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Abstract

Inference in Bayesian statistics involves the evaluationarginal likelihood integrals. We present

algebraic algorithms for computing such integrals exafdtydiscrete data of small sample size.

Our methods apply to both uniform priors and Dirichlet psioirhe underlying statistical models

are mixtures of independent distributions, or, in georndainguage, secant varieties of Segre-
Veronese varieties.
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1. Introduction

Evaluation of marginal likelihood integrals is central to Bayesian statisticsgingrally assumed
that these integrals cannot be evaluated exactly, except in trivial, gasba wide range of numerical
techniques (e.g., MCMC) have been developed to obtain asymptotics andealrapproximations
(Chickering and Heckerman, 1997). The aim of this paper is to show Kaat éentegration is
more feasible than is surmised in the literature. We examine marginal likelihoodatsdgr a
class of mixture models for discrete data. Bayesian inference for theselsmadses in many
contexts, including machine learning and computational biology. Recemt iwdhese fields has
made a connection to singularities in algebraic geometry (Drton, 2009; GaigdRusakov, 2005;
Watanabe, 2001; Watanabe and Yamazaki, 2003, 2004). Our studyeatgythese developments
by providing tools for symbolic integration when the sample size is small.

The numerical value of the integral we have in mind is a rational number, xaxt evalua-
tion means computing that rational number rather than a floating point appt@amé&or a first
example consider the integral

J (AP 41 p2) drictt dA dp, (1)
©
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where® is the 13-dimensional polytod x Az x Az x Az xAz. The factors are probability simplices,
A = {(m1) eREyim+T=1},
Az = {()\gk),)\ék),)\ék),)\gk)) € Rgo : Zi7\i(k) =1}, k=12,
K (k) (k) _(k K
Dy = {(eY,p¥, ¥ oWy e Ry 3N =1}, k=12

and we integrate with respect to Lebesgue probability measu@ dhwe take the exponentd;;
to be the entries of the particular contingency table

4 2 2
2 4 2 2

U=12 2 4 2| @)
2 2 2 4

then the exact value of the integral (1) is the rational number

571.77342681317682039596993%25015426432626533 3)
281.320.512.711.118.137.17°-19 - 23°. 298 313. 378 - 413. 43"

The table (2) is taken from Example 1.3 of Pachter and Sturmfels (2008yewhe integrand

(TN + 0ol @
i,je{A,C,G,T}
was studied using the EM algorithm, and the problem of validating its global maxioven® was
raised. See Feinberg et al. (2007, 84.2) and Sturmfels (2008, &firfoer discussions. That opti-
mization problem, which was widely known as the 1®0iss Francs problentas in the meantime
been solved by Gao et al. (2008).
The main difficulty in performing computations such as (1) = (3) lies in the fattttre expan-

sion of the integrand has many terms. A first naive upper bound on theamwhimonomials in the
expansion of (4) would be

(Uj+1) = 32.5% = 332150625
i,je{A,C,G,T}

However, the true number of monomials is onl\882 097, and we obtain the rational number (3)
by summing the values of the corresponding integrals
/ et A A@) (W) W(p@h*dndtdAdp =
e

ap! ap! ' 3!|‘|iui! ' 3! |_|iVi! . 3!|_|iWi! ‘ 3! |_|iXi!
(ataetl)! (Ziu+3)! (Zivi+3)! (Ziwi+3)! (Zix+3!

The geometric idea behind our approach is that the Newton polytope ofg4disotopeand we are
summing over its lattice points. Definitions for these geometric objects are gi&eciion 3.

This paper is organized as follows. In Section 2 we describe the cladgetfraic statistical
models to which our method applies, and we specify the problem. In SectioneXamine the
Newton zonotopes of mixture models, and we derive formulas for margiredindod evaluation
using tools from geometric combinatorics. Our algorithms and their implementatienescribed
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in detail in Section 4. Section 5 is concerned with applications in Bayesian statMticshow how
Dirichlet priors can be incorporated into our approach, we discuss the evaluat®ayef factors
we compare our setup with that of Chickering and Heckerman (1997 )waritiustrate the scope
of our methods by computing an integral arising from a data set of Evaais(é989).

A preliminary draft version of the present article was published as Sestibaf the Oberwol-
fach lecture notes (Drton et al., 2009). We refer to that volume for furttiermation on the use of
computational algebra in Bayesian statistics.

2. Independence Modelsand their Mixtures

We consider a collection of discrete random variables

xPooxt o x,
x? x{? . x?
x99 X,
whereXl(i), e S(i) are identically distributed with values {0, 1, ...t }. The independence model

M for these variables is a toric model (Pachter and Sturmfels, 2005, §prsented by an integer
d x n-matrix A with

k
d=t;+tr+---+tx+k and n:rl(tiJrl)S. (5)
=

The columns of the matrii are indexed by elementsof the state space
{0,1,... 1} x{0,1,...,t2}% x --- x {0,1,... t}*. (6)

The rows of the matriA are indexed by the model parameters, which aredtbeordinates of the
points@ = (8,82 ... 81) in the polytope

P:At1XAt2X-~-XAtk, (7)

and the modedV is the subset of the simple¥, ; given parametrically by
0 _ 0 < el

pp = Prob(X;’ =v;’ foralli,j = |l||9, (8)
b( j j ) H v

This is a monomial ind unknowns. The matridA is defined by taking its columa, to be the
exponent vector of this monomial.
In algebraic geometry, the mod®f is known asSegre-Veronese variety

