Journal of Machine Learning Research 10 (2009) 2571-2613 bm8ted 12/07; Revised 1/09; Published 11/09

Learning When Concepts Abound

Omid Madani MADANI| @AI.SRI.COM
SRI International, Al Center

333 Ravenswood Ave

Menlo Park, CA 94025

Michael Connor CONNOR2@UIUC.EDU
Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

Wiley Greiner W.GREINER@LASOFT.COM
Los Angeles Software Inc
Santa Monica, CA 90405

Editor: Ralf Herbrich

Abstract

Many learning tasks, such as large-scale text categarizatd word prediction, can benefit from
efficient training and classification when the number of s#as in addition to instances and fea-
tures, is large, that is, in the thousands and beyond. Westigete the learning of sparse class
indicesto address this challenge. An index is a mapping from feattoeclasses. We compare
the index-learning methods against other techniquegjdiay one-versus-rest and top-down clas-
sification using perceptrons and support vector machines.fild that index learning is highly
advantageous for space and time efficiency, at both traamidgclassification times. Moreover, this
approach yields similar and at times better accuracies.r@igms with hundreds of thousands of
instances and thousands of classes, the index is learnethine®, while other methods can take
hours or days. As we explain, the design of the learning @peaables conveniently constraining
each feature to connect to a small subset of the classes indbe. This constraint is crucial for
scalability. Given an instance withactive (positive-valued) features, each feature on aeetag-
necting tod classes in the index (in the order of 10s in our experimenfgjate and classification
takeO(dllog(dl)).

Keywords: index learning, many-class learning, multiclass learnorgine learning, text catego-
rization

1. Introduction

A fundamental activity of intelligence is to repeatedly and rapidly catego@asegorization (clas-
sification or prediction) has a number of uses; in particular, categorizatiahles inferences and
the taking of appropriate actions in different situations. Advanced intetliggemhether of animals
or artificial systems, may require effectively working with myriad classeadepts or categories).
How can a system quickly classify when the number of classes is huge€Riguhat is, in the thou-
sands and beyond? In nature, this problem of rapid classification in ¢isenqme of many classes
may have been addressed (for evidence of fast classification in tted dimsmain, see Thorpe et al.
1996 and Grill-Spector and Kanwisher 2005). Furthermore, ideallyeek systems thafficiently

(©2009 Omid Madani, Connor and Greiner.

MADANI, CONNOR AND GREINER

000 ~ o
.00
~, 00
X é ‘»QO
.\QO
On OO0

Figure 1: The problem of quick classification in the presence of myriadetasiow can a system
quickly classify a given instance, specified by a feature vectoR", into a small subset
of classes from among possibly millions of candidate classes (shown by crobdk)?
How can a systerefficiently learnto quickly classify?

learnto efficiently classify in the presence of myriad classes. Many tasks caiewed as instan-
tiations of thislarge-scale many-cladearning problem, including: (1) classifying text fragments
(such as queries, advertisements, news articles, or web pages) inje addlection of categories,
such as the ones in the Yahoo! topic hierarchiyt ¢: / / di r. yahoo. con) or the Open Directory
Project ftt p: //dnmoz. or g) (e.g., Dumais and Chen, 2000; Liu et al., 2005; Madani et al., 2007;
Xue et al., 2008), (2) statistical language modeling and similar predictiongmatie.g., Goodman,
2001; Even-Zohar and Roth, 2000; Madani et al., 2009), and (@yméing the visual categories
for image tagging, object recognition, and multimedia retrieval (e.g., Warlg 2081; Forsyth and
Ponce, 2003; Fidler and Leonardis, 2007; Chua et al., 2009; Aeaehgl., 2009). The following
realization is important: in many prediction tasks, such as predicting wordsti(stetistical lan-
guage modeling), training data is abundant because the class label$ emsthpthat isthe source

of class feedback (the labels) need not be explicit assignment by bsearalso Section 3.1).

To classify an instance, applying binary classifiers, one by one, tondisiethe correct class(es)
is quickly rendered impractical with increasing number of classes. Mere®arning binary clas-
sifiers can be too costly with large numbers of classes and instances (milidrimegond). Other
techniques, such as nearest neighbors, can suffer similar drasylsagih as prohibitive space re-
guirements, possibly slow classification speeds, or poor generalizatieallyl, we desire scalable
discriminative learning methods that learn compact classification systemst#imisalequate accu-
racy.

One idea for achieving quick classification is to use the features of the gigtance as cues to
dramatically reduce the space of possibilities, that is, to build and update angappanindex
from features to the classes. We explore this idea in this work. An indexisiarweighted bipartite
graph that connects each feature to zero or more classes. Durinificd¢ies, given an instance
containing certain features, the index is used (“looked up”) much like adypigerted index for
document retrieval would be. Here, classes are retrieved and ragkbeé scores that they obtain
during retrieval, as we describe. The ranking or the scores can theselddor class assignment. In
this work, we explore the learning of such cues and connections, widchfer to asndex learning
For this approach to be effective overall, roughly, two properties tebdld: To achieve adequate
accuracy and efficiency and in many problems arising in practice, (lh)feature need only connect

2572

LEARNING WHEN CONCEPTSABOUND

to a relatively small number of classes, and (2) these connections cascbeated efficiently. We
provide empirical evidence for these conjectures by presenting effiei@hcompetitive indexing
algorithms.

We design our algorithms to efficiently learn sparse indices that yield gecciess rankings.
As we explain, the computations may best be viewed as being carried outtfeoside of features.
During learning, each feature determines to which relatively few classbsitld lend its weights
(votes) to, subject to (space) efficiency constraints. This parsimongrinections is achieved
by a kind of sparsity-preservingipdates. Given an instance withactive (i.e., positive-valued)
features, each feature on average connectimgctasses in the index, update and classification take
O(dllog(dl)) operations.d is in the order of 10s in our experiments. The approach we develop
uses ideas from online learning and multiclass learning, including mistalendxivd margin-based
updates, and expert aggregation (e.g., (e.g., Rosenblatt, 1958;t@rd&&dek, 1986; Littlestone,
1988; Crammer and Singer, 2003a), as well as the idea of the inverted andere data structure
in information retrieval (e.g., Witten et al., 1994; Turtle and Flood, 1995zBaéates and Ribeiro-
Neto, 1999).

We empirically compare our algorithms to one-versus-rest and top-dowsifodéa based meth-
ods (e.g., Rifkin and Klautau, 2004; Liu et al., 2005; Dumais and CherQ)2@mhd to the first
proposal for index learning by Madani et al. (2007). We use lineasdlars—perceptrons and
support vector machines—in the one-versus-rest and top-down nset@oe-versus-rest is a sim-
ple strategy that has been shown to be quite competitive in accuracy in mulsekdisgs, when
properly regularized binary classifiers are used (Rifkin and Klauta®4 2 and linear support vec-
tor machines achieve the state of the art in accuracy in many text classifipatiblems (e.g.,
Sebastiani, 2002; Lewis et al., 2004). Hierarchical training and clastsificis a fairly scalable and
conceptually simple method that has commonly been used for large-scalatexbization (e.g.,
Koller and Sahami, 1997; Dumais and Chen, 2000; Dekel et al., 2003 kiu 2005).

In our experiments on six text categorization data sets and one word tppadicoblem, we
find that the index is learned in seconds or minutes, while the other methodkedrotas or days.
The index learned is more efficient in its use of space than those of thectdksification systems,
and yields quicker classification time. Very importantly, we find that budgetiegdmnections of
the features is a major factor in rendering the approach scalable. Werekpla the design of
the update makes this budget enforcement convenient. We have abffea¢he accuracies are
as good as and at times better than the best of the other methods that we Aested.explain,
methods based on binary classifiers, such as one-versus-respashaiito, are at a disadvantage in
our many-class tasks, not just in terms of efficiency but also in accuréeyindexing approach is
simple: it requires neither taxonomies, nor extra feature reduction mregsimg. Thus, we believe
that index learning offers a viable option for various many-class settings.

The contribution of this paper include:

¢ Raising the problem of large-scale many-class learning, with the goahahéicg both effi-
cient classification and efficient training

e Proposing and exploring index learning, and developing a novel weiggiéte method in the
process

e Empirically comparing index learning to several commonly used techniques,range of
small and large problems and under several evaluation measures td@ceaund space and

2573

MADANI, CONNOR AND GREINER

time efficiency, and providing evidence that very scalable systems as@fmowithout sacri-
ficing accuracy

This paper is organized as follows. In Section 2, we discuss related viorgection 3, we
describe and motivate the learning problem, independent of the solutivegstraVe explain the
index, and describe our implementation and measures of index quality, in télmshoaccuracy
and efficiency. We then report on the NP-hardness of a formalizatitreohdex learning problem.
In Section 4, we present our index learning approach. Through@usdction, we discuss and
motivate the choices in the design of the algorithms. In particular, the coasaeof what each
feature should do in isolation turns out to be very useful. In Section 5rigflybdescribe the other
methods we compare against, including the one-versus-rest and toprdethiods. In Section 6,
we present a variety of experiments. We report on comparisons amorgctingiques and our
observations on the effects of parameter choices and tradeoffs.ctiois&, we summarize and
provide concluding thoughts. In the appendices, we present a prdii#-tiardness and additional
experiments.

2. Related Work

Related work includes multiclass learning and online learning, expert methdésing, streaming
algorithms, and concepts in cognitive psychology.

There exists much work on multiclass learning, including nearest neighppreaches, naive
Bayes, support vector machine variants, one-versus-rest anat-@aiges (see, for example, Hastie
et al., 2001; Rennie et al., 2003; Dietterich and Bakiri, 1995); howelerfocus has not been
scalability to very large numbers of classes.

Multiclass online algorithms with the goal of obtaining good rankings include thidalass
and multilabel perceptron (MMP) algorithm (Crammer and Singer, 2003&sahsequent work
(e.g., Crammer and Singer, 2003b; Crammer et al., 2006). These algoritbrwesra flexible and
include both additive and multiplicative variants, and may optimize an objectivadh epdate;
some variants can incorporate non-linear kernel techniques. We naytoethem as prototype
methods because the operations (such as weight adjustments and impdsing a@nstraints) can
be viewed as being performed on the (prototype) weight vector foraash. In our indexing algo-
rithms it is the features that update and normalize their connections to thescl@bsedifference is
motivated by efficiency (for further details, see Sections 4.1 and 4.4hanekperiments). Similar
to the perceptron algorithm (Rosenblatt, 1958), we use a variant of midtalem updating. The
variant is based on trying to achieve and preserve a margin during ordofeging. Learning to
improve or optimize some measure of margin has been shown to improve geateralix/apnik,
2000). On use of margin for online methods, see for instance Krauth @zand (1987), Anlauf
and Biehl (1989), Freund and Schapire (1999), Gentile (2001yd.iLang (2002), Li et al. (2002),
Crammer et al. (2006) and Carvalho and Cohen (2006). In our settisigp@e example shows
that keeping a margin can be beneficial over pure mistake-driven ugaatm when considering a
single feature in isolation (Section 4.3.1).

The indexing approach in its focus on features (predictors) has similaxitiesdditive models
and tree-induction algorithms (Hastie et al., 2001), and may be viewed asaatvaf so-called
expert (opinion or forecast) aggregation and weight learning (e.gstévlearm, 2000; Freund et al.,
1997; Cesa-Bianchi et al., 1997; Vovk, 1990; Genest and Zide86)19In the standard experts
problems, all or most experts provide their output, and the output is usua#iyytor a probability

2574

LEARNING WHEN CONCEPTSABOUND

(the outcome to predict is binary). In our setting, a relatively small setatfifes are active in each
instance, and only those features are used for voting and rankings Ireipect, the problem is in
the setting of the “sleeping” or “specialist” experts scenarios (Freual,€t997; Cohen and Singer,
1999). Differences or special properties of our setting include thdHathere each expert provides
a partial class-ranking with its votes, the votes can change over time (ad},fend the pattern of
change is dependent on the algorithm used (the experts are not “mdos9. In a multiclass
calendar scheduling task (Blum, 1997), Blum investigates an algorithm irhvelaich feature votes
for (connects to) the majority class in the past 5 classes seen for thaefétatke classes of the most
recent 5 instances in which the feature was active). This design chaisalue to the temporal
(drifting) nature of the learning task. Feature weights for the goodrietbe deatures are learned
(in a multiplicative or Winnow style manner). Mesterharm refers to suchffeator experts) as sub-
experts (Mesterharm, 2000, 2001), as the performance can be sigtiifienhanced by learning a
good weighting for mixing (aggregating) the experts’ votemd it is shown how different linear
threshold algorithms can be extended to the multiclass weight learning settimgclagsifier is
referred to as dinear-maxclassifier, since the maximum scoring class is assigned to the instance
(as opposed to a linear-threshold classifier). Mesterharm’s work ieslineé case where the experts
may cast probabilities for each class, but the focus is not on how thedeatay compute such
probabilities (it is assumed the experts are given). Learning differeights for the features can
complement indexing technigues. Section 4.3.2 gives a limited form of diffatempert weighting
(see also Madani, 2007a).

The one-versus-rest technique (e.g., Rifkin and Klautau, 2004) sacdia class hierarchy
(taxonomy) (e.g., Liu et al., 2005; Dumais and Chen, 2000; Koller andr&iati897) for top-down
training are simple intuitive techniques commonly used for text categorizatidve ufe of the
structure of a taxonomy for training and classification offers a numbeffiofemcy and/or accu-
racy advantages (Koller and Sahami, 1997; Liu et al., 2005; Dumais aed, @R00; Dekel et al.,
2003; Xue et al., 2008), but also can present several drawbissk®s such as multiple taxonomies,
evolving taxonomies, unnecessary intermediate categories on the patth&aoot to deeper cat-
egories, or unavailability of a taxonomy are all difficulties for the tree-baggmfoaches. In our
experiments, we find that index learning offers both several efficiadegntages and ease of use
(Section 6). No taxonomy or separate feature-reduction pre-pingessrequired. Indeed, our
method can be viewed as a feature selection or reduction method. On thdatideresearchers
have shown some accuracy advantages from the use of the taxonootyrst(e.g., top-down) com-
pared to “flat” one-versus-rest training (in addition to efficiency) (&gmais and Chen, 2000; Liu
et al., 2005; Dekel et al., 2003) (this depends somewhat on the particetaod and the loss used).
Our current indexing approach is flat (but see Huang et al. 2008, fiwo-stage nonlinear method
using fast index learning for the first stage). One advantage thatfdatssed methods such as
one-versus-rest and top-down may offer is that the training can béytpghallelized: learning of
each binary classifier can be carried out independent of the others.

The inverted index, for instance from terms to documents, is a fundamettabktiucture in
information retrieval (Witten et al., 1994; Baeza-Yates and Ribeiro-N&@9)L Akin to the TFIDF
weight representation and variants, the index learned is also weightedevelg in our case, the
classes (to be indexed), unlike the documents, are implicit, indirectly spebifigte training in-
stances (the instances are not the “documents” to be indexed), and élecomstruction becomes

1. Theoretical work often focuses the analysis on learning the bestteapd the use of term “subexpert” is introduced
by Mesterharm to differentiate.

