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Abstract

We consider the problem of multi-task reinforcement leagniMTRL) in multiple partially ob-
servable stochastic environments. We introduce the rafimmd policy representation (RPR) to
characterize the agent’s behavior in each environment RR1e is a parametric model of the con-
ditional distribution over current actions given the higtof past actions and observations; the
agent's choice of actions is directly based on this conddidistribution, without an interven-
ing model to characterize the environment itself. We prepafé-policy batch algorithms to learn
the parameters of the RPRs, using episodic data collected ¥adllowing a behavior policy, and
show their linkage to policy iteration. We employ the Diliehprocess as a nonparametric prior
over the RPRs across multiple environments. The intrinkistering property of the Dirichlet
process imposes sharing of episodes among similar envaotsnwhich effectively reduces the
number of episodes required for learning a good policy irhesw/ironment, when data sharing
is appropriate. The number of distinct RPRs and the assac@tisters (the sharing patterns) are
automatically discovered by exploiting the episodic datavell as the nonparametric nature of the
Dirichlet process. We demonstrate the effectiveness gitbposed RPR as well as the RPR-based
MTRL framework on various problems, including grid-worldvigation and multi-aspect target
classification. The experimental results show that the RRRcompetitive reinforcement learning
algorithm in partially observable domains, and the MTRLgistently achieves better performance
than single task reinforcement learning.

Keywords: reinforcement learning, partially observable Markov dim processes, multi-task
learning, Dirichlet processes, regionalized policy reprdation

1. Introduction

Planning in a partially observable stochastic environment has been stutkedieely in the fields
of operations research and artificial intelligence. Traditional methodsaeed on partially observ-
able Markov decision processes (POMDPs) and assume that the POMidsrace given (Sondik,
1971; Smallwood and Sondik, 1973). Many POMDP planning algorithmadi®p1971, 1978;
Cheng, 1988; Lovejoy, 1991; Hansen, 1997; Kaelbling et al., 1988p&t and Boutilier, 2003;
Pineau et al., 2003; Spaan and Vlassis, 2005; Smith and Simmons, 20051L.i2806a,b) have
been proposed, addressing problems of increasing complexity as thighaigobecome progres-
sively more efficient. However, the assumption of knowing the underly@@§IPP model is often
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difficult to meet in practice. In many cases the only knowledge available toget are experi-
ences, that is, the observations and rewards, resulting from intemgtitnthe environment, and
the agent must learn the behavior policy based on such experiencgrdbism is known as rein-
forcement learning (RL) (Sutton and Barto, 1998). Reinforcemenmilegumethods generally fall
into two broad categories: model-based and model-free. In model-baskddseone first builds
a POMDP model based on experiences and then exploits the existing plahgamghms to find

the POMDP policy. In model-free methods, one directly infers the policydaseexperiences.
The focus of this paper is on the latter, trying to find the policy for a partialgeolable stochastic
environment without the intervening stage of environment-model learning.

In model-based approaches, when the model is updated based on pesieeses gathered
from the agent-environment interaction, one has to solve a new POMDR@laroblem. Solving
a POMDP is computationally expensive, which is particularly true when ores tako account the
model uncertainty; in the latter case the POMDP state space grows fastiratkémg it inefficient
to find even an approximate solution (Wang et al., 2005). Recent works(Bial., 2008) gives
a relatively efficient approximate model-based method, but still the computatiergrows expo-
nentially with the planning horizon. By contrast, model-free methods updatpadiiey directly,
without the need to update an intervening POMDP model, thus saving time and élmgittae
errors introduced by approximations that may be made when solving the FOMD

Model-based methods suffer particular computational inefficiency in mukirgiaforcement
learning (MTRL), the problem being investigated in this paper, becauséasto repeatedly solve
multiple POMDPs due to frequent experience-updating arising from the caoinations among
different RL tasks. The work in Wilson et al. (2007) assumes the envieon states are perfectly
observable, reducing the POMDP in each task to a Markov decisiongg@pHOP); since a MDP
is relatively efficient to solve, the computational issue is not serious thetke present paper, we
assume the environment states are partially observable, thus manifestifgzFPa3sociated with
each environment. If model-based methods are pursued, one woultbrsmree multiple POMDPs
for each update of the task clusters, which entails a prohibitive computhitiorten.

Model-free methods are consequently particularly advantageous fRLNIT partially observ-
able domains. The regionalized policy representation (RPR) proposed pagher, which yields an
efficient parametrization for the policy governing the agent’s behavioaah €nvironment, lends
itself naturally to a Bayesian formulation and thus furnishes a posterior distnibof the policy.
The policy posterior allows the agent to reason and plan under unceréiaty the policy itself.
Since the ultimate goal of reinforcement learning is the policy, the policy’smaaty is more di-
rect and relevant to the learning goal than the POMDP model’s uncertamgreidered in Ross
et al. (2008).

The MTRL problem considered in this paper shares similar motivations asdaheimvWilson
et al. (2007)—that is, in many real-world settings there may be multiple envinotsnier which
policies are desired. For example, a single agent may have collectedesqgasr from previous
environments and wishes to borrow from previous experience whemingathe policy for a new
environment. In another case, multiple agents are distributed in multiple envints\naed they
wish to communicate with each other and share experiences such thatspeictiee performances
are enhanced. In either case the experiences in one environmefd beguroperly exploited to
benefit the learning in another (Guestrin et al., 2003). Appropriaterexme sharing among multi-
ple environments and joint learning of multiple policies save resources, impalicy quality, and
enhance generalization to new environments, especially when the exjgsriemm each individual
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environment are scarce (Thrun, 1996). Many problems in practiceedormulated as an MTRL
problem, with one example given in Wilson et al. (2007). The application weider in the exper-
iments (see Section 6.2.3) is another example, in which we make the more readistigpéion that
the states of the environments are partially observable.

To date there has been much work addressing the problem of inferrirghéineng structure
between general learning tasks. Most of the work follows a hierarncBagesian approach, which
assumes that the parameters (models) for each task are sampled from ancprimmdistribution,
such as a Gaussian distribution specified by unknown hyper-pararfiedenence and Platt, 2004;
Yu et al., 2003). The parameters as well as the hyper-parametergiarated simultaneously in
the learning phase. In Bakker and Heskes (2003) a single Gausiaispxtended to a Gaussian
mixture; each task is given a corresponding Gaussian prior and relatedasee allowed to share a
common Gaussian prior. Such a formulation for information sharing is moriéléethan a single
common prior, but still has limitations: the form of the prior distribution must bei§ipd a priori,
and the number of mixture components must also be pre-specified.

In the MTRL framework developed in this paper, we adopt a nonparansgifmach by em-
ploying the Dirichlet process (DP) (Ferguson, 1973) as our pridenaling the work in Yu et al.
(2004) and Xue et al. (2007) to model-free policy learning. The napatric DP prior does not
assume a specific form, therefore it offers a rich representation tpairea complicated sharing
patterns among various tasks. A nonparametric prior drawn from the DRdssurely discrete,
and therefore a prior distribution that is drawn from a DP encourag&sdggsendent parameter
clustering. The tasks in the same cluster share information and are leaftesdively as a group.
The resulting MTRL framework automatically learns the number of clustersndmabers in each
cluster as well as the associated common policy.

The nonparametric DP prior has been used previously in MTRL (Wilsoh,e2@07), where
each task is a Markov decision process (MDP) assuming perfect ssdevability. To the authors’
knowledge, this paper represents the first attempt to apply the DP priontoroement learning in
multiple partially observable stochastic environments. Another distinction is that¢ithod here is
model-free, with information sharing performed directly at the policy level, autthaving to learn
a POMDP model first; the method in Wilson et al. (2007) is based on using MDIeIs10

This paper contains several technical contributions. We proposedlmmadized policy repre-
sentation (RPR) as an efficient parametrization of stochastic policies in sea@bof a POMDP
model, and develop techniques of learning the RPR parameters based iomzimgxthe sum of
discounted rewards accrued during episodic interactions with the emamin An analysis of the
techniques is provided, and relations are established to the expectationimadion algorithm and
the POMDP policy improvement theorem. We formulate the MTRL framework kgindamultiple
RPRs in a Bayesian setting and employ a draw from the Dirichlet processiasdmmon nonpara-
metric prior. The Dirichlet process posterior is derived, based on eamwentional application of
Bayes law. Because the DP posterior involves large mixtures, Gibbs saraplhgis is inefficient.
This motivates a hybrid Gibbs-variational algorithm to learn the DP postérto. proposed tech-
nigues are evaluated on four problem domains, including the benchméwkali2 (Littman et al.,
1995), its multi-task variants, and a remote sensing application. The maintibabresults in the
paper are summarized in the form of theorems and lemmas, the proofs ofavkiah given in the
Appendix.

The RPR formulation in this paper is an extension of the work in Li (2006) laad et al.
(2007). All other content in the paper is extended from the work in LO@O
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2. Partially Observable Markov Decision Processes

The partially observable Markov decision process (POMDP) (Son@ik]l;lLovejoy, 1991; Kael-
bling et al., 1998) is a mathematical model for the optimal control of an ageateitin a partially
observable stochastic environment. In a POMDP the state dynamics of thteaageoverned by
a Markov process, and the state of the process is not completely oblgebvd is inferred from
observations; the observations are probabilistically related to the statmalygrthe POMDP can
be described as a tuples, 4, T, 0,Q,R), whereS, 4, O respectively denote a finite set of states,
actions, and observation$; are state-transition matrices willy (a) the probability of transiting
to states’ by taking actiona in states; Q are observation functions wity(a) the probability

of observingo after performing actiomm and transiting to statg’; andR is a reward function with
R(s,a) the expected immediate reward received by taking actionstates.

The optimal control of a POMDP is represented by a policy for choosind#st action at
any time such that the future expected reward is maximized. Since the state MRRPS only
partially observable, the action choice is based on the belief state, a sufitsaéstic defined as the
probability distribution of the stategiven the history of actions and observations (Sondik, 1971).
It is important to note that computation of the belief state requires knowing theriying POMDP
model.

The belief state constitutes a continuous-state Markov process (Smalamddglondik, 1973).
Given that at time the belief state i® and the actiora is taken, and the observation received at
timet + 1 is o, then the belief state at timer- 1 is computed by Bayes rule

_ 2ses P9I,

bg(sl) - p(0|b, a) ’ (l)

where the superscrifa and the subscripd are used to indicate the dependence of the new belief
state orm ando, and

pob.a)= 5 3 b(9)T% @
s'eSses
is the probability of transiting frorb to b’ when taking actiora.

Equations (1) and (2) imply that, for any POMDP, there exists a correlspgmarkov deci-
sion process (MDP), the state of which coincides with the belief state of tiCFO(hence the
term “belief-state MDP”). Although the belief state is continuous, their tramsftimbabilities are
discrete : from any giveb, one can only make a transition to a finite number of new belief states
{b§:a€ 4,0¢€ 0}, assuming? and O are discrete sets with finite alphabets. For any acien?,
the belief state transition probabilities are given by

i 4y | POlba), if b =b§
p(blb,a) = { 0, otherwise ®)
The expected reward of the belief-state MDP is given by
R(b,a) = ¥ b()R(s,a). (@)
ses

In summary, the belief-state MDP is completely defined by the actiod stie space of belief state
B = {beR5 1b(s) >0, S b(s) :1},
3K
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along with the belief state transition probabilities in (3) and the reward functi¢4)in

The optimal control of the POMDP can be found by solving the correspgnidelief-state
MDP. Assume that at any time there are infinite steps remaining for the POMb#térnorizon),
the future rewards are discounted exponentially with a factary0< 1, and the action is drawn
from p" (a|b), then the expected reward accumulated over the infinite horizon satisfiBslthean
equation (Bellman, 1957; Smallwood and Sondik, 1973)

VT(b) =Y p(alb) |R(b,a)+y Y p(ojb,a)v"(bg) |,

acAq 0€0

whereV (b) is called the value function. Sondik (1978) showed that, for a finite-trangieter-
ministic policy! there exists a Markov partitio® = B; U B, U - - - satisfying the following two
properties :

(a) There is a unique optimal acti@associated with subsé&, i = 1,2,---. This implies that
the optimal control is represented by a deterministic mapping from the Mardditigpn to
the set of actions.

(b) Each subset maps completely into another (or itself), thébfs,b € B,a=T(b),0€ 0} C
B;j (i may equal)).

The Markov patrtition yields an equivalent representation of the finitesteath deterministic policy.
Sondik noted that an arbitrary polidy is not likely to be finite-transient, and for it one can only
construct a partition where one subset maps partially into another (or itdelf)is, there exists

b € B, ando € O such thabg(b) ¢ ‘Bj. Nevertheless, the Markov partition provides an approximate
representation for non-finite-transient policies and Sondik gave an leound of the difference
between the true value function and approximate value function obtainec Byatkov partition.
Based on the Markov partition, Sondik also proposed a policy iterationigigofor POMDPs,
which was later improved by Hansen (1997) and the improved algorithmes eelfto as finite state
controller (the partition is finite).

3. Regionalized Policy Representation

We are interested in model-free policy learning, that is, we assume the moithed BOMDP is
unknownand aim to learn the policy directly from the experiences (data) collected &gent-
environment interactions. One may argue that we do in fact learn a motlelitnodel is directly

at the policy level, constituting probabilistic mapping from the space of action-observation histo-
ries to the action space.

Although the optimal control of a POMDP can be obtained via solving the sporeding belief-
state MDP, this is not true when we lack an underlying POMDP model. This &isecas indicated
above, the observability of the belief-state depends on the availability ofQMIHP model. When
the model is unknown, one does not have access to the information ktuicempute the belief
state, making the belief statmobservable

1, ifa=T(b)
0, otherwise
whenl has been followed fan consecutive steps by starting from any initial belief-state. [Mhe finite transient if
and only if there exista < c such thats]} is disjoint with{b : M(b) is discontinuous &t} (Sondik, 1978).

1. Letl be a deterministic policy, that ig!' (a|b) = { . LetS]} be the set of all possible belief-states
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In this paper, we treat the belief-state as a hidden (latent) variable andhaleng it out to
yield a stochastic POMDP policy that is purely dependent on the obseriatey, that is, the
sequence of previous actions and observations. The belief-statemidgnas well as the optimal
control in each state, is learned empirically from experiences, insteagid bomputed from an
underlying POMDP model. Although it may be possible to learn the dynamicsaricotin the
continuous space of belief state, the exposition in this paper is restricteddistinete case, that is,
the case for which the continuous belief-state space is quantized into a firofedsgoint regions.
The quantization can be viewed as a stochastic counterpart of the Maakiition (Sondik, 1978),
discussed at the end of Section 2. With the quantization, we learn the dyrarhalgef regions and
the local optimal control in each region, both represented stochastichiystbchasticity manifests
the uncertainty arising from the belief quantization (the policy is parameteinzttms of latent
belief regions not the precise belief state). The stochastic policy reduces to a determanistic
when the policy is finitely transient, in which case the quantization becomes koWlpartition.
The resulting framework is termeggionalized policy representatiaio reflect the fact that the
policy of action selection is expressed through the dynamics of belief regionvell as the local
controls in each region. We also usecision statas a synonym obelief region in recognition of
the fact that each belief region is an elementary unit to encode the dea$iaciton selection.