PixPlx...xPk — PNl (9)

where the embedding is given by the line bundles;, s, ...,s). The manifoldM is the toric
variety of the polytope®. Both objects have dimensiah— k, and they are identified with each
other via the moment map (Fulton, 1993, §4).
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Example 1 Consider three binary random variables where the last two random bbessare iden-
tically distributed. In our notation, this corresponds tel2, s =1, s =2and y =t, = 1. We find
thatd=4,n=_8, and

Pooo Pooir Poio Poir Pioo Pro1 P10 P111

6 /1 1 1 1 0o 0 0 O
A 6 o o o o 1 1 1 1
6l 2 1 1 o 2 1 1 0
»\o 1 1 2 o 1 1 2

The columns of this matrix represent the monomials in the parametrizafjoii® modelV lies
in the 5-dimensional subsimplex &f given by o1 = Po1o and po1 = p110, @and it consists of all

rank one matrices
Pooo Poo1 Pioo Pioi
Poio Poi1 P10 P11z

In algebraic geometry, the surfac¥ is called arational normal scroll

The matrixA has repeated columns whenegel 2 for somei. It is sometimes convenient to
represent the model/ by the matrixA which is obtained frord by removing repeated columns. We
label the columns oh by elements = (v ... v(¥) of (6) whose componenté) € {0,1,...,;}9
are weakly increasing. Hendeis ad x fi-matrix with

—_— K S +1
A = ﬂ( s > (10)

The modelM and its mixtures are subsets of a subsim@igx; of A,_1.

We now introducamarginal likelihood integrals All our domains of integration in this paper
are polytopes that are products of standard probability simplices. Orseaahtpolytope we fix the
standard Lebesgue probability measure. In other words, our disnuddayesian inference refers
to the uniform prior on each parameter space. Naturally, other prior distits, such as Dirichlet
priors, are of interest, and our methods are extended to these in SectlanMhat follows, we
simply work with uniform priors.

We identify the state space (6) with the $ét...,n}. A data vector U= (Uy,...,Up) is thus
an element oN". Thesample sizef these data i&); +U, + --- +U, = N. If the sample sizé\ is
fixed then the probability of observing these data is

N!

Lu®) = Gy gy PO pa(® e pal@)

This expression is a function on the polytdpw/hich is known as thékelihood functiorof the data
U with respect to the independence mo@¢l Themarginal likelihoodof the dataJ with respect
to the modetM equals

/PLU(G)dG.

The value of this integral is a rational number which we now compute explicitie dataJ will
enter this calculation by way of theufficient statistic b= A-U, which is a vector irN9. The
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coordinates of this vector are denoﬂeﬁ fori=1,....,kandj =0,...,t. Thusbgi) is the total

number of times the valug is attained by one of the random variabbég),..., éi) in thei-th
group. Clearly, the sufficient statistics satisfy

b+l +. +b) = 5N foralli=12,... k (11)
The likelihood functiorLy (8) is the constant; times the monomial

SN
e = iE”:L(ej )i

The logarithm of this function is concave on the polytdheand its maximum value is attained at
the pointd with coordinatesd|’ = b{’ /(s -N).

Lemma 1 The integral of the monomi&P over the polytope P equals

k 1ol 1plr .. bt

/Pebde - il:l (SN +t)!

The product of this number with the multinomial coefficiedy (N4!---Uy!) equals the marginal
likelihood of the data U for the independence magiél

Proof SinceP is the product of simplices (7), this follows from the formula

t!-bo!-by! - boy!
(bo+by+---4by +1)!

for the integral of a monomial over the standard probability simplex |

(12)

/egoeﬁlmetbtde -
A%

Our objective is to compute marginal likelihood integrals for the mixture medé). The
natural parameter space of this model is the polytope

O =AxPxP

Leta, € N9 be the column vector dkindexed by the statg which is either in (6) orif{1,2,...,n}.
The parametrization (8) can be written simply gs= 6. The mixture modei (2 is defined to
be the subset dk, 1 with the parametric representation

py = 0g-0% 4 o1-p* for (0,6,p) € O©. (13)
The likelihood function of a data vectbr € N" for the model (2 equals
_ N! U Un
LU(O-)evp) - UqlUo! -~ Uy! pl(o,e,p) pn(o,e,p) . (14)

Themarginal likelihoodof the datal with respect to the modei/(? equals
|
/ Lu(0,6,p)dod0dp = — / [(008* + 010™)doddp. (15)
The following proposition shows that we can evaluate this integgattly
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Proposition 2 The marginal likelihood (15) is a rational number.

Proof The likelihood functiorly is aQxo-linear combination of monomials?8°pC. The integral
(15) is the sam&-o-linear combination of the numbers

/e o*ePpdodedp = ( /A 0%0) /P 6°de) - ( /P p%dp).

Each of the three factors is an easy-to-evaluate rational number, py (12 |

Example 2 The integral (1) expresses the marginal likelihood d@fa4-table of counts U= (U;j)

with respect to the mixture mod@! (@, Specifically, the marginal likelihood of the data (2) equals
the normalizing constant0! - (2!)~12. (41)~* times the number (3). The mod#l® consists of all
non-negativel x 4-matrices of rank< 2 whose entries sum to one. Here the parametrization (13)
is not identifiable becausgim(4/(?)) = 11 but dim(®) = 13. In this example, k= 2, 5=s,=1,
t;=t,=3,d=8,n=16.

In algebraic geometry, the mod&l @ is known as the first secant variety of the Segre-Veronese
variety (9). We could also consider the higher secant vari@iés, which correspond to mixtures of
| independent distributions, and much of our analysis can be extended tasleabut for simplicity
we restrict ourselves to= 2. The varietyM (@) is embedded in the projective spaé&* with fi as
in (10). Note thantan be much smaller tham If this is the case, it is convenient to aggregate states
whose probabilities are identical and represent the data by a \@etd¥”. Here is an example.