2575

MADANI, CONNOR AND GREINER

a learning problem. As one simple consequence, the presence of & fieeduraining instance that
belongs to class does not imply that the feature will point to clasi the index learned. We give a
baseline algorithm, similar to TFIDF index construction in its independent cotigpuiaf weights,
in Section 4.2. Indexing has also been used to speed up nearest naigtthods, classification,
and retrieval and matching schemes (e.g., Grobelnik and Mladenic, 1898rd® et al., 2007; Fi-
dler and Leonardis, 2007). Indexing could be used to index alreaihetrdsay linear) classifiers,
but the issues of space and time efficient learning remain, and accumasuffer when using bi-
nary classifiers for class ranking (see Section 6.1). Learning ofarighted index was introduced
by Madani et al. (2007), in which the problem of efficient classificatindar myriad classes was
motivated. This two-stage approach is explained in Section 6.4.1, and vire Seetion 6.4.1 that
learning a weighted index to improve ranking appears to be a better strategthth original ap-
proach in terms of accuracy, as well as simplicity and efficiency. Sulesequork on indexing
by Madani and Huang (2008) explores further variations and aégatocfeature updating (e.g.,
supporting nonstationarity and hinge-loss minimization), taking as a startingtpeifindings of
this work on the benefits of efficient feature updating. It also includegpesisons with additional
multiclass approaches. This paper is an extension of the work by Madé@a@nnor (2008).

The field of data-streaming algorithms studies methods for efficiently computitigties of
interest over data streams, for example, reporting the items with proporkoesding a threshold,
or the highesk proportion items (sometimes called “hot-list” or “iceberg” queries). This is to be
achieved under certain efficiency constraints, for example, with at mogiasses over the data and
poly logarithmic space (e.g., see Fang et al., 1998; Gibbons and Mati&), Nifle that in the case
of a single feature, if we only value good rankings, computing weights mapeaecessary, but
in the general case of multiple features, the weights become the votes gieaohalass, and are
essential in significantly improving the final rankings. An algorithm similar to ©ngle-feature
update for the Boolean case is used as a subroutine by Karp et al),(&0ficiently computing
most frequent items. In some scenarios, drifts in proportions can existhan online and possibly
competitive measures of performance may become important (Borodin afehid, 1998; Albers
and Westbrook, 1998). In this ranking and drifting respect, the feafpdate task has similarities
with online list-serving and caching (Borodin and EI Yaniv, 1998), althowg may assume that
the sequence is randomly ordered (at minimum, not ordered by an agyerSame connections
and differences between goals in machine learning research andesfieiemt streaming and online
computations are discussed by Guha and McGregor (2007).

Statistical language modeling and similar prediction tasks are often accomplighegram
(Markov) models (Goodman, 2001), but the supervised (or discrimijadipproach may provide
superior performance due to its potential for effectively aggregatimgrifeature sets (Even-Zohar
and Roth, 2000; Madani et al., 2009). Prior work has focused omimig@ating within a small
(confusion) set of possibilities. In the related taslpa#diction gamegMadani, 2007a,b), Madani
proposes and explores an integrated learning activity in which a systiés ks own classes to be
predicted and to help predict. That approach involves large-scaletéonmgenline learning, where
the number of concepts grows over time, and can exceed millions.

Concepts and various phenomena associated with them have been skieiresively in cog-
nitive psychology (e.g., Murphy, 2002). A general question that migizaur work, and that ap-
pears heretofore uninvestigated, is the question of computational pesaesgjuired for a system to
effectively deal with a huge number of concepts. Three prominentiteeon the nature of the rep-
resentation of concepts are the classical theory (logical represesjatiom exemplar theory (akin

2576

LEARNING WHEN CONCEPTSABOUND

to nearest neighbors), and the prototype theory (akin to linear febig®ed representations). Pro-
totype theory is perhaps the most successful in explaining variousvelosghenomena regarding
human concepts (Murphy, 2002). Interestingly, our work suggestedigior-based representa-
tion for efficient recall/recognition purposes, that is, the representafiarconcept, at a minimum
for recall/retrieval purposes, is distributed among the features (preslictacues). However, the
predictor-based representation remains closest to the prototype theory.

3. Many-Class Learning and Indexing

In this section, we first present the learning setting and introduce somgonoita the process.
Next, we motivate many-class learning and the indexing approach. In 8&fpwe define the
index and how it is implemented and used in this work. We then present awnaagand efficiency
evaluation measures in Section 3.3. Before moving to index learning (Se¢tiore analyze the
computational complexity of a formulation of index learning in Section 3.4.

A learning problem consists of a collecti@of instances, wherg can denote a finite set, or, in
the online setting, a sequence of instances. Each training instance isexplegiéi vector of feature
valuesyy, as well as a class (or assigned label) that the instance belofgsg t®hus each instance
X is a pair(vx,cx). F and(denote respectively the set of all features and classes. Our ptbpose
algorithms ignore features with nonpositive vafuand in our experiments feature values range in
[0,1]. vx[f] denotes the value of featuffein the vector of features of instangewherevy|f] > 0.

If vx[f] > 0, we say featurd is active(in instancex), and denote this aspect yc x. Thus, an
instance may be viewed as a set of active features, and the input protzlgine seen as a tripartite
graph (Figure 2). The number of active features is denoted|byVe also use the expressing ¢

to denote that instancebelongs to class (c is a class oK).

As an example, in text categorization, a “document” (e.g., an email, an a@veetd, a news
article, etc.) is typically translated to a vector by a “bag of words” method asafsll&cach term
(e.g., “ball”, “cat”, “the”, "victory”, ...) is assigned an exclusive uniqireger id. The finite set
of words (more generally phrases or ngrams), those appearing irsableadocument in the data
set, comprise the set of featurés Thus the vectovy corresponding to a document lives in [@h|
dimensional space, whexg|i] = k iff the word with id i (corresponding to dimensiaj appears
k times in the document, whete> 0 (other possibilities for feature values include Boolean and
TFIDF weighting). Therefore, in typical text categorization tasks, thalmer of active features
in an instance is the number of unique words that appear in the corrésgatmcument. The
documents in the training set are assigned zero or more true class ids aSeatin 6 describes
further the feature representation and other aspects of our experirdatega For background on
machine learning in particular when applied to text classification, pleasetoefebastiani (2002)
or Lewis et al. (2004).

2. In this paper, to keep the treatment focused, and for simplicity of atratuand algorithm description, we treat
the multiclass but single class (label) per instance setting. However, twor &gfewen data sets include multilabel
instances. Whenever necessary, we briefly note the changes nfeede@mple, to the algorithm, to handle multiple
labels. However, the multilabel setting may require additional treatmebitber accuracy.

3. A partial remedy is to replace each feature that can also have reegatives by two features, one having value
max(v,0), the other mag0, —v).

2577

MADANI, CONNOR AND GREINER

Features Instances Classes Features Classes
flo O-x1 oc
OX2
20 0c2
8 o7 o L
X e compute
fg O 0

Figure 2: A depiction of the problem: the input can be viewed as a tripartifehgnaossibly
weighted, and perhaps only seen one instance at a time in an online maaongoaDis
to learn an accurate efficient index, that is, a sparse weighted bipastibk tirat connects
each feature to zero or more classes, such that an adequate leveli@icyds achieved
when the index is used for classification. The instances are ephemesaketive only
as intermediaries in affecting the connections from features to classesddx to learn
is also equivalent to a sparse weight matrix (in which the entries are natinveg our
current work) (see Sections 3.2 and 3.2.1).

3.1 The Level of Human Involvement in Teaching and Many-Class Learimg

Learning under myriad-classes is not confined to a few text-classificatadrigms. There are a
number of tasks that could be viewed as problems with many classes arféctivef many-class
methods are developed, such an interpretation can be quite useful. Inakthessources of the
classes, we may roughly distinguish supervised learning problems alofgjltveing dimensions

(the roles of the teacher):

1. The source that defines the classes of interest, that is, the spaeearfjit classes to predict.

2. The source of supervisory feedback, that is, the source or duwegs that assigns to each
instance one or more class labels, using the defined set of classes. fidiessary for the
procurement of training data, for supervised learning.

In many familiar cases, the classes are both human-defined and hunigaredssThese include
typical text classification problems (e.g., see Lewis et al. 2004 and Opeatdiy Project or Yahoo!
directories/topics). In many others, class assignment is achieved by saned!” or indirect
activity, that is, the “labeling” process is not as explicit or controlled. [Eteling is a by-product
of an activity carried out for other purposes. One example of this cadatassets obtained from
news groups postings (e.g., Lang, 1995). In this case, users posplgrto messages, without
necessarily verifying whether their message is topically relevant to thgggrAnother example
problem is predicting words using the context that the word appears ¢taswvare the classes). In
these problems, the set of the classes of interest may be viewed as huinad;d®it the labeling
is implicit (collections of written or spoken texts in the word prediction task). @xteeme case

2578

LEARNING WHEN CONCEPTSABOUND

where both the set of classes and the labeling is achieved with little or no hunohreiment is also

possible, and we believe very important. For instance, Madani (200&kp#res tasks in which
it is (primarily) the machine that builds its own many concepts, through exmerieand learns
prediction connections among them. This is a kindwionomousearning. As human involvement
and control diminishes over the learning process, the amount of noiset@emtrease. However,
training data as well as the number of classes can increase significantipaweused the term
“many-class” (in contrast to multiclass) to emphasize this aspect of the largbar of classes in
these problems.

Thus, in large-scale many-class learning problems, all the thre&sétsand ¥ can be huge.
For instance, in experiments reported hafeand ¥ can be in the tens of thousands, @dan
be in the millions.S can be an infinite stream of instances andnd F can grow indefinitely in
some tasks (e.g., Madani, 2007a). Whiflecan be large (e.g., hundreds of thousands), in many
applications such as text classification, instances tend to be relativebespalatively a few of the
features (tens or hundreds) are active in each instance.

The number of classes is so large that indexing them, not unlike the invedexi iised for re-
trieval of documents and other object types, is a plausible approach. Aortemp difference from
traditional indexing is that classes, unlike documents, are implicit, specifigdbgrihe instances
that belong to them. An index is a common technique for fast retrieval ansifidasion, for in-
stance to speed up nearest neighbor or nearest centroid computatipn&fobelnik and Mladenic,
1998; Bayardo et al., 2007; Gabrilovich and Markovitch, 2007; Fidhel laeonardis, 2007). Also,
for fast classification when there is a large number of classes, afteravaes-rest training of linear
binary classifiers (see Section 5 on one-versus-rest training), eshatd perhaps necessary tech-
nique is to index the weights, that is, to build an index mapping each features® thassifiers in
which the feature has nonzero weight. This approach is indirect aralrdieadequately address
efficient classification and space efficieficgnd the problem of slow training time for one-versus-
rest training remains. Here, we propose to learn the index edges assviiaflinweights directly.
For good classification performance as well as efficiency, we needvwerpeelective in the choice
of the index entries, that is, which connections to create and with what tseiglgure 3 presents
the basic cycle of categorization via index look up and learning via indeatimgd(adjustments to
connection weights). We have termed the system that is learfrastall SystenfiMadani et al.,
2007): a system that, when presented with an instance, quickly “recadisippropriate classes
from a potentially huge number of possibilities.

3.2 Index Definition, Implementation, and Use

The use of the index for retrieval, scoring, and ranking (classificatoaimilar to the use of in-
verted indexes for document retrieval. Here, features “index” ctaisstead of documents. In our
implementation, for each feature there corresponds exactly one list titairt®@information about
the feature’s connections (similar to inverted or posting lists Witten et al. 1998aeza- Yates and
Ribeiro-Neto 1999). The list may be empty. Each entry in the list corresptind class that the
feature isconnectedo. An entry in the list for featurd contains the id of a clags as well as the
connection or edge weightsw, wf ¢ > 0. Each class has at most one entry in a feature’s list. If
a classc doesn’t have an entry in the list for featufethenws ¢ is taken to be 0. The connection

4. Our experiments show that if we do not drop some of the connectioirdearning, training and classification time
and space consumption suffer significantly.

2579

MADANI, CONNOR AND GREINER

Basic Mode of Operation: Algorithm RankedRetrieval(X, dmax)
Repeat [* initially, for each class c, its scores; is zero */
1. Get next instancex 1. For each active featuref (i.e., &[] > 0):
2. Retrieve, score, and rank classes via For the first dmax classes with highest
active features ofx connection weight tof:
3. If update condition is met: 115 — S+ (re x Wi e x vy[f])
3.1 Update index. 2. Return those classes with nonzero score,

4. Zero (reset) the scores of the retrieved classes. ranked by score.

(@) (b)

Figure 3: (a) The cycle of classification and learning (updating). Dypung classification (e.g.,
when testing), step 3 is skipped. See part (b) and Section 3.2 for how tbeusrdex, and
Section 4 for when and how to update the index. (b) The algorithm thatauseghted
index for retrieving and scoring classes. See Section 3.2.

weights are updated during learning. Our index learning algorithms kedjsthemall for space
and time efficiency (as we explain in Section 4.1). For ease of updatingfiicidrecy, the lists are
doubly linked circular dynamic lists in our implementation, and are kept sorteeimyht.

Figure 3(b) shows how the index is used, via a procedure that we nanedetrieval. On
presentation of an instance, the active features score the classesthatdlconnected to. The
score that a clagsreceivess;, can be written as

S = Me X W e XV [f], (l)
gx c X

wherer; is a measure of the predictiveness power orrttang of featuref, and we describe a
method for computing it in Section 4.3.2. Currently, for simplicity, we may assumeathgy is 1
for all features’ Note that the sum need only go over the entries in the list for each actiwedea
(other weights are zero). We use a hash map to efficiently update the ctmes during scoring.
In a sense, each active feature casts votes for a subset of thesclsde¢hose classes receive and
tally their incoming votes (scores). In this work, the scores of the retrielastes are positive.
The positive scoring classes can then be ranked by their score, auffites, only the maximum
scoring class can be kept track of and reported. Note that if negativess(or edge weights) were
allowed, then, when some true class obtains a negative score, the systétpatentially have to
process (i.e., retrieve or update) all zero scoring classes as well,chafficiency (this depends on
how update and classification are defined). The scores of the retaagsks are reset to 0 before
the next call to RankedRetrieval.

On instance, and withd connections per feature in the index, there can be at mgstunique
classes scored. The average computation time of RankedRetrieval @(thug| log(d|vy|)), where
d denotes the average number of connections of a randomly picked féatmnea randomly picked
instance). In our implementation, for each active feature, only at most,theclasses (25 in our
experiments) with highest connection weights to the feature participate iimgcor

5. After index learningr ¢ can be incorporated into the connection weighis.

2580

LEARNING WHEN CONCEPTSABOUND

3.2.1 (RAPH AND LINEAR-ALGEBRAIC VIEWS OF THEINDEX

A useful way of viewing the index is as a directed weighted bipartite grajguf& 2): on one side
there are features (one node per feature) and on the other siderinéne alasses. The index maps
(connects) each feature to a subset of zero or more classes. Ao@uwecting featurd to classc
has a positive weight denoted by ¢, orw; j for featurei and clasg, and corresponds to a list entry
in the list for featuref. Absent edges have zero weight. Tangdegreeof a feature is the number
of (outgoing) edges of the feature. Small feature outdegrees translatigiency in retrieval (and
updating as we will see).