3.1 Formal Framework

Definition 1 A regionalized policy representatigRPR) is a tuple(4, O, Z,W, y, Ty specified as
follows. TheZ and O are respectively a finite set of actions and observations. Zigea finite set

of decision states (belief regions). The W are decision-state transitioncesvith Wz a,0’,Z)
denoting the probability of transiting from z tbwhen taking action a in decision state z results in
observing @ The p is the initial distribution of decision states witfzudenoting the probability of
initially being in decision state z. Tireare state-dependestochastigolicies withri(z,a) denoting
the probability of taking action a in decision state z.

The stochastic formulation &¥ andrtin Definition 1 is fairly general and subsumes two special
cases.

1. If zshrinks down to a single belief-staiez = b becomes a sufficient statistic of the POMDP
(Smallwood and Sondik, 1973) and there is a unique action associated \litlnsity(z, a) is
deterministic and the local policy can be simplifiedsas 1i(b).

2. If the belief regions form a Markov partition of the belief-state spa@ndk, 1978), that
iS, B = Uz zB;, then the action choice in each region is constant and one region transits
completely to another (or itself). In this case, bdihandmare deterministic and, moreover,
the policy yielded by the RPR (see (8)) is finite transient deterministic. Irtigcis the same
case as considered in Hansen (1997).

In both of the two special cases, eachas one action choice= 1(z) associated with it, and one
can writeW(z a,0',Z) =W(z 11(2),0,Z), thus the transition of is driven solely byo. In general,
eachz represents multiple individual belief-states, and the belief region transitidnivisn jointly
by aando. The action-dependency captures the state dynamics of the POMD Pganizktrvation-
dependency reflects the partial observability of the state (perceptiomglias

To make notation simple, the following conventions are observed througiptaper:
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e The elements off are enumerated a8 = {1,2,--- ,|4|}, where| 4| denotes the cardinality
of 4. Similarly, 0 ={1,2,---,|0|} andZ = {1,2,---,| Z|}.

e A sequence of actiongy,a,---,ar) is abbreviated asyt, where the subscripts index dis-
crete time steps. Similarly a sequence of observation®,,---,0r) is abbreviated as; T,
and a sequence of decision statgsz,--- ,zr) is abbreviated ag T, etc.

e A history hy is the set of actions executed and observation received up to timg step is,
he = {@0t-1,011}.

Let © = {m,u, W} denote the parameters of the RPR. Given a history of actions and observa
tions, hy = (ap1-1,011), collected up to time step the RPR yields a joint probability distribution
of zp1 andaoy

t
P(ao1, 201|011, ©) = U(20) (20, 20) FLW(ZT_LaT_l,or,zr)Tt(zT,aT), (5)
=
where application of local controls(z,a;) at every time step implies thab; are all drawn ac-

cording to the RPR. The decision statggin (5) are hidden variables and we marginalize them to
get

|Z] t
p(aotf011,0) = 5 |K(20)T(20,20) er(zT1,ar1,or,zr)n(zr,ar)]. (6)
29,+,2=1 =
It follows from (6) that
|4

p(apt-1/011,0) = zp(ao:t\olzt,@)
a=1

2|
14| |z
X<y > W(z-1,8-1,0,2)T(%, &)
a=1z=1

t-1
(o) (20, A0) rLW(Zr1aar170razt)n(ZTvaT)]

=1
= p(aot-1/011-1,0), (7)
which implies that observation, does not influence the actions beforén agreement with expec-
tations. From (6) and (7), we can write the history-dependent distribafiantion choices
p(aox|011,0©) p(agz|011,0©)
a|h,®) = ar|agt_1,017,0) = = , 8
P(r|f, ©) P(&r[207-1, 017, ©) P(agr-1/017,0)  P(@pr-1[01:7-1,0) ®
which gives a stochastic RPR policy for choosing the acéiogiven the historical actions and ob-
servations. The policy is purely history-dependent, with the unobslerbbabief regionz integrated
out.
The historyh; forms a Markov process with transitions driven by actions and obsengtio
h = h_1U{a_1,0}. Applying this recursively, we gét = UL_,{a;_1,0(}, and therefore

t

ELp(aT’hn@) =

t—2

er(aT!hT,G) p(a—1/h—1,0)p(as|h—1,8-1,0,0)
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o }
= er(aT’hTaG» p(a-—11t|h—1,0,0)
_T: E

t-3
= er(aT!hn@) P(a—2|h—2,0)p(a—11|hk—2,8-2,0-1,0,0)
_T: =

-3
= er(ar’hn O) | p(a—21|ht—2,01-11,0)
LT= i

= p(ao:t|h0>01:t>e)
= p(aot|011,0), 9)

where we have useg(ar|h,0r111) = p(a/ht) andhg = null. The rightmost side of (9) is the
observation-conditional probability of joint action-selection at multiple time step<0,1,--- ,t.
Equation (9) can be verified directly by multiplying (8) ower0,1,--- ,t

t

p(a‘T’h'D@)
=
= p(a0|O©) P(20:1/01,0) P(80:2/01:2,0) ~ P(aot-1/011-1,0)  P(aox|011,9)
p(ao|®) p(ap:1]01,0)  p(api—2|011-2,0) p(apt-1|011-1,0)
= p(aot|01t,0). (10)

Itis of interest to point out the difference between the RPR and prevéfrcement learning
algorithms for POMDPs. The reactive policy and history truncation (Jalakét al., 1995; Bax-
ter and Bartlett, 2001) condition the action only upon the immediate observatiartrancated
sequence of observations, without using the full history, and therefmse are clearly different
from the RPR. The U-tree (McCallum, 1995) stores historical informationgatbe branches of
decision trees, with the branches split to improve the prediction of futurenretwtility. The draw-
back is that the tree may grow intolerably fast with the episode length. The fiolikey graphs
(Meuleau et al., 1999), finite state controllers (Aberdeen and Baxtép)2@nd utile distinction
HMMs (Wierstra and Wiering, 2004) use internal states to memorize the ftdirizisrowever, their
state transitions are driven by observations only. In contrast, the dysainitecision states in the
RPR are driven jointly by actions and observations, the former capturengythamics of world-
states and the latter reflecting the perceptual aliasing. Moreover, nahe pfevious algorithms
is based on Bayesian learning, and therefore they are intrinsically notadnbeeto the Dirichlet
process framework that is used in the RPR for multi-task examples.

3.2 The Learning Objective

We are interested in empirical learning of the RPR, based on a set of epidefined as follows.
Definition 2 (Episode) An episode is a sequence of agent-environment interatgionimated in
an absorbing state that transits to itself with zero rewards (Sutton and BE9&8). An episode is

denoted byafrgokakrk .- ok ak rk ), where the subscripts are discrete times, k indexes the episodes,
and o, a, and r are respectively observations, actions, and immediatads.
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Definition 3 (Sub-episode) A sub-episode is an episode truncated at a particularstepeand
retaining the immediate reward only at the time step where truncation octhest-th sub-episode
of episode(afriokakr’---of ak r ) is defined agafjofa - - - ofafrf), which yields a total of {J+ 1
sub-episodes for this episode.

The learning objective is to maximize the optimality criterion given in Definition 4.ofém
5 introduced below establishes the limit of the criterion when the number ofdgsiszpproaches
infinity.

Definition 4 (The RPR Optimality Criterion) LeD®) = {(afréokalrk- ..ok ak rk )}K | be a set
of episodes obtained by an agent interacting with the environment by foljgualicy M to select
actions, wheré1 is an arbitrary stochastic policy with action-selecting distributionY @ |h;) > 0,
Y action a, V history . The RPR optimality criterion is defined as

-~ def. 1 X K Virk t
VORi0) =1 Y S —— ane [ P@dn ©), (11)
K &y Te-opn iy L] e
where If = afokak - - of is the history of actions and observations up to time t in the k-th episode,
0 < y< lis the discount, an® denotes the parameters of the RPR.

Theorem 5 LetV(D®);©) be as defined in Definition 4, théimg _.,V(D®); @) is the expected
sum of discounted rewards within the environment under test by followenBRR policy parame-
terized by®, over an infinite horizon.

Theorem 5 shows that the optimality criterion given in Definition 4 is the expesed of
discounted rewards in the limit, when the number of episodes approachety.infhroughout the
paper, we call li_.V(DK);©) the value function antl (DK); @) the empirical value function.
The ® maximizing the (empirical) value function is the best RPR policy (given the ep&od

It is assumed in Theorem 5 that the behavior polityised to collect the episodic data is an
arbitrary policy that assigns nonzero probability to any action given eatgriy, thatisJ1is required
to be a soft policy (Sutton and Barto, 1998). This premise assures a demeglgoration of the
actions that might lead to large immediate rewards given any history, that s¢tilbas that might
be selected by the optimal policy.

4. Single-Task Reinforcement Learning (STRL) with RPR

We develop techniques to maximize the empirical value function in (11) an® tesulting from
value maximization is called a Maximum-Value (MV) estimate (related to maxidiketihood).
An MV estimate of the RPR is preferred when the number of episodes is largehich case
the empirical value function approaches the true value function and the tstisnexpected to
approach the optimal (assuming the algorithm is not trapped in a local minimaepisodes (<)
are assumed to have been collected in a single partially observable stoelnastcment, which
may correspond to a single physical environment or a pool of multiple idé/stiodar physical
environments. As a result, the techniques developed in this section aiegiergask reinforcement
learning (STRL).
By substituting (6) and (9) into (11), we rewrite the empirical value function
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12|

K Tk
Voo~ 5 5 K L3, Pebedlof0) (12)

where

r~k _ ytrtk
' Mo P (aNY)

is the discounted immediate rewafds weighted by the inverse probability that the behavior policy
M has generated’. The weighting is a result from importance sampling (Robert and Casella,
1999), and reflects the fact thz{ftis obtained by following1 but the Monte Carlo integral (i.e., the
empirical value function) is with respect to the RPR pol@yFor simplicity,r¥ is also referred to
as discounted immediate reward or simply reward throughout the paper.

We assume; > 0 (and hencé&; > 0), which can always be achieved by adding a constant to
this results in a constant added to the value function (the value function OMDP is linear in
immediate reward) and does not influence the policy.

Theorem 6 (Maximum Value Estimation) Let

k
k )y _ t k K 19k o)
¥(2:/0") = G ) o Pl 2el0h, O (13)

forZ=1,2,---,|2[,t=1,2,--- Ty, and k=1,2,--- K. Let

O(“H)—argma < TZk) bl (& aot,ZS |01t’ 7 (14)
Ber K k 1 % o (25,10
where
12 al 12
T:{ (WL TLW) : Zu _1,azln(|a_1ZW|a01 =1,
=12 ,|2,a=12-,]4/,0=1,2,-- |oy}
is the set of feasible parameters for the RPR in question{@&0Y ...0M ...} be a sequence

yielded by iteratively applying (13) and (14), starting fré@®. Then
lim V(D®); o)

Nn—oo
exists and the limit is a maxima @{D®); ©).

To gain a better understanding of Theorem 6, we rewrite (13) to get

k
q[k(zéztye) = \7(3;((}3)(9)!3(251’351,0‘{1,9), (15)
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wherep(Z, |a,, 0%, ©) is an standard posterior distribution of the latent decision states given the
© updated in the most recent iteration (the supersétiphdicating the iteration number has been
dropped for simplicity), and

of(e) =

Fép(as|ofy, ©) (16)
is called there-computed rewardt time steg in the k-th episode. The re-computed reward rep-
resents the discounted immediate rewdrav&ightedby the probability that the action sequence
yielding this reward is generated by the RPR policy parameterize®} biyereforest(0) is a func-
tion of @. The re-computed reward reflects the update of the RPR policy which, edldo
re-interact with the environment, is expected to accrue larger rewandétittze previous iteration.
Recall that the algorithm does not assume real re-interactions with theement so the episodes
themselves cannot update. However, by recomputing the rewards &8)inh@ agent is allowed
to generate amternal set of episodes in which the immediate rewards are modified. The internal
episodes represent thewepisodes that would be collected if the agent followed the updated RPR
to really re-interact with the environment. In this sense, the reward re-computatiohecthought
of as virtual re-interactions with the environment.

By (15), gf(25, ) is a weighted version of the standard posteriozief with the weight given by
the reward recomputed by the RPR in the previous iteration. The normalizatisteot/ (D(K); ©),
which is also the empirical value function in (11), can be expressed as¢hmputed rewards av-
eraged over all episodes at all time steps,

Zﬂk(@)’ (17)

which ensures

The maximum value (MV) algorithm based on alternately applying (13) andiiIPheorem 6
bears strong resemblance to the expectation-maximization (EM) algorithms éierapal., 1977)
widely used in statistics, with (13) and (14) respectively correspondititgt&-step and M-step in
EM. However, the goal in standard EM algorithms is to maximize a likelihood fumctidnile the
goal of the MV algorithm is to maximize an empirical value function. This caugesfieant differ-
ences between the MV and the EM. It is helpful to compare the MV algorithnihé@ofiem 6 to the
EM algorithm for maximum likelihood (ML) estimation in hidden Markov models (Rahid989),
since both deal with sequences or episodes. The sequences in an HMMaed as uniformly
important, therefore parameter updating is based solely on the frequencguwrences of latent
states. Here the episodes are not equally important because they Hierentlifewards associated
with them, which determine their importance relative to each other. As seen)intlii¢5osterior
of z(‘g1 is weighted by the recomputed rewarf] which means that the contribution of episddgt
timet) to the update 0® is not solely based on the frequency of occurrenceg§obut also based
on the associatedf. Thus the new paramete@will be adjusted in such a way that the episodes
earning large rewards have more “credits” recorded@#md, as a result, the policy parameterized
by © will more likely generate actions that lead to high rewards.
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The objective function being maximized in (14) enjoys some interesting piepelue to the
fact thatgf(Z,) is a weighted posterior af,. These properties not only establish a more formal
connection between the MV algorithm here and the traditional ML algorithrecdbas EM, they
also shed light on the close relations between Theorem 6 and the policy enpeav theorem of
POMDP (Blackwell, 1965). To show these properties, we rewrite the tgefunction in (14)
(with the subscript” dropped for simplicity) as

PO F4 k kK A
LB @@ Def. 1 K < o)l p(aO:nzgzt’OlI’O)
© tzo %‘ w0 o(25:/©)
K T 12|
K2%700.6)

ka k Kok ©
%‘ p(Z, |85, 0k, ) t (82511054, ©) ’ (18)
©) 4. @(K zg a1, 0%+, ©)
where the second equation is obtained by substituting (15) into the left side oBince
oS 1zt 03 @ ) 3 =1 andz'z(k)z| e 1P (5,8, 0,,0) = 1, one can apply Jensen’s inequality

twiceto the rlghtmost side of (18) to obtain two inequalities

O'

1 XKk oko n Fkp(ak,|o,,®) Def.
&V (DK):;0) of ()
Tk

V(DK);0)
Zj aOt‘Oltv

where the first inequality is with respect p§zs,|ak,, 0%, ) while the second inequality is with

respect to{v(‘gfg?e) =21 T,k=1,--- ,K}. Each inequality yields a lower bound to the

logarithmic empirical value function W@(K);@)). It is not difficult to verify from (18) and (19)
that both of the two lower bounds are tight (the respective equality cagdobed), that is,

LB(0]@) = InV(D®);0) = Y(©|0). (20)

LB(G®) <

v(ele)

< = InV(p®);0), (19)

1
Xl

7<\
HM?: OM

The equations in (20) along with the mequalmes in (19) show that@rs;)atlsfylng LBO|O) <
LB(0]0) or Y(0|©) < Y(6|0) also satisfie¥/ (D);0) < V(D!);8). Thus one can choose to
maximize either of the two lower bounds, [B|©) or Y(©|©), when trying to improve the empir-
ical value of® over that of®. In either case, the maximization is with respeo@to

The two alternatives, though both yielding an improved RPR, are quite efiffén the manner
the improvement is achieved. Suppose one has obt@fiedy applying (13) and (14) fon itera-
tions, and is seekin®"+Y satisfyingV (DK); @) < V(DK); @M1, Maximization of the first
lower bound give®™Y — argmas_, LB(®|@™M), which has an analytic solution that will be
given in Section 4.2. Maximization of the second lower bound yields

o™Y — argmaxr(©|0M). (21)
Ocy

The definition ofY'in (19) is substituted into (21) to yield

K Tk kro(n) k
(n+1)  _ Gt(e ) | p(aO:t‘ol,ta )
© arg ma)k 225 Tk emy | _een)
V(DK);0m)
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K Tk

= argmax 0 Inp 0%, 0), (22)
OeszltZ) t (a6 |0k o)

which shows that maximization of the second lower bound is equivalent to manxgrazveighted
sum of the log-likelihoods of &}, with the weights being the rewards recomputed@y).
Through (22), the connection between the maximum value algorithm in Time6rand the tra-
ditional ML algorithm is made more formal and clearer: with the recomputedro=sagiven and
fixed, the MV algorithm is a weighted version of the ML algorithm, vv}'ift(f)]e(”)) a weighted
log-likelihood function of®.

