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Abstract

Inference in Bayesian statistics involves the evaluation of marginal likelihood integrals. We present
algebraic algorithms for computing such integrals exactlyfor discrete data of small sample size.
Our methods apply to both uniform priors and Dirichlet priors. The underlying statistical models
are mixtures of independent distributions, or, in geometric language, secant varieties of Segre-
Veronese varieties.
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1. Introduction

Evaluation of marginal likelihood integrals is central to Bayesian statistics. It isgenerally assumed
that these integrals cannot be evaluated exactly, except in trivial cases, and a wide range of numerical
techniques (e.g., MCMC) have been developed to obtain asymptotics and numerical approximations
(Chickering and Heckerman, 1997). The aim of this paper is to show that exact integration is
more feasible than is surmised in the literature. We examine marginal likelihood integrals for a
class of mixture models for discrete data. Bayesian inference for these models arises in many
contexts, including machine learning and computational biology. Recent work in these fields has
made a connection to singularities in algebraic geometry (Drton, 2009; Geigerand Rusakov, 2005;
Watanabe, 2001; Watanabe and Yamazaki, 2003, 2004). Our study augments these developments
by providing tools for symbolic integration when the sample size is small.

The numerical value of the integral we have in mind is a rational number, and exact evalua-
tion means computing that rational number rather than a floating point approximation. For a first
example consider the integral

Z

Θ
∏

i, j∈{A,C,G,T}

(
πλ(1)

i λ(2)
j + τρ(1)

i ρ(2)
j

)Ui j dπdτdλdρ, (1)
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whereΘ is the 13-dimensional polytope∆1×∆3×∆3×∆3×∆3. The factors are probability simplices,

∆1 = {(π,τ) ∈ R2
≥0 : π+ τ = 1},

∆3 = {(λ(k)
A

,λ(k)
C

,λ(k)
G

,λ(k)
T

) ∈ R4
≥0 : ∑i λ

(k)
i = 1}, k = 1,2,

∆3 = {(ρ(k)
A

,ρ(k)
C

,ρ(k)
G

,ρ(k)
T

) ∈ R4
≥0 : ∑i ρ

(k)
i = 1}, k = 1,2.

and we integrate with respect to Lebesgue probability measure onΘ. If we take the exponentsUi j

to be the entries of the particular contingency table

U =







4 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4







, (2)

then the exact value of the integral (1) is the rational number

571·773426813·17682039596993·625015426432626533
231 ·320 ·512 ·711 ·118 ·137 ·175 ·195 ·235 ·293 ·313 ·373 ·413 ·432 . (3)

The table (2) is taken from Example 1.3 of Pachter and Sturmfels (2005), where the integrand

∏
i, j∈{A,C,G,T}

(
πλ(1)

i λ(2)
j + τρ(1)

i ρ(2)
j

)Ui j (4)

was studied using the EM algorithm, and the problem of validating its global maximumoverΘ was
raised. See Feinberg et al. (2007, §4.2) and Sturmfels (2008, §3) forfurther discussions. That opti-
mization problem, which was widely known as the 100Swiss Francs problem, has in the meantime
been solved by Gao et al. (2008).

The main difficulty in performing computations such as (1) = (3) lies in the fact that the expan-
sion of the integrand has many terms. A first naive upper bound on the number of monomials in the
expansion of (4) would be

∏
i, j∈{A,C,G,T}

(Ui j +1) = 312 ·54 = 332,150,625.

However, the true number of monomials is only 3,892,097, and we obtain the rational number (3)
by summing the values of the corresponding integrals

Z

Θ
πa1τa2(λ(1))u(λ(2))v(ρ(1))w(ρ(2))xdπdτdλdρ =

a1! a2!
(a1+a2+1)!

·
3! ∏i ui !

(∑i ui +3)!
·

3! ∏i vi !
(∑i vi +3)!

·
3! ∏i wi !

(∑i wi +3)!
·

3! ∏i xi !
(∑i xi +3)!

.

The geometric idea behind our approach is that the Newton polytope of (4) isazonotopeand we are
summing over its lattice points. Definitions for these geometric objects are given inSection 3.

This paper is organized as follows. In Section 2 we describe the class of algebraic statistical
models to which our method applies, and we specify the problem. In Section 3 weexamine the
Newton zonotopes of mixture models, and we derive formulas for marginal likelihood evaluation
using tools from geometric combinatorics. Our algorithms and their implementations are described
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in detail in Section 4. Section 5 is concerned with applications in Bayesian statistics. We show how
Dirichlet priors can be incorporated into our approach, we discuss the evaluation ofBayes factors,
we compare our setup with that of Chickering and Heckerman (1997), andwe illustrate the scope
of our methods by computing an integral arising from a data set of Evans etal. (1989).

A preliminary draft version of the present article was published as Section5.2 of the Oberwol-
fach lecture notes (Drton et al., 2009). We refer to that volume for further information on the use of
computational algebra in Bayesian statistics.

2. Independence Models and their Mixtures

We consider a collection of discrete random variables

X(1)
1 , X(1)

2 , . . . , X(1)
s1 ,

X(2)
1 , X(2)

2 , . . . , X(2)
s2 ,

...
...

. ..
...

X(k)
1 , X(k)

2 , . . . , X(k)
sk ,

whereX(i)
1 , . . . ,X(i)

si are identically distributed with values in{0,1, . . . , ti}. The independence model
M for these variables is a toric model (Pachter and Sturmfels, 2005, §1.2) represented by an integer
d×n-matrixA with

d = t1 + t2 + · · ·+ tk +k and n =
k

∏
i=1

(ti +1)si . (5)

The columns of the matrixA are indexed by elementsv of the state space

{0,1, . . . , t1}
s1 ×{0,1, . . . , t2}

s2 ×·· ·×{0,1, . . . , tk}
sk. (6)

The rows of the matrixA are indexed by the model parameters, which are thed coordinates of the
points θ = (θ(1),θ(2), . . . ,θ(k)) in the polytope

P = ∆t1 ×∆t2 ×·· ·×∆tk, (7)

and the modelM is the subset of the simplex∆n−1 given parametrically by

pv = Prob
(

X(i)
j = v(i)

j for all i, j
)

=
k

∏
i=1

si

∏
j=1

θ(i)

v(i)
j

. (8)

This is a monomial ind unknowns. The matrixA is defined by taking its columnav to be the
exponent vector of this monomial.

