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Positive definite kernels on probability measures have beeently applied to classification prob-
lems involving text, images, and other types of structura.dSome of these kernels are related
to classic information theoretic quantities, such as (8bais) mutual information and the Jensen-
Shannon (JS) divergence. Meanwhile, there have been radeahces in nonextensive gener-
alizations of Shannon’s information theory. This papeddes these two trends by introducing
nonextensive information theoretic kernels on probapitieasures, based on new JS-type diver-
gences. These new divergences result from extending thevthbuilding blocks of the classical
JS divergence: convexity and Shannon’s entropy. The nofieonvexity is extended to the wider
concept ofg-convexity, for which we prove a Jensgtinequality. Based on this inequality, we in-
troduce Jensen-Tsallis (J@)differences, a nonextensive generalization of the JSgirece, and
define ak-th order JTg-difference between stochastic processes. We then defiaey family of
nonextensive mutual information kernels, which allow weggto be assigned to their arguments,
and which includes the Boolean, JS, and linear kernels dplar cases. Nonextensive string
kernels are also defined that generalize phgpectrum kernel. We illustrate the performance of
these kernels on text categorization tasks, in which dootsrere modeled both as bags of words
and as sequences of characters.
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1. Introduction

In kernel-based machine learning (8thopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004),
there has been recent interest in defining kernels on probability distrisutidackle several prob-
lems involving structured data (Desobry et al., 2007; Moreno et al., 2#pgra et al., 2004; Hein
and Bousquet, 2005; Lafferty and Lebanon, 2005; Cuturi et al.520By defining a parametric
family Scontaining the distributions from which the data points (in the input spa@e assumed
to have been generated, and defining a map ofrom S (e.qg., via maximum likelihood estima-
tion), a distribution inS may be fitted to each datum. Therefore, a kernel that is definesixo8
automatically induces a kernel ofix X, through map composition. In text categorization, this
framework appears as an alternative to the Euclidean geometry inhetbaetusual bag-of-words
representations. In fact, approaches that map data to statistical mandqldpped with well-
motivated non-Euclidean metrics (Lafferty and Lebanon, 2005), oftépesform support vector
machine (SVM) classifiers with linear kernels (Joachims, 2002). Some sé tkernels have a
natural information theoretic interpretation, establishing a bridge betwaeelkaethods and in-
formation theory (Cuturi et al., 2005; Hein and Bousquet, 2005).

The main goal of this paper is to widen that bridge; we do that by introduanagveclass of ker-
nels rooted imonextensivenformation theory, which contains previous information theoretic ker-
nels as particular elements. The Shannon a@dyRentropies (Shannon, 1948e®i, 1961) share
theextensivityproperty: the joint entropy of a pair of independent random varialgjaale the sum
of the individual entropies. Abandoning this property yields the so-caltetxtensive entropies
(Havrda and Chaat, 1967; Lindhard, 1974; Lindhard and Nielsen, 1971; Tsallis, 1988)ch
have raised great interest among physicists in modeling phenomena dang-aange interactions
and multifractals, and in constructing nonextensive generalizations ofrBaiz-Gibbs statisti-
cal mechanics (Abe, 2006). Nonextensive entropies have also beently used in signal/image
processing (Li et al., 2006) and other areas (Gell-Mann and Tsall®})20The so-called’sal-
lis entropies(Havrda and Cha#t, 1967; Tsallis, 1988) form a parametric family of nonextensive
entropies that includes the Shannon-Boltzmann-Gibbs entropy as a [sartdase. Nonextensive
generalizations of information theory have been proposed (Furuicd&)20

Convexity and Jensen’s inequality are key concepts underlying $@esrimal results of infor-
mation theory, for example, the non-negativity of tellback-Leibler (KL) divergencéor rela-
tive entropy (Kullback and Leibler, 1951). Jensen’s inequality (Jensen, 1986)underlies the
Jensen-Shannon (JS) divergenaesymmetrized and smoothed version of the KL divergence (Lin
and Wong, 1990; Lin, 1991), often used in statistics, machine learningaléigage processing,
and physics.

In this paper, we introduce new extensions of JS-type divergencgermralizing its two pil-
lars: convexityandShannon’s entropyThese divergences are then used to define new information-
theoretic kernels between probability distributions. More specifically, oum s@ntributions are:

e The concept ofj-convexity generalizing that of convexity, for which we provelansen g-
inequality The related concept densen g-differencesrhich generalize Jensen differences,
is also proposed. Based on these concepts, we introdudetisen-Tsallis (JT) g-difference
a nonextensive generalization of the JS divergence, which is also adhuotarmation” in
the sense of Furuichi (2006).

e Characterization of the J@-difference, with respect to convexity and extrema, extending
work by Burbea and Rao (1982) and by Lin (1991) for the JS diverge
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¢ Definition of k-th order joint and conditional Jg-differences for families of stochastic pro-
cesses, and derivation of a chain rule.

e A broad family of (nonextensive information theoretic) positive definitekés, interpretable
as nonextensive mutual information kernels, ranging from the Booleare tintrar kernels,
and including the JS kernel proposed by Hein and Bousquet (2005).

o A family of (nonextensive information theoretic) positive definite kernetsvben stochastic
processes, subsuming well-known string kernels (e.g.pthpectrum kernel) (Leslie et al.,
2002).

e Extensions of results of Hein and Bousquet (2005) proving positifiaitmess of kernels
based on the unbalanced JS divergence. A connection between grekemels and those
studied by Fuglede (2005) and Hein and Bousquet (2005) is also ektblig passing, we
show that the parametrix approximation of the multinomial diffusion kernel intted by
Lafferty and Lebanon (2005) isot positive definite in general.

The paper is organized as follows. Section 2 reviews nonextensivepergs with empha-
sis on the Tsallis case. Section 3 discusses Jensen differences argkdoes. The concepts
of g-differences andj-convexity are introduced in Section 4, where they are used to define and
characterize some new divergence-type quantities. In Section 5, wee deé Jensen-Tsall
difference and derive some of its properties; in that section, we alsuedeth order Jensen-Tsallis
g-differences for families of stochastic processes. The new family obgiatkernels is introduced
and characterized in Section 6, which also introduces nonextensivel&éretween stochastic pro-
cesses. Experiments on text categorization are reported in SectiontibnSeconcludes the paper
and discusses future research.

2. Nonextensive Entropies and Tsallis Statistics

In this section, we start with a brief overview of nonextensive entropWs.then introduce the
family of Tsallis entropies, and extend their domain to unnormalized measures.

2.1 Nonextensivity

In what follows,R . denotes the nonnegative redls,. denotes the strictly positive reals, and

n
AN-l2 {(xl,...,xn) eR"| in =1, Vixi 20}
i=

denotes thén — 1)-dimensional simplex.

Inspired by the axiomatic formulation of Shannon’s entropy (Khinchin,71%hannon and
Weaver, 1949), Suyari (2004) proposed an axiomatic frameworkdoextensive entropies and
a unigueness theorem. Lgt> 0 be a fixed scalar, called trentropic index Suyari's axioms
(Appendix A) determine a functio&, o : A" ! — R of the form

ag (1-3Lap)) ifa#1

' 1
—kZiLipilnpi if =1, 1)

Sq-,(p(pl,-..,pn):{
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wherek is a positive constant, angl: R. — R is a continuous function that satisfies the following
three conditions(i) ¢(q) has the same sign gs-1; (i) ¢(q) vanishes if and only iy = 1; (iii) @is
differentiable in a neighborhood of 1 ag1) = 1.

Note thatS, ¢ = limg—.1 Sy, thus §¢(P1,.--,Pn), Seen as a function af, is continuous at
q= 1. For any@ satisfying these condition&;, has thepseudoadditivityproperty: for any two
independent random variablésindB, with probability mass functionga € A™~1 andpg € A1
respectively, consider the new random varialdle B defined by the joint distributioma ® pg €
AMne—1- then,

@)

Si0(A®B) = Suo(A) + S0(B) — T« 0(A)S0(B),

where we denote (as usud)y(A) = S¢(Pa)-
Forg =1, Suyari's axioms recover the Shannon-Boltzmann-Gibbs (SBG) gntrop

n
Ste(P1,---,Pn) =H(P1,...,pn) = —k_Elpi Inpi,
=

and pseudoadditivity turns inedditivity, that is,H(A® B) = H(A) +H(B) holds.
Several proposals fap have appeared in the literature (Havrda and Chiari967; Dabczy,
1970; Tsallis, 1988). In this article, unless stated otherwise, wg(ge¢t= g — 1, which yields the

Tsallis entropy
Sl(plavpn)_q_l <1_|lel> (2)

To simplify, we letk = 1 and write the Tsallis entropy as

S$(X) £ S(pu,- .., pn) = ; p(x)? Ing p(x 3)

where Iny(x) £ (x1~9—1)/(1— q) is theg-logarithm function which satisfies lg(xy) = Ing(X) +
x}9Ing(y) and Iny(1/x) = —x3~1Ing(x). This notation was introduced by Tsallis (1988).
2.2 Tsallis Entropies

Furuichi (2006) derived some information theoretic properties of Tsalti®pies. Tsalligoint and
conditional entropiegre defined, respectively, as

S(X,Y) £~ pryqlnqp(x y)
and
S(XJY) = - pryqlnqp (Xly) = zp ¥ S (Xy), 4
and the chain rul&;(X,Y) = §(X) + §(Y|X) holds.

For two probability mass functiongyx, py € A", the Tsallis relative entropygeneralizing the
KL divergence, is defined as

Da(PlPr) 2 = 3 px(x)ing P, ©
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Finally, theTsallis mutual entropys defined as

lg(X;Y) £ $(X) = K(X]Y) = S(Y) — K(Y[X), (6)

generalizing (foig > 1) Shannon’s mutual information (Furuichi, 2006). In Section 5, we &stab
a relationship between Tsallis mutual entropy and a quantity cdbeden-Tsallis g-difference
generalizing the one between mutual information and the JS divergerme&n(sh.g., by Grosse
et al. 2002, and recalled below, in Section 3.2).

