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Abstract

We consider the problem of multi-task reinforcement learning (MTRL) in multiple partially ob-
servable stochastic environments. We introduce the regionalized policy representation (RPR) to
characterize the agent’s behavior in each environment. TheRPR is a parametric model of the con-
ditional distribution over current actions given the history of past actions and observations; the
agent’s choice of actions is directly based on this conditional distribution, without an interven-
ing model to characterize the environment itself. We propose off-policy batch algorithms to learn
the parameters of the RPRs, using episodic data collected when following a behavior policy, and
show their linkage to policy iteration. We employ the Dirichlet process as a nonparametric prior
over the RPRs across multiple environments. The intrinsic clustering property of the Dirichlet
process imposes sharing of episodes among similar environments, which effectively reduces the
number of episodes required for learning a good policy in each environment, when data sharing
is appropriate. The number of distinct RPRs and the associated clusters (the sharing patterns) are
automatically discovered by exploiting the episodic data as well as the nonparametric nature of the
Dirichlet process. We demonstrate the effectiveness of theproposed RPR as well as the RPR-based
MTRL framework on various problems, including grid-world navigation and multi-aspect target
classification. The experimental results show that the RPR is a competitive reinforcement learning
algorithm in partially observable domains, and the MTRL consistently achieves better performance
than single task reinforcement learning.

Keywords: reinforcement learning, partially observable Markov decision processes, multi-task
learning, Dirichlet processes, regionalized policy representation

1. Introduction

Planning in a partially observable stochastic environment has been studied extensively in the fields
of operations research and artificial intelligence. Traditional methods arebased on partially observ-
able Markov decision processes (POMDPs) and assume that the POMDP models are given (Sondik,
1971; Smallwood and Sondik, 1973). Many POMDP planning algorithms (Sondik, 1971, 1978;
Cheng, 1988; Lovejoy, 1991; Hansen, 1997; Kaelbling et al., 1998; Poupart and Boutilier, 2003;
Pineau et al., 2003; Spaan and Vlassis, 2005; Smith and Simmons, 2005; Li etal., 2006a,b) have
been proposed, addressing problems of increasing complexity as the algorithms become progres-
sively more efficient. However, the assumption of knowing the underlying POMDP model is often
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difficult to meet in practice. In many cases the only knowledge available to the agent are experi-
ences, that is, the observations and rewards, resulting from interactions with the environment, and
the agent must learn the behavior policy based on such experience. Thisproblem is known as rein-
forcement learning (RL) (Sutton and Barto, 1998). Reinforcement learning methods generally fall
into two broad categories: model-based and model-free. In model-based methods, one first builds
a POMDP model based on experiences and then exploits the existing planningalgorithms to find
the POMDP policy. In model-free methods, one directly infers the policy based on experiences.
The focus of this paper is on the latter, trying to find the policy for a partially observable stochastic
environment without the intervening stage of environment-model learning.

In model-based approaches, when the model is updated based on new experiences gathered
from the agent-environment interaction, one has to solve a new POMDP planing problem. Solving
a POMDP is computationally expensive, which is particularly true when one takes into account the
model uncertainty; in the latter case the POMDP state space grows fast, oftenmaking it inefficient
to find even an approximate solution (Wang et al., 2005). Recent work (Ross et al., 2008) gives
a relatively efficient approximate model-based method, but still the computationtime grows expo-
nentially with the planning horizon. By contrast, model-free methods update thepolicy directly,
without the need to update an intervening POMDP model, thus saving time and eliminating the
errors introduced by approximations that may be made when solving the POMDP.

Model-based methods suffer particular computational inefficiency in multi-task reinforcement
learning (MTRL), the problem being investigated in this paper, because one has to repeatedly solve
multiple POMDPs due to frequent experience-updating arising from the communications among
different RL tasks. The work in Wilson et al. (2007) assumes the environment states are perfectly
observable, reducing the POMDP in each task to a Markov decision process (MDP); since a MDP
is relatively efficient to solve, the computational issue is not serious there.In the present paper, we
assume the environment states are partially observable, thus manifesting a POMDP associated with
each environment. If model-based methods are pursued, one would haveto solve multiple POMDPs
for each update of the task clusters, which entails a prohibitive computational burden.

Model-free methods are consequently particularly advantageous for MTRL in partially observ-
able domains. The regionalized policy representation (RPR) proposed in this paper, which yields an
efficient parametrization for the policy governing the agent’s behavior in each environment, lends
itself naturally to a Bayesian formulation and thus furnishes a posterior distribution of the policy.
The policy posterior allows the agent to reason and plan under uncertaintyabout the policy itself.
Since the ultimate goal of reinforcement learning is the policy, the policy’s uncertainty is more di-
rect and relevant to the learning goal than the POMDP model’s uncertainty as considered in Ross
et al. (2008).

The MTRL problem considered in this paper shares similar motivations as the work in Wilson
et al. (2007)—that is, in many real-world settings there may be multiple environments for which
policies are desired. For example, a single agent may have collected experiences from previous
environments and wishes to borrow from previous experience when learning the policy for a new
environment. In another case, multiple agents are distributed in multiple environments, and they
wish to communicate with each other and share experiences such that their respective performances
are enhanced. In either case the experiences in one environment should be properly exploited to
benefit the learning in another (Guestrin et al., 2003). Appropriate experience sharing among multi-
ple environments and joint learning of multiple policies save resources, improve policy quality, and
enhance generalization to new environments, especially when the experiences from each individual
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environment are scarce (Thrun, 1996). Many problems in practice canbe formulated as an MTRL
problem, with one example given in Wilson et al. (2007). The application we consider in the exper-
iments (see Section 6.2.3) is another example, in which we make the more realistic assumption that
the states of the environments are partially observable.

To date there has been much work addressing the problem of inferring thesharing structure
between general learning tasks. Most of the work follows a hierarchical Bayesian approach, which
assumes that the parameters (models) for each task are sampled from a common prior distribution,
such as a Gaussian distribution specified by unknown hyper-parameters(Lawrence and Platt, 2004;
Yu et al., 2003). The parameters as well as the hyper-parameters are estimated simultaneously in
the learning phase. In Bakker and Heskes (2003) a single Gaussian prior is extended to a Gaussian
mixture; each task is given a corresponding Gaussian prior and related tasks are allowed to share a
common Gaussian prior. Such a formulation for information sharing is more flexible than a single
common prior, but still has limitations: the form of the prior distribution must be specifieda priori,
and the number of mixture components must also be pre-specified.

In the MTRL framework developed in this paper, we adopt a nonparametricapproach by em-
ploying the Dirichlet process (DP) (Ferguson, 1973) as our prior, extending the work in Yu et al.
(2004) and Xue et al. (2007) to model-free policy learning. The nonparametric DP prior does not
assume a specific form, therefore it offers a rich representation that captures complicated sharing
patterns among various tasks. A nonparametric prior drawn from the DP is almost surely discrete,
and therefore a prior distribution that is drawn from a DP encourages task-dependent parameter
clustering. The tasks in the same cluster share information and are learned collectively as a group.
The resulting MTRL framework automatically learns the number of clusters, themembers in each
cluster as well as the associated common policy.

The nonparametric DP prior has been used previously in MTRL (Wilson et al., 2007), where
each task is a Markov decision process (MDP) assuming perfect state observability. To the authors’
knowledge, this paper represents the first attempt to apply the DP prior to reinforcement learning in
multiple partially observable stochastic environments. Another distinction is that the method here is
model-free, with information sharing performed directly at the policy level, without having to learn
a POMDP model first; the method in Wilson et al. (2007) is based on using MDP models.

This paper contains several technical contributions. We propose the regionalized policy repre-
sentation (RPR) as an efficient parametrization of stochastic policies in the absence of a POMDP
model, and develop techniques of learning the RPR parameters based on maximizing the sum of
discounted rewards accrued during episodic interactions with the environment. An analysis of the
techniques is provided, and relations are established to the expectation-maximization algorithm and
the POMDP policy improvement theorem. We formulate the MTRL framework by placing multiple
RPRs in a Bayesian setting and employ a draw from the Dirichlet process as their common nonpara-
metric prior. The Dirichlet process posterior is derived, based on a nonconventional application of
Bayes law. Because the DP posterior involves large mixtures, Gibbs samplinganalysis is inefficient.
This motivates a hybrid Gibbs-variational algorithm to learn the DP posterior.The proposed tech-
niques are evaluated on four problem domains, including the benchmark Hallway2 (Littman et al.,
1995), its multi-task variants, and a remote sensing application. The main theoretical results in the
paper are summarized in the form of theorems and lemmas, the proofs of whichare all given in the
Appendix.

The RPR formulation in this paper is an extension of the work in Li (2006) andLiao et al.
(2007). All other content in the paper is extended from the work in Li (2006).
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2. Partially Observable Markov Decision Processes

The partially observable Markov decision process (POMDP) (Sondik, 1971; Lovejoy, 1991; Kael-
bling et al., 1998) is a mathematical model for the optimal control of an agent situated in a partially
observable stochastic environment. In a POMDP the state dynamics of the agent are governed by
a Markov process, and the state of the process is not completely observable but is inferred from
observations; the observations are probabilistically related to the state. Formally, the POMDP can
be described as a tuple(S ,A ,T,O,Ω,R), whereS , A , O respectively denote a finite set of states,
actions, and observations;T are state-transition matrices withTss′(a) the probability of transiting
to states′ by taking actiona in states; Ω are observation functions withΩs′o(a) the probability
of observingo after performing actiona and transiting to states′; andR is a reward function with
R(s,a) the expected immediate reward received by taking actiona in states.

The optimal control of a POMDP is represented by a policy for choosing thebest action at
any time such that the future expected reward is maximized. Since the state in a POMDP is only
partially observable, the action choice is based on the belief state, a sufficient statistic defined as the
probability distribution of the states given the history of actions and observations (Sondik, 1971).
It is important to note that computation of the belief state requires knowing the underlying POMDP
model.

The belief state constitutes a continuous-state Markov process (Smallwoodand Sondik, 1973).
Given that at timet the belief state isb and the actiona is taken, and the observation received at
time t +1 iso, then the belief state at timet +1 is computed by Bayes rule

ba
o(s

′) =
∑s∈S b(s)Ta

ss′Ω
a
s′o

p(o|b,a)
, (1)

where the superscripta and the subscripto are used to indicate the dependence of the new belief
state ona ando, and

p(o|b,a) = ∑
s′∈S

∑
s∈S

b(s)Ta
ss′Ω

a
s′o (2)

is the probability of transiting fromb to b′ when taking actiona.
Equations (1) and (2) imply that, for any POMDP, there exists a corresponding Markov deci-

sion process (MDP), the state of which coincides with the belief state of the POMDP (hence the
term “belief-state MDP”). Although the belief state is continuous, their transition probabilities are
discrete : from any givenb, one can only make a transition to a finite number of new belief states
{ba

o : a∈A ,o∈ O}, assumingA andO are discrete sets with finite alphabets. For any actiona∈A ,
the belief state transition probabilities are given by

p(b′|b,a) =

{
p(o|b,a), if b′ = ba

o
0, otherwise

. (3)

The expected reward of the belief-state MDP is given by

R(b,a) = ∑
s∈S

b(s)R(s,a). (4)

In summary, the belief-state MDP is completely defined by the action setA , the space of belief state

B =

{
b∈ R

|S | : b(s) ≥ 0, ∑
s∈S

b(s) = 1

}
,
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along with the belief state transition probabilities in (3) and the reward function in(4).
The optimal control of the POMDP can be found by solving the corresponding belief-state

MDP. Assume that at any time there are infinite steps remaining for the POMDP (infinite horizon),
the future rewards are discounted exponentially with a factor 0< γ < 1, and the action is drawn
from pΠ(a|b), then the expected reward accumulated over the infinite horizon satisfies theBellman
equation (Bellman, 1957; Smallwood and Sondik, 1973)

VΠ(b) = ∑
a∈A

pΠ(a|b)

[
R(b,a)+ γ ∑

o∈O

p(o|b,a)VΠ(ba
o)

]
,

whereVΠ(b) is called the value function. Sondik (1978) showed that, for a finite-transient deter-
ministic policy,1 there exists a Markov partitionB = B1 ∪B2 ∪ ·· · satisfying the following two
properties :

(a) There is a unique optimal actionai associated with subsetBi , i = 1,2, · · · . This implies that
the optimal control is represented by a deterministic mapping from the Markov partition to
the set of actions.

