
Journal of Machine Learning Research 10 (2009) 2571-2613 Submitted 12/07; Revised 1/09; Published 11/09

Learning When Concepts Abound

Omid Madani MADANI @AI .SRI.COM

SRI International, AI Center
333 Ravenswood Ave
Menlo Park, CA 94025

Michael Connor CONNOR2@UIUC.EDU

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801

Wiley Greiner W.GREINER@LASOFT.COM

Los Angeles Software Inc
Santa Monica, CA 90405

Editor: Ralf Herbrich

Abstract

Many learning tasks, such as large-scale text categorization and word prediction, can benefit from
efficient training and classification when the number of classes, in addition to instances and fea-
tures, is large, that is, in the thousands and beyond. We investigate the learning of sparse class
indicesto address this challenge. An index is a mapping from features to classes. We compare
the index-learning methods against other techniques, including one-versus-rest and top-down clas-
sification using perceptrons and support vector machines. We find that index learning is highly
advantageous for space and time efficiency, at both trainingand classification times. Moreover, this
approach yields similar and at times better accuracies. On problems with hundreds of thousands of
instances and thousands of classes, the index is learned in minutes, while other methods can take
hours or days. As we explain, the design of the learning update enables conveniently constraining
each feature to connect to a small subset of the classes in theindex. This constraint is crucial for
scalability. Given an instance withl active (positive-valued) features, each feature on average con-
necting tod classes in the index (in the order of 10s in our experiments),update and classification
takeO(dl log(dl)).

Keywords: index learning, many-class learning, multiclass learning, online learning, text catego-
rization

1. Introduction

A fundamental activity of intelligence is to repeatedly and rapidly categorize.Categorization (clas-
sification or prediction) has a number of uses; in particular, categorizationenables inferences and
the taking of appropriate actions in different situations. Advanced intelligence, whether of animals
or artificial systems, may require effectively working with myriad classes (concepts or categories).
How can a system quickly classify when the number of classes is huge (Figure 1), that is, in the thou-
sands and beyond? In nature, this problem of rapid classification in the presence of many classes
may have been addressed (for evidence of fast classification in the visual domain, see Thorpe et al.
1996 and Grill-Spector and Kanwisher 2005). Furthermore, ideally, we seek systems thatefficiently

c©2009 Omid Madani, Connor and Greiner.

MADANI , CONNOR AND GREINER

?x

Figure 1: The problem of quick classification in the presence of myriad classes: How can a system
quickly classify a given instance, specified by a feature vectorx∈ Rn, into a small subset
of classes from among possibly millions of candidate classes (shown by smallcircles)?
How can a systemefficiently learnto quickly classify?

learn to efficiently classify in the presence of myriad classes. Many tasks can beviewed as instan-
tiations of thislarge-scale many-classlearning problem, including: (1) classifying text fragments
(such as queries, advertisements, news articles, or web pages) into a large collection of categories,
such as the ones in the Yahoo! topic hierarchy (http://dir.yahoo.com) or the Open Directory
Project (http://dmoz.org) (e.g., Dumais and Chen, 2000; Liu et al., 2005; Madani et al., 2007;
Xue et al., 2008), (2) statistical language modeling and similar prediction problems (e.g., Goodman,
2001; Even-Zohar and Roth, 2000; Madani et al., 2009), and (3) determining the visual categories
for image tagging, object recognition, and multimedia retrieval (e.g., Wang et al., 2001; Forsyth and
Ponce, 2003; Fidler and Leonardis, 2007; Chua et al., 2009; Aradhye et al., 2009). The following
realization is important: in many prediction tasks, such as predicting words in text (statistical lan-
guage modeling), training data is abundant because the class labels are not costly, that is,the source
of class feedback (the labels) need not be explicit assignment by humans (see also Section 3.1).

To classify an instance, applying binary classifiers, one by one, to determine the correct class(es)
is quickly rendered impractical with increasing number of classes. Moreover, learning binary clas-
sifiers can be too costly with large numbers of classes and instances (millions and beyond). Other
techniques, such as nearest neighbors, can suffer similar drawbacks, such as prohibitive space re-
quirements, possibly slow classification speeds, or poor generalization. Ideally, we desire scalable
discriminative learning methods that learn compact classification systems that attain adequate accu-
racy.

One idea for achieving quick classification is to use the features of the given instance as cues to
dramatically reduce the space of possibilities, that is, to build and update a mapping, or anindex,
from features to the classes. We explore this idea in this work. An index here is a weighted bipartite
graph that connects each feature to zero or more classes. During classification, given an instance
containing certain features, the index is used (“looked up”) much like a typical inverted index for
document retrieval would be. Here, classes are retrieved and rankedby the scores that they obtain
during retrieval, as we describe. The ranking or the scores can then beused for class assignment. In
this work, we explore the learning of such cues and connections, which we refer to asindex learning.
For this approach to be effective overall, roughly, two properties needto hold: To achieve adequate
accuracy and efficiency and in many problems arising in practice, (1) each feature need only connect

2572

LEARNING WHEN CONCEPTSABOUND

to a relatively small number of classes, and (2) these connections can be discovered efficiently. We
provide empirical evidence for these conjectures by presenting efficient and competitive indexing
algorithms.

We design our algorithms to efficiently learn sparse indices that yield accurate class rankings.
As we explain, the computations may best be viewed as being carried out from the side of features.
During learning, each feature determines to which relatively few classes itshould lend its weights
(votes) to, subject to (space) efficiency constraints. This parsimony in connections is achieved
by a kind of sparsity-preservingupdates. Given an instance withl active (i.e., positive-valued)
features, each feature on average connecting tod classes in the index, update and classification take
O(dl log(dl)) operations.d is in the order of 10s in our experiments. The approach we develop
uses ideas from online learning and multiclass learning, including mistake driven and margin-based
updates, and expert aggregation (e.g., (e.g., Rosenblatt, 1958; Genest and Zidek, 1986; Littlestone,
1988; Crammer and Singer, 2003a), as well as the idea of the inverted index, a core data structure
in information retrieval (e.g., Witten et al., 1994; Turtle and Flood, 1995; Baeza-Yates and Ribeiro-
Neto, 1999).

We empirically compare our algorithms to one-versus-rest and top-down classifier based meth-
ods (e.g., Rifkin and Klautau, 2004; Liu et al., 2005; Dumais and Chen, 2000), and to the first
proposal for index learning by Madani et al. (2007). We use linear classifiers—perceptrons and
support vector machines—in the one-versus-rest and top-down methods. One-versus-rest is a sim-
ple strategy that has been shown to be quite competitive in accuracy in multiclasssettings, when
properly regularized binary classifiers are used (Rifkin and Klautau, 2004), and linear support vec-
tor machines achieve the state of the art in accuracy in many text classificationproblems (e.g.,
Sebastiani, 2002; Lewis et al., 2004). Hierarchical training and classification is a fairly scalable and
conceptually simple method that has commonly been used for large-scale text categorization (e.g.,
Koller and Sahami, 1997; Dumais and Chen, 2000; Dekel et al., 2003; Liu et al., 2005).

In our experiments on six text categorization data sets and one word prediction problem, we
find that the index is learned in seconds or minutes, while the other methods can take hours or days.
The index learned is more efficient in its use of space than those of the otherclassification systems,
and yields quicker classification time. Very importantly, we find that budgeting the connections of
the features is a major factor in rendering the approach scalable. We explain how the design of
the update makes this budget enforcement convenient. We have observed that the accuracies are
as good as and at times better than the best of the other methods that we tested.As we explain,
methods based on binary classifiers, such as one-versus-rest and top-down, are at a disadvantage in
our many-class tasks, not just in terms of efficiency but also in accuracy. The indexing approach is
simple: it requires neither taxonomies, nor extra feature reduction preprocessing. Thus, we believe
that index learning offers a viable option for various many-class settings.

The contribution of this paper include:

• Raising the problem of large-scale many-class learning, with the goal of achieving both effi-
cient classification and efficient training

• Proposing and exploring index learning, and developing a novel weight-update method in the
process

• Empirically comparing index learning to several commonly used techniques, ona range of
small and large problems and under several evaluation measures of accuracy and space and

2573

MADANI , CONNOR AND GREINER

time efficiency, and providing evidence that very scalable systems are possible without sacri-
ficing accuracy

This paper is organized as follows. In Section 2, we discuss related work. In Section 3, we
describe and motivate the learning problem, independent of the solution strategy. We explain the
index, and describe our implementation and measures of index quality, in terms of both accuracy
and efficiency. We then report on the NP-hardness of a formalization ofthe index learning problem.
In Section 4, we present our index learning approach. Throughout this section, we discuss and
motivate the choices in the design of the algorithms. In particular, the consideration of what each
feature should do in isolation turns out to be very useful. In Section 5, we briefly describe the other
methods we compare against, including the one-versus-rest and top-down methods. In Section 6,
we present a variety of experiments. We report on comparisons among thetechniques and our
observations on the effects of parameter choices and tradeoffs. In Section 7, we summarize and
provide concluding thoughts. In the appendices, we present a proof of NP-hardness and additional
experiments.

2. Related Work

Related work includes multiclass learning and online learning, expert methods, indexing, streaming
algorithms, and concepts in cognitive psychology.

There exists much work on multiclass learning, including nearest neighborsapproaches, naive
Bayes, support vector machine variants, one-versus-rest and output-codes (see, for example, Hastie
et al., 2001; Rennie et al., 2003; Dietterich and Bakiri, 1995); however,the focus has not been
scalability to very large numbers of classes.

Multiclass online algorithms with the goal of obtaining good rankings include the multiclass
and multilabel perceptron (MMP) algorithm (Crammer and Singer, 2003a) and subsequent work
(e.g., Crammer and Singer, 2003b; Crammer et al., 2006). These algorithms are very flexible and
include both additive and multiplicative variants, and may optimize an objective in each update;
some variants can incorporate non-linear kernel techniques. We may refer to them as prototype
methods because the operations (such as weight adjustments and imposing various constraints) can
be viewed as being performed on the (prototype) weight vector for eachclass. In our indexing algo-
rithms it is the features that update and normalize their connections to the classes. This difference is
motivated by efficiency (for further details, see Sections 4.1 and 4.4, andthe experiments). Similar
to the perceptron algorithm (Rosenblatt, 1958), we use a variant of mistakedriven updating. The
variant is based on trying to achieve and preserve a margin during online updating. Learning to
improve or optimize some measure of margin has been shown to improve generalization (Vapnik,
2000). On use of margin for online methods, see for instance Krauth and Mezard (1987), Anlauf
and Biehl (1989), Freund and Schapire (1999), Gentile (2001), Li and Long (2002), Li et al. (2002),
Crammer et al. (2006) and Carvalho and Cohen (2006). In our setting, asimple example shows
that keeping a margin can be beneficial over pure mistake-driven updating even when considering a
single feature in isolation (Section 4.3.1).

The indexing approach in its focus on features (predictors) has similaritieswith additive models
and tree-induction algorithms (Hastie et al., 2001), and may be viewed as a variant of so-called
expert (opinion or forecast) aggregation and weight learning (e.g., Mesterharm, 2000; Freund et al.,
1997; Cesa-Bianchi et al., 1997; Vovk, 1990; Genest and Zidek, 1986). In the standard experts
problems, all or most experts provide their output, and the output is usually binary or a probability

2574

LEARNING WHEN CONCEPTSABOUND

(the outcome to predict is binary). In our setting, a relatively small set of features are active in each
instance, and only those features are used for voting and ranking. In this respect, the problem is in
the setting of the “sleeping” or “specialist” experts scenarios (Freund etal., 1997; Cohen and Singer,
1999). Differences or special properties of our setting include the fact that here each expert provides
a partial class-ranking with its votes, the votes can change over time (not fixed), and the pattern of
change is dependent on the algorithm used (the experts are not “autonomous”). In a multiclass
calendar scheduling task (Blum, 1997), Blum investigates an algorithm in which each feature votes
for (connects to) the majority class in the past 5 classes seen for that feature (the classes of the most
recent 5 instances in which the feature was active). This design choice was due to the temporal
(drifting) nature of the learning task. Feature weights for the goodness of the features are learned
(in a multiplicative or Winnow style manner). Mesterharm refers to such features (or experts) as sub-
experts (Mesterharm, 2000, 2001), as the performance can be significantly enhanced by learning a
good weighting for mixing (aggregating) the experts’ votes,1 and it is shown how different linear
threshold algorithms can be extended to the multiclass weight learning setting. The classifier is
referred to as alinear-maxclassifier, since the maximum scoring class is assigned to the instance
(as opposed to a linear-threshold classifier). Mesterharm’s work includes the case where the experts
may cast probabilities for each class, but the focus is not on how the features may compute such
probabilities (it is assumed the experts are given). Learning different weights for the features can
complement indexing techniques. Section 4.3.2 gives a limited form of differential expert weighting
(see also Madani, 2007a).

The one-versus-rest technique (e.g., Rifkin and Klautau, 2004) and use of a class hierarchy
(taxonomy) (e.g., Liu et al., 2005; Dumais and Chen, 2000; Koller and Sahami, 1997) for top-down
training are simple intuitive techniques commonly used for text categorization. The use of the
structure of a taxonomy for training and classification offers a number of efficiency and/or accu-
racy advantages (Koller and Sahami, 1997; Liu et al., 2005; Dumais and Chen, 2000; Dekel et al.,
2003; Xue et al., 2008), but also can present several drawbacks.Issues such as multiple taxonomies,
evolving taxonomies, unnecessary intermediate categories on the path fromthe root to deeper cat-
egories, or unavailability of a taxonomy are all difficulties for the tree-basedapproaches. In our
experiments, we find that index learning offers both several efficiencyadvantages and ease of use
(Section 6). No taxonomy or separate feature-reduction pre-processing is required. Indeed, our
method can be viewed as a feature selection or reduction method. On the otherhand, researchers
have shown some accuracy advantages from the use of the taxonomy structure (e.g., top-down) com-
pared to “flat” one-versus-rest training (in addition to efficiency) (e.g.,Dumais and Chen, 2000; Liu
et al., 2005; Dekel et al., 2003) (this depends somewhat on the particularmethod and the loss used).
Our current indexing approach is flat (but see Huang et al. 2008, for a two-stage nonlinear method
using fast index learning for the first stage). One advantage that classifier-based methods such as
one-versus-rest and top-down may offer is that the training can be highly parallelized: learning of
each binary classifier can be carried out independent of the others.

The inverted index, for instance from terms to documents, is a fundamental data structure in
information retrieval (Witten et al., 1994; Baeza-Yates and Ribeiro-Neto, 1999). Akin to the TFIDF
weight representation and variants, the index learned is also weighted. However, in our case, the
classes (to be indexed), unlike the documents, are implicit, indirectly specifiedby the training in-
stances (the instances are not the “documents” to be indexed), and the index construction becomes

1. Theoretical work often focuses the analysis on learning the best expert, and the use of term “subexpert” is introduced
by Mesterharm to differentiate.