Example 3 Let k=1, s;=4 and t=1, so M is the independence model for four identically dis-
tributed binary random variables. Then=€2 and n= 16. The corresponding integer matrix and
its row and column labels are

Poooo Poooi Pooio Poioo Piooo Pooir - Piiio Pri11
A — B9 4 3 3 3 3 2 - 1 0
0 0 1 1 1 1 2 ... 3 4 )

However, this matrix has onfy= 5 distinct columns, and we instead use
Po P1 P2 P3 P4
A _ 6b/4 3 2 1 O
6,\0 1 2 3 4)°

The mixture modeM @ is the subset o, given by the parametrization
P = <£|1> (00-657"-8} + o1-pg ' -py)  fori=0,1,2,3,4.

In algebraic geometry, this threefold is the secant variety of the rationahabcurve inP4. This
is the cubic hypersurface with the implicit equation

12pp 3p1 2p2
det| 3p1  2p2 3ps = 0.
2p;  3ps 12pg4
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In Hosten et al. (2005, Example 9), the likelihood function (14) was diudiethe data
U = (Uo,Uy,UpU3U;) = (51,18,73,2575).

It has three local maxima (modulo swappi&@nd p) whose coordinates are algebraic numbers of
degreel2. Using the methods to be described in the next two sections, we computsddthgalue

of the marginal likelihood for the datd with respect taM(@. The rational number (15) is found
to be the ratio of two relatively prime integers havibg0 digits and552 digits, and its numerical
value is approximately.778871633883867861133574D 22,

3. Summation over a Zonotope

Our starting point is the observation that the Newton polytope of the likelihaadtibn (14) is
a zonotope. Recall that tHéewton polytopef a polynomial is the convex hull of all exponent
vectors appearing in the expansion of that polynomial, and a polytopisadopef it is the image
of a standard cube under a linear map. See Cox et al. (2005, 87) ayldr4E995, 87) for further
discussions. We are here considering the zonotope

n

Za(U) = ZlUv' [0, 2y,

where[0,a,] represents the line segment between the origin and the @apiniRY, and the sum is
a Minkowski sum of line segments. We wrifg = Za(1,1,...,1) for the basic zonotope spanned
by the vectorsa,. HenceZa(U) is obtained by stretchinga along those vectors by factoks,
respectively. Assuming that the couhitgare all positive, we have

dim(Za(U)) = dim(Za) = rankA) = d—k+1. (16)

The zonotopé&a is related to the polytopP = conv(A) in (7) as follows. The dimensiod —k =
t;+---+1tx of Pis one less than di(@a), andP appears as theertex figureof the zonotopeZa at
the distinguished vertex 0.

Remark 3 For higher mixturesM ("), the Newton polytope of the likelihood function is isomorphic
to the Minkowski sum df — 1)-dimensional simplices iR(~19. Only when k= 2, this Minkowski
sum is a zonotope.

The marginal likelihood (15) we wish to compute is the integral
n
/ [(000* + 01p™)%dodedp (17)
Oy—

times the constaril! /(U;!---Uy!). Our approach to this computation is to sum over the lattice
points in the zonotop&a(U). If the matrix A has repeated columns, we may repléceith the
reduced matri¥A andU with the corresponding reduced data vediorlf one desires the marginal
likelihood for the reduced data vectdrinstead of the original data vector, the integral remains
the same while the normalizing constant becomes
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whereq; is the number of columns i equal to thé-th column ofA. In what follows we ignore the
normalizing constant and focus on computing the integral (17) with regpdut original matrixA.

For a vectob € RY ; we let|b| denote itd *-norm 5 & by. Recall from (8) that all columns of
thed x n-matrix A have the same coordinate sum

a=la| = s1+9+-+% forallv=12....n,

and from (11) that we may denote the entries of a vebtarRY by b%i) fori=1,....kandj =
0,....t. Also, letL denote the image of the linear mAp Z" — Z¢. ThusL is a sublattice of rank
d—k+1inZ9. We abbreviateZy (U) := Za(U)N1L. Now, using the binomial theorem, we have

U
v U B ‘ _ ‘
(008% +01p™)> =y <XV>°?>V0L1JV greap(hx)a
Xy=0 v

Therefore, in the expansion of the integrand in (17), the exponerfisaoé of the form ofb =
SvXdy € ZE(U), 0 < x, < Uy. The other exponents may be expressed in ternbs his gives us

n

[l(000™ +01™)% = 5 aub.U) 0" of/. " " (18)
V= beZk(U)
c=AU—-b

Writing D(U) = {(Xg,...,%) € Z" : 0<x, <Uy,v=1,...,n}, the coefficient in (18) equals

n UV
bU) = . 19
w(bU) AxZ:b \!1 <XV> (19)

xeD(U)
Thus, by formulas (12) and (18), the integral (17) evaluates to

(o). B/ e/ (ti!bé”! R URIY ---Cﬁi”)

beZz(U) Wﬂ (Ib®]+t)1 (jcD]+1)!
c=AU-b

(20)

We summarize the result of this derivation in the following theorem.

Theorem 4 The marginal likelihood of the data U in the mixture modél? is equal to the sum
(20) times the normalizing constant NU;! - --Up!).

Each individual summand in the formula (20) is a ratio of factorials and hesrcée evaluated
symbolically. The challenge in turning Theorem 4 into a practical algorithm ligeeifact that both
of the sums (19) and (20) are over very large sets. We shall discusss ¢hallenges and present
techniques from both computer science and mathematics for addressing them.

