relational information (C©), but that is seldom op-
timal. Instead, an algorithm must seek to cautiously avoid errors from nogsiighions while still
leveraging informative relations.

To illustrate these effects, Figure 16 shows accuracy results for thndeesic data conditions:
low attribute predictivenessf=0.3), the default settings, and high link densiti=0.9). Here the x-
axis indicates the algorithm used, with the amount of relational caution usesdaicg to the right.
We focus on variants diCA, but add three new algorithms for further analysiSAyq is just like
ICAc, except that it stops after it has “committed” and used the most certain 7@%¢ predicted
labels (i.e., after the iteration whén= 7 in Figure 2).ICAzg andICAy likewise stop after accepting
and using 30% and 0% of the predicted labels, respectively. NotéGhgtis identical tolCAkn
during the very first iteration (when both use only the “known” labels &ational features), but
thatlICAg stops after that iteration, whil€ A, continues for 10 more iterations, using all available
predictions during those iterations.

For the default and low attribute predictiveness data conditions, the teesdgery similar:
amongstiCA, ICAk,, andICAc, the most cautioulCAc performs best. Adding more caution to
ICAc, however, consistently decreases performancéCAsy, ICAzy, andICAg use less and less
relational information, until the lowest performance is found with the ndatiosal CO. These
results make sense: for this data, relational linksinformative, so completely ignoring any (or
all) of them is non-optimal. Indeed, using all of them without any cautiG@A] is much better than
cautiously ignoring all relations30O), but the cautious algorithm that eventually uses all relations
(ICAc) performs best. Note that this property of (eventually) using all availaéional informa-
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Figure 16: Accuracy as a function of the amount of relational cautiod.ugAzq, ICAzg, and
ICAp are (even more cautious) variantsIGfAc that stop iterating before some of the
less certain relational information has been used.

tion is true of all of the more cautious algorithms that we considered in this artithe:( Gibbs
LBP, wRMN, andwvRNca ).

The high link density case provides an interesting contrast. Here theajjshape of the curve
is similar, but the peak performance is observed WitAx,, not with the more cautiod€Ac. This
effect was already discussed in Section 7.5: if the baseline accuragyhishd there are many
links, simply using all available information after the first iteration is best. Similéolysituations
where caution is not very important (e.g., whpns high), the curve would show similar results for
ICA, ICAkn, andICAc. Thus, in most cases being cautious with relational information is best, but
the algorithm should eventually use all available information (relational anetglational), and in
some cases using more caution may be less important or even harmful.

8.4 Explanation of Prior Results

Our investigation enables us to explain the questions from Section 1, amarg:oth

1. Why did Sen et al. (2008) find no consistent difference betwedgibbsand ICA? In con-
trast, Gibbs had worked well in other work, and in this article we found tk&bbs (and
ICAC) often significantly increases accuracy MSA. However, our results and careful study
of Sen et al’'s methodology explains the discrepancy: to generate theeteshey used a
snowball sampling method that we found produces an effective labebpdipion (p) of at
least 0.5—a region where the use of caution has little impact. Also, their studyotigary
attribute predictiveness, which we show is a significant factor in the relptivformance of
more cautious CC algorithms.

2. Why did McDowell et al. (2007a) find that ICAc significantly outperforms Gibbs even
though attribute predictiveness was high, while here we find thaiGibbs performs on
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par or better than ICA¢ in such cases?o investigate, we re-ran our experiments from our
earlier paper, but with two variations informed by our now-refined ustdeding of CC. First,
we used PLUL with both the NB and kNN classifiers. Second, we changeNBiclassifier
to use multiset relational features (instead of proportion), which use mfmeniation and
which Section 7.8 shows is the feature of choice when using NB (it didplyapr kNN).
With these enhancemeniSjbbss relative performance improved, so tH&tAc and Gibbs
both significantly outperformelCA, but the results foGibbsandICA¢ did not significantly
differ. Thus, more careful learning and representation choice$/essthe discrepancy. This
also suggests that not using PLUL could potentially have an important efiggerformance
comparisons. As an additional example, Sen and Getoor (2006) exptzineith a wide
range of link densities but did not use a technique like PLUL; our resuifjgesi that using
PLUL could have significantly improved their results witBP for highId.

. Why did Galstyan and Cohen (2007) find that a soft-labeling version oWwwRNfails to
consistently outperform a hard “label propagation” (LP) version? Most authors have ex-
pected that, for relational-only classification, the soft-labeling algorithmdinettly reasons
with probabilities (thus exercising cautious inference) should outperédnard-labeling ver-
sion that only reasons with the single most likely label for each linked noderekfer, closer
examination of their LP algorithm reveals that it includes elements of cautigparticular,
after each iteration, LP labels a non-known node only if the estimated smotieat node is
among thehighestof any such nodes. Thus, in a way similamM@RNca.c, nodes that are
closest to known nodes are labeled first, and the algorithm effectivedystabel information
that was either known or is closer to other known nodes. This cautiowioelenables LP
to be competitive with (and sometimes outperform) the soft-labeling algorithm.