(b) Each subset maps completely into another (or itself), that is,{ba
o : b∈ Bi ,a= Π(b),o∈ O} ⊆

B j (i may equalj).

The Markov partition yields an equivalent representation of the finite-transient deterministic policy.
Sondik noted that an arbitrary policyΠ is not likely to be finite-transient, and for it one can only
construct a partition where one subset maps partially into another (or itself), that is, there exists
b∈ Bi ando∈ O such thatbΠ(b)

o /∈ B j . Nevertheless, the Markov partition provides an approximate
representation for non-finite-transient policies and Sondik gave an error bound of the difference
between the true value function and approximate value function obtained by the Markov partition.
Based on the Markov partition, Sondik also proposed a policy iteration algorithm for POMDPs,
which was later improved by Hansen (1997) and the improved algorithm is referred to as finite state
controller (the partition is finite).

3. Regionalized Policy Representation

We are interested in model-free policy learning, that is, we assume the model of the POMDP is
unknownand aim to learn the policy directly from the experiences (data) collected from agent-
environment interactions. One may argue that we do in fact learn a model, but our model is directly
at the policy level, constituting aprobabilisticmapping from the space of action-observation histo-
ries to the action space.

Although the optimal control of a POMDP can be obtained via solving the corresponding belief-
state MDP, this is not true when we lack an underlying POMDP model. This is because, as indicated
above, the observability of the belief-state depends on the availability of the POMDP model. When
the model is unknown, one does not have access to the information required to compute the belief
state, making the belief stateunobservable.

1. LetΠ be a deterministic policy, that is,pΠ(a|b) =

{
1, if a = Π(b)
0, otherwise

. LetSn
Π be the set of all possible belief-states

whenΠ has been followed forn consecutive steps by starting from any initial belief-state. TheΠ is finite transient if
and only if there existsn < ∞ such thatSn

Π is disjoint with{b : Π(b) is discontinuous atb} (Sondik, 1978).
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In this paper, we treat the belief-state as a hidden (latent) variable and marginalize it out to
yield a stochastic POMDP policy that is purely dependent on the observablehistory, that is, the
sequence of previous actions and observations. The belief-state dynamics, as well as the optimal
control in each state, is learned empirically from experiences, instead of being computed from an
underlying POMDP model. Although it may be possible to learn the dynamics and control in the
continuous space of belief state, the exposition in this paper is restricted to thediscrete case, that is,
the case for which the continuous belief-state space is quantized into a finite set of disjoint regions.
The quantization can be viewed as a stochastic counterpart of the Markovpartition (Sondik, 1978),
discussed at the end of Section 2. With the quantization, we learn the dynamicsof belief regions and
the local optimal control in each region, both represented stochastically. The stochasticity manifests
the uncertainty arising from the belief quantization (the policy is parameterizedin terms of latent
belief regions, not the precise belief state). The stochastic policy reduces to a deterministicone
when the policy is finitely transient, in which case the quantization becomes a Markov partition.
The resulting framework is termedregionalized policy representationto reflect the fact that the
policy of action selection is expressed through the dynamics of belief regions as well as the local
controls in each region. We also usedecision stateas a synonym ofbelief region, in recognition of
the fact that each belief region is an elementary unit to encode the decisionsof action selection.

3.1 Formal Framework

Definition 1 A regionalized policy representation(RPR) is a tuple〈A ,O,Z,W,µ,π〉 specified as
follows. TheA andO are respectively a finite set of actions and observations. TheZ is a finite set
of decision states (belief regions). The W are decision-state transition matrices with W(z,a,o′,z′)
denoting the probability of transiting from z to z′ when taking action a in decision state z results in
observing o′. The µ is the initial distribution of decision states with µ(z) denoting the probability of
initially being in decision state z. Theπ are state-dependentstochasticpolicies withπ(z,a) denoting
the probability of taking action a in decision state z.

The stochastic formulation ofW andπ in Definition 1 is fairly general and subsumes two special
cases.

1. If zshrinks down to a single belief-stateb, z= b becomes a sufficient statistic of the POMDP
(Smallwood and Sondik, 1973) and there is a unique action associated with it,thusπ(z,a) is
deterministic and the local policy can be simplified asa = π(b).

2. If the belief regions form a Markov partition of the belief-state space (Sondik, 1978), that
is, B = ∪z∈ZBz, then the action choice in each region is constant and one region transits
completely to another (or itself). In this case, bothW andπ are deterministic and, moreover,
the policy yielded by the RPR (see (8)) is finite transient deterministic. In factthis is the same
case as considered in Hansen (1997).

In both of the two special cases, eachz has one action choicea = π(z) associated with it, and one
can writeW(z,a,o′,z′) = W(z,π(z),o′,z′), thus the transition ofz is driven solely byo. In general,
eachz represents multiple individual belief-states, and the belief region transition isdriven jointly
by a ando. The action-dependency captures the state dynamics of the POMDP, and the observation-
dependency reflects the partial observability of the state (perception aliasing).

To make notation simple, the following conventions are observed throughoutthe paper:
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• The elements ofA are enumerated asA = {1,2, · · · , |A |}, where|A | denotes the cardinality
of A . Similarly,O = {1,2, · · · , |O|} andZ = {1,2, · · · , |Z|}.

• A sequence of actions(a0,a1, · · · ,aT) is abbreviated asa0:T , where the subscripts index dis-
crete time steps. Similarly a sequence of observations(o1,o2, · · · ,oT) is abbreviated aso1:T ,
and a sequence of decision states(z0,z1, · · · ,zT) is abbreviated asz0:T , etc.

• A history ht is the set of actions executed and observation received up to time stept, that is,
ht = {a0:t−1,o1:t}.

Let Θ = {π,µ,W} denote the parameters of the RPR. Given a history of actions and observa-
tions,ht = (a0:t−1,o1:t), collected up to time stept, the RPR yields a joint probability distribution
of z0:t anda0:t

p(a0:t ,z0:t |o1:t ,Θ) = µ(z0)π(z0,a0)
t

∏
τ=1

W(zτ−1,aτ−1,oτ,zτ)π(zτ,aτ), (5)

where application of local controlsπ(zt ,at) at every time step implies thata0:t are all drawn ac-
cording to the RPR. The decision statesz0:t in (5) are hidden variables and we marginalize them to
get

p(a0:t |o1:t ,Θ) =
|Z|

∑
z0,··· ,zt=1

[
µ(z0)π(z0,a0)

t

∏
τ=1

W(zτ−1,aτ−1,oτ,zτ)π(zτ,aτ)

]
. (6)

It follows from (6) that

p(a0:t−1|o1:t ,Θ) =
|A |

∑
at=1

p(a0:t |o1:t ,Θ)

=
|Z|

∑
z0,··· ,zt−1=1

[
µ(z0)π(z0,a0)

t−1

∏
τ=1

W(zτ−1,aτ−1,oτ,zτ)π(zτ,aτ)

]

×
|A |

∑
at=1

|Z|

∑
zt=1

W(zt−1,at−1,ot ,zt)π(zt ,at)

︸ ︷︷ ︸
= 1

= p(a0:t−1|o1:t−1,Θ), (7)

which implies that observationot does not influence the actions beforet, in agreement with expec-
tations. From (6) and (7), we can write the history-dependent distributionof action choices

p(aτ|hτ,Θ) = p(aτ|a0:τ−1,o1:τ,Θ) =
p(a0:τ|o1:τ,Θ)

p(a0:τ−1|o1:τ,Θ)
=

p(a0:τ|o1:τ,Θ)

p(a0:τ−1|o1:τ−1,Θ)
, (8)

which gives a stochastic RPR policy for choosing the actionat , given the historical actions and ob-
servations. The policy is purely history-dependent, with the unobservable belief regionsz integrated
out.

The historyht forms a Markov process with transitions driven by actions and observations:
ht = ht−1∪{at−1,ot}. Applying this recursively, we getht = ∪t

τ=1{aτ−1,oτ}, and therefore

t

∏
τ=0

p(aτ|hτ,Θ) =

[
t−2

∏
τ=0

p(aτ|hτ,Θ)

]
p(at−1|ht−1,Θ)p(at |ht−1,at−1,ot ,Θ)
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=

[
t−2

∏
τ=0

p(aτ|hτ,Θ)

]
p(at−1:t |ht−1,ot ,Θ)

=

[
t−3

∏
τ=0

p(aτ|hτ,Θ)

]
p(at−2|ht−2,Θ)p(at−1:t |ht−2,at−2,ot−1,ot ,Θ)

=

[
t−3

∏
τ=0

p(aτ|hτ,Θ)

]
p(at−2:t |ht−2,ot−1:t ,Θ)

...
= p(a0:t |h0,o1:t ,Θ)
= p(a0:t |o1:t ,Θ), (9)

where we have usedp(aτ|hτ,oτ+1:t) = p(aτ|hτ) and h0 = null. The rightmost side of (9) is the
observation-conditional probability of joint action-selection at multiple time stepsτ = 0,1, · · · , t.
Equation (9) can be verified directly by multiplying (8) overτ = 0,1, · · · , t

t

∏
τ=0

p(aτ|hτ,Θ)

= p(a0|Θ)
p(a0:1|o1,Θ)

p(a0|Θ)

p(a0:2|o1:2,Θ)

p(a0:1|o1,Θ)
· · ·

p(a0:t−1|o1:t−1,Θ)

p(a0:t−2|o1:t−2,Θ)

p(a0:t |o1:t ,Θ)

p(a0:t−1|o1:t−1,Θ)
= p(a0:t |o1:t ,Θ). (10)

It is of interest to point out the difference between the RPR and previousreinforcement learning
algorithms for POMDPs. The reactive policy and history truncation (Jaakkola et al., 1995; Bax-
ter and Bartlett, 2001) condition the action only upon the immediate observation ora truncated
sequence of observations, without using the full history, and therefore these are clearly different
from the RPR. The U-tree (McCallum, 1995) stores historical information along the branches of
decision trees, with the branches split to improve the prediction of future return or utility. The draw-
back is that the tree may grow intolerably fast with the episode length. The finitepolicy graphs
(Meuleau et al., 1999), finite state controllers (Aberdeen and Baxter, 2002), and utile distinction
HMMs (Wierstra and Wiering, 2004) use internal states to memorize the full history, however, their
state transitions are driven by observations only. In contrast, the dynamics of decision states in the
RPR are driven jointly by actions and observations, the former capturing the dynamics of world-
states and the latter reflecting the perceptual aliasing. Moreover, none ofthe previous algorithms
is based on Bayesian learning, and therefore they are intrinsically not amenable to the Dirichlet
process framework that is used in the RPR for multi-task examples.