In algebraic geometry, the modelM is known asSegre-Veronese variety

Pt1 ×Pt2 ×·· ·×Ptk →֒ Pn−1, (9)

where the embedding is given by the line bundleO(s1,s2, . . . ,sk). The manifoldM is the toric
variety of the polytopeP. Both objects have dimensiond− k, and they are identified with each
other via the moment map (Fulton, 1993, §4).
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Example 1 Consider three binary random variables where the last two random variables are iden-
tically distributed. In our notation, this corresponds to k= 2, s1 = 1, s2 = 2 and t1 = t2 = 1. We find
that d= 4,n = 8, and

A =








p000 p001 p010 p011 p100 p101 p110 p111

θ(1)
0 1 1 1 1 0 0 0 0

θ(1)
1 0 0 0 0 1 1 1 1

θ(2)
0 2 1 1 0 2 1 1 0

θ(2)
1 0 1 1 2 0 1 1 2








.

The columns of this matrix represent the monomials in the parametrization (8). The modelM lies
in the5-dimensional subsimplex of∆7 given by p001 = p010 and p101 = p110, and it consists of all
rank one matrices (

p000 p001 p100 p101

p010 p011 p110 p111

)

.

In algebraic geometry, the surfaceM is called arational normal scroll.

The matrixA has repeated columns wheneversi ≥ 2 for somei. It is sometimes convenient to
represent the modelM by the matrixÃwhich is obtained fromAby removing repeated columns. We
label the columns of̃A by elementsv= (v(1), . . . ,v(k)) of (6) whose componentsv(i) ∈ {0,1, . . . , ti}si

are weakly increasing. HencẽA is ad× ñ-matrix with

ñ =
k

∏
i=1

(
si + ti

si

)

. (10)

The modelM and its mixtures are subsets of a subsimplex∆ñ−1 of ∆n−1.
We now introducemarginal likelihood integrals. All our domains of integration in this paper

are polytopes that are products of standard probability simplices. On eachsuch polytope we fix the
standard Lebesgue probability measure. In other words, our discussion of Bayesian inference refers
to the uniform prior on each parameter space. Naturally, other prior distributions, such as Dirichlet
priors, are of interest, and our methods are extended to these in Section 5.In what follows, we
simply work with uniform priors.

We identify the state space (6) with the set{1, . . . ,n}. A data vector U= (U1, . . . ,Un) is thus
an element ofNn. Thesample sizeof these data isU1 +U2 + · · ·+Un = N. If the sample sizeN is
fixed then the probability of observing these data is

LU(θ) =
N!

U1!U2! · · ·Un!
· p1(θ)U1 · p2(θ)U2 · · · · · pn(θ)Un.

This expression is a function on the polytopeP which is known as thelikelihood functionof the data
U with respect to the independence modelM . Themarginal likelihoodof the dataU with respect
to the modelM equals

Z

P
LU(θ)dθ.

The value of this integral is a rational number which we now compute explicitly. The dataU will
enter this calculation by way of thesufficient statistic b= A ·U , which is a vector inNd. The
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coordinates of this vector are denotedb(i)
j for i = 1, . . . ,k and j = 0, . . . , tk. Thusb(i)

j is the total

number of times the valuej is attained by one of the random variablesX(i)
1 , . . . ,X(i)

si in the i-th
group. Clearly, the sufficient statistics satisfy

b(i)
0 +b(i)

1 + · · ·+b(i)
ti = si ·N for all i = 1,2, . . . ,k. (11)

The likelihood functionLU(θ) is the constant N!
U1!···Un! times the monomial

θb =
k

∏
i=1

ti

∏
j=0

(θ(i)
j )b(i)

j .

The logarithm of this function is concave on the polytopeP, and its maximum value is attained at
the pointθ̂ with coordinateŝθ(i)

j = b(i)
j /(si ·N).

Lemma 1 The integral of the monomialθb over the polytope P equals

Z

P
θbdθ =

k

∏
i=1

ti ! b(i)
0 ! b(i)

1 ! · · · b(i)
ti !

(siN+ ti)!
.

The product of this number with the multinomial coefficient N!/(U1! · · ·Un!) equals the marginal
likelihood of the data U for the independence modelM .

Proof SinceP is the product of simplices (7), this follows from the formula
Z

∆t

θb0
0 θb1

1 · · ·θbt
t dθ =

t! ·b0! ·b1! · · · bt !
(b0 +b1 + · · ·+bt + t)!

(12)

for the integral of a monomial over the standard probability simplex∆t .

Our objective is to compute marginal likelihood integrals for the mixture modelM (2). The
natural parameter space of this model is the polytope

Θ = ∆1 × P× P.

Let av ∈Nd be the column vector ofA indexed by the statev, which is either in (6) or in{1,2, . . . ,n}.
The parametrization (8) can be written simply aspv = θav. The mixture modelM (2) is defined to
be the subset of∆n−1 with the parametric representation

pv = σ0 ·θav + σ1 ·ρav for (σ,θ,ρ) ∈ Θ. (13)

The likelihood function of a data vectorU ∈ Nn for the modelM (2) equals

LU(σ,θ,ρ) =
N!

U1!U2! · · ·Un!
p1(σ,θ,ρ)U1 · · · pn(σ,θ,ρ)Un. (14)

Themarginal likelihoodof the dataU with respect to the modelM (2) equals
Z

Θ
LU(σ,θ,ρ)dσdθdρ =

N!
U1! · · ·Un!

Z

Θ
∏

v
(σ0θav +σ1ρav)Uvdσdθdρ. (15)

The following proposition shows that we can evaluate this integralexactly.
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Proposition 2 The marginal likelihood (15) is a rational number.

Proof The likelihood functionLU is aQ≥0-linear combination of monomialsσaθbρc. The integral
(15) is the sameQ≥0-linear combination of the numbers

Z

Θ
σaθbρcdσdθdρ =

(
Z

∆1

σadσ
)
·
(

Z

P
θbdθ

)
·
(

Z

P
ρcdρ

)
.

Each of the three factors is an easy-to-evaluate rational number, by (12).

Example 2 The integral (1) expresses the marginal likelihood of a4×4-table of counts U= (Ui j )
with respect to the mixture modelM (2). Specifically, the marginal likelihood of the data (2) equals
the normalizing constant40!· (2!)−12 · (4!)−4 times the number (3). The modelM (2) consists of all
non-negative4×4-matrices of rank≤ 2 whose entries sum to one. Here the parametrization (13)
is not identifiable becausedim(M (2)) = 11 but dim(Θ) = 13. In this example, k= 2, s1=s2=1,
t1=t2=3, d = 8, n= 16.