In addition to the graph-theoretic view, the index can also be seen as se spar-negative
(weight) matrixW. Let the rows correspond to the features and let the columns corickspdime
classes. Retrieval or classification involves efficiently comp@tthg vector of class scoreg W,
and post-processing the resulting (sparse) score vector (e.g., Sheimgsitive scoring classes).
Efficiency constraints translate to limiting the number of nonzero entries inreachn the indexing
algorithms of this paper, the sum of the entries in each row does not ekceethma 1 below states
that this restriction does not lose power, among the set of nonnegativieesafor achieving good
rankings.

3.3 Evaluating the Index

We evaluate index learning based on efficiency as well as the quality aifetaton (accuracy).

In large-scale learning, both memory and time efficiency are important, ahabtaining as well

as classification times.0ur other goal is to maintain satisfactory accuracy. In our experiments in
Section 6.2 (on finite samples), we report on three measures of efficigairyng timeT;,, the size

of the index learned, denoted B¥/ |, meaning the number of edges or nonzero weights in the index,
and the average number of edge®uched (processed) per feature during classification (a measure
of work/speed during classification time). We next describe our clagsificaccuracy measures.

We use the standard accuracy (i.e., one minus zero-one error),dr@tdr;, as well as other
measures of ranking qualityR; allows us to compare to other published results. A method for
ranking classes, given an instanceoutputs a sorted list of zero or more classes. In addition to
weighted indices, we describe other methods for ranking the classestiorS&cAn instance may
belong to multiple classes in some tasks (two of our data sets in Figure 8). To gieyaifiation
and presentation, in this paper we only consider the highest rankeddase tetk, be the rank of
the highest ranked true class after presenting instate¢he system. Thus, € {1,2,3,---}. If the
true class does not appear in the ranked list, gen . We useRy to denoterecall at (rank) k
which measures the proportion of (test) instances for which one of thelasges ended in the top
k classes:

Re = recall atk = Ey[ke < K,

whereE, denotes expectation over the instance distribution[land k] = 1 iff kx <k, and 0 other-
wise (Iverson bracket). So we get a reward of 1 if the true class is witpik for a given instance,
0 otherwise, andR is the expectation. In our experiments, we will report on (average)l raica
rank 1,R;, and recall at rank 535, on held-out setsR; is simply the standard accuracy, that is,

6. Feature ratings, can be incorporated in a diagonal m@&tnixhereR][i,i] = r; (the rating of featuré) andR]i,j] =0,
wheni # j. Obtaining the scores would then BERW.
7. Note that in online learning, there isn’t a sharp separation betweerathigy and testing phases.

2581

MADANI, CONNOR AND GREINER

the highest ranked class is assigned to the instanceRameasures the proportions of instances to
which the true class was assigned.

We also report on the harmonic (mean) rank (HR) (reciprocal of medproeal rank or MRR),
defined as:

MRR= EX%, andHR= MRR L.

X

MRR gives a reward of 1 if a correct class is ranked highest, the dediaps to 1/2 at rank 2,
and slowly goes down the higher thgthe lower the rank). If the right class is not retrieved, the
reward is 0. MRR is the expectation or the empirical average of suchdewear (test) instances,
and we simply invert it to get a measure of ranking performance, the hacmaotk HR. The lower
the HR, the better, and it has a minimum of 1 (rank 1 is best). MRR is a commordynusasure
in information retrieval, such as in question answering tasks (e.g., Raddy 20@2). In our
experiments, we report the HR values so that the reader can quickly opepeession of the average
class-ranking performance of the various methods.

Both R¢ and MRR are appropriate for settings in which we value better rsigksficantlymore
than worse ranks. Thus, if an index is perfect half the time, that is, rdmeksorrect class of the
given instance at top (rank 1) half the time, but fully fails the rest of the timeg, i) does not
retrieve the correct class at all, then its HR value is 2. However, for axititht always retrieves
the correct class, but ranks it third, the HR value is worse, at 3. Noteotiea could raise the
fractionk—lx to a different exponent (instead of 1) to shift the emphasis in one directianother.
R« does not reflect the quality of ranking within t&pand it simply cuts the reward off if the right
class is outside tog. HR is a smoother measure. Our evaluation measure are from the point of
view of an instance to be classified. This is appropriate with large numbetasses and in many
applications, such as personalization or text prediction, in which a giwtarioe (a query, a page,
etc.) should be classified into one or a few classes that the system is coafidet In a number of
information retrieval tasks such as question answering and documeevaktthe extra emphasis
on higher ranks is well motivated. We expect that the situation would be siroilayical many-
class problems, such as text categorization. The common precision alldmeasures used in
machine learning are often computed from the point of view of a classafdr elass, the instances
are ranked according to the classifier's scores for the class. Thigasially appropriate when we
are interested in performance on a single class at a time. For instancepmelserk to rank or filter
instances based on their degree of membership in a given class of ifgegesh news topic). Our
indexing techniques are more appropriate for the problem of obtaining) igodings per instance,
similar to some other multiclass ranking algorithms (e.g., Crammer and Singer,)2608@ever,
existing techniques for improving precision/recall for imbalanced classgsmapplicable (e.g.,
Li et al., 2002). We conclude this section with a simplifying property of negative matrices, for
the purposes of ranking.

Lemma 1 LetW be the non-negative matrix corresponding to an index (features camnekio the
rows and classes are the columns). The ranking Wigiroduces on nonzero scoring classes is not
changed under positive scaling, thaté@N, for a > 0, produces the same ranking.

Proof The score for each class is obtained in the ve@I(W. Therefore, the ranking obtained from

vyaW = av] W, is the same as the ranking in the veotdw, whena > 0 and all entries iv, W
are non-negative. |

2582

LEARNING WHEN CONCEPTSABOUND

The lemma implies that optimal matrices, for the objective of say maximRiran the training
set, among non-negative matrices in which the entries in each row sum to iat fhosxist. The
indexing algorithms presented in this paper learn non-negative weight egatric

3.4 Computational Complexity of Index Learning

Can we efficiently compute an index achieving maximum training accuracy giug finite setS
of instances? If we constrain the outdegree of each feature to be begieeraconstant (motivated
by space and time efficiency), then the corresponding decision probl®gard under plausible
objectives such as optimizing accura&)

Theorem 2 The index learning problem with the objective of either maximizing accuiRgyof
minimizing HR on a given set of instances, and with the constraint of a gungtper bound (e.g.,
1) on the outdegree of each feature is NP-Hard.

The proof is by a reduction from the minimum cover problem (see AppenlixA8problem
involving only two classes is shown NP-hard. We do not know whether ttiexing problem is
approximable in polynomial time however, or whether removing the constraith® outdegree
alters the complexity. Linear programming formulations exist with continuousctivgs and no
explicit outdegree constraint (Madani and Connor, 2007; MadahHarang, 2008).

The next section describes very efficient online algorithms that pesiatiin our experiments.
We motivate our choices in the algorithm design, but leave theoreticaljeagato future work.

4. Feature Focus Algorithms for Index Learning

Figure 4 present our main index learning technique. After first givingliakgoverview of the
approach, we motivate the choices in the design of the algorithm in the riss$ gEction.

On a given instance, after the use of the index for scoring and rankimigyocation of Ranke-
dRetrieval), if a measure ahargin (to be described shortly) is not large enough, an update to the
index is made. The margin is the score obtained by the true class, minus th&t lsighréng incorrect
(negative) class (either of the two scores can be zero). Our indenirigaalgorithms may be best
described as performing their updates from the features’ side or ésatimoint of view” (rather
than the classes’ side or class prototypes), and hence we name the avhityefdature-focuslgo-
rithms. As we will explain, this design was motivated by considerations ofeffiy (Sections 4.1
and 4.4). The basic question for each feature is to which subset oésliasbould connect (possibly
none), and with what weights. Figure 4(d) gives a generic featuratingdscheme and Figure 4(c)
gives the instantiation we use in our experiments. Initially, all weights are Muote that when a
weight is zeroed, the connection is removed. This means that, in our indexnepiation, the list
entry corresponding to the edge is removed from the list of the edges fefathee.

We next motivate the design choices in FF. The problem of what eachidgatisolation should
do during learning turns out to be helpful and we first explore and dssthis single feature case.
We then present the IND(ependent) method, a baseline in which eflgativevery instance every
feature updates. We then motivate mistake-driven updating, and in particelase of margif.

8. All the examples given to illustrate various aspects make the assumptwolean feature values, but the feature-
focus algorithm as presented works with the more general nonnegatives.

2583

MADANI, CONNOR AND GREINER

/* The FF Algorithm */
Algorithm FeatureFocus(X, Wmin, dmax Om)
1. RankedRetrieval, dmay). /* retrieve/score */
2. Compute the margind:
O = S, — S, Where's, = max. ., .
3. If & > o, return. /* update not necessary */
4. Otherwise, for each activef € x: .
. , . 2. Return those classes with nonzero score,
[* update active features’ connections */

ranked by score.
4.1 FSUK, f, Wmin)- g (b)
(@)

/* Feature Streaming Update (allowing “leaks”) */
Algorithm FSU(X, f, Wmin) /* Single feature updating */
1. W o < Wi o +Vx[f] /*increase weight tocy. */
2. W, — W, +vx[f] /* increase total out-weight */

Algorithm RankedRetrieval(X, dmax)
/* initially, for each class c, its scores; is zero */
1. For each active featuref (i.e., w[f] > 0):
For the first dmax classes with highest
connection weight tof:
1.1 s — S+ (re x Wy ¢ x y[f])

Algorithm GenericWeightUpdate
Each active feature:

1. Strengthens weight to true class
f

W, . :
3.V, Wi ¢ — WC [* (re)compute proportions */ 2. Weakens other class connections

A . .
4. If Wt ¢ < Wmin, then /* drop tiny weights */ 3. Drops weak e((zjg);es (tiny weights)

Wi ¢ — O,V\/f_’C «—0

(©

Figure 4: (a) Pseudo-code for the Feature-Focus (FF) learningitalyo The FF algorithm is
invoked on every training instance. This corresponds to steps 2 and igureR3(a).
(b) The RankedRetrieval procedure for scoring and ranking (dojpaen Figure 3(b)).
(c) Feature streaming update, or FSU: The connection weightothe true classy is
strengthened. Others connections are weakened due to the divisidhe Aleights are
zero at the beginning of index learning. (e) Generic weight updatingeaah training
instance, each active feature strengthens its weight to the true cladenséts other
connections, and drops those that are too weak.

We conclude with a comparison of FF to existing online algorithms, in particulapeheeptron
algorithm and Winnow. The reader may wish to skip some of these sectioris pbtht and go to
the experiments (Section 6) on a first reading.

4.1 Updating for a Single Feature

Assume (training) instances arrive in a streaming fashion (from some irdimitece), and assume
the single label (per instance) setting. Fix one feature and imagine theearbstf instances
that have that feature active. Let us consider Boolean feature vahie$vy[f] € {0,1}) here for
simplicity. Thus, we basically obtain a stream of observed classe$),c® ¢ ...>, for the
given feature. Ignoring other features for now, and considerifigiexficy constraints, to which
classes should this feature connect to, and with what weights? We gext #irat our objective of
a good ranking, subject to efficiency, reduces to computing the propadntihe sequence for those
classes (if any) that exceed a desired proportion threshold.

In this single feature case, classes are ranked by the weight assigtiehtdy the feature.
The constraint (of space efficiency) is that the feature may connectiyaacsubset of all possible
classes, sagmax at most. The question is how the feature should connect so that an objeatia
asRy or HR (harmonic rank) is maximized. We will focus on the scenario where the stofam
classes is generated by an iid drawing from a fixed probability distribution.

2584

LEARNING WHEN CONCEPTSABOUND

It is not hard to verify that the best classes aredlg classes with the highest proportions in
the stream, or the higheBtc) if the distribution is fixed and known (more precise®(c|f), but f
is fixed here) and the ranking should also beé?g). For a finite sequence on which we are allowed
to compute proportions before having to connect the feature, this céyleagstablished.

Lemma 3 A finite sequence of classes is given (class observations). To maxiRjzeHén the
feature can connect to at most k different classes, a k highest freguset of classes should be
picked, that is, choose S, such th&t= k and S= {c|n; > ny,Vc ¢ S}), where r denotes the
number of times ¢ occurs in the sequence. The classes in S shouldebeddng their occurrence
counts to maximize HR. The same set maximizes R

Proof This can be established by a simple “swapping” or “exchange” argumeatlo@¥ at the
sum of rewards over the sequence rather than averages, as teacetrngth is fixed. Consider
maximizing R first. Letn; denote the number of times clasappears in the sequence. For any
chosen se§ of sizek, a pair of classe&, ¢') is out of order ifn; < ng, butc € S, andc’ ¢ S. Then

Ry for Sis improved ifcis replaced by, the improvement isy — ne. Similarly HR is improved for
an ordered se$if a pair like above exists (improvement @iy —n) i wherej denotes the rank of
cin S, or a pair within the chosen set is out of order (improvemerihgf—n¢)(1/j —1/j’), where
i’,j’ > |, denotes the old rank af.). [|

For unbounded streams generated by iid drawing of classes from alfstatiution over a finite
number of classes, the empirical proportions of classes, over thersmgseen so far (of length at
leastk), take the place of the counts, in order to maximize expected HR or exgrotexthe unseen
portion of the sequence.

We will use FSU Feature Streaming Updat&igure 4(c)) in our main feature-focus algorithm.
An FSU update takes at most two list traversals (involving finding or insettimgonnection). With
d connections per feature, a full update on an instance takeél|). Note that when features are
Boolean, FSU simply computes edge weights that approximate the conditiobakhilitiesP(c| f)
(the probability that instance € c given thatf € x and FSU is invoked). Since the weights are
between 0 and 1 and approximate probabilities, it eases the decision sdiagsenportance of a
connection: weights belowp,, are dropped at the expense of some potential loss in accuracy. FSU
keeps total countsa§ andwy} . , which we will describe and motivate later). Note thatin effec-

tively bounds the maximum outdegree during learning t@v‘i?? We note that this space efficiency
of FSU is central to making feature-focus algorithms space and time effiseatSection 6.3.1).
Given that FSU zeros some weights during its computation, it is instructive koabbow well it
does in approximating proportions for the (sub)stream of classes thatdgses for a single feature.
This gives us an idea of how to set thgi, parameter and what to expect. Appendix A presents syn-
thetic experiments and a discussion. To summarize, when the true probabdighyw of interest

is several multiples oy, with sufficient sample size, the chance of dropping it is very low (the
probability quickly goes down to 0 with mcreasnaﬁt) and moreover, the computed weight is also
close to the true conditional. See Section 6.3.3 on the effect of choieg;E {0.001,0.01,0.1}

on accuracy on several data sets.