3.2 The Learning Objective

We are interested in empirical learning of the RPR, based on a set of episodes defined as follows.

Definition 2 (Episode) An episode is a sequence of agent-environment interactionsterminated in
an absorbing state that transits to itself with zero rewards (Sutton and Barto,1998). An episode is
denoted by(ak

0rk
0ok

1ak
1rk

1 · · ·o
k
Tk

ak
Tk

rk
Tk

), where the subscripts are discrete times, k indexes the episodes,
and o, a, and r are respectively observations, actions, and immediate rewards.
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Definition 3 (Sub-episode) A sub-episode is an episode truncated at a particular timestep and
retaining the immediate reward only at the time step where truncation occurs.The t-th sub-episode
of episode(ak

0rk
0ok

1ak
1rk

1 · · ·o
k
Tk

ak
Tk

rk
Tk

) is defined as(ak
0ok

1ak
1 · · ·o

k
t ak

t rk
t ), which yields a total of Tk + 1

sub-episodes for this episode.

The learning objective is to maximize the optimality criterion given in Definition 4. Theorem
5 introduced below establishes the limit of the criterion when the number of episodes approaches
infinity.

Definition 4 (The RPR Optimality Criterion) LetD(K) = {(ak
0rk

0ok
1ak

1rk
1 · · ·o

k
Tk

ak
Tk

rk
Tk

)}K
k=1 be a set

of episodes obtained by an agent interacting with the environment by following policyΠ to select
actions, whereΠ is an arbitrary stochastic policy with action-selecting distributions pΠ(at |ht) > 0,
∀ action at , ∀ history ht . The RPR optimality criterion is defined as

V̂(D(K);Θ)
de f.
=

1
K

K

∑
k=1

Tk

∑
t=0

γtrk
t

∏t
τ=0 pΠ(ak

τ|hk
τ)

t

∏
τ=0

p(ak
τ|h

k
τ,Θ), (11)

where hkt = ak
0ok

1ak
1 · · ·o

k
t is the history of actions and observations up to time t in the k-th episode,

0 < γ < 1 is the discount, andΘ denotes the parameters of the RPR.

Theorem 5 Let V̂(D(K);Θ) be as defined in Definition 4, thenlimK→∞ V̂(D(K);Θ) is the expected
sum of discounted rewards within the environment under test by following the RPR policy parame-
terized byΘ, over an infinite horizon.

Theorem 5 shows that the optimality criterion given in Definition 4 is the expectedsum of
discounted rewards in the limit, when the number of episodes approaches infinity. Throughout the
paper, we call limK→∞ V̂(D(K);Θ) the value function and̂V(D(K);Θ) the empirical value function.
TheΘ maximizing the (empirical) value function is the best RPR policy (given the episodes).

It is assumed in Theorem 5 that the behavior policyΠ used to collect the episodic data is an
arbitrary policy that assigns nonzero probability to any action given any history, that is,Π is required
to be a soft policy (Sutton and Barto, 1998). This premise assures a complete exploration of the
actions that might lead to large immediate rewards given any history, that is, theactions that might
be selected by the optimal policy.

4. Single-Task Reinforcement Learning (STRL) with RPR

We develop techniques to maximize the empirical value function in (11) and theΘ resulting from
value maximization is called a Maximum-Value (MV) estimate (related to maximumlikelihood).
An MV estimate of the RPR is preferred when the number of episodes is large,in which case
the empirical value function approaches the true value function and the estimate is expected to
approach the optimal (assuming the algorithm is not trapped in a local minima). The episodesD(K)

are assumed to have been collected in a single partially observable stochasticenvironment, which
may correspond to a single physical environment or a pool of multiple identical/similar physical
environments. As a result, the techniques developed in this section are for single-task reinforcement
learning (STRL).

By substituting (6) and (9) into (11), we rewrite the empirical value function
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V̂(D(K);Θ) =
1
K

K

∑
k=1

Tk

∑
t=0

r̃k
t

|Z|

∑
zk
0,··· ,z

k
t =1

p(ak
0:t ,z

k
0:t |o

k
1:t ,Θ), (12)

where

r̃k
t =

γtrk
t

∏t
τ=0 pΠ(ak

τ|hk
τ)

is the discounted immediate rewardγtrk
t weighted by the inverse probability that the behavior policy

Π has generatedrk
t . The weighting is a result from importance sampling (Robert and Casella,

1999), and reflects the fact thatrk
t is obtained by followingΠ but the Monte Carlo integral (i.e., the

empirical value function) is with respect to the RPR policyΘ. For simplicity, ˜rk
t is also referred to

as discounted immediate reward or simply reward throughout the paper.
We assumert ≥ 0 (and hencẽrt ≥ 0), which can always be achieved by adding a constant tort ;

this results in a constant added to the value function (the value function of a POMDP is linear in
immediate reward) and does not influence the policy.

Theorem 6 (Maximum Value Estimation) Let

qk
t (z

k
0:t |Θ

(n)) =
r̃k
t

V̂(D(K);Θ(n))
p(ak

0:t ,z
k
0:t |o

k
1:t ,Θ

(n)), (13)

for zk
t = 1,2, · · · , |Z|, t = 1,2, · · · ,Tk, and k= 1,2, · · · ,K. Let

Θ(n+1) = argmax
Θ̂∈F

1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t |Θ

(n)) ln
r̃k
t p(ak

0:t ,z
k
0:t |o

k
1:t , Θ̂)

qk
t (z

k
0:t |Θ(n))

, (14)

where

F =

{
Θ = (µ,π,W) :

|Z|

∑
j=1

µ̂( j) = 1,
|A |

∑
a=1

π̂(i,a) = 1,
|Z|

∑
j=1

Ŵ(i,a,o, j) = 1,

i = 1,2, · · · , |Z|, a = 1,2, · · · , |A |, o = 1,2, · · · , |O|

}

is the set of feasible parameters for the RPR in question. Let{Θ(0)Θ(1) · · ·Θ(n) · · ·} be a sequence
yielded by iteratively applying (13) and (14), starting fromΘ(0). Then

lim
n→∞

V̂(D(K);Θ(n))

exists and the limit is a maxima ofV̂(D(K);Θ).

To gain a better understanding of Theorem 6, we rewrite (13) to get

qk
t (z

k
0:t |Θ) =

σk
t (Θ)

V̂(D(K);Θ)
p(zk

0:t |a
k
0:t ,o

k
1:t ,Θ), (15)
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wherep(zk
0:t |a

k
0:t ,o

k
1:t ,Θ) is an standard posterior distribution of the latent decision states given the

Θ updated in the most recent iteration (the superscript(n) indicating the iteration number has been
dropped for simplicity), and

σk
t (Θ)

De f.
= r̃k

t p(ak
0:t |o

k
1:t ,Θ) (16)

is called there-computed rewardat time stept in the k-th episode. The re-computed reward rep-
resents the discounted immediate reward ˜rk

t weightedby the probability that the action sequence
yielding this reward is generated by the RPR policy parameterized byΘ, thereforeσk

t (Θ) is a func-
tion of Θ. The re-computed reward reflects the update of the RPR policy which, if allowed to
re-interact with the environment, is expected to accrue larger rewards than in the previous iteration.
Recall that the algorithm does not assume real re-interactions with the environment so the episodes
themselves cannot update. However, by recomputing the rewards as in (16), the agent is allowed
to generate aninternal set of episodes in which the immediate rewards are modified. The internal
episodes represent thenewepisodes that would be collected if the agent followed the updated RPR
to really re-interact with the environment. In this sense, the reward re-computation can be thought
of as virtual re-interactions with the environment.

By (15),qk
t (z

k
0:t) is a weighted version of the standard posterior ofzk

0:t , with the weight given by
the reward recomputed by the RPR in the previous iteration. The normalization constant̂V(D(K);Θ),
which is also the empirical value function in (11), can be expressed as the recomputed rewards av-
eraged over all episodes at all time steps,

V̂(D(K);Θ) =
1
K

K

∑
k=1

Tk

∑
t=0

σk
t (Θ), (17)

which ensures

1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t |Θ) = 1.

The maximum value (MV) algorithm based on alternately applying (13) and (14) in Theorem 6
bears strong resemblance to the expectation-maximization (EM) algorithms (Dempster et al., 1977)
widely used in statistics, with (13) and (14) respectively corresponding tothe E-step and M-step in
EM. However, the goal in standard EM algorithms is to maximize a likelihood function, while the
goal of the MV algorithm is to maximize an empirical value function. This causes significant differ-
ences between the MV and the EM. It is helpful to compare the MV algorithm in Theorem 6 to the
EM algorithm for maximum likelihood (ML) estimation in hidden Markov models (Rabiner, 1989),
since both deal with sequences or episodes. The sequences in an HMM are treated as uniformly
important, therefore parameter updating is based solely on the frequency of occurrences of latent
states. Here the episodes are not equally important because they have different rewards associated
with them, which determine their importance relative to each other. As seen in (15), the posterior
of zk

0:t is weighted by the recomputed rewardσk
t , which means that the contribution of episodek (at

time t) to the update ofΘ is not solely based on the frequency of occurrences ofzk
0:t but also based

on the associatedσk
t . Thus the new parameterŝΘ will be adjusted in such a way that the episodes

earning large rewards have more “credits” recorded intoΘ̂ and, as a result, the policy parameterized
by Θ̂ will more likely generate actions that lead to high rewards.
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The objective function being maximized in (14) enjoys some interesting properties due to the
fact thatqk

t (z
k
0:t) is a weighted posterior ofzk

0:t . These properties not only establish a more formal
connection between the MV algorithm here and the traditional ML algorithm based on EM, they
also shed light on the close relations between Theorem 6 and the policy improvement theorem of
POMDP (Blackwell, 1965). To show these properties, we rewrite the objective function in (14)
(with the subscript(n) dropped for simplicity) as

LB(Θ̂|Θ)
De f.
=

1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t |Θ) ln

r̃k
t p(ak

0:t ,z
k
0:t |o

k
1:t , Θ̂)

qk
t (z

k
0:t |Θ)

=
1
K

K

∑
k=1

Tk

∑
t=0

σk
t (Θ)

V̂(D(K);Θ)

|Z|

∑
zk
0,··· ,z

k
t =1

p(zk
0:t |a

k
0:t ,o

k
1:t ,Θ) ln

r̃k
t p(ak

0:t ,z
k
0:t |o

k
1:t , Θ̂)

σk
t (Θ)

V̂(D(K);Θ)
p(zk

0:t |a
k
0:t ,o

k
1:t ,Θ)

, (18)

where the second equation is obtained by substituting (15) into the left side ofit. Since
1
K ∑K

k=1 ∑Tk
t=0

σk
t (Θ)

V̂(D(K);Θ)
= 1 and∑|Z|

zk
0,··· ,z

k
t =1

p(zk
0:t |a

k
0:t ,o

k
1:t ,Θ) = 1, one can apply Jensen’s inequality

twice to the rightmost side of (18) to obtain two inequalities

LB(Θ̂|Θ) ≤
1
K

K

∑
k=1

Tk

∑
t=0

σk
t (Θ)