We first turn our attention to the coefficiengg(b,U) of the expansion (18). These quantities
are written as an explicit sum in (19). The first useful observation isthiese coefficients are also
the coefficients of the expansion

[16*+1)% = 3 ga(bu)-6" (21)
v bezk(U)
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which comes from substituting; = 1 andp; = 1 in (18). When the cardinality &k (U) is suffi-
ciently small, the quantitya(b,U) can be computed quickly by expanding (21) using a computer
algebra system. We usedA¥LE for this and all other symbolic computations in this project.

If the expansion (21) is not feasible, then it is tempting to compute the indivighfh,U ) via
the sum-product formula (19). This method requires summation over tHexseb(U ) : Ax= b},
which is the set of lattice points in gm— d + k— 1)-dimensional polytope. Even if this loop can
be implemented, performing the sum in (19) symbolically requires the evaludtioramy large
binomials, causing the process to be rather inefficient.

An alternative is offered by the following recurrence formula:

U
n /U
a.0) = 3 () 0ha (0K \ Uy 22)
xi=0 \Xn
This is equivalent to writing the integrand in (17) as
n—1
|'L(croeav +01p%)% | (008 + a1p%)Yn,
V=
More generally, for each € i < n, we have the recurrence

(p/_\(b,U) = z (pA’(b/7U/)'(pA\A’(b_b/aU \U/)7
ezl ()

whereA’ andU’ consist of the first columns and entries @& andU respectively. This corresponds
to the factorization

( |i1(coeav + olpaV)U“> ( ﬁ (008 + clpav)uv> .
V= v=i+1

This formula gives flexibility in designing algorithms with different payoffs in tiemed space com-
plexity, to be discussed in Section 4.
The next result records useful facts about the quantjiés,U).

Proposition 5 Suppose Iz Zz(U) and c= AU —b. Then, the following quantities are all equal to
q)A(b,U )Z
(1) #{ze {0,1}N: AYz=b}, where A is the extended matrix

U .
A = (ag,...,&,82,...,82,...,8n,---,8n),
—— —— ——

Up Uo Un

(2) @a(c,U),
3)

2 NG

I <xj<u;

where y = min {U;} U {bm/ajm}n_, and lj =Uj —min {U;} U{cm/ajm}p._1 -
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Proof (1) This follows directly from (21).

(2) For eaclz € {0,1}N satisfyingAVz= b, note thaz= (1,1,...,1) — zsatisfiesAV z= ¢, and vice
versa. The conclusion thus follows from (1).

(3) We requireAx= b andx € D(U). If xj > uj = bm/ajm thenajmx;j > by, which impliesAx # b.

The lower bound is derived by a similar argument. [ |

One aspect of our approach is the decision, for any given mivaeld data set/, whether or
not to attempt the expansion (21) using computer algebra. This decisiendkepn the cardinality
of the setZx(U). In what follows, we compute the number exactly wheis unimodular. Whe\
is not unimodular, we obtain useful lower and upper bounds.

Let S be any subset of the columns Af We call S independernif its elements are linearly
independent ifRY9. With Swe associate the integer

indexS) := [RSNL:ZS.

This is the index of the abelian group generatedliyside the possibly larger abelian group of all
lattice points inL. = ZA that lie in the span o0& The following formula is due to R. Stanley and
appears in Stanley (1991, Theorem 2.2):

Proposition 6 The number of lattice points in the zonotopgZ) equals

#ZL(U) = index(S)- [ Uy. 23
AU) SQA%depm exS) a|V'€|S (23)

In fact, the number of monomials in (18) equalfU ), whereMa(U) is the set{b € Zk(U) :
@a(b,U) # 0}, and this set can be different fro&g (U). For that number we have the following
bounds. The proof, which uses the methods in Stanley (1991, §2), valitied here.

Theorem 7 The numbe#Ma(U) of monomials in the expansion (18) of the likelihood function to
be integrated satisfies the two inequalities

U/ < #MaU) < 5 index(S)~|_LUV. (24)
SCAindepve SCAindep ve

By definition, the matrixA is unimodularif index(S) = 1 for all independent subse®of the
columns ofA. In this case, the upper bound coincides with the lower bound, akihfd) = Zx (U).
This happens in the classical case of two-dimensional contingency taie ands; = s, = 1).
In general, % (U) /#Ma(U) tends to 1 when all coordinates dftend to infinity. This is why we
believe that for computational purposeZz4U ) is a good approximation ofia (U ).

Remark 8 There exist integer matrices A for whig (U ) does not agree with the upper bound in
Theorem 7. However, we conjecture thiia(U) = #Zx(U) holds for matrices A of Segre-Veronese
type as in (8) and strictly positive data vectors U.

Example4 Consider thel00 Swiss Francexample in Section 1. Here A is unimodular and it has
16145independent subsets S. The corresponding surBbf5squarefree monomials in (23) gives
the number of terms in the expansion of (4). For the data U in (2) this sainaes to3,892 097.
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Example5 We consider the matrix and data from Example 3.

. 0123
A:<43213>

= (51,18,73,25,75)

C

By Theorem 7, the lower bound is 22,273 and the upper bound is 48,@46 th numbe#Mj(U)
of monomials agrees with the latter.

We next present a formula for inde whenSis any linearly independent subset of the columns
of the matrixA. After relabeling we may assume ti#&& {ay, ..., a} consists of the firgt columns
of A. LetH =V Adenote the row Hermite normal form Af HereV € SLy4(Z) andH satisfies

Hij =0fori > j and O< Hij < Hjj fori < j.