2575

MADANI , CONNOR AND GREINER

a learning problem. As one simple consequence, the presence of a feature in a training instance that
belongs to classc does not imply that the feature will point to classc in the index learned. We give a
baseline algorithm, similar to TFIDF index construction in its independent computation of weights,
in Section 4.2. Indexing has also been used to speed up nearest neighbormethods, classification,
and retrieval and matching schemes (e.g., Grobelnik and Mladenic, 1998; Bayardo et al., 2007; Fi-
dler and Leonardis, 2007). Indexing could be used to index already trained (say linear) classifiers,
but the issues of space and time efficient learning remain, and accuracy can suffer when using bi-
nary classifiers for class ranking (see Section 6.1). Learning of an unweighted index was introduced
by Madani et al. (2007), in which the problem of efficient classification under myriad classes was
motivated. This two-stage approach is explained in Section 6.4.1, and we seein Section 6.4.1 that
learning a weighted index to improve ranking appears to be a better strategy than the original ap-
proach in terms of accuracy, as well as simplicity and efficiency. Subsequent work on indexing
by Madani and Huang (2008) explores further variations and advances to feature updating (e.g.,
supporting nonstationarity and hinge-loss minimization), taking as a starting point the findings of
this work on the benefits of efficient feature updating. It also includes comparisons with additional
multiclass approaches. This paper is an extension of the work by Madani and Connor (2008).

The field of data-streaming algorithms studies methods for efficiently computing statistics of
interest over data streams, for example, reporting the items with proportions exceeding a threshold,
or the highestk proportion items (sometimes called “hot-list” or “iceberg” queries). This is to be
achieved under certain efficiency constraints, for example, with at most two passes over the data and
poly logarithmic space (e.g., see Fang et al., 1998; Gibbons and Matias, 1999). Note that in the case
of a single feature, if we only value good rankings, computing weights may not be necessary, but
in the general case of multiple features, the weights become the votes given toeach class, and are
essential in significantly improving the final rankings. An algorithm similar to oursingle-feature
update for the Boolean case is used as a subroutine by Karp et al. (2003), for efficiently computing
most frequent items. In some scenarios, drifts in proportions can exist, and then online and possibly
competitive measures of performance may become important (Borodin and ElYaniv, 1998; Albers
and Westbrook, 1998). In this ranking and drifting respect, the feature-update task has similarities
with online list-serving and caching (Borodin and El Yaniv, 1998), although we may assume that
the sequence is randomly ordered (at minimum, not ordered by an adversary). Some connections
and differences between goals in machine learning research and space-efficient streaming and online
computations are discussed by Guha and McGregor (2007).

Statistical language modeling and similar prediction tasks are often accomplishedby n-gram
(Markov) models (Goodman, 2001), but the supervised (or discriminative) approach may provide
superior performance due to its potential for effectively aggregating richer feature sets (Even-Zohar
and Roth, 2000; Madani et al., 2009). Prior work has focused on discriminating within a small
(confusion) set of possibilities. In the related task ofprediction games(Madani, 2007a,b), Madani
proposes and explores an integrated learning activity in which a system builds its own classes to be
predicted and to help predict. That approach involves large-scale long-term online learning, where
the number of concepts grows over time, and can exceed millions.

Concepts and various phenomena associated with them have been studied extensively in cog-
nitive psychology (e.g., Murphy, 2002). A general question that motivated our work, and that ap-
pears heretofore uninvestigated, is the question of computational processes required for a system to
effectively deal with a huge number of concepts. Three prominent theories on the nature of the rep-
resentation of concepts are the classical theory (logical representations), the exemplar theory (akin

2576

LEARNING WHEN CONCEPTSABOUND

to nearest neighbors), and the prototype theory (akin to linear feature-based representations). Pro-
totype theory is perhaps the most successful in explaining various observed phenomena regarding
human concepts (Murphy, 2002). Interestingly, our work suggests a predictor-based representa-
tion for efficient recall/recognition purposes, that is, the representationof a concept, at a minimum
for recall/retrieval purposes, is distributed among the features (predictors or cues). However, the
predictor-based representation remains closest to the prototype theory.

3. Many-Class Learning and Indexing

In this section, we first present the learning setting and introduce some notation in the process.
Next, we motivate many-class learning and the indexing approach. In Section 3.2, we define the
index and how it is implemented and used in this work. We then present our accuracy and efficiency
evaluation measures in Section 3.3. Before moving to index learning (Section 4), we analyze the
computational complexity of a formulation of index learning in Section 3.4.

A learning problem consists of a collectionSof instances, whereScan denote a finite set, or, in
the online setting, a sequence of instances. Each training instance is specified by a vector of feature
values,vx, as well as a class (or assigned label) that the instance belongs to,2 cx. Thus each instance
x is a pair〈vx,cx〉. F andC denote respectively the set of all features and classes. Our proposed
algorithms ignore features with nonpositive value,3 and in our experiments feature values range in
[0,1]. vx[f] denotes the value of featuref in the vector of features of instancex, wherevx[f] ≥ 0.
If vx[f] > 0, we say featuref is active(in instancex), and denote this aspect byf ∈ x. Thus, an
instance may be viewed as a set of active features, and the input problemmay be seen as a tripartite
graph (Figure 2). The number of active features is denoted by|x|. We also use the expressionx∈ c
to denote that instancex belongs to classc (c is a class ofx).

As an example, in text categorization, a “document” (e.g., an email, an advertisement, a news
article, etc.) is typically translated to a vector by a “bag of words” method as follows. Each term
(e.g., “ball”, “cat”, “the”, ”victory”, ...) is assigned an exclusive uniqueinteger id. The finite set
of words (more generally phrases or ngrams), those appearing in at least one document in the data
set, comprise the set of featuresF . Thus the vectorvx corresponding to a document lives in an|F |
dimensional space, wherevx[i] = k iff the word with id i (corresponding to dimensioni) appears
k times in the document, wherek≥ 0 (other possibilities for feature values include Boolean and
TFIDF weighting). Therefore, in typical text categorization tasks, the number of active features
in an instance is the number of unique words that appear in the corresponding document. The
documents in the training set are assigned zero or more true class ids as well.Section 6 describes
further the feature representation and other aspects of our experimental data. For background on
machine learning in particular when applied to text classification, please refer to Sebastiani (2002)
or Lewis et al. (2004).

2. In this paper, to keep the treatment focused, and for simplicity of evaluation and algorithm description, we treat
the multiclass but single class (label) per instance setting. However, two of our seven data sets include multilabel
instances. Whenever necessary, we briefly note the changes needed, for example, to the algorithm, to handle multiple
labels. However, the multilabel setting may require additional treatment forbetter accuracy.

3. A partial remedy is to replace each feature that can also have negative values by two features, one having value
max(v,0), the other max(0,−v).

2577

MADANI , CONNOR AND GREINER

C1

C2

C3

f1

f2

f3

f4

w12

w13

Features Classes

Instances

x1
x2
x3
x4
x5

C2

C3

C1f1

f2

f3

f4

Classes Features

compute

Figure 2: A depiction of the problem: the input can be viewed as a tripartite graph, possibly
weighted, and perhaps only seen one instance at a time in an online manner. Our goal is
to learn an accurate efficient index, that is, a sparse weighted bipartite graph that connects
each feature to zero or more classes, such that an adequate level of accuracy is achieved
when the index is used for classification. The instances are ephemeral: they serve only
as intermediaries in affecting the connections from features to classes. The index to learn
is also equivalent to a sparse weight matrix (in which the entries are nonnegative in our
current work) (see Sections 3.2 and 3.2.1).

3.1 The Level of Human Involvement in Teaching and Many-Class Learning

Learning under myriad-classes is not confined to a few text-classification problems. There are a
number of tasks that could be viewed as problems with many classes and, if effective many-class
methods are developed, such an interpretation can be quite useful. In termsof the sources of the
classes, we may roughly distinguish supervised learning problems along thefollowing dimensions
(the roles of the teacher):

1. The source that defines the classes of interest, that is, the space of the target classes to predict.

2. The source of supervisory feedback, that is, the source or the process that assigns to each
instance one or more class labels, using the defined set of classes. This isnecessary for the
procurement of training data, for supervised learning.

In many familiar cases, the classes are both human-defined and human-assigned. These include
typical text classification problems (e.g., see Lewis et al. 2004 and Open Directory Project or Yahoo!
directories/topics). In many others, class assignment is achieved by some “natural” or indirect
activity, that is, the “labeling” process is not as explicit or controlled. Thelabeling is a by-product
of an activity carried out for other purposes. One example of this case isdata sets obtained from
news groups postings (e.g., Lang, 1995). In this case, users post orreply to messages, without
necessarily verifying whether their message is topically relevant to the group. Another example
problem is predicting words using the context that the word appears (the words are the classes). In
these problems, the set of the classes of interest may be viewed as human-defined, but the labeling
is implicit (collections of written or spoken texts in the word prediction task). Theextreme case

2578

LEARNING WHEN CONCEPTSABOUND

where both the set of classes and the labeling is achieved with little or no human involvement is also
possible, and we believe very important. For instance, Madani (2007b,a)explores tasks in which
it is (primarily) the machine that builds its own many concepts, through experience, and learns
prediction connections among them. This is a kind ofautonomouslearning. As human involvement
and control diminishes over the learning process, the amount of noise tends to increase. However,
training data as well as the number of classes can increase significantly. Wehave used the term
“many-class” (in contrast to multiclass) to emphasize this aspect of the large number of classes in
these problems.

Thus, in large-scale many-class learning problems, all the three setsS, C , andF can be huge.
For instance, in experiments reported here,C andF can be in the tens of thousands, andS can
be in the millions.S can be an infinite stream of instances andC andF can grow indefinitely in
some tasks (e.g., Madani, 2007a). WhileF can be large (e.g., hundreds of thousands), in many
applications such as text classification, instances tend to be relatively sparse: relatively a few of the
features (tens or hundreds) are active in each instance.

The number of classes is so large that indexing them, not unlike the inverted index used for re-
trieval of documents and other object types, is a plausible approach. An important difference from
traditional indexing is that classes, unlike documents, are implicit, specified only by the instances
that belong to them. An index is a common technique for fast retrieval and classification, for in-
stance to speed up nearest neighbor or nearest centroid computations (e.g., Grobelnik and Mladenic,
1998; Bayardo et al., 2007; Gabrilovich and Markovitch, 2007; Fidler and Leonardis, 2007). Also,
for fast classification when there is a large number of classes, after one-versus-rest training of linear
binary classifiers (see Section 5 on one-versus-rest training), a natural and perhaps necessary tech-
nique is to index the weights, that is, to build an index mapping each feature to those classifiers in
which the feature has nonzero weight. This approach is indirect and does not adequately address
efficient classification and space efficiency,4 and the problem of slow training time for one-versus-
rest training remains. Here, we propose to learn the index edges as well as their weights directly.
For good classification performance as well as efficiency, we need to bevery selective in the choice
of the index entries, that is, which connections to create and with what weights. Figure 3 presents
the basic cycle of categorization via index look up and learning via index updating (adjustments to
connection weights). We have termed the system that is learned aRecall System(Madani et al.,
2007): a system that, when presented with an instance, quickly “recalls” the appropriate classes
from a potentially huge number of possibilities.

3.2 Index Definition, Implementation, and Use

The use of the index for retrieval, scoring, and ranking (classification)is similar to the use of in-
verted indexes for document retrieval. Here, features “index” classes instead of documents. In our
implementation, for each feature there corresponds exactly one list that contains information about
the feature’s connections (similar to inverted or posting lists Witten et al. 1994 and Baeza-Yates and
Ribeiro-Neto 1999). The list may be empty. Each entry in the list corresponds to a class that the
feature isconnectedto. An entry in the list for featuref contains the id of a classc, as well as the
connection or edge weight wf ,c, wf ,c > 0. Each class has at most one entry in a feature’s list. If
a classc doesn’t have an entry in the list for featuref , thenwf ,c is taken to be 0. The connection

4. Our experiments show that if we do not drop some of the connections during learning, training and classification time
and space consumption suffer significantly.

2579

MADANI , CONNOR AND GREINER

Basic Mode of Operation:
Repeat
1. Get next instancex
2. Retrieve, score, and rank classes via

active features ofx
3. If update condition is met:

3.1 Update index.
4. Zero (reset) the scores of the retrieved classes.

(a)

Algorithm RankedRetrieval(x, dmax)
/* initially, for each class c, its scoresc is zero */
1. For each active featuref (i.e., vx[f] > 0):

For the first dmax classes with highest
connection weight to f :

1.1. sc← sc +(r f ×wf ,c×vx[f])
2. Return those classes with nonzero score,

ranked by score.
(b)

Figure 3: (a) The cycle of classification and learning (updating). Duringpure classification (e.g.,
when testing), step 3 is skipped. See part (b) and Section 3.2 for how to use the index, and
Section 4 for when and how to update the index. (b) The algorithm that usesa weighted
index for retrieving and scoring classes. See Section 3.2.

weights are updated during learning. Our index learning algorithms keep thelists small for space
and time efficiency (as we explain in Section 4.1). For ease of updating and efficiency, the lists are
doubly linked circular dynamic lists in our implementation, and are kept sorted byweight.

Figure 3(b) shows how the index is used, via a procedure that we name RankedRetrieval. On
presentation of an instance, the active features score the classes that they are connected to. The
score that a classc receives,sc, can be written as

sc = ∑
f∈x

r f ×wf ,c×vx[f], (1)

wherer f is a measure of the predictiveness power or therating of feature f , and we describe a
method for computing it in Section 4.3.2. Currently, for simplicity, we may assume therating is 1
for all features.5 Note that the sum need only go over the entries in the list for each active feature
(other weights are zero). We use a hash map to efficiently update the class scores during scoring.
In a sense, each active feature casts votes for a subset of the classes, and those classes receive and
tally their incoming votes (scores). In this work, the scores of the retrievedclasses are positive.
The positive scoring classes can then be ranked by their score, or, if itsuffices, only the maximum
scoring class can be kept track of and reported. Note that if negative scores (or edge weights) were
allowed, then, when some true class obtains a negative score, the system would potentially have to
process (i.e., retrieve or update) all zero scoring classes as well, hurting efficiency (this depends on
how update and classification are defined). The scores of the retrievedclasses are reset to 0 before
the next call to RankedRetrieval.

On instancex, and withd connections per feature in the index, there can be at most|vx|d unique
classes scored. The average computation time of RankedRetrieval is thusO(d|vx| log(d|vx|)), where
d denotes the average number of connections of a randomly picked feature(from a randomly picked
instance). In our implementation, for each active feature, only at most thedmax classes (25 in our
experiments) with highest connection weights to the feature participate in scoring.

5. After index learning,r f can be incorporated into the connection weightswf ,c.

2580

LEARNING WHEN CONCEPTSABOUND

3.2.1 GRAPH AND L INEAR-ALGEBRAIC V IEWS OF THEINDEX

A useful way of viewing the index is as a directed weighted bipartite graph (Figure 2): on one side
there are features (one node per feature) and on the other side there are the classes. The index maps
(connects) each feature to a subset of zero or more classes. An edgeconnecting featuref to classc
has a positive weight denoted bywf ,c, or wi, j for featurei and classj, and corresponds to a list entry
in the list for featuref . Absent edges have zero weight. Theoutdegreeof a feature is the number
of (outgoing) edges of the feature. Small feature outdegrees translatesto efficiency in retrieval (and
updating as we will see).