2585

MADANI, CONNOR AND GREINER

4.1.1 ININFORMATIVE FEATURES, ADAPTABILITY, AND DRIFTING ISSUES

In FSU, we keep and update two sets of weights, the edge weightgnot greater than 1)/,\/f’c,

as well as total weightv;. In case of binary features,([f] = 1), we can simply think ofv; as

total count of times FSU has been invoked for the feature,va(,ljgas an under-estimate of the
co-occurrence count in that streamt; (. can be less than the co-occurrence count, as it is reset to
0 if the edge is dropped). Note thatdf is not already connected (for example in the beginning),
wt ¢ andw; . are 0. An important point is that total weighv is never reduced. This is useful as a
way of down-weighing uninformative features (such as “the”). Thiusg, to edge dropping, we may
have the sum of proportions remain less thai dws ¢ < 1, even whenv; > 0. We have found this
alternative slightly better in our experiments than the case in wirick S W, . (i.e., whenw} is

kept as the exact sum of the weights). See Section 6.3.5. '

In case of non-Boolean feature values, similar to perceptron and Winpdates (Rosenblatt,
1958; Littlestone, 1988), the degree of activity of the featuyf,|, affects how much the connection
between the feature and the true class is strengthened. We couldassaing rate a multiplier
for vx[f], to further control the aggressiveness of the updates. We haveperimented with that
option.

Note also that aw; grows, the feature may become less adaptive, as a new class will have to
occur more frequently to obtain a strong weight ratio with respeutstoln particular, aftemw; >
ﬁ, a new class will be immediately dropp&dror long-term online learning, where distributions
can drift (nonstationarity), this can slow or stop adaptation, and updatesftactively keep a finite
memory or history are more appropriate. Note also that, if the same trainingdastean be seen
multiple times (e.qg., in multiple passes on finite data sets), wjtgrowing, the fitting capability of
the algorithms is curbed. This may be desired as a means of overfitting poevedther indexing
updates have been developed, offering various trade-offs (gedismussion in Section 4.4, and
Madani and Huang 2008, and Madani et al. 2009, in particular for a siogulate appropriate for
nonstationarity).

Before describing the main feature-focus algorithm, we describe a basddjarithm we refer
to as IND(ependent). This algorithm can be implemented in an offline (batamenalt is based
on computing the conditional(c| f).

4.2 Always Updating (the IND Algorithm)

One method of index construction is to simply assign each edge the class aualditiobabilities,
P(c|f) (the conditional probability that instanaec ¢ given thatf € x). This can be computed for
each feature independent of other features. We refer to this vasahedND (“INDependent”)
algorithm (Figure 5). Features are treated as Boolean hgf€| € {0,1}). After processing the
training set (computing counts and then conditional probabilities), only weégteeding a thresh-

old ping are kept. The use dfi,q not only leads to space savings, but also can improve accuracy
significantly. The best threshold,q (for improving accuracy) is often significantly greater than

0 (see Section 6.3.7). In our experiments with IND, we choose the beshtiideby observing
performance on a random 20% subset of the training set. We thus implentieat®D algorithm

9. At this point, updates can only affect classes already connectddjmates may improve the accuracy of their
assigned weights, though there is a small chance that even classes niftbaigjweights may be eventually dropped
(this has probability 1 over an infinite sequence!). In any case, at thisgrasoon after, it is possible to stop updating.
In our experiments, with finite data and small number of passes oveatheselts, this was not an issue.

2586

LEARNING WHEN CONCEPTSABOUND

Algorithm IND(S, ping) /* IND algorithm */
1. For each instancex in training sample S
1.1 For eachf € x: /* increment counts for f */
1.1.1nf <—ns+1
1.1.2n¢¢, «+nNse +1
2. Build the index: for each feature f and classc:
21w e,
2.2 If W> Pind, Wi ¢ < W. (otherwisew; ¢ < 0.)

Figure 5: Pseudo-code for the IND(ependent) algorithm, implementeddaatbe of Boolean fea-
tures only. The choice gbig affects accuracy significantly, and is picked using a held
out set (see Section 4.2).

as a batch algorithm, that is, we computed the wei@itsf) exactly, not in an online streaming
manner describéf for FSU. The exact computation can be done on the relatively smaller data se
IND is in fact the fastest algorithm on the smaller data sets, since the codattagpare simple and
there is no call to index retrieval during training. This counting phase fi@rconstruction can
also be distributed. On larger data sets, IND runs into memory problems ancthbs very slow
during training, due to many features keeping connections to too manys:lasHes aspect points

to the importance of space efficiency for large-scale learning.

The IND algorithm, in its independent computations of weights for each fedtas similarities
with the multiclass Naive Bayes algorithm (e.g., Rennie et al. 2003). Majardiites include the
computation ofP(f|c) (the reverse) in plain multiclass Naive Bayes, and that for classification,
we are summing the weights (instead of multiplying under the independence@gsu), similar
to some techniques for expert opinion aggregation (Genest and Zigigg&; Cesa-Bianchi et al.,
1997). We have found that summing improves accuracy. See Mada@iambr (2007) for a more
detailed comparison to multiclass Naive Bayes. In its independent computatiigiits, IND is
also similar to inverted index construction using, for instance, TFIDF.

IND offers a nice baseline, but we can potentially do significantly better ¢oamputing pro-
portions for each feature independently. Often features are intendept. For instance, features
can be near duplicates or redundant. In particular, with increasingéeatator sizes, the accuracy
of methods that in effect assume feature independence can degnaifieagly.

4.3 Mistake-Driven Updating Using a Margin (the FF Algorithm)

FF adds and drops edges and modifies edge weights during learningdgsging one instance at
a time!? and by invoking a feature updating algorithm, such as FSU. Unlike IND, déFesses
feature dependencies by not updating the index on every training iest&igeivalently, a feature
updates its connection on only a fraction of the training instances in which dtigea This is
motivated and explained next.

10. In case the instance belongs to multiple classes, step 1.1.2 is exierigadh true class.
11. However, note that the FSU algorithm can be instead employed hezepgatkemory consumption in check.
12. The feature and class sets can also grow incrementally.

2587

MADANI, CONNOR AND GREINER

4.3.1 WHEN TO UPDATE?

FSU should not be invoked on every training instance. In partictiazy” or mistake-driven
updating (not updating all the time) can, to some extent, address issues atitrefdependencies.
It can, for example, avoid over counting the influence of features tieabasically duplicates by
learning relatively low connection weights for each such feature (similar&ianal for mistake
driven updates in other learning algorithms such as the perceptron)eXt/give a simple scenario,
case 1to demonstrate accuracy improvements that can be obtained by lazy updating

Case 1.Imagine the simple case of two classesandc,, and two Boolean feature$; and
fo. Assumef; is perfect forcy, P(ci1|f1) = P(f1]c1) = 1, but thatf, appears in instances of both
classes, anB(f;|c1) =1 (i.e., f, appears in all instances of), but alsoP(f|c2) = 1. Then, given
only fp, that is, an instance = { f,} (x containsf, only), we want to ranic, higher. Now, if say
P(c1) > P(cy) (c1 is more frequent thany), and we always invoked FSU;, would also give a
higher weight tocy, rankingc; higher thanc, on x € c. An optimal solution, for accuracl; or
for HR, has the property theb has a higher connection weightdgthan toc; (with wy, ¢, =0, an
optimal solution satisfiesws, ¢, > Wy, ¢, > Wy, ¢,.). Now, if FF invoked FSU only when the correct
class was not ranked highest, the connection weights in this example waowerge to an optimal
configuration. To see this, note that as sooi asc; is seenf; obtains a weight of 1 ta;. Next,
only updates o € ¢ will be performed, since; is ranked correctly due té having a weight of
1 andf; keeping some nonzero weight to it, makes a stronger connectiondpthanc; after at
most 2 FSU invocationsR; in the optimal case would be 1.0 here, while it can approach 0.5 if we
always update. Note that as fewer updates in general mean feweratimms (sparser indices), we
may also save in space in this lazy update regime (see Section 6).

On the other hand, if we don't update at all when the right class is atrawk may also suffer
from suboptimal performance. This happens even in the case of a stagled. ThuSproactive”
updating is useful too. The next case elaborates.

Case 2.Consider the single feature case and three clagses, cs, whereP(c;) = 0.5, while
P(c2) = P(c3) = 0.25. Thusc; should be ranked highest, for say maximiziRg This yields
optimal R, = 0.5, and if we always invoke FSU, this will be the case after a few updatesii
soon getwy 1 ~ 0.5, andwy > ~ wy 3 ~ 0.25). If we don't update when true class is at rankcd,
or c3 can easily take the place of when an instance € ¢, or x € c3 is presented, but we need to
reverse the situation subsequently wixea c; is presented, and instances belongingitare more
frequent. In general, the connection weights from the featuce, iy, andcs will be similar in the
purely mistake-driven updating regime, and on sequences that look likeotts¢ case alternating
sequencecy, ¢, C1,C3,C1,Cy, - - -, the running value oR; can approach 0. While random sequences
are not as bad, we should still expect significant inferior performari@e randomly generated
sample of size 2000 according to above class distribution, averagind.09630-20 splits, always
(proactive) updating gave an averdgeperformance of @79+ 0.02 (standard deviation of 0.02),
while the lazy update gave428+ 0.09.

Therefore, not updating when the rank of the right class is adequatecausg unnecessary
instability in behavior and inferior performance as well. Of course, wérges algorithm that
can perform well in the single feature case. Continued updating even thibdrue class is ranked
highest is akin to keeping a kind of extended memory (in the connection weights

We strike a balance between the two desirables by using the notimargin The margin on
the current instance is the score of the positive class minus the scorehigiigst scoring negative

2588

LEARNING WHEN CONCEPTSABOUND

class:
=5, —$,, wheres,, > 0,5, > 0,8, = rr;éaxsc.
CH£Cy

If the margind does not exceed a desired margin thresBgldve updaté&® (invoke FSU). Note
that boths;, ands, can be 0. If we set the margin threshold to 0, we may fit more instances in
the training set, and handle situations like case 1, but underperfornagerZ situations. With a
sufficiently high margin, updates are always made and case 2 is cobeiditing power (case 1)
can suffer. There is a tradeoff, and a good question is what the th@seaf threshold may be? The
best choice depends on the problem and the feature vector repteseritadividual edge weights
are in thel0, 1] range, and when the instances Braormalized, we have observed that on average
top classes obtain scores in tfiel] range as well, irrespective of data sets or choice of margin
threshold (Madani and Connor, 2007).

Our use of margin is somewhat similar to the use of margin for online algorithniisasuper-
ceptron and Winnow (e.g., Carvalho and Cohen, 2006; Crammer andr S20§3a), although our
particular motivation from considering case 2, “stability” or keeping somxéefeded memory” for
each feature, appears to be different.

4.3.2 RATING THE FEATURES. DOWN-WEIGH INFREQUENTFEATURES

It may be a good idea to down-weigh or eliminate those features’ votes thainér seen a few
times during learning, as their proportion estimates (connection weights)eceradcurate and in
particular higher than what they should be. Consider the first time FSU ikedvon a feature.
After that update, such a feature gives a weight of 1 (the maximum posgibtbe class it gets
connected to. This is undesired. Of course, how much to down-weigtegzend on the problem,
and how feature values are distributed. In our experiments, duringngafrthe class, we multiply
a feature’s score for class wt ¢, by a ratingrs (see Equation 1 in Section 3.2, = min(1, %),

where # > 1 denotes the number of times featdireas been seen so far i computed only during
the first pass over training data. We show that on some problems, this opticoves@ccuracy.

4.4 Summary and Relations to other Methods

The FF algorithm aggregates the votes of each features for rankingassification. During learn-
ing, FF may be viewed as directing a stream of classes to each featurat ®ath feature can
compute weights for a subset of the classes that it may connect to. Tamsfoz example with the
use of margin, may be hard to characterize and may show drifts duringrigaithmay initially be
those instances in which the feature is active, but later it may correspaensutosequence of those
instances which are somewhat hard to classify. Features may be spataiced: they need to
be space efficient in the number of connections they make as well as in togheir connection
weights. This efficiency aspect is especially important in large-scale miasg-learning.

The FF algorithm has similarities with online algorithms such as Winnow (Littlest@&8)1as
it normalizes (in general weakens some of) the weights, and the percepgaithm (Rosenblatt,
1958), as for example the updates are in part additive (ignoring the hoatian or weakening).
The important difference that changes the nature of the algorithm is thagek to weights are

13. For instances with multiple true classes, the margin is computed fopeaitfve true class. Every active feature is
updated for each true class for which its margin is below the margin thesho

2589

MADANI, CONNOR AND GREINER

cl ' ¢ ' Gg cl ' ¢ ' Go
[I jl* [e
i

I
f2 | 3 ! f2) __________
N , N
- | I I ST
fi I i i fi
- I I R

| =
IFIl IFI

@) : (b))

Figure 6: Inlearning a weight matrix for multiclass learning (here the feattoeesponding to the
rows), prototype methods operate on the columns (part a), for instanoenralizing the
(column) weight vectors, while feature-focus methods operate on the (mavt b), for
example in ensuring that the number of nonzeros in each row remain withitigebu

done from the side of features, unlike Winnow or perceptron. The Wiradgorithm does the nor-
malization from the side of the classes: each class is represented byifieclésslass prototype),
and each classifier has its feature weights normalized after each uptatemalization is done
for all features, many features, whether or not active, get weakdne sense, the classifier ranks
the features in order of importance for its own concept. A number of legmiigorithms in the
family of linear classifier learning algorithms, focus on the class side, fample, learning a pro-
totype classifier for each class (e.g., Crammer and Singer, 2003a)i¢gee 6). This is a natural
approach for binary classification. In our case, it is the classes wiwws®ctions to a feature may
be weakened due to one or more classes being strengthened. In thep&&Y given in this paper,
this weakening happens irrespective of whether a class was ranKedtlhig) aspect is similar to
Winnow, but again, for class weights instead of feature weights). Altieengeature-focus updates
are possible (e.g., Madani and Huang, 2008). It is best to view eatilréeas a voter or “expert”,
and the goal is to obtain good class rankings for each instance by adjtisingtes. A prototype
for a class is more appropriate for ranking instances for that class.

To keep memory consumption in check, it seems most direct to constrainggatirto connect
to more than say 10s of classes, rather than somehow constraining tles ¢tdass prototypes). It
appeared harder to us to bound the number of features a class negdfifferent classes may
require widely varying number of features for adequate performaBee.Raghavan et al. (2007)
for an exploration of the number of useful features that differensflyilearning problems need for
achieving (nearly) maximum accuracy. We also note that in many problemteodéét, the number
of classes, while large, is significantly smaller than the number of featunemiahy domains, as
the number of classes grows, the number of features tends to grow &silflyan a proportional
manner). In the best of worlds, each feature could be predictive fapat one class. While reality
is far from this idealized picture, and we anticipate many interactions, exgebti features may
not require high outdegrees for good accuracy, can be a goo@ds$ssmption. A fruitful future
avenue may be exploring this assumption via modeling and developing theloaegicanents.