Hermite normal form is a built-in function in computer algebra systems. For icstam MAPLE
the command ishermite . Using the invertible matri¥/, we may replacé with H, so thatRS
become®RK andZSis the image oveZ of the upper lefk x k-submatrix ofH. We seek the index
of that lattice in the possibly larger latti@A N ZX. To this end we compute the column Hermite
normal formH’ = HV'. HereV’ € SL,(Z) andH’ satisfies

Hj,=0ifi>jorj>d and 0<Hij <H; fori < j.

The latticeZANZX is spanned by the firétcolumns ofH’, and this implies

: Hi1H22 - - - Hik
IS T H g, Hy,

4. Algorithms

In this section we discuss algorithms for computing the integral (17) exaotiywe discuss their
advantages and limitations. In particular, we examine four main techniques wépeesent the
formulas (20), (21), (16) and (22) respectively. The practicdigperance of the various algorithms
is compared by computing the integral in Example 3.

A M APLE library which implements our algorithms is made available at

http://math.berkeley.edu/ ~ shaoweif/integrals.html

The input for our MaPLE code consists of parameter vectsrs (si,...,S) andt = (tg,...,t) as
well as a data vectdd € N". This input uniquely specifies thitex n-matrix A. Hered andn are as
in (5). The output features the matrickgndA, the marginal likelihood integrals fa¥ and (2,

as well as the bounds in (24).

We tacitly assume thah has been replaced with the reduced ma#ix Thus from now on
we assume thah has no repeated columns. This requires some care concerning the niorgnaliz
constants. All columns of the matrik have the same coordinate swanand the convex hull of
the columns is the polytopP = Ay x A, x --- x &,. Our domain of integration is the following
polytope of dimension@— 2k + 1:

O =AxPxP
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We seek to compute the rational number

n
/ rll(ooeav + 01p?)%dodedp, (25)
ol

where integration is with respect to Lebesgue probability measure. Q& code outputs this
integral multiplied with the statistically correct normalizing constant. That cotatéirbe ignored

in what follows. In our complexity analysis, we fi& while allowing the dataJ to vary. The

complexities will be given in terms of the sample sige-U; +--- +U,.

4.1 Ignoranceis Costly

Given an integration problem such as (25), a first attempt is to use the Bgiinbegration capabili-
ties of a computer algebra package such a® M. We refer to this method agnorant integration

U = [51, 18, 73, 25, 75]:

f = (s4 +(1-s)*p"4 YU[1] *
(s"3*(1t)  +(1-s)p"3*(1-p) )U[Z] *
(s*"2*(1-t)"2+(1-s)*p"2*(1-p)"2)"U[3] *

(st *(1-)°3+(1-s)'p  *(1-p)3)°U[4] *
(s *(1-t)"4+(1-s) *(1-p)4)°U[5]:
Il := int(int(int(f,p=0..1),t=0..1),5=0..1);

In the case of mixture models, recognizing the integral as the sum of inte§ratmomials over
a polytope allows us to avoid the expensive integration step above by @hgTo demonstrate
the power of using (20), we implemented a simple algorithm that computesggéohJ ) using
the naive expansion in (19). We computed the integral in Example 3 with a satallveéctor
U =(2,2,2,2,2), which is the rational number

66364720654753
59057383987217015339940000

and summarize the run-times and memory usages of the two algorithms in the talle Bdllo
experiments reported in this section are done inPVE.

Time(seconds) Memory(bytes)
Ignorant Integration 16.331 155,947,120
Naive Expansion 0.007 458,668

For the remaining comparisons in this section, we no longer consider thaigriotegration algo-
rithm because it is computationally too expensive.

4.2 Symbolic Expansion of the Integrand

While ignorant use of a computer algebra system is unsuitable for computinigtegrals, we can
still exploit its powerful polynomial expansion capabilities to find the coeffitsef (21). A major
advantage is that it is very easy to write code for this method. We comparetferpance of
this symbolic expansion algorithm against that of the naive expansioritalgorThe table below
concerns computing the coefficienpa(b,U) for the original datdJ = (51,18,73 25,75). The
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column “Extract” refers to the time taken to extract the coefficign(®,U) from the expansion of
the polynomial, while the column “Sum” shows the time taken to evaluate (20) aftiveatieeded
values ofga(b,U) had been computed and extracted.

Time(seconds) Memory
@a(b,U) Extract Sum Total (bytes)
Naive Expansion 2764.35 - 31.19 2795.54 10,287,268

Symbolic Expansion  28.73  962.86 29.44 1021.03 66,965,528

4.3 Storage and Evaluation of @a(b,U)

Symbolic expansion is fast for computigg(b,U ), but it has two drawbacks: high memory usage
and the long time it takes to extract the valueggfo,U ). One solution is to create specialized data
structures and algorithms for expanding (21), rather using than thfesedby MAPLE.

First, we tackle the problem of storing the coefficieptgb,U) for b € Zk(U) c RY as they are
being computed. One naive method is to uskdimensional arrayp[-]. However, noting tha#
is not row rank full, we can use @-dimensional array to storga(b,U), wheredy = rank(A) =
d —k+ 1. Furthermore, by Proposition 5(2), the expanded integrand is a symmpelyitomial, so
only half the coefficients need to be stored. We will leave out the implementagiaiisiso as not
to complicate our discussions. In our algorithms, we will assume that theaests are stored in
adp-dimensional arra[-], and the entry that represemig(b,U ) will be referred to agjb).

Next, we discuss howa(b,U) can be computed. One could use the naive expansion (19), but
this involves evaluating many binomials coefficients and products, so théthigas inefficient for
data vectors with large coordinates. A more efficient solution uses theeace formula (22):

Algorithm 1 (RECURRENCE(A, U))

Input: The matrix A and the vector U.