In algebraic geometry, the modelM (2) is known as the first secant variety of the Segre-Veronese
variety (9). We could also consider the higher secant varietiesM (l), which correspond to mixtures of
l independent distributions, and much of our analysis can be extended to that case, but for simplicity
we restrict ourselves tol = 2. The varietyM (2) is embedded in the projective spacePñ−1 with ñ as
in (10). Note that ˜n can be much smaller thann. If this is the case, it is convenient to aggregate states
whose probabilities are identical and represent the data by a vectorŨ ∈ Nñ. Here is an example.

Example 3 Let k=1, s1=4 and t1=1, soM is the independence model for four identically dis-
tributed binary random variables. Then d= 2 and n= 16. The corresponding integer matrix and
its row and column labels are

A =

(
p0000 p0001 p0010 p0100 p1000 p0011 · · · p1110 p1111

θ0 4 3 3 3 3 2 · · · 1 0
θ1 0 1 1 1 1 2 · · · 3 4

)

.

However, this matrix has onlỹn = 5 distinct columns, and we instead use

Ã =

(
p0 p1 p2 p3 p4

θ0 4 3 2 1 0
θ1 0 1 2 3 4

)

.

The mixture modelM (2) is the subset of∆4 given by the parametrization

pi =

(
4
i

)

·
(
σ0 ·θ4−i

0 ·θi
1 + σ1 ·ρ4−i

0 ·ρi
1

)
for i = 0,1,2,3,4.

In algebraic geometry, this threefold is the secant variety of the rational normal curve inP4. This
is the cubic hypersurface with the implicit equation

det





12p0 3p1 2p2

3p1 2p2 3p3

2p2 3p3 12p4



 = 0.
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In Hoşten et al. (2005, Example 9), the likelihood function (14) was studied for the data

Ũ = (Ũ0,Ũ1,Ũ2,Ũ3,Ũ4) = (51,18,73,25,75).

It has three local maxima (modulo swappingθ andρ) whose coordinates are algebraic numbers of
degree12. Using the methods to be described in the next two sections, we computed theexact value
of the marginal likelihood for the datãU with respect toM (2). The rational number (15) is found
to be the ratio of two relatively prime integers having530digits and552digits, and its numerical
value is approximately0.7788716338838678611335742·10−22.

3. Summation over a Zonotope

Our starting point is the observation that the Newton polytope of the likelihood function (14) is
a zonotope. Recall that theNewton polytopeof a polynomial is the convex hull of all exponent
vectors appearing in the expansion of that polynomial, and a polytope is azonotopeif it is the image
of a standard cube under a linear map. See Cox et al. (2005, §7) and Ziegler (1995, §7) for further
discussions. We are here considering the zonotope

ZA(U) =
n

∑
v=1

Uv · [0,av],

where[0,av] represents the line segment between the origin and the pointav ∈ Rd, and the sum is
a Minkowski sum of line segments. We writeZA = ZA(1,1, . . . ,1) for the basic zonotope spanned
by the vectorsav. HenceZA(U) is obtained by stretchingZA along those vectors by factorsUv

respectively. Assuming that the countsUv are all positive, we have

dim(ZA(U)) = dim(ZA) = rank(A) = d−k+1. (16)

The zonotopeZA is related to the polytopeP = conv(A) in (7) as follows. The dimensiond− k =
t1 + · · ·+ tk of P is one less than dim(ZA), andP appears as thevertex figureof the zonotopeZA at
the distinguished vertex 0.

Remark 3 For higher mixturesM (l), the Newton polytope of the likelihood function is isomorphic
to the Minkowski sum of(l −1)-dimensional simplices inR(l−1)d. Only when l= 2, this Minkowski
sum is a zonotope.

The marginal likelihood (15) we wish to compute is the integral

Z

Θ

n

∏
v=1

(σ0θav +σ1ρav)Uvdσdθdρ (17)

times the constantN!/(U1! · · ·Un!). Our approach to this computation is to sum over the lattice
points in the zonotopeZA(U). If the matrixA has repeated columns, we may replaceA with the
reduced matrix̃A andU with the corresponding reduced data vectorŨ . If one desires the marginal
likelihood for the reduced data vectorŨ instead of the original data vectorU , the integral remains
the same while the normalizing constant becomes

N!

Ũ1! · · ·Ũñ!
·αŨ1

1 · · ·αŨñ
ñ ,
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whereαi is the number of columns inA equal to thei-th column ofÃ. In what follows we ignore the
normalizing constant and focus on computing the integral (17) with respectto the original matrixA.

For a vectorb∈ Rd
≥0 we let |b| denote itsL1-norm∑d

t=1bt . Recall from (8) that all columns of
thed×n-matrixA have the same coordinate sum

a := |av| = s1 +s2 + · · ·+sk, for all v = 1,2, . . . ,n,

and from (11) that we may denote the entries of a vectorb ∈ Rd by b(i)
j for i = 1, . . . ,k and j =

0, . . . , tk. Also, letL denote the image of the linear mapA : Zn → Zd. ThusL is a sublattice of rank
d−k+1 in Zd. We abbreviateZL

A(U) := ZA(U)∩L. Now, using the binomial theorem, we have

(σ0θav +σ1ρav)Uv =
Uv

∑
xv=0

(
Uv

xv

)

σxv
0 σUv−xv

1 θxv·avρ(Uv−xv)·av.

Therefore, in the expansion of the integrand in (17), the exponents ofθ are of the form ofb =

∑vxvav ∈ ZL

A(U), 0≤ xv ≤Uv. The other exponents may be expressed in terms ofb. This gives us

n

∏
v=1

(σ0θav +σ1ρav)Uv = ∑
b∈ZL

A(U)
c=AU−b

φA(b,U) ·σ|b|/a
0 ·σ|c|/a

1 ·θb ·ρc. (18)

Writing D(U) = {(x1, . . . ,xn) ∈ Zn : 0≤ xv ≤Uv,v = 1, . . . ,n}, the coefficient in (18) equals

φA(b,U) = ∑
Ax=b

x∈D(U)

n

∏
v=1

(
Uv

xv

)

. (19)

Thus, by formulas (12) and (18), the integral (17) evaluates to

∑
b∈ZL

A(U)
c=AU−b

φA(b,U) ·
(|b|/a)! (|c|/a)!