Furuichi (2006) also mentions an alternative generalization of Shannairtigal information,
defined as

[g(X;Y) £ Dg(px.v || Px® pv), )

where px v is the true joint probability mass function ¢X,Y) and px® py denotes their joint
probability if they were independent. This alternative definition of a “Tsallisualuentropy” has
also been used by Lamberti and Majtey (2003); notice if{a;Y) # rq(X;Y) in general, the case
g =1 being a notable exception. In Section 5, we show that this alternativétidefialso leads to
a nonextensive analogue of the JS divergence.

2.3 Entropies of Measures and Denormalization Formulae

Throughout this paper, we consider functionals that extend the domgie &hannon-Boltzmann-
Gibbs and Tsallis entropies to include unnormalized measures. Althoughpas $elow, these
functionals are completely characterized by their restriction to the normalizdzhlpility distri-
butions, the denormalization expressions will play an important role in Secttordérive novel
positive definite kernels inspired by mutual informations.

In order to keep generality, whenever possible we do not restrict to Ginibeuntable sample
spaces. Instead, we consider a measure space”,v) whereX is Hausdorff and’ is a o-finite
Radon measure. We denote bl (X) the set offinite Radonv-absolutely continuous measures
on X, and byM! (X) the subset of those which are probability measures. For simplicity, we often
identify each measure iM. (X) or M1 (X) with its corresponding nonnegative density; this is
legitimated by the Radon-Nikodym theorem, which guarantees the existedamajueness (up
to equivalence within measure zero) of a density functianX — R,. In the sequel, Lebesgue-
Stieltjes integrals of the fornj, f(x)dv(x) are often written ag, f, or simply [f, if 4 = X.
Unless otherwise stated]s the Lebesgue-Borel measureXifC R" and intX # &, or the counting
measure, ifX is countable. In the latter case integrals can be seen as finite sums or infilgite se

DefineR £ RU {—o, +o0}. For some functionaB : M, (X) — R, let the seM%(X) £ {f €
M, (X) :|G(f)| < o} be its effective domain, anklZ®(X) £ MS(X) N M? (X) be its subdomain
of probability measures.

The following functional (Cuturi and Vert, 2005), extends the SharBolizmann-Gibbs en-
tropy from Mi’H (X) to the unnormalized measuresht! (X):

H(f):—k/flnf:/q)Hof, ®)
wherek > 0 is a constant, the functiagpy : R, — R is defined as
¢H (y) =-k ylny7
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and, as usual, 0Iné 0.

The generalized form of the KL divergence, often caltgsheralized |1-divergencéCsiszar,
1975), is a directed divergence between two measureg € Mt (X), such thatys is pg-absolutely
continuous (denotegs < Lg). Let f andg be the densities associated withandyy, respectively.
In terms of densities, this generalized KL divergence is

D(f,g) — k/<g—f+f|n;). ©)

Let us now proceed similarly with the nonextensive entropies.gFa10, IetMiq(x) ={fe
My (X): f9eMi(X)} forq#1, andMiq(x) = MH(X) for g = 1. The nonextensive counterpart
of (8), defined oM (X), is

Si(1)= [ dqo . (10)

wheredq : R, — Ris given by

) on(y) ifq=1,
bq(y) = { ﬁ (y—y4) ifq#£1, (11)

ando: R, — R satisfies condition§)-(iii) stated following Equation (1). The Tsallis entropy is
obtained forp(q) = q— 1,

squ):—k/fqmqf. (12)

Similarly, a nonextensive generalization of the generalized KL divergédicis

k
Dq(f,0) = ——— f+(1—q)g— f9g'd
o(.9) (p(q)/(q +(1-a)g—fg9),
for q# 1, andD;(f,g) = limg_.1Dq(f,g) = D(f,0).

Define|f| £ [ f = ps(X). For|f| = |g| = 1, several particular cases are recoveredy ) =
1219, thenDq(f,g) is the Havrda-Chait relative entropy (Havrda and Chaty1967; Dabczy,
1970); if@(q) = q— 1, thenDq(f,Q) is the Tsallis relative entropy (5); finally, #(q) = q(q—1),
thenDg(f,g) is the canonicai-divergence defined by Amari and Nagaoka (2001) in the realm of
information geometry (with the reparameterizatms- 2q — 1 and assuming > 0 so thatp(q) =
g(g— 1) conforms with the axioms).

Remark 1 Both functionals §and D, are completely determined by their restriction to the nor-
malized measures. Indeed, the following equalities hold for anyR¢ , and f,g € Miq(x), with
M < Mgt

S(cf) = cI(f)+|fldq(0),
Dqg(cf,cg) = cDq(f,9),

k
Dqg(cf,g) = cDq(f,9) —adq(c)|f|+ @(Q* 1)(1—c%)]gl. (13)
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Forany fc MJSF“(X) and ge MJSF“(Q/),

S(f20) = dS(1) + 11180 - 2V s(1)5(0).
If |f| =|g| = 1, we recover the pseudo-additivity property of nonextensive entropies:

S(120) = S0+ 80~ 2 s(N)sy(0)

For ¢(q) = q— 1, Dq is the Tsallis relative entropy and 3) reduces to

Dq(cf,g) = c™Dqg(f,9) —adq(c)| f|+k(1—cT)|g|.
By taking the limit ¢— 1, we obtain the following formulae for H and D:
H(cf) = cH(f)+[f[¢n(c),
D(cf,cg) = cD(f,9),
D(cf,g) = cD(f,g)—[f[¢n(c)+k(1-c)[g|.
Consider fe Mt (X) and ge MY (9), and define g e MH (X x ) as(f @g)(x,y) £ f(X)g(y).

Then,
H(f®g) =I[g/H(f)+[f[H(9).

If | f| = |g| = 1, we recover the additivity property of the Shannon-Boltzmann-Gibbsmntr( f ©
9) =H(f)+H(g).

3. Jensen Differences and Divergences
In this section, we review the concept of Jensen difference. We theasdishree particular cases:

the Jensen-Shannon, JensémiR, and Jensen-Tsallis divergences.

3.1 The Jensen Difference

Jensen’s inequality (Jensen, 1906) is at the heart of many importatfisresinformation theory.
Let E[.] denote the expectation operator. Jensen’s inequality states thistain integrable random
variable taking values in a s&t, and f is a measurable convex function defined on the convex hull
of Z, then

f(E[z]) <E[f(2)].

Burbea and Rao (1982) considered the scenario wiesefinite, and tookf = —Hg, where
Ho : [a,b]" — R is a concave function, calleddaentropy defined as

Ho(2) £ =5 0(2), 14)

whered : [a,b] — R is convex. They studied the Jensen difference

m m
Y1, Ym) S He | S ey | — Y TRHe (W),
A DAL )
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wheren= (Ty,...,Ty) € A™ 1, and eaclys, ..., ym € [a,b]".
We consider here a more general scenario, involving two measurgsets,v) and(7, .7, 1),
where the second is used to index the first.

Definition 2 Let p£ (s € [M(X)]”7 be a family of finite Radon measures &nindexed by
7, and letw € M, (7T) be a finite Radon measure @nh Define:

1809 2 w( [ womar) - [ wowmdo (15)

where:
(i) Wis a concave functional such thdbmW¥ C M. (X);
(i) w(t)k(x) is T-integrable, for all xc X;
(i) [ w(t)kdt(t) € domW;
(iv) i € domW, forallt € T;
(V) w(t)W() isT-integrable.
If we M1(T), we still call(15) a Jensen difference.

In the following subsections, we consider several instances of Defirtfiteading to several
Jensen-type divergences.

3.2 The Jensen-Shannon Divergence

Let p be a random probability distribution taking values{ip };cs according to a distribution
me Mi(‘r). (In classification/estimation theory parlanaejs called the prior distribution and
pt 2 p(.|t) the likelihood function.) Then, (15) becomes

Jp(p) = W(E[p]) —E[¥(p)], (16)

where the expectations are with respedairto

Let nowW = H, the Shannon-Boltzmann-Gibbs entropy. Consider the random variblaled
X, taking values respectively i and X, with densitiesri(t) and p(x) £ [ p(x|t)Ti(t). Using
standard notation of information theory (Cover and Thomas, 1991),

J(p) £ Hi(p) = H </Tﬂ(t)pt) —/TH(UH(pt)

_ H(X)—/([T[(t)H(X|T:t)
= H(X)-H(X|T)
1(X;T), a7

wherel (X; T) is the mutual information betweetandT. (This relationship between JS divergence
and mutual information was pointed out by Grosse et al. 2002.) 3G ) is also equal to the
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KL divergence between the joint distribution and the product of the madgy{@aver and Thomas,
1991), we have

J%(p) =H (E[p]) - E[H(p)] = E[D(p[E[p])]- (18)

WhenX and7 are finite with|Z7| = m, J[(p1,..., pm) is called theJensen-Shannon (JS) di-
vergenceof py,..., Pm, With weightsTy, ..., T4, (Burbea and Rao, 1982; Lin, 1991). Equality (18)
allows two interpretations of the JS divergence:

¢ the Jensen difference of the Shannon entropy; of
e the expected KL divergence fromto the expectation of.

A remarkable fact is that™(p) = min, E[D(p||r)], thatis,r* = E[p| is a minimizer ofE[D(p||r)]
with respect ta. It has been shown that this property together with Equality (18) chaizethe
so-calledBregman divergenceshey hold not only ford = H, but for any concavél and the
corresponding Bregman divergence, in which c&és theBregman informatior{Banerjee et al.,
2005).

When|7| =2 andmit= (1/2,1/2), p may be seen as a random distribution whose value on
{p1, p2} is chosen by tossing a fair coin. In this ca3@/21/? (p) = JSpy, p2), where

JS(p1, p2) £ H<p1J2rp2>_H(p1)427H(p2)

- (oI5 ofolP)

as introduced by Lin (1991). It has been shown ti/dS satisfies the triangle inequality (hence
being a metric) and that, moreover, it is a Hilbertian méttiEndres and Schindelin, 2003; Topsge,
2000), which has motivated its use in kernel-based machine learning (€uglr, 2005; Hein and
Bousquet, 2005) (see Section 6).