In addition to the graph-theoretic view, the index can also be seen as a sparse non-negative
(weight) matrixW. Let the rows correspond to the features and let the columns correspond to the
classes. Retrieval or classification involves efficiently computing6 the vector of class scoresvT

x W,
and post-processing the resulting (sparse) score vector (e.g., sortingthe positive scoring classes).
Efficiency constraints translate to limiting the number of nonzero entries in eachrow. In the indexing
algorithms of this paper, the sum of the entries in each row does not exceed1. Lemma 1 below states
that this restriction does not lose power, among the set of nonnegative matrices, for achieving good
rankings.

3.3 Evaluating the Index

We evaluate index learning based on efficiency as well as the quality of classification (accuracy).
In large-scale learning, both memory and time efficiency are important, and both at training as well
as classification times.7 Our other goal is to maintain satisfactory accuracy. In our experiments in
Section 6.2 (on finite samples), we report on three measures of efficiency: training timeTtr , the size
of the index learned, denoted by|W|, meaning the number of edges or nonzero weights in the index,
and the average number of edgesd touched (processed) per feature during classification (a measure
of work/speed during classification time). We next describe our classification accuracy measures.

We use the standard accuracy (i.e., one minus zero-one error), here denotedR1, as well as other
measures of ranking quality.R1 allows us to compare to other published results. A method for
ranking classes, given an instancex, outputs a sorted list of zero or more classes. In addition to
weighted indices, we describe other methods for ranking the classes in Section 5. An instance may
belong to multiple classes in some tasks (two of our data sets in Figure 8). To simplify evaluation
and presentation, in this paper we only consider the highest ranked true class. Letkx be the rank of
the highest ranked true class after presenting instancex to the system. Thuskx ∈ {1,2,3, · · ·}. If the
true class does not appear in the ranked list, thenkx = ∞. We useRk to denoterecall at (rank) k,
which measures the proportion of (test) instances for which one of the trueclasses ended in the top
k classes:

Rk = recall atk = Ex[kx≤ k],

whereEx denotes expectation over the instance distribution and[kx≤ k] = 1 iff kx≤ k, and 0 other-
wise (Iverson bracket). So we get a reward of 1 if the true class is within top k for a given instance,
0 otherwise, andRk is the expectation. In our experiments, we will report on (average) recall at
rank 1,R1, and recall at rank 5,R5, on held-out sets.R1 is simply the standard accuracy, that is,

6. Feature ratings, can be incorporated in a diagonal matrixR, whereR[i, i] = r i (the rating of featurei) andR[i, j] = 0,
wheni 6= j. Obtaining the scores would then bevT

x RW.
7. Note that in online learning, there isn’t a sharp separation between the training and testing phases.

2581

MADANI , CONNOR AND GREINER

the highest ranked class is assigned to the instance, andR1 measures the proportions of instances to
which the true class was assigned.

We also report on the harmonic (mean) rank (HR) (reciprocal of mean reciprocal rank or MRR),
defined as:

MRR= Ex
1
kx

, andHR= MRR−1.

MRR gives a reward of 1 if a correct class is ranked highest, the reward drops to 1/2 at rank 2,
and slowly goes down the higher thek (the lower the rank). If the right class is not retrieved, the
reward is 0. MRR is the expectation or the empirical average of such reward over (test) instances,
and we simply invert it to get a measure of ranking performance, the harmonic rank HR. The lower
the HR, the better, and it has a minimum of 1 (rank 1 is best). MRR is a commonly used measure
in information retrieval, such as in question answering tasks (e.g., Radev et al., 2002). In our
experiments, we report the HR values so that the reader can quickly get an impression of the average
class-ranking performance of the various methods.

BothRk and MRR are appropriate for settings in which we value better rankssignificantlymore
than worse ranks. Thus, if an index is perfect half the time, that is, ranksthe correct class of the
given instance at top (rank 1) half the time, but fully fails the rest of the time, that is, does not
retrieve the correct class at all, then its HR value is 2. However, for an index that always retrieves
the correct class, but ranks it third, the HR value is worse, at 3. Note that one could raise the
fraction 1

kx
to a different exponent (instead of 1) to shift the emphasis in one directionor another.

Rk does not reflect the quality of ranking within topk, and it simply cuts the reward off if the right
class is outside topk. HR is a smoother measure. Our evaluation measure are from the point of
view of an instance to be classified. This is appropriate with large numbers ofclasses and in many
applications, such as personalization or text prediction, in which a given instance (a query, a page,
etc.) should be classified into one or a few classes that the system is confident about. In a number of
information retrieval tasks such as question answering and document retrieval, the extra emphasis
on higher ranks is well motivated. We expect that the situation would be similar for typical many-
class problems, such as text categorization. The common precision and recall measures used in
machine learning are often computed from the point of view of a class: for each class, the instances
are ranked according to the classifier’s scores for the class. This is especially appropriate when we
are interested in performance on a single class at a time. For instance, whenwe seek to rank or filter
instances based on their degree of membership in a given class of interest(e.g., a news topic). Our
indexing techniques are more appropriate for the problem of obtaining good rankings per instance,
similar to some other multiclass ranking algorithms (e.g., Crammer and Singer, 2003a). However,
existing techniques for improving precision/recall for imbalanced classes may be applicable (e.g.,
Li et al., 2002). We conclude this section with a simplifying property of non-negative matrices, for
the purposes of ranking.

Lemma 1 LetW be the non-negative matrix corresponding to an index (features correspond to the
rows and classes are the columns). The ranking thatW produces on nonzero scoring classes is not
changed under positive scaling, that is,αW, for α > 0, produces the same ranking.

Proof The score for each class is obtained in the vectorvT
x W. Therefore, the ranking obtained from

vT
x αW = αvT

x W, is the same as the ranking in the vectorvT
x W, whenα > 0 and all entries invT

x W
are non-negative.

2582

LEARNING WHEN CONCEPTSABOUND

The lemma implies that optimal matrices, for the objective of say maximizingR1 on the training
set, among non-negative matrices in which the entries in each row sum to at most 1.0, exist. The
indexing algorithms presented in this paper learn non-negative weight matrices.

3.4 Computational Complexity of Index Learning

Can we efficiently compute an index achieving maximum training accuracy given any finite setS
of instances? If we constrain the outdegree of each feature to be below agiven constant (motivated
by space and time efficiency), then the corresponding decision problem isNP-hard under plausible
objectives such as optimizing accuracy (R1):

Theorem 2 The index learning problem with the objective of either maximizing accuracy (R1) or
minimizing HR on a given set of instances, and with the constraint of a constant upper bound (e.g.,
1) on the outdegree of each feature is NP-Hard.

The proof is by a reduction from the minimum cover problem (see Appendix A). A problem
involving only two classes is shown NP-hard. We do not know whether the indexing problem is
approximable in polynomial time however, or whether removing the constraint on the outdegree
alters the complexity. Linear programming formulations exist with continuous objectives and no
explicit outdegree constraint (Madani and Connor, 2007; Madani and Huang, 2008).

The next section describes very efficient online algorithms that performwell in our experiments.
We motivate our choices in the algorithm design, but leave theoretical guarantees to future work.

4. Feature Focus Algorithms for Index Learning

Figure 4 present our main index learning technique. After first giving a quick overview of the
approach, we motivate the choices in the design of the algorithm in the rest ofthis section.

On a given instance, after the use of the index for scoring and ranking (an invocation of Ranke-
dRetrieval), if a measure ofmargin (to be described shortly) is not large enough, an update to the
index is made. The margin is the score obtained by the true class, minus the highest scoring incorrect
(negative) class (either of the two scores can be zero). Our index learning algorithms may be best
described as performing their updates from the features’ side or features’ “point of view” (rather
than the classes’ side or class prototypes), and hence we name the whole family feature-focusalgo-
rithms. As we will explain, this design was motivated by considerations of efficiency (Sections 4.1
and 4.4). The basic question for each feature is to which subset of classes it should connect (possibly
none), and with what weights. Figure 4(d) gives a generic feature updating scheme and Figure 4(c)
gives the instantiation we use in our experiments. Initially, all weights are zero. Note that when a
weight is zeroed, the connection is removed. This means that, in our index implementation, the list
entry corresponding to the edge is removed from the list of the edges of thefeature.

We next motivate the design choices in FF. The problem of what each feature in isolation should
do during learning turns out to be helpful and we first explore and discuss this single feature case.
We then present the IND(ependent) method, a baseline in which effectively on every instance every
feature updates. We then motivate mistake-driven updating, and in particular the use of margin.8

8. All the examples given to illustrate various aspects make the assumption of Boolean feature values, but the feature-
focus algorithm as presented works with the more general nonnegativevalues.

2583

MADANI , CONNOR AND GREINER

/* The FF Algorithm */
Algorithm FeatureFocus(x, wmin, dmax, δm)

1. RankedRetrieval(x, dmax). /* retrieve/score */
2. Compute the marginδ:

δ = scx−s′x, wheres′x = maxc6=cx sc.
3. If δ > δm, return. /* update not necessary */
4. Otherwise, for each activef ∈ x:
/* update active features’ connections */
4.1 FSU(x, f , wmin).

(a)

Algorithm RankedRetrieval(x, dmax)
/* initially, for each class c, its scoresc is zero */
1. For each active featuref (i.e., vx[f] > 0):

For the first dmax classes with highest
connection weight to f :

1.1. sc← sc +(r f ×wf ,c×vx[f])
2. Return those classes with nonzero score,

ranked by score.
(b)

/* Feature Streaming Update (allowing “leaks”) */
Algorithm FSU(x, f , wmin) /* Single feature updating */
1. w′f ,cx

← w′f ,cx
+vx[f] /* increase weight tocx. */

2. w′f ← w′f +vx[f] /* increase total out-weight */

3. ∀c, wf ,c←
w′f ,c
w′f

/* (re)compute proportions */

4. If wf ,c < wmin, then /* drop tiny weights */
wf ,c← 0,w′f ,c← 0

(c)

Algorithm GenericWeightUpdate
Each active feature:
1. Strengthens weight to true class
2. Weakens other class connections
3. Drops weak edges (tiny weights)

(d)

Figure 4: (a) Pseudo-code for the Feature-Focus (FF) learning algorithm. The FF algorithm is
invoked on every training instance. This corresponds to steps 2 and 3 in Figure 3(a).
(b) The RankedRetrieval procedure for scoring and ranking (copied from Figure 3(b)).
(c) Feature streaming update, or FSU: The connection weight off to the true classcx is
strengthened. Others connections are weakened due to the division. Allthe weights are
zero at the beginning of index learning. (e) Generic weight updating: oneach training
instance, each active feature strengthens its weight to the true class, weakens its other
connections, and drops those that are too weak.

We conclude with a comparison of FF to existing online algorithms, in particular theperceptron
algorithm and Winnow. The reader may wish to skip some of these sections at this point and go to
the experiments (Section 6) on a first reading.

4.1 Updating for a Single Feature

Assume (training) instances arrive in a streaming fashion (from some infinitesource), and assume
the single label (per instance) setting. Fix one feature and imagine the substream of instances
that have that feature active. Let us consider Boolean feature valuesonly (vx[f] ∈ {0,1}) here for
simplicity. Thus, we basically obtain a stream of observed classes,<c(1),c(2),c(3), · · ·>, for the
given feature. Ignoring other features for now, and considering efficiency constraints, to which
classes should this feature connect to, and with what weights? We next argue that our objective of
a good ranking, subject to efficiency, reduces to computing the proportion in the sequence for those
classes (if any) that exceed a desired proportion threshold.

In this single feature case, classes are ranked by the weight assigned tothem by the feature.
The constraint (of space efficiency) is that the feature may connect to only a subset of all possible
classes, saydmax at most. The question is how the feature should connect so that an objective such
asRk or HR (harmonic rank) is maximized. We will focus on the scenario where the streamof
classes is generated by an iid drawing from a fixed probability distribution.

2584

LEARNING WHEN CONCEPTSABOUND

It is not hard to verify that the best classes are thedmax classes with the highest proportions in
the stream, or the highestP(c) if the distribution is fixed and known (more precisely,P(c| f), but f
is fixed here) and the ranking should also be byP(c). For a finite sequence on which we are allowed
to compute proportions before having to connect the feature, this can easily be established.

Lemma 3 A finite sequence of classes is given (class observations). To maximize HR, when the
feature can connect to at most k different classes, a k highest frequency set of classes should be
picked, that is, choose S, such that|S| = k and S= {c|nc ≥ nc′ ,∀c′ 6∈ S}), where nc denotes the
number of times c occurs in the sequence. The classes in S should be ordered by their occurrence
counts to maximize HR. The same set maximizes Rk.

Proof This can be established by a simple “swapping” or “exchange” argument. We look at the
sum of rewards over the sequence rather than averages, as the sequence length is fixed. Consider
maximizingRk first. Let nc denote the number of times classc appears in the sequence. For any
chosen setSof sizek, a pair of classes(c,c′) is out of order ifnc < nc′ , butc∈ S, andc′ 6∈ S. Then
Rk for Sis improved ifc is replaced byc′, the improvement isnc′−nc. Similarly HR is improved for
an ordered setS if a pair like above exists (improvement of(nc′−nc)

1
j , where j denotes the rank of

c in S), or a pair within the chosen set is out of order (improvement of(nc′−nc)(1/ j−1/ j ′), where
j ′, j ′ > j, denotes the old rank ofc′.).

For unbounded streams generated by iid drawing of classes from a fixeddistribution over a finite
number of classes, the empirical proportions of classes, over the sequence seen so far (of length at
leastk), take the place of the counts, in order to maximize expected HR or expectedRk on the unseen
portion of the sequence.

We will use FSU (Feature Streaming Update, Figure 4(c)) in our main feature-focus algorithm.
An FSU update takes at most two list traversals (involving finding or insertingthe connection). With
d connections per feature, a full update on an instance takesÕ(d|x|). Note that when features are
Boolean, FSU simply computes edge weights that approximate the conditional probabilitiesP(c| f)
(the probability that instancex ∈ c given that f ∈ x and FSU is invoked). Since the weights are
between 0 and 1 and approximate probabilities, it eases the decision of assessing importance of a
connection: weights belowwmin are dropped at the expense of some potential loss in accuracy. FSU
keeps total counts (w′f andw′f ,cx

, which we will describe and motivate later). Note thatwmin effec-

tively bounds the maximum outdegree during learning to be1
wmin

. We note that this space efficiency
of FSU is central to making feature-focus algorithms space and time efficient(see Section 6.3.1).
Given that FSU zeros some weights during its computation, it is instructive to look at how well it
does in approximating proportions for the (sub)stream of classes that it processes for a single feature.
This gives us an idea of how to set thewmin parameter and what to expect. Appendix A presents syn-
thetic experiments and a discussion. To summarize, when the true probability (weight)w of interest
is several multiples ofwmin, with sufficient sample size, the chance of dropping it is very low (the
probability quickly goes down to 0 with increasingwwmin

), and moreover, the computed weight is also
close to the true conditional. See Section 6.3.3 on the effect of choice ofwmin ∈ {0.001,0.01,0.1}
on accuracy on several data sets.