V̂(D(K);Θ)
ln

r̃k
t p(ak

0:t |o
k
1:t , Θ̂)

σk
t (Θ)

V̂(D(K);Θ)

De f.
= ϒ(Θ̂|Θ)

≤ ln

[
1
K

K

∑
k=1

Tk

∑
t=0

r̃k
t p(ak

0:t |o
k
1:t , Θ̂)

]
= lnV̂(D(K); Θ̂), (19)

where the first inequality is with respect top(zk
0:t |a

k
0:t ,o

k
1:t ,Θ) while the second inequality is with

respect to
{

σk
t (Θ)

V̂(D(K);Θ)
: t = 1, · · · ,Tk,k = 1, · · · ,K

}
. Each inequality yields a lower bound to the

logarithmic empirical value function ln̂V(D(K); Θ̂). It is not difficult to verify from (18) and (19)
that both of the two lower bounds are tight (the respective equality can be reached), that is,

LB(Θ|Θ) = lnV̂(D(K);Θ) = ϒ(Θ|Θ). (20)

The equations in (20) along with the inequalities in (19) show that anyΘ̂ satisfying LB(Θ|Θ) <
LB(Θ̂|Θ) or ϒ(Θ|Θ) < ϒ(Θ̂|Θ) also satisfieŝV(D(K);Θ) < V̂(D(K); Θ̂). Thus one can choose to
maximize either of the two lower bounds, LB(Θ̂|Θ) or ϒ(Θ̂|Θ), when trying to improve the empir-
ical value ofΘ̂ over that ofΘ. In either case, the maximization is with respect toΘ̂.

The two alternatives, though both yielding an improved RPR, are quite different in the manner
the improvement is achieved. Suppose one has obtainedΘ(n) by applying (13) and (14) forn itera-
tions, and is seekingΘ(n+1) satisfyingV̂(D(K);Θ(n)) < V̂(D(K);Θ(n+1)). Maximization of the first
lower bound givesΘ(n+1) = argmax̂Θ∈F LB(Θ̂|Θ(n)), which has an analytic solution that will be
given in Section 4.2. Maximization of the second lower bound yields

Θ(n+1) = argmax
Θ̂∈F

ϒ(Θ̂|Θ(n)). (21)

The definition ofϒ in (19) is substituted into (21) to yield

Θ(n+1) = argmax
Θ̂∈F

1
K

K

∑
k=1

Tk

∑
t=0

σk
t (Θ(n))

V̂(D(K);Θ(n))
ln

r̃k
t p(ak

0:t |o
k
1:t , Θ̂)

σk
t (Θ(n))

V̂(D(K);Θ(n))

1142



MULTI -TASK REINFORCEMENTLEARNING IN PARTIALLY OBSERVABLE STOCHASTIC ENVIRONMENTS

= argmax
Θ̂∈F

K

∑
k=1

Tk

∑
t=0

σk
t (Θ

(n)) ln p(ak
0:t |o

k
1:t , Θ̂), (22)

which shows that maximization of the second lower bound is equivalent to maximizing a weighted
sum of the log-likelihoods of{ak

0:t}, with the weights being the rewards recomputed byΘ(n).
Through (22), the connection between the maximum value algorithm in Theorem 6 and the tra-
ditional ML algorithm is made more formal and clearer: with the recomputed rewards given and
fixed, the MV algorithm is a weighted version of the ML algorithm, withϒ(Θ̂|Θ(n)) a weighted
log-likelihood function ofΘ̂.

The above analysis also sheds light on the relations between Theorem 6 and the policy improve-
ment theorem in POMDP (Blackwell, 1965). By (19), (20), and (22), wehave

lnV(D(K);Θ(n)) = ϒ(Θ(n)|Θ(n)) ≤ ϒ(Θ(n+1)|Θ(n))
≤ lnV(D(K);Θ(n+1)).

The first inequality, achieved by the weighted likelihood maximization in (22), represents the policy
improvement on the old episodes collected by following the previous policy. The second inequality
ensures that, if the improved policy is followed to collect new episodes in the environment, the
expected sum of newly accrued rewards is no less than that obtained by following the previous
policy. This is similar to policy evaluation. Note that the update of episodes is simulated by reward
computation. The actual episodes are collected by a fixed behavior policyΠ and do not change.

The maximization in (22) can be performed using any optimization techniques. Aslong as the
maximization is achieved, the policy is improved as guaranteed by Theorem 6. Since the latentz
variables are involved, it is natural to employ EM to solve the maximization. The EMsolution to
(22) is obtained by solving a sequence of maximization problems: starting fromΘ(n)(0) = Θ(n), one
successively solves

Θ(n)( j) = argmax
Θ̂∈F

LB(Θ̂|Θ(n)( j−1)) subject toσk
t (Θ

(n)( j−1)) = σk
t (Θ

(n)), ∀ t,k, (23)

j = 1,2, · · · ,

where in each problem one maximizes the first lower bound with an updated posterior of {zk
t }

but with the recomputed rewards fixed at{σk
t (Θ(n))}; upon convergence, the solution of (23) is

the solution to (22). The EM solution here is almost the same as the likelihood maximization of
sequences for hidden Markov models (Rabiner, 1989). The only difference is that here we have a
weighted log-likelihood function, but with the weights given and fixed. The posterior of{zk

t } can
be updated by employing the dynamical programming techniques similar to those used in HMM, as
we discuss below.

It is interesting to note that, with standard EM employed to solve (22), the overall maximum
value algorithm is a “double-EM” algorithm, since reward computation constitutes an outer EM-like
loop.

4.1 Calculating the Posterior of Latent Belief Regions

To allocate the weights or recomputed rewards and update the RPR as in (14), we do not need to
know the full distribution ofzk

0:t . Instead, a small set of marginals ofp(zk
0:t |a

k
0:t ,o

k
1:t ,Θ) are necessary
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for the purpose, in particular,

ξk
t,τ(i, j) = p(zk

τ = i,zk
τ+1 = j|ak

0:t ,o
k
1:t ,Θ), (24)

φk
t,τ(i) = p(zk

τ = i|ak
0:t ,o

k
1:t ,Θ). (25)

Lemma 7 (Factorization of theξ andφ Variables) Let

αk
τ(i) = p(zk

τ = i|ak
0:τ,o

k
1:τ,Θ)

=
p(zk

τ = i,ak
0:τ|o

k
1:τ,Θ)

∏τ
τ′=0 p(ak

τ′ |h
k
τ′ ,Θ)

, (26)

βk
t,τ(i) =

p(ak
τ+1:t |z

k
τ = i,ak

τ,o
k
τ+1:t ,Θ)

∏t
τ′=τ p(ak

τ′ |h
k
τ′ ,Θ)

. (27)

Then

ξk
t,τ(i, j) = αk

τ(i)W(zk
τ = i,ak

τ,o
k
τ+1,z

k
τ+1 = j)π(zk

τ+1 = j,ak
τ+1)β

k
t,τ+1( j), (28)

φk
t,τ(i) = αk

τ(i)β
k
t,τ(i)p(ak

τ|h
k
τ). (29)

The α andβ variables in the Lemma 7 are similar to the scaled forward variables and back-
ward variables in hidden Markov models (HMM) (Rabiner, 1989). The scaling factors here are
∏τ

τ′=0 p(ak
τ′ |h

k
τ′ ,Θ), which is equal top(ak

0:τ|o
k
1:τ,Θ) as shown in (9) and (10). Recall from Defini-

tion 3 that one episode of lengthT hasT +1 sub-episodes with each having a different ending time
step. For this reason, one must compute theβ variables for each sub-episode separately, since the
β variables depend on the ending time step. Forα variables, one needs to compute them once per
episode, since it does not involve the ending time step.

Similar to the forward variables and backward variables in HMM models, theα andβ variables
can be computed recursively, via dynamical programming,

αk
τ(i) =





µ(zk
0 = i)π(zk

0 = i,ak
0)

p(ak
0|h

k
0,Θ)

, τ = 0

∑|Z|
j=1 αk

τ−1( j)W(zk
τ−1 = j,ak

τ−1,o
k
τ,z

k
τ = i)π(zk

τ = i,ak
τ)

p(ak
τ|hk

τ,Θ)
, τ > 0

, (30)

βk
t,τ(i) =





1

p(ak
t |h

k
t ,Θ)

, τ = t

∑|Z|
j=1W(zk

τ = i,ak
τ,o

k
τ+1,z

k
τ+1 = j)π(zk

τ+1 = j,ak
τ+1)β

k
t,τ+1( j)

p(ak
τ|hk

τ,Θ)
, τ < t

, (31)

for t = 0, · · · ,Tk andk = 1, · · · ,K. Since∑|Z|
i=1 αk

τ(i) = 1, it follows from (30) that

p(ak
τ|h

k
τ,Θ) =





|Z|

∑
i=1

µ(zk
0 = i)π(zk

0 = i,ak
0), τ = 0

|Z|

∑
i=1

|Z|

∑
j=1

αk
τ−1( j)W(zk

τ−1 = j,ak
τ−1,o

k
τ,z

k
τ = i)π(zk

τ = i,ak
τ), τ > 0

. (32)
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4.2 Updating the Parameters

We rewrite the lower bound in (18),

LB(Θ̂|Θ) =
1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t |Θ

(n)) ln
r̃k
t p(ak

0:t ,z
k
0:t |o

k
1:t , Θ̂)

qk
t (z

k
0:t |Θ(n))

=
1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t |Θ

(n)) ln p(ak
0:t ,z

k
0:t |o

k
1:t , Θ̂)+constant,

where the “constant” collects all the terms irrelevant toΘ̂. Substituting (5) and (15) gives

LB(Θ̂|Θ) =
1
K

K

∑
k=1

Tk

∑
t=0

σk
t

V̂(D(K);Θ)

{
|Z|

∑
i=1

φk
t,0(i) ln µ̂(i)+

t

∑
τ=0

|Z|

∑
i=1

φk
t,τ(i) ln π̂(i,ak

τ)

+
t

∑
τ=1

|Z|

∑
i, j=1

ξk
t,τ(i, j) lnŴ(i,ak

τ−1,o
k
τ, j)

}
+constant.

It is not difficult to show that̂Θ = argmax̂Θ∈F LB(Θ̂|Θ) is given by

µ̂(i) =
∑K

k=1 ∑Tk
t=0 σk

t φk
t,0(i)

∑|Z|
i=1 ∑K

k=1 ∑Tk
t=0 σk

t φk
t,0(i)

, (33)

π̂(i,a) =
∑K

k=1 ∑Tk
t=0 σk

t ∑t
τ=0 φk

t,τ(i)δ(ak
τ,a)

∑|A |
a=1 ∑K

k=1 ∑Tk
t=0 σk

t ∑t
τ=0 φk

t,τ(i)δ(ak
τ,a)

, (34)

Ŵ(i,a,o, j) =
∑K

k=1 ∑Tk
t=0 σk

t ∑t−1
τ=1 ξk

t,τ(i, j)δ(ak
τ,a)δ(ok

τ+1,o)

∑|Z|
j=1 ∑K

k=1 ∑Tk
t=0 σk

t ∑t−1
τ=1 ξk

t,τ(i, j)δ(ak
τ,a)δ(ok

τ+1,o)
, (35)

for i, j = 1,2, · · · , |Z|, a = 1, · · · , |A |, ando = 1, · · · , |O|, whereδ(a,b) =

{
1, a = b
0, a 6= b

, andσk
t is

the recomputed reward as defined in (16). In computingσk
t one employs the equationp(ak

0:t |o
k
1:t ,Θ)=

∏t
τ=0 p(ak

τ|h
k
τ,Θ) established in (9) and (10), to get

σk
t (Θ)

De f.
= r̃k

t

t

∏
τ=0

p(ak
τ|h

k
τ,Θ), (36)

with p(ak
τ|h

k
τ,Θ) computed from theα variables by using (32). Note that the normalization constant,

which is equal to the empirical valuêV(D(K);Θ), is now canceled in the update formulae ofΘ̂.