3.3 The Jensen-Rnyi Divergence

Consider again the scenario above (Section 3.2), with #reyR}-entropy

RalP) =15 In [ p°

replacing the Shannon-Boltzmann-Gibbs entropy. It is worth noting thaRémyi and Tsallis
1

g-entropies are monotonically related througfip) = In<[1+ (1—q)$1(p)]1fq), or, using theg-

logarithm function,

S(p) = IngexpRy(p).

The Renyig-entropy is concave fay € [0, 1) and has the Shannon-Boltzmann-Gibbs entropy as
the limit wheng — 1. Letting¥ = Ry, (16) becomes

J5,(P) = Rq(E[p]) — E[Ry(p)]. (19)

1. A metricd : X x X — R is Hilbertian if there is some Hilbert spack and an isometryf : X — # such that
d?(x,y) = (f(x) — f(y), f(x) — f(y)) 4 holds for anyx,y € X (Hein and Bousquet, 2005).
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Unlike in the JS divergence case, there is no counterpart of equalifybék®d on the &yi g-
divergence

1 -
Dr, (P1l[p2) = q_lln/p‘i p

WhenX andT are finite, we calllgq in (19) theJensen-Bnyi (JR) divergenceFurthermore,
when|7| =2 andn= (1/2,1/2), we Writngq(p) = JRy(p1, p2), where

IRy(PL, P2) = Ry (plg pz) BARTE

The JR divergence has been used in several signal/image procegplitgitéons, such as regis-
tration, segmentation, denoising, and classification (Ben-Hamza and Kri8; B et al., 2003;

Karakos et al., 2007). In Section 6, we show that the JR divergendigadlie JS divergence) a
Hilbertian metric, which is relevant for its use in kernel-based machine laarnin

3.4 The Jensen-Tsallis Divergence

Burbea and Rao (1982) have defined Jensen-type divergenttesfofm (16) based on the Tsallis
g-entropyS;, defined in (12). Like the Shannon-Boltzmann-Gibbs entropy, but utiikeRenyi
entropies, the Tsallig-entropy, for finiteZ, is an instance of @-entropy (see Equation 14). Letting
W =S, (16) becomes

JZ (p) = S (E[p) — E[S4(p)]. (20)

Again, as in Section 3.3, if we consider the Tsatjidivergence,

1 _
Da(pulpe) = 1 (1- [ P2t ).

there is no counterpart of the Equality (18).

WhenX and‘7 are finite,Jg in (20) is called thelensen-Tsallis (JT) divergenead it has also
been applied in image processing (Ben-Hamza, 2006). Unlike the Jgeine, the JT divergence
lacks an interpretation as a mutual information. Despite thigj fof1, 2], it exhibits joint convexity
(Burbea and Rao, 1982). In the next section, we propose an altertathe JT divergence which,
among other features, is interpretable as a nonextensive mutual inforriiatilba sense of Furuichi
2006) and is jointly convex, fog € [0, 1].

4. g-Convexity and g-Differences

This section introduces a novel class of functions, terdertsen g-differencesvhich generalize
Jensen differences. Later (in Section 5), we will use these functionsfittedhelJensen-Tsallis g-
differencewhich we will propose as an alternative nonextensive generalizatitwe dfS divergence,
instead of the JT divergence discussed in Section 3.4. We begin by rgdéiénconcept ofy-
expectation (Tsallis, 1988).

Definition 3 The unnormalized -gxpectatiorof a random variable X, with probability density p,
is

EqlX] 2 [ xP(x°
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Of courseq = 1 corresponds to the standard notion of expectationgEbL, theg-expectation
does not match the intuitive meaning of average/expectation (&4, # 1, in general). The-
expectation is a convenient concept in nonextensive information thieogxample, it yields a very
compact form for the Tsallis entrop$,(X) = —Eg[Ing p(X)].

4.1 g-Convexity
We now introduce the novel concept@tonvexity and use it to derive a set of results, namely the
Jensen g-inequality

Definition 4 Let ge R and X be a convex set. A function: X — R is g-convexif for any xy € X
andA € [0,1],
fOAX+(L=N)y) <N (X)+(L—N) (y). (21)

If —f is g-convex, f is said to becpncave

Of course, 1-convexity is the usual notion of convexity. Many propeufel-convex functions
do not haveg-analogues. For example, foe£ 1, anyg-convex function must be either nonnegative
(if g < 1) or nonpositive (ifg > 1); this simple fact can be shown througdductio ad absurdum
by settingx =y in (21). However, other properties remain: the next proposition state¥etisen
g-inequality.

Proposition 5 If f : X — R is g-convex, then for anya N, x1,...,X, € X andTt= (Tq,...,T,) €

A f (im Xi) < i_iﬂ}qf(m'

Moreover, if f is continuous, the above still holds for countably many poisy.

Proof In the finite case, the proof can be carried out by induction, as in thd pfdbe standard
Jensen inequality (Cover and Thomas, 1991). Assuming that the inequaltiy forn € N, then,
from the definition ofg-convexity, it will also hold fom+ 1:

f (:Zlm xi> f (iﬂa X +Trn+1xn+1>

= f ((1 —Thi1) 'i”ilxi + T[n+1xn+1>

IN

(1—Thyg)?f (in’m) +18,; f(Xat1)

n+1

3 0) + 7 3 Fsa) = 5 ).

IN

where we used the fact thath; 1 = 1— YL, T, and we definedt 2 15/(1— Thy1) (note that
S, = 1.) Furthermore, iff is continuous, it commutes with taking limits, thus
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(3] =1 (m 3moc ) = £ (30 ) < fim 3 000 = 5 78100
(Ec) = (embine) -t ($x) <pmBteon -3

[ |

Proposition 6 Let f > 0and g>r > 0; then,
fis g-convex = fis r-convex (22)
fisr-concave = fis g-concave (23)

Proof Implication (22) results from
PO+ (L=A)y) < AF(X)+(A-N)IF(y) < AT+ (1-N) (),

where the firstinequality states teonvexity off and the second one is valid becadige), f (y) >
0 andt" >t9> 0, for anyt € [0,1] andq > r. The proof of (23) is similar. [ |

4.2 Jenserg-Differences

We now generalize Jensen differences, formalized in Definition 2, bydatiag the concept of
Jensery-differences.

Definition 7 Let p£ (i )ier € [M(X)]” be a family of finite Radon measures &nindexed by
7, and letw € M (7) be a finite Radon measure @n For q > 0O, define

T8 = ([ omern) - [ e e, (24)
where:
(i) Wis a concave functional such thdbmW¥ C M (X);

(i) w(t)p(x) is T-integrable for all xe X;

(i) [ o(t) pdr(t) € domW;

(iv) i € domW, forallt € 7,

(V) w(t)?W(L) is T-integrable.
If we M1(7T), we call the function defined {{24) a Jensery-difference

Burbea and Rao (1982) established necessary and sufficient cosduigp for the Jensen
difference of ap-entropy (see Equation 14) to be convex. The following proposition rgéines
that result, extending it to Jensgrdifferences.

Proposition 8 Let 7 and X be finite sets, withZ7| = m and|X| = n, and letmte M1 (7). Let

¢ : [0,1] — R be afunction of class€and consider thej(-entropy, Burbea and Rao, 1982) function
W:[0,1" — R defined as¥(z) £ — 3, ¢(z). Then, the g-differenceyT, : [0,1]"™ — R is convex

if and only if¢ is convex and-1/¢" is (2— q)-convex.

The proof is rather long, thus it is relegated to Appendix B.
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5. The Jensen-Tsalligy-Difference

This section introduces the Jensen-Tsafdifference, a nonextensive generalization of the Jensen-
Shannon divergence. After deriving some properties concerningptieexity and extrema of these
functionals, we introduce the notion of joint and conditional Jensen-Tsgtliference, a contrast
measure between stochastic processes. We end the section with a bripf@syanalysis for the
extensive case.

5.1 Definition

As in Section 3.2, lep be a random probability distribution taking valuesim };+ according to a
distributiontte M1 (7). Then, we may write

Taw(p) =W (E[p]) — Eq[¥(p)],

where the expectations are with respecttoHence Jenseg-differences may be seen as defor-
mations of the standard Jensen differences (16), in which the secpedtation is replaced by a
g-expectation.

LetW = §;, the nonextensive Tsallggentropy. Introducing the random variabEsindX, with
values respectively il and.X, with densitiest(t) andp(x) £ [ p(x|t)T(t), we have (writing q]qu
simply asTy")

TP = Sy(Elp) ~EqlSy(p)
= 500 [ OIS =

= §(X)-S(X[T)
= 1q(X;T), (25)

where§;(X|T) is the Tsallis conditional entropy (4), ahgX; T) is the Tsallis mutual information
(6), as defined by Furuichi (2006). Observe that (25) is a nonsxieanalogue of (17). Since, in
general,lq # fq (see Equation 7), unlespg= 1 (in that casel, = i1 = |), there is no counterpart
of (18) in terms ofg-differences. Nevertheless, Lamberti and Majtey (2003) have gezpa non-
logarithmic version of the JS divergence, which corresponds to u~§iftg the Tsallis mutuab-
entropy (although this interpretation is not explicitly mentioned).

WhenX and7T are finite with| 7| = m, we call the quantityfq*(ps, . .., pm) the Jensen-Tsallis
(JT) g-differenceof py, ..., pm With weightsty, ..., T, Although the JTg-difference is a gener-
alization of the JS divergence, fgr# 1, the term “divergence” would be misleading in this case,
sinceTy" may take negative values @if< 1) and does not vanish in generabifs deterministic.