2585

MADANI , CONNOR AND GREINER

4.1.1 UNINFORMATIVE FEATURES, ADAPTABILITY , AND DRIFTING ISSUES

In FSU, we keep and update two sets of weights, the edge weightswf ,c (not greater than 1),w′f ,c,
as well as total weightw′f . In case of binary features (vx[f] = 1), we can simply think ofw′f as
total count of times FSU has been invoked for the feature, andw′f ,c as an under-estimate of the
co-occurrence count in that stream (w′f ,c can be less than the co-occurrence count, as it is reset to
0 if the edge is dropped). Note that ifcx is not already connected (for example in the beginning),
wf ,c andw′f ,c are 0. An important point is that total weightw′f is never reduced. This is useful as a
way of down-weighing uninformative features (such as “the”). Thus,due to edge dropping, we may
have the sum of proportions remain less than 1,∑cwf ,c < 1, even whenw′f > 0. We have found this
alternative slightly better in our experiments than the case in whichw′f = ∑cw′f ,c (i.e., whenw′f is
kept as the exact sum of the weights). See Section 6.3.5.

In case of non-Boolean feature values, similar to perceptron and Winnowupdates (Rosenblatt,
1958; Littlestone, 1988), the degree of activity of the feature,vx[f], affects how much the connection
between the feature and the true class is strengthened. We could use alearning rate, a multiplier
for vx[f], to further control the aggressiveness of the updates. We have not experimented with that
option.

Note also that aswf grows, the feature may become less adaptive, as a new class will have to
occur more frequently to obtain a strong weight ratio with respect towf . In particular, afterwf >

1
wmin

, a new class will be immediately dropped.9 For long-term online learning, where distributions
can drift (nonstationarity), this can slow or stop adaptation, and updates that effectively keep a finite
memory or history are more appropriate. Note also that, if the same training instances can be seen
multiple times (e.g., in multiple passes on finite data sets), withwf growing, the fitting capability of
the algorithms is curbed. This may be desired as a means of overfitting prevention. Other indexing
updates have been developed, offering various trade-offs (see our discussion in Section 4.4, and
Madani and Huang 2008, and Madani et al. 2009, in particular for a simpleupdate appropriate for
nonstationarity).

Before describing the main feature-focus algorithm, we describe a baseline algorithm we refer
to as IND(ependent). This algorithm can be implemented in an offline (batch) manner. It is based
on computing the conditionalsP(c| f).

4.2 Always Updating (the IND Algorithm)

One method of index construction is to simply assign each edge the class conditional probabilities,
P(c| f) (the conditional probability that instancex∈ c given that f ∈ x). This can be computed for
each feature independent of other features. We refer to this variant as the IND (“INDependent”)
algorithm (Figure 5). Features are treated as Boolean here (vx[f] ∈ {0,1}). After processing the
training set (computing counts and then conditional probabilities), only weights exceeding a thresh-
old pind are kept. The use ofpind not only leads to space savings, but also can improve accuracy
significantly. The best thresholdpind (for improving accuracy) is often significantly greater than
0 (see Section 6.3.7). In our experiments with IND, we choose the best threshold by observing
performance on a random 20% subset of the training set. We thus implementedthe IND algorithm

9. At this point, updates can only affect classes already connected, and updates may improve the accuracy of their
assigned weights, though there is a small chance that even classes with significant weights may be eventually dropped
(this has probability 1 over an infinite sequence!). In any case, at this point or soon after, it is possible to stop updating.
In our experiments, with finite data and small number of passes over the data sets, this was not an issue.

2586

LEARNING WHEN CONCEPTSABOUND

Algorithm IND(S, pind) /* IND algorithm */
1. For each instancex in training sample S:
1.1 For each f ∈ x: /* increment counts for f */
1.1.1nf ← nf +1
1.1.2nf ,cx← nf ,cx +1

2. Build the index: for each feature f and classc:
2.1w← nf ,c

nf
.

2.2 If w≥ pind, wf ,c← w. (otherwisewf ,c← 0.)

Figure 5: Pseudo-code for the IND(ependent) algorithm, implemented for the case of Boolean fea-
tures only. The choice ofpind affects accuracy significantly, and is picked using a held
out set (see Section 4.2).

as a batch algorithm, that is, we computed the weightsP(c| f) exactly, not in an online streaming
manner described10 for FSU. The exact computation can be done on the relatively smaller data sets.
IND is in fact the fastest algorithm on the smaller data sets, since the count updates are simple and
there is no call to index retrieval during training. This counting phase for index construction can
also be distributed. On larger data sets, IND runs into memory problems and becomes very slow
during training, due to many features keeping connections to too many classes.11 This aspect points
to the importance of space efficiency for large-scale learning.

The IND algorithm, in its independent computations of weights for each feature, has similarities
with the multiclass Naive Bayes algorithm (e.g., Rennie et al. 2003). Major differences include the
computation ofP(f |c) (the reverse) in plain multiclass Naive Bayes, and that for classification,
we are summing the weights (instead of multiplying under the independence assumption), similar
to some techniques for expert opinion aggregation (Genest and Zidek, 1986; Cesa-Bianchi et al.,
1997). We have found that summing improves accuracy. See Madani andConnor (2007) for a more
detailed comparison to multiclass Naive Bayes. In its independent computation ofweights, IND is
also similar to inverted index construction using, for instance, TFIDF.

IND offers a nice baseline, but we can potentially do significantly better thancomputing pro-
portions for each feature independently. Often features are inter-dependent. For instance, features
can be near duplicates or redundant. In particular, with increasing feature vector sizes, the accuracy
of methods that in effect assume feature independence can degrade significantly.

4.3 Mistake-Driven Updating Using a Margin (the FF Algorithm)

FF adds and drops edges and modifies edge weights during learning by processing one instance at
a time,12 and by invoking a feature updating algorithm, such as FSU. Unlike IND, FF addresses
feature dependencies by not updating the index on every training instance. Equivalently, a feature
updates its connection on only a fraction of the training instances in which it is active. This is
motivated and explained next.

10. In case the instance belongs to multiple classes, step 1.1.2 is executedfor each true class.
11. However, note that the FSU algorithm can be instead employed here to keep memory consumption in check.
12. The feature and class sets can also grow incrementally.

2587

MADANI , CONNOR AND GREINER

4.3.1 WHEN TO UPDATE?

FSU should not be invoked on every training instance. In particular,“lazy” or mistake-driven
updating (not updating all the time) can, to some extent, address issues with feature dependencies.
It can, for example, avoid over counting the influence of features that are basically duplicates by
learning relatively low connection weights for each such feature (similar to arational for mistake
driven updates in other learning algorithms such as the perceptron). We next give a simple scenario,
case 1, to demonstrate accuracy improvements that can be obtained by lazy updating.

Case 1. Imagine the simple case of two classes,c1 andc2, and two Boolean features,f1 and
f2. Assumef1 is perfect forc1, P(c1| f1) = P(f1|c1) = 1, but that f2 appears in instances of both
classes, andP(f2|c1) = 1 (i.e., f2 appears in all instances ofc1), but alsoP(f2|c2) = 1. Then, given
only f2, that is, an instancex = { f2} (x containsf2 only), we want to rankc2 higher. Now, if say
P(c1) > P(c2) (c1 is more frequent thanc2), and we always invoked FSU,f2 would also give a
higher weight toc1, rankingc1 higher thanc2 on x∈ c2. An optimal solution, for accuracyR1 or
for HR, has the property thatf2 has a higher connection weight toc2 than toc1 (with wf1,c2 = 0, an
optimal solution satisfies:wf1,c1 > wf2,c2 > wf2,c1.). Now, if FF invoked FSU only when the correct
class was not ranked highest, the connection weights in this example would converge to an optimal
configuration. To see this, note that as soon asx∈ c1 is seenf1 obtains a weight of 1 toc1. Next,
only updates onx∈ c2 will be performed, sincec1 is ranked correctly due tof1 having a weight of
1 and f2 keeping some nonzero weight to it.f2 makes a stronger connection toc2 thanc1 after at
most 2 FSU invocations.R1 in the optimal case would be 1.0 here, while it can approach 0.5 if we
always update. Note that as fewer updates in general mean fewer connections (sparser indices), we
may also save in space in this lazy update regime (see Section 6).

On the other hand, if we don’t update at all when the right class is at rank1, we may also suffer
from suboptimal performance. This happens even in the case of a single feature. Thus“proactive”
updating is useful too. The next case elaborates.

Case 2.Consider the single feature case and three classesc1, c2, c3, whereP(c1) = 0.5, while
P(c2) = P(c3) = 0.25. Thusc1 should be ranked highest, for say maximizingR1. This yields
optimalR1 = 0.5, and if we always invoke FSU, this will be the case after a few updates (we will
soon getw1,1 ≈ 0.5, andw1,2 ≈ w1,3 ≈ 0.25). If we don’t update when true class is at rank 1,c2

or c3 can easily take the place ofc1 when an instancex∈ c2 or x∈ c3 is presented, but we need to
reverse the situation subsequently whenx′ ∈ c1 is presented, and instances belonging toc1 are more
frequent. In general, the connection weights from the feature toc1, c2, andc3 will be similar in the
purely mistake-driven updating regime, and on sequences that look like theworst case alternating
sequence:c1,c2,c1,c3,c1,c2, · · ·, the running value ofR1 can approach 0. While random sequences
are not as bad, we should still expect significant inferior performance. On randomly generated
sample of size 2000 according to above class distribution, averaging over100 80-20 splits, always
(proactive) updating gave an averageR1 performance of 0.479±0.02 (standard deviation of 0.02),
while the lazy update gave 0.428±0.09.

Therefore, not updating when the rank of the right class is adequate maycause unnecessary
instability in behavior and inferior performance as well. Of course, we desire an algorithm that
can perform well in the single feature case. Continued updating even when the true class is ranked
highest is akin to keeping a kind of extended memory (in the connection weights).

We strike a balance between the two desirables by using the notion ofmargin. The margin on
the current instance is the score of the positive class minus the score of thehighest scoring negative

2588

LEARNING WHEN CONCEPTSABOUND

class:

δ = scx−s′x, wherescx ≥ 0,s′x≥ 0,s′x = max
c6=cx

sc.

If the marginδ does not exceed a desired margin thresholdδm, we update13 (invoke FSU). Note
that bothscx ands′x can be 0. If we set the margin threshold to 0, we may fit more instances in
the training set, and handle situations like case 1, but underperform for case 2 situations. With a
sufficiently high margin, updates are always made and case 2 is covered,but fitting power (case 1)
can suffer. There is a tradeoff, and a good question is what the best choice of threshold may be? The
best choice depends on the problem and the feature vector representation. Individual edge weights
are in the[0,1] range, and when the instances arel2 normalized, we have observed that on average
top classes obtain scores in the[0,1] range as well, irrespective of data sets or choice of margin
threshold (Madani and Connor, 2007).

Our use of margin is somewhat similar to the use of margin for online algorithms such as per-
ceptron and Winnow (e.g., Carvalho and Cohen, 2006; Crammer and Singer, 2003a), although our
particular motivation from considering case 2, “stability” or keeping some “extended memory” for
each feature, appears to be different.

4.3.2 RATING THE FEATURES: DOWN-WEIGH INFREQUENTFEATURES

It may be a good idea to down-weigh or eliminate those features’ votes that are only seen a few
times during learning, as their proportion estimates (connection weights) can be inaccurate and in
particular higher than what they should be. Consider the first time FSU is invoked on a feature.
After that update, such a feature gives a weight of 1 (the maximum possible) to the class it gets
connected to. This is undesired. Of course, how much to down-weigh candepend on the problem,
and how feature values are distributed. In our experiments, during scoring of the class, we multiply
a feature’s score for classc, wf ,c, by a ratingr f (see Equation 1 in Section 3.2),r f = min(1,

#f

10),
where #f ≥ 1 denotes the number of times featuref has been seen so far. #f is computed only during
the first pass over training data. We show that on some problems, this option improves accuracy.

4.4 Summary and Relations to other Methods

The FF algorithm aggregates the votes of each features for ranking andclassification. During learn-
ing, FF may be viewed as directing a stream of classes to each feature, so that each feature can
compute weights for a subset of the classes that it may connect to. The stream, for example with the
use of margin, may be hard to characterize and may show drifts during learning: it may initially be
those instances in which the feature is active, but later it may correspond toa subsequence of those
instances which are somewhat hard to classify. Features may be space constrained: they need to
be space efficient in the number of connections they make as well as in computing their connection
weights. This efficiency aspect is especially important in large-scale many-class learning.

The FF algorithm has similarities with online algorithms such as Winnow (Littlestone, 1988), as
it normalizes (in general weakens some of) the weights, and the perceptronalgorithm (Rosenblatt,
1958), as for example the updates are in part additive (ignoring the normalization or weakening).
The important difference that changes the nature of the algorithm is that changes to weights are

13. For instances with multiple true classes, the margin is computed for eachpositive true class. Every active feature is
updated for each true class for which its margin is below the margin threshold.

2589

MADANI , CONNOR AND GREINER

f1

f2

|F|
f

fi

f1

f2

|F|
f

fi

|C|cjc1 c|C|cjc1 c

(a) (b)

Figure 6: In learning a weight matrix for multiclass learning (here the features corresponding to the
rows), prototype methods operate on the columns (part a), for instance innormalizing the
(column) weight vectors, while feature-focus methods operate on the rows (part b), for
example in ensuring that the number of nonzeros in each row remain within a budget.

done from the side of features, unlike Winnow or perceptron. The Winnow algorithm does the nor-
malization from the side of the classes: each class is represented by a classifier (a class prototype),
and each classifier has its feature weights normalized after each update. If normalization is done
for all features, many features, whether or not active, get weakened. In a sense, the classifier ranks
the features in order of importance for its own concept. A number of learning algorithms in the
family of linear classifier learning algorithms, focus on the class side, for example, learning a pro-
totype classifier for each class (e.g., Crammer and Singer, 2003a) (see Figure 6). This is a natural
approach for binary classification. In our case, it is the classes whoseconnections to a feature may
be weakened due to one or more classes being strengthened. In the FSU update given in this paper,
this weakening happens irrespective of whether a class was ranked high (this aspect is similar to
Winnow, but again, for class weights instead of feature weights). Alternative feature-focus updates
are possible (e.g., Madani and Huang, 2008). It is best to view each feature as a voter or “expert”,
and the goal is to obtain good class rankings for each instance by adjustingthe votes. A prototype
for a class is more appropriate for ranking instances for that class.

To keep memory consumption in check, it seems most direct to constrain features not to connect
to more than say 10s of classes, rather than somehow constraining the classes (class prototypes). It
appeared harder to us to bound the number of features a class needs, and different classes may
require widely varying number of features for adequate performance.See Raghavan et al. (2007)
for an exploration of the number of useful features that different (binary) learning problems need for
achieving (nearly) maximum accuracy. We also note that in many problems of interest, the number
of classes, while large, is significantly smaller than the number of features. In many domains, as
the number of classes grows, the number of features tends to grow too (possibly in a proportional
manner). In the best of worlds, each feature could be predictive for at most one class. While reality
is far from this idealized picture, and we anticipate many interactions, expecting that features may
not require high outdegrees for good accuracy, can be a good firstassumption. A fruitful future
avenue may be exploring this assumption via modeling and developing theoretical arguments.