4.3 The Complete Value Maximization Algorithm for Single-Task RPR Learning

The complete value maximization algorithm for single-task RPR learning is summarized in Table
1. In earlier discussions regarding the relations of the algorithm to EM, we have mentioned that
reward computation constitutes an outer EM-like loop; the standard EM employed to solve (22)
is embedded in the outer loop and constitutes an inner EM loop. The double EM loops are not
explicitly shown in Table 1. However, one may separate these two loops by keeping {σk

t } fixed

1145



L I , L IAO AND CARIN

Input: D(K), A , O, |Z|.
Output: Θ = {µ,π,W}.

1. Initialize Θ, ℓ = [], iteration= 1.
2. Repeat

2.1Dynamical programming:
Computeα andβ variables with Equations (30)-(32).

2.2Reward re-computation:
Calculate{σk

t } using (36) and (32).
2.3Convergence check:

Computeℓ(iteration) = V̂(D(K);Θ) using (17).
If the sequence ofℓ converges

Stop the algorithm and exit.
Else

iteration := iteration+1
2.4Posterior update for z:

Compute theξ andφ variables using Equations (28)-(29).
2.5Update of Θ:

Compute the updatedΘ using (33), (34), and (35).

Table 1: The value maximization algorithm for single-task RPR learning

when updatingΘ and the posterior ofz’s, until the empirical value converges; see (23) for details.
Once{σk

t } are updated, the empirical value will further increase by continuing updating Θ and
the posterior ofz’s. Note that the{σk

t } used in the convergence check are always updated at each
iteration, even though the new{σk

t } may not be used for updatingΘ and the posterior ofz’s.
Given a history of actions and observations(a0:t−1,o1:t) collected up to time stept, the single

RPR yields a distribution ofat as given by (8). The optimal choice forat can be obtained by either
sampling from this distribution or taking the action that maximizes the probability.

4.3.1 TIME COMPLEXITY ANALYSIS

We quantify the time complexity by the number of real number multiplications performed per it-
eration and present it in the Big-O notation. Since there is no compelling reason for the number
of iterations to depend on the size of the input,2 the complexity per iteration also represents the
complexity of the complete algorithm. A stepwise analysis of the time complexity of the value
maximization algorithm in Table 1 is given as follows.

• Computation of theα variables with (30) and (32) runs in timeO(|Z|2∑K
k=1Tk).

• Computation ofβ’s with (31) and (32) runs in timeO(|Z|2∑K
k=1 ∑Tk

t=0,rk
t 6=0

(t +1)), which de-

pends on the degree of sparsity of the immediate rewards{rk
0rk

2 · · · r
k
Tk
}K

k=1. In the worst case

2. The number of iterations usually depends on such factors as initializationof the algorithm and the required accuracy,
etc.
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the time isO(|Z|2∑K
k=1 ∑Tk

t=0(t +1)) = O(|Z|2∑K
k=1T2

k ), which occurs when the immediate re-
ward in each episode is nonzero at every time step. In the best case the time isO(|Z|2∑K

k=1Tk),
which occurs when the immediate reward in each episode is nonzero only at afixed number
of time steps (only at the last time step, for example, as is the case of the benchmark problems
presented in Section 6).

• The reward re-computation using (36) and (32) requires timeO(∑K
k=1Tk) in the worst case

andO(K) in the best case, where the worse/best cases are as defined above.

• Update ofΘ using (33), (34), and (35), as well as computation of theξ andφ variables using
(28) and (29), runs in timeO(|Z|2∑K

k=1T2
k ) in the worst case andO(|Z|2∑K

k=1Tk) in the best
case, where the worse/best cases are defined above.

Since∑K
k=1Tk ≫ |A ||O| in general, the overall complexity of the value maximization algorithm is

O(|Z|2∑K
k=1T2

k ) in the worst case andO(|Z|2∑K
k=1Tk) in the best case, depending on the degree

of sparsity of the immediate rewards. Therefore the algorithm scales linearly with the number of
episodes and to the square of the number of belief regions. The time dependency on the lengths of
episodes is between linear and square. The sparser the immediate rewardsare, the more the time is
towards being linear in the lengths of episodes.

Note that in many reinforcement problems, the agent does not receive immediate rewards at ev-
ery time step. For the benchmark problems and maze navigation problems considered in Section 6,
the agent receives rewards only when the goal state is reached, whichmakes the value maximization
algorithm scale linearly with the lengths of episodes.

5. Multi-Task Reinforcement Learning (MTRL) with RPR

We formulate our MTRL framework by placing multiple RPRs in a Bayesian setting and develop
techniques to learn the posterior of each RPR within the context of all other RPRs.

Several notational conventions are observed in this section. The posterior of Θ is expressed in
terms of probability density functions. The notationG0(Θ) is reserved to denote the density function
of a parametric prior distribution, with the associated probability measure denoted byG0 without a
parenthesizedΘ beside it. For the Dirichlet process (which is a nonparametric prior),G0 denotes
the base measure andG0(Θ) denotes the corresponding density function. The twofold use ofG0

is for notational simplicity; the difference can be easily discerned by the presence or absence of a
parenthesizedΘ. Theδ is a Dirac delta for continuous arguments and a Kronecker delta for discrete

arguments. The notationδΘ j is the Dirac measure satisfyingδΘ j (dΘm) =

{
1, Θ j ∈ dΘm

0, otherwise
.

5.1 Basic Bayesian Formulation of RPR

ConsiderM partially observable and stochastic environments indexed bym= 1,2· · · ,M, each of
which is apparently different from the others but may actually share fundamental common char-
acteristics with some other environments. Assume we have a set of episodes collected from each

environment,D(Km)
m =

{
(am,k

0 rm,k
0 om,k

1 am,k
1 rm,k

1 · · ·om,k
Tm,k

am,k
Tm,k

rm,k
Tm,k

)
}Km

k=1
, for m= 1,2, · · · ,M, whereTm,k

represents the length of episodek in environmentm. Following the definitions in Section 3, we
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write the empirical value function of them-th environment as

V̂(D
(Km)
m ;Θm) =

1
Km

Km

∑
k=1

Tm,k

∑
t=0

r̃m,k
t p(am,k

0:t |o
m,k
1:t ,Θm), (37)

for m = 1,2, · · · ,M, whereΘm = {πm,µm,Wm} are the RPR parameters for them-th individual
environment.

Let G0(Θm) represent the prior ofΘm, whereG0(Θ) is assumed to be the density function of a
probability distribution. We define the posterior ofΘm as

p(Θm|D
(Km)
m ,G0)

De f.
=

V̂(D
(Km)
m ;Θm)G0(Θm)

V̂G0(D
(Km)
m )

, (38)

where the inclusion ofG0 in the left hand side is to explicitly indicate that the prior being used is
G0, andV̂G0(D

(Km)
m ) is a normalization constant

V̂G0(D
(Km)
m )

De f.
=

Z

V̂(D
(Km)
m ;Θm)G0(Θm)dΘm, (39)

which is also referred to as themarginal empirical value,3 since the parametersΘm are integrated out
(marginalized). The marginal empirical valuêVG0(D

(Km)
m ) represents the accumulated discounted

reward in the episodes, averaged over infinite RPR policies independentlydrawn fromG0.
Equation (38) is literally a normalized product of the empirical value function and a prior

G0(Θm). Since
R

p(Θm|D
(Km)
m ,G0)dΘm = 1, (38) yields a valid probability density, which we call

the posterior ofΘm given the episodesD(Km)
m . It is noted that (38) would be the Bayes rule if

V̂(D
(Km)
m ;Θm) were a likelihood function. SincêV(D

(Km)
m ;Θm) is a value function in our case, (38)

is a somewhat non-standard use of Bayes rule. However, like the classicBayes rule, (38) indeed
gives a posterior whose shape incorporates both the prior information about Θm and the empirical
information from the episodes.

Equation (38) has another interpretation that may be more meaningful from the perspective of
standard probability theory. To see this we substitute (37) into (38) to obtain

p(Θm|D
(Km)
m ,G0) =

1
Km

∑Km
k=1 ∑

Tm,k

t=0 r̃m,k
t p(am,k

0:t |o
m,k
1:t ,Θm)G0(Θm)

V̂G0(D
(Km)
m )

(40)

=
1

Km
∑Km

k=1 ∑
Tm,k

t=0 ζm,k
t p(Θm|a

m,k
0:t ,om,k

1:t ,G0)

V̂G0(D
(Km)
m )

, (41)

where

ζm,k
t = r̃m,k

t p(am,k
0:t |o

m,k
1:t ,G0)

= r̃m,k
t

Z

p(am,k
0:t |o

m,k
1:t ,Θm)G0(Θm)dΘm

=
Z

σm,k
t (Θm)G0(Θm)dΘm, (42)

3. The term “marginal” is borrowed from the probability theory. Here we use it to indicate that the dependence of the
value on the parameter is removed by integrating out the parameter.

1148



MULTI -TASK REINFORCEMENTLEARNING IN PARTIALLY OBSERVABLE STOCHASTIC ENVIRONMENTS

with σm,k
t the re-computed reward as defined in (16) and thereforeζm,k

t is the averaged re-computed
reward, obtained by taking the expectation ofσm,k

t (Θm) with respect toG0(Θm).
In arriving (41), we have used the fact the RPR parameters are independent of the observations,

which is true due to the following reasons: RPR is a policy concerning generation of the actions,
employing as input the observations (which themselves are generated by theunknown environment);
therefore, observations carry no information about the RPR parameters, that is,p(Θ|observations) =
p(Θ) ≡ G0(Θ).

It is noted thatp(Θm|a
m,k
0:t ,om,k

1:t ,G0) in (41) is the standard posterior ofΘm given the action

sequenceam,k
0:t , and p(Θm|D

(Km)
m ,G0) is a mixture of these posteriors with the mixing proportion

given byζm,k
t . The meaning of (40) is fairly intuitive: each action sequence affects the posterior of

Θm in proportion to its re-evaluated reward. This is distinct from the posterior inthe classic hidden
Markov model (Rabiner, 1989) where sequences are treated as equally important.