(|U |+1)!
·

k

∏
i=1

(

ti ! b(i)
0 ! · · · b(i)

ti !

(|b(i)|+ ti)!

ti ! c(i)
0 ! · · · c(i)

ti !

(|c(i)|+ ti)!

)

. (20)

We summarize the result of this derivation in the following theorem.

Theorem 4 The marginal likelihood of the data U in the mixture modelM (2) is equal to the sum
(20) times the normalizing constant N!/(U1! · · ·Un!).

Each individual summand in the formula (20) is a ratio of factorials and hencecan be evaluated
symbolically. The challenge in turning Theorem 4 into a practical algorithm lies inthe fact that both
of the sums (19) and (20) are over very large sets. We shall discuss these challenges and present
techniques from both computer science and mathematics for addressing them.

We first turn our attention to the coefficientsφA(b,U) of the expansion (18). These quantities
are written as an explicit sum in (19). The first useful observation is thatthese coefficients are also
the coefficients of the expansion

∏
v

(θav +1)Uv = ∑
b∈ZL

A(U)

φA(b,U) ·θb, (21)
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which comes from substitutingσi = 1 andρ j = 1 in (18). When the cardinality ofZL

A(U) is suffi-
ciently small, the quantityφA(b,U) can be computed quickly by expanding (21) using a computer
algebra system. We used MAPLE for this and all other symbolic computations in this project.

If the expansion (21) is not feasible, then it is tempting to compute the individual φA(b,U) via
the sum-product formula (19). This method requires summation over the set{x∈ D(U) : Ax= b},
which is the set of lattice points in an(n−d+ k−1)-dimensional polytope. Even if this loop can
be implemented, performing the sum in (19) symbolically requires the evaluation of many large
binomials, causing the process to be rather inefficient.

An alternative is offered by the following recurrence formula:

φA(b,U) =
Un

∑
xn=0

(
Un

xn

)

φA\an
(b−xnan,U \Un). (22)

This is equivalent to writing the integrand in (17) as

(
n−1

∏
v=1

(σ0θav +σ1ρav)Uv

)

(σ0θan +σ1ρan)Un.

More generally, for each 0< i < n, we have the recurrence

φA(b,U) = ∑
b′∈ZL

A′
(U ′)

φA′(b′,U ′) ·φA\A′(b−b′,U \U ′),

whereA′ andU ′ consist of the firsti columns and entries ofA andU respectively. This corresponds
to the factorization

(
i

∏
v=1

(σ0θav +σ1ρav)Uv

)(
n

∏
v=i+1

(σ0θav +σ1ρav)Uv

)

.

This formula gives flexibility in designing algorithms with different payoffs in timeand space com-
plexity, to be discussed in Section 4.

The next result records useful facts about the quantitiesφA(b,U).

Proposition 5 Suppose b∈ ZL

A(U) and c= AU−b. Then, the following quantities are all equal to
φA(b,U):
(1) #

{
z∈ {0,1}N : AUz= b

}
, where AU is the extended matrix

AU := (a1, . . . ,a1
︸ ︷︷ ︸

U1

,a2, . . . ,a2
︸ ︷︷ ︸

U2

, . . . ,an, . . . ,an
︸ ︷︷ ︸

Un

),

(2) φA(c,U),
(3)

∑
Ax=b

l j≤x j≤u j

n

∏
v=1

(
Uv

xv

)

,

where uj = min {U j}∪{bm/a jm}
n
m=1 and lj = U j −min {U j}∪{cm/a jm}

n
m=1 .
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Proof (1) This follows directly from (21).
(2) For eachz∈ {0,1}N satisfyingAUz= b, note that ¯z= (1,1, . . . ,1)−zsatisfiesAU z̄= c, and vice
versa. The conclusion thus follows from (1).
(3) We requireAx= b andx∈ D(U). If x j > u j = bm/a jm thena jmx j > bm, which impliesAx 6= b.
The lower bound is derived by a similar argument.

One aspect of our approach is the decision, for any given modelA and data setU , whether or
not to attempt the expansion (21) using computer algebra. This decision depends on the cardinality
of the setZL

A(U). In what follows, we compute the number exactly whenA is unimodular. WhenA
is not unimodular, we obtain useful lower and upper bounds.

Let S be any subset of the columns ofA. We call S independentif its elements are linearly
independent inRd. With Swe associate the integer

index(S) := [RS∩L : ZS].

This is the index of the abelian group generated byS inside the possibly larger abelian group of all
lattice points inL = ZA that lie in the span ofS. The following formula is due to R. Stanley and
appears in Stanley (1991, Theorem 2.2):

Proposition 6 The number of lattice points in the zonotope ZA(U) equals

#ZL

A(U) = ∑
S⊆A indep.

index(S) · ∏
av∈S

Uv. (23)

In fact, the number of monomials in (18) equals #MA(U), whereMA(U) is the set{b∈ ZL

A(U) :
φA(b,U) 6= 0}, and this set can be different fromZL

A(U). For that number we have the following
bounds. The proof, which uses the methods in Stanley (1991, §2), will beomitted here.

Theorem 7 The number#MA(U) of monomials in the expansion (18) of the likelihood function to
be integrated satisfies the two inequalities

∑
S⊆A indep.

∏
v∈S

Uv ≤ #MA(U) ≤ ∑
S⊆A indep.

index(S) ·∏
v∈S

Uv. (24)

By definition, the matrixA is unimodularif index(S) = 1 for all independent subsetsS of the
columns ofA. In this case, the upper bound coincides with the lower bound, and soMA(U) = ZL

A(U).
This happens in the classical case of two-dimensional contingency tables (k = 2 ands1 = s2 = 1).
In general, #ZL

A(U)/#MA(U) tends to 1 when all coordinates ofU tend to infinity. This is why we
believe that for computational purposes, #ZL

A(U) is a good approximation of #MA(U).

Remark 8 There exist integer matrices A for which#MA(U) does not agree with the upper bound in
Theorem 7. However, we conjecture that#MA(U) = #ZL

A(U) holds for matrices A of Segre-Veronese
type as in (8) and strictly positive data vectors U.

Example 4 Consider the100 Swiss Francsexample in Section 1. Here A is unimodular and it has
16145independent subsets S. The corresponding sum of16145squarefree monomials in (23) gives
the number of terms in the expansion of (4). For the data U in (2) this sum evaluates to3,892,097.
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Example 5 We consider the matrix and data from Example 3.