A second related reason is that constraining the feature outdegreasaim nelatively small
(e.g., 10s) appears easier to implement and more time efficient in an onlinesgirg regime.
Again, a class may require 100s of features and beyond for goanrpeice. Therefore processing
the needed classes, to examine importance of features, can take more timstgmee. Finally, we
seek rapid categorization per instance, and constraining indegreesséslaay not guarantee that

2590

LEARNING WHEN CONCEPTSABOUND

the outdegree of commonly occurring features would be small. Constrairérdgtrees of classes
is not directly related to the average time required for processing an iest@nen that an index is
required for efficient classification, that is, efficient access framiuiies to the relevant classes, one
would need additional data structures (additional memory) for efficieriofype processing.

For the perceptron update, continued updating can increase weighitasggnwvith no bound.
This makes designing an effective weight management criterion difficulise Feositive classes
may obtain negative connections to features they weren't connectechtm (inked higher than
the true positive). These extra connections hurt sparsity. More@gatiwe connections may not
be as useful in the task of ranking multiple classes, to the extent that thegedtd in the binary-
class case and when learning a single prototype, for ranking instandbg many-class case, the
true class could simply have higher positive weights to the appropriate ésat@f course, our
discussion does not preclude efficient algorithms that, neverthele$srméheir operations from
the class side.

5. Techniques Based on Binary Classifier Training

We compare against hierarchical or top-down training and classificatiocommmonly used method
when a taxonomy of classes, a tree from general classes at the togtiicsgasses, is available
(Dumais and Chen, 2000; Liu et al., 2005). The hierarchical methoctesdio one-versus-rest
classification when the classes are flat (when there is just one level)h wghanother common
method for multiclass classification (e.g., Rifkin and Klautau, 2004). We canagainst one-
versus-rest on relatively small sets, to see how indexing performs in maational classification
settings. Note that the FF algorithm, while motivated by many-class learning, isa lnethod
applicable to few classes and in particular binary classification as well.

The one-versus-rest method simply trains a binary classifier for east atang all the data.
During classification, all the classifiers are applied and their scores rthidre classification out-
comes are used for rankirij.We observed no advantage in obtaining probabilities here compared
to using raw scores. The one-versus-rest method becomes quicKlgiargf at both training and
classification times, as the number of classes increases (as all the clgsifidrto be applied to a
given instance).

Linear classifiers such as support vector machines (SVMs) oftearpethe best in very high
dimensional problems such as text classification (Lewis et al., 2004; tBebha2002). We tested
perceptrons and SVMs in one-versus-rest and top-down methodas&\&ngle pass and multiple
pass perceptrons (Rosenblatt, 1958) as well as committees of them. Blehggerceptron in the
committee is represented as a sparse vector and random weight initializatierl, Iy, is used
when a new feature is added to the prototype. Unless specified, we ryeitbeptron learning
algorithm until the 0/1 error on training is not improved (computed at the emédcih pass), for 5
consecutive passes. Perceptron committees often obtain performasetoc®/Ms (e.g., Carvalho
and Cohen, 2006), although their training time can be less.

14. Note that the use of index for classification is one-versus-reigtirclassification), but the index was not obtained
by training binary classifiers.

2591

MADANI, CONNOR AND GREINER

Algorithm TopDownProbabilities(x, ¢, p, éx)
1. For each classc; that is a child of c:
1.1pg < px Py (x). /* obtain probability */
1.21f pCiNZ pmin
1.2.1C, « CxU{(ci, pg }) N
1.2.2 TopDownProbabilities, ci, pg, Cx)

Figure 7: Pseudo-code for top-down classificatiBg(x) denotes the probability assigned to x by
the classifier trained fag; in the tree. For each instanggthe first call is TopDownProb-
abilities(x, root, 1.0{}).

5.1 Hierarchical Training and Classification

Briefly, hierarchical training works by first training classifiers for thmstfievel classes in a one-
vs-rest manner (e.g., Dumais and Chen, 2000). Then the same p@oadube repeated for the
children of each class residing in the 2nd level (in general, the level beli@ining each classifier
only on the instances that belong to one of the siblings. Only the classifieteftop level classes
will be trained on all the instances. For ranking and categorization usirtgeharchical approach,
we use classifier probabilities. We obtain probabilities from classifier sdoyethe method of
sigmoid fitting (Platt, 1999). This may require additional training time for improvamieacy. In
the experiments, we report on the effect of increasing the number of &lgftting trials on one of
the data sets (Reuters RCV1).

During classification, whenever a classifier is applied, we use the glibpdbassigns. The
probabilities are multiplied along a path top-down (Figure 7). A path of cataliclasses is ter-
minated if the probability falls under some threshoplg,. All the classifier at the first level (cor-
responding to the classes at the top level) are applied to a given instancigg Best time, we
tried several thresholdgmin = 0.0540.05k, k= 1,2, -- -, and report results on the threshold giving
highest accuracf;. All our ranking methods are evaluated on the deepest classes an énsanc
assigned to. For the evaluation of the top-down method, from the list ofdzted obtained for a
given test instance, any class whose child is also in the list is removed, @amentfaining classes
are sorted by their assigned probabilities. For the list of the true clastles tdst instance, again
only those true classes with no child in the list are kept. TReRs and HR are computed (for the
highest ranked true positive class).

We note that if we don’t use the probabilities and ranking, that is, useasaggnments to follow
a path, the classification performance greatly suffers. This is sincéfidessévhen having to assign
a class) in the higher levels can make “premature” false positive and fedseive mistakes (and
false negative mistakes are very costly). This inferior performancédes noted before too (e.g.,
Dekel et al., 2003).

6. Experiments

In this section, after describing the data sets we use and the experiment@l, see report on
comparisons with other approaches. We then report on several ablaperirents as well as
comparisons to the simpler IND algorithm and a previous (unweighted) inglex@thod. We con-
clude the section with experiments on some properties of our index learningaregild the indices

2592

LEARNING WHEN CONCEPTSABOUND

Data Sets IS | F| |C| | Ex|vx| | ExICK
Reuters-21578| 9.4k | 33k 10 80.9 1
20 Newsgroups 20k | 60k 20 80 1
Industry 9.6k | 6% | 104 | 120 1
Reuters RCV1| 23k | 47k 414 76 2.08
Ads 369k | 301k | 12.6k | 27.2 14
Web 70k | 685k | 14k | 210 1
Jane Austen 749k | 299k | 17.4k| 15.1 1

Figure 8: Data setsS is number of instance§¥ | is the number of featurel;| is the total number
of classesEy|vy| is the average (expected) number of unique active features per iastanc
(avg. vector size), anBy|C| is the average number of class labels per instance.

learned (average class indegrees, performance on the training daaad we give a few examples
of the learned connections.

Figure 8 presents the data sets that we use, shown in order of clasS|siZ&e first 6 are text
categorization, and the last is a word prediction task. Ads refers to altesdifecation problem
provided by Yahoo! Web refers to a web page classification into Yahwettdry of topics. Jane
Austen is 6 online novels of Jane Austen, concatenated (obtained faatipGutenberght t p:

/' www. gut enber g. or g/). The others are commonly used text categorization data sets (Lang, 1995
Rose et al., 2002.; Lewis et al., 2004).

On the first three small sets, we compare against one-versus-restiapdrpose is mainly to
compare accuracy. On the next 3, Reuters RCV1, Ads, and Web,mjgace against the top-down
method. In both the one-versus-rest and top-down methods, we ddtiiey gingle perceptron
training, committee of 10 perceptrons, or a fast algorithm for learning liS&#s (Keerthi and
DeCoste, 2005). We could not run the SVM on the Web data as it took Itingreia day, and had to
limit our SVM experiments on Ad%> For the final word prediction data, the task is to predict each
word given features derived from the surrounding words in the seateFor this problem, since
the classes (the words) do not form a hierarchy and one-verstisteo inefficient, we only show
performance of the indexing method.

All instance vectors ar& (cosine) normalized. For text categorization data, the features are
standard unigram or bigram words and phrases. The feature veaogsobtained from publicly
available sources in the cases of Reuters RCV1 (Lewis et al., 2004thantewsgroups (from
Rennié®). For RCV1, we used the training split only (23k documents) to be able terempnt
with the slower algorithms. We obtained the Ads and Web data sets from Yahaothe web
data set, to obtain a sufficient number of instances per class, we cut tmiax at depth 4, that
is, we only considered the true classes up to depth 4. To simplify evaluatoosed the lowest
true class(es) in the hierarchy the instance was classified under at testTiiag an instance in
Reuters RCV1 corpus on average is assigned two true classes. Weatadterttany practical text

15. There has been further advances on speeding up linear SVM grailgiorithms since the submission of this paper
(e.g., Shalev-Schwartz et al., 2007; Hsieh et al., 2008). Thespgun training timings in our tables may be a better
indicator of the training times for the more recent algorithms.

16. Obtained from people.csail.mit.edu/jrennie/20Newsgroups.

2593

MADANI, CONNOR AND GREINER

categorization applications such as personalization, classes at the tbpréeveo generic to be

informative/useful. For top-down training, we trained the classifier on ttegnal classes as well.
Web and Ads had just over 20 classes in the first level (after root), WRieilgers RCV1 has two (we
used both the Industry and Topic trees). The Jane Austen (word poadlidata set was obtained by
processing Jane Austen’s six online novels: the surrounding neigbddof each word, 3 words
on one side, 3 on the other, and their conjunctions, provided the fedaloast 15 many).

We report on the average performance over ten trials. In each trinbama10% of the data is
held out. The exception is the newsgroup data set where we use the Lestadplits by Rennie
et al. (2003), each 80-20, and we used their vector representations,able to compare directly
with their results. We used a 2.4GHz AMD Opteron processor with 64 GB dflRaith light load.

Figures 9 and 10 present the algorithms’ performance under bothaagcaind efficiency cri-
teria. As a simple baseline, we report the performance of FrequenelyBagFB) as well, which
ranks classes simply based on the frequency of the classes in the tratanggetl

For the FF algorithm, we usesl, =0.01 for the minimum weight threshold during learning,
anddmax =25 (max-outdegree during look up). Note tloat,x of 25 means a class is retrieved as
along as it is within the first 25 highest weight connections of some acttarke even if its weight
is not much higher thawm,in. During training, the FF algorithm looks for a true (positive) class
within the first 50 top scoring classes. If it is not found, the score of tsitige class is assumed 0.
We report on performance after pass 1 with 0 margin thresigle-(0), as well as best performance
in Ry within the first 10 passes, wity, € {0,0.1,0.5}. We did not optimize on the choice of these
parameters, for example, we may do better for lodigs« values (see Section 6.3.2). Note that
a Ony, value above 0.5 basically means to update on most instances as index aglges wee less
than 1, and thus class score differences tend not to be much higher.Ghavh&n instances ate
normalized. For the SVM, we report the best performandg;inver the regularization parameter
C € {1,5,10,100} for the first three small data sets a@d: {1,10} for the large ones. Ofte@ =1
and 10 suffices (accuracies are close). There are 10 percepirthrescommittee (often, 5 to 20
suffices for attaining much of the accuracy).

6.1 Accuracy Comparisons

We first observe that the FF algorithm is competitive with the best of othegarticular it achieves
the highestRs in 5 of the 6 categorization domains, and the highest aveRaga 4 of 6 cases.
We have observed that comparison based on the HR results often yields sankargs of the
algorithms tested as doBs. We limit the discussions tB; andRs. In particularR; (plain accuracy
or one minus zero-one error) is a simple commonly used performance me&surthe classifier
based methods, observe that there is a good separation from pemdef@Ms, suggesting that the
classification tasks are challenging. The performance of FF on newsties the best performance
achieved by Rennie et al. (2003), and they used special feature vegtesentations, for the linear
SVM as well as their methods, to reach that performalﬁcm the case of RCVI, for top-down
training, we experimented with using a fixed sigmoid, that is, no sigmoid fitting elsas/ sigmoid
fitting using one or more trials of obtaining scores (score-class pairsenwibt fitting, we used
fixed values of 0 bias and -2 slopgﬁ, wheres denotes the score of classifier on the instance.

17. On the industry data set, we found that the classes have similar fioogpclose to @1. As we keep only 10% for
test, and there are only just under 10k instances in the whole set, we sthetharformance of Frequency Baseline
is very low. The classes with the highest proportion in training are not tissesawith the highest proportion on the
test set.

2594

LEARNING WHEN CONCEPTSABOUND

| Rank (HR) | Ry | Re [Tw [d [W]
Small Reuters, 10 classes
Om=0, p=1 1.082 0.860 0.998| 0s | 4.9 | 55k
0m=0.5, p=1 1.066 0.884+0.009 | 0.997| Os 5 73k
perceptron 1.08 0.871 0.995| 4s 10 | 74k
committee 1.06 0.891 0.999| 40s | 10 | 74+
SVM C=1 1.052 0.906+0.009 | 0.998| 11s | 10 | 74+
FregBaseling 1.6 0.42 0.86 - - -
News Groups, 20 classes
om=0, p=1 1.137 0.798 0.978| 2s 10 | 113k
O0m=0.5, p=1 1.085 0.865+0.005 | 0.987 | 2s 10 | 171k
perceptron 1.229 0.728 0.928| 20s | 20 | 189k
committee 1.122 0.830 0.970| 220s| 20 | 189+
SVM C=1 1.1020 | 0.8524+0.005| 0.975| 92s | 20 | 189+
FregBaseline 3.33 0.05 0.25 - - -
Industry, 104 classes

om=0, p=1 1.114 0.861 0.942| 4s | 16.7 | 124k
Om=0.5, p=3 1.094 0.886+0.008 | 0.949| 16s | 15.8 | 196k
perceptron 1.488 0.595 0.773| 55s | 104 | 330k
committee 1.17 0.816 0.904 | 610s| 104 | 330+
SVM C=10 1.112 0.872+0.009 | 0.933 | 235s| 104 | 330+
FregBaseling 31 0.005 0.03 - - -

Figure 9: Comparisons on the smaller data selg. is training time (s=seconds, m=minutes,
h=hours),d is the number of “connections” touched on average per feature of mtest
stance, an¢W| denotes the number of (nonzero) weights in the system (see Section 6.2).
The first two rows for each set report on FF, the first row being FF@ittargin threshold,
after one pass (p=4 means trained for four passes). Some exampkrdtdedations for
R: are also shown.