When|T| = 2 andn= (1/2,1/2), defineT, 2 Tq/>"/?,

Ta(p1, p2) = & <p145 pz) - S“(pl);sq(pz)

Notable cases arise for particular valuegof

e Forg=0, S(p) = —1+v(supdp)), wherev(supgp)) denotes the measure of the support
of p (recall thatp is defined on the measure spdgg.#,v)). For example, ifX is finite and
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v is the counting measurg(supgp)) = ||pllo is the so-called®-norm (although it is not a
norm) of vectorm, that is, its number of nonzero components. The Jensen-Tsallis Oedifer
is thus

To(p1, p2) = —1+v<supp<p1;p2>>+1—v(sup|c(p1))+1—v(sup;1p2))

= 1+v(supdp1) USupepz)) —V (Suppp1)) — v (Supppz))
= 1—v(supf{p1) NSUpHp2)); (26)

if X is finite andv is the counting measure, this becomes
To(p1, p2) = 1—[|P1©® p2|lo,

where® denotes the Hadamard-Schur (i.e., elementwise) product. Wactik Boolean
difference

e Forq=1, sinceS;(p) = H(p), T1 is the JS divergence,
Ti(P1, P2) = ISP, P2).

e Forq=2,$(p) =1—(p,p), where(a,b) = [, a(x)b(x)dv(x) is the inner product between
aandb (which reduces tda,b) = 3;a;b; if X is finite andv is the counting measure). Con-
sequently, the Tsallis 2-difference is

=
=

T2(p1, pZ) = E - é <p17 p2>7

which we call thdinear difference

5.2 Properties of the JTg-Difference

This subsection presents results regarding convexity and extrema af thdiflerence, for certain
values ofq, extending known properties of the JS divergenge-(1). Some properties of the JS
divergence are lost in the transition to nonextensivity; for example, wieléatmer is nonnegative
and vanishes if and only if all the distributions are identical, this is not true merg with the JT
g-difference. Nonnegativity of the J3-difference is only guaranteeddf> 1, which explains why
some authors (e.g., Furuichi 2006) only consider values ®f1, when looking for nonextensive
analogues of Shannon’s information theory. Moreover, undessl, it is not generally true that
Tq'(p;---, p) = 0 or even thallf¥(p,...,p,p') > TgX(p, ..., p,p). For example, the solution of the
optimization problem

min Tq(p1, P2), (27)

p1eAn

is, in general, different fronp,, unlessq = 1. Instead, this minimizer is closer to the uniform
distribution ifg € [0, 1), and closer to a degenerate distributiondar (1, 2] (see Fig. 1). This is not
so surprising: recall thakx(p1, p2) = %— %(pl, p2); in this case, (27) becomes a linear program,
and the solution is ngb; = po, but p; = §j, wherej = argmaxpy;.

At this point, we should also remark that, wh&Tris a finite set, the uniform distribution max-
imizes the Tsallis entropy for ary> 0, which is in fact one of the Suyari axioms underlying the
Tsallis entropy (see Axiom A2 in Appendix A).
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Jensen-Tsallis g—Difference to a fixed Bernoulli (p0:0.3)
0.6

O
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Figure 1: Jensen-Tsallig-difference between two Bernoulli distributiong; = (0.3,0.7) and
p2 = (p,1— p), for several values of the entropic indgx Observe that, fog € [0, 1),
the minimizer of the JW-difference approaches the uniform distributi@5, 0.5) asq
approaches 0; fog € (1,2], this minimizer approaches the degenerate distribution, as
q— 2.

We start with the following corollary of Proposition 8, which establishes the gmnvexity of
the JTg-difference, forg € [0,1]. (Interestingly, this “complements” the joint convexity of the JT
divergence (20), fog € [1, 2], proved by Burbea and Rao 1982.)

Corollary 9 Let7 and X be finite sets with cardinalities m and n, respectively. Far [@,1], the

JT g-difference is a jointly convex function ori’l%ﬂ(x). Formally, let{ pt(i)}teq, andi=1,...,1, be
a collection of | sets of probability distributions or; then, for any(Ag,...,\)) € A1,

| I |
Py  phn @ )
TqT[ (izl)u P1 7-..,i;)\| pm> < i;)\l TqTI<p1 iy,

Proof Observe that the Tsallis entropy (3) of a probability distribut@n= {pt1, ..., pin} can be

written as
x—xd

Sq(pt):—_;d)(pti), where ¢q(x) = 1—q;

thus, from Proposition 8T is convex if and only ifpq is convex and-1/¢g is (2 — g)-convex.
Sincedg(x) =q X472, ¢4 is convex forx > 0 andg > 0. To show thé2 —q)-convexity of—1/¢g(x) =
—(1/9)x>79, for . > 0, andq € [0, 1], we use a version of the power mean inequality (Steele, 2006),

- (_?m)zq < —_'me‘q = —_'ZA?%“,
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thus concluding that-1/¢g is in fact (2 — g)-convex. [ |

A consequence of Corollary 9 is that, for finit¢ and anyq € [0, 1], the JTg-difference is
upper bounded, namemg'(py, ..., Pm) < (). Indeed, sincd" is convex and its domain is the
Cartesian product ah simplices (a convex polytope), its maximum must occur on a vertex, that is,
when each argumen; is a degenerate distribution gt denotedy,. In particular, if| X| > |7,
this maximum occurs at a vertex corresponding to disjoint degenerate listni®, that is, such that
Xi 7 Xj if 1 # J. At this maximum,

TG0 ) = %(gﬂm) —gmlwm

_ 5 (im) (28)
)

= (T

where the equality in (28) results frof(dy ) = 0. (Notice that this maximum may not be achieved
if |X| < |T|.) The next proposition provides a stronger result: it establishes upgéoaer bounds
for the JTg-difference to any non-negatiegand to countable&l and‘Z .

Proposition 10 Let7 and X be countable sets. Foryg 0,

Tq (Pter) < S(), (29)

and, if|X| > |7, the maximum ofFis reached for a set of disjoint degenerate distributions. This
maximum may not be attained | < | 7.
Forq=>1,

an((pt)te‘f) >0,
and the minimum ofFis attained in the purely deterministic case, that is, when all distributions
are equal to the same degenerate distribution.
For g € [0,1] and X a finite set with x| = n,
Ta ((Pher) > Sy(m[L—n1. (30)

This lower bound (which is zero or negative) is attained when all distributmasiniform.

Proof The proof is given in Appendix C. |

Finally, the next proposition characterizes the convexity/concavity of Thg-difference on
each argument.

Proposition 11 Let 7 and X be countable sets. The JT g-difference is convex in each argument,
for g € [0,2], and concave in each argument, foP2.
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Proof Notice that the JT-difference can be written ag'(py, - .-, Pm) =
Yiw(paj, .-, Pmj), with

1
lU(YlamaYm) = ﬁ

S (n s 3 (Zmyi)q

It suffices to consider the second derivativejofvith respect toy;. Introducingz= 3", TG y;,

02 _
ang = q [n‘jyﬁ Z—T[%(TflylﬂLZ)qu}
= qrg [(mey1) = (Tey1+2)%2]. (31)

Sincery y1 < (Tyy: +2) < 1, the quantity in (31) is nonnegative fqre [0, 2] and non-positive for
q>2. |

5.3 Joint and Conditional JT g-Differences and a Chain Rule

This subsection introduces joint and conditional gFdifferences, which will later be used as a
contrast measure between stochastic processes. A chain rule isidbeveelates conditional and
joint JT g-differences.

Definition 12 Let X, 9" and 7 be measure spaces. Lgh)icr € [M1(X x 9)]7 be a family of
measures in M(X x ) indexed byZ’, and let p be a random probability distribution taking values
in {pt }ter according to a distributiorm € M1 (7). Consider also:

o for each te 7, the marginals gY) € M1 (%),

e for eachte 7 and y< 9, the conditionals gX|Y =y) € M1 (X),
e the mixture (X,Y) £ [>T(t) pt(X,Y) € M (X x ),

e the marginal (Y) € M1 (%),

o for each ye 9, the conditionals (X|Y =y) € M (X).

For notational convenience, we also append a subscript to p to emhitssjaint or conditional de-
pendency of the random variables X and Y, thatjig, ® p, and x|y denotes a random conditional
probability distribution taking values ifip:(.|Y) };es according to the distributiont

For g > 0, we refer to thegoint JT g-differenceof pxy by

T3 (pxy) £ T3(p) = S(r) — Eqrenm) [Su( )]

and to theconditional JTg-differenceof pyy by

T3 (Pxv) = Eqyer() [Sa(r(IY =Y))] = Eq1omm) [Eqypev) [Sa(R (Y =), (32)

where we appended the random variables being used in each g-etipectar the sake of clarity.
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Note that the joint JT-difference is just the usual JFdifference of the joint random variable
X xY, which equals (cf. 25)

Tq(pxy) = SXY) =KX Y[T) = 1(XxY;T), (33)

and the conditional J§-difference is simply the usual Jj-difference with all entropies replaced
by conditional entropies (conditioned 8. Indeed, expression (32) can be rewritten as:

Tq(Pxy) = S(XIY) =K(X|T,Y) = 1(X;T 1Y), (34)

that is, the conditional J§-difference may also interpreted as a Tsallis mutual information, as in
(25), but nowconditionedon the random variablé.

Note also that, for the extensive cape 1, (32) may also be rewritten in terms of the conditional
KL divergences,

I (pxy) 2T (Px)y) = Everey) HICIY = Y)] = Erenr) [Evepen) [H(P(CY =Y))]]
= Erenm) [Everoy) DR (Y =Y)Ir (Y =y))]] -
Proposition 13 The following chain rule holds:
an( pXY) = an( pX\Y) + an(pY)

Proof Writing the joint/conditional JTg-differences as joint/conditional mutual informations (33—
34) and invoking the chain rule provided by (4), we have that

lOGTIY) +1a(Y:T) = SXIT,Y) = S(X[Y) +S(YIT) = S(Y)
= %(X,Y’T)—%(X,Y),

which is the joint JTg-difference associated with the random variakle Y. |

Let us now turn our attention to the case wh¥re: XX for somek € N. In the following, the
notation(An)ney denotes a stationary ergodic process with values on some finite alphabet

Definition 14 Let.X and7 be measure spaces, wihfinite, and let# = [(Xn)nen]” be a family of
stochastic processes (taking values on the alphafétdexed byZ". The kth order JTg-difference
of % is defined, fork=1,...,n, as

T () £ 1)
and the kth order conditional JT-differenceof .# is defined, fork=1,...,n, as

TEM(F) 2 TI (P,

q.k
and, for k=0, as T3""(#) £ TI™"(#) = T/(px).
Proposition 15 The joint and conditional k-th order JT g-differences are related thioug
. k-1
T (7) =3 T () (35)
1=
Proof Use Proposition 13 and induction. |
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5.4 Asymptotic Analysis in the Extensive Case

We now focus on the extensive cage<1) for a brief asymptotic analysis of theth order joint and
conditional JT 1-differences (@wonditional Jensen-Shannon divergeragkenk goes to infinity.