Ã =

(
0 1 2 3 4
4 3 2 1 0

)

Ũ =
(
51,18,73,25,75

)

By Theorem 7, the lower bound is 22,273 and the upper bound is 48,646. Here the number#MÃ(Ũ)
of monomials agrees with the latter.

We next present a formula for index(S) whenSis any linearly independent subset of the columns
of the matrixA. After relabeling we may assume thatS= {a1, . . . ,ak} consists of the firstk columns
of A. Let H = VAdenote the row Hermite normal form ofA. HereV ∈ SLd(Z) andH satisfies

Hi j = 0 for i > j and 0≤ Hi j < H j j for i < j.

Hermite normal form is a built-in function in computer algebra systems. For instance, in MAPLE

the command isihermite . Using the invertible matrixV, we may replaceA with H, so thatRS
becomesRk andZS is the image overZ of the upper leftk×k-submatrix ofH. We seek the index
of that lattice in the possibly larger latticeZA∩Zk. To this end we compute the column Hermite
normal formH ′ = HV ′. HereV ′ ∈ SLn(Z) andH ′ satisfies

H ′
i j = 0 if i > j or j > d and 0≤ Hi j < Hii for i < j.

The latticeZA∩Zk is spanned by the firstk columns ofH ′, and this implies

index(S) =
H11H22 · · · Hkk

H ′
11H

′
22 · · · H ′

kk
.

4. Algorithms

In this section we discuss algorithms for computing the integral (17) exactly, and we discuss their
advantages and limitations. In particular, we examine four main techniques which represent the
formulas (20), (21), (16) and (22) respectively. The practical performance of the various algorithms
is compared by computing the integral in Example 3.

A M APLE library which implements our algorithms is made available at

http://math.berkeley.edu/ ˜ shaowei/integrals.html .

The input for our MAPLE code consists of parameter vectorss= (s1, . . . ,sk) andt = (t1, . . . , tk) as
well as a data vectorU ∈ Nn. This input uniquely specifies thed×n-matrix A. Hered andn are as
in (5). The output features the matricesA andÃ, the marginal likelihood integrals forM andM (2),
as well as the bounds in (24).

We tacitly assume thatA has been replaced with the reduced matrixÃ. Thus from now on
we assume thatA has no repeated columns. This requires some care concerning the normalizing
constants. All columns of the matrixA have the same coordinate suma, and the convex hull of
the columns is the polytopeP = ∆t1 ×∆t2 × ·· ·×∆tk. Our domain of integration is the following
polytope of dimension 2d−2k+1:

Θ = ∆1×P×P.
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We seek to compute the rational number

Z

Θ

n

∏
v=1

(σ0θav +σ1ρav)Uvdσdθdρ, (25)

where integration is with respect to Lebesgue probability measure. Our MAPLE code outputs this
integral multiplied with the statistically correct normalizing constant. That constant will be ignored
in what follows. In our complexity analysis, we fixA while allowing the dataU to vary. The
complexities will be given in terms of the sample sizeN = U1 + · · ·+Un.

4.1 Ignorance is Costly

Given an integration problem such as (25), a first attempt is to use the symbolic integration capabili-
ties of a computer algebra package such as MAPLE. We refer to this method asignorant integration:

U := [51, 18, 73, 25, 75]:
f := (s*tˆ4 +(1-s)*pˆ4 )ˆU[1] *

(s*tˆ3*(1-t) +(1-s)*pˆ3*(1-p) )ˆU[2] *
(s*tˆ2*(1-t)ˆ2+(1-s)*pˆ2*(1-p)ˆ2)ˆU[3] *
(s*t *(1-t)ˆ3+(1-s)*p *(1-p)ˆ3)ˆU[4] *
(s *(1-t)ˆ4+(1-s) *(1-p)ˆ4)ˆU[5]:

II := int(int(int(f,p=0..1),t=0..1),s=0..1);

In the case of mixture models, recognizing the integral as the sum of integralsof monomials over
a polytope allows us to avoid the expensive integration step above by using (20). To demonstrate
the power of using (20), we implemented a simple algorithm that computes eachφA(b,U) using
the naive expansion in (19). We computed the integral in Example 3 with a small data vector
U = (2,2,2,2,2), which is the rational number

66364720654753
59057383987217015339940000

,

and summarize the run-times and memory usages of the two algorithms in the table below. All
experiments reported in this section are done in MAPLE.

Time(seconds) Memory(bytes)
Ignorant Integration 16.331 155,947,120

Naive Expansion 0.007 458,668

For the remaining comparisons in this section, we no longer consider the ignorant integration algo-
rithm because it is computationally too expensive.

4.2 Symbolic Expansion of the Integrand

While ignorant use of a computer algebra system is unsuitable for computing our integrals, we can
still exploit its powerful polynomial expansion capabilities to find the coefficients of (21). A major
advantage is that it is very easy to write code for this method. We compare the performance of
this symbolic expansion algorithm against that of the naive expansion algorithm. The table below
concerns computing the coefficientsφA(b,U) for the original dataU = (51,18,73,25,75). The
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column “Extract” refers to the time taken to extract the coefficientsφA(b,U) from the expansion of
the polynomial, while the column “Sum” shows the time taken to evaluate (20) after allthe needed
values ofφA(b,U) had been computed and extracted.

Time(seconds) Memory
φA(b,U) Extract Sum Total (bytes)

Naive Expansion 2764.35 - 31.19 2795.54 10,287,268
Symbolic Expansion 28.73 962.86 29.44 1021.03 66,965,528

4.3 Storage and Evaluation of φA(b,U)

Symbolic expansion is fast for computingφA(b,U), but it has two drawbacks: high memory usage
and the long time it takes to extract the values ofφA(b,U). One solution is to create specialized data
structures and algorithms for expanding (21), rather using than those offered by MAPLE.

First, we tackle the problem of storing the coefficientsφA(b,U) for b∈ ZL

A(U) ⊂ Rd as they are
being computed. One naive method is to use ad-dimensional arrayφ[·]. However, noting thatA
is not row rank full, we can use ad0-dimensional array to storeφA(b,U), whered0 = rank(A) =
d−k+1. Furthermore, by Proposition 5(2), the expanded integrand is a symmetricpolynomial, so
only half the coefficients need to be stored. We will leave out the implementation details so as not
to complicate our discussions. In our algorithms, we will assume that the coefficients are stored in
ad0-dimensional arrayφ[·], and the entry that representsφA(b,U) will be referred to asφ[b].