A second related reason is that constraining the feature outdegrees to remain relatively small
(e.g., 10s) appears easier to implement and more time efficient in an online processing regime.
Again, a class may require 100s of features and beyond for good performance. Therefore processing
the needed classes, to examine importance of features, can take more time, per instance. Finally, we
seek rapid categorization per instance, and constraining indegree of classes may not guarantee that

2590

LEARNING WHEN CONCEPTSABOUND

the outdegree of commonly occurring features would be small. Constraining the degrees of classes
is not directly related to the average time required for processing an instance. Given that an index is
required for efficient classification, that is, efficient access from features to the relevant classes, one
would need additional data structures (additional memory) for efficient prototype processing.

For the perceptron update, continued updating can increase weight magnitudes with no bound.
This makes designing an effective weight management criterion difficult. False positive classes
may obtain negative connections to features they weren’t connected to (when ranked higher than
the true positive). These extra connections hurt sparsity. Moreover negative connections may not
be as useful in the task of ranking multiple classes, to the extent that they areuseful in the binary-
class case and when learning a single prototype, for ranking instances:in the many-class case, the
true class could simply have higher positive weights to the appropriate features. Of course, our
discussion does not preclude efficient algorithms that, nevertheless, perform their operations from
the class side.

5. Techniques Based on Binary Classifier Training

We compare against hierarchical or top-down training and classification,a commonly used method
when a taxonomy of classes, a tree from general classes at the top to specific classes, is available
(Dumais and Chen, 2000; Liu et al., 2005). The hierarchical method reduces to one-versus-rest
classification when the classes are flat (when there is just one level), which is another common
method for multiclass classification (e.g., Rifkin and Klautau, 2004). We compare against one-
versus-rest on relatively small sets, to see how indexing performs in moretraditional classification
settings. Note that the FF algorithm, while motivated by many-class learning, is a linear method
applicable to few classes and in particular binary classification as well.

The one-versus-rest method simply trains a binary classifier for each class using all the data.
During classification, all the classifiers are applied and their scores rather than classification out-
comes are used for ranking.14 We observed no advantage in obtaining probabilities here compared
to using raw scores. The one-versus-rest method becomes quickly inefficient, at both training and
classification times, as the number of classes increases (as all the classifiers need to be applied to a
given instance).

Linear classifiers such as support vector machines (SVMs) often perform the best in very high
dimensional problems such as text classification (Lewis et al., 2004; Sebastiani, 2002). We tested
perceptrons and SVMs in one-versus-rest and top-down methods. Weuse single pass and multiple
pass perceptrons (Rosenblatt, 1958) as well as committees of them. Here, each perceptron in the
committee is represented as a sparse vector and random weight initialization, in[−1,1], is used
when a new feature is added to the prototype. Unless specified, we run theperceptron learning
algorithm until the 0/1 error on training is not improved (computed at the end ofeach pass), for 5
consecutive passes. Perceptron committees often obtain performance close to SVMs (e.g., Carvalho
and Cohen, 2006), although their training time can be less.

14. Note that the use of index for classification is one-versus-rest (or“flat” classification), but the index was not obtained
by training binary classifiers.

2591

MADANI , CONNOR AND GREINER

Algorithm TopDownProbabilities(x, c, p, C̃x)
1. For each classci that is a child of c:
1.1 pci ← p×Pci (x). /* obtain probability */
1.2 If pci ≥ pmin

1.2.1C̃x← C̃x∪{(ci , pci})
1.2.2 TopDownProbabilities(x, ci , pci , C̃x)

Figure 7: Pseudo-code for top-down classification.Pci (x) denotes the probability assigned to x by
the classifier trained forci in the tree. For each instancex, the first call is TopDownProb-
abilities(x, root, 1.0,{}).

5.1 Hierarchical Training and Classification

Briefly, hierarchical training works by first training classifiers for the first level classes in a one-
vs-rest manner (e.g., Dumais and Chen, 2000). Then the same procedure can be repeated for the
children of each class residing in the 2nd level (in general, the level below), training each classifier
only on the instances that belong to one of the siblings. Only the classifiers for the top level classes
will be trained on all the instances. For ranking and categorization using thehierarchical approach,
we use classifier probabilities. We obtain probabilities from classifier scores by the method of
sigmoid fitting (Platt, 1999). This may require additional training time for improved accuracy. In
the experiments, we report on the effect of increasing the number of sigmoid-fitting trials on one of
the data sets (Reuters RCV1).

During classification, whenever a classifier is applied, we use the probability it assigns. The
probabilities are multiplied along a path top-down (Figure 7). A path of candidate classes is ter-
minated if the probability falls under some thresholdpmin. All the classifier at the first level (cor-
responding to the classes at the top level) are applied to a given instance. During test time, we
tried several thresholds:pmin = 0.05+0.05k,k = 1,2, · · ·, and report results on the threshold giving
highest accuracyR1. All our ranking methods are evaluated on the deepest classes an instance is
assigned to. For the evaluation of the top-down method, from the list of candidates obtained for a
given test instance, any class whose child is also in the list is removed, and the remaining classes
are sorted by their assigned probabilities. For the list of the true classes ofthe test instance, again
only those true classes with no child in the list are kept. ThenR1, R5 and HR are computed (for the
highest ranked true positive class).

We note that if we don’t use the probabilities and ranking, that is, use classassignments to follow
a path, the classification performance greatly suffers. This is since classifiers (when having to assign
a class) in the higher levels can make “premature” false positive and false negative mistakes (and
false negative mistakes are very costly). This inferior performance hasbeen noted before too (e.g.,
Dekel et al., 2003).

6. Experiments

In this section, after describing the data sets we use and the experimental set up, we report on
comparisons with other approaches. We then report on several ablation experiments as well as
comparisons to the simpler IND algorithm and a previous (unweighted) indexing method. We con-
clude the section with experiments on some properties of our index learning method and the indices

2592

LEARNING WHEN CONCEPTSABOUND

Data Sets |S| |F | |C | Ex|vx| Ex|Cx|

Reuters-21578 9.4k 33k 10 80.9 1
20 Newsgroups 20k 60k 20 80 1
Industry 9.6k 69k 104 120 1
Reuters RCV1 23k 47k 414 76 2.08
Ads 369k 301k 12.6k 27.2 1.4
Web 70k 685k 14k 210 1
Jane Austen 749k 299k 17.4k 15.1 1

Figure 8: Data sets:|S| is number of instances,|F | is the number of features,|C | is the total number
of classes,Ex|vx| is the average (expected) number of unique active features per instance
(avg. vector size), andEx|Cx| is the average number of class labels per instance.

learned (average class indegrees, performance on the training data, ...), and we give a few examples
of the learned connections.

Figure 8 presents the data sets that we use, shown in order of class size|C |. The first 6 are text
categorization, and the last is a word prediction task. Ads refers to a text classification problem
provided by Yahoo! Web refers to a web page classification into Yahoo! directory of topics. Jane
Austen is 6 online novels of Jane Austen, concatenated (obtained from project Gutenberg (http:
//www.gutenberg.org/). The others are commonly used text categorization data sets (Lang, 1995;
Rose et al., 2002.; Lewis et al., 2004).

On the first three small sets, we compare against one-versus-rest, andour purpose is mainly to
compare accuracy. On the next 3, Reuters RCV1, Ads, and Web, we compare against the top-down
method. In both the one-versus-rest and top-down methods, we deploy either single perceptron
training, committee of 10 perceptrons, or a fast algorithm for learning linearSVMs (Keerthi and
DeCoste, 2005). We could not run the SVM on the Web data as it took longerthan a day, and had to
limit our SVM experiments on Ads.15 For the final word prediction data, the task is to predict each
word given features derived from the surrounding words in the sentence. For this problem, since
the classes (the words) do not form a hierarchy and one-versus-rest is too inefficient, we only show
performance of the indexing method.

All instance vectors arel2 (cosine) normalized. For text categorization data, the features are
standard unigram or bigram words and phrases. The feature vectorswere obtained from publicly
available sources in the cases of Reuters RCV1 (Lewis et al., 2004), andthe newsgroups (from
Rennie16). For RCV1, we used the training split only (23k documents) to be able to experiment
with the slower algorithms. We obtained the Ads and Web data sets from Yahoo!For the web
data set, to obtain a sufficient number of instances per class, we cut the taxonomy at depth 4, that
is, we only considered the true classes up to depth 4. To simplify evaluation, we used the lowest
true class(es) in the hierarchy the instance was classified under at test time. Thus an instance in
Reuters RCV1 corpus on average is assigned two true classes. We note that in many practical text

15. There has been further advances on speeding up linear SVM training algorithms since the submission of this paper
(e.g., Shalev-Schwartz et al., 2007; Hsieh et al., 2008). The perceptron training timings in our tables may be a better
indicator of the training times for the more recent algorithms.

16. Obtained from people.csail.mit.edu/jrennie/20Newsgroups.

2593

MADANI , CONNOR AND GREINER

categorization applications such as personalization, classes at the top level are too generic to be
informative/useful. For top-down training, we trained the classifier on the internal classes as well.
Web and Ads had just over 20 classes in the first level (after root), whileReuters RCV1 has two (we
used both the Industry and Topic trees). The Jane Austen (word prediction) data set was obtained by
processing Jane Austen’s six online novels: the surrounding neighborhood of each word, 3 words
on one side, 3 on the other, and their conjunctions, provided the features(about 15 many).

We report on the average performance over ten trials. In each trial a random 10% of the data is
held out. The exception is the newsgroup data set where we use the 10 train-test splits by Rennie
et al. (2003), each 80-20, and we used their vector representations,to be able to compare directly
with their results. We used a 2.4GHz AMD Opteron processor with 64 GB of RAM, with light load.

Figures 9 and 10 present the algorithms’ performance under both accuracy and efficiency cri-
teria. As a simple baseline, we report the performance of FrequencyBaseline (FB) as well, which
ranks classes simply based on the frequency of the classes in the training data set.

For the FF algorithm, we usedwmin =0.01 for the minimum weight threshold during learning,
anddmax =25 (max-outdegree during look up). Note thatdmax of 25 means a class is retrieved as
along as it is within the first 25 highest weight connections of some active feature, even if its weight
is not much higher thanwmin. During training, the FF algorithm looks for a true (positive) class
within the first 50 top scoring classes. If it is not found, the score of the positive class is assumed 0.
We report on performance after pass 1 with 0 margin threshold (δm = 0), as well as best performance
in R1 within the first 10 passes, withδm∈ {0,0.1,0.5}. We did not optimize on the choice of these
parameters, for example, we may do better for lowerdmax values (see Section 6.3.2). Note that
a δm value above 0.5 basically means to update on most instances as index edge weights are less
than 1, and thus class score differences tend not to be much higher than 1.0, when instances arel2
normalized. For the SVM, we report the best performance inR1 over the regularization parameter
C∈ {1,5,10,100} for the first three small data sets andC∈ {1,10} for the large ones. OftenC = 1
and 10 suffices (accuracies are close). There are 10 perceptronsin the committee (often, 5 to 20
suffices for attaining much of the accuracy).

6.1 Accuracy Comparisons

We first observe that the FF algorithm is competitive with the best of others. In particular it achieves
the highestR5 in 5 of the 6 categorization domains, and the highest averageR1 in 4 of 6 cases.
We have observed that comparison based on the HR results often yields similarrankings of the
algorithms tested as doesR1. We limit the discussions toR1 andR5. In particularR1 (plain accuracy
or one minus zero-one error) is a simple commonly used performance measure. For the classifier
based methods, observe that there is a good separation from perceptron to SVMs, suggesting that the
classification tasks are challenging. The performance of FF on newsgroup ties the best performance
achieved by Rennie et al. (2003), and they used special feature vector representations, for the linear
SVM as well as their methods, to reach that performance.17 In the case of RCVI, for top-down
training, we experimented with using a fixed sigmoid, that is, no sigmoid fitting, as well as sigmoid
fitting using one or more trials of obtaining scores (score-class pairs). When not fitting, we used
fixed values of 0 bias and -2 slope: 1

1+e−2s , wheres denotes the score of classifier on the instance.

17. On the industry data set, we found that the classes have similar proportions, close to 0.01. As we keep only 10% for
test, and there are only just under 10k instances in the whole set, we see that the performance of Frequency Baseline
is very low. The classes with the highest proportion in training are not the classes with the highest proportion on the
test set.

2594

LEARNING WHEN CONCEPTSABOUND

Rank (HR) R1 R5 Ttr d |W|
Small Reuters, 10 classes

δm=0, p=1 1.082 0.860 0.998 0s 4.9 55k
δm=0.5, p=1 1.066 0.884±0.009 0.997 0s 5 73k
perceptron 1.08 0.871 0.995 4s 10 74k
committee 1.06 0.891 0.999 40s 10 74+
SVM C=1 1.052 0.906±0.009 0.998 11s 10 74+
FreqBaseline 1.6 0.42 0.86 - - -

News Groups, 20 classes
δm=0, p=1 1.137 0.798 0.978 2s 10 113k
δm=0.5, p=1 1.085 0.865±0.005 0.987 2s 10 171k
perceptron 1.229 0.728 0.928 20s 20 189k
committee 1.122 0.830 0.970 220s 20 189+
SVM C=1 1.1020 0.852±0.005 0.975 92s 20 189+
FreqBaseline 3.33 0.05 0.25 - - -

Industry, 104 classes
δm=0, p=1 1.114 0.861 0.942 4s 16.7 124k
δm=0.5, p=3 1.094 0.886±0.008 0.949 16s 15.8 196k
perceptron 1.488 0.595 0.773 55s 104 330k
committee 1.17 0.816 0.904 610s 104 330+
SVM C=10 1.112 0.872±0.009 0.933 235s 104 330+
FreqBaseline 31 0.005 0.03 - - -

Figure 9: Comparisons on the smaller data sets.Ttr is training time (s=seconds, m=minutes,
h=hours),d is the number of “connections” touched on average per feature of a testin-
stance, and|W| denotes the number of (nonzero) weights in the system (see Section 6.2).
The first two rows for each set report on FF, the first row being FF with0 margin threshold,
after one pass (p=4 means trained for four passes). Some example standard deviations for
R1 are also shown.

Thus, at score of 0, the (probability) value obtained is 0.5, and score of1, the probability is 1
1+e−1 ≈

0.73. When sigmoid fitting, we used one or more 80-20 splits of the training data, trained on 80,
obtained the scores on the remaining 20, pooled the scores from different trials and fitted a sigmoid
on the points. We then trained the classifier on the whole set. With more trials, we got better results
on RCV1, but with diminishing returns, and this takes more time. For Ads, we could run the SVM
with no fitting. Committee and perceptron used 3 trials. We performed the binomial sign test to
compare the performance of FF (the second row for each data set) against the best of others (this
is the SVM result, when available) as follows. We paired theRk values on the same splits of data,
10 many for each data set, and counted the number of wins and losses of FF. The bold-facedR1

andR5 values indicate significance with confidence levelp≤ 0.05 (i.e., either 9 or 10 wins). We
observe that FF is superior with statistical significance in many cases, and only in one case,R1 on
the smallest data set, does it have statistically significant inferior performance.