Thus, at score of 0, the (probability) value obtained is 0.5, and scdretioé probability isH% ~
0.73. When sigmoid fitting, we used one or more 80-20 splits of the training dataetr on 80,
obtained the scores on the remaining 20, pooled the scores from diffeatsand fitted a sigmoid
on the points. We then trained the classifier on the whole set. With more trial®twetier results
on RCV1, but with diminishing returns, and this takes more time. For Ads, wiel con the SVM
with no fitting. Committee and perceptron used 3 trials. We performed the binoigatest to
compare the performance of FF (the second row for each data setstailj@best of others (this
is the SVM result, when available) as follows. We pairedRhevalues on the same splits of data,
10 many for each data set, and counted the number of wins and lossesTdid-Bold-faced?;
andRs values indicate significance with confidence lepet 0.05 (i.e., either 9 or 10 wins). We
observe that FF is superior with statistical significance in many cases niyth@mne caseR; on
the smallest data set, does it have statistically significant inferior perfoemanc

The competitive and even superior accuracy of the FF algorithm proeidédence that im-
proving class ranking on each instance, in the context of other classe®dy be relevant (other
retrieved classes), and at the same time, keeping the index sparse, id stighegy or learning
bias for our high performance categorization task. Methods based arylslassifiers can be at

2595

MADANI, CONNOR AND GREINER

[Rank (HR)| R [R [Tw [d [W]
Reuters RCV1, 414 classes
Omn=0, p=1 1.181 0.763 0.955| 6s | 15.1| 181k
On=0.1, p=4 1.164 0.784-0.008 | 0.952| 24s | 12.9| 223k
perceptron 1.418 0.621 0.815| 70s 38 760k
committee 1.197 0.769 0.918| 750s | 36 760k+
C=1,0fit 1.26 0.72 089 | 94s | 36 4meg
C=1,1 trial 1.18 0.779 0.936| 200s | 36 4meg
C=1,3 trials 1.17 0.782 0.937| 400s | 36 4meg
C=1,4 trials 1.17 0.783+0.01 | 0.939| 520s | 36 4meg
FreqBaseline 4.58 0.082 0.348 - - -
Ads, 12.6k classes
on=0,p=1 1.269 0.706 0.892| 27s | 7.8 814k
On=0.1, p=4 1.254 0.725+0.003 | 0.890| 92s | 6.7 1meg
perceptron 1.738 0.517 0.642| 0.5h+| 80 S5meg
committee 1.424 0.652 0.758| 5h+ 80 | 5meg+
SVM C=10, 0 fit 1.424 0.665+0.003 | 0.774| 12h+ | 80 | 5meg+
FregBaseline 35.56 0.012 0.033 - - -
Web, 14k classes
On=0, p=1 2.22 0.346 0.575| 64s 8 1.6meg
On=0, p=2 221 0.352+0.007 | 0.576| 128s | 8 1.5meg
perceptron 6.69 0.098 0.224| 1h+ | 250 | 14meg
committee 3.78 0.207 0.335| 12h+ | 190 | 14meg+
FreqBaseline 10.4 0.053 0.126 - - -
Jane Austen, 17.4k classes

Omn=0, p=1 2.71 0.272+0.002 | 0.480| 40s | 8.7 | 1.5meg
Om=0.1, p=4 2.73 0.279+0.002 | 0.462| 160s | 9.1 | 1.6meg
Om=0.5, p=4 3.01 0.243+0.002 | 0.425| 160s | 9.1 | 1.6meg
FregBaseline 10.3 0.037 0.15 - - -

Figure 10: Comparisons on the larger data selg. is training time (s=seconds, m=minutes,
h=hours),d is the nhumber of “connections” touched on average per feature of a test
instance, andW| denotes the number of (nonzero) weights in the system (see Sec-
tion 6.2). The first two rows for each set report on FF, the first roimd&F with O
margin threshold, after one pass (p=4 means trained for four pasSes)e example
standard deviations fd®; are also shown.

a disadvantage because the task of choosing whether a single clakklshagsigned or not, in
isolation, can be error-prone, especially with large numbers of claS$zssifier scores can be used
for ranking classes, but the classifiers were not obtained with the olgexfta good ranking of the
classes for each instance (and their scores may not be calibtatedypical binary classifier such
as an SVM is trained to yield a separation among instances (a good clagygedtd he scores of
such a classifier are more suitable for ranking the instances for thesporméing class than ranking
classes for each instance. Top-down classification can help acdnrdmat the top classifiers may
effectively discover features useful for making general distinctiand, lower-level classifiers can
similarly use features for making fine distinctions among a smaller set of siblisgeda On the

18. However, for the one-versus-rest experiments, we also egdltenkings using the probabilities obtained via sigmoid
fitting, instead of using the raw classifier scores, but saw no changéopimaccuracies (not shown).

2596

LEARNING WHEN CONCEPTSABOUND

other hand, top-down classification inherits the problems of one-veesti¢for the children of ev-
ery parent node, the problem is akin to one-versus-rest). Furtheythererrors of the intermediate
classifiers along a classification path can add up. Indexing achieved afiitirect “flat” classifi-
cation (akin to one-versus-rest, but not via binary classifiers). Fesathat are directly predictive
of classes can be discovered, skipping error-prone intermediasifdes. On the other hand, dis-
tinguishing thousands of classes via a single linear classifier (the indeXjecarror-proné? It is
ultimately an empirical question which of these fairly different learning teakeggnay outperform
others.

6.2 Efficiency and Ease of Use

We see that the training times of the FF algorithm is dramatically lower than otmersha ratio
grows with data set size, reaching or exceeding two orders of magnitude.

Our measure of workd, is the expected number of “connections” touched per feature of a
randomly drawn instance during categorization. For example, for theadssdt, on average just
under 8 connections (classes) are touched during index look up gterde or 8x 27 total are
touched per instance (the average number of features of a vector $8@Figure 8), while for
top-down ranking, 80 classifiers are applied on average (over 22 &b phevel) during the course
of top-down ranking/classification. We are assuming the classifiers henaraory-time efficient
hashed representation. Again, we see that the indexing approaclaa kignificant advantage
here.

In the case of the index, the space consumpfitin is simply the number of edges (positive
weights) in the bipartite graph. In the case of classifiers, we assumedsa sppresentation (only
nonzero weights are explicitly represented), and in most cases useceptpen classifier, trained
in a mistake driven fashion as a lower estimate for other classtfleds the smaller data sets, the
difference is not important. However, we see that on the large catetjonziata sets the classifier
based methods can consume significantly more space. We also note thatFérdlgorithm, with
higherdn, the index size increases. This is caused by more updates being perfaithenigher
dm, and more updates tends to increase edge additions. This does nattappesease the word
though.

The FF algorithm is very flexible. We could run it on our workstations fottedldata sets (with
2 to 4 GB RAM), each pass taking no more than a few minutes at most. This wassgible for
the classifier based methods on the large data sets (inadequate memosyeral gthe top-down
method required significant engineering effort (encoding the taxondmgtsre, writing the clas-
sifiers to file for largest data sets, etc). Liu et al. (2005) also repati@ponsiderable engineering
effort required and the need for distributing the computation.

6.3 Effects of Various Options and Parameters

In this section, we investigate the effects of various parameters and optioascuracy and ef-
ficiency. For each option, we show performance on a subset of dtdosshow the difference
that using that option can make. In each case, unless otherwise spdh#iegimaining parameters
(such as choice of margin) are as in Figures 9 and 10 for best perioenand as before we report

19. Huang et al. (2008) explore a multi-stage data-driven classificagiproach, using fast indexing for the first stage.
20. We have observed that the committee of perceptrons can be tahirgp a single linear classifier by weight aver-
aging after training without degrading accuracy.

2597

MADANI, CONNOR AND GREINER

No Constraints Default Constraints T (single pass)
Small Reuterg 0.884+0.008 0.884+0.008 Os vs Os
News Group | 0.8664+0.006 0.86540.005 3svs 2s
Industry 0.889+0.009 0.886+0.008 9svs 4s
RCV1 0.787+0.007 0.787+0.008 [40s— 505 vs 6S
Ads 0.716 0.711 45mvs 27s
Web 0.327 0.347 2h vs 64s
Jane Austen 0.276 0.274 lhvs 4ls

Figure 11: No constraints athax (maximum outdegree) N@min (Wmin Set to 0), compared to the
default settings. Accuracie®{ values) are not affected much, but efficiency suffers
greatly. The rough training times for a single pass are compared.

averages and standard deviations for 10 random trials of 90-10 spiitspiefor news groups, for
which the 80-20 split is given).

6.3.1 REMOVING EFFICIENCY CONSTRAINTS

We designed the FF algorithm with efficiency in mind. It is instructive to see tim@aalgorithm
performs when we remove the efficiency constraimigi{ anddmnay. Note however that such con-
straints may actually help accuracy somewhat by removing unreliable weighfgeventing over-
fitting.

In these experiments, we S&fi, to 0 anddmax to a large number (1000). We show the best
Ry result for choice of margin thresholi, € {0,0.1,0.5}, over the first 5 passes, and compare
to default values for the efficiency constraints. We observe that therages are not affected.
However FF now takes much space and time to learn, and classification timétischudn the web
data, for instance, the number of edges in the index grows to 6.5meg aftgyass (it was about
1.5meg before). The average number of edges touched per feabwe tgr 1633, versus 8 for the
default, thus 200 times larger, which explains the slow-down in training time.

For the ads, web, and Jane Austen, due to the very long running timeanw ifor only a few
trials, sufficient to convince ourselves that the accuracy does nogehaee also next section). We
report the result (with or without constraints) from the first pass of glsitrial, on the same split
of data.

6.3.2 QUTDEGREECONSTRAINT

Figure 12 shows accuracy against the degree constdint, on the 3 large categorization data
sets. We see that accuracy may in fact improve with lower degrees (R@AlVab). At outdegree
constraint of 3 for RCV1, the number of edges in the learned index is\drB80k instead of 180k
(for the defaultdynax = 25), and the number of classes (connections) touched per featurdeis3in
instead of 15 (Figure 10).

In general, it may be a better policy to use a weight threshold, greatewthannstead of a max
outdegree constraint, for more efficient retrieval, as well as more tiedua index size, without
loss in ranking accuracy.

2598

LEARNING WHEN CONCEPTSABOUND

accuracy
o
(4
5

o) 10 20 30 40 50
max outdegree allowed

Figure 12: AccuracyR;) after one pass against the outdegree constraint.

0.001 0.01 0.1
RCV1 | 0.786+0.009 | 0.787£0.008 | 0.761+0.008
Ads 0.728+0.002 | 0.725+0.003 | 0.701+0.003
Web | 0.332+0.005 | 0.352+0.003 | 0.30+0.006

Figure 13: The effect ofvyin on accuracy. We took the beRf within the first 5 passes. The
standard deviations are also shown. The valgg = 0.1 is significantly inferior, while
settingwnin to 0.001 does not lead to significant improvements.

6.3.3 THE MINIMUM WEIGHT CONSTRAINT

We noted in Section 4.1 thatvam, value of Q01 can be adequate if we expect most useful edge
weights to be in say0.05, 1] range, while avmi, value of 0.1 is probably inadequate for best per-
formance. Figure 13 shows thR values forwmin € {0.001,0.01,0.1} on the three bigger text
categorization data sets. Other options were set as in Figure 10, andtlg balue within first 5
passes is reported.

Note that whilewmin, =0.1 is inferior, the bulk of accuracy is achieved by weights above OdL, an
Wmin < 0.01 does not make a difference on these data sets.

6.3.4 MULTIPLE PASSES ANDCHOICE OFMARGIN

Figure 14 shows accuracy (with standard deviations over 10 runs toplwis) as a function of
the number of passes and different margin values, in the case of RR@®E. As can be seen,
different margin values can result in different accuracies. In sone skts, accuracy degrades
somewhat right after pass 1, exhibiting possible overfitting as trainingimeaince increases.

2599

MADANI, CONNOR AND GREINER

T T
marg=0 —+—
0.79 | : M : H H vvvarg70'§2 o S

El

accuracy (recall at 1)

N N N N N N N N N N
1 2 3 4 5 6 7 8 9 10
number of passes

Figure 14: Reuters RCV1: Accuraci) for margin thresholdy, € {0,0.1,0.2,0.5} against the
number of passes.

No Leakage | Allow Leakage
News Group| 0.866+0.005 | 0.865+0.005
RCV1 0.780+0.008 | 0.787+0.008
Ads 0.696+ 0.002 | 0.7254+ 0.003

Figure 15: On some data sets, allowing weight leakage when dropping edqgesignificantly im-
prove accuracy.

6.3.5 DSALLOWING WEIGHT “L EAKS”

An uninformative feature such as “the” should give low votes to all cesstowever, since the
outdegree is constrained for memory reasons, if we imposed a consteditite¢ltonnection weights
of a feature should sum to 1, then “the” may give significant but inatewaights to the classes
that it happens to get connected with. Allowing for weight leaks is one Wwagdressing this issue.
Figure 15 compares results. For the NO case in the figure (not allowimgnever an edge from
f to cis dropped, its weight; ., is subtracted fromv;. Thusw; = 5w} . when we don't allow
leaks, andv; > 5 w; . when we allow them. '

6.3.6 DOWN WEIGHING LITTLE SEEN FEATURES

Figure 16 shows the effect of down weighing infrequent features default option, see Sec-
tion 4.3.2), against treating all features as equal (not using the optiawnveighing infrequent
features can significantly help.

2600

LEARNING WHEN CONCEPTSABOUND

No Down-Weigh| With Down-Weigh
Newsgroup| 0.860+0.005 0.865+0.005
RCV1 0.758+0.007 0.787+0.008
Web 0.3274+0.006 0.352+ 0.007

Figure 16: Down-weighing infrequent features can significantly impemairacy.

IND Bool FF p=1 | best Bool FF best FF
News Group| 0.846+0.006 | 0.860+0.006 | 0.860+0.005 | 0.865+0.005
Industry 0.799+0.01 | 0.839+0.011 | 0.867+0.008 | 0.886+0.009
RCV1 0.686+0.009 | 0.76+0.01 | 0.780+0.008 | 0.789+0.008

Figure 17: Comparisons with IND and the effect of using feature valugsating them as Boolean
and nol, normalization. The last column (best FF) contains results when default FF
(with the use of feature valuely, normalization) is used (from Figure 9). Boolean FF
with the right margin can significantly beat IND in accuracy, and use dfifeavalues
in FF appears to help over Boolean representation.

6.3.7 INDAND BOOLEAN FEATURES

IND treats features independently and as Boolean, but computes thé@uaid exactly. Thus IND

is similar to Boolean FF with high margin amg,i, = 0, but IND also has a post-improvement step
of adjustingping (using the training set), which we have observed can improve the teshagaf
IND significantly (in addition to reducing index size). In these experimeptswas chosen from,

{0.01,0.02,--,0.09,0.1,0.15,0.2,0.25, - - -, 0.6}.

Here we compare IND against FF with Boolean values (and feature seaitemotl, normal-
ized). This allows us to see how much using features values helps, assvet@mparison to a
simpler heuristic of computing the conditional probabilities exactly and droppi@gmall values
afterward. Figure 17 shows the results. For Newsgroup, IndusthR&V1, the best value @ing
was respectively .01,0.1, and 03. To see the effect of edge removal on the accuracy of IND, if we
choseping = 0 (did no edge removal), we would gt averaging below 8 on RCV1 (instead of
current 069).

To achieve the best performance with Boolean features for FF on newsgve had to raise the
margin threshold to 7.0. Margin threshold of 1 or below gave significantlyiorfeesults of 0.82 or
below. Note that the scores that the classes receive during retrievala@aase significantly with
Boolean features (compared to using the feature valulesiormalized vector representation).

We conclude that IND can be significantly outperformed by FF with an gpjate margin.

6.4 Other Experiments

Here, we first compare to an older indexing method (Madani et al., 20@athan report and discuss
some properties of the FF learning algorithm, such as the training perfoemaverage scores of
the top class, and a few example connections learned.