Output: The coefficientga(b,U).

Step 1: Create a @-dimensional arrayp of zeros.
Step 2: For each x€ {0,1,...,U;} set

Qxa] = (L::) :

Step 3: Create a new g-dimensional arrayy.
Step 4. Foreach2 < j <ndo
1. Set all the entries aff to 0.
2. Foreach x {0,1,...,U;} do
For each non-zero entrg[b] in @ do
Incrementy b+ xaj] by () @[b].
3. Replacepwith ¢.
Step 5: Output the arrayp.

The space complexity of this algorithm@N®) and its time complexity i©(N%+1). By compar-

ison, the naive expansion algorithm has space compléXiyf) and time complexityO(N™1).
We now turn our attention to computing the integral (25). One major issue is theflatemory

to store all the terms of the expansion of the integrand. We overcome thikeprdly writing
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the integrand as a product of smaller factors which can be expandachssp. In particular, we
partition the columns of into submatrice®\™ ..., Al and letU!X, ..., U™ be the corresponding
partition ofU. Thus the integrand becomes

il alj 2yl
I_Lﬂ(ooe +o1p* )V,
=1V

Wherea\[,” is thevth column inAlil. The resulting algorithm for evaluating the integral is as follows:

Algorithm 2 (Fast I ntegral)

Input: The matrices &,...,AlM vectors UY,..., U™ and the vectort.
Output: The value of the integral (25) in exact rational arithmetic.
Step 1: For 1< j <m, computepl! := RECURRENCEAl! ulil).

Step 2: Set :=0.

Step 3: For each non-zero entrg!l[blY] in ¢ do

For each non-zero entrg™ [blM] in ¢™ do
Setb=bM +...+b™, c:= AU—b, := 1T, ¢I/[blI]].
Increment | by
(Ibl/a)t(lcl/a)t | kBB bt
¢ TRy = (BO]+t)! ([t
Step 4. Output the sum 1.

The algorithm can be sped up by precomputing the factorials used in thegbintep 3. The space
and time complexity of this algorithm i®(NS) andO(NT) respectively, wher& = max rankAl"
andT =75; rankAll. From this, we see that the splitting of the integrand should be chosen wisely to
achieve a good pay-off between the two complexities.

In the table below, we compare the naive expansion algorithm and the tagtahalgorithm
for the datdJ = (51,18,73 25,75). We also compare the effect of splitting the integrand into two
factors, as denoted bm= 1 andm= 2. Form= 1, the fast integral algorithm takes significantly
less time than naive expansion, and requires only about 1.5 times more memory.

Time(minutes) Memory(bytes)

Naive Expansion 43.67 9,173,360
Fast Integral (m=1) 1.76 13,497,944
Fast Integral (m=2) 139.47 6,355,828

4.4 Limitationsand Applications

While our algorithms are optimized for exact evaluation of integrals for mixtof@sdependence
models, they may not be practical for applications involving large sample. sizeslemonstrate
their limitations, we vary the sample sizes in Example 3 and compare the computation Tinees
data vectort) are generated by scalitgy= (51,18, 73,25, 75) according to the sample sidéand
rounding off the entries. Herd is varied from 110 to 300 by increments of 10. Figure 1 shows a
logarithmic plot of the results. The times taken fe= 110 andN = 300 are 3 and 982 seconds
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Figure 1: Comparison of computation time against sample size.

respectively. Computation times for larger samples may be extrapolated feognathh. Indeed, a
sample size of 5000 could take more than 13 days.

For other models, such as the 1®@iss Francexample in Section 1 and that of the schizophrenic
patients in Example 9, the limitations are even more apparent. In the table bel@acfoexample
we list the sample size, computation time, rank of the corresporflimgtrix and the number of
terms in the expansion of the integrand. Despite having smaller sample sizesntpatations
for the latter two examples take a lot more time. This may be attributed to the higltksrahthe
A-matrices and the larger number of terms that need to be summed up in our atgorith

Size Time Rank #Terms
CoinToss 242 45sec 2 48,646
100 Swiss Francs 40 15 hrs 7 3,892,097
Schizophrenic Patients 132 16 days 5 34,177,836

Despite their high complexities, we believe our algorithms are important betzserovide
a gold standard with which approximation methods such as those studied ire@njcknd Heck-
erman (1997) can be compared. Below, we use our exact methods ttaastiee accuracy of
asymptotic formula derived in Watanabe (2001) and Watanabe and Yan{a@ak, 2004) using
desingularization methods from algebraic geometry.

Example6 Consider the model from Example 3. Choose data vectersUp, U1, Uz, Uz, Us) with
U; = Ng where N is a multiple of6 and

1/4\
q._16<i>, i=0,1,...,4

Let Iy(U) be the integral (25). Define

4
AvU) = N‘chh logg; —logIn(U).
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According to Watanabe and Yamazaki (2004), for large N we have {mestics

3
Eu[Fu(U)] = 1ogN+0(1) (26)
where the expectationggs taken over all U with sample size N under the distribution defined by
0= (G, 01,02, 03, 04). Thus, we should expect

3 3
Fiern —Fv = i log(16+N) — ZIOgN =1 g(N).

We compute 5. n — Fy using our exact methods and list the results below.

N Fen—Fn 9N

16 0.21027043 0.225772497
32 0.12553837 0.132068444
48 0.08977938 0.093704053
64 0.06993586 0.072682510
80 0.05729553 0.059385934
96 0.04853292 0.050210092
112 0.04209916 0.043493960

Clearly, the table supports our conclusion. The coefficgdtof logN in the formula (26) is known
as thereal log-canonical thresholaf the statistical model. The example suggests that our method
could be developed into a numerical technique for computing the realdagrical threshold.