The above analysis also sheds light on the relations between Theorehtigolicy improve-
ment theorem in POMDP (Blackwell, 1965). By (19), (20), and (22) haee

InvV(2K):eM) =y em) < yo"lem)

< Inv(p®); 1),

The first inequality, achieved by the weighted likelihood maximization in (2pyesents the policy
improvement on the old episodes collected by following the previous poliay.s€bond inequality
ensures that, if the improved policy is followed to collect new episodes in theoement, the
expected sum of newly accrued rewards is no less than that obtainedldwyifig the previous
policy. This is similar to policy evaluation. Note that the update of episodes is seautg reward
computation. The actual episodes are collected by a fixed behavior pbheyl do not change.

The maximization in (22) can be performed using any optimization techniquelengss the
maximization is achieved, the policy is improved as guaranteed by Theoremnde tBe latent
variables are involved, it is natural to employ EM to solve the maximization. Thes&htion to
(22) is obtained by solving a sequence of maximization problems: starting@8f = @™, one
successively solves

eM0) = argmax B (6|0 -Y) subject took(©@M-Y) = gk(©@M), Vt,k, (23)
Oe¥F
j = 17 27 )

where in each problem one maximizes the first lower bound with an updatdrion of {Z}
but with the recomputed rewards fixed {at(©(™)}; upon convergence, the solution of (23) is
the solution to (22). The EM solution here is almost the same as the likelihood matiamind
sequences for hidden Markov models (Rabiner, 1989). The onlyelifte is that here we have a
weighted log-likelihood function, but with the weights given and fixed. Tosterior of{Z} can
be updated by employing the dynamical programming techniques similar to tresenddMM, as
we discuss below.

It is interesting to note that, with standard EM employed to solve (22), the lbveaaimum
value algorithm is a “double-EM” algorithm, since reward computation constiari@uter EM-like
loop.

4.1 Calculating the Posterior of Latent Belief Regions

To allocate the weights or recomputed rewards and update the RPR as,iwé¢ldd not need to
know the full distribution of,. Instead, a small set of marginalsm(z, |a,,, 0%, ©) are necessary
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for the purpose, in particular,

E{(r(laj) = p(zlr(:i’ZlT(Jrl:”a(lg:tvoli:tv@)v (24)
(d(,r(i) = p(Z.lF:i\al(():t,Oli:t,@). (25)

Lemma 7 (Factorization of the& and @ Variables) Let

a¥(i) = p(zlr< - i‘alé:raoll(.:ne)
p(zl; - i’a(lg:r|oli:we)

) 26
My—op(ak |h¥, © (20)
kK (i (aT+l,[]zk—| aT,OIT‘Jrlt,@) 27
Bt’T(l) HT/ Tp(a'[ |hr’7 ) . ( )

Then
& i) = af(W(Z =i.af0f 1,21 = Dz = i8Rl i), (28)
@) = okl (i) p(EkhY). (29)

The a and variables in the Lemma 7 are similar to the scaled forward variables and back-
ward variables in hidden Markov models (HMM) (Rabiner, 1989). Thedisg factors here are
[v_o p(a%|hk, ©), which is equal tap(af. |0k, ®) as shown in (9) and (10). Recall from Defini-
tion 3 that one eplsode of lengthhasT + 1 sub-episodes with each having a different ending time
step. For this reason, one must computefihariables for each sub-episode separately, since the
[3 variables depend on the ending time step. draariables, one needs to compute them once per
episode, since it does not involve the ending time step.

Similar to the forward variables and backward variables in HMM modelsy thied3 variables
can be computed recursively, via dynamical programming,

(@S = s = i, ) o
ax(i) = 12| (a0|hf<, ° ok . L , (30)
Zj 1ar l W(z‘§_1:J,aT_l,oT,z‘§:|)n(z‘T<:|,aT) >0
p(ak|hk, ©) ’
TS !
K iy _
BLT(I) N Z‘JZ:‘]_ (Zk =i aIT(,OIT(+1aZl(<+1 = j)T[(Z‘((+1 = jaa|1(+1)B{(,r+1(j) I<t ’ (31)
p(ak|hk, ©) ’
fort=0,---,Txandk=1,--- K. Slncezlz‘ ak(i) = 1, it follows from (30) that
.ZM%=DM%=u%% T=0
p(a';|h';,e) = I|:Z| 12| . (32)

ZZI W(ZE ;= j.at 3,057 =nz =i,a), 1>0
i=1]
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4.2 Updating the Parameters

We rewrite the lower bound in (18),

~

12|

aOt,zlé |01t7A
% o (25|10 G o)
|Z|

%k Qt ZS ‘@ )In p(aOtsz |01t7 )+00nstar1t

LB(G|®) =

HM?: HM;:
OM;| i

XNk, Xl

where the “constant” collects all the terms irreIevan@toSubstituting (5) and (15) gives
N 1 K K |Z| t 12|
LBO®) = 5 quo (M) Inf(i) +Z)zqu i) InTi(i,a¥)
+ Zl E” ) INW(i,a ;0% j) » 4 constant
i,]=1

It is not difficult to show thaB = arg max, LB(®|®) is given by

K Ti k ;
Ske1t200 ‘d(o

wi) = (33)
Zw Yo 1Zt oot(Ffo
K
f(a) = ‘E'k 12 0OF Y o‘l*(r (i) d(ar,a) (34)

a1 ke 12 00K St o @< (1)d al'va

k
W(i,a,o,j) _ 2k—1z OtZr 1Et1(|71)( )6(0T+170) : (35)

Z‘Zl Zk 12 oot ZT 1Et1’(| j)o(ak a)é(o'r‘ﬂ,o)
. . 1, a:b K :
fori,j=12,2,---,|Z],a=1,---,|4|,ando=1,---,|O|, whered(a,b) = 0. azb , andof is

the recomputed reward as defined in (16). In computihgne employs the equatlcpqam\olt, Q)=
Mt_o p(ak|hk, ©) established in (9) and (10), to get

= ~'<|‘Lp (@, o (36)

with p(ak|h¥, @) computed from ther variables by using (32). Note that the normalization constant,
which is equal to the empirical valdg DX); ©), is now canceled in the update formulae@f

4.3 The Complete Value Maximization Algorithm for Single-Task RPR Leamning

The complete value maximization algorithm for single-task RPR learning is summhamiZ@ble
1. In earlier discussions regarding the relations of the algorithm to EM,ave mentioned that
reward computation constitutes an outer EM-like loop; the standard EM entptoysolve (22)
is embedded in the outer loop and constitutes an inner EM loop. The double &id &e not
explicitly shown in Table 1. However, one may separate these two loops Ipjnkegot} fixed

1145



L1, LiA0 AND CARIN

Input: DK, 4, 0, |Z|.
Output: © = {p, TTW}.

1. Initialize ©, ¢ =[], iteration= 1.
2. Repeat
2.1 Dynamical programming:
Computea andp variables with Equations (30)-(32).
2.2Reward re-computation:
Calculate{c}} using (36) and (32).
2.3 Convergence check:
Compute/(iteration) = V(DK); ®) using (17).
If the sequence dfconverges
Stop the algorithm and exit.
Else
iteration = iteration+ 1
2.4 Posterior update for z
Compute th& and@ variables using Equations (28)-(29).
2.5Update of ©:
Compute the update@ using (33), (34), and (35).

Table 1: The value maximization algorithm for single-task RPR learning

when updating® and the posterior af's, until the empirical value converges; see (23) for details.
Once{cf} are updated, the empirical value will further increase by continuing ugg&iand
the posterior oZs. Note that the{of'} used in the convergence check are always updated at each
iteration, even though the nefwt} may not be used for updatir@and the posterior afs.

Given a history of actions and observatiq@ag:_1,011) collected up to time step the single
RPR vyields a distribution od; as given by (8). The optimal choice fay can be obtained by either
sampling from this distribution or taking the action that maximizes the probability.

4.3.1 TIME COMPLEXITY ANALYSIS

We quantify the time complexity by the number of real number multiplications perfibpee it-
eration and present it in the Big-O notation. Since there is no compellingrréasthe number
of iterations to depend on the size of the inpuhe complexity per iteration also represents the
complexity of the complete algorithm. A stepwise analysis of the time complexity of tle va
maximization algorithm in Table 1 is given as follows.

e Computation of thex variables with (30) and (32) runs in tin@(| 2|2 S, T).

e Computation of’s with (31) and (32) runs in tim®(| Z|? T, z;rEOrk;«éO(t +1)), which de-
it
pends on the degree of sparsity of the immediate rem1{a13i§- - r#k}ﬁzl. In the worst case

2. The number of iterations usually depends on such factors as initializdttha algorithm and the required accuracy,
etc.
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the time isO(|Z|2TK ;5 *o(t+1)) = O(| 22 T K_; T,2), which occurs when the immediate re-
ward in each episode is nonzero at every time step. In the best case the@ifhs|&sy K_; Ti),
which occurs when the immediate reward in each episode is nhonzero onfixed aumber
of time steps (only at the last time step, for example, as is the case of the bekgnoidems
presented in Section 6).

e The reward re-computation using (36) and (32) requires ﬁ)ﬁgﬁlek) in the worst case
andO(K) in the best case, where the worse/best cases are as defined above.

e Update of® using (33), (34), and (35), as well as computation ofglaad variables using
(28) and (29), runs in tim®(| 2|> 7_; T?) in the worst case an@(| 2|2 K_; Tk) in the best
case, where the worse/best cases are defined above.

SinceyK ; Ty > |4||0| in general, the overall complexity of the value maximization algorithm is
O(|2I? 31 T?) in the worst case an@(|Z|>S{_; Tk) in the best case, depending on the degree
of sparsity of the immediate rewards. Therefore the algorithm scales line#hythve number of
episodes and to the square of the number of belief regions. The time éspyruh the lengths of
episodes is between linear and square. The sparser the immediate rawattie more the time is
towards being linear in the lengths of episodes.

Note that in many reinforcement problems, the agent does not receive iatenezvards at ev-
ery time step. For the benchmark problems and maze navigation problemseredsiSection 6,
the agent receives rewards only when the goal state is reached, whiies the value maximization
algorithm scale linearly with the lengths of episodes.

5. Multi-Task Reinforcement Learning (MTRL) with RPR

We formulate our MTRL framework by placing multiple RPRs in a Bayesian settidgdamelop
techniques to learn the posterior of each RPR within the context of all ofPBsR

Several notational conventions are observed in this section. Theiposte® is expressed in
terms of probability density functions. The notati@g(©) is reserved to denote the density function
of a parametric prior distribution, with the associated probability measuraekbbgGy without a
parenthesize® beside it. For the Dirichlet process (which is a honparametric pri&ay)lenotes
the base measure a@(©) denotes the corresponding density function. The twofold uggyof
is for notational simplicity; the difference can be easily discerned by theepoe or absence of a
parenthesize®. Thed is a Dirac delta for continuous arguments and a Kronecker delta for tiscre

arguments. The notatidd; is the Dirac measure satisfyidg, (dOm) = { é’ g)tjhirc\j/v?sme .

5.1 Basic Bayesian Formulation of RPR

ConsiderM partially observable and stochastic environments indexeohbyl,2--- ,M, each of
which is apparently different from the others but may actually shareafwmeatal common char-
acteristics with some other environments. Assume we have a set of epistiéeted from each

K
. (Km) mk,_mk _mk_mk _mk mk .mk mk m o
environmentDm ™ = (89" 1o 0y @y Ty ---Op ap I ) 1’ form=1,2,--- M, whereTm

represents the length of episokién environmentm. Following the definitions in Section 3, we
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write the empirical value function of the-th environment as

Km Tmk
V(D0 ;““k (0T, Om), (37)
m k=1t

form=12_.. M, where®y = {1, Um, W} are the RPR parameters for theth individual
environment.

Let Go(®n) represent the prior @y, whereGo(©) is assumed to be the density function of a
probability distribution. We define the posterior®f, as

7 [ Km).
p(On| D™, Go) %2 V1P 1O a(On) (38)

Vo (DY™)

where the inclusion 06Gg in the left hand side is to explicitly indicate that the prior being used is
Go, andVGO(Q)ﬁnKW) is a normalization constant

f. ~
Voo (D) P2 / V(D™ ©1n) Go(Orm) O, (39)

which is also referred to as thearginal empirical valug since the paramete®;, are integrated out
(marginalized). The marginal empirical vth?go(Q),(nKm)) represents the accumulated discounted
reward in the episodes, averaged over infinite RPR policies independeaiy fromGo.

Equation (38) is literally a normalized product of the empirical value functioth a prior
Go(Om). Since [ p(Om| D™, Go)dOm = 1, (38) yields a valid probability density, which we call
the posterior of®,, given the eplsodeg)r(n ™|t is noted that (38) would be the Bayes rule if
V( X ),Om) were a likelihood function. Slnc%(ﬂ)&Km);@m) is a value function in our case, (38)
is a somewhat non-standard use of Bayes rule. However, like the cBegis rule, (38) indeed
gives a posterior whose shape incorporates both the prior informatan @y, and the empirical
information from the episodes.

Equation (38) has another interpretation that may be more meaningful fepetispective of
standard probability theory. To see this we substitute (37) into (38) to obtain

Rm~mk mk
r 0 ,Om)Go(O
o(@ )
Tm, k k K
_ & TR 3 s 4 p(Omlagy, oY, Go) o
Voo(Din™) ’
where
Z{T’Lk _ ~mk |01t 7G0)
- ~mk/ p(aG; 03", Om) Go(Om)dOn

3. The term “marginal” is borrowed from the probability theory. Here \8e it to indicate that the dependence of the
value on the parameter is removed by integrating out the parameter.
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with otm’k the re-computed reward as defined in (16) and thereif{&f‘e’s the averaged re-computed
reward, obtained by taking the expectatiomB]fk(G)m) with respect tdGo(Om).

In arriving (41), we have used the fact the RPR parameters are indepieof the observations,
which is true due to the following reasons: RPR is a policy concerning ggaerof the actions,
employing as input the observations (which themselves are generatedumktievn environment);
therefore, observations carry no information about the RPR paranthieris, p(©|observations=
P(©) = Go(©).