2601

MADANI, CONNOR AND GREINER

No Classifiers| With Classifiers FF
News Group| 0.681+0.007 | 0.768+0.006 0.86
Industry 0.658+0.009 | 0.7954+ 0.01 | 0.88+ 0.008

Figure 18: The performance of the non-ranking indexer algorithm, ileguam unweighted index,
with and without classifiers (first two columns) (Madani et al., 2007). dbal of im-
proving class rankings, via learning a weighted index, simplifies indexidgmaproves
classification accuracy.

6.4.1 GOMPARISON TOOLDER INDEX LEARNING

The first idea for use of an index was to drastically lower the number alidate classes to a
manageable set when classifying a given instance, say 10s, and éhelasssfiers, possibly trained
using the index as well (for efficient training), to precisely categorizertbances (Madani et al.,
2007). Here, we briefly compare using that method, which we will refes tomaeightedndexing,
against our current FF method. We have already noted that (binasgifetas appear inferior for
class ranking, especially as we increase the number of classes, inropagsons in one-versus-
rest experiments. Here, we present results showing that adding améaliete index trained as
described by Madani et al. (2007) does not improve accuracy. émntire, FF is significantly
faster and easier to use.

The unweighted indexing algorithm of Madani et al. (2007) uses a tbleghk during training
and updates the index only when more thgrmany false positive classes are retrieved on a training
instance or when a false negative occurs. In that work, class-&eatights are computed only to
decide whether a connection or an edge should go into the index. We emporacy under two
regimes when we test unweighted indexing: (1) as a baseline, when dnty the class-feature
weights (without training classifiers), (2) when classifiers are also ttaimere committee of per-
ceptrons, trained in an online manner in tandem with the learning of the indéxha classes are
ranked using the scores of the retrieved classifiers on the instancturth@r details on that algo-
rithm, please refer to Madani et al. (2007). Note that if we use the clasdifiedirect classification
(and not ranking) we obtain significantly inferior accuracy.

Figure 18 shows the results on the newsgroup and Industry data setg. Wsihg no classifiers,
we obtained the be®; performance withi, = 5 (out ofty € {2,5,20}) on the newsgroup and
Industry data sets. The accuracy improves with more passes, but seac®sding in under 20
passes, and we have reported the best performance over the Vaikdbe addition of classifiers,
the besR; is obtained when we don’t use the indexer (see Figure 9), but the r&suitsising the
indexer can be close as the number of classes grows and with toleramtd@e. We have shown
the result fort;o; =5 for newsgroup, ant, =20 for Industry. We observe that we require classifiers
for the unweighted index learning method, to significantly improve accueex/the combination
still lags behind FF in accuracy.

We note that while unweighted indexing without classifier training is fast, ikstraining
adds significant space and time overhead. Training was an order oftadegelower than FF on
the two data sets we reported on, and the classifiers also require 10 otranoireg passes to reach
best performance.

2602

LEARNING WHEN CONCEPTSABOUND

Train and Test Accuracy versus Pass on the news group data set

Train and Test Accuracy versus Pass on the Web Dataset

L 1
train m'argO —— train m'arg 0 ——
train marg 0.5 -+ 09 train marg 0.1 ¥+
testmarg 05 [} testmarg 0.1 [}
08 U— oreoreeeeeeees ¥
I S -

o7

i 0.9 g -

1] & 06

3 5

8 Q

5 oo & o t B e
0.5
04

08
] g s s i
0.3
075 N L L . L 02
1 2 3 4 5 6 7 1 2 3 4 5 6 7
pass pass

Figure 19: Train and test accuracy versus the number of passese apwisgroup (left) and web
(right) data sets. Increasing the margin threshold can help control ttiwerfiout may
not result in best test performance.

6.4.2 TRAINING VERSUSTEST PERFORMANCE OFFF

Figure 19 shows the train and td&t values as a function of pass. For the training performance,
at end of each pass, thi® performance is computed on the same training instances rather than
on the held-put sets. The higher the margin threshold, the less the capadittirfg and therefor

the less the possibility of overfitting. In the case of the newsgroup, we aegvéhreach the best
performance with a relatively high margin thresholdgf~ 1, and the test and training performance
remain roughly steady with more passes, unlike the cas&,fa0. For the web data set, we see
that the difference between train and test performance also decesases increase the margin
threshold, but the best test performance is obtained with margin threstald o

6.4.3 LEARNING CLASS PROTOTYPES

FF does not necessarily learn good (binary) classifiers or classtyges) that is, the incoming
weights into a class; (the VeCtor(WLi,"',Wf“:"i)), may make a poor class prototype vector. For
example, we used such “prototypes” for ranking instances for easls gfaReuters-21578 and
newsgroup. The ranking quality (max F1) was significantly lower than thitimed from a single
perceptron or a linear SVM trained for the class (5 to 10% reduction inlatesealue of Max-
F1 compared to perceptron on Reuters-21578 classes). On the ospstata set, the Max-F1
performances were comparable to single perceptrons but lagged thammarce of SVMs.

6.4.4 GQ.ASSINDEGREES

In Section 4.4 it was mentioned that prototypes may require more (honzerghts and process-
ing time than features, and thus feature-based methods could have @ameffiadvantage over

2603

MADANI, CONNOR AND GREINER

prototype-based methods (even when adjusted for the average vajtr lienes average feature
outdegree). Of course, this all depends on the details of what pmogesseds to be performed for a
given algorithm and what the average numbers come out to. It may bd tsé&fok at the average
indegree of a class during the FF algorithm on our data sets.

Let the indegree of a class, that is, the length of the prototype vectorebmithber of features
that have a significant edge to the class (within the highggt edges for each feature). After
one pass of training, the indegree for the top ranking class (averagedest instances), for the
Newsgroup, Industry, RCV1, Ads, and Web was respectively: Bk4R, 530, and 14k. The true
class had a lower but somewhat similar average indegree, except fwethavhere the true class
had an average indegree of 6700. Furthermore, in general, theyavadegree of classes at given
rank goes down with increasing rank. This is plausible: concepts withuwelathigher indegree
(i.e., more connections) tend to beat others in the score received: tltejotbe ranked closer to
the top.

Observe that the uniform averages (indegree of a class picked miyfat random) is signifi-
cantly lower for the big data sets, due to the skew in class frequenciesunifoem averages can
be computed from Figures 9 and 10, for example, for the Web datalif%.g ~ 100.

6.4.5 EXAMPLE FEATURES AND CONNECTIONS

On RCV], there were about 300 feature-class connections with weighteg than 0.9 (strong
connections). Examples included: “figurehead” to the class “EQUITYRKATS”, “gunfir’ to
the class “WAR, CIVIL WAR*, and "manuf” (manufacturing) to “LEADIN@GDICATORS". Ex-
amples of features with relatively large “leaks”, that is, with= Y .ws ¢ < 0.25, and thus likely
uninformative, included “ago”, “base”, “year”, and “intera®.

7. Conclusions

We raised the challenge of large-scale many-class learning and expt@rexpproach of index
learning. In this index-learning context, we began with the informal conje¢hat (1) each feature
need only connect to a relatively small number of classes, and (2) tbeseations can be dis-
covered efficiently. We provided evidence that there exist very dificdaline learning algorithms
that nevertheless enjoy competitive and at times better accuracy perfaitiam other commonly
used methods. The algorithms may best be viewed as performing the commutatiarthe side of
features (the predictors) rather than the classes (the predicted)feaagte computes that choice of
classes it may connect to and the connection weights. In particular, fptarge-scale problems,
each feature is space constrained in performing its computations and inrtiienof classes to
which it can connect.

Much work remains in terms of advancing the algorithms and developing agrstadding
of their successes and limitations, including developing insights into the possgniarities in
naturally occurring data that could explain the observed successdatafvd to further investigate
index-learning algorithms, including different update methods and obgsctis develop theoretical
properties, and to explore applications to various domains.

21. The feature “the” was probably dropped (a “stop” word) durirggttikenization of this data set (Lewis et al., 2004).

2604

LEARNING WHEN CONCEPTSABOUND

Acknowledgments

Thanks to the anonymous reviewers of the paper for their valuabledekdnd suggestions, which
improved the presentation. Thanks to Scott Corlett, Dennis DeCoste, Saifets Jian Huang,
Sathiya Keerthy, David Kempe, Ravi Kumar, John Langford, Chih-Jerdishore Papineni, Hema
Raghavan, Lance Riedel, Mohammad Salavatipour, and the machine legrmingat Yahoo! Re-
search for suggestions, pointers, and discussions, and Pradhahela, XXiaofei He, and Cliff
Brunk for providing us the web data.

Appendix A. NP-Hardness

For the purpose of establishing hardness, the problem is specifiedtg &ét of instances, wherein
each instance is assigned a class and specified by the set of its adtivede@he features need only
be Boolean. Of course, more general problems are at least as hardhal NP-hardness when
a fixed upper constraint is imposed on the outdegree on each featureiimdéxe The problem
is NP-hard under either objective of maximizing accuracy or maximizing the viRRrd on the
given set. For MRR, for each instance, the reward is the rempronkl«k}a that is, the rank of
the correct class in the ranking returned by the index. On a single msimeaceeward could be
0, if the class is not retrieved, and maxes at 1, if the correct class hld raNote that MRR in
Section 3.3 is simply the average reward per instance. For accuRagytiie reward is either 1,
if the correct class is ranked highest, or otherwise 0. The decisiorigpnols then to determine
whether a weighted index (a weighted bipartite graph) satisfying the oetelegnstraint exists that
yields a total rewardy ,.x I (cx), exceeding a desired threshold.

Theorem 4 The index learning problem with the objective of either maximizing accuRgyof
minimizing HR on a given set of instances, with the constraint of a congtget boound, such as
1, on the outdegree of each feature is NP-Hard.

Proof The reduction is from the & CovER problem (Garey and Johnson., 1979). We reduce the
SET COoVER problem to problem of computing an index wherein each feature can cotorst most
1 class.

An instancel of SET COVER consist of a set = {ey,...,e,} of elements and a set =
{S1,...,Sn} of subsets ofJ. The goal is to find a smallest subsgtC S such that Jg.s =U.
Given a &T COVER instancel, we construct an instance of the indexing problem with only two
classesc; andc, such that there is aES CoVvER solution of sizeC for I iff there is an index
(with the maximum outdegree of 1 constraint), such that the maximum total retli@rdumber of
instances for which the right class is ranked highest)jst |.S| —

In the constructed indexing problem, there is one feafumrresponding to each s§te S,
for a total ofm features. There is also one instangdor each elemeng; € U (1 < j < n), andx;
contains featurd; (x; is connected tdj) iff the elemente; belongs to the se§. These instances,
called the “original instances”, belong to clags In addition, there aren “extra” instances, one for
each set (or each feature). Each of these extra instances contlyitiseofeature it corresponds to,
and belongs only to clags (see Figure 20).

Here, in constructing an index, we need to decide for each feature avhiettonnect the feature
to c; or to ¢, (we can only connect to one of the two), and with what weights. Now, ifveicof
sizeC exists, then we can easily obtain an index yielding rewarff+ |.S| - C: we connect the

2605

MADANI, CONNOR AND GREINER

Original Instances
Features

. — O
f1 % OA
. o °:
° o :
. - °
f o :
F
IF| S Xy,

xtra Instances

C2

W/

Figure 20: Reduction of the minimum set cover problem to index learning.

features in the cover (i.e., those features whose correspondingedidiae cover) ta;, each with
weight of | S|, and we connect all the other featuresiavith a relatively small weight of say 1. In
this way, for any original instancél{| many),c; is ranked highest, as at least one of its feature (the
one(s) in the cover) connectsepwith high weight. For only.s| —C many of the extra instances,
the correct class is missed, thus the total rewafd js- |.S| —C.

For the reverse direction, we want to show that if an index with reedists, then there is
a cover sizeC < |U| +|S| — R Assume an index is given with rewaRl Note that lowering the
connection weights t@, does not degrade the reward. So assume all such weights are at fixed
minimum valuevnin. Next, we note that any index can be converted to one in which all the drigina
instances are “covered”, that is, the index ranks the right class highks any original instance for
which this is not the case, and take one of its features that is conneatg@here must be at least
one), drop that edge, and connect itiowvith high enough weight so that is ranked highest. The
weight can simply benmin|S|. This operation does not degrade total reward as we lose on exactly
one extra instance, but gain on at least one original instance. We mest téjs operation until all
original instances are covered, and the reward is Row R. Now, we see tha® = |U|+ |S| —n,
wheren is the number of those extra instances for whiglis not retrieved, equal to the number of
features covering the original instances (connecting toor the cover size in the original problem
isC=n=U|+[S|-R <|U|+]|S|-R [|

Observe that the NP-hardness remains and is easier to show if we usexihneumancoming
score rule for class retrieval (each class gets the maximum of its incomirgveeights) instead
of the sum. This reduction does not establish NP-hardness of conatangpproximability of
class ranking (due to the subtraction), which remains an interesting opblepr. For instance,
either a constant-ratio approximation to loss (for problems with high accuaacsccuracy (for
problems with high loss) would be interesting. A similar reduction for the prold&oomputing
anunweightedindex shows that problem is NP-hard even to approximate (Madani ef@lr) 2

Appendix B. Approximation Consequences of Edge Dropping

Consider the setting of Section 4.1 wherein a feature wants to compute tretprog of the (suf-
ficiently frequent) classes in the stream it observes. There are twesdarsnaccuracies in com-
puting proportions:

2606

LEARNING WHEN CONCEPTSABOUND

0.3

" Min Thresh 0.1 —+— Min Classes, Min Thresh 0.01 ——

100 Classes, Min Thresh 0.01 ---%---

02 p

ois b

deviation ratio

"""""""""
. v

Figure 21: The performance of FSU under different allowanggs. FSU computes the class
proportions from processing a stream of 1000 class observations. dfmice of high-

est true probabilityp*, the remaining probability mass {1p*) is spread evenly over
remaining classes. This is done under two regimes of generating classés) the
number of unique classes is fixed @ = 100, and in (b) it iSC| = (%1 (i.e., modeling

the situation in which other classes tie or have close probabilities to the maximuen). Th
experiment, consisting of picking a class distribution and generating a 100 dis
repeated for 200 trials. In each trial, the deviation ratio of the highespptiop value
computed by FSUpc;, from the true maximum probability*, is computed. This de-

viation (ratio) is‘pqijp*'. The average deviation over the 200 trials is plotted against
p*. In the plot of part (b), the deviation is also compared to the case of 188eda
andwnin = 0.01. We note thatvmi, =~ 0.01 appears satisfactory f@ > 0.05, while
Wmin = 0.1 performs well for a much smaller range.

¢ Finite samples (at any given time only a finite sample has been observed).
e Setting small weights (belowpn) to O (dropping edges) to save memory.

As FSU may drop and reinsert edges repeatedly, its approximation ofl actymortions suffers
from more than the issue of finite samples alone. We want to get an idea okttadass that we
incur compared to the case when memory is not an issue (when no edgkes@red). Intuitively,
FSU should work well as long as the proportions we are interested inisuafficexceed th&vmin
threshold. The probability that a class with say probabifitis not seen in som% trials is
(1— p)YWmin and as long the rati% is high (several multiples), for example,> 4Wn;n, this
probability is relatively small. For example, far,, = 0.01, andp = 0.05, the probability of not
seeing such a class for a stretch of 100 consecutive trial®@60 More generally, the chance of
being set to O (dropped) for a class with occurrence probalgligyickly diminishes as we increase
the ratioﬁ, and therefore the cause of inaccuracies due to finite memory (the cegdmagrstraint
on features) is mitigated.