Sincep(Θm|D
(Km)
m ,G0) integrates to one, the normalization constantV̂G0(D

(Km)
m ) is

V̂G0(D
(Km)
m ) =

1
Km

Km

∑
k=1

Tm,k

∑
t=0

ζm,k
t . (43)

We obtain a more convenient form of the posterior by substituting (6) into (41) to expand the
summation over the latentz variables, yielding

p(Θm|D
(Km)
m ,G0)=

1
Km

∑Km
k=1 ∑Tm,k

t=0 r̃m,k
t ∑|Z|

zm,k
0 ,··· ,zm,k

t =1
p(am,k

0:t ,z
m,k
0:t |o

m,k
1:t ,Θm)G0(Θm)

V̂G0(D
(Km)
m )

. (44)

To obtain an analytic posterior, we let the prior be conjugate top(am,k
0:t ,zm,k

0:t |o
m,k
1:t ,Θm). As shown

by (5), p(am,k
0:t ,zm,k

0:t |o
m,k
1:t ,Θm) is a product of multinomial distributions, and hence we choose the

prior as a product of Dirichlet distributions, with each Dirichlet representing an independent prior
for a subset of parameters inΘ. The density function of such a prior is given by

G0(Θm) = p(µm|υ)p(πm|ρ)p(Wm|ω), (45)

p(µm|υ) = Dir
(

µm(1), · · · ,µm(|Z|)
∣∣∣υ
)
, (46)

p(πm|ρ) =
|Z|

∏
i=1

Dir
(

πm(i,1), · · · ,πm(i, |A |)
∣∣∣ρi

)
, (47)

p(Wm|ω) =
|A |

∏
a=1

|O|

∏
o=1

|Z|

∏
i=1

Dir
(
Wm(i,a,o,1), · · · ,Wm(i,a,o, |Z|)

∣∣∣ωi,a,o

)
, (48)

whereυ = {υ1, . . . ,υ|Z|}, ρ = {ρ1, . . . ,ρ|Z|}with ρi = {ρi,1, . . . ,ρi,|A |}, andω = {ωi,a,o : i = 1. . . |Z|,
a = 1. . . |A |,o = 1. . . |O|} with ωi,a,o = {ωi,a,o,1, . . . ,ωi,a,o,|Z|}. Substituting the expression ofG0

into (44), one gets

p(Θm|D
(Km)
m ,G0)

=

1
Km

∑Km
k=1 ∑Tm,k

t=0 ∑|Z|

zm,k
0 ,··· ,zm,k

t =1
ζm,k

t (zm,k
0:t ) p(Θm|a

m,k
0:t ,om,k

1:t ,zm,k
0:t ,G0)

V̂G0(D
(Km)
m )

,
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where

ζm,k
t (zm,k

0:t ) = r̃m,k
t

Z

p(am,k
0:t ,zm,k

0:t |o
m,k
1:t ,Θm)G0(Θm)dΘm

= r̃m,k
t

∏i Γ(υ̂m,k,t
i )

Γ(∑i υ̂
m,k,t
i )

Γ(∑i υ
m,k,t
i )

∏i Γ(υm,k,t
i )

∏i ∏a Γ(ρ̂m,k,t
i,a )

∏i Γ(∑a ρ̂m,k,t
i,a )

∏i Γ(∑a ρm,k,t
i,a )

∏i ∏a Γ(ρm,k,t
i,a )

×
∏a ∏o ∏i ∏ j Γ(ω̂m,k,t

i,a,o, j)

∏a ∏o ∏i Γ(∑ j ω̂m,k,t
i,a,o, j)

∏a ∏o ∏i Γ(∑ j ωm,k,t
i,a,o, j)

∏a ∏o ∏i ∏ j Γ(ωm,k,t
i,a,o, j)

(49)

represents the averaged recomputed reward over a givenzsequencezm,k
0:t , and

p(Θm|a
m,k
0:t ,om,k

1:t ,zm,k
0:t ,G0) = p(µm|υ̂m,k,t)p(πm|ρ̂m,k,t)p(Wm|ω̂m,k,t)

is the density of a product of Dirichlet distributions and has the same form asG0(Θ) in (45) but with
υ, ρ, ω respectively replaced bŷυm,k,t , ρ̂m,k,t , ω̂m,k,t as given by

υ̂m,k,t
i = υm

i +δ(zm,k
0 − i), (50)

ρ̂m,k,t
i,a = ρm

i,a +
t

∑
τ=0

δ(zm,k
τ − i)δ(am,k

τ −a), (51)

ω̂m,k,t
i,a,o, j = ωm

i,a,o, j +
t

∑
τ=1

δ(zm,k
τ−1− i)δ(am,k

τ−1−a)δ(om,k
τ −o)δ(zm,k

τ − j). (52)

The normalization constant̂VG0(D
(Km)
m ) (which is also the marginal empirical value) can now be

expressed as

V̂G0(D
(Km)
m ) =

1
Km

Km

∑
k=1

Tm,k

∑
t=0

|Z|

∑
zm,k
0 ,··· ,zm,k

t =1

ζm,k
t (zm,k

0:t ). (53)

5.2 The Dirichlet Process Prior

In order to identify related tasks and introduce sharing mechanisms for multi-task learning, we
employ the Dirichlet process (Ferguson, 1973; Blackwell and MacQueen, 1973; Antoniak, 1974;
Sethuraman, 1994) as a nonparametric prior that is shared byΘm, m= 1,2, · · · ,M. A draw from a
DP has the nice property of being almost surely discrete (Blackwell and MacQueen, 1973), which
is known to promote clustering (West et al., 1994); therefore, related tasks (as judged by the em-
pirical value function) are encouraged to be placed in the same group andbe learned simultane-
ously by sharing the episodic data across all tasks in the same group. Assuming the prior ofΘm,
m= 1,2, · · · ,M, is drawn from a Dirichlet process with base measureG0 and precisionα, we have

Θm|G ∼ G,
G|α,G0 ∼ DP(α,G0),

where the precisionα provides an expected number of dominant clusters, with this driven by the
number of samples (West, 1992). It usually suffices to set the precisionα using the rule in West
(1992). If desired, however, one may also put a Gamma prior onα and draw from its posterior
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(Escobar and West, 1995), which yields greater model flexibility. Note the DP precision is denoted
by the same symbol as theα variables in (26). The difference is easy to recognize, since the former
is a single quantity bearing neither superscripts and nor subscripts while thelatter represent a set of
variables and always bear superscripts and subscripts.

By marginalizing outG, one obtains the Polya-urn representation of DP (Blackwell and Mac-
Queen, 1973), expressed in terms of density functions,4

p(Θm|Θ−m,α,G0)=
α

α+M−1
G0(Θm)+

1
α+M−1

M

∑
j=1
j 6=m

δ(Θm−Θ j), m= 1, · · · ,M, (54)

where the probability is conditioned onΘ−m = {Θ1,Θ2, · · · ,ΘM}\{Θm}. The Polya-urn represen-
tation in (54) gives a set of full conditionals for the joint priorp(Θ1,Θ2, · · · ,ΘM).

The fact thatG ∼ DP(α,G0) is almost surely discrete implies that the set{Θ1, Θ2, · · · , ΘM},
which are iid drawn fromG, can have duplicate elements and the number of distinct elementsN
cannot exceedM, the total number of environments. It is useful to consider an equivalentrepresen-
tation of (54) based on the distinct elements (Neal, 1998). LetΘ = {Θ1,Θ2, · · · ,ΘN} represent the
set of distinct elements of{Θ1,Θ2, · · · ,ΘM}, with N≤M. Letc= {c1,c2, . . . ,cM} denote the vector
of indicator variables defined bycm = n iff Θm = Θn andc−m = {c1,c2, · · · ,cM}\{cm}. The prior
conditional distributionp(cm|c−m) that arises from the Polya-urn representation of the Dirichlet
process is as follows (MacEachern, 1994)

p(cm|c−m,α) =
α

α+M−1
δ(cm)+

N

∑
n=1

l−m,n

α+M−1
δ(cm−n), (55)

wherel−m,n denotes the number of elements in{i : ci = n, i 6= m} andcm = 0 indicates a new sample
is drawn from the baseG0. Givencm andΘ, the density ofΘm is given by

p(Θm|cm,Θ,G0) = δ(cm)G0(Θm)+
N

∑
n=1

δ(cm−n)δ(Θm−Θn). (56)

5.3 The Dirichlet Process Posterior

We take two steps to derive the posterior based on the representation of theDP prior given by (55)
and (56). First we write the conditional posterior ofcm, ∀ m∈ {1, · · · ,M},

p(cm|c−m,Θ,D
(Km)
m ,α,G0) =

R

V̂(D
(Km)
m ;Θm)p(Θm|cm,Θ,G0)p(cm|c−m,α)dΘm

∑N
cm=0

R

V̂(D
(Km)
m ;Θm)p(Θm|cm,Θ,G0)p(cm|c−m,α)dΘm

,

which is rewritten, by substituting (55) and (56) into the righthand side, to yieldan algorithmically
more meaningful expression

p(cm|c−m,Θ,D
(Km)
m ,α,G0)=

αV̂G0(D
(Km)
m )δ(cm)+∑N

n=1l−m,nV̂(D
(Km)
m ;Θn)δ(cm−n)

αV̂G0(D
(Km)
m )+∑N

j=1 l−m, jV̂(D
(Km)
m ;Θ j)

, (57)

4. The corresponding expression in terms of probability measures (Escobar and West, 1995) is given by

Θm|Θ−m,α,G0 ∼
α

α+M−1
G0 +

1
α+M−1

∑M
j=1, j 6=mδΘ j , m= 1, · · · ,M,

whereδΘ j is the Dirac measure.
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where thêVG0(D
(Km)
m ) is the marginal empirical value defined in (39) and its expression is given by

(53) when the DP base has a density function as specified in (45).
It is observed from (57) that the indicatorcm tends to equaln if V̂(D

(Km)
m ;Θn) is large, which

occurs when then-th distinct RPR produces a high empirical value in them-th environment. If
none of the other RPRs produces a high empirical value in them-th environment,cm will tend to be
equal to zero, which means a new cluster will be generated to account forthe novelty. The merit
of generating a new cluster is measured by the empirical value weighted byα and averaged with
respect toG0. Therefore the number of distinct RPRs is jointly dictated by the DP prior and the
episodes.

Given the indicator variablesc, the clusters are formed. LetIn(c) = {m : cm = n} denote the
indices of the environments that have been assigned to then-th cluster. Given the clusters, we now
derive the conditional posterior ofΘn, ∀ n∈{1, · · · ,N}. If In(c) is an empty set, there is no empirical
evidence available for it to obtain a posterior, therefore one simply removesthis cluster. IfIn(c) is
nonempty, the density function of the conditional posterior ofΘn is given by

p(Θn|
S

m∈In(c)D
(Km)
m ,G0) =

∑m∈In(c) V̂(D
(Km)
m ;Θn)G0(Θn)

R

∑m∈In(c) V̂(D
(Km)
m ;Θn)G0(Θn)dΘn

(58)

=
∑m∈In(c)

1
Km

∑Km
k=1 ∑

Tm,k

t=0 r̃m,k
t ∑|Z|

zm,k
0 ,··· ,zm,k

t =1
p(am,k

0:t ,zm,k
0:t |o

m,k
1:t ,Θn)G0(Θn)

∑m∈In(c) V̂G0(D
(Km)
m )

, (59)

where (59) results from substituting (12) into the righthand side of (58). Note thatΘn, which
represents the set of parameters of then-th distinct RPR, is conditioned on all episodes aggregated
across all environments in then-th cluster. The posterior in (58) has the same form as the definition
in (38) and it is obtained by applying Bayes law to the empirical value function constructed from
the aggregated episodes. As before, the Bayes law is applied in a nonstandard manner, treating the
value function as if it were a likelihood function.