It is noted thatp(@m]a',f‘,[k,olmtk,Go) in (41) is the standard posterior &, given the action
sequenceag}tk, and p(@m]@m ,Go) is a mixture of these posteriors with the mixing proportion
given bthm’k. The meaning of (40) is fairly intuitive: each action sequence affectsaktepor of
On Iin proportion to its re-evaluated reward. This is distinct from the posteritivdrclassic hidden
Markov model (Rabiner, 1989) where sequences are treated db/eéaqumertant.

Sincep(@myﬂ)&K”‘),GO) integrates to one, the normalization constégf Dt '“)) is

1 Km Tmk

3 3k (43)

Km
k=1t=

We obtain a more convenient form of the posterior by substituting (6) intpt@éxpand the

summation over the latemtvariables, yielding

Tmk ~mk

sz T 2ot lengL’m’ aongt ‘OTtkvem)GO(em)
veom% ") '

P(Om| D™, Go) = (44)

To obtain an analytlc posterior, we let the prior be conjugate(ag‘,[ ,26”,[ ]olt ,©Om). As shown
by (5), p( am ,zgq ]olt ,Om) is a product of multinomial distributions, and hence we choose the
prior as a product of Dirichlet distributions, with each Dirichlet repréisgnan independent prior
for a subset of parameters@ The density function of such a prior is given by

Go(Om) = p(H"L)p(T"|p) p(W™|00), (45)
p(UMY) = Dir (WMD), WM 2])|v)), (46)
|Z|
P(tTlp) = [ Dir (W7(,). -+ 77 |41 o) (47)
. 4] |0] |2 . .
pWTw) = a_lo_lﬂour(w (1,8,0,1),+ W™(i,a,0,|Z]) | @ a0) (48)

wherev = {u1,...,0 .z}, p=1{P1,---, Pz} With pi = {pi1,...,Pi |2}, andw={W a0 i =1...|Z|,
a=1...|4/,0=1 [ = {Wia01, -, Wao|z ) Substituting the expression G
into (44), one gets

P(Om| D™, .Go)
m, Z 14 LK mk k LK
%mZ 12— SZ‘Zgn'ky_%n.k:lZT (z01) P(Omlagy 01y %1 > Go)
Vo (DR™)
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where

PN = I [ Pl 2ol Om Go(@m)den

kO™ F(5 0™ MiMal () M7 (Sapla")

T RO ™) (2 a0
Mallo i F(6756,) Mallo i (3 M) )
" MlaMo M M (2 &%) Mallo Tl 11 T (@)

represents the averaged recomputed reward over agis&exquenceg‘ik, and
mk _mk _mk N N
P(Omlagy ; OF; oy - Go) = P(HMO™) p(rtM ™) p(W @™

is the density of a product of Dirichlet distributions and has the same fofB3 (@) in (45) but with
v, p, W respectively replaced by™kt, pmkt @Mkt as given by

o = ol et i), (50)
~mkt ka : mk
p|a - p|a+ 2)6 _| ( a), (51)
Oho; = Whojt ;6(;%— 1)8(a™; — a)3(ol™ — 0)3(Z™ ~ j). (52)
=
The normalization constaM;o( ) (which is also the marginal empirical value) can now be
expressed as
(Kn) 1 Km Tmk | 2| K "
Voo (Dn™) = (21 )- (53)

F&nEEHE;%wF;%W_l

5.2 The Dirichlet Process Prior

In order to identify related tasks and introduce sharing mechanisms for nmaktigarning, we
employ the Dirichlet process (Ferguson, 1973; Blackwell and MacQuE®73; Antoniak, 1974;
Sethuraman, 1994) as a nonparametric prior that is shar@,bgn=1,2,--- /M. A draw from a
DP has the nice property of being almost surely discrete (Blackwell araMeen, 1973), which
is known to promote clustering (West et al., 1994); therefore, related {askjudged by the em-
pirical value function) are encouraged to be placed in the same groupealehrned simultane-
ously by sharing the episodic data across all tasks in the same groupmifigstine prior of®p,,
m=1,2,---,M, is drawn from a Dirichlet process with base meassgend precisiom, we have

OmlG ~ G,
G|G,Go ~ DP(G,Go),

where the precision provides an expected number of dominant clusters, with this driven by the
number of samples (West, 1992). It usually suffices to set the preasiging the rule in West
(1992). If desired, however, one may also put a Gamma prian amd draw from its posterior
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(Escobar and West, 1995), which yields greater model flexibility. Note th@i@cision is denoted
by the same symbol as tleevariables in (26). The difference is easy to recognize, since the former
is a single quantity bearing neither superscripts and nor subscripts whikgtdrerepresent a set of
variables and always bear superscripts and subscripts.

By marginalizing outG, one obtains the Polya-urn representation of DP (Blackwell and Mac-
Queen, 1973), expressed in terms of density functfons,

a
————Go(Om) o(@ =1,---,M 54
G+M*1 0( m G+M 12 9 9 9 ( )
J#m

where the probability is conditioned @, = {©1,02,--- ,0m} \ {Om}. The Polya-urn represen-
tation in (54) gives a set of full conditionals for the joint pripi®,05,--- ,0On).

The fact thatG ~ DP(a, Gp) is almost surely discrete implies that the §&4, ©2, ---, O},
which are iid drawn front5, can have duplicate elements and the number of distinct elerients
cannot exceet, the total number of environments. It is useful to consider an equivedenésen-
tation of (54) based on the distinct elements (Neal, 1998)CLet{01,0,,---,0On} represent the
set of distinct elements §©1,0,,---,Ou }, withN <M. Letc= {cy,Cz,...,Cm } denote the vector
of indicator variables defined by, = niff ©n = ©, andc_m = {c1,C,---,cm} \ {Cm}. The prior
conditional distributionp(cm|c_m) that arises from the Polya-urn representation of the Dirichlet
process is as follows (MacEachern, 1994)

p(em|®*m7 a7 GO) -

a N mn

FEAVEE )

n:lm5(cm— n), (55)

p(Cm|c_m,a) =

wherel _n,, denotes the number of elementgin ¢; = n,i # m} andcy, = 0 indicates a new sample
is drawn from the bas€y. Givency, and®, the density 0By, is given by

P(Om|Cm, ©,Go) = 8(Cm)Go(Om) + % 3(Cm—Nn)3(Om—OBp). (56)
=1

5.3 The Dirichlet Process Posterior

We take two steps to derive the posterior based on the representatiora® thiéor given by (55)
and (56). First we write the conditional posteriorogf v me {1,--- M},

f\7( fgﬂKm); Om) p(em|cm767 Go) P(Cm|C-m,a)dOn,

p(cm‘c—maéa @r<n m)7a7G0) = N — (Km) — s
ZCmZO fV(Q)m m , Om) p(G)m‘Cm7 @, GO) p(Cm‘C_m7 (X)d@m

which is rewritten, by substituting (55) and (56) into the righthand side, to gieldigorithmically
more meaningful expression

Vo (D™ 8(Cm) + SNl -V (D™ 8n) 8(Cm—)
Voo (D™ + 5N 1 Lm iV (D™, ©))

p(Cm‘C—mvéa @fgﬂKm) ) av GO) = ’ (57)

4. The corresponding expression in terms of probability measureslifBsand West, 1995) is given by

a 1

G
0t G TM—

Om|O_m,a,Gg ~ aIM_1

M —
12j:l7j7ﬁm66j7 m= 17 ,M./

wheredg; is the Dirac measure.
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where th(—:\A/GO(LD,(nKm)) is the marginal empirical value defined in (39) and its expression is given by
(53) when the DP base has a density function as specified in (45).

It is observed from (57) that the indicatoy, tends to equat if V(@&Km);én) is large, which
occurs when tha-th distinct RPR produces a high empirical value in theh environment. If
none of the other RPRs produces a high empirical value imtlieenvironmentg,, will tend to be
equal to zero, which means a new cluster will be generated to accoutiefolovelty. The merit
of generating a new cluster is measured by the empirical value weightadabg averaged with
respect toGy. Therefore the number of distinct RPRs is jointly dictated by the DP prior amd th
episodes.

Given the indicator variables the clusters are formed. L&f(c) = {m: cn = n} denote the
indices of the environments that have been assigned to-theluster. Given the clusters, we now
derive the conditional posterior &, v ne< {1,--- ,N}. If I,(c) is an empty set, there is no empirical
evidence available for it to obtain a posterior, therefore one simply rembigesluster. Ifl(c) is
nonempty, the density function of the conditional posterio®gis given by

( m).
(G| Unne o D™, Go) = — 20t l( On)Go(®r) (58)
meeln V( @n)GO(@n)d@n

Tk sk < |2
2 meln(c) %mZ ik Z‘Zgw‘k g p(agy, 20504, ©n)Go(On)
= — : (59)

Emeln(c) VGO(@f(n m))

where (59) results from substituting (12) into the righthand side of (58)te Nhat®,, which
represents the set of parameters ofriftl distinct RPR, is conditioned on all episodes aggregated
across all environments in timeth cluster. The posterior in (58) has the same form as the definition
in (38) and it is obtained by applying Bayes law to the empirical value funcmistcucted from
the aggregated episodes. As before, the Bayes law is applied in a raarstamanner, treating the
value function as if it were a likelihood function.

A more concrete expression of (59) can be obtained by letting the DPGgalsave a density
function as in (45),

P(GnlUnery(c) D™ Go)
Tmk o , , ,
2 meln(c Km PP Iick . ZL-?'( Mg e Zg?'tk) ®n|a01k’ OTtk’ Zg]ik» Go) (60)

Zmel VGo(@( ))

whereVg, (DA™ ) is the marginal empirical value given in (5&]*(Z1%¥) is the average recomputed
reward as given in (49), and

P(Onlagy, 015, 25, Go) = P(A"O™*) p(T"[p™k!) p(W"| @™kt

is the density of a product of Dirichlet distributions and has the same fofBg (@) in (45) but with
v, p, wrespectively replaced by™kt, pm™kt @Mkt as given by (50), (51), and (52).

Itis noted that, conditional on the indicator variabdemnd the episodes across all environments,
the distinct RPRs are independent of each other. The indicator varcb$tsr thevl environments
into N < M groups, each of which is associated with a distinct RPR. Given the clustersnvi-
ronments in the-th group merge their episodes to form a pool, and the posteriéy, ¢ derived
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based on this pool. Existing clusters may become empty and be removed yanllisters may be

introduced when novelty is detected, thus the pools change dynamicallglyflaenic changes are
implemented inside the algorithm presented below. Therefore, the numbestinEdRPRS is not

fixed but is allowed to vary.

5.4 Challenges for Gibbs Sampling

The DP posterior as given by (57) and (60) may be analyzed using theiqee of Gibbs sam-
pling (Geman and Geman, 1984; Gelfand and Smith, 1990). The Gibbs sauptessively draws
the indicator variables;,cy, ---,cv and the distinct RPR®;,05, ---,0y according to (57) and
(60). The samples are expected to represent the posterior when tkeviaain produced by the
Gibbs sampler reaches the stationary distribution. However, the coneergé Gibbs sampling
can be slow and a long sequence of samples may be required beforetiteasyadistribution
is reached. The slow convergence can generally be attributed to théhdche Gibbs sampler
implements message-passing between dependent variables through tiesarsgples, instead of
sufficient statistics (Jordan et al., 1999). Variational methods havesuegyested as a replacement
for Gibbs sampling (Jordan et al., 1999). Though efficient, variation#hoaks are known to suffer
from bias. A good trade-off is to combine the two, which is the idea of hyhkaidational/Gibbs
inference in Welling et al. (2008).

In our present case, Gibbs sampling is further challenged by the partfoata of the con-
ditional posterior of©, in (60), which is seen to be a large mixture resulting from the summa-
tion over environmentn, episodek, time stept, and latentz variables. Thus it has a total of
> mel, zfgl thj’g|Z|t components and each component is uniquely associated with a single sub-
episode and a specific instantiation of latentariables. To sample from this mixture, one first
makes a draw to decide a component and then d@wsom this component. Obviously, any par-
ticular draw of®,, makes use of one single sub-episode only, instead of simultaneously engployin
all sub-episodes in theth cluster as one would wish.

In essence, mixing with respect(m,k, t) effectively introduces additional latent indicator vari-
ables, that is, those for locating environmemtepisodek, and time step. It is important to note
that these new indicator variables play a different role thisin affecting the samples @,. In
particular, thez's are intrinsic latent variables inside the RPR model, while the new ones are ex
trinsic latent variables resulting from the particular form of the empiricale/déunction in (37).
Each realization of the new indicators is uniquely associated with a distinetgabde while each
realization ofzs is uniquely associated specific decision states. Therefore, the ugfdaebased
on one realization of the new indicators employs a single sub-episode goupdate based on one
realization ofZs employs all sub-episodes.

5.5 The Gibbs-Variational Algorithm for Learning the DP Posterior

The fact that the Gibbs sampler cannot update the posterior RPR samplemfynore than one
sub-episode motivates us to develop a hybrid Gibbs-variational algorihlaarning the posterior.
We restrict the joint posterior of the latentariables and the RPR parameters to the variational
Bayesian (VB) approximation that assumes a factorized form. This restrigigédds a variational
approximation top(Oy| Umeln(o) Q),(T]Km),Go) that is a single product of Dirichlet density functions,
where the terms associated with different episodes are collected andl @gld& herefore, updat-
ing of the variational posterior @&, in each Gibbs-variational iteration is based on simultaneously
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employing all sub-episodes in tineth cluster. In addition, the variational method yields an approx-
imation of the marginal empirical vaIuAe;O(@r%Km)) as given in (39).

The overall Gibbs-variational algorithm is an iterative procedure basethe DP posterior
represented by (57) and (58). At each iteration one successivdbyrmes the following form =
1,2,---,M. First, the cluster indicator variabtg, is drawn according to (57), wheﬁ@o(@&Km)) is
replaced by its variational Bayesian approximation; accordingly the chigter{m:cnh=n},n=
1,...,N are updated. For each nonempty clustghe associated distinct RPR is updated by draw-
ing from, or finding the mode of, the variational Bayesian approximatiqmjé}ﬁ|Umel Q)&Km), Go).

The steps are iterated until the variational approximatiory b, Ve, ( (Umetn(c Q)r(n )) converges.
Note that the number of clusters is not fixed but changes with the |terat|cnm eKisting clusters
may become empty and be removed and new clusters may be added in.

5.5.1 \ARIATIONAL BAYESIAN APPROXIMATION OFVg,(DK)) AND p(©|DX), Gy)

In this subsection we drop the variable dependence on environmméntnotational simplicity. The
discussion assumes a set of episaft€s = { (afriokakrk--- o ak rk )}K | which may come from
a single environment or a conglomeration of several environments.

We now derive the variational Bayesian approximation of the marginal erapuatue function
Vo, (DK)) as defined in (39). We begin by rewriting (39), using (6) and (37), as

K Tk |2

Voo(D%)) = t;rt 3 | p(@..25:/0%.©)Go(0) do.

We follow the general variational Bayesian approach (Jordan et &9; 1Bakkola, 2001; Beal,
2003)5 to find a variational lower bound toV@o( K)), and the variational Bayesian approximation
of Vi, (DK)) is obtained as the exponentlal of the lower bound. The lower bound isctidoal of

a set of factorized forméqgl(Z,)g(0) : Z € z,t = 1... Ty, k = 1...K} that satisfies the following
normalization constraints:

K Tk |Z|

Z %‘ o(Z,) =K and of(Z;) > 0VZ,,t,k,

k=1t

/g ©)do—1 and g(©) > 0VO.