The conditional Jensen-Shannon divergence was introduced bgritl-&t al. (1998) to address
the two-sample problerfor strings emitted by Markovian sources. Given two striegsdt, the
goal is to decide whether they were emitted by the same source or by differerces. Under
some fair assumptions, the most likédth order Markovian joint source afandt is governed by
a distributionrgiven by

P = argminAD(ps|r) + (1~ \)D(p]Ir). (36)

whereD(.||.) are conditional KL divergencegs and p; are the empiricalk — 1)-th order condi-
tionals associated withandt, respectively, and = |s|/(|s| + |t|) is the length ratio. The solution
of the optimization problem is

A Ps(c)
APs(c) +(1=A) pr(c)

wherea € 4 is a symbol and € 441 is a context; this can be rewritten B&,c) = Aps(a, c) +
(1—A)fe(a,c); that is, the optimum in (36) is a mixture pf &ndp; weighted by the string lengths.
Notice that, at the minimum, we have

AD(Ps||P) + (L— MD(RHIF) = IS (b, ).

It is tempting to investigate the asymptotic behavior of the conditional and joinivé®gdnces
whenk — o; however, unlike other asymptotic information theoretic quantities, like the gntro
or cross entropy rates, this behavior fails to characterize the sosiaedt. Intuitively, this is
justified by the fact that observing more and more symbols drawn from the maigfuthe two
sources rapidly decreases the uncertainty about which sourceagghédne sample. Indeed, from
the asymptotic equipartition property of stationary ergodic sources (GokeThomas, 1991), we
have that [« $H (Px,) = liMy_.. H(pxx,), which implies

(1-A)B(o)

faje) = Nps(0) 1 (1N (g MO

Ps(alc) +

where we used the fact that the JS divergence is upper-boundeck lgntiopy of the mixture
H (1) (see Proposition 10). Since the conditional JS divergence must beagative, we therefore
conclude that Ii%mJiond” =0, pointwise.

6. Nonextensive Mutual Information Kernels

In this section we consider the application of extensive and nonextestsinapies to define kernels
on measures; since kernels involve pairs of measures, throughouettisnd7Z | = 2. Based on
the denormalization formulae presented in Section 2.3, we devise novelkeetated to the JS
divergence and the JFdifference; these kernels allow setting a weight for each argumentilius
be calledweighted Jensen-Tsallis kerneM/e also introduce kernels related to the JR divergence
(Section 3.3) and the JT divergence (Section 3.4), and establish actiomnieetween the Tsallis
kernels and a family of kernels investigated by Hein et al. (2004) and &ad2005), placing

953



MARTINS, SMITH, XING, AGUIAR AND FIGUEIREDO

those kernels under a new information-theoretic light. After that, we givéedverview of string
kernels, and using the results of Section 5.3, we dewigeorder Jensen-Tsallis kernels between
stochastic processes that subsume the well-knmspectrum kernel of Leslie et al. (2002).

6.1 Positive and Negative Definite Kernels

We start by recalling basic concepts from kernel theory §8aipf and Smola, 2002); in the fol-
lowing, X denotes a nonempty set.

Definition 16 Let : X x X — R be a symmetric function, that is, a function satisfyirg,x) =
d(x,y), for all x,y € X. ¢ is called apositive definitg(pd) kernel if and only if

n n

i;;lci Cj (I)(Xi,Xj) >0

forallneN, x,....xpe Xandgq,...,c, e R.

Definition 17 Lety : X x X — R be symmetricy is called anegative definitdnd) kernel if and

only if
non
i;;Ci Cj l]J(Xi,Xj) <0

forallneN, xy,...,xp € X andgq,...,c, € R, satisfying the additional constrain{e-...+c, =0.
In this case,—y is called conditionally pd; obviously, positive definiteness implies conditional
positive definiteness.

The sets of pd and nd kernels are both closed under pointwise sumsfimtegréhe former
being also closed under pointwise products; moreover, both sets aeel eloder pointwise con-
vergence. While pd kernels “correspond” to inner products via enibgdd a Hilbert space, nd
kernels that vanish on the diagonal and are positive anywhere etsee$pond” to squared Hilber-
tian distances. These facts, and the following propositions and lemmad)ava # Berg et al.
(1984).

Proposition 18 Let : X x X — R be a symmetric function, an@ x X. Let¢ : X x X — R be
given by

B(X,y) = W(X,%0) + W(Y, X0) — W(X,y) — W(X0, Xo)-
Then,$ is pd if and only if is nd.

Proposition 19 The functiony : X x X — R is a nd kernel if and only iéxp(—ty) is pd for all
t>0.

Proposition 20 The functiony : X x X — R is a nd kernel if and only ift + @)~ is pd for all
t>0.

Lemma 21 If Y is nd and nonnegative on the diagonal, thatiigx, x) > 0 for all x € X, theny®,
for a € [0,1], andIn(1+ ), are also nd.
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Lemma 22 If f : X — R satisfies £> 0, then, fora € [1, 2], the functionpy (x,y) = —(f(X)+ f(y))®
is a nd kernel.

The following definition (Berg et al., 1984) has been used in a machineihgacontext by
Cuturi and Vert (2005).

Definition 23 Let (X,®) be a semigroup. A function¢ : X — R is called pd (in the semigroup
sense) if K X x X — R, defined as &, y) = ¢(x@Yy), is a pd kernel. Likewise is called nd if k is
a nd kernel. Accordingly, these are callsemigroup kernels

6.2 Jensen-Shannon and Tsallis Kernels

The basic result that allows deriving pd kernels based on the JS diva@nd, more generally, on
the JTg-difference, is the fact that the denormalized Tsailientropies (10) are nd functions on
(M%(X);k), for q € [0,2]. Of course, this includes the denormalized Shannon-Boltzmann-Gibbs
entropy (8) as a particular case, corresponding t01. Although part of the proof was given by
Berg et al. (1984) (and by Topsge 2000 and Cuturi and Vert 200hédShannon entropy case), we
present a complete proof here.

Proposition 24 For g€ [0, 2], the denormalized Tsallis g-entropyiS a nd function or@M%(x), +).

Proof Since nd kernels are closed under pointwise integration, it suffices t@ phat¢, (see
Equation 11) is nd ofR;,+). Forq# 1, dq(y) = (q—1)~1(y—y9). Let us consider two cases
separately: ifj € [0,1), ¢4(y) equals a positive constant times+ 19, wherei (y) =y is the identity
map defined ofR .. Since the set of nd functions is closed under sums, we only need to shbw th
both —1 and19 are nd. Both and—1 are nd, as can easily be seen from the definition; besides,
sincel is nd and nonnegative, Lemma 21 guaranteesithiatalso nd. For the second case, where
g€ (1,2], d4(y) equals a positive constant times 19. It only remains to show that19 is nd for
g€ (1,2]: Lemma 22 guarantees that the kerkel,y) = —(x+y)% is nd; therefore-19is a nd
function.

Forg= 1, we use the fact that,

0200 = dw () = —xinx= fim %= im (),

where the limit is obtained by L'Bipital’s rule; since the set of nd functions is closed under limits,
$1(x) is nd. [

The following lemma, proved in Berg et al. (1984), will also be needed below
Lemma 25 The functiorq : R, — R, defined ag4(y) =y 9is pd, for ge [0,1].

We are now in a position to present the main contribution of this section, whicFaigiyy of
weighted Jensen-Tsallis kerngieneralizing the JS-based (and other) kernels in two ways: (i) they
allow using unnormalized measures; equivalently, they allow using differeights for each of the
two arguments; (ii) they extend the mutual information feature of the JS kiertieé nonextensive
scenario.

2. Recall tha( X, ®) is asemigrougf @ is a binary operation itX that is associative and has an identity element.
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Definition 26 (weighted Jensen-Tsallis kernels)rhe kerneEq : M%(X) X Mf(x) — Ris defined
as

Ko(H1,H2) £ Kq(wip1,02p2)
= (Sy() = Tg¥(p1, p2)) (w1 + w2)?,

where p = 1 /0 and p = o/ w), are the normalized counterparts of @nd |, with corresponding
massesv;,wy € Ry, andmt= (wy /(w1 + W), wp/ (1 + wy)).

2
The kernel : (M%(x) \ {0}) . Ris defined as

Kq (M1, H2) = Kg(w1p1, w2p2) = $(10) — T (1, p2).

Recalling (25), notice they () — Tg'(p1, P2) = (T) — 19(X; T) = (T |X) can be interpreted
as theTsallis posterior conditional entropyHencek, can be seen (in Bayesian classification terms)
as a nonextensive expected measure of uncertainty in correctly idegtifhgrclass, given the prior
= (M, ), and a sample from the mixturg p; + mp.. The more similar the two distributions
are, the greater this uncertainty.

Proposition 27 The kerneﬁq is pd, for ge [0,2]. The kernel kis pd, for ge [0, 1].

Proof With W = iy p; andp, = wpp2 and using the denormalization formula of Remark 1, we ob-

tain Ky (1, h2) = — Sy (M + ko) + Sy (k1) + Sy(H2). Now invoke Proposition 18 witky = S, (which is
nd by Proposition 24 = py, y = o, andxg = 0 (the null measure). Observe now tkagty, L) =

Kq(M1, H2) (w1 4+ wp) 9. Since the product of two pd kernels is a pd kernel and (Proposition 25)
(w1 +wp) 9is a pd kernel, fog € [0, 1], we conclude thalty is pd. [ |

As we can see, the weighted Jensen-Tsallis kernels have two inheopetis: they are pa-
rameterized by the entropic indeyand they allow their arguments to be unbalanced, that is, to have
different weightswy. We now mention some instances of kernels where each of these defjrees o
freedom is suppressed. We start with the following subfamily of kernbtsjmed by setting = 1.