The competitive and even superior accuracy of the FF algorithm providesevidence that im-
proving class ranking on each instance, in the context of other classes that may be relevant (other
retrieved classes), and at the same time, keeping the index sparse, is a good strategy or learning
bias for our high performance categorization task. Methods based on binary classifiers can be at

2595

MADANI , CONNOR AND GREINER

Rank (HR) R1 R5 Ttr d |W|
Reuters RCV1, 414 classes

δm = 0, p=1 1.181 0.763 0.955 6s 15.1 181k
δm = 0.1, p=4 1.164 0.787±0.008 0.952 24s 12.9 223k
perceptron 1.418 0.621 0.815 70s 38 760k
committee 1.197 0.769 0.918 750s 36 760k+
C=1,0fit 1.26 0.72 0.89 94s 36 4meg
C=1,1 trial 1.18 0.779 0.936 200s 36 4meg
C=1,3 trials 1.17 0.782 0.937 400s 36 4meg
C=1,4 trials 1.17 0.783±0.01 0.939 520s 36 4meg
FreqBaseline 4.58 0.082 0.348 - - -

Ads, 12.6k classes
δm = 0, p=1 1.269 0.706 0.892 27s 7.8 814k
δm = 0.1, p=4 1.254 0.725±0.003 0.890 92s 6.7 1meg
perceptron 1.738 0.517 0.642 0.5h+ 80 5meg
committee 1.424 0.652 0.758 5h+ 80 5meg+
SVM C=10, 0 fit 1.424 0.665±0.003 0.774 12h+ 80 5meg+
FreqBaseline 35.56 0.012 0.033 - - -

Web, 14k classes
δm = 0, p=1 2.22 0.346 0.575 64s 8 1.6meg
δm = 0, p=2 2.21 0.352±0.007 0.576 128s 8 1.5meg
perceptron 6.69 0.098 0.224 1h+ 250 14meg
committee 3.78 0.207 0.335 12h+ 190 14meg+
FreqBaseline 10.4 0.053 0.126 - - -

Jane Austen, 17.4k classes
δm = 0, p=1 2.71 0.272±0.002 0.480 40s 8.7 1.5meg
δm = 0.1, p=4 2.73 0.279±0.002 0.462 160s 9.1 1.6meg
δm = 0.5, p=4 3.01 0.243±0.002 0.425 160s 9.1 1.6meg
FreqBaseline 10.3 0.037 0.15 - - -

Figure 10: Comparisons on the larger data sets.Ttr is training time (s=seconds, m=minutes,
h=hours),d is the number of “connections” touched on average per feature of a test
instance, and|W| denotes the number of (nonzero) weights in the system (see Sec-
tion 6.2). The first two rows for each set report on FF, the first row being FF with 0
margin threshold, after one pass (p=4 means trained for four passes).Some example
standard deviations forR1 are also shown.

a disadvantage because the task of choosing whether a single class should be assigned or not, in
isolation, can be error-prone, especially with large numbers of classes.Classifier scores can be used
for ranking classes, but the classifiers were not obtained with the objective of a good ranking of the
classes for each instance (and their scores may not be calibrated):18 a typical binary classifier such
as an SVM is trained to yield a separation among instances (a good class prototype). The scores of
such a classifier are more suitable for ranking the instances for the corresponding class than ranking
classes for each instance. Top-down classification can help accuracyin that the top classifiers may
effectively discover features useful for making general distinctions,and lower-level classifiers can
similarly use features for making fine distinctions among a smaller set of sibling classes. On the

18. However, for the one-versus-rest experiments, we also evaluated rankings using the probabilities obtained via sigmoid
fitting, instead of using the raw classifier scores, but saw no change or inferior accuracies (not shown).

2596

LEARNING WHEN CONCEPTSABOUND

other hand, top-down classification inherits the problems of one-versus-rest (for the children of ev-
ery parent node, the problem is akin to one-versus-rest). Furthermore, the errors of the intermediate
classifiers along a classification path can add up. Indexing achieves a kind of direct “flat” classifi-
cation (akin to one-versus-rest, but not via binary classifiers). Features that are directly predictive
of classes can be discovered, skipping error-prone intermediary classifiers. On the other hand, dis-
tinguishing thousands of classes via a single linear classifier (the index) can be error-prone.19 It is
ultimately an empirical question which of these fairly different learning techniques may outperform
others.

6.2 Efficiency and Ease of Use

We see that the training times of the FF algorithm is dramatically lower than others, and the ratio
grows with data set size, reaching or exceeding two orders of magnitude.

Our measure of work,d, is the expected number of “connections” touched per feature of a
randomly drawn instance during categorization. For example, for the ads data set, on average just
under 8 connections (classes) are touched during index look up per feature, or 8× 27 total are
touched per instance (the average number of features of a vector is 27,see Figure 8), while for
top-down ranking, 80 classifiers are applied on average (over 22 at the top level) during the course
of top-down ranking/classification. We are assuming the classifiers have amemory-time efficient
hashed representation. Again, we see that the indexing approach can have a significant advantage
here.

In the case of the index, the space consumption|W| is simply the number of edges (positive
weights) in the bipartite graph. In the case of classifiers, we assumed a sparse representation (only
nonzero weights are explicitly represented), and in most cases used a perceptron classifier, trained
in a mistake driven fashion as a lower estimate for other classifiers.20 On the smaller data sets, the
difference is not important. However, we see that on the large categorization data sets the classifier
based methods can consume significantly more space. We also note that for the FF algorithm, with
higherδm, the index size increases. This is caused by more updates being performed with higher
δm, and more updates tends to increase edge additions. This does not appear to increase the workd
though.

The FF algorithm is very flexible. We could run it on our workstations for allthe data sets (with
2 to 4 GB RAM), each pass taking no more than a few minutes at most. This was not possible for
the classifier based methods on the large data sets (inadequate memory). In general, the top-down
method required significant engineering effort (encoding the taxonomy structure, writing the clas-
sifiers to file for largest data sets, etc). Liu et al. (2005) also report onthe considerable engineering
effort required and the need for distributing the computation.

6.3 Effects of Various Options and Parameters

In this section, we investigate the effects of various parameters and optionson accuracy and ef-
ficiency. For each option, we show performance on a subset of data sets to show the difference
that using that option can make. In each case, unless otherwise specified, the remaining parameters
(such as choice of margin) are as in Figures 9 and 10 for best performance, and as before we report

19. Huang et al. (2008) explore a multi-stage data-driven classificationapproach, using fast indexing for the first stage.
20. We have observed that the committee of perceptrons can be converted into a single linear classifier by weight aver-

aging after training without degrading accuracy.

2597

MADANI , CONNOR AND GREINER

No Constraints Default Constraints Ttr (single pass)
Small Reuters 0.884±0.008 0.884±0.008 0s vs 0s
News Group 0.866±0.006 0.865±0.005 3s vs 2s
Industry 0.889±0.009 0.886±0.008 9s vs 4s
RCV1 0.787±0.007 0.787±0.008 [40s−50s] vs 6s
Ads 0.716 0.711 45m vs 27s
Web 0.327 0.347 2h vs 64s
Jane Austen 0.276 0.274 1h vs 41s

Figure 11: No constraints ondmax (maximum outdegree) norwmin (wmin set to 0), compared to the
default settings. Accuracies (R1 values) are not affected much, but efficiency suffers
greatly. The rough training times for a single pass are compared.

averages and standard deviations for 10 random trials of 90-10 splits (except for news groups, for
which the 80-20 split is given).

6.3.1 REMOVING EFFICIENCY CONSTRAINTS

We designed the FF algorithm with efficiency in mind. It is instructive to see howthe algorithm
performs when we remove the efficiency constraints (wmin anddmax). Note however that such con-
straints may actually help accuracy somewhat by removing unreliable weights and preventing over-
fitting.

In these experiments, we setwmin to 0 anddmax to a large number (1000). We show the best
R1 result for choice of margin thresholdδm ∈ {0,0.1,0.5}, over the first 5 passes, and compare
to default values for the efficiency constraints. We observe that the accuracies are not affected.
However FF now takes much space and time to learn, and classification time is hurt too. On the web
data, for instance, the number of edges in the index grows to 6.5meg after first pass (it was about
1.5meg before). The average number of edges touched per feature grows to 1633, versus 8 for the
default, thus 200 times larger, which explains the slow-down in training time.

For the ads, web, and Jane Austen, due to the very long running times, we ran FF for only a few
trials, sufficient to convince ourselves that the accuracy does not change (see also next section). We
report the result (with or without constraints) from the first pass of a single trial, on the same split
of data.

6.3.2 OUTDEGREECONSTRAINT

Figure 12 shows accuracy against the degree constraint,dmax, on the 3 large categorization data
sets. We see that accuracy may in fact improve with lower degrees (RCV1 and Web). At outdegree
constraint of 3 for RCV1, the number of edges in the learned index is around 80k instead of 180k
(for the defaultdmax= 25), and the number of classes (connections) touched per feature is under 3,
instead of 15 (Figure 10).

In general, it may be a better policy to use a weight threshold, greater thanwmin, instead of a max
outdegree constraint, for more efficient retrieval, as well as more reduction in index size, without
loss in ranking accuracy.

2598

LEARNING WHEN CONCEPTSABOUND

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 10 20 30 40 50

ac
cu

ra
cy

max outdegree allowed

RCV1
Ads

Web

Figure 12: Accuracy(R1) after one pass against the outdegree constraint.

0.001 0.01 0.1
RCV1 0.786±0.009 0.787±0.008 0.761±0.008
Ads 0.728±0.002 0.725±0.003 0.701±0.003
Web 0.332±0.005 0.352±0.003 0.30±0.006

Figure 13: The effect ofwmin on accuracy. We took the bestR1 within the first 5 passes. The
standard deviations are also shown. The valuewmin = 0.1 is significantly inferior, while
settingwmin to 0.001 does not lead to significant improvements.

6.3.3 THE M INIMUM WEIGHT CONSTRAINT

We noted in Section 4.1 that awmin value of 0.01 can be adequate if we expect most useful edge
weights to be in say[0.05,1] range, while awmin value of 0.1 is probably inadequate for best per-
formance. Figure 13 shows theR1 values forwmin ∈ {0.001,0.01,0.1} on the three bigger text
categorization data sets. Other options were set as in Figure 10, and the best R1 value within first 5
passes is reported.

Note that whilewmin =0.1 is inferior, the bulk of accuracy is achieved by weights above 0.1, and
wmin≤ 0.01 does not make a difference on these data sets.

6.3.4 MULTIPLE PASSES ANDCHOICE OFMARGIN

Figure 14 shows accuracy (with standard deviations over 10 runs for two plots) as a function of
the number of passes and different margin values, in the case of ReutersRCV1. As can be seen,
different margin values can result in different accuracies. In some data sets, accuracy degrades
somewhat right after pass 1, exhibiting possible overfitting as training performance increases.

2599

MADANI , CONNOR AND GREINER

 0.71

 0.72

 0.73

 0.74

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

 1 2 3 4 5 6 7 8 9 10

ac
cu

ra
cy

 (r
ec

al
l a

t 1
)

number of passes

marg=0
marg=0.1
marg=0.2
marg=0.5

Figure 14: Reuters RCV1: Accuracy (R1) for margin thresholdδm ∈ {0,0.1,0.2,0.5} against the
number of passes.

No Leakage Allow Leakage
News Group 0.866±0.005 0.865±0.005
RCV1 0.780±0.008 0.787±0.008
Ads 0.696± 0.002 0.725± 0.003

Figure 15: On some data sets, allowing weight leakage when dropping edges can significantly im-
prove accuracy.

6.3.5 DISALLOWING WEIGHT “L EAKS”

An uninformative feature such as “the” should give low votes to all classes. However, since the
outdegree is constrained for memory reasons, if we imposed a constraint that the connection weights
of a feature should sum to 1, then “the” may give significant but inaccurate weights to the classes
that it happens to get connected with. Allowing for weight leaks is one way of addressing this issue.
Figure 15 compares results. For the NO case in the figure (not allowing), whenever an edge from
f to c is dropped, its weight,w′f ,c, is subtracted fromw′f . Thusw′f = ∑w′f ,c when we don’t allow
leaks, andw′f ≥ ∑w′f ,c when we allow them.

6.3.6 DOWN WEIGHING L ITTLE SEEN FEATURES

Figure 16 shows the effect of down weighing infrequent features (thedefault option, see Sec-
tion 4.3.2), against treating all features as equal (not using the option). Down-weighing infrequent
features can significantly help.

2600

LEARNING WHEN CONCEPTSABOUND

No Down-Weigh With Down-Weigh
Newsgroup 0.860±0.005 0.865±0.005
RCV1 0.758±0.007 0.787±0.008
Web 0.327±0.006 0.352± 0.007

Figure 16: Down-weighing infrequent features can significantly improveaccuracy.

IND Bool FF p=1 best Bool FF best FF
News Group 0.846±0.006 0.860±0.006 0.860±0.005 0.865±0.005
Industry 0.799±0.01 0.839±0.011 0.867±0.008 0.886±0.009
RCV1 0.686±0.009 0.76±0.01 0.780±0.008 0.789±0.008

Figure 17: Comparisons with IND and the effect of using feature values or treating them as Boolean
and nol2 normalization. The last column (best FF) contains results when default FF
(with the use of feature values,l2 normalization) is used (from Figure 9). Boolean FF
with the right margin can significantly beat IND in accuracy, and use of feature values
in FF appears to help over Boolean representation.

6.3.7 IND AND BOOLEAN FEATURES

IND treats features independently and as Boolean, but computes the conditionals exactly. Thus IND
is similar to Boolean FF with high margin andwmin = 0, but IND also has a post-improvement step
of adjustingpind (using the training set), which we have observed can improve the test accuracy of
IND significantly (in addition to reducing index size). In these experimentspind was chosen from,

{0.01,0.02, · · · ,0.09,0.1,0.15,0.2,0.25, · · · ,0.6}.

Here we compare IND against FF with Boolean values (and feature vectors are notl2 normal-
ized). This allows us to see how much using features values helps, as well as a comparison to a
simpler heuristic of computing the conditional probabilities exactly and droppingthe small values
afterward. Figure 17 shows the results. For Newsgroup, Industry and RCV1, the best value ofpind

was respectively 0.01,0.1, and 0.3. To see the effect of edge removal on the accuracy of IND, if we
chosepind = 0 (did no edge removal), we would getR1 averaging below 0.58 on RCV1 (instead of
current 0.69).

To achieve the best performance with Boolean features for FF on newsgroup, we had to raise the
margin threshold to 7.0. Margin threshold of 1 or below gave significantly inferior results of 0.82 or
below. Note that the scores that the classes receive during retrieval can increase significantly with
Boolean features (compared to using the feature values inl2 normalized vector representation).

We conclude that IND can be significantly outperformed by FF with an appropriate margin.

6.4 Other Experiments

Here, we first compare to an older indexing method (Madani et al., 2007) and then report and discuss
some properties of the FF learning algorithm, such as the training performance, average scores of
the top class, and a few example connections learned.