. Why did Sen et al. (2008) find thatiCA and Gibbsperform better with LR than with NB,

while we find the reverse?We replicated the synthetic data of their paper, and reproduced
their results. A key point, however, is that Sen et al. used count relafigataires for both

NB and LR, while we used cross-validation on a holdout set to select thierdational
feature type (see Section 6.6). This procedure predominantly selectedetidtitures for

NB (see Section 7.8), which we found in separate experiments to consistaptigve NB
performance compared to using count features. Consequently, iesuwlts CC algorithms
that use NB almost always outperformed those that use LR. While noua fifaour work,
such differences can be seen in Table 10. The superior perforrénudtiset features also
confirms the finding of Neville et al. (2003b).

. When will cautious algorithms outperform their aggressive varians? We found that us-
ing more cautious CC frequently and sometimes dramatically increased acclmagen-
eral, cautious CC performs comparatively well whenever relationalénter errors are more
likely. These errors occur more frequently when there is more uncertainbe estimated
relational feature values (e.g., when the attribute predictiveness is lamhanr the effect of
any such uncertainty is magnified (e.g., when autocorrelation is high). In sases, such as
when the test set links to many known labels (hiigh using a more cautious CC algorithm
may be unnecessary. However, in many cases (and with most previokslpés small or
zero, and thus caution may be important.

2829



McDOWELL, GUPTA AND AHA

9. Conclusion

Collective classification’s greatest strength—making inferences bas#teanferred labels of re-
lated nodes—can also be a significant weakness, since this use dfaimtasels may reduce ac-
curacy when the estimates are incorrect. In this article, we demonstratedahagiing this estima-
tion uncertainty through “cautious” algorithmic behavior is essential to actgenaximal, robust
performance. We showed how varying degrees of cautious infemndd be manifested in four
different collective inference families, and explained how to use cautearsing with PLUL to
further improve performance. Our experimental results with both synthedicesal-world data sets
showed that cautious algorithms did outperform their non-cautious variBgtexploring a wide
range of data, we identified some data characteristics for which this penfme advantage grew
larger. In particular, cautious behavior is especially important when ther@igher probability of
incorrect relational inference—which occurs when autocorrelationgiseln, when link density is
moderate, and/or when attribute predictiveness or the labeled proportemes In addition, our
study enabled us to answer several important questions from previarls w

Across a wide range of data, we found that an algorithm’s degree tibnauas a significant
predictor of relative performance—in most cases a more important oneft@apecific collective
inference algorithm used. This reinforces the fundamental importarzutibus behavior for CC.
However, the cautious CC algorithms were not always compardbilkebs and (especially) BP
sometimes struggled (e.g., when the data had high link density). In corlttagt,was a very
reliable performer and almost always had maximal or near-maximal perfeanaspecially for the
real-world data. This finding is interesting because this article is the firstigiderl CAc in depth.
Moreover,|ICAc is a simple modification t¢CA, making it much more time-efficient th&gibbsor
LBP. This suggests thaCAc is a strong contender for general CC tasks, and should be used as a
baseline for future CC performance comparisons.

Regarding cautious learning, we found that PLUL generally increasedracy, sometimes
substantially. Parameter tuning is known to be important for learning noteredé classifiers.
We show that it can be especially critical for CC due to CC's reliance oertaia labels during
testing. For example, further results showed that for the synthetic datalimkalensity was high,
GibbstNB with a naivea (prior hyperparameter) of 1.0 attained 99% of the accuracy attainable
with any o—if most test labels were known (e.{p=80%). However, whelp=0% this strategy’s
accuracy was just 61% of optimal. Using PLUL to aghstead increased accuracy. In addition, our
results in Section 7.7 showed PLUL helping both cautious and non-cautifauerice algorithms.
Thus, using PLUL for cautious learning improves performance, anishgddutious inference helps
even more.

Future work is needed to compare the algorithms considered here with @iltermeethods,
such as Markov Logic Networks (Richardson and Domingos, 2006jtentghost edge” approach
of Gallagher et al. (2008), and to compare PLUL to the alternative “sthst@dels” discussed in
Section 5.5. In addition, further studies to consider the effect of trairghgize, noise in the known
labels, and link uncertainty would be useful. Finally, techniques are deedearther improve the
performance of cautious inference on data with high link density or ottiegrag conditions.
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Appendix A. Measuring the Strength of Relational Dependence

Data sets used for CC are often measured for their autocorrelation. #ltetly, label consistency
is the percentage of links connecting nodes with the same label. A closelydretatsure is the
degree of homophilgdh) used by Sen et al. (2008). To see the difference, suppose théd aala
has five labels that occur with equal frequency. Sen et al. argue thhtisizero, the target of a link
from a node labeled should be to another node labeld®0% of the time (random chance), not
0% of the time (Sen, 2008). Thus, for a uniform class distribution, the lgtabability of a link
connecting two nodeisand j of the same label is defined as:

label consistency: P(y; = yi|(i, j) € E) = dh+ 1’_;”' 4)

To facilitate comparison, we adopt this definition to generate synthetic data avitmg levels
of dh. However, for real data sets, we can only directly compute label coneist&hus, to facili-
tate comparison we also compupproximate homophilfrom the measured label consistency by
assuming a uniform distribution of labels and solvingdbrusing Equation 4.

Appendix B. Information on Additional Results

In Section 7, we omitted some results for alternate local classifiers (LR aNgl &hd/or alternate
settings oflp, since they did not noticeably change our reported trends. Thedesrasiavailable
in an online appendix that accompanies this article on the JMLR website.
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