Definition 28 (weighted Jensen-Shannon kernelsyhe kernelkys: (MH(X))? — R is defined
askyjs= ki, that is,

kwadhe,b2) = kwidwipr, wap2)
= (H(1m) —J3"(p1, p2)) (01 +w3),

where p = wp/w and p = /W, are the normalized counterpart of; pand |p, and 1t =
(0 /(00 + @), w2/ (W1 + w2)).
Analogously, the kernelgs: (MY (X)\ {O})2 — R is simply kyjs= kq, that is,

kwad M, l2) = kwadwrpa, wep2) = H (1) — 3™ (py, p2).

Corollary 29 The weighted Jensen-Shannon kerﬁ@}gsand kyysare pd.
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Proof Invoke Proposition 27 witly = 1. |

The following family ofweighted exponentiated JS kerngeneralize the so-callegkponenti-
ated JSkernel, that has been used, and shown to be pd, by Cuturi and Qe8).2

Definition 30 (Exponentiated JS kernel) The kernel kjs: M1 (X) x Mi(x) — R is defined, for
t>0,as

kEJi P1, p2) = exp[_t ‘JS( P1, p2)] .
Definition 31 (Weighted exponentiated JS kernels)The kernel g5t MY (X) x MP (X) — Ris
defined, for t 0, as

kweadha, o) = explt kwadHa, be)]
= exp(tH(m) exp[-tI"(py, p2)] - 37)

Corollary 32 The kernels {gjsare pd. In particular, ke jsis pd.

Proof Results from Proposition 19 and Corollary 29. Notice that althdygh;sis pd, none of its
two exponential factors in (37) is pd. |

We now keepq € [0, 2] but consider the weighted JT kernel family restricted to normalized
measureskq|(Mi<X))z. This corresponds to setting uniform weights & w, = 1/2); note that in

this casek, andk, collapse into the same kernel,

Kg(P1, P2) = Kg(P1, P2) = INg(2) — Tq(P1, P2)-

Proposition 27 guarantees that these kernels are pd €o0j0,2|. Remarkably, we recover three
well-known particular cases faye {0,1,2}. We start with the Jensen-Shannon kernel, introduced
and shown to be pd by Hein et al. (2004); itis a particular case of a weidbtgsen-Shannon kernel
in Definition 28.

Definition 33 (Jensen-Shannon kernel)The kernel ks: M1 (X) x M1 (X) — R is defined as
k-]S( pla pZ) = In2_ ‘]q pl) p2)
Corollary 34 The kernel ksis pd.

Proof kjsis the restriction okysto M1 (X) x M1 (X). [ |

Finally, we study two other particular cases of the family of Tsallis kernelsBtt@ean and
linear kernels.

Definition 35 (Boolean kernel) Let the kernel Ky : Mf”l(x) X Mf”l(x) — R be defined asdgo =
ko, that is,

kgool(P1, P2) = V (SUPR P1) NSUPHP2)) ,
that is, kgool( P1, P2) €quals the measure of the intersection of the supports (cf. Equationi26).
particular, if X is finite andv is the counting measure, the above may be written as

Kool (P1, P2) = H p1© pZHO'
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Definition 36 (Linear kernel) Let the kernel j, : M%’l(x) X M%’l(x) — R be defined as

1
Kin (P1, P2) = > (P1, P2)-
Corollary 37 The kernels ko and ki, are pd.

Proof Invoke Proposition 27 witlg = 0 andg = 2. Notice that, forg = 2, we just recover the
well-known property of the inner product kernel ($topf and Smola, 2002), which is equal to
kin up to a scalar. |

In conclusion, the Boolean kernel, the Jensen-Shannon kernel, afidgar kernel are simply
particular elements of the much wider family of Jensen-Tsallis kernels, conhuparameterized
by q € [0,2]. Furthermore, the Jensen-Tsallis kernels are a particular subfamily ef/émewider
set of weighted Jensen-Tsallis kernels.

One of the key features of our generalization is that the kernels areededim unnormalized
measures, with arbitrary mass. This is relevant, for example, in applicatiéesnels on empirical
measures (e.g., word counts, pixel intensity histograms); instead of takaisp of normalization
Hein et al. 2004, we may leave these empirical measures unnormalized]dasgobjects of dif-
ferent size (e.qg., total number of words in a document, total number of imagje)to be weighted
differently. Another possibility opened by our generalization is the expliciusion of weights:
given two normalized measures, they can be multiplied by arbitrary (positiights before being
fed to the kernel function.

6.3 Other Kernels Based on Jensen Differences argdDifferences

It is worthwhile to note that the Jenser@f®i and the Jensen-Tsallis divergences also yield positive
definite kernels, albeit there are not any obvious “weighted generalizitike the ones presented
above for the Tsallis kernels.

Proposition 38 (Jensen-Rnyi and Jensen-Tsallis kernels)For any qe [0, 2], the kernel

(P2, P2) — & <p142rp2>

and the (unweighted) Jensen-Tsallis divergengg2D) are nd kernels on &I(X) X Mi(x).
Also, for any ¢ [0, 1], the kernel

(P1,P2) — Ry (p142rp2>

and the (unweighted) Jenser@i®yi divergenceg] (19) are nd kernels on N(I(X) X Mi(x).

Proof The fact that(ps, p2) — g(@) is nd results from the embedding— x/2 and Propo-
sition 24. Since(py, p2) — w is trivially nd, we have thatls, is a sum of nd func-

tions, which turns it nd. To prove the negative definiteness of the kemep,) — Ry (@),
notice first that the kernelx,y) — (x+Y)/2 is clearly nd. From Lemma 21 and integrating,
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we have that(py, p2) — J (2£2)% is nd for g € [0,1]. From the same lemma we have that
(p1, p2) — In (t+f (@)q) is nd for anyt > 0. Since [ (252)? > 0, the nonnegativity of

(p1, P2) — Ry (252) follows by taking the limitt — 0. By the same argument as above, we con-
clude thatlg, is nd. |

As a consequence, we have from Lemma 19 that the following kernelsldoe pnyq € [0, 1]

andt > 0: ‘
kear(pa, p2) = exp(—th <p1; p2>> = (/ <plzp2>q>lq,

and its “normalized” counterpart,

)
kear(P1: P2) = exp(—tdr, (p1, P2)) = | * =2 ‘

\/J PiSp3

Although we could have derived its positive definiteness without everriafj to the Rnyi entropy,

the latter has in fact a suggestive interpretation: it corresponds to amexpation of the Jensen-
Rényi divergence; it generalizes the cape: 1 which corresponds to the exponentiated Jensen-
Shannon kernel.

Finally, we point out a relationship between the Jensen-Tsallis diveeggection 3.4) and a
family of difference kernels introduced by Fuglede (2005),

a 1/q B l/B
ot = (20) - (E25)

Fuglede (2005) derived the negative definiteness of the above fankigrioéls provided K o <
and /2 < 3 < a; he went further by providing representations for these kernels. ¢teih (2004)
used the fact that the integrfilp, g(x(t),y(t))dt(t) is also nd to derive a family of pd kernels for
probability measures that included the Jensen-Shannon kernel (E&83pe

We start by noting the following property of the extended Tsallis entropictwnils very easy to
establish:

Si(W) =g Syq(H%)

As a consequence, by making the substitutiofisg 1, x; £ y{ andx, £ y3, we have that

0Ly = S (y1+y2) ) <s1(Y1)+Sq(YZ)>

2 2
r r\ 1/r
:,13<<m;@> >_Svo;svﬁ]
= rJ~S (Xl,Xz)
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where we introduced

r r\ 1/r
Boax) = s(<;) >_S<>;S<>

r r\ 1/r
— ooyt |(B5%) R

2 2
SinceJs, is nd forq € [0,2], we have thaf is nd forr € [1/2, .

Notice that whileJs, may be interpreted as “the difference between the Tsgpkistropy of the
mean and the mean of the Tsallieentropies,”Js, may be interpreted as “the difference between
the Tsallisg-entropy of theg-power mean and the mean of the Tsadjientropies.”

From (38) we have that

. (38)

[ Waglxy) = (@ =13, 0cy) — (B 135 (x),

so the family of probabilistic kernels studied in Hein et al. (2004) can be wiittearms of Jensen-
Tsallis divergences.

6.4 k-th Order Jensen-Tsallis String Kernels

This subsection introduces a new class of string kernels inspired b ttherder JTg-difference
introduced in Section 5.3. Although we refer to them as “string kernelsy’ &ine more generally
kernels between stochastic processes.

Several string kernels (i.e., kernels operating on the space of striagspleen proposed in the
literature (Haussler, 1999; Lodhi et al., 2002; Leslie et al., 2002; \V@stathan and Smola, 2003;
Shawe-Taylor and Cristianini, 2004; Cortes et al., 2004). These anelkedefined omd* x 4*,
where 4* is the Kleene closure of a finite alphab®t(i.e., the set of all finite strings formed by
characters irA together with the empty string). The p-spectrum kerndlLeslie et al., 2002) is as-
sociated with a feature space indexedy/(the set of lengttp strings). The feature representation
of a strings, ®P(s) £ (@ll(s))ue2r, coOunts the number of times eagke 4P occurs as a substring of
S,

@(s) = |[{(v1,V2) : S=ViUWL}|.

The p-spectrum kernel is then defined as the standard inner prod&ctin
ksk(s.t) = (®P(s), @P(1)). (39)
A more general kernel is theeighted all-substrings kern@Vishwanathan and Smola, 2003), which

takes into account the contribution of all the substrings weighted by theithempis kernel can be
viewed as a conic combination pfspectrum kernels and can be written as

kWASK(S,t) = z kagK(S,t), (40)
p=1

wherea is often chosen to decay exponentially withand truncated; for example,, = AP, if
Pmin < P < Pmax @anda, = 0, otherwise, where & A < 1 is the decaying factor.
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Both kgK and kyask are trivially positive definite, the former by construction and the latter
because it is a conic combination of positive definite kernels. A remarkatilesfdnat both kernels
may be computed i®(|s| + |t|) time (i.e., with cost that is linear in the length of the strings), as
shown by Vishwanathan and Smola (2003), by using data structuresaswsalffix trees or suffix
arrays (Gusfield, 1997). Moreover, wigtiixed, any kernek(s,t) may be computed in tim&(|t|),
which is particularly useful for classification applications.