2601

MADANI , CONNOR AND GREINER

No Classifiers With Classifiers FF
News Group 0.681±0.007 0.768±0.006 0.86
Industry 0.658±0.009 0.795± 0.01 0.88± 0.008

Figure 18: The performance of the non-ranking indexer algorithm, learning an unweighted index,
with and without classifiers (first two columns) (Madani et al., 2007). Thegoal of im-
proving class rankings, via learning a weighted index, simplifies indexing and improves
classification accuracy.

6.4.1 COMPARISON TOOLDER INDEX LEARNING

The first idea for use of an index was to drastically lower the number of candidate classes to a
manageable set when classifying a given instance, say 10s, and then use classifiers, possibly trained
using the index as well (for efficient training), to precisely categorize theinstances (Madani et al.,
2007). Here, we briefly compare using that method, which we will refer to asunweightedindexing,
against our current FF method. We have already noted that (binary) classifiers appear inferior for
class ranking, especially as we increase the number of classes, in our comparisons in one-versus-
rest experiments. Here, we present results showing that adding an intermediate index trained as
described by Madani et al. (2007) does not improve accuracy. Furthermore, FF is significantly
faster and easier to use.

The unweighted indexing algorithm of Madani et al. (2007) uses a threshold ttol during training
and updates the index only when more thanttol many false positive classes are retrieved on a training
instance or when a false negative occurs. In that work, class-feature weights are computed only to
decide whether a connection or an edge should go into the index. We report accuracy under two
regimes when we test unweighted indexing: (1) as a baseline, when only using the class-feature
weights (without training classifiers), (2) when classifiers are also trained, here committee of per-
ceptrons, trained in an online manner in tandem with the learning of the index, and the classes are
ranked using the scores of the retrieved classifiers on the instance. Forfurther details on that algo-
rithm, please refer to Madani et al. (2007). Note that if we use the classifiers for direct classification
(and not ranking) we obtain significantly inferior accuracy.

Figure 18 shows the results on the newsgroup and Industry data sets. When using no classifiers,
we obtained the bestR1 performance withttol = 5 (out of ttol ∈ {2,5,20}) on the newsgroup and
Industry data sets. The accuracy improves with more passes, but reaches a ceiling in under 20
passes, and we have reported the best performance over the passes. With the addition of classifiers,
the bestR1 is obtained when we don’t use the indexer (see Figure 9), but the resultsfrom using the
indexer can be close as the number of classes grows and with tolerance set in 10s. We have shown
the result forttol =5 for newsgroup, andttol =20 for Industry. We observe that we require classifiers
for the unweighted index learning method, to significantly improve accuracy,and the combination
still lags behind FF in accuracy.

We note that while unweighted indexing without classifier training is fast, classifier training
adds significant space and time overhead. Training was an order of magnitude slower than FF on
the two data sets we reported on, and the classifiers also require 10 or moretraining passes to reach
best performance.

2602

LEARNING WHEN CONCEPTSABOUND

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7

a
c
c
u

ra
c
y
 (

R
1

)

pass

Train and Test Accuracy versus Pass on the news group data set

train marg 0
test marg 0

train marg 0.5
test marg 0.5

train marg 1.0
test marg 1.0

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7

a
c
c
u

ra
c
y
 (

R
1

)

pass

Train and Test Accuracy versus Pass on the Web Dataset

train marg 0
test marg 0

train marg 0.1
test marg 0.1

train marg 0.5
test marg 0.5

Figure 19: Train and test accuracy versus the number of passes, on the newsgroup (left) and web
(right) data sets. Increasing the margin threshold can help control overfitting, but may
not result in best test performance.

6.4.2 TRAINING VERSUSTEST PERFORMANCE OFFF

Figure 19 shows the train and testR1 values as a function of pass. For the training performance,
at end of each pass, theR1 performance is computed on the same training instances rather than
on the held-put sets. The higher the margin threshold, the less the capacity for fitting and therefor
the less the possibility of overfitting. In the case of the newsgroup, we see that we reach the best
performance with a relatively high margin threshold ofδm≈ 1, and the test and training performance
remain roughly steady with more passes, unlike the case forδm =0. For the web data set, we see
that the difference between train and test performance also decreasesas we increase the margin
threshold, but the best test performance is obtained with margin threshold of 0.

6.4.3 LEARNING CLASS PROTOTYPES

FF does not necessarily learn good (binary) classifiers or class prototypes, that is, the incoming
weights into a classci (the vector(w1,i , · · · ,wf|F|,i)), may make a poor class prototype vector. For
example, we used such “prototypes” for ranking instances for each class in Reuters-21578 and
newsgroup. The ranking quality (max F1) was significantly lower than that obtained from a single
perceptron or a linear SVM trained for the class (5 to 10% reduction in absolute value of Max-
F1 compared to perceptron on Reuters-21578 classes). On the newsgroup data set, the Max-F1
performances were comparable to single perceptrons but lagged the performance of SVMs.

6.4.4 CLASS INDEGREES

In Section 4.4 it was mentioned that prototypes may require more (nonzero) weights and process-
ing time than features, and thus feature-based methods could have an efficiency advantage over

2603

MADANI , CONNOR AND GREINER

prototype-based methods (even when adjusted for the average vector length times average feature
outdegree). Of course, this all depends on the details of what processing needs to be performed for a
given algorithm and what the average numbers come out to. It may be useful to look at the average
indegree of a class during the FF algorithm on our data sets.

Let the indegree of a class, that is, the length of the prototype vector, be the number of features
that have a significant edge to the class (within the highestdmax edges for each feature). After
one pass of training, the indegree for the top ranking class (averaged over test instances), for the
Newsgroup, Industry, RCV1, Ads, and Web was respectively: 6k, 2k, 4k, 530, and 14k. The true
class had a lower but somewhat similar average indegree, except for theweb, where the true class
had an average indegree of 6700. Furthermore, in general, the average indegree of classes at given
rank goes down with increasing rank. This is plausible: concepts with relatively higher indegree
(i.e., more connections) tend to beat others in the score received: they tend to be ranked closer to
the top.

Observe that the uniform averages (indegree of a class picked uniformly at random) is signifi-
cantly lower for the big data sets, due to the skew in class frequencies. Theuniform averages can
be computed from Figures 9 and 10, for example, for the Web data it is:1.5meg

14k ≈ 100.

6.4.5 EXAMPLE FEATURES AND CONNECTIONS

On RCV1, there were about 300 feature-class connections with weight greater than 0.9 (strong
connections). Examples included: “figurehead” to the class “EQUITY MARKETS”, “gunfir” to
the class “WAR, CIVIL WAR“, and ”manuf” (manufacturing) to “LEADINGINDICATORS”. Ex-
amples of features with relatively large “leaks”, that is, withwf = ∑cwf ,c < 0.25, and thus likely
uninformative, included “ago”, “base”, “year”, and “intern”.21

7. Conclusions

We raised the challenge of large-scale many-class learning and exploredthe approach of index
learning. In this index-learning context, we began with the informal conjecture that (1) each feature
need only connect to a relatively small number of classes, and (2) these connections can be dis-
covered efficiently. We provided evidence that there exist very efficient online learning algorithms
that nevertheless enjoy competitive and at times better accuracy performance than other commonly
used methods. The algorithms may best be viewed as performing the computations from the side of
features (the predictors) rather than the classes (the predicted). Eachfeature computes that choice of
classes it may connect to and the connection weights. In particular, for very large-scale problems,
each feature is space constrained in performing its computations and in the number of classes to
which it can connect.

Much work remains in terms of advancing the algorithms and developing an understanding
of their successes and limitations, including developing insights into the possibleregularities in
naturally occurring data that could explain the observed successes. Weintend to further investigate
index-learning algorithms, including different update methods and objectives, to develop theoretical
properties, and to explore applications to various domains.

21. The feature “the” was probably dropped (a “stop” word) during the tokenization of this data set (Lewis et al., 2004).

2604

LEARNING WHEN CONCEPTSABOUND

Acknowledgments

Thanks to the anonymous reviewers of the paper for their valuable feedback and suggestions, which
improved the presentation. Thanks to Scott Corlett, Dennis DeCoste, Scott Gaffney, Jian Huang,
Sathiya Keerthy, David Kempe, Ravi Kumar, John Langford, Chih-Jen Lin, Kishore Papineni, Hema
Raghavan, Lance Riedel, Mohammad Salavatipour, and the machine learninggroup at Yahoo! Re-
search for suggestions, pointers, and discussions, and Pradhuman Jahala, Xiaofei He, and Cliff
Brunk for providing us the web data.

Appendix A. NP-Hardness

For the purpose of establishing hardness, the problem is specified by a finite set of instances, wherein
each instance is assigned a class and specified by the set of its active features. The features need only
be Boolean. Of course, more general problems are at least as hard. We show NP-hardness when
a fixed upper constraint is imposed on the outdegree on each feature in theindex. The problem
is NP-hard under either objective of maximizing accuracy or maximizing the MRRreward on the
given set. For MRR, for each instance, the reward is the reciprocal rank 1

kx
, that is, the rank of

the correct class in the ranking returned by the index. On a single instance, the reward could be
0, if the class is not retrieved, and maxes at 1, if the correct class has rank 1. Note that MRR in
Section 3.3 is simply the average reward per instance. For accuracy (R1), the reward is either 1,
if the correct class is ranked highest, or otherwise 0. The decision problem is then to determine
whether a weighted index (a weighted bipartite graph) satisfying the outdegree constraint exists that
yields a total reward,∑x∈X r(cx), exceeding a desired threshold.

Theorem 4 The index learning problem with the objective of either maximizing accuracy (R1) or
minimizing HR on a given set of instances, with the constraint of a constant upper bound, such as
1, on the outdegree of each feature is NP-Hard.

Proof The reduction is from the SET COVER problem (Garey and Johnson., 1979). We reduce the
SET COVER problem to problem of computing an index wherein each feature can connect to at most
1 class.

An instanceI of SET COVER consist of a setU = {e1, . . . ,en} of elements and a setS =
{S1, . . . ,Sm} of subsets ofU . The goal is to find a smallest subsetS ′ ⊆ S such that

S

Si∈S ′ = U .
Given a SET COVER instanceI , we construct an instance of the indexing problem with only two
classesc1 and c2 such that there is a SET COVER solution of sizeC for I iff there is an index
(with the maximum outdegree of 1 constraint), such that the maximum total reward, the number of
instances for which the right class is ranked highest, is|U |+ |S |−C.

In the constructed indexing problem, there is one featurefi corresponding to each setSi ∈ S ,
for a total ofm features. There is also one instancex j for each elementej ∈U (1≤ j ≤ n), andx j

contains featurefi (x j is connected tofi) iff the elementej belongs to the setSi . These instances,
called the “original instances”, belong to classc1. In addition, there arem “extra” instances, one for
each set (or each feature). Each of these extra instances contains only the feature it corresponds to,
and belongs only to classc2 (see Figure 20).

Here, in constructing an index, we need to decide for each feature whether to connect the feature
to c1 or to c2 (we can only connect to one of the two), and with what weights. Now, if a cover of
sizeC exists, then we can easily obtain an index yielding reward of|U |+ |S | - C: we connect the

2605

MADANI , CONNOR AND GREINER

Original Instances

Extra Instances

f1

f|F|

x1

x |S|

c

c

1

2

Features

Figure 20: Reduction of the minimum set cover problem to index learning.

features in the cover (i.e., those features whose corresponding sets are in the cover) toc1, each with
weight of |S |, and we connect all the other features toc2 with a relatively small weight of say 1. In
this way, for any original instance (|U |many),c1 is ranked highest, as at least one of its feature (the
one(s) in the cover) connects toc1 with high weight. For only|S |−C many of the extra instances,
the correct class is missed, thus the total reward is|U |+ |S |−C.

For the reverse direction, we want to show that if an index with rewardR exists, then there is
a cover sizeC≤ |U |+ |S | −R. Assume an index is given with rewardR. Note that lowering the
connection weights toc2 does not degrade the reward. So assume all such weights are at fixed
minimum valuevmin. Next, we note that any index can be converted to one in which all the original
instances are “covered”, that is, the index ranks the right class highest: take any original instance for
which this is not the case, and take one of its features that is connected toc2 (there must be at least
one), drop that edge, and connect it toc1 with high enough weight so thatc1 is ranked highest. The
weight can simply bevmin|S |. This operation does not degrade total reward as we lose on exactly
one extra instance, but gain on at least one original instance. We may repeat this operation until all
original instances are covered, and the reward is nowR′ ≥ R. Now, we see thatR′ = |U |+ |S |−n,
wheren is the number of those extra instances for whichc2 is not retrieved, equal to the number of
features covering the original instances (connecting toc1), or the cover size in the original problem
is C = n = |U |+ |S |−R′ ≤ |U |+ |S |−R.

Observe that the NP-hardness remains and is easier to show if we use the maximum incoming
score rule for class retrieval (each class gets the maximum of its incoming edge weights) instead
of the sum. This reduction does not establish NP-hardness of constant-ratio approximability of
class ranking (due to the subtraction), which remains an interesting open problem. For instance,
either a constant-ratio approximation to loss (for problems with high accuracy) or accuracy (for
problems with high loss) would be interesting. A similar reduction for the problemof computing
anunweightedindex shows that problem is NP-hard even to approximate (Madani et al., 2007).

Appendix B. Approximation Consequences of Edge Dropping

Consider the setting of Section 4.1 wherein a feature wants to compute the proportions of the (suf-
ficiently frequent) classes in the stream it observes. There are two causes for inaccuracies in com-
puting proportions:

2606

LEARNING WHEN CONCEPTSABOUND

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
vi

at
io

n
ra

tio

max probability (a)

Min Thresh 0.1
Min Thresh 0.01

No Space Constraint

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
vi

at
io

n
ra

tio

max probability (b)

Min Classes, Min Thresh 0.01
Min Classes, No Space Constraint

100 Classes, Min Thresh 0.01

Figure 21: The performance of FSU under different allowanceswmin. FSU computes the class
proportions from processing a stream of 1000 class observations. For a choice of high-
est true probabilityp∗, the remaining probability mass (1− p∗) is spread evenly over
remaining classes. This is done under two regimes of generating classes. In (a) the
number of unique classes is fixed at|C |= 100, and in (b) it is|C |= ⌈ 1

p∗ ⌉ (i.e., modeling
the situation in which other classes tie or have close probabilities to the maximum). The
experiment, consisting of picking a class distribution and generating a 1000 draws, is
repeated for 200 trials. In each trial, the deviation ratio of the highest proportion value
computed by FSU, ˜pc1, from the true maximum probability,p∗, is computed. This de-

viation (ratio) is
|p̃c1−p∗|

p∗ . The average deviation over the 200 trials is plotted against
p∗. In the plot of part (b), the deviation is also compared to the case of 100 classes
andwmin = 0.01. We note thatwmin≈ 0.01 appears satisfactory forp∗ ≥ 0.05, while
wmin≈ 0.1 performs well for a much smaller range.

• Finite samples (at any given time only a finite sample has been observed).

• Setting small weights (belowwmin) to 0 (dropping edges) to save memory.