A more concrete expression of (59) can be obtained by letting the DP baseG0 have a density
function as in (45),

p(Θn|
S

m∈In(c)D
(Km)
m ,G0)

=
∑m∈In(c)

1
Km

∑Km
k=1 ∑

Tm,k

t=0 r̃m,k
t ∑|Z|

zm,k
0 ,··· ,zm,k

t =1
ζm,k

t (zm,k
0:t ) p(Θn|a

m,k
0:t ,om,k

1:t ,zm,k
0:t ,G0)

∑m∈In(c) V̂G0(D
(Km)
m )

, (60)

whereV̂G0(D
(Km)
m ) is the marginal empirical value given in (53),ζm,k

t (zm,k
0:t ) is the average recomputed

reward as given in (49), and

p(Θn|a
m,k
0:t ,om,k

1:t ,zm,k
0:t ,G0) = p(µn|υ̂m,k,t)p(πn|ρ̂m,k,t)p(W

n
|ω̂m,k,t)

is the density of a product of Dirichlet distributions and has the same form asG0(Θ) in (45) but with
υ, ρ, ω respectively replaced bŷυm,k,t , ρ̂m,k,t , ω̂m,k,t as given by (50), (51), and (52).

It is noted that, conditional on the indicator variablesc and the episodes across all environments,
the distinct RPRs are independent of each other. The indicator variablescluster theM environments
into N ≤ M groups, each of which is associated with a distinct RPR. Given the clusters, the envi-
ronments in then-th group merge their episodes to form a pool, and the posterior ofΘn is derived
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based on this pool. Existing clusters may become empty and be removed, and new clusters may be
introduced when novelty is detected, thus the pools change dynamically. Thedynamic changes are
implemented inside the algorithm presented below. Therefore, the number of distinct RPRs is not
fixed but is allowed to vary.

5.4 Challenges for Gibbs Sampling

The DP posterior as given by (57) and (60) may be analyzed using the technique of Gibbs sam-
pling (Geman and Geman, 1984; Gelfand and Smith, 1990). The Gibbs samplersuccessively draws
the indicator variablesc1,c2, · · · ,cM and the distinct RPRsΘ1,Θ2, · · · ,ΘN according to (57) and
(60). The samples are expected to represent the posterior when the Markov chain produced by the
Gibbs sampler reaches the stationary distribution. However, the convergence of Gibbs sampling
can be slow and a long sequence of samples may be required before the stationary distribution
is reached. The slow convergence can generally be attributed to the factthat the Gibbs sampler
implements message-passing between dependent variables through the useof samples, instead of
sufficient statistics (Jordan et al., 1999). Variational methods have beensuggested as a replacement
for Gibbs sampling (Jordan et al., 1999). Though efficient, variational methods are known to suffer
from bias. A good trade-off is to combine the two, which is the idea of hybrid variational/Gibbs
inference in Welling et al. (2008).

In our present case, Gibbs sampling is further challenged by the particular form of the con-
ditional posterior ofΘn in (60), which is seen to be a large mixture resulting from the summa-
tion over environmentm, episodek, time stept, and latentz variables. Thus it has a total of

∑m∈In ∑Km
k=1 ∑

Tm,k

t=0 |Z|
t components and each component is uniquely associated with a single sub-

episode and a specific instantiation of latentz variables. To sample from this mixture, one first
makes a draw to decide a component and then drawsΘn from this component. Obviously, any par-
ticular draw ofΘn makes use of one single sub-episode only, instead of simultaneously employing
all sub-episodes in then-th cluster as one would wish.

In essence, mixing with respect to(m,k, t) effectively introduces additional latent indicator vari-
ables, that is, those for locating environmentm, episodek, and time stept. It is important to note
that these new indicator variables play a different role thanz’s in affecting the samples ofΘn. In
particular, thez’s are intrinsic latent variables inside the RPR model, while the new ones are ex-
trinsic latent variables resulting from the particular form of the empirical value function in (37).
Each realization of the new indicators is uniquely associated with a distinct sub-episode while each
realization ofz’s is uniquely associated specific decision states. Therefore, the updateof Θn based
on one realization of the new indicators employs a single sub-episode, but the update based on one
realization ofz’s employs all sub-episodes.

5.5 The Gibbs-Variational Algorithm for Learning the DP Posterior

The fact that the Gibbs sampler cannot update the posterior RPR samples byusing more than one
sub-episode motivates us to develop a hybrid Gibbs-variational algorithm for learning the posterior.

We restrict the joint posterior of the latentzvariables and the RPR parameters to the variational
Bayesian (VB) approximation that assumes a factorized form. This restriction yields a variational
approximation top(Θn|

S

m∈In(c)D
(Km)
m ,G0) that is a single product of Dirichlet density functions,

where the terms associated with different episodes are collected and added up. Therefore, updat-
ing of the variational posterior ofΘn in each Gibbs-variational iteration is based on simultaneously
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employing all sub-episodes in then-th cluster. In addition, the variational method yields an approx-
imation of the marginal empirical valuêVG0(D

(Km)
m ) as given in (39).

The overall Gibbs-variational algorithm is an iterative procedure basedon the DP posterior
represented by (57) and (58). At each iteration one successively performs the following form =

1,2, · · · ,M. First, the cluster indicator variablecm is drawn according to (57), wherêVG0(D
(Km)
m ) is

replaced by its variational Bayesian approximation; accordingly the clusters In = {m : cm = n}, n =
1, . . . ,N are updated. For each nonempty clustern, the associated distinct RPR is updated by draw-
ing from, or finding the mode of, the variational Bayesian approximation ofp(Θn|

S

m∈In(c)D
(Km)
m ,G0).

The steps are iterated until the variational approximation of∑N
n=1V̂G0(

S

m∈In(c)D
(Km)
m ) converges.

Note that the number of clusters is not fixed but changes with the iteration, since existing clusters
may become empty and be removed and new clusters may be added in.

5.5.1 VARIATIONAL BAYESIAN APPROXIMATION OFV̂G0(D
(K)) AND p(Θ|D(K),G0)

In this subsection we drop the variable dependence on environmentm, for notational simplicity. The
discussion assumes a set of episodesD(K) = {(ak

0rk
0ok

1ak
1rk

1 · · ·o
k
Tk

ak
Tk

rk
Tk

)}K
k=1, which may come from

a single environment or a conglomeration of several environments.
We now derive the variational Bayesian approximation of the marginal empirical value function

V̂G0(D
(K)) as defined in (39). We begin by rewriting (39), using (6) and (37), as

V̂G0(D
(K)) =

1
K

K

∑
k=1

Tk

∑
t=0

r̃k
t

|Z|

∑
zk
0,··· ,z

k
t =1

Z

p(ak
0:t ,z

k
0:t |o

k
1:t ,Θ)G0(Θ)dΘ.

We follow the general variational Bayesian approach (Jordan et al., 1999; Jaakkola, 2001; Beal,
2003)5 to find a variational lower bound to ln̂VG0(D

(K)), and the variational Bayesian approximation
of V̂G0(D

(K)) is obtained as the exponential of the lower bound. The lower bound is a functional of
a set of factorized forms{qk

t (z
k
0:t)g(Θ) : zk

t ∈ Z, t = 1. . .Tk,k = 1. . .K} that satisfies the following
normalization constraints:

K

∑
k=1

Tk

∑
t=1

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t) = K and qk

t (z
k
0:t) ≥ 0∀zk

0:t , t,k,

Z

g(Θ)dΘ = 1 and g(Θ) ≥ 0∀Θ.

The lower bound is maximized with respect to
{

qk
t (z

k
0:t)g(Θ)

}
. As will come clear below, maxi-

mization of the lower bound is equivalent to minimization of the Kullback-Leibler (KL) distance
between the factorized forms andweightedtrue joint posterior ofz’s andΘ. In this sense, the opti-
malg(Θ) is a variational Bayesian approximation to the posteriorp(Θ|D(K),G0). It should be noted
that, as before, the weights result from the empirical value function and are not a part of standard
VB (as applied to likelihood functions).

The variational lower bound is obtained by applying Jensen’s inequality to lnV̂G0(D
(K)),

lnV̂G0(D
(K))

5. The standard VB applies to a likelihood function. Since we are using a value function instead of a likelihood function,
the VB derivation here is not a standard one, just as the Bayes rule in (38) is non-standard.
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= ln
1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

Z

qk
t (z

k
0:t)g(Θ)

r̃k
t G0(Θ)p(ak

0:t ,z
k
0:t |o

k
1:t ,Θ)

qk
t (z

k
0:t)g(Θ)

dΘ

≥
1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

Z

qk
t (z

k
0:t)g(Θ) ln

r̃k
t G0(Θ)p(ak

0:t ,z
k
0:t |o

k
1:t ,Θ)

qk
t (z

k
0:t)g(Θ)

dΘ

= lnV̂G0(D
(K))−KL

({
qk

t (z
k
0:t)g(Θ)

}∥∥∥
{

ζk
t

V̂G0(D
(K))

p(zk
0:t ,Θ|ak

0:t ,o
k
1:t)

})

De f.
= LB

({
qk

t

}
,g(Θ)

)
, (61)

whereζk
t is the average recomputed reward as given in (42), and

KL

({
qk

t (z
k
0:t)g(Θ)

}∥∥∥
{

ζk
t

V̂G0(D
(K))

p(zk
0:t ,Θ|ak

0:t ,o
k
1:t)

})

=
1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

Z

qk
t (z

k
0:t)g(Θ) ln

qk
t (z

k
0:t)g(Θ)

ζk
t

V̂G0(D(K))
p(zk

0:t ,Θ|ak
0:t ,o

k
1:t)

dΘ,

with KL(q||p) denoting the Kullback-Leibler distance.
For any set

{
qk

t (z
k
0:t)g(Θ) : zk

t ∈ Z, t = 1. . .Tk,k = 1. . .K
}

satisfying the above normalization
constraints, the inequality in (61) holds. In order to obtain the lower bound that is closest to
lnV̂(D(K)), one maximizes the lower bound by optimizing

({
qk

t

}
,g(Θ)

)
subject to the normal-

ization constraints. Since ln̂VG0(D
(K)) is independent ofΘ and{qk

t }, it is clear that maximiza-
tion of the lower bound LB

({
qk

t

}
,g(Θ)

)
is equivalent to minimization of the KL distance be-

tween
{

qk
t (z

k
0:t)g(Θ)

}
and the weighted posterior

{
ζk

t

V̂G0(D(K))
p(zk

0:t ,Θ|ak
0:t ,o

k
1:t)

}
, where the weight

for episodek at time stept is ζk
t

V̂G0(D(K))
= K ζk

t

∑K
k=1 ∑

Tk
t=0 ζk

t

(the equation results directly from (43)), that is,

K times the fraction that the average recomputed rewardζk
t occupies in the total average recomputed

reward. Therefore the factorized form
{

qk
t (z

k
0:t)g(Θ)

}
represents an approximation of the weighted

posterior when the lower bound reaches the maximum, and the correspondingg(Θ) is called the
approximate variational posterior ofΘ.

The lower bound maximization is accomplished by solving
{

qk
t (z

k
0:t)
}

and q(Θ) alternately,
keeping one fixed while solving for the other, as shown in Theorem 8.