Next, we discuss howφA(b,U) can be computed. One could use the naive expansion (19), but
this involves evaluating many binomials coefficients and products, so the algorithm is inefficient for
data vectors with large coordinates. A more efficient solution uses the recurrence formula (22):

Algorithm 1 (RECURRENCE(A, U))
Input: The matrix A and the vector U.
Output: The coefficientsφA(b,U).
Step 1: Create a d0-dimensional arrayφ of zeros.
Step 2: For each x∈ {0,1, . . . ,U1} set

φ[xa1] :=

(
U1

x

)

.

Step 3: Create a new d0-dimensional arrayφ′.
Step 4: For each2≤ j ≤ n do

1. Set all the entries ofφ′ to 0.
2. For each x∈ {0,1, . . . ,U j} do

For each non-zero entryφ[b] in φ do
Incrementφ′[b+xaj ] by

(U j
x

)
φ[b].

3. Replaceφ with φ′.
Step 5: Output the arrayφ.

The space complexity of this algorithm isO(Nd0) and its time complexity isO(Nd0+1). By compar-
ison, the naive expansion algorithm has space complexityO(Nd) and time complexityO(Nn+1).

We now turn our attention to computing the integral (25). One major issue is the lack of memory
to store all the terms of the expansion of the integrand. We overcome this problem by writing
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the integrand as a product of smaller factors which can be expanded separately. In particular, we
partition the columns ofA into submatricesA[1], . . . ,A[m] and letU [1], . . . ,U [m] be the corresponding
partition ofU . Thus the integrand becomes

m

∏
j=1

∏
v

(σ0θa[ j]
v +σ1ρa[ j]

v )U [ j]
v ,

wherea[ j]
v is thevth column inA[ j]. The resulting algorithm for evaluating the integral is as follows:

Algorithm 2 (Fast Integral)
Input: The matrices A[1], . . . ,A[m], vectors U[1], . . . ,U [m] and the vector t.
Output: The value of the integral (25) in exact rational arithmetic.
Step 1: For 1≤ j ≤ m, computeφ[ j] := RECURRENCE(A[ j],U [ j]).
Step 2: Set I := 0.
Step 3: For each non-zero entryφ[1][b[1]] in φ[1] do

...
For each non-zero entryφ[m][b[m]] in φ[m] do

Set b:= b[1] + · · ·+b[m], c := AU−b, φ := ∏m
j=1 φ[ j][b[ j]].

Increment I by

φ · (|b|/a)!(|c|/a)!
(|U |+1)! · ∏k

i=1
ti ! b(i)

0 !···b(i)
ti

!

(|b(i)|+ti)!

ti ! c(i)
0 !···c(i)

ti
!

(|c(i)|+ti)!
.

Step 4: Output the sum I.

The algorithm can be sped up by precomputing the factorials used in the product in Step 3. The space
and time complexity of this algorithm isO(NS) andO(NT) respectively, whereS= maxi rankA[i]

andT = ∑i rankA[i]. From this, we see that the splitting of the integrand should be chosen wisely to
achieve a good pay-off between the two complexities.

In the table below, we compare the naive expansion algorithm and the fast integral algorithm
for the dataU = (51,18,73,25,75). We also compare the effect of splitting the integrand into two
factors, as denoted bym= 1 andm= 2. Form= 1, the fast integral algorithm takes significantly
less time than naive expansion, and requires only about 1.5 times more memory.

Time(minutes) Memory(bytes)
Naive Expansion 43.67 9,173,360

Fast Integral (m=1) 1.76 13,497,944
Fast Integral (m=2) 139.47 6,355,828

4.4 Limitations and Applications

While our algorithms are optimized for exact evaluation of integrals for mixturesof independence
models, they may not be practical for applications involving large sample sizes. To demonstrate
their limitations, we vary the sample sizes in Example 3 and compare the computation times. The
data vectorsU are generated by scalingU = (51,18,73,25,75) according to the sample sizeN and
rounding off the entries. Here,N is varied from 110 to 300 by increments of 10. Figure 1 shows a
logarithmic plot of the results. The times taken forN = 110 andN = 300 are 3.3 and 98.2 seconds
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Figure 1: Comparison of computation time against sample size.

respectively. Computation times for larger samples may be extrapolated from the graph. Indeed, a
sample size of 5000 could take more than 13 days.

For other models, such as the 100Swiss Francsexample in Section 1 and that of the schizophrenic
patients in Example 9, the limitations are even more apparent. In the table below, for each example
we list the sample size, computation time, rank of the correspondingA-matrix and the number of
terms in the expansion of the integrand. Despite having smaller sample sizes, thecomputations
for the latter two examples take a lot more time. This may be attributed to the higher ranks of the
A-matrices and the larger number of terms that need to be summed up in our algorithm.

Size Time Rank #Terms
Coin Toss 242 45 sec 2 48,646

100 Swiss Francs 40 15 hrs 7 3,892,097
Schizophrenic Patients 132 16 days 5 34,177,836

Despite their high complexities, we believe our algorithms are important becausethey provide
a gold standard with which approximation methods such as those studied in Chickering and Heck-
erman (1997) can be compared. Below, we use our exact methods to ascertain the accuracy of
asymptotic formula derived in Watanabe (2001) and Watanabe and Yamazaki (2003, 2004) using
desingularization methods from algebraic geometry.

Example 6 Consider the model from Example 3. Choose data vectors U= (U0,U1,U2,U3,U4) with
Ui = Nqi where N is a multiple of16and

qi =
1
16

(
4
i

)

, i = 0,1, . . . ,4.

Let IN(U) be the integral (25). Define

FN(U) = N
4

∑
i=0

qi logqi − logIN(U).
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According to Watanabe and Yamazaki (2004), for large N we have the asymptotics

EU [FN(U)] =
3
4

logN+O(1) (26)

where the expectation EU is taken over all U with sample size N under the distribution defined by
q = (q0,q1,q2,q3,q4). Thus, we should expect

F16+N −FN ≈
3
4

log(16+N)−
3
4

logN =: g(N).

We compute F16+N −FN using our exact methods and list the results below.