The lower bound is maximized with respect {qf(z,)9(®)}. As will come clear below, maxi-
mization of the lower bound is equivalent to minimization of the Kullback-Leibldr)(Histance
between the factorized forms ametightedtrue joint posterior of's and®. In this sense, the opti-
malg(0) is a variational Bayesian approximation to the postgpi@| 2K), Go). It should be noted
that, as before, the weights result from the empirical value function andaira part of standard
VB (as applied to likelihood functions).

The variational lower bound is obtained by applying Jensen’s inequalitﬁtg{m('()),

InVg, (DX)

5. The standard VB applies to a likelihood function. Since we are using a fiahation instead of a likelihood function,
the VB derivation here is not a standard one, just as the Bayes rule)iis(38n-standard.
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_ niys = KGo(©) p(a;, 25410, ©)
- kA2, % © q#(zé;t)g(e) @
1 K Tk ‘Z‘ k ) p(af, 25|05, ©)
PPNPRY / i aem O o
e (X)) K 4
= Inay(0") — KL | {d(@500(0) |§ oy P Ol o)
= e ({d}.0@). (61)

wherelf is the average recomputed reward as given in (42), and

. ({qtk(zgx)g(@)} H {%(ZQ‘I;(MD(ZS;UO!&SI,O'&)})

1 K E |Z

th(zgzt)g(@)
O (Z51)9 do,
ZA\‘ / J th>®|aonolit)

klt

with KL (q||p) denoting the Kullback-Leibler distance.

For any set{q{‘(z&)g(@) ZXezt=1..Tuk= 1...K} satisfying the above normalization
constraints, the inequality in (61) holds. In order to obtain the lower bouatishclosest to
InV(D®), one maximizes the Iower bound by optimizifi§a¥},g(©)) subject to the normal-
ization constraints. Since W, (D' ) is independent 0o® and {g¥}, it is clear that maximiza-
tion of the lower bound LE{d<},g(©)) is equivalent to minimization of the KL distance be-

tween{q(z;)9(©) } and the weighted posterle[rA i z(‘gt,®|a0t,o'{t)}, where the weight
. Zt B ZF .
for episodek at time steqt is oo (00 = K T (the equatlon results directly from (43)), that is,

K times the fraction that the average recomputed re@aotcupies in the total average recomputed
reward. Therefore the factorized for{qtk(z(‘g:t)g(e)} represents an approximation of the weighted
posterior when the lower bound reaches the maximum, and the correspgi@nds called the
approximate variational posterior 6.

The lower bound maximization is accomplished by solvi{rt#(zg:t)} andq(©) alternately,
keeping one fixed while solving for the other, as shown in Theorem 8.

Theorem 8 lteratively applying the following two equations produces a sequence aftainally
increasing lower boundsB ({cf},g(®)), which converges to a maxima,

7k
G(250) = gzexp{ [9@m p(aé;t,z&ro&,eme} : (62)

K T 12 y
exp ; %( Qt rt p( aOtvzé:t‘ol:tve) ) (63)
K &

where Q and Go are normalization constants such thag(®)d® = 1 and

Tk 1Zt 0 |25Z| - 1(311 (Z5,) =K

9(0) =
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It is seen from (63) that the variational postenig©) takes the form of a product, where each
term in the product is uniquely associated with a sub-episode. As will beshedly, the terms are
properly collected and the associated sub-episodes simultaneously ethipidiie posterior. We
now discuss the computations involved in Theorem 8.

Calculation of {q{‘(zﬁi)} We uses the prior 0B as specified by (45). It is not difficult to verify
from (63) that the variational posterig(©) takes the same form as the prior, that is,

9(©@) = p(HL)p(Tip)p(W|w), (64)

where the three factors respectively have the forms of (46),(47)4®)dwe have put a hatabove
the hyper-parameters gf®) to indicate the difference from those of the prior.
Substituting (5) and (64) into (62), we obtain

@ t )
:CZexp{T;Unn(z‘T‘,aT» o(rip) +<Inu z <InW —1ar 1’0T’Zlf()>p(wa))}

=1
~k

:Cz ZS ZgaO rlw -1, T 1,0 l;’ ) (Zk ) (65)

where(-) ,p) denotes taking expectation with respecptaip), and

i) - exp{<lnu<j>>p(u|a)}

— explu m}, j=1..12, (66)

= exp

14|
W) - zﬁim}, m—1...|4, 67)

1

V)

i,m = exp{<'”"'m “F’)}
{
{

W(i,a,0,j) = exps{InW(i,a0,j)) (Wlw)}

= eXp{lIJ(E*\)i,a,o,j)—qJ( a)i,a,o.,j’)}a j=1...1Z, (68)

=1

each of which is a finite set of nonnegative numbers with a sum less tharBoeh a finite set is
called under-normalized probabilities in Beal (2003) and used therefarpevariational Bayesian
learning of hidden Markov models (HMM). Thg(-) is the digamma function

It is interesting to note that the produaz)Ti(Z;, al) [8_, W(Z_,,ak ;, 08, Z)T(Z,a¥) on the
left side of (65) has exactly the same form as the expressipoalf, zgt\o“, ©) in (5), except that
the® is replaced b{Ev) = {ﬁ,'ﬁ,v~\/}. Therefore, one can nominally rewrite (65) as

£k

i ~
qtk(zg:t) = Etz p(alé:t ) Zl(§:t |O|i:t ) 9)7
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with the normalization constant given by
1 K Tk |Z|

K =
a0t7 |01:t7@)7
Koy 2,0

such that the constrairg_ 1Zt 0 ‘ZSZ‘ . 1qt(z§ ) = K is satisfied. One may also find that the
normalization constar@, is a nominal empirical value function that has the same form as the em-
pirical value function in (12). The only difference is that the normaligds replaced by the
under-normalize®. Therefore, one may write

C,=V(DX):0). (69)
Since® = {[L, T, W} are under-normalizedp(ak,,z,|0%,,®) is not a proper probability distri-
bution. However, one may still writg(a,, Z5, |0k, ©) = p(ak,|0k,, ©)p(zs,|ak,, ok, 0), where
(at()-t|0lf-tv ©) = Zz(k) Ao 1p(aOt,ZS ‘OlitvN and p( Z(lg't|a|(()'t’olil(.'t>~) = %- Note that
p(Zs,|ak,,0k,,©) is a proper probability distribution. Accordinglg(Z;,) can be rewritten as
k
() = W;ffé) Pz e, 01, ©), (70)

where
of(©) = Ftkpt(aé:tIO'i;t,é)
= F{‘TEL p(ar|nt,0) (71)
is called variational re-computed reward, which has the same form as -twmeuted reward
given in (16) but with® replaced by®. The second equality in (71) is based on the equation
(a0t|olt, 0) = [Ti_o p(&|nk, ©) established in (9) and (10). The nominal empirical value function

V(DX ;) can now be expressed in termsa{f’(e

. K Tk
V(DK ok(© (72)
K22,

Equation (70) shows tha;f 2‘3 )isa welghted posterior a‘ét The weights, using (72), can be
equivalently expressed @?7 Knk(©) where

1K(®) e ot k(@)
SK1 31 00K(©)

The weighted posterior has the same form as (15) used in single-task RiPiRde Therefore we
can borrow the techniques developed there to compute the marginal distrtboitjaZ5, |ak,,, ok, ©),
particularly those defined in (24) and (25). For clarity, we rewrite thesgime distributions below
without re-deriving them, witl® replaced byo,

EEI(LJ) = p(zl;:i’ZlT(Jrl:”a(lg:tvOl](.:tvé)v (74)
(dir(i) = p(zl'r(:i‘a(lg:taoli:tué)' (75)

These marginals along with tHeX(©)} defined in (73) will be used below to compute the varia-
tional posteriog(©).

(73)
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Calculation of the Variational Posterior g(®) To computeg(®), one substitutes (5) and (70)
into (63) and performs summation over the latenariables. Most variables are summed out,
leaving onIy the marginals in (74) and (75). Employlng these marglnals andytakmaccount the
weights{Knk(®)}, the variational posterior (with¥(®) abbreviated ag for notational simplicity)
is obtained as

K Tk 1Z|
9©) = Goc(ee)eXp{i Kmlzifd‘o ) Inp(i)

k 1{=
t IZ\@ t 12 ‘
Inn|a+ I3 InW|a 00
p 1.21 r Tzlljzl tr -1 O'[ J)]}
K T (12l tz nq#
— I7 t '[
k_ln{ﬂ il

t IZ\

|—L | aT 170“1)?115” 11, )}
i,j= 1

= P(UO)p(Tip) p(W|w),

wherep(p/0), p(Tip), p(W|w) have the same forms as in (46), (47), and (48), respectively, but with
the hyper-parameters replaced by

R K Tk y .
0 = ui+ Y > nfd), (76)
k=1t=
K Tc t kqf "
Pia = Piat Ne@.(i)d(ar,a), (77)
o P 2 Y
R K Tx t Kek o " "
Waoj = m,a,o,j+k;t;;ntﬁm_l(u1)6(a1_17a)6(opo), (78)

fori,j=1,...,|2],a=1,...,]4],0=1,...,|0|. Note that, for simplicity, we have us€®, p, ®}

to denote the hyper-parametersyo®) for both before and after the updates in (76)-(78) are made.
It should be kept in mind that thg's, ¢'s, and&’s are all based on the numerical valueqofp, ®}
before the updates in (76)-(78) are made, that is, they are based ¢n,{h&} updated in the
previous iteration.

Itis clear from (76)-(78) that the update of the variational posterioagel on using all episodes
at all time steps (i.e., all sub-episodes). Fffecan be thought of as a variational soft count at ttme
of episodek, which is appended to the hyper-parameters (initial Dirichlet counts) giribe Each
decision state receivesn¥ in the amount that is proportional to the probability specified by the

posterior marginal$ef; } and{&f_,}.

Computation of the Lower Bound To compute the lower bound LBg<},g(©)) given in (61),
one first takes the logarithm of (62) to obtain

|nq{<(2‘81) = InCz_lftkexp{/g(O)ln p(ag:tazé:t‘oli:tve)de}

= |nCz+/9 rtp aOt,z‘é ’0117
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which is then substituted into the right side of (82) in the Appendix to cancdiritéerm, yielding

18 ({d}.00) = InCz—/g(G))In gg(oe)) do

= InC,—KL (g(@)/|Go(®))
— InV(D®);0) —KL (g(@)HGO(@)), (79)

where the last equality follows from (69).

The lower bound yields a variational approximation to the logarithm of the margmpirical
value. As variational Bayesian learning proceeds, the lower bound nmuoally increases, as
guaranteed by Theorem 8, and eventually reaches a maxima, at whi¢topeinbtains the best
(assuming the maxima is global) variational approximation. By taking exponehtlat best lower
bound, one gets the approximated marginal empirical value. The lowerdbalsa provides a
guantitative measure for monitoring the convergence of variational Eayk=arning.

5.5.2 THE COMPLETE GIBBS-VARIATIONAL LEARNING ALGORITHM

A detailed algorithmic description of the complete Gibbs-variational algorithmvisngin Table

2. The algorithm calls the variational Bayesian (VB) algorithm in Table 3 agaautine, to find
the variational Bayesian approximations to intractable computations. In parfitve marginal
empirical valueVGO(Q)r(nK’")) in (57) is approximated by the exponential of the variational lower
bound returned from the VB algorithm by feeding the episoﬁ}é@”. The conditional poste-
rior p(én|Um€|n(c) Q)&Km),Go) in (58) is approximated by the variational posterg©,) returned
from the VB algorithm by feeding the episodgf, ) Q)&Km. The variational approximation of

VGO(Q)r(nKm>) need be computed only once for each environmettefore the main loop begins, since

it solely depends on the DP baGg and the episodes, which are assumed given and fixed. The vari-

ational posteriog(©,) andVg, (Umeln(c) D "‘)), however, need be updated inside the main loop,

because the clustefs,(c)} keep changing from iteration to iteration.

Upon convergence of the algorithm, one obtains variational approximatdhs posteriors of
distinct RPRs{g(®n)}N_;, which along with the cluster indicatofg;,c,, -+ ,cu} give the varia-
tional posteriorg(©®y,) for each individual environmemh. By simple post-processing of the pos-
terior, we obtain the mean or mode of ed®h, which gives a single RPR for each environment
and yields the history-dependent policy as given by (8). Alternatioslg, may draw samples from
the variational posterior and use them to produce an ensemble of RP&scfoenvironment. The
RPR ensemble gives multiple history-dependent policies, that are margih@izraged) to yield
the final choice for the action.

It should be noted that the VB algorithm in Table 3 can also be used as aataredalgorithm
to find the variational posterior of the RPR of each environment indepélydef the RPRs of
other environments. In this respect the VB is a Bayesian counterpar ofidkimum value (MV)
algorithm for single-task reinforcement learning (STRL), presentecatiéh 4 and Table 1.

Time Complexity Analysis The time complexity of the VB algorithm in Table 3 is given as
follows where, as in Section 4.3.1, the complexity is quantified by the numbesabfnumber
multiplications in each iteration and is presented in the Big-O notation. For thengagated in
Section 4.3.1, the complexity per iteration also represents the complexity ofrtieate algorithm.
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Input: {@&Km)}r’\r/{:r A, 0, |Z|’ {Uap’w}1 a
Output: {On, Pn, Gn}N_; with N <M and{cy,C,- - ,Cm}-

1. Computing the variational approximations of {Vg, (D (K”‘))}.
1l.1for m=1to M

Call the algorithm in Table 3, with the inpuﬂ%Km), 4,0, |z,
{u,p,w}. Record the returned hyper-parameter$@s, pm, Wm} and the
approximaté/, (D (Km))
2. Initializations: Let j =1, N=M, ¢ =0.
LetUp = U, P, = Pn, On = G, forn=1,--- N.
3. Repeat
3.1Forn=1toN
Update®, by drawing from, or finding the mode of, ti@&, with hyper-
parametergUn, Py, Gn } -
3.2Form=1to M
Let Q9 = ¢, and drawcy, according to (57).
If cm # cQd
If cm =0, start a new clustdg;;1(c) = {m}.
Elseif cm # 0, move the elememh from | (C) to Ig,, (C).
Forn= {c?n'd,cm}
If 1n(c) is an empty set
Delete then-th cluster.
Elseif I5(c) contain a single element (let it be denotedndy
Let Un="0ny, Py =Prrs Voo (D)) 0 ().
Else
Call the algorithm in Table 3, with the inputgic;, ( ),
4, 0,2, {v,p,w}. Record the returned hyper- parameters as
{On, P, @n}. Scale the returneds,(Uici, (K'))

by Z‘;'n“:( ' and add the result téj).
i=1

If In(c) is not empty
Draw ©, drawn fromGg with hyper-parameter§o,, p,,, @n }-
3.3Updating N:
Let N be the number of nonempty clusters and renumber the
nonempty clusters so that their indices aré¢1n2,--- ,N}.
3.4 Convergence check:
If the sequence dfconverges
stop the algorithm and exit.
Otherwise
Setj:=j+1and/(j)=0.

Table 2: The Gibbs-variational algorithm for learning the DP posterior
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Input: DK, 4, 0, |z], {v,p,w}.
Output: {0,p,@}, Ve, (D®)) ~ LB({g},g(0)).