We conducted experiments to see how much the proportion estimation by F<ieddvom
true proportions and in particular compared that deviation to the deviatioms RBU is not memory
constrained (whemn, is set to 0). Figures 21 and 22 show the results. The experiments differ
on how we generated the classes and computed the deviations. In thé firss® experiments,
to generate the true-class distribution, for some fixed number of claSgesne class is given a

2607

MADANI, CONNOR AND GREINER

orL1)

(Lmax

0 0.02 0.04 0.06 0.08 0.1 0.12
min probability threshold

Figure 22: The performance of FSU, under different allowanggs. The vector of true class
probabilities is generated by uniformly and sequentially picking ffost], and keeping
track of total mass (which should not exceed 1). If for latest generated class the
probability drawn is greater than remaining massg, the remaining mass is assigned
instead, and class generation is stopped. FSU is evaluated after seggspact 1000
classes iid drawn from such a source. Thandl., (orlnay distances between the vector
of empirical proportions that FSU computes and the true probabilities vesteraged
over 200 trials, is reported. FSU with,i, =0.01 yields distances comparable to FSU
with Wnin = 0, butwmin =0.1 yields significantly inferior estimates.

highest probabilityp*, and the remaining classes obtain the remaining probability mass divided
uniformly: ﬁc’l—fl We then generated a stream of 1000 class observations (1000 iid) drams
such a distribution, and gave it to FSU with different valuesvgf,. We computed the deviation

ratio: M wherec; denotes the class ranked highest by FSU, @nas its assigned probability
(highest computed probability). We averaged this deviation (ratio) ov@itrzds of repeating the
experiments. Figure 21(a) shows the averages Wiies 100 (so all classes except for one, obtain
%). Figure 21(b) shows the results far| = (é} (e.g., for whenp* > 0.5, |C| = 2, and when
p* = 0.05,|C| = 20). Thus Figure 21(b) shows how FSU with limiteghi, compares when the
classes have similar proportions.

In the second set of experiments, we generated the probability for Esshuniformly from the
[0,1] interval, keeping track of the total probabilipused up during the course of generation. If the
newest class gets a probability greater thand 1— pis assigned to it and class generation, for se-
lecting a distribution, is stopped. We then sampled iid to get a sequence ottH38@mbservations.
We compared the vector of class proportions that FSU computed lisind., distance against
the vector of true probabilities. We averaged the distances over 200 tNelslot the results for
FSU under differentvmin constraints. We see that a thresholdngfi, > 0.1 is not appropriate if
the proportions we are interested in may be below 0.5, but a threshalg,ofz 0.01 does well,
if we are interested in true proportions that are greater th@s €ay. We compared a number of
other statistics, such as the maximum deviation from true probability, and thakility that the
deviation is larger than a threshold, and FSU withi, = 0.01 performed similarly towmi, = 0
on the distributions tested. The reason as alluded to earlier is that thosesacl&s proportions

2608

LEARNING WHEN CONCEPTSABOUND

significantly greater thawn,i, have a high chance of being seen early and frequently enough in the
stream and not being dropped.

Thus, as long as we expect that the useful proportions are a few muliwbasfrom thewmin
we choose, FSU is expected to compute proportions that are close toampsted by the FSU
with wnin set to 0 (no space constraints). Further, we expected that most oftemabieant feature
connection weights that determine the true classes during ranking hayehigin weight. Note
also that the constraint of finite samples also points to the limited utility of trying to keek
of relatively low proportions: for most useful features, we may see thelow say a 1000 times
(in common data sets), and commonly occurring features tend not to be disatiiminFinally,
vector length is a factor: if there tend to exist strong features-classectians, the influence of
the weaker connections on changing the ranking will be limited, in particul@nwhe number
of active features is adequately small. Thus, in many practical learniridgpns, expecting that
most useful proportions (weights) are in a relatively small interval |88, 1] (or that the features
do not require high outdegree) may be reasonable (see Section 618@ndral however, some
experimentation may be required to set thg, parameter.

References

S. Albers and J. Westbrook. Self-organizing data structures. In AaRthG. Woeginger, editors,
Online Algorithms: The State of the Apages 31-51. Springer LNCS 1442, 1998.

J. K. Anlauf and M. Biehl. The adatron: an adaptive perceptron algoritBurophysics Letters
1989.

H. Aradhye, G. Toderici, and J. Yagnik. Video2text: Learning to areotaleo content. IMEEE
Int. Conf. on Data Mining (ICDM) Workshop on Internet Multimedia Miniag09.

R. Baeza-Yates and B. Ribeiro-Netdodern Information RetrievalAddison Wesley, 1999.

R. Bayardo, Y. Ma, and R. Srikant. Scaling up all-pairs similarity seanciraéc. Int. World Wide
Web Conference (WWWB007.

A. Blum. Empirical support for winnow and wighted majority algorithms: Results.aalendar
scheduling domainMachine Learning26:5-23, 1997.

A. Borodin and R. El YanivOnline Computation and Competitive Analysambridge University
Press, 1998.

V. R. Carvalho and W. Cohen. Single pass online learning?rot. ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining (KDB0O06.

N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, D. Haussler, R. Schagir@ M. Warmuth. How to
use expert advicelournal of the ACM44(3):427-485, 1997.

T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nus-widereal-world web image
database from national university of singapore. Phoc. of ACM Conf. on Image and Video
Retrieval (CIVR’09)2009.

2609

MADANI, CONNOR AND GREINER

W. W. Cohen and Y. Singer. Context-senstive learning methods foraéegorization ACM Trans.
on Information Systems (TOI[S9)7:141-173, 1999.

K. Crammer and Y. Singer. A new family of online algorithms for category irmmk Journal of
Machine Learning Research (JMLR3:1025-1058, 2003a.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclesisi@gms. Journal
of Machine Learning ResearcB:951-991, 2003b.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. SingelindJpassive-aggressive
algorithms.Journal of Machine Learning Research551-585, 2006.

O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical clasific InProc. Int. Conf. on
Machine Learning (ICML,)2003.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via eroorecting codes.
Journal of Artificial Intelligence Research:263-286, 1995.

S. Dumais and H. Chen. Hierarchical classification of web conterrdn. Int. ACM SIGIR Conf.
on Research and Development in Information Retrieval (SIG&)0.

Y. Even-Zohar and D. Roth. A classification approach to word predictioRroc. of the 1st North
Amercian Association of Computational Linguistics (NAAGOOO.

M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. Ullmarm@uoting iceberg queries
efficiently. InProc. 24th Int. Conf. Very Large Scale Data Bases (VLRPS.

S. Fidler and A. Leonardis. Towards scalable representations oftataéegories: Learning a
hierarchy of parts. IfProc. of IEEE Int. Conf. on Vision and Pattern Recognition (CV,2RD7.

D. A. Forsyth and J. Ponc&€omputer VisionPrentice Hall, 2003.

Y. Freund and R. E. Schapire. Large margin classification using thepteoa algorithmMachine
Learning 37(3):277-296, 1999.

Y. Freund, R. Schapire, Y. Singer, and M. Warmuth. Using and combpriadjctors that specialize.
In Proc. ACM Symposum on Theory of Computing (STQ&97.

E. Gabrilovich and S. Markovitch. Computing semantic relatedness usingisakifaed explicit
semantic analysis. IRroc. Int. Joint Conf. on Al (IJCAJ)2007.

M. R. Garey and D. S. JohnsorComputers and Intractability: A Guide to the Theory of NP-
CompletenessW. H. Freeman, 1979.

C. Genest and J. V. Zidek. Combining probability distributions: A critique amdnnotated bibli-
ography.Statistical Sciengel(1):114-148, 1986.

C. Gentile. A new approximate maximal margin classification algorithfournal of Machine
Learning Researci2:213-242, 2001.

2610

LEARNING WHEN CONCEPTSABOUND

P. B. Gibbons and Y. Matias. Synopsis data structures for massive atatalsDIMACS: Series
in Discrete Mathematics and Theoretical Computer Science: Specia tssiEternal Memory
Algorithms and Visualizatigrii999.

J. T. Goodman. A bit of progress in language modeli@@mputer Speech and Languad&(4):
403-434, October 2001.

K. Grill-Spector and N. Kanwisher. Visual recognition, as soon as ymwkit is there, you know
what it is. Pscychological Sciencé6(2):152—-160, 2005.

M. Grobelnik and D. Mladenic. Efficient text categorization.Text Mining Workshop at European
Conf. on Machine Learning (ECML)998.

S. Guha and A. McGregor. Space-efficient samplingPioc. Int. Conf. on Artificial Intelligence
and Statistics (AISTATS)007.

T. Hastie, R. Tibshirani, and J. Friedmafhhe Elements of Statistical Learnin@pringer-Verlag,
2001.

C. J. Hsieh, K. J. Chang, C. J. Lin, and S. Sathiya Keerthi. A dualdioate descent method for
large-scale linear SVM. IRroc. Int. Conf. on Machine Learning (ICML2008.

J. Huang, O. Madani, and C. Lee Giles. Error-driven generaliseigxgEDGE): A multi-stage
ensemble framework for text categorization Froc. ACM Conf. on Information and Knowledge
Management (CIKM)2008.

R. M. Karp, C. H. Papadimitriou, and S. Shenker. A simple algorithm foirfimétequent elements
in streams and bag&CM Trans. Database Systems (TOP8:51-55, 2003.

S. Keerthi and D. DeCoste. A modified finite newton method for fast solufiterge scale linear
svms.Journal of Machine Learning Research (JML.B)341-361, 2005.

D. Koller and M. Sahami. Hierarchically classifying documents using vemwerds. InProc. Int.
Conf. on Machine Learning (ICM.1997.

W. Krauth and M. Mezard. Learning algorithms with optimal stability in neuraoeks. J. of
Physics A20, 1987.

K. Lang. Newsweeder: Learning to filter nethews Pioc. Int. Conf. on Machine Learning995.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1:. A new benchmarkention for text catego-
rization researchJournal of Machine Learning Research (JML,.B)361-397, 2004.

Y. Liand P. M. Long. The relaxed online maximum margin algorittvtachine Learning46(1-3),
2002.

Y. Li, H. Zaragoza, R. Herbrich, J. Shawe-Taylor, and J. Kand®dlze perceptron algorithm with
uneven margins. IRroc. Int. Conf. on Machine Learning (ICML2002.

N. Littlestone. Learning quickly when irrelevant attributes abound: A neealirthreshold algo-
rithm. Machine Learning2(4):285-318, 1988.

2611

MADANI, CONNOR AND GREINER

T. Liu, Y. Yang, H. Wan, H. Zeng, Z. Chen, and W. Ma. Support veatachines classification with
very large scale taxonomIGKDD Explorations7, 2005.

O. Madani. Exploring massive learning via a prediction systemAARI Fall Symposium Series:
Computational Approaches to Representation Change During Learmiai@avelopmen2007a.

O. Madani. Prediction games in infinitely rich worlds. Technical Reportaho6! Research (and
workshop on Utility Based Data Mining (UBDM)’06), June 2007b.

O. Madani and M. Connor. Ranked Recall: Efficient classification Egieft learning of indices
that rank. Technical Report 3, Yahoo! Research, 2007.

O. Madani and M. Connor. Large-scale many-class learnin§lAmM Conf. on Data Mining (SDM)
2008.

O. Madani and J. Huang. On updates that constrain the featuresctioms during learning. In
Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data MinikBD), 2008.

O. Madani, W. Greiner, D. Kempe, and M. Salavatipour. Recall systeffisidit learning and use
of category indices. IiProc. Int. Conf. on Artificial Intelligence and Statistics (AISTATZD)07.

O. Madani, H. Bui, and E. Yeh. Efficient online learning and predictions®rs’ desktop actions.
In Proc. Int. Joint Conf. on Al (IJCAJ)2009.

C. Mesterharm. A multiclass linear learning algorithm related to WinnowProrc. Neural Infor-
mation Processing Systems (NIPZ)00.

C. Mesterharm. Transforming linear-threshold learning algorithms into muHidiasar learning
algorithms. Technical Report dcs-tr-460, Rutgers, 2001.

G. L. Murphy. The Big Book of Concept8IT Press, 2002.

J. Platt. Probabilities for support vector machines and comparisons tariegd likelihood meth-
ods. In A. Smola, P. Bartlett, B. Schlkopf, and D. Schuurmans, edAak&gnces in Large Margin
Classifiers pages 61-74. MIT Press, 1999.

D. R. Radev, H. Qi, H. Wu, and W. Fan. Evaluating web-based questi®neaing systems. In
Proc. Int. Conf. on Language Resources and Evaluation (LRE@)2.

H. Raghavan, O. Madani, and R. Jones. When will a human in the loofeeateelearning? quan-
tifying the complexity of classification problems. limt. Workshop on Al for Human Computing,
at IJCAI, 2007.

J. Rennie, L. Shih, J. Teevan, and D. Karger. Tackling the poomgsson of Naive Bayes text
classifiers. IrProc. Int. Conf. on Machine Learning (ICML2003.

R. Rifkin and A. Klautau. In defense of one-vs-all classificatialournal of Machine Learning
Research (JMLR), 2004.

T. G. Rose, M. Stevenson, and Miles Whitehead. The reuters corpu& vdrom yesterday’s
news to tomorrow’s language resourcesPhoc. Int. Conf. on Lang. Resources and Evaluation
(LREC) 2002.

2612

LEARNING WHEN CONCEPTSABOUND

F. Rosenblatt. The perceptron: A probabilistic model for information stoeagl organization in
the brain.Psychological Reviews5(6):386—-408, 1958.

F. Sebastiani. Machine learning in automated text categoriza#@M Computing Survey$4:
1-47, 2002.

S. Shalev-Schwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estisizb-GrAdient SOlver for
SVM. In Proc. Int. Conf. on Machine Learning (ICML2007.

S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the humaal agstem.Nature 381:
520-522, 1996.

T. Turtle and J. Flood. Query evaluation: Strategies and optimizatiofg:mation Processing &
Management31(6), 1995.

V. Vapnik. The Nature of Statistical Learning Theorgpringer-Verlag, 2000.
V. G. Vovk. Aggregating strategies. Annual Workshop on Computational Learning Thedi§90.

J. Z. Wang, J. Li, and G. Wiederhold. SIMPLIcity: Semantics-sensititegiated matching for
picture libraries.IEEE Transactions on Pattern Analysis and Machine Intellige28£9):947—
963, 2001.

I. H. Witten, T. C. Bell, and A. MoffatManaging Gigabytes: Compressing and Indexing Documents

and ImagesJohn Wiley & Sons, 1994.

GR. Xue, D. Xing, Q. Yang, and Y. Yu. Deep classification in large-staiehierarchies. IProc.
Int. ACM SIGIR Conf. on Research and Development in Informationdvatri(SIGIR) 2008.

2613