5. Back to Bayesian Statistics

In this section we discuss how the exact integration approach presemeeidterfaces with issues in
Bayesian statistics. The first concerns the rather restrictive assumpicouthmarginal likelihood
integral be evaluated with respect to the uniform distribution (Lesbegusureeon the parameter
spaced. It is standard practice to compute such integrals with respdoirichlet priors, and we
shall now explain how our algorithms can be extended to Dirichlet priorgt &ktension is also
available as a feature in our A®LE implementation.

Recall that thd®irichlet distribution Dir (o) is a continuous probability distribution parametrized
by a vectora = (ap,01,...,0ry) of positive reals. It is the multivariate generalization of the beta
distribution and is conjugate prior (in the Bayesian sense) to the multinomial digtrib This
means that the probability distribution function of i) specifies the belief that the probability of
theith amongm+ 1 events equal§; given that it has been observad— 1 times. More precisely,
the probability density functior(6; a) of Dir(a) is supported on ther-dimensional simplex

Am = {(907...,em) GRQO . 60++em:l},

and it equals
ea—l
B(a)

. 1 “1pa1-1 1 .
f(eo,...,em,ao,...,dm) - mego e(]x_l egn ==.
Here the normalizing constant is the multinomial beta function
mil (op)l (o) --- (o)
M(oo+0p+---+0m)

B(a) =
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Note that, if thea; are all integers, then this is the rational number

mi(co—1)!(ag—1)! -+ (0 —1)!

B(a) = (G0t Fam—1)!

Thus the identity (12) is the special case of the idenfity f (6;a)d8 = 1 for the density of the
Dirichlet distribution when alli; = b; + 1 are integers.

We now return to the marginal likelihood for mixtures of independence modelcompute
this quantity with respect to Dirichlet priors means the following. We fix positeed numbers

0o, 01, andB%i) andyﬁi) fori=1,....,kandj=0,...,ti. These specify Dirichlet distributions on
A;, P andP. Namely, the Dirichlet distribution oR given by theBS') is the product probability
measure given by taking the Dirichlet distribution with parame(éﬁ%,ﬁ(l'),...,ﬁé')) on thei-th

factor Ay, in the product (7) and similarly for thé"). The resulting product probability distribution
on © = A; x P x P is called theDirichlet distribution with parameterga, 8,y). Its probability
density function is the product of the respective densities:

oo-1 Kk (e(i))B(i)—l k (p(i))y“)—l

f O-)evp;avB)y = : i : F (27)
( = B N sen 1w
By the marginal likelihood with Dirichlet priors we mean the integral
/. Lu(0,8,p) f(0.6.p;a.B,y)dodedp. (28)
©

This is a modification of (15) and it depends not just on the agand the modef/ (? but also on

the choice of Dirichlet parametefa, 3,y). When the coordinates of these parameters are arbitrary
positive reals but not integers, then the value of the integral (28) is rgefom rational number.
Nonetheless, it can be computed exactly as follows. We abbreviate thecpaidyamma functions

in the denominator of the density (27) as follows:

B(a,B.y) = B(o)-[1BEB")- [1BV").
e 1]
Instead of the integrand (18) we now need to integrate

¢a(bU) bl/atao-1_jel/atai-1 gh+p-1 cry-1
B(a,B.y) : g
beZk(U) T
c=AU-b

with respect to Lebesgue probability measureabrDoing this term by term, as before, we obtain
the following modification of Theorem 4.

Corollary 9 The marginal likelihood of the data U in the mixture model® with respect to
Dirichlet priors with parametersa, ,y) equals
N! | a(b,U) r([bl/a+ao)r (|c|/a+ai)

Url-Unl B(a,By) ~ 2bezg(U F(U o)
c=AU-b

K ti!r(bg)+8g))“‘r(b[(ii)"rBt(ii)) ti!F(Cg)+Vg))“'r(CI(ii)+\/t(ii))
i1 ( F(bO+E0]) F (e +y0])
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A well-known experimental study (Chickering and Heckerman, 1997) emegxdifferent meth-
ods for computing numerical approximations of marginal likelihood integrdte model consid-
ered in the study is theaive-Bayes modgeWhich, in the language of algebraic geometry, corre-
sponds to arbitrary secant varieties of Segre varieties. In this papeonsdered the first secant
variety of arbitrary Segre-Veronese varieties. In what follows weistour discussion to the in-
tersection of both classes of models, namely, to the first secant varieggoé Sarieties. For the
remainder of this section we fix

but we allowty,ts,. ..t to be arbitrary positive integers. Thus in the model of Chickering and
Heckerman (1997, Equation 1), we fix= 2, and then there corresponds to olr

To keep things as simple as possible, we shall fix the uniform distribution ascitio8s 1-4
above. Thus, in the notation of Chickering and Heckerman (1997, BRjrighlet hyperparameters
ajjk are set to 1. This implies that, for any datac N" and any of our models, the problem
of finding the maximum a posteriori (MAP) configuration is equivalent toifigdhe maximum
likelihood (ML) configuration. To be precise, th¢AP configurationis the point(é,é,f)) in ©
which maximizes the likelihood functiohy (0,0,p) in (14). This maximum may not be unique,
and there will typically be many local maxima. Chickering and Heckerman (18®2) used the
expectation maximization (EM) algorithm (Pachter and Sturmfels, 2005, §1&)mximate the
MAP configuration numerically

The Laplace approximation and the BIC score (Chickering and Heckert®®7, 83.1) are
predicated on the idea that the MAP configuration can be found with higlramec and that the
dataU were actually drawn from the corresponding distributpiﬁr,é,f)). LetH(o,0,p) denote
the Hessian matrix of the log-likelihood function Ibgo, 6,p). Then the Laplace approximation
(Chickering and Heckerman, 1997, Equation 15) states that the logaritie marginal likelihood
can be approximated by

2d —2k+1

> log(2rm). (29)

0L (6,8.5) — 5logldetH(3,6,p)| +

The Bayesian information criterion (BIC) suggests the coarser apprtigima

2d —2k+1

0gL(5,8,8) — =

log(N), (30)
whereN = U; + - -- + U, is the sample size.