N F16+N −FN g(N)

16 0.21027043 0.225772497
32 0.12553837 0.132068444
48 0.08977938 0.093704053
64 0.06993586 0.072682510
80 0.05729553 0.059385934
96 0.04853292 0.050210092
112 0.04209916 0.043493960

Clearly, the table supports our conclusion. The coefficient3/4 of logN in the formula (26) is known
as thereal log-canonical thresholdof the statistical model. The example suggests that our method
could be developed into a numerical technique for computing the real log-canonical threshold.

5. Back to Bayesian Statistics

In this section we discuss how the exact integration approach presented here interfaces with issues in
Bayesian statistics. The first concerns the rather restrictive assumption that our marginal likelihood
integral be evaluated with respect to the uniform distribution (Lesbegue measure) on the parameter
spaceΘ. It is standard practice to compute such integrals with respect toDirichlet priors, and we
shall now explain how our algorithms can be extended to Dirichlet priors. That extension is also
available as a feature in our MAPLE implementation.

Recall that theDirichlet distributionDir(α) is a continuous probability distribution parametrized
by a vectorα = (α0,α1, . . . ,αm) of positive reals. It is the multivariate generalization of the beta
distribution and is conjugate prior (in the Bayesian sense) to the multinomial distribution. This
means that the probability distribution function of Dir(α) specifies the belief that the probability of
the ith amongm+1 events equalsθi given that it has been observedαi −1 times. More precisely,
the probability density functionf (θ;α) of Dir(α) is supported on them-dimensional simplex

∆m =
{
(θ0, . . . ,θm) ∈ Rm

≥0 : θ0 + · · ·+θm = 1
}
,

and it equals

f (θ0, . . . ,θm;α0, . . . ,αm) =
1

B(α)
·θα0−1

0 θα1−1
1 · · ·θαm−1

m =:
θα−1

B(α)
.

Here the normalizing constant is the multinomial beta function

B(α) =
m!Γ(α0)Γ(α1) · · ·Γ(αm)

Γ(α0 +α1 + · · ·+αm)
.
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Note that, if theαi are all integers, then this is the rational number

B(α) =
m!(α0−1)!(α1−1)! · · ·(αm−1)!

(α0 + · · ·+αm−1)!
.

Thus the identity (12) is the special case of the identity
R

∆m
f (θ;α)dθ = 1 for the density of the

Dirichlet distribution when allαi = bi +1 are integers.
We now return to the marginal likelihood for mixtures of independence models.To compute

this quantity with respect to Dirichlet priors means the following. We fix positivereal numbers
α0,α1, andβ(i)

j andγ(i)
j for i = 1, . . . ,k and j = 0, . . . , ti . These specify Dirichlet distributions on

∆1, P andP. Namely, the Dirichlet distribution onP given by theβ(i)
j is the product probability

measure given by taking the Dirichlet distribution with parameters(β(i)
0 ,β(i)

1 , . . . ,β(i)
ti ) on the i-th

factor∆ti in the product (7) and similarly for theγ(i)
j . The resulting product probability distribution

on Θ = ∆1 × P × P is called theDirichlet distribution with parameters(α,β,γ). Its probability
density function is the product of the respective densities:

f (σ,θ,ρ;α,β,γ) =
σα−1

B(α)
·

k

∏
i=1

(θ(i))β(i)−1

B(β(i))
·

k

∏
i=1

(ρ(i))γ(i)−1

B(γ(i))
. (27)

By the marginal likelihood with Dirichlet priors we mean the integral
Z

Θ
LU(σ,θ,ρ) f (σ,θ,ρ;α,β,γ)dσdθdρ. (28)

This is a modification of (15) and it depends not just on the dataU and the modelM (2) but also on
the choice of Dirichlet parameters(α,β,γ). When the coordinates of these parameters are arbitrary
positive reals but not integers, then the value of the integral (28) is no longer a rational number.
Nonetheless, it can be computed exactly as follows. We abbreviate the product of gamma functions
in the denominator of the density (27) as follows:

B(α,β,γ) := B(α) ·
k

∏
i=1

B(β(i)) ·
k

∏
i=1

B(γ(i)).

Instead of the integrand (18) we now need to integrate

∑
b∈ZL

A(U)
c=AU−b

φA(b,U)

B(α,β,γ)
·σ|b|/a+α0−1

0 ·σ|c|/a+α1−1
1 ·θb+β−1 ·ρc+γ−1

with respect to Lebesgue probability measure onΘ. Doing this term by term, as before, we obtain
the following modification of Theorem 4.

Corollary 9 The marginal likelihood of the data U in the mixture modelM (2) with respect to
Dirichlet priors with parameters(α,β,γ) equals

N!
U1!···Un!·B(α,β,γ) ·∑b∈ZL

A(U)
c=AU−b

φA(b,U) Γ(|b|/a+α0)Γ(|c|/a+α1)
Γ(|U |+|α|)

·∏k
i=1

( ti !Γ(b(i)
0 +β(i)

0 )···Γ(b(i)
ti

+β(i)
ti

)

Γ(|b(i)|+|β(i)|)

ti !Γ(c(i)
0 +γ(i)

0 )···Γ(c(i)
ti

+γ(i)
ti

)

Γ(|c(i)|+|γ(i)|)

)
.
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A well-known experimental study (Chickering and Heckerman, 1997) compares different meth-
ods for computing numerical approximations of marginal likelihood integrals. The model consid-
ered in the study is thenaive-Bayes model, which, in the language of algebraic geometry, corre-
sponds to arbitrary secant varieties of Segre varieties. In this paper weconsidered the first secant
variety of arbitrary Segre-Veronese varieties. In what follows we restrict our discussion to the in-
tersection of both classes of models, namely, to the first secant variety of Segre varieties. For the
remainder of this section we fix

s1 = s2 = · · · = sk = 1

but we allowt1, t2, . . . , tk to be arbitrary positive integers. Thus in the model of Chickering and
Heckerman (1997, Equation 1), we fixrC = 2, and then there corresponds to ourk.