We will now see how Jensen-Tsallis kernels may be used as string keim&sction 5.3, we
have introduced the concept joint andconditionalJT g-differences. We have seen that joint JT
g-differences are just Jg-differences in a product space of the fodn= X; x Xo; for k-th order
joint JT g-differences this product space is of the fafth= 4 x 4%1. Therefore, they still yield
positive definite kernels as those introduced in Definition 26, where 4X. The next definition
and proposition summarize these statements.

Definition 39 (k-th order weighted JT kernels) Let .(A4) be the set of stationary and ergodic
stochastic processes that take values on the alphabefor k € N and qge [0, 2], let the kernel
kgk : (Ry x.#(4))? — R be defined as

s

Eq((lt)lpsl ks W2 Ps, k) (41)
= (ST 5%)) (@1 @),

Kak((@1,51), (02, %))

where g, « and p, k are the k-th order joint probability functions associated with the stochastic

sources sand 9, andTt= (w /(w1 + 6y), 0/ (W1 + 6y)).
Let the kernel ki : (R x . (4))? — R be defined as

Kak((w1,51), (02,%2)) £ Kq(001Psy k, W2Ps, k) (42)
= (S - T (s %2))

Proposition 40 The kerneiqk is pd, for ge [0,2]. The kernel ki is pd, for ge [0,1].

Proof Define the mam: R, x.(4) — R x M_lgsq(ﬂlk) as(w,s) — g(w,s) = (w Psk). From
Proposition 27, the kernég(g(w1,s1),9(uwe,s)) is pd and therefore so igx((w1,s1), (W2, S2));
proceed analogously fdg, k. |

At this point, one might wonder whether thieth order conditional JT kerne@ondthat would

be obtained by replacing™ ™ with Tcond" in (41-42) is also pd. Formula (35) shows that such
“conditional JT kernel” is a dlfference between two joint JT kernels, Whscinconclusive. The
following proposition shows thakg"“d and kgond are not pd in general. The proof, which is in
Appendix D, proceeds by building a counterexample.

Proposition 41 Let ng’k”d be defined a&Sd(sy, s) 2 (Sq(n) —quf(’”d"(sl,SQ)) (w1 + »)% and
kS be defined asR(s1, s2) £ (Sq(T[) — Tq‘ff(’”d"(sl,sz)>. It holds thatﬂgf’k”d and K5 are not pd

in general.
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Despite the negative result in Proposition 41, the chain rule in PropositistillLlallows us to
define pd kernels by combining conditional gHifferences.

Proposition 42 Let (Bk)ken be @ non-increasing infinitesimal sequence, that is, satisfying

Bo>P1>...2Bn—0

Any kernel of the form
2 P kG (43)
K=

is pd for gqe [0,2]; and any kernel of the form

ki Br k&G

is pd for gqe [0, 1], provided both series above converge pointwise.

Proof From the chain rule, we have that (defining the 0-th order joing-dlifference a§q70 £0)
[oe] ~ [ee] ~ ~ n ~ ~ [oe] —
> Bk = 3 Belkoiia—kae) = M Y axkai+PBokgnis = Y oickqx (44)
K=0 k=0 K=1 K=1

with ay = Bx_1 — Bk (the term limBukyn 1 was dropped becaugl — 0 andkgn:1 is bounded).
Since (Bx)ken is non-increasing, we have th@y)ken foy is Non-negative, which makes (44) the
pointwise limit of a conic combination of pd kernels, and therefore a pd kerfiee proof for
Yo BrkS3is analogous. u

Notice that if we sefo=... =Bk_1 = 1 andBj =0, ¥j >k, in the above proposition, we
recover thek-th order joint JTg-difference.

Finally, notice that, in the same way that the linear kernel is a special cas&ldternel when
g =2 (see Cor. 37), the-spectrum kernel (39) is a particular case gf-th order joint JT kernel,
and the weighted all substrings kernel (40) is a particular case of a catidirof joint JT kernels
in the form (43), both obtained when we et 2 and the weightsy andw, equal to the length
of the strings. Therefore, we conclude that the JT string kernels irteatun this section subsume
these two well-known string kernels.

7. Experiments

We illustrate the performance of the proposed nonextensive informatioreticekernels, in com-
parison with common kernels, for SVM-based text classification. We padd experiments with
two standard data setReuters-21578andWebKB* Since our objective was to evaluate the ker-
nels, we considered a simple binary classification task that tries to discrimimategathe two
largest categories of each data set; this led us tede-vs-acalassification task for the first data
set, andstud-vs-faqstudentsvs. faculty webpages) in the second data set. Two different frame-
works were considered: modeling documents as bags of words, and ngotiedin as strings of
characters. Therefore, both bags of words kernels and stringlkemere employed for each task.

3. Available atww. davi ddl ewi s. cont resour ces/testcol | ections.
4. Available atwwy. cs. cnu. edu/ af s/ ¢s. cmu. edu/ proj ect/ t heo- 20/ www/ dat a.
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7.1 Documents as Bags of Words

For the bags of words framework, after the usual preprocessing atgpemming and stop-word re-
moval, we mapped text documents into probability distributions over words ttegngag-of-words
model and maximum likelihood estimation; this corresponds to normalizintetine frequencies
(tf) using thel;-norm, and is referred to aé (Joachims, 2002; Baeza-Yates and Ribeiro-Neto,
1999). We also used theidf (term frequency-inverse document frequency) representationhwhic
penalizes terms that occur in many documents (Joachims, 2002; BaezaavidtdRibeiro-Neto,
1999). To weight the documents for the Tsallis kernels, we tried four gtesteuniform weighting,
word counts, square root of the word counts, and one plus the logavittime word counts; how-
ever, for both tasks, uniform weighting revealed the best strategyhwhi&y be due to the fact that
documents in both collections are usually short and do not differ much in size

As baselines, we used the linear kernel withnormalization, commonly used for this task
(Joachims, 2002), and the heat kernel approximation introduced Iigrtygnd Lebanon (2005):

n 1
Khead P1, P2) = (47t) 2 eXp<_4t d3(p1, pz)) ;

wheret > 0 anddg(p1, p2) = 2arccos{zi \/W) Although Lafferty and Lebanon (2005) provide
empirical evidence that the heat kernel outperforms the linear kernehdt iguaranteed to be pd
for an arbitrary choice df, as we show in Appendix E. This parameter and the S¥pharameter
were tuned by cross-validation over the training set. The SVM-Light ageKavailable att t p:
[/svm i ght.joachins. org/) was used to solve the SVM quadratic optimization problem.

Figures 2—3 summarize the results. We report the performance of the keallels as a func-
tion of the entropic indeg. For comparison, we also plot the performance of an instance of a Tsallis
kernel withq tuned by cross-validation. For the first task, this kernel and the twdibasexhibit
similar performance for both thiéé and thetf-idf representations; differences are not statistically
significant. In the second task, the Tsallis kernel outperformedtim@rmalized linear kernel for
both representations, and the heat kernetftadf ; the differences are statistically significant (using
the unpaired test at the M5 level). Regarding the influence of the entropic index, we observe that
in both tasks, the optimal value qgfis usually higher fotf-idf than fortf.

The results on these two problems are representative of the typical egiatiformance of the
kernels considered: in almost all tested cases, both the heat kerngieaiidallis kernels (for a
suitable value of)) outperform the/,-normalized linear kernel; the Tsallis kernels are competitive
with the heat kernel.

7.2 Documents as Strings

In the second set of experiments, each document is mapped into a probdisiiitpution over
charactemp-grams, using maximum likelihood estimation; we did experimentgfer3,4,5. To
weight the documents for theeth order joint Jensen-Tsallis kernels, four strategies were attempted:
uniform weighting, document lengths (in characters), square rooteofltttument lengths, and
one plus the logarithm of the document lengths. Forehm-vs-acgask, all strategies performed
similarly, with a slight advantage for the square root and logarithm of therdent lengths; for

the stud-vs-fadask, uniform weighting revealed the best strategy. For simplicity, all @xeeits
reported here use uniform weighting.
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Figure 2: Results foearn-vs-acqusingtf andtf-idf representations. The error bars represeht
standard deviation on 30 runs. Training (resp. testing) with 200 (reé=p). samples per
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Figure 3: Results fostud-vs-faausingtf andtf-idf representations. The error bars represent

standard deviation on 30 runs. Training (resp. testing) with 200 (rex). samples per
class.

As baselines, we used thpespectrum kernel (PSK, see 39) for the valuep oéferred above,
and the weighted all substrings kernel (WASK, see 40) with decayingrféigned toA = 0.75
(which yielded the best results), within = p set to the values above, apgax = ©. The SYMC
parameter was tuned by cross-validation over the training set.

Figures 4-5 summarize the results.

For the first task, the JT string kernel and the WASK outperformed the (ABK statistical
significance forp = 3), all kernels performed similarly fgo = 4, and the JT string kernel outper-
formed the WASK forp = 5; all other differences are not statiscally significant. In the second task
the JT string kernel outperformed both the WASK and the PSK (and the W\gerformed the
PSK), with statistical significance fqr = 3,4,5. Furthermore, by comparing Figures 3 and 5, we
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Figure 4: Results foearn-vs-acausing string kernels and= 3,4,5. The error bars represeiitl
standard deviation on 15 runs. Training (resp. testing) with 200 (rés). samples per
class.

also observe that the 5-th order JT string kernel remarkably outpesfall bags of words kernels

for the stud-vs-fadask, even though it does not use or build any sort of language moiihel ard
level.

8. Conclusions

In this paper we have introduced a new family of positive definite kernélgdam measures, which
includes previous information-theoretic kernels on probability measunearéisular cases. One of
the key features of the new kernels is that they are defined on unnorchale&sures (not necessar-
ily normalized probabilities). This is relevant, for example, for kernels oniecapmeasures (such
as word counts, pixel intensity histograms); instead of the usual stepoiatination (Hein et al.,
2004), we may leave these empirical measures unnormalized, thus allowawysobf different
sizes (e.g., documents of different lengths, images with different sizé® veeighted differently.
Another possibility is the explicit inclusion of weights: given two normalized roess they can
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Figure 5: Results fostud-vs-faaising string kernels and = 3,4,5. The error bars represetitl

standard deviation on 15 runs. Training (resp. testing) with 200 (résp). samples per
class.

be multiplied by arbitrary (positive) weights before being fed to the kenmattion. In addition,

we define positive definite kernels between stochastic processes Hisairse well-known string
kernels.