1. Initialize 0 =v,p=p, W= w, ¢ = [], iteration= 1.
2. Repeat
2.1 Computing ©:
Compute the set of under-normalized probabilitessing
Equations (66)-(68).
2.2 Dynamical programming:
Computea andp variables with (30), (31), and (32), with
replaced b@ in these equations.
2.3 Reward re-computation:
Calculate the variational recomputed rewéad(©)} using
(71) and (32) and compute the weig{hrtt"(é)} using (73).
2.4Lower bound computation:
Calculate the variational lower bound LR§},g(©)) using
(79) and (72).
2.5 Convergence check:
Let ¢(iteration) = LB ({cf},9(0)).
If the sequence dfconverges
Stop the algorithm and exit.
Else
Set iteration= iteration+ 1.
2.6 Posterior update for z
Compute th& and@ variables using Equations (28)-(29).
2.7 Update of hyper-paramters:
Compute the updatefD, p,®} using (76), (77), and (78).

Table 3: The variational Bayesian learning algorithm for RPR

e The computation o based on Equations (66)-(68) runs in tif®¢|z|), O(|4||Z
0(]4]|0||z|?), respectively.

), and

e Computation of thea variables with (30) and (32) (witl® replaced byé) runs in time
O(| 212 3i1 Tw-

e Computation of theB variables with (31) and (32) (witl® replaced byé) runs in time
T . . .
o(|z)2sK S ok so(t+1)), which iSO(|Z|? 3 iX_; T?) in the worst case and B(| Z|? T |k_; Tk)
in the best case, where the worst and best cases are distinguisheddpatbeness of imme-
diate rewards, as discussed in Section 4.3.1.

e The reward re-computation using (71), (32), and (73) requires @®_, T¢) in the worst
case an@®(K) in the best case.

e Computation of the lower bound using (72) and (79) requires @tjet||0|| Z|?).
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e Update of the hyper-parameters using (76), (77), and (78), as walbmputation of the
& and ¢ variables using (28) and (29), runs in tirﬁE\Z\zzﬁlekz) in the worst case and
O(|223K_; Tk) in the best case.

The overall complexity of the VB algorithm is seen to 8¢ 2|2 $K_; T,2) in the worst case and
O(|223K_; Tk) in the best case, based on the fact hit, Ty > |4||O| in general. Thus the VB
algorithm has the same time complexity as the value maximization algorithm in Table 1. Note
that the time dependency on the lengths of episodes is dictated by the ggareéthe immediate
rewards; for most problems considered in Section 6, the agent receivards only when the goal
state is reached, in which case the VB algorithm scales linearly with the lerfgthbsodes.

The complexity of the Gibbs-variational algorithm can be easily obtained luemsibe complex-
ity analysis above for the VB algorithm. At the beginning and before ent¢hegnain loop, the
Gibbs-variational algorithm calls the VB to compute the variational approximafitime marginal
empirical vaIue{\A/Go(Q),(nKm))} for each environmenn, by feeding the associated episo@%(’“).
These computations are performed only once. For each environmerBthen¥ until convergence,
with a time complexity betwee®(| 2|25 K™ Tmk) andO(| Z|2 3", T2, ) per iteration, depending
on the sparseness of the immediate rewards. Inside the main Ioo7p, the @rddomal algorithm
calls the VB to compute the variational posterior of distinct RPR for each clastey feeding
the merged episodégye, ) Q)r(nK’“). These computations are performed each time the clusters are

updated, with a time complexity betwe@f| 2|2 3 ey, ) Tk Tmk) aNAO(| 212 S meiy(c) S T2
per iteration for clusten.

6. Experimental Results

We compare the performance of RPR in multi-task reinforcement learningr({f}IVersus single-
task reinforcement learning (STRL), and demonstrate the advantagéREMhe RPR for MTRL
is implemented by the Gibbs-variational algorithm in Table 2 and the RPR for $iRiplemented
by the maximum-value (MV) algorithm in Table 1. The variational Bayesian (MByrathm in
Table 3, which is a Bayesian counterpart of the MV algorithm, generallfjppas similar to the
MV for STRL and is thus excluded in the comparisons.

Since the MV algorithm is a new technique developed in this paper, we evithegierformance
of the MV before proceeding to the comparison of MTRL and STRL. We edsopare the MV to
the method of first learning a POMDP model from the episodes and thendititroptimal policy
for the POMDP.

6.1 Performance of RPR in Single-Task Reinforcement Learning (STR)

We consider the benchmark example Hallway2, introduced in Littman et &5§1%he Hallway2
problem was originally designed to test algorithms based on a given POMDIBInand it has
recently been employed as a benchmark for testing model-free reinfantaigerithms (Bakker,
2004; Wierstra and Wiering, 2004).

Hallway?2 is a navigation problem where an agent is situated in a maze cogsisAmumber
of rooms and walls that are connected to each other and the agent nawigdte maze with the
objective of reaching the goal within a minimum number of steps. The mazernsatbazed by 92
states, each representing one of four orientations (south, northyesss},in any of 23 rectangle
areas, and four of the states (corresponding to a single rectanglerepeesent the goal. The
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observations consist of 2= 16 combinations of presence/absence of a wall as viewed when standing
in a rectangle facing one of the four orientations, and there is an obiservaiquely associated
with the goal. There are five different actions that the agent can {aka&y in placemove forward

turn right, turn left, turn around;. Both state transitions and observations are very noisy (uncertain),
except that the goal is fully identified by the unique observation assoomthdt. The reward
function is defined in such a way that a large reward is received wheagttd enters the goal from

the adjacent states, and zero reward is received otherwise. Thaswelistructure is highly sparse
and both the MTRL and STRL algorithms scale linearly with the lengths of epésadhis case, as
discussed in Sections 4.3.1 and 5.5.2.

6.1.1 FERFORMANCE AS AFUNCTION OF NUMBER OF EPISODES

We investigate the performance of the RPR, as a functidf thfe number of episodes used in the
learning. For each givel, we learn a RPR from a set &f episodesD) that are generated by
following the behavior policy1, and the learning follows the procedures described in Section 4.

The conditions for the policyl, as given in Theorem 5, are very mild, and are satisfied by a
uniformly random policy. However, a uniformly random agent may take g tome to reach the
goal, which makes the learning very slow. To accelerate learning, we seaiarandom policyTl,
which is simulated by the rule that, with probabilipjuery, I chooses an action suggested by the
PBVI algorithm (Pineau et al., 2003) and, with probability pquery, ' chooses an action uniformly
sampled from4. The use of PBVI here is similar to the meta-queries used in Doshi et al8)200
where a meta-query consults a domain expert (who is assumed to hags txtee true POMDP
model) for the optimal action at a particular time step. The meta-queries cong$p human-
robot interactions in robotics applications. It should be noted that, by impkimgetine reward
re-computation in RPR online, the behavior policy in each iteration simply bectra&PR in the
previous iteration, in which case the use of an external policy like PBVI is editath

In principle, the number of decision states (belief regidis)can be selected by maximizing
the marginal empirical valug, (D)) = [V(DX))Gy(©)d® with respect tqz|, where an ap-
proximation ofV (D)) can be found by the VB algorithm in Table 3. Because the MV does not
employ a prior, we make a nominal pri@(©) by letting it take the form of (45) but with all
hyper-parameters uniformly set to one. This lead&4(©) = Cy,y, WhereCy, is a normalization
constant. Therefore maximization &, (X)) is equivalent to maximization of V(D(K); ©)do,
which serves as an evidence of how good the choid&pfits to the episodes in terms of empirical
value. According to the Occam Razor principle (Beal, 2003), the mininfinfitting the episodes
has the best generalization. In practice, lettidgbe a multiple of the number of actions is usually
a good choice (hergz| = 4 x 5= 20) and we find that the performance of the RPR is quite robust
to the choice of Z|. This may be attributed to the fact that learning of the RPR is a process of
allocating counts to the decision states—when more decision states are intheyesimply share
the counts that otherwise would have been allocated to a single decisiorPstatieled the sharing
of counts is consistent amopgtt, andW, the policy will not change much.

The performance of the RPR is compared against EM-PBVI, the methodirtaearns a
predictive model as in Chrisman (1992) and then learns the policy bastx gmedictive model.
Here the predictive model is a POMDP learned by expectation maximization ¥as8d onpK)
and the PBVI (Pineau et al., 2003) is employed to find the policy given the P®No examine the
effect of the behavior policyl on the RPR’s performance, we consider three diffef&at which
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respectively have a probabilifyuery = 5%, 30% 50% of choosing the actions suggested by PBVI,
wherepquery cOrresponds to the rate of meta-query in Doshi et al. (2008). Thedgsissed to learn
EM-PBVI are collected by the behavior policy wilyuery = 50%, which is the highest query rate
considered here. Therefore the experiments are biased favorakiydothe EM-PBVI, in terms of
the number of expert-suggested actions that are employed to generatartimg tepisodes.

The performance of each RPR, as well as that of EM-PBVI, is evaluatgdallway?2 by fol-
lowing the standard testing procedure as set up in Littman et al. (1995ga€brpolicy, a total of
251 independent trials are performed and each trial is terminated when teighgoal is reached
or a maximum budget of 251 steps is consumed. Three performance egeaseicomputed based
on the 251 trials: (a) the discounted accumulative reward (i.e., the sunpofiertially discounted
rewards received over thide < 251 steps) averaged over the 251 trials; (b) the goal rate, that is, the
percentage of the 251 trials in which the agent has reached the goak (@niber of steps that the
agent has actually taken, averaged over the 251 trials.

The results on Hallway2 are summarized in Figure 1, where we pressanoétne three perfor-
mance measures plus the learning time, as a function ¢f lwighe number of episodds used in
the learning. The four curves in each figure correspond to the EMERBM the three RPRs with
a rate of PBVI query 5%, 30%, and 50%, respectively. Each cusudteefrom an average over 20
independently generatefi®) and the error bars show the standard deviations. For simplicity, the
error bars are shown only for the RPR with a 50% query rate.

As shown in Figure 1 the performance of the RPR improves as the numbpgisotieK used
to learn itincreases, regardless of the behavior pdlicis recalled from Theorem 5, the empirical
value functior?\7(@(K);G)) approaches the exact value functiorkagoes to infinity. Assuming the
RPR has enough memory (decision states) and the algorithm finds the glotdelanthe RPR will
approach the optimal policy &increases. Therefore, Figure 1 serves as an experimental verifica-
tion of Theorem 5. The CPU time shown in Figure 1(d) is exponential ifyld@r, equivalently, is
linear inK. The linear time is consistent with the complexity analysis in Section 4.3.1.

The error bars of goal rate exhibits quick shrinkage witand those of the median number of
steps also shrinks relatively fast. In contrast, the discounted accuneutatisard has a very slow
shrinkage rate for its error bars. The different shrinkage rates it it is much easier to reach
the goal within the prescribed number of steps (251 here) than to reagodhén relatively less
steps. Note that, when the goal is reached at-thestep, the number of stepgibut the discounted
accumulative reward i 'r 4o, Wherer goa is the reward of entering the goal state. The exponential
discounting explains the difference between the number of steps and toemtisd accumulative
reward regarding the shrinkage rates of error bars.

A comparison of the three RPR curves in Figure 1 shows that the rate &t wiedoehavior
policy I uses or queries PBVI influences the RPR’s performance and the iodwspends oK.
WhenK is small, increasing the query rate significantly improves the performanarpas, when
K gets larger, the influence decreases until it eventually vanishes. Theaded influence is most
easily seen between the curves of 30% and 50% query rates. To malafitrenance not degrade
when the query rate decreases to as low as 5%, a much kKargay be required. These experimental
results confirm that random actions can accomplish a good exploratioraitdlzle rewards (the
goal state here) by collecting a large number of (lengthy) episodes afPfRdearned from these
episodes perform competitively. With a small number of episodes, howawelom actions achieve
limited exploration and the resulting RPR performs poorly. In the latter caseiegio experts like
PBVI plays an important role in improving the exploration and the RPR’s padace.
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Figure 1: Performance comparison on the Hallway2 problem. The hdaizaxis is log, of the

number of episodek used in learning the RPR. The horizontal axis in each sub-figure
is (a) Goal rate (b) Discounted accumulative reward (c) Number of stepsach the
goal (d) Time in seconds for learning the RPR. The four curves in egotefcorrespond

to the EM-PBVI and the RPR based on a behavior pdlicshat queries PBVI with a
probability pguery = 5%, 30%, 50%, respectively. The EM-PBVI employs EM to learn a
POMDP model based on the episodes collected With pguery= 50% and then uses the
PBVI (Pineau et al., 2003) to find the optimal policy based on the learnedfOEach
curve results from an average over 20 independent runs andiripligty, the error bars

are shown only for the RPR with a 50% query rate. The performance mesasua)-(c)

are explained in greater detail in text.

It is also seen from Figure 1 that the performance of EM-PBVI is notfaatisry and grows
slowly with K. The poor performance is strongly related to insufficient explorationeoétiviron-
ment by the limited episodes. For EM-PBVI, the required amount of episedasre demanding
because the initial objective is to build a POMDP model instead of learning aypodhés is because
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policy learning is concerned with exploring the reward structure but bgjldiROMDP requires ex-
ploration of all aspects of the environment. This demonstrates the drawbawkhods that rely on
learning an intervening POMDP model, with which a policy is designed suleségu

6.2 Performance of RPR in Multi-task Reinforcement Learning (MTRL)

We investigate the performance of RPR on three MTRL problems. The fiosttevrobotic naviga-
tion in mazes and the last one is multi-aspect classification.

6.2.1 MAZE NAVIGATION

In this problem, there arll = 10 environments and each environment is a grid-world, that is, an
array of rectangular cells. Of the ten environments, three are distincaranshown in Figure 2,
the remaining are duplicated from the three distinct ones. Specifically, shéhfiee environments
are duplicated from the first distinct one, the following three environmestsgaplicated from the
second distinct one, and the last four environments are duplicates feothitt distinct one. We
assume 10 sets of episodes, with tir¢h set collected from therth environment.

In each of the distinct environments shown in Figure 2, the agent can tekadiions{move
forward, move backwardmove leftmove right stay}. In each cell of the grid-world environments,
the agent can only observe the openness of the cell in the four direclibasgent then has a total
of 16 possible observations indicating tHfe=2 16 different combinations of the openness of a cell
in the four orientations. The actions (except the acsitay) taken by the agent are not accurate and
have some noise. The probability of arriving at the correct cell by takingveaction is 0.7 and the
probability of arriving at other neighboring cells is 0.3. The perceptioroisyn with a probability
0.8 of correctly observing the openness and the probabilRyod making a mistaken observation.
The agent receives a unit reward when the goal (indicated by atbafskaod in the figures) is
reached and zero reward otherwise. The agent does not know thed afi@ahy of the environments
but only has access to the episodes, that is, sequences of acti@satibas, and rewards.

Algorithm Learning and Evaluation For each environmennh=1,2,---,10, there is a set of

K episodes@r(nK), collected by simulating the agent-environment interaction using the models de-
scribed above and a behavior polidythat the agent follows to determine his actions. The behavior
policy is the semi-random policy described in Section 6.1, with a probalpdityy = 0.5 of taking

the actions suggested by PBVI.

Reinforcement learning (RL) based on the ten sets of epis{ﬂé@}}r‘;l leads to ten RPRs,
each associated with one of the ten environments. We consider threégpasauf learning: the
MTRL in which the Gibbs-variational algorithm in Table 2 is applied to the ten seé&pisodes
jointly, the STRL in which the MV algorithm in Table 1 is applied to each of the tencelas
sets separately, and pooling in which the MV algorithm is applied to the unioredkthepisode
sets. The number of decision states is chosenZas= 6 for all environments and all learning
paradigms. Other largdZ| give similar results and, if desired, the selection of decision states
can be accomplished by maximizing the marginal empirical value with respggt,tas discussed
above.