To keep things as simple as possible, we shall fix the uniform distribution as in Sections 1–4
above. Thus, in the notation of Chickering and Heckerman (1997, §2), all Dirichlet hyperparameters
αi jk are set to 1. This implies that, for any dataU ∈ Nn and any of our models, the problem
of finding the maximum a posteriori (MAP) configuration is equivalent to finding the maximum
likelihood (ML) configuration. To be precise, theMAP configurationis the point(σ̂, θ̂, ρ̂) in Θ
which maximizes the likelihood functionLU(σ,θ,ρ) in (14). This maximum may not be unique,
and there will typically be many local maxima. Chickering and Heckerman (1997, §3.2) used the
expectation maximization (EM) algorithm (Pachter and Sturmfels, 2005, §1.3) toapproximate the
MAP configuration numerically

The Laplace approximation and the BIC score (Chickering and Heckerman, 1997, §3.1) are
predicated on the idea that the MAP configuration can be found with high accuracy and that the
dataU were actually drawn from the corresponding distributionp(σ̂, θ̂, ρ̂). Let H(σ,θ,ρ) denote
the Hessian matrix of the log-likelihood function logL(σ,θ,ρ). Then the Laplace approximation
(Chickering and Heckerman, 1997, Equation 15) states that the logarithm of the marginal likelihood
can be approximated by

logL(σ̂, θ̂, ρ̂) −
1
2

log|detH(σ̂, θ̂, ρ̂)| +
2d−2k+1

2
log(2π). (29)

The Bayesian information criterion (BIC) suggests the coarser approximation

logL(σ̂, θ̂, ρ̂) −
2d−2k+1

2
log(N), (30)

whereN = U1 + · · ·+Un is the sample size.
In algebraic statistics, we do not content ourselves with the output of the EMalgorithm but,

to the extent possible, we seek to actually solve the likelihood equations (Hoşten et al., 2005) and
compute all local maxima of the likelihood function. We consider it a difficult problem to reliably
find (σ̂, θ̂, ρ̂), and we are concerned about the accuracy of any approximation like (29) or (30).

Example 7 Consider the100 Swiss Francstable (2) discussed in the Introduction. Here k= 2,
s1 = s2 = 1, t1 = t2 = 3, the matrix A is unimodular, and (9) is the Segre embeddingP3×P3 →֒ P15.
The parameter spaceΘ is 13-dimensional, but the modelM (2) is 11-dimensional, so the given
parametrization is not identifiable (Feinberg et al., 2007). This means thatthe Hessian matrixH is
singular, and hence the Laplace approximation (29) is not defined.
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Example 8 We compute (29) and (30) for the model and data in Example 3. Accordingto Hoşten
et al. (2005, Example 9), the likelihood function p51

0 p18
1 p73

2 p25
3 p75

4 has three local maxima(p̂0, p̂1, p̂2, p̂3, p̂4)
in the modelM (2), and these translate into six local maxima(σ̂, θ̂, ρ̂) in the parameter spaceΘ,
which is the3-cube. The two global maxima are

(0.3367691969,0.0287713237,0.6536073424),

(0.6632308031,0.6536073424,0.0287713237).

Both of these points inΘ give the same point in the model:

(p̂0, p̂1, p̂2, p̂3, p̂4) = (0.12104,0.25662,0.20556,0.10758,0.30920).

The likelihood function evaluates to0.1395471101×10−18 at this point. The following table com-
pares the various approximations. Here, “Actual” refers to the base-10logarithm of the marginal
likelihood in Example 3.

BIC -22.43100220
Laplace -22.39666281

Actual -22.10853411

The method for computing the marginal likelihood which was found to be most accurate in the
experimental study is thecandidate method(Chickering and Heckerman, 1997, §3.4). This is a
Monte-Carlo method which involves running a Gibbs sampler. The basic idea isthat one wishes
to compute a large sum, such as (20) by sampling among the terms rather than listingall terms. In
the candidate method one uses not the sum (20) over the lattice points in the zonotope but the more
naive sum over all 2N hidden data that would result in the observed data represented byU . The
value of the sum is the number of terms, 2N, times the average of the summands, each of which is
easy to compute. A comparison of the results of the candidate method with our exact computations,
as well as a more accurate version of Gibbs sampling which is adapted for (20), will be the subject
of a future study.

One of the applications of marginal likelihood integrals lies in model selection. Animportant
concept in that field is that ofBayes factors. Given data and two competing models, the Bayes
factor is the ratio of the marginal likelihood integral of the first model over themarginal likelihood
integral of the second model. In our context it makes sense to form that ratio for the independence
modelM and its mixtureM (2). To be precise, given any independence model, specified by positive
integerss1, . . . ,sk, t1, . . . , tk and a corresponding data vectorU ∈ Nn, the Bayes factor is the ratio of
the marginal likelihood in Lemma 1 and the marginal likelihood in Theorem 4. Both quantities are
rational numbers and hence so is their ratio.

Corollary 10 The Bayes factor which discriminates between the independence modelM and the
mixture modelM (2) is a rational number. It can be computed exactly using Algorithm 2 (and our
MAPLE-implementation).

Example 9 We conclude by applying our method to a data set taken from the Bayesian statistics
literature. Evans, Gilula, and Guttman (1989,§3) analyzed the association between length of hos-
pital stay (in years Y) of132schizophrenic patients and the frequency with which they are visited
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by relatives. Their data set is the following3×3 contingency table:

U =

2≤Y<10 10≤Y<20 20≤Y Totals
Visited regularly 43 16 3 62

Visited rarely 6 11 10 27
Visited never 9 18 16 43

Totals 58 45 29 132

They present estimated posterior means and variances for these data, where“each estimate requires
a 9-dimensional integration”(Evans et al., 1989, p. 561). Computing their integrals is essentially
equivalent to ours, for k= 2,s1 = s2 = 1, t1 = t2 = 2 and N= 132. The authors emphasize that“the
dimensionality of the integral does present a problem”(Evans et al., 1989, p. 562), and they point
out that“all posterior moments can be calculated in closed form .... however, even for modestN
these expressions are far to complicated to be useful”(Evans et al., 1989, p. 559).

We differ on that conclusion. In our view, the closed form expressions in Section 3 are quite
useful for modest sample size N. Using Algorithm 2, we computed the integral (25). It is the
rational number with numerator

278019488531063389120643600324989329103876140805
285242839582092569357265886675322845874097528033
99493069713103633199906939405711180837568853737

and denominator

12288402873591935400678094796599848745442833177572204
50448819979286456995185542195946815073112429169997801
33503900169921912167352239204153786645029153951176422
43298328046163472261962028461650432024356339706541132
34375318471880274818667657423749120000000000000000.

To obtain the marginal likelihood for the data U above, that rational number (of moderate size) still
needs to be multiplied with the normalizing constant

132!
43!·16!·3! ·6! ·11!·10!·9! ·18!·16!

.
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