The new kernels and the proofs of positive definiteness rely on otherauoatributions of this
paper: the new concept gfconvexity, for which we proved densen g-inequalitythe concept
of Jensen-Tsallis g-differenc@ nonextensive generalization of the Jensen-Shannon divergence
denormalization formulae for several entropies and divergences.

We have reported experiments in which these new kernels were usegorsugctor machines
for text classification tasks. Although the reported experiments do notdesttiong conclusions,
they show that the new kernels are competitive with the state-of-the-artria sases yielding a
significant performance improvement.

Future research will concern applying Jensen-TsegHilifferences to other learning problems,
like clustering, possibly exploiting the fact that they accept more than twomzegts.
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Appendix A. Suyari’'s Axioms for Nonextensive Entropies

Suyari (2004) proposed the following set of axioms (above refeaseSuyari’'s axioms) that deter-
mine nonextensive entropies of the form stated in (1). Betpw,0 is any fixed scalar anl; is a
function defined onu®_ A1,

(A1) Continuity. fq|an-1 is continuous, for any € N;

(A2) Maximality. For anyn € N and(py,...,pn) € A1,
fq(P1,---,Pn) < &(2/n,...,1/n);
(A3) Generalized additivityFori =1,...,n, j=1,....m, pjj > 0, andp; = z’j“:l Pij »
fo(Pa,- -, Pom) = fq(Pr,---, Pn) +
d q.f <p|l pimi > .
2P0 )
(A4) Expandability fq(p1,...,Pn,0) = fq(p1,...,Pn).

Appendix B. Proof of Proposition 8

Proof The casey = 1 corresponds to the Jensen difference and was proved by Bundelam
(1982) (Theorem 1). Our proof extends thagtg 1. Lety = (y1,...,Ym), wherey; = (Y1, .- -, Yin)-
Thus

Towly) = ¥ <tZlTliyt> —t;”tq W)

5 [t_iﬂqu(w) 0 (imw)

showing that it suffices to consider= 1, where eacly; € [0, 1], that is,

Taw(Y1, - Ym) = iﬂ?cb(yt) —¢ (iw) ;
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this function is convex ofD, 1] if and only if, for every fixedqy, ..., am € [0,1], andby, ...,bn € R,
the function

f(X) = Tqw(a1+bix, ..., am+ bmx)

is convexin{x€ R:a+bxe [0,1],t =1,...,m}. Sincef isC?, itis convex if and only iff”(t) > 0.
We first show that convexity of (equivalently oquf‘qJ) implies convexity ofp. Lettingc =

a +bix, ,
f7(x err? b2 ¢”( (tint bt) o’ (tim Ct) : (45)

By choosingx=0,a& =ac [0,1], fort =1,...,m, andby, ..., by, satisfyingy, ¢by = 0 in (45), we
get

£(0) = ¢" - 2’
0)=¢ (a)t;ﬂqbt

hence, iff is convex$”(a) > 0 thusd is convex.
Next, we show that conveX|ty df also implies(2 — g)-convexity of—1/¢"”. By choosingc=0
(thusc; = &) andb, = 18 %(¢”(a)) L, we get

) m 29 m Tlfiq ’ i [ <
f7(0) = 2 ¢”(at)_ <t ¢N(at)> ¢ <tzlmat>

1 i S\ o ($na
0" (FlyTha) t; " (a) Zlcb” Zl
where the expression inside the square brackets is the Jghsay)-difference of Y¢” (see Def-
inition 7). Since¢”(x) > 0, the factor outside the square brackets is non-negative, thus trenJens

(2— q)-difference of ¥¢” is also nonnegative and1/¢"” is (2— q)-convex.
Finally, we show that iy is convex and-1/¢" is (2 — qg)-convex, thenf” > 0, thuqu"TqJ is

convex. Letry = (qié /9" (c;))Y/? ands = by (1§'9” () /q)/%; then, non-negativity of” results
from the following chain of inequalities/equalities:

2
o< (59) (59)-(32)
m - m m 2
= t;q,,,(:)t;b?TﬁW(ct) - (zm) (47)
m 2
< e ST (;m) (49

1

— —. (1), 49
¥ ismne (49)

where: (46) is the Cauchy-Schwarz inequality; Equality (47) results fitwe definitions of; and

s and from the fact that s, = b Tg; Inequality (48) states th@ — q)-convexity of—1/¢"; equality
(49) results from (45). |
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Appendix C. Proof of Proposition 10
Proof The proof of (29), forg > 0, results from

1 i(
52

T(prbn) = o

) -Ze(i )
snatif [ - (Ere)

where the inequality holds since, far> 0: if q > 1, theny; y? < (3;yi)%; if g€ [0,1], theny; yi >
(Ziyi)".

The proof thaﬂ'q’T > 0forg> 1, uses the notion af-convexity. Sincex is countable, the Tsallis
entropy is as in (2), thu§, > 0. Since—&; is 1-convex, then, by Proposition 6, it is alg@onvex
for g > 1. Consequently, from thg-Jensen inequality (Proposition 5), for finifg with |7| =

Tq (P1;---, Pm) = <Zmpt> —t_in?sq(pt) >0

SinceS; is continuous, so igJ', thus the inequality is valid in the limit a8 — oo, which proves the
assertion forI” countable. Finally',l'q"(él, ...,01,...) =0, whered; is some degenerate distribution.
Finally, to prove (30), fog € [0, 1] and X finite,

T3(P1,---,Pm) = %(ﬁmm) _th\T[?Sq(pt)

i
~1

> imsqm)—inﬁsq(m (50)
= i("t_'"?
t=
U)S (- 51
> §( )t;(ﬂi ) (51)
= S(m[L-nt.

where the Inequality (50) results froy being concave, and the Inequality (51) holds since
¢ <0, forg € [0,1], and the uniform distributiod maximizesS,, with §,(U) = (1—n'"9)/(q—1).
[ |

Appendix D. Proof of Proposition 41

Proof We show a counterexample with= 1 (the extensive case)t= (1/2,1/2) andk = 1,

that discards both cases. It suffices to show Klfdtﬁondé \/Tftl)"d'(l/z’l/z) violates the triangle
inequality for some choice of stochastic processes, s3 and therefore is a not a squared distance;
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this in turn implies that, /J%O”OI is not nd and, from Proposition 18, that the above two kernels
are not pd. We defingy, s,,s3 to be stationary first order Markov processes in a binary alphabet
A4 ={0,1} defined by the following transition matrices, respectively:

Sl—lim-l_s e ] [ 1 O

Te0| 1/4 34| | 1/4 3/4 )

. [3/4 1/4 ] [3/4 1/4]

Sz—l'i%_ e 1-¢| | 0O 1 |’

and ) o i
S = lim e 1-¢| | O 1

Te0| 14 3/4 | | 1/4 3/4 )

whose stationary distributions are

o—limi 1i_ |1
1= 01+4de| 4| |0
4¢
1

i 1 |0
02_£%1+4e[ ] - [ 1 }
and
03:Iim1[ 1 }: { 1/5}
e-05—4e | 4—4¢ 4/5
The matrix of first order conditional JT 1-differences (or first ordenditional Jensen-Shannon
divergences) is
H(2) 0 0 0390
)—2H(3) ] ~ { x 0 0.128] : (52)
x ok 0

which fails to be negative definite, since

\/‘]Sl:ond(slvsz) + \/Jiond(S&%) < \/Jﬁond(s&’s‘%)’

which violates the triangle inequality required fgr\]ﬁond to be a metric.
Interestingly, the O-th order conditional Jensen-Shannon diveegeatrix (this one ensured to
be negative definite because it equals a standard Jensen-Sharergemite matrix) is

1 H(Z)-iHQE) 0 1 0610
0 H(io) H@E) ] ~ ! £ 0 0.108] . (53)
% ok 0

From the chain rule (35), we have that the sum of the matrices (52) apds(88% second order
joint Jensen-Shannon divergence, and therefore is also guatdotee negative definite. |
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Appendix E. The Heat Kernel Approximation

The diffusion kernel for statistical manifolds, recently proposed bydraf and Lebanon (2005), is
grounded in information geometry (Amari and Nagaoka, 2001). It modeldiffusion of “informa-
tion” over a statistical manifold according to the heat equation. Since in tieeo€¢éise multinomial
manifold (the relative interior oA"), the diffusion kernel has no closed form, the authors adopt
the so-called “first-order parametrix expansion,” which resembles thesgm kernel replacing the
Euclidean distance by the geodesic distance that is induced when the mandoldowed with a
Riemannian structure given by the Fisher information (we refer to LaffentyLebanon 2005 for
further details). The resulting heat kernel approximation is

n 1
Kheaf P1, P2) = (4Tt) 2 exp<—4t dg(pu, pz)) :

wheret > 0 anddg(p1, p2) = 2arccos{zi v/ P1i p2i). Whetherkeqtis pd has been an open problem
(Hein et al., 2004; Zhang et al., 2005). LS be the positive orthant of thedimensional sphere,
that is,

n+1
Sg:{<xl,...,xn+1>em<"“r > -1 vsz}-
i=

The problem can be restated as follows: is there an isometric embeddingtréonsome Hilbert
space? In this section we answer that question in the negative.

Proposition 43 Let n> 2. For sufficiently large t, the kernehk:is notpd.
Proof From Proposition 19%eatis pd, for allt > 0, if and only ifdg is nd. We provide a coun-

terexample, using the following four points &f: p; = (1,0,0), p> = (0,1,0), ps = (0,0,1) and
pa = (1/2,1/2,0). The squared distance matf;;] = [d3(pi, p;)] is

0441
b_T |40 41
4 |4 40 4
1140

Takingc = (—4, —4,1,7) we havec' Dc= 212 > 0, showing thaD is not nd. Althoughps, p2, ps, P4
lie on the boundary oA?, continuity ofdé implies that it is not nd on the relative interior &f. The
casen > 2 follows easily, by appending zeros to the four vectors above. |
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