As FSU may drop and reinsert edges repeatedly, its approximation of actual proportions suffers
from more than the issue of finite samples alone. We want to get an idea of this extra loss that we
incur compared to the case when memory is not an issue (when no edges aredropped). Intuitively,
FSU should work well as long as the proportions we are interested in sufficiently exceed thewmin

threshold. The probability that a class with say probabilityp is not seen in some1
wmin

trials is

(1− p)1/wmin, and as long the ratiop
wmin

is high (several multiples), for example,p > 4wmin, this
probability is relatively small. For example, forwmin = 0.01, andp = 0.05, the probability of not
seeing such a class for a stretch of 100 consecutive trials is 0.006. More generally, the chance of
being set to 0 (dropped) for a class with occurrence probabilityp quickly diminishes as we increase
the ratio p

wmin
, and therefore the cause of inaccuracies due to finite memory (the outdegree constraint

on features) is mitigated.
We conducted experiments to see how much the proportion estimation by FSU deviates from

true proportions and in particular compared that deviation to the deviations when FSU is not memory
constrained (whenwmin is set to 0). Figures 21 and 22 show the results. The experiments differ
on how we generated the classes and computed the deviations. In the first of these experiments,
to generate the true-class distribution, for some fixed number of classes|C |, one class is given a

2607

MADANI , CONNOR AND GREINER

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0 0.02 0.04 0.06 0.08 0.1 0.12

D
is

ta
nc

e
(L

m
ax

 o
r

L1
)

min probability threshold

Lmax
L1

Figure 22: The performance of FSU, under different allowanceswmin. The vector of true class
probabilities is generated by uniformly and sequentially picking from[0,1], and keeping
track of total massp (which should not exceed 1). If for latest generated class the
probability drawn is greater than remaining mass 1− p, the remaining mass is assigned
instead, and class generation is stopped. FSU is evaluated after seeing a stream of 1000
classes iid drawn from such a source. Thel1 andl∞ (or lmax) distances between the vector
of empirical proportions that FSU computes and the true probabilities vector,averaged
over 200 trials, is reported. FSU withwmin =0.01 yields distances comparable to FSU
with wmin = 0, butwmin =0.1 yields significantly inferior estimates.

highest probabilityp∗, and the remaining classes obtain the remaining probability mass divided
uniformly: 1−p∗

|C |−1. We then generated a stream of 1000 class observations (1000 iid draws) from
such a distribution, and gave it to FSU with different values ofwmin. We computed the deviation

ratio:
|p̃c1−p∗|

p∗ , wherec1 denotes the class ranked highest by FSU, and ˜pc1 is its assigned probability
(highest computed probability). We averaged this deviation (ratio) over 200 trials of repeating the
experiments. Figure 21(a) shows the averages when|C |= 100 (so all classes except for one, obtain
1−p∗

99). Figure 21(b) shows the results for|C | = ⌈ 1
p∗ ⌉ (e.g., for whenp∗ ≥ 0.5, |C | = 2, and when

p∗ = 0.05, |C | = 20). Thus Figure 21(b) shows how FSU with limitedwmin compares when the
classes have similar proportions.

In the second set of experiments, we generated the probability for each class uniformly from the
[0,1] interval, keeping track of the total probabilityp used up during the course of generation. If the
newest class gets a probability greater than 1− p, 1− p is assigned to it and class generation, for se-
lecting a distribution, is stopped. We then sampled iid to get a sequence of 1000class observations.
We compared the vector of class proportions that FSU computed usingl1 or l∞ distance against
the vector of true probabilities. We averaged the distances over 200 trials.We plot the results for
FSU under differentwmin constraints. We see that a threshold ofwmin≥ 0.1 is not appropriate if
the proportions we are interested in may be below 0.5, but a threshold ofwmin≈ 0.01 does well,
if we are interested in true proportions that are greater than 0.05 say. We compared a number of
other statistics, such as the maximum deviation from true probability, and the probability that the
deviation is larger than a threshold, and FSU withwmin = 0.01 performed similarly towmin = 0
on the distributions tested. The reason as alluded to earlier is that those classes with proportions

2608

LEARNING WHEN CONCEPTSABOUND

significantly greater thanwmin have a high chance of being seen early and frequently enough in the
stream and not being dropped.

Thus, as long as we expect that the useful proportions are a few multiplesaway from thewmin

we choose, FSU is expected to compute proportions that are close to ones computed by the FSU
with wmin set to 0 (no space constraints). Further, we expected that most often theimportant feature
connection weights that determine the true classes during ranking have fairly high weight. Note
also that the constraint of finite samples also points to the limited utility of trying to keeptrack
of relatively low proportions: for most useful features, we may see thembelow say a 1000 times
(in common data sets), and commonly occurring features tend not to be discriminative. Finally,
vector length is a factor: if there tend to exist strong features-class connections, the influence of
the weaker connections on changing the ranking will be limited, in particular when the number
of active features is adequately small. Thus, in many practical learning problems, expecting that
most useful proportions (weights) are in a relatively small interval, say[0.05,1] (or that the features
do not require high outdegree) may be reasonable (see Section 6.3.3). In general however, some
experimentation may be required to set thewmin parameter.

References

S. Albers and J. Westbrook. Self-organizing data structures. In A. Fiat and G. Woeginger, editors,
Online Algorithms: The State of the Art, pages 31–51. Springer LNCS 1442, 1998.

J. K. Anlauf and M. Biehl. The adatron: an adaptive perceptron algorithm. Europhysics Letters,
1989.

H. Aradhye, G. Toderici, and J. Yagnik. Video2text: Learning to annotate video content. InIEEE
Int. Conf. on Data Mining (ICDM) Workshop on Internet Multimedia Mining, 2009.

R. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. Addison Wesley, 1999.

R. Bayardo, Y. Ma, and R. Srikant. Scaling up all-pairs similarity search. In Proc. Int. World Wide
Web Conference (WWW), 2007.

A. Blum. Empirical support for winnow and wighted majority algorithms: Results on a calendar
scheduling domain.Machine Learning, 26:5–23, 1997.

A. Borodin and R. El Yaniv.Online Computation and Competitive Analysis. Cambridge University
Press, 1998.

V. R. Carvalho and W. Cohen. Single pass online learning. InProc. ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining (KDD), 2006.

N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, D. Haussler, R. Schapire, and M. Warmuth. How to
use expert advice.Journal of the ACM, 44(3):427–485, 1997.

T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nus-wide: Areal-world web image
database from national university of singapore. InProc. of ACM Conf. on Image and Video
Retrieval (CIVR’09), 2009.

2609

MADANI , CONNOR AND GREINER

W. W. Cohen and Y. Singer. Context-senstive learning methods for text categorization.ACM Trans.
on Information Systems (TOIS), 17:141–173, 1999.

K. Crammer and Y. Singer. A new family of online algorithms for category ranking. Journal of
Machine Learning Research (JMLR), 3:1025–1058, 2003a.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Journal
of Machine Learning Research, 3:951–991, 2003b.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive
algorithms.Journal of Machine Learning Research, 7:551–585, 2006.

O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical classification. InProc. Int. Conf. on
Machine Learning (ICML), 2003.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting codes.
Journal of Artificial Intelligence Research, 2:263–286, 1995.

S. Dumais and H. Chen. Hierarchical classification of web content. InProc. Int. ACM SIGIR Conf.
on Research and Development in Information Retrieval (SIGIR), 2000.

Y. Even-Zohar and D. Roth. A classification approach to word prediction. In Proc. of the 1st North
Amercian Association of Computational Linguistics (NAACL), 2000.

M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. Ullman. Computing iceberg queries
efficiently. InProc. 24th Int. Conf. Very Large Scale Data Bases (VLDB), 1998.

S. Fidler and A. Leonardis. Towards scalable representations of object categories: Learning a
hierarchy of parts. InProc. of IEEE Int. Conf. on Vision and Pattern Recognition (CVPR), 2007.

D. A. Forsyth and J. Ponce.Computer Vision. Prentice Hall, 2003.

Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm.Machine
Learning, 37(3):277–296, 1999.

Y. Freund, R. Schapire, Y. Singer, and M. Warmuth. Using and combiningpredictors that specialize.
In Proc. ACM Symposum on Theory of Computing (STOC), 1997.

E. Gabrilovich and S. Markovitch. Computing semantic relatedness using wikipida-baed explicit
semantic analysis. InProc. Int. Joint Conf. on AI (IJCAI), 2007.

M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

C. Genest and J. V. Zidek. Combining probability distributions: A critique andan annotated bibli-
ography.Statistical Science, 1(1):114–148, 1986.

C. Gentile. A new approximate maximal margin classification algorithm.Journal of Machine
Learning Research, 2:213–242, 2001.

2610

LEARNING WHEN CONCEPTSABOUND

P. B. Gibbons and Y. Matias. Synopsis data structures for massive data sets. InDIMACS: Series
in Discrete Mathematics and Theoretical Computer Science: Special Issue on Eternal Memory
Algorithms and Visualization, 1999.

J. T. Goodman. A bit of progress in language modeling.Computer Speech and Language, 15(4):
403–434, October 2001.

K. Grill-Spector and N. Kanwisher. Visual recognition, as soon as you know it is there, you know
what it is. Pscychological Science, 16(2):152–160, 2005.

M. Grobelnik and D. Mladenic. Efficient text categorization. InText Mining Workshop at European
Conf. on Machine Learning (ECML). 1998.

S. Guha and A. McGregor. Space-efficient sampling. InProc. Int. Conf. on Artificial Intelligence
and Statistics (AISTATS), 2007.

T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning. Springer-Verlag,
2001.

C. J. Hsieh, K. J. Chang, C. J. Lin, and S. Sathiya Keerthi. A dual coordinate descent method for
large-scale linear SVM. InProc. Int. Conf. on Machine Learning (ICML), 2008.

J. Huang, O. Madani, and C. Lee Giles. Error-driven generalist+experts (EDGE): A multi-stage
ensemble framework for text categorization. InProc. ACM Conf. on Information and Knowledge
Management (CIKM), 2008.

R. M. Karp, C. H. Papadimitriou, and S. Shenker. A simple algorithm for finding frequent elements
in streams and bags.ACM Trans. Database Systems (TODS), 28:51–55, 2003.

S. Keerthi and D. DeCoste. A modified finite newton method for fast solution of large scale linear
svms.Journal of Machine Learning Research (JMLR), 6:341–361, 2005.

D. Koller and M. Sahami. Hierarchically classifying documents using very few words. InProc. Int.
Conf. on Machine Learning (ICML), 1997.

W. Krauth and M. Mezard. Learning algorithms with optimal stability in neural networks. J. of
Physics A, 20, 1987.

K. Lang. Newsweeder: Learning to filter netnews. InProc. Int. Conf. on Machine Learning, 1995.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for text catego-
rization research.Journal of Machine Learning Research (JMLR), 5:361–397, 2004.

Y. Li and P. M. Long. The relaxed online maximum margin algorithm.Machine Learning, 46(1-3),
2002.

Y. Li, H. Zaragoza, R. Herbrich, J. Shawe-Taylor, and J. Kandola.The perceptron algorithm with
uneven margins. InProc. Int. Conf. on Machine Learning (ICML), 2002.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2(4):285–318, 1988.

2611

MADANI , CONNOR AND GREINER

T. Liu, Y. Yang, H. Wan, H. Zeng, Z. Chen, and W. Ma. Support vector machines classification with
very large scale taxonomy.SIGKDD Explorations, 7, 2005.

O. Madani. Exploring massive learning via a prediction system. InAAAI Fall Symposium Series:
Computational Approaches to Representation Change During Learning and Development, 2007a.

O. Madani. Prediction games in infinitely rich worlds. Technical Report 2, Yahoo! Research (and
workshop on Utility Based Data Mining (UBDM)’06), June 2007b.

O. Madani and M. Connor. Ranked Recall: Efficient classification by efficient learning of indices
that rank. Technical Report 3, Yahoo! Research, 2007.

O. Madani and M. Connor. Large-scale many-class learning. InSIAM Conf. on Data Mining (SDM),
2008.

O. Madani and J. Huang. On updates that constrain the features’ connections during learning. In
Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD), 2008.

O. Madani, W. Greiner, D. Kempe, and M. Salavatipour. Recall systems: Efficient learning and use
of category indices. InProc. Int. Conf. on Artificial Intelligence and Statistics (AISTATS), 2007.

O. Madani, H. Bui, and E. Yeh. Efficient online learning and prediction ofusers’ desktop actions.
In Proc. Int. Joint Conf. on AI (IJCAI), 2009.

C. Mesterharm. A multiclass linear learning algorithm related to Winnow. InProc. Neural Infor-
mation Processing Systems (NIPS), 2000.

C. Mesterharm. Transforming linear-threshold learning algorithms into multiclass linear learning
algorithms. Technical Report dcs-tr-460, Rutgers, 2001.

G. L. Murphy. The Big Book of Concepts. MIT Press, 2002.

J. Platt. Probabilities for support vector machines and comparisons to regularized likelihood meth-
ods. In A. Smola, P. Bartlett, B. Schlkopf, and D. Schuurmans, editors,Advances in Large Margin
Classifiers, pages 61–74. MIT Press, 1999.

D. R. Radev, H. Qi, H. Wu, and W. Fan. Evaluating web-based question answering systems. In
Proc. Int. Conf. on Language Resources and Evaluation (LREC), 2002.

H. Raghavan, O. Madani, and R. Jones. When will a human in the loop accelerate learning? quan-
tifying the complexity of classification problems. InInt. Workshop on AI for Human Computing,
at IJCAI, 2007.

J. Rennie, L. Shih, J. Teevan, and D. Karger. Tackling the poor assumption of Naive Bayes text
classifiers. InProc. Int. Conf. on Machine Learning (ICML), 2003.

R. Rifkin and A. Klautau. In defense of one-vs-all classification.Journal of Machine Learning
Research (JMLR), 5, 2004.

T. G. Rose, M. Stevenson, and Miles Whitehead. The reuters corpus vol. 1 - from yesterday’s
news to tomorrow’s language resources. InProc. Int. Conf. on Lang. Resources and Evaluation
(LREC), 2002.

2612

LEARNING WHEN CONCEPTSABOUND

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in
the brain.Psychological Review, 65(6):386–408, 1958.

F. Sebastiani. Machine learning in automated text categorization.ACM Computing Surveys, 34:
1–47, 2002.

S. Shalev-Schwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimated sub-GrAdient SOlver for
SVM. In Proc. Int. Conf. on Machine Learning (ICML), 2007.

S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system.Nature, 381:
520–522, 1996.

T. Turtle and J. Flood. Query evaluation: Strategies and optimizations.Information Processing &
Management, 31(6), 1995.

V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 2000.

V. G. Vovk. Aggregating strategies. InAnnual Workshop on Computational Learning Theory, 1990.

J. Z. Wang, J. Li, and G. Wiederhold. SIMPLIcity: Semantics-sensitive integrated matching for
picture libraries.IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9):947–
963, 2001.

I. H. Witten, T. C. Bell, and A. Moffat.Managing Gigabytes: Compressing and Indexing Documents
and Images. John Wiley & Sons, 1994.

GR. Xue, D. Xing, Q. Yang, and Y. Yu. Deep classification in large-scaletext hierarchies. InProc.
Int. ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR), 2008.

2613