The RPR policy learned by any paradigm for any environment is evaligtexkecuting the
policy 1000 times independently, each time starting randomly from a grid cell iarthieonment
and taking a maximum of 15 steps. The performance of the policy is evaluatasperformance

1166



MULTI-TASK REINFORCEMENTLEARNING IN PARTIALLY OBSERVABLE STOCHASTIC ENVIRONMENTS

a5
~
N

oo
5
A S

,,,,,,,,,,,,,,,,,,,,,,,

(©)

Figure 2: The three distinct grid-world environments, where the goalksigidated by the basket of
food, each block indicates a cell in the grid world, and the two gray cell®erapied
by a wall. The red dashed lines in (a) and (c) indicate dimailar parts in the two
environments. The agent locates himself by observing the opennesslbirathe four
orientations. Both the motion and the observation are noisy.

measures: (a) the average success rate at which the agent reacpealtwithin 15 steps, and (b)
the average number of steps that the agent takes to reach the goal. Wlageitit does not reach
the goal within 15 steps, the number of steps is 15. Each performancemnéasamputed from
the 1000 instances of policy execution, and is averaged over 20 indeptemials.

We examine the performance of each learning paradigm for variouseshaoiik , the number of
episodes per environment. Specifically we consider 16 different chidice 3,4,5,6,7,8,9,10,11,
12,24,60,120,240. The performances of the three learning paradigms, averaged®iredepen-
dent trials, are plotted in Figure 3 as a functiorkofFigures 3(c) and 3(d) are respectively dupli-
cates of Figures 3(a) and 3(b), with the horizontal axis displayed in aifbgac scale. By (57),
the choice of the precision parametein Dirichlet process influences the probability of sampling
a new cluster; it hence influences the resulting number of distinct RPRpégesD. According to
West (1992), the choice af is governed by the posteriga(a|K,N) O p(N|K,a)p(a), whereN is
the number of clusters updated in the most recent iteration of the Gibbsivaaiaalgorithm. One
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Figure 3: Comparison of MTRL, STRL, and pooling on the problem of multipbelsastic envi-
ronments summarized in Figure 2. (a) Average success rate for thetageath the goal
within 15 steps. (b) Average step for the agent reaching the target.vértadge success
rate for the agent with the horizontal axis in log scale.(d) Average step vethdtizontal
axis in log scale.

may choosex by sampling from the posterior or finding the mean. Wheis large andN <« K
and the priorp(a) is a Gamma distribution, the posteripfa|K,N) is approximately a Gamma
distribution with the meaii(a) = O(Nlog(K)). For the different choices df considered above,
we choosax = 3n, withn=2,3,...,15 respectively. These choices are based on approximations of
E(a) obtained by fixingN at an initial gues® = 8. We find that the results are relatively robust to
the initial guess provided the logarithmic dependencK imemployed. The density of the DP base
Go is of the form in (45), with all hyper-parameters set to one, making thef@sénformative.

Figures 3(a) and 3(b) show that the performance of MTRL is generalthrhatter than that of
STRL and pooling. The improvement is attributed to the fact that MTRL autontigtidentifies
and enforces appropriate sharing among the ten environments to ersurddimation transfer is
positive. The improvement over STRL indicates that the number of episedaged for finding
the correct sharing is generally smaller that that required for findingdireat policies.

The identification of appropriate sharing is based on information from tisedgs. When the
number of episodes is very small (say, less than 25 in the examples herahating found by
MTRL may not be accurate; in this case, simply pooling the episodes adtdss anvironments
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may be a more reasonable alternative. When the number of episodesé@s;reawever, pooling
begins to show disadvantages since the environments are not all the shfoecarg them to share
leads to negative information transfer. The seemingly degraded perioentd pooling at the first
two points in Figure 3(c) may not be accurate since the results have langéiorss when the
episodes are extremely scarce; much more Monte Carlo runs may be detpuobtain accurate
results in these cases.

The performance of STRL is poor when the number of episodes is smadiubea@ small set
of episodes do not provide enough information for learning a good RBRever, the STRL per-
formance improves significantly with the increase of episodes, which whittkes the advantage
brought about by information transfer and allows STRL to eventually agpolith MTRL in per-
formance.
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Figure 4: Hinton diagrams of the between-task similarity matrix inferred by th&Mfor the
problem of multiple stochastic environments 2. The number of episodes\pssreanent
is (a) 3 (b) 10 (c) 60 (d) 120.

Analysis of the Sharing Mechanism We investigate the sharing mechanism of the MTRL by
plotting Hinton diagrams. The Hinton diagram (Hinton and Sejnowski, 1986}jisaatitative way

of displaying the elements of a data matrix. Each element is represented bgra sthose size
is proportional to the magnitude. In our case here, the data matrix is the Inetasdesimilarity
matrix (Xue et al., 2007) learned by the MTRL,; it is defined as follows: thlevben-task similarity
matrix is a symmetric matrix of sizél x M (whereM denotes the number of tasks a¥id= 10 in
the present experiment), tlie j)-th element measuring the frequency that tiaakd taskj belong
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to the same cluster (i.e., they result in the same distinct RPR). In order to aediiathdue to any
specific set of episodes, we perform 20 independent trials andggvéta similarity matrix over
the 20 trials. In each trial, if taskisand j belong to one cluster upon convergence of the Gibbs-
variational algorithm, we add one &t j) and(j,i) of the matrix. We compute the between-task
similarity matrices when the number of episodes is respectiety3, 10, 60,120, which represent
the typical sharing patterns inferred by the MTRL for the present mavigataon problem. The
Hinton diagrams for these four matrices are plotted in Figure 4.

The Hinton diagrams in Figures 4(a) and 4(b) show that when the numlepisafdes is small,
environments 1, 2, 3, 7, 8, 9, 10 have a higher frequency of sharengaime RPR. This sharing
can be intuitively justified by first recalling that these environments are diipBoof Figures 2(a)
and 2(c), and then noting that the parts circumscribed by red dashedhiRi&gires 2(a) and 2(c)
are quite similar. Meanwhile the Hinton diagrams also show a weak sharingdreemgironments
4,5,6,7,8,9,10, which are duplicates of Figures 2(b) and 2(c). This i@plpbecause the episodes
are very few at this stage, and pooling episodes from environmentsréhabaso relevant to each
other could also be helpful. This explains why, in Figure 3(a), the paidioce of pooling is as good
as that of the MTRL when the number of episodes is small.

As the number of episodes progressively increases, the ability of MTRletify the correct
sharing improves and, as seen in Figures 4(b) and 4(c), only thosmlepitom relevant environ-
ments are pooled together to enhance the performance—a simple poolingpisallies together
deteriorates the performance. This explains why the MTRL outperformiingowith the increase
of episodes. Meanwhile, the STRL does not perform well for limited egisodHowever, when
there are more episodes from each environment, the STRL learns doazesteadily better until
it outperforms the pooling and becomes comparable to the MTRL.

6.2.2 MAZE NAVIGATION 2

We consider six environments, each of which results from modifying thehyeark maze problem
Hallway2 (Littman et al., 1995) in the following manner. First the goal state [datied to a new
grid cell and then the unique observation associated with the goal is ahangerdingly. For each
environment the location of the goal state is shown in Figure 5 as a numbeckr] where the
number indicates the index of the environment. Of the six environments therfass the original
Hallway2. It is seen that environments213 have their goal states near the lower right corner
while environments &b, 6 have their goal states near the upper left corner. Thus we expétii¢ha
environments are grouped into two clusters.

For each environment, a set Kifepisodes are collected by following a semi-random behavior
policy ' that executes the actions suggested by PBVI with probalpljtyy = 0.3. As in Sec-
tion 6.2.1 three versions of RPR are obtained for each environment, besgettively on three
paradigms, namely MTRL, STRL, and pooling. Ttiés chosen as 5Iqé() with 5 corresponding
to an initial guess o andGg is of the form of (45) with all hyper-parameters close to one (thus the
prior is non-informative). The number of decision stateZis= 20 as in Section 6.1.1. The perfor-
mance comparison, in terms of discounted accumulative reward and asteragy 20 independent
trials, is summarized in Figure 6, as a function of the number of episodesyiesrament.

Figure 6(a) shows that the MTRL maintains the overall best performageediess of the num-
ber of episodeK. The STRL and the pooling are sensitivaktpwith the pooling outperforming the
STRL whenK < 540 but outperformed by the STRL wh&n> 540. In either case, however, the
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Figure 5: Displacements of goal state in the six environments consideredze Nivigation 2.
Each environment is a variant of the benchmark Hallway2 (Littman et al5)1@8h
the goal displaced to a new grid cell designated by a numbered circle amainfiger
indicating the index of the environment. The unique observation associiétethe/goal
is also changed accordingly in each variant.
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Figure 6: Performance comparison on the six environments modified frobettehmark problem
Hallway?2 (Littman et al., 1995). (a) Discounted accumulative rewardagest over the
six environments (b) Discounted accumulative reward in the first envirofmaich is
the original Hallway?2.

MTRL performs no worse than both. The MTRL consistently performs wethlise it adaptively
adjusts the sharing among taskskashanges, such that the sharing is appropriate regardléss of
The adaptive sharing can be seen from Figure 7, which shows the Hliggram of the between-
task similarity matrix learned by the MTRL, for various instance&ofWhenK is small there is a
strong sharing among all tasks, in which case the MTRL reduces to the goeiplaining why the
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MTRL performs similar to the pooling whe < 250. WherK is large, the sharing becomes weak
between any two tasks, which reduces the MTRL to the STRL, explaining whywb perform
similarly whenK > 700. As the number of episodes approaches te 540, the performances of
the STRL and the pooling tend to become closer and more comparable untivérayaly meet
at K = 540. The range oK near this intersection is also the area in which the MTRL yields the
most significant margin of improvements over the STRL and the pooling. This liesause, for
this range oK, the correct between-task sharing is complicated (as shown in Figupe which
can be accurately characterized by the fine sharing patterns prowided MTRL, but cannot be
characterized by the pooling or the STRL.
Figure 6(a) plots the overall performance comparison taking all envirotemeto considera-
tion. As an example of the performances in individual environments, we gh&igure 6(a) the
performance comparison in the first environment, which is also the origeldiely2 problem. The
change of magnitude in the vertical axis is due to the fact the first enviranimasnthe goal in a
room (instead in the hallway), which makes it more difficult to reach the goal.
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Figure 7: Hinton diagrams of the between-task similarity matrix learned by the IMiid#n the
six environments modified from the benchmark problem Hallway?2 (Littman €t295).
The number of episodes is is ()= 40 (b)K =540 (c)K = 810.

6.2.3 MULTI-ASPECTCLASSIFICATION

<

Figure 8: A typical configuration of multi-aspect classification of undéewabjects.
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Figure 9: Frequency-domain acoustic responses of the five underolgirts (a) Target-1 (b)
Target-2 (c) Target-3 (d) Target-4 (e) Clutter.

Multi-aspect classification refers to the problem of identifying the class tftan object using
observations from a sequence of viewing angles. This problem isaBnfund in applications
where the object responds to interrogations in a angle-dependent maneech cases, an obser-
vation at a single viewing angle carries the information specific to only thdeamgl the nearby
angles, and one requires observations at many viewing angles to futgotiiaze the object.

More importantly, the observations at different viewing angles are nepi@addent of each other,
and are correlated in a complicated and yet useful way. The specificdbthe angle-dependency
is dictated by the physical constitution of the object as well as the nature ahtdmeogator—
typically electromagnetic or acoustic waves. By carefully collecting andgssing observations
sampled at densely spaced angles, it is possible to form an image, basbitbmlassification can
be performed. An alternative approach is to treat the observationsezgiaree and characterize
the angle-dependency by a hidden Markov model (HMM) (Runkle et 2991
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In this section we consider multi-aspect classification of underwater olfjastex on acoustic
responses of the objects. Figure 8 shows a typical configuration ofrtiem. The cylinder
represents an underwater object of unknown identityWe assume that the object belongs to a
finite set of categoried” (i.e.,y € ). The agent aims to discover the unknowoy moving around
the object and interrogating it at multiple viewing anglesWe assume the angular motion is one-
dimensional, that is, the agent moves clockwise or counterclockwise oadiee lput does not move
out of the page. The set of angles that can be occupied by the ageehi®t860°], which in
practice is discretized into a finite number of angular sectors denotggl by

In the HMM approach (Runkle et al., 1999), constitutes the set of hidden states, and the state
transitions can be computed using simple geometry (Runkle et al., 1999), tined@ssumptions
that each time the agent moves by a constant angular step and that the speglfs occupied
by the agent are uniformly distributed within any given state. Refinemertatd gransitions and
estimation of state emissions can be achieved by maximizing the likelihood functistrected
from the training sequences. In the training phase, one trains an HMMafdry € . For an
unknown object, one collects a sequence of observations (senspaddtaubmit it to the HMM
for eachy € 9; they yielding the maximum likelihood is then declared to be the identity of the
unknown object. Obviously the agent must follow a common protocol to cdlieaata sequences
in both the training and test phases, to ensure that their statistics are aan§stee such a protocol
is not part of the HMMs, a question arises as to how to specify the protocol.

From the perspective of sequential decision-making, multi-aspect atassifi can be formu-
lated as a reinforcement learning problem, with a state sgaeesy x 9", wherex is a Cartesian
product. BothS, and 9" are only partially observable (through sensor data). The RL approach
possesses several conspicuous advantages over the HMM dppFaat, the sensor data are now
collected in an active manner, under the control of agent actions. Whendta sequences are
collected by following the same policy of choosing actions, they are automatmadiyred to be
consistent in statistics, hence there is no need to specify a separate conmoaoldor collecting
the sequential data. Second, unlike maximizing the data likelihood (undeea data collection
protocol), the agent is now free to choose a more flexible learning olgduyigetting an appropri-
ate reward structure. Third, unlike building a HMM for each 9, the different categories are now
coalesced into a single RPR (details are presented below), making the Ritiendfiative approach
vis-a-via the generative HMM approach.

In our experiment, there are a total of five objects, four of them arettaofénterest and one of
them represents the clutter. The frequency-domain acoustic respafrikese objects are shown in
Figure 9, for a full coverage of angles frofi @ 360; the data are real measurements as described
in Runkle et al. (1999). We aim to distinguish each target from clutter andyihés four tasks,
where task is defined by the problem of distinguishing targétem clutter,i = 1,2,3,4, and the
targets and clutter are as shown in Figure 9. Each task is a multi-aspedicdéiss problent
From the data in Figure 9 targets 1 and 2 have similar angle-dependentisggiteenomena, and
therefore Tasks 1 and 2 are expected to be related. Targets 3 anchfésw to have similar angle-
dependent scattering characteristics, and therefore Tasks 3 aa@ pacted to also be related. In
fact, although the target details are too involved to detail here, targets2laardoth of a cylindrical
form (like those in Runkle et al., 1999), while targets 3 and 4 are more laejushape.

6. The data are available fatp://www.ee.duke.edu/ ~ |carin/ShellData.zip
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The RPR for Multi-aspect Classification In applying the RPR to multi-aspect classification,
our approach is distinct from an HMM construction (Runkle et al., 1998)mimportant respects.
First, the RPR is a control model and it aims to optimize the value function, instélael likelihood
function. Since the RPR takes into account a reward structure, it can teefiedble in specifying
the learning objective. Second, the RPR embraces all objects in the saresergption, instead of
having a separate model for each individual object. As a result, it is @rdisative model instead
of a generative model (this may be viewed as a discriminative extension htligonal generative
HMM).