In algebraic statistics, we do not content ourselves with the output of thalgdithm but,
to the extent possible, we seek to actually solve the likelihood equationsefHesal., 2005) and
compute all local maxima of the likelihood function. We consider it a difficultopem to reliably
find (G, é, p), and we are concerned about the accuracy of any approximation 8ker(230).

Example 7 Consider thel00 Swiss Franctable (2) discussed in the Introduction. Here=k2,
st =% =1, 1t =ty = 3, the matrix A is unimodular, and (9) is the Segre embediiihg P2 — P15,
The parameter spac® is 13-dimensional, but the modetf(? is 11-dimensional, so the given
parametrization is not identifiable (Feinberg et al., 2007). This meandligatiessian matrix is
singular, and hence the Laplace approximation (29) is not defined.
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Example 8 We compute (29) and (30) for the model and data in Example 3. Accailidgsten

etal. (2005, Example 9), the likelihood functiogt pi8p53p3°p;° has three local maxim@do, pi, P2, Ps, Pa)
in the model# (@, and these translate into six local maxir(@é,ﬁ) in the parameter spac®,
which is the3-cube. The two global maxima are

(0.33676919690.02877132370.6536073424,
(0.66323080310.65360734240.028771323Y.

Both of these points i® give the same point in the model:
(Po, P1, P2, P3,P4) = (0.121040.256620.205560.107580.30920.

The likelihood function evaluates 001395471101 10~ at this point. The following table com-
pares the various approximations. Here, “Actual” refers to the basdetrithm of the marginal
likelihood in Example 3.

BIC -22.43100220
Laplace -22.39666281
Actual -22.10853411

The method for computing the marginal likelihood which was found to be mostaiecin the
experimental study is theandidate methodChickering and Heckerman, 1997, 83.4). This is a
Monte-Carlo method which involves running a Gibbs sampler. The basic ideati®ne wishes
to compute a large sum, such as (20) by sampling among the terms rather tharallséngs. In
the candidate method one uses not the sum (20) over the lattice points in ttepmbut the more
naive sum over all ® hidden data that would result in the observed data represented Fihe
value of the sum is the number of term§, 2imes the average of the summands, each of which is
easy to compute. A comparison of the results of the candidate method withamircexnputations,
as well as a more accurate version of Gibbs sampling which is adapte®joinR be the subject
of a future study.

One of the applications of marginal likelihood integrals lies in model selectionimfortant
concept in that field is that dBayes factors Given data and two competing models, the Bayes
factor is the ratio of the marginal likelihood integral of the first model ovemtiagginal likelihood
integral of the second model. In our context it makes sense to form ti@mfoathe independence
model9/ and its mixtureM @, To be precise, given any independence model, specified by positive
integerssy, ..., S t1,...,t and a corresponding data vectdre N", the Bayes factor is the ratio of
the marginal likelihood in Lemma 1 and the marginal likelihood in Theorem 4. Badintijies are
rational numbers and hence so is their ratio.

Corallary 10 The Bayes factor which discriminates between the independence moeal the
mixture modetM @ is a rational number. It can be computed exactly using Algorithm 2 (amd ou
MAPLE-implementation).

Example9 We conclude by applying our method to a data set taken from the Bayesiesticta

literature. Evans, Gilula, and Guttman (19888) analyzed the association between length of hos-
pital stay (in years Y) o132 schizophrenic patients and the frequency with which they are visited

1629



LIN, STURMFELS AND XU

by relatives. Their data set is the followiBg 3 contingency table:

2<Y¥<10 1XY<20 2KY Totals

Visited regularly 43 16 3 62

u = Visited rarely 6 11 10 27
Visited never 9 18 16 43

Totals 58 45 29 132

They present estimated posterior means and variances for these tiat®,‘@ach estimate requires
a 9-dimensional integrationEvans et al., 1989, p. 561). Computing their integrals is essentially
equivalentto ours, for k2,5 = s, = 1,t; =t, = 2and N= 132 The authors emphasize tHéhe
dimensionality of the integral does present a probléEvans et al., 1989, p. 562), and they point
out that“all posterior moments can be calculated in closed form .... however, evenddestN
these expressions are far to complicated to be usé@fvans et al., 1989, p. 559).

We differ on that conclusion. In our view, the closed form expressionedtiof 3 are quite
useful for modest sample size N. Using Algorithm 2, we computed the in(8gja It is the
rational number with numerator

278019488531063389120643600324989329103876140805
285242839582092569357265886675322845874097528033
99493069713103633199906939405711180837568853737

and denominator

122884028735919354006780947965998487454428331705722
504488199792864569951855421959468150731124291699978
335039001699219121673522392041537866450291539522764
432983280461634722619620284616504320243563397083411
34375318471880274818667657423749120000000000000000

To obtain the marginal likelihood for the data U above, that rational numbén(oderate size) still
needs to be multiplied with the normalizing constant

132!
43!-16!-3!-6!-11!-10!-9! - 18!- 16!’
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