The RPR does not manipulate the angular states—it works directly with altiesrs. Since
classification is treated as a control problem in the RPR, we need two extooents, actions
and rewards, to complete the specification. We consider four actionss tlat-{declare as target
declare as cluttermove clockwise and senseove counterclockwise and sehs&hen the agent
takes actioimove clockwise and sensemoves 5 clockwise and collects an observation; when the
agent takes actiomove counterclockwise and sengenoves 5 counterclockwise and collects an
observation. The reward structure is specified as follows. A coreatadhtion receives a reward of
5 units, a false declaration receives a reward-6f and the actionmove clockwise and senard
move counterclockwise and seresech receives a reward of zero units. The objective, therefore, is
to correctly classify the target with the minimal number of sensing actions.

The episodes used in learning the RPR consist of a number of obsersatioences, each
observation is associated with the actimove clockwise and sensemove counterclockwise and
sensand the terminal action in each episode is the correct declaration. Tleewonrdeclaration is
available because the episodes in this problem are the training data in dtaledaification, hence
the ground truth of class labels is known. Note that the training episodeyablsrminate with a
correct declaration, thus the agent never actually receives the perfattyring the training phase.
Alternatively, one may split each episode into two, respectively terminatedigtborrect and the
false declaration. Recall the false declaration receives the minimum reviaséeH, after an offset of
5 to make all rewards non-negative, is converted to zero. Since aaeand received at the end of
an episode nullifies the entire episode, such an alternative is equivalextitmling the penalized
episodes.

Classification Results The raw data are shown in Figure 9, for the five objects we are congiderin
Each datum is the response of an object measured at a particular adgikeeadata set for an
object consists of measurements collected®°alqQ---,359. Each raw datum is converted into
a feature vector using matching pursuit (McClure and Carin, 1997) tlemdeature vectors are
further discretized by vector quantization (Gersho and Gray, 1992pttupe a finite code-book.
As mentioned earlier, we have a total of four tasks, each task being to distingach of the four
respective targets from the clutter.

Four methods are compared: the MTRL, the STRL, the pooling, and therhMdeov models
(HMM), where the first three are as described in Section 6.2.1 and ttenlass the standard hidden
Markov model (Rabiner, 1989). The four methods yield four corredpw agents, each following
the policy resulting from one of the algorithms.

When the agents collect episodes during the training phase, they starafigles that are uni-
formly drawn from{1°, 2°, ..., 360°}. For each starting angle, two episodes are collected: the
first is obtained by moving clockwise to collect an observation at evegnsl terminating upon
the 10-th observation, and the other is the same as the first but the agerst coomterclockwise.
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During the testing phase, both the RPR agents and the HMM agent starafrgies uniformly
drawn from{1°, 2°, ---, 360’ }; however, the RPR agents follow one of the three policies (resulting
respectively from the MTRL, the STRL, and the pooling) to choose anraétwon 4, while the
HMM agent collectan observations by moving consistently clockwise or counterclockwise (either
direction is chosen with a probability of%) and then makes a declaration, whaerns adaptively

set to themaximumof the numbers of observations used by the three RPR agents startinthrom
same angle.

Figure 10 summarizes the performance as a function of the number of trapisgdesK,
where the performance is evaluated by the correct classification ratellessvihe average number
of sensing actions (i.e., the average number of observations collecfed) baleclaration is made.
Each point in the figures is an average from 20 independent trials.
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Figure 10: Performance comparison on multi-aspect classification ofrwatér targets (a) Av-
erage classification rate as a function of the number of training episodeagke(b)
Average number of sensing actions (average number of observatibested) before a
declaration is made, as a function of the number of training episodes per task

It is seen from Figure 10(a) that the MTRL achieves the highest classiiicrate regardless
of the number of training episodé& The pooling performs worse than the STRL and the poor
performance persists even whigns small. The latter is in contrast with the results on the maze
navigation problems in Sections 6.2.1 and 6.2.2, where the pooling performsthatieghe STRL
with a smallK. The reason for this will be clear below from the sharing-mechanism sisaly
It is noted that all three RPR algorithms perform much better than the HMM, dsinading the
superiority of discriminative models over generative models in classificatimvgms.

As shown by Figure 10(b), pooling takes the least number of sensingactinich may be at-
tributed to the over-confidence arising from an abundant set of traifsiteg noting that the pooling
agent learns its policy by using the episodes accumulated over all tasimthast, the STRL agent
takes the most number of actions. Considering that the STRL agent basssi@arning on the
episodes collected from a single task, which may contain inadequate infonmiaii® reasonable
that the STRL agent is less confident and would make more observatifmme beming to a con-
clusion. The sensing steps taken by the MTRL agent lies in between, sietieston related tasks,
but not all tasks, to provide the episodes for policy learning.
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Figure 11: Sharing mechanism for multi-aspect classification of undemtaatgets. Each figure
is the Hinton diagram of the between similarity matrix, with the number of training
episodes per task: (a) 10 (b) 30 (c) 110 (d) 170.

Analysis of the Sharing Mechanism The Hinton diagram of the between-task similarity matrix
is shown in Figures 11(a), 11(b), 11(c), 11(d), for the cases whenumber of training episod&s
is equal to 10, 30, 110, 170, respectively.

It is seen that the sharing patterns are dominated by two clusters, thefisisting of Task 1
and Task 2 and the second consisting of Task 3 and Task 4. The sdasted remains unchanged
regardless oK. The first cluster tends to break wh&n= 30, but is resumed later on. The two
clusters are consistent with Figure 9 which shows that targets 1 and @rélige and so are targets
3 and 4. The fact the two clusters are persistent through the entire shKgienplies that the tasks
from different clusters are weakly related even when the episodesaree, as a result pooling the
episodes across all tasks yields poor policies. This explains the pdormpance of the pooling in
Figure 10(a).

To understand the reason why the cluster of tasks 1 and 2 is less stablee®dh delve into
some details of the targets. Target 1 and Target 2 both have a cylindragaé svhile Task 3 and
Task 4 are more irregular in shape. Similar geometry puts Targets 1 and @ auster and Targets
3 and 4 in another cluster. Moreover, the measurements of Targets 3aaadbre noisy than the
measurements of Targets 1 and 2, because they are collected undentiffenditions. The low
signal to noise ratio (SNR) increases the similarity between Targets 3 andedtbeir distinctive
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features are buried in the noise. The more noise-free measurementgetf Tand 2 yields a more
faithful representation of these targets, which tends to magnify their eiiftes and make them
appear less similar.

7. Conclusions

We have presented a multi-task reinforcement learning (MTRL) framefeopartially observable
stochastic environments. To our knowledge, this is the first frameworogesl for MTRL in the
partially observable domain.

A key element in our MTRL framework is the regionalized policy represemd®RPR), which
yields a history-dependent stochastic policy for environments chaizzeddry a partially observ-
able Markov decision process (POMDP). Learning of the RPR is basaxpisodic experiences
collected from the environment, without requiring the environment’s model. &/e developed
two algorithms for learning the RPR, one based on maximum-value estimation amithéindased
on the variational Bayesian paradigm. The latter offers the ability for se¢ettimmnumber of de-
cision states based on the Occam Razor principle and the possibility ofetnamgfexperience
between related environments.

Built upon the basic RPR, the proposed MTRL framework consists of multipBR each
for an environment, coupled by a common Dirichlet process (DP) that & togeroduce the non-
parametric prior over all RPRs. By virtue of the discreteness of the manyric prior, the en-
vironments are clustered into groups, with each group consisting of atsofbsnvironments that
are related in some manner. The number of groups as well as the asseciatedments are au-
tomatically identified, and the experiences are shared among the relatechemsits to increase
their respective exploration. A hybrid Gibbs-variational algorithm isg@mésd for learning multiple
RPRs simultaneously under the unified MTRL framework, based on s@erst@/of the experiences
collected across all environments.

Experimental results demonstrate that the proposed MTRL consistently gighdsior perfor-
mance regardless of the amount of experiences used in learning. Th®mpetitors, one based
on single-task reinforcement learning (STRL) and other based on siroplm@, are shown to be
sensitive to the amount of experiences. The superior performanceilisiigitl to the ability of the
MTRL to automatically identify useful experiences from related environmenéenhance the ex-
ploration. The MTRL adaptively adjusts sharing patterns to offset thegdsain the experience and
hence has addressed the problem of how to positively transfer theengefrom one environment
to the benefit of improving learning in another. In addition, we have alssepted experimental
results on benchmark problems demonstrating the RPR as a powerfulasteredalgorithm for
single-task reinforcement learning.

The work presented in this paper mainly focuses on off-policy batchitg@rassuming the
learning is based on a fixed set of episodic experiences collected byifull@n external behav-
ior policy. In the off-policy batch learning mode, the policy improvement is impleed without
actually re-interacting with the environment; instead the improvement is implememntegthvir-
tual “reward re-computation” (discussed after (15)), which simulategdkiateraction with the
environment. By taking reward re-computation out of the algorithm and impléngen via real
re-interaction, we can learn the RPRs in an on-policy online manner. Inabkées the need for an
external behavior policy is eliminated and the previous version RPR is entpbas/¢ghe behavior
policy. In the next phase of this work, we will focus on on-policy onlinetéag of RPRs and
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investigate how each environment can be better explored via multi-tasknagnient learning. In
this on-policy MTRL setting, multi-task learning will have two aspects: co-digion (already
addressed in the present paper) and co-exploration (not explicithessiet here). It is of interest
to investigate how much benefit can be gained by simultaneous co-exploitatiaoaexploration.

Although the experiments considered in the paper mainly involve robot rgoigi grid-
worlds, there are many other interesting practical problems to which thegedmlgorithms are
immediately applicable. The multi-aspect classification serves as a preliminampéx of such
applications. Other examples include using RPRs as policies to control andircte a set of
sub-models such that the collective performance is optimized and morecadvtasks could be
accomplished than by any single sub-model.

For the work presented here, the DP prior is placed directifonBecause of the discrete
nature ofG, this implies that when parametedsare shared between different environments, they
are shared exactly. This may be too restrictive for some problems; forrwicoaments that are
similar, we may desire the associated parameters to be similar, but not exadhntbe This may
be accommodated, for example, via the following modification to the DP prior

me‘G [and G,
G|C(,Go ~ DP(G,Go).

This formulation results in an infinite mixture model f&; where each component is of the form
H. When two environments share, their parameters share a componentiofittiis mixture, but
the specific draws will generally differ from each other—this can progidster flexibility. The
above modification brings some challenges to the inference. Reca® ibatet of probability mass
functions (pmf), it is natural to requird to be a product of Dirichlets. The difficulty now lies in
choosingG that provides a conjugate prior for the parameterkl pivhich seems not easy. @ is
properly specified, however, the inference should be a straightfdrexdension of the techniques
developed in this paper. An alternative to the above modification that may #weichference
difficulty is to follow the approach in Liu et al. (2008) to impose soft sharipgdplacing the Dirac
delta with its soft version.
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Appendix A. Proof of Theorem 5

According to Kaelbling et al. (1998), the expected sum of exponentialyodisted reward (value
function) over an infinite horizon can be written as

5
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where 0< y < 1 is the discount factor. LdE denote the environment in question afg¢E the
corresponding probabilistic model (POMDP). L@®tbe the parameters specifying the RPR, the
expectation in our situation herelipisogee,0- Thus
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to Definition 2. Q.E.D.

Appendix B. Proof of Theorem 6

We begin our derivation by writing the empirical value function in its logarithm

K Tk
InV(p®);0) = n 1 p(ak,Z| 0k, ©
( kzlt %( aOt 2(13 |01
K Tk |Z| k
qt (zg:t t aO:UZG:t |01.17 9)
= 1In ; (80)
kzltzozlé’..é_l K a(2:)
where
qlk(zgit) 2 07
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Applying Jensen’s inequality to (80), we obtain

K Tk |Z| k

t FEP(agy: 2541054, ©)
nv@re = 352, ) &1

The lower bound is maximized when

D f. FK
th ZS ZS [S) = Wp(a&,%ﬂoﬁ,e

which turns the inequality in into an equality. Define

So) L < k F{p(aﬁi,z&]o‘it,@)
LB(6]0) = kglt;%é_lqt (25:/0)In F [0

By (81), LB(©|©) < LB(8]©) = InV(D®);©) holds for any® and®. Therefore, wher® =
argmay,, LB(0|0), we have

InV(p™);@) = LB(0|0©) < LB(B|0) < LB(8|0) = InV(DK);8).
Starting from®© we compute

o = argmaiB(6|0?),
Oe¥F

0@ = argmaiB(GeW),
OcF

which satisfyV (D®);00) < V(p®):0W) < V(9K);0@) < .... Since the value function is
upper bounded, this monotonically increasing sequence must conwdrigh,happens at a maxima
of V(DK); 0). Q.E.D.

Appendix C. Proof of Lemma 7

Substituting (26) and (27), we have

P(Z =,23 = |,a5,/01;,0)
I_]T’:O p(ar"hr’)

Since the denominator is equal|cl)(3a0 |01t, O) by (9), we have

Right side of (28)= p(Z =i,2',; = j|a, 054, 0) = & (i, }).

Right side of (28):

Similarly,

, , p(Z =i,af,[05,,©) p(Z&=i,af|0k,,©)
Right side of (29) = =
e = optab (@ 10,,0)
= p(ZlT( = |a0't>ol't7®)
= dr(')

Q.E.D.
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Appendix D. Proof of Theorem 8

We rewrite the lower bound in (61) as

LB ({qtk}@(@)) K z . %( /th(zé.t)g rt p( aOthS |01t7
=1

1 (©)
—= )l do. 82
K —1;525,.‘., :1qt( nof (% /g o(©) (82)

We alternatively find thg gk} andg(©) that maximizes the lower bound, keeping one fixed while
finding the other.
Keepingg(©) fixed, we solve mayy, LB ({d€},9(©)) subject to the normalization constraint

for {gK}. We construct the Lagrangian

o~ 18 ({d).00) 2 (zz% 5 qr<zsx>) |

whereA is the Lagrangian multiplier. Differentiating with respect thtk(zgg and setting the result
to zero, we obtain
Gl4 1 .
kiq K/g ) InFEp(aly, 24 0%4, ©) @_qutk(Z&)_RH\:Q

Zt

=,

which is solved to give

qtk<zé:t) A 1rkexp{/g(@)ln p(a'(‘,:t,zéilolii,e)d@}.

Using the constrainy_; 5% 12‘2‘? . LK (Z5,) =K, (62) is arrived withe! ** = C

Keeping{cf} fixed, we solve mage) LB ({cf},g(©)) subject to the normalization constraint
that [ g(®)d® = 1. Construct the Lagrangian

ty = 18 ({d}.0@)-2 (1—/g(e)de>,

whereA is the Lagrangian multiplier. Differentiating with respect tay(©) and setting the result
to zero, we obtain

agg K T |2 9(©)

2(g(® Z % szoh (Z5¢) InF¥p(aGy, 25/ 0%+, ©) GO(O)—H\:O’

which is solved to give

1 K Tk | 2] "
g( ) e]_ e p % % qt Zé't Inrt p aOtangI|ol:t7e) :
k 1t

By using the constrainf g(©)d© = 1, we arrive at (63) witle! * = Ce. Q.E.D.
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