Theorem 8 Iteratively applying the following two equations produces a sequence of monotonically
increasing lower boundsLB

({
qk

t

}
,g(Θ)

)
, which converges to a maxima,

qk
t (z

k
0:t) =

r̃k
t

Cz
exp

{
Z

g(Θ) ln p(ak
0:t ,z

k
0:t |o

k
1:t ,Θ)dΘ

}
, (62)

g(Θ) =
G0(Θ)

CΘ
exp





1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t) ln r̃k

t p(ak
0:t ,z

k
0:t |o

k
1:t ,Θ)



 , (63)

where Cz and CΘ are normalization constants such that
R

g(Θ)dΘ = 1 and

∑K
k=1 ∑Tk

t=0 ∑|Z|

zk
0,··· ,z

k
t =1

qk
t (z

k
0:t) = K.
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It is seen from (63) that the variational posteriorg(Θ) takes the form of a product, where each
term in the product is uniquely associated with a sub-episode. As will be clear shortly, the terms are
properly collected and the associated sub-episodes simultaneously employed in the posterior. We
now discuss the computations involved in Theorem 8.

Calculation of
{

qk
t (z

k
0:t)
}

We uses the prior ofΘ as specified by (45). It is not difficult to verify
from (63) that the variational posteriorg(Θ) takes the same form as the prior, that is,

g(Θ) = p(µ|υ̂)p(π|ρ̂)p(W|ω̂), (64)

where the three factors respectively have the forms of (46),(47), and(48); we have put a hat̂above
the hyper-parameters ofg(Θ) to indicate the difference from those of the prior.

Substituting (5) and (64) into (62), we obtain

qk
t (z

k
0:t)

=
r̃k
t

Cz
exp

{
t

∑
τ=0

〈
lnπ(zk

τ,a
k
τ)
〉

p(π|ρ̂)
+
〈

lnµ(zk
0)
〉

p(µ|υ̂)
+

t

∑
τ=1

〈
lnW(zk

τ−1,a
k
τ−1,o

k
τ,z

k
τ)
〉

p(W|ω̂)

}

=
r̃k
t

Cz
µ̃(zk

0)π̃(zk
0,a

k
0)

t

∏
τ=1

W̃(zk
τ−1,a

k
τ−1,o

k
τ,z

k
τ)π̃(zk

τ,a
k
τ), (65)

where〈·〉p(π|ρ̂) denotes taking expectation with respect top(π|ρ̂), and

µ̃( j) = exp

{〈
lnµ( j)

〉
p(µ|υ̂)

}

= exp

{
ψ(υ̂ j)−ψ(

|Z|

∑
j ′=1

υ̂ j ′)

}
, j = 1. . . |Z|, (66)

π̃(i,m) = exp

{〈
lnπ(i,m)

〉
p(π|ρ̂)

}

= exp

{
ψ(ρ̂i,m)−ψ(

|A |

∑
m′=1

ρ̂i,m′)

}
, m= 1. . . |A |, (67)

W̃(i,a,o, j) = exp

{〈
lnW(i,a,o, j)

〉
p(W|ω̂)

}

= exp

{
ψ(ω̂i,a,o, j)−ψ(

|Z|

∑
j ′=1

ω̂i,a,o, j ′)

}
, j = 1. . . |Z|, (68)

each of which is a finite set of nonnegative numbers with a sum less than one. Such a finite set is
called under-normalized probabilities in Beal (2003) and used there to perform variational Bayesian
learning of hidden Markov models (HMM). Theψ(·) is the digamma function.

It is interesting to note that the productµ̃(zk
0)π̃(zk

0,a
k
0)∏t

τ=1W̃(zk
τ−1,a

k
τ−1,o

k
τ,z

k
τ)π̃(zk

τ,a
k
τ) on the

left side of (65) has exactly the same form as the expression ofp(ak
0:t ,z

k
0:t |o

k
1:t ,Θ) in (5), except that

theΘ is replaced bỹΘ = {µ̃, π̃,W̃}. Therefore, one can nominally rewrite (65) as

qk
t (z

k
0:t) =

r̃k
t

Cz
p(ak

0:t ,z
k
0:t |o

k
1:t , Θ̃),

1156



MULTI -TASK REINFORCEMENTLEARNING IN PARTIALLY OBSERVABLE STOCHASTIC ENVIRONMENTS

with the normalization constant given by

Cz =
1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

r̃k
t p(ak

0:t ,z
k
0:t |o

k
1:t , Θ̃),

such that the constraint∑K
k=1 ∑Tk

t=0 ∑|Z|

zk
0,··· ,z

k
t =1

qk
t (z

k
0:t) = K is satisfied. One may also find that the

normalization constantCz is a nominal empirical value function that has the same form as the em-
pirical value function in (12). The only difference is that the normalizedΘ is replaced by the
under-normalized̃Θ. Therefore, one may write

Cz = V̂(D(K); Θ̃). (69)

Since Θ̃ = {µ̃, π̃,W̃} are under-normalized,p(ak
0:t ,z

k
0:t |o

k
1:t , Θ̃) is not a proper probability distri-

bution. However, one may still writep(ak
0:t ,z

k
0:t |o

k
1:t , Θ̃) = p(ak

0:t |o
k
1:t , Θ̃)p(zk

0:t |a
k
0:t ,o

k
1:t , Θ̃), where

p(ak
0:t |o

k
1:t , Θ̃) = ∑|Z|

zk
0,··· ,z

k
t =1

p(ak
0:t ,z

k
0:t |o

k
1:t , Θ̃) and p(zk

0:t |a
k
0:t ,o

k
1:t , Θ̃) =

p(ak
0:t ,z

k
0:t |o

k
1:t ,Θ̃)

p(ak
0:t |o

k
1:t ,Θ̃)

. Note that

p(zk
0:t |a

k
0:t ,o

k
1:t , Θ̃) is a proper probability distribution. Accordingly,qk

t (z
k
0:t) can be rewritten as

qk
t (z

k
0:t) =

σk
t (Θ̃)

V̂(D(K); Θ̃)
p(zk

0:t |a
k
0:t ,o

k
1:t , Θ̃), (70)

where

σk
t (Θ̃) = r̃k

t p(ak
0:t |o

k
1:t , Θ̃)

= r̃k
t

t

∏
τ=0

p(ak
τ|h

k
τ, Θ̃) (71)

is called variational re-computed reward, which has the same form as the re-computed reward
given in (16) but withΘ replaced byΘ̃. The second equality in (71) is based on the equation
p(ak

0:t |o
k
1:t ,Θ) = ∏t

τ=0 p(ak
τ|h

k
τ,Θ) established in (9) and (10). The nominal empirical value function

V̂(D(K); Θ̃) can now be expressed in terms ofσk
t (Θ̃),

V̂(D(K); Θ̃) =
1
K

K

∑
k=1

Tk

∑
t=0

σk
t (Θ̃). (72)

Equation (70) shows thatqk
t (z

k
0:t) is a weighted posterior ofzk

0:t . The weights, using (72), can be

equivalently expressed asσk
t (Θ̃)

V̂(D(K);Θ̃)
= Kηk

t (Θ̃) where

ηk
t (Θ̃)

De f.
=

σk
t (Θ̃)

∑K
k=1 ∑Tk

t=0 σk
t (Θ̃)

. (73)

The weighted posterior has the same form as (15) used in single-task RPR learning. Therefore we
can borrow the techniques developed there to compute the marginal distributions ofp(zk

0:t |a
k
0:t ,o

k
1:t , Θ̃),

particularly those defined in (24) and (25). For clarity, we rewrite these marginal distributions below
without re-deriving them, withΘ replaced bỹΘ,

ξk
t,τ(i, j) = p(zk

τ = i,zk
τ+1 = j|ak

0:t ,o
k
1:t , Θ̃), (74)

φk
t,τ(i) = p(zk

τ = i|ak
0:t ,o

k
1:t , Θ̃). (75)

These marginals along with the{ηk
t (Θ̃)} defined in (73) will be used below to compute the varia-

tional posteriorg(Θ).
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Calculation of the Variational Posterior g(Θ) To computeg(Θ), one substitutes (5) and (70)
into (63) and performs summation over the latentz variables. Mostz variables are summed out,
leaving only the marginals in (74) and (75). Employing these marginals and taking into account the
weights{Kηk

t (Θ̃)}, the variational posterior (withηk
t (Θ̃) abbreviated asηk

t for notational simplicity)
is obtained as

g(Θ) =
G0(Θ)

CΘ
exp

{
1
K

K

∑
k=1

Tk

∑
t=0

Kηk
t

[
|Z|

∑
i=1

φk
t,0(i) lnµ(i)

+
t

∑
τ=1

|Z|

∑
i=1

φk
t,τ(i) lnπ(i,ak

τ)+
t

∑
τ=1

|Z|

∑
i, j=1

ξk
t,τ(i, j) lnW(i,ak

τ−1,o
k
τ, j)

]}

=
G0(Θ)

CΘ

K

∏
k=1

Tk

∏
t=0

{
|Z|

∏
i=1

[
µ(i)
]ηk

t φk
t,0(i)

t

∏
τ=1

|Z|

∏
i=1

[
π(i,ak

τ)
]ηk

t φk
t,τ(i)

×
t

∏
τ=1

|Z|

∏
i, j=1

[
W(i,ak

τ−1,o
k
τ, j)

]ηk
t ξk

t,τ−1(i, j)

}

= p(µ|υ̂)p(π|ρ̂)p(W|ω̂),

wherep(µ|υ̂), p(π|ρ̂), p(W|ω̂) have the same forms as in (46), (47), and (48), respectively, but with
the hyper-parameters replaced by

υ̂i = υi +
K

∑
k=1

Tk

∑
t=0

ηk
t φk

t,0(i), (76)

ρ̂i,a = ρi,a +
K

∑
k=1

Tk

∑
t=0

t

∑
τ=0

ηk
t φk

t,τ(i)δ(ak
τ,a), (77)

ω̂i,a,o, j = ωi,a,o, j +
K

∑
k=1

Tk

∑
t=0

t

∑
τ=1

ηk
t ξk

t,τ−1(i, j)δ(ak
τ−1,a)δ(ok

τ,o), (78)

for i, j = 1, . . . , |Z|, a = 1, . . . , |A |, o = 1, . . . , |O|. Note that, for simplicity, we have used{υ̂, ρ̂, ω̂}
to denote the hyper-parameters ofg(Θ) for both before and after the updates in (76)-(78) are made.
It should be kept in mind that theη’s, φ’s, andξ’s are all based on the numerical values of{υ̂, ρ̂, ω̂}
before the updates in (76)-(78) are made, that is, they are based on the{υ̂, ρ̂, ω̂} updated in the
previous iteration.

It is clear from (76)-(78) that the update of the variational posterior is based on using all episodes
at all time steps (i.e., all sub-episodes). Theηk

t can be thought of as a variational soft count at timet
of episodek, which is appended to the hyper-parameters (initial Dirichlet counts) of theprior. Each
decision statez receivesηk

t in the amount that is proportional to the probability specified by the
posterior marginals{φk

t,τ} and{ξk
t,τ−1}.

Computation of the Lower Bound To compute the lower bound LB({qk
t },g(Θ)) given in (61),

one first takes the logarithm of (62) to obtain

lnqk
t (z

k
0:t) = lnC−1

z r̃k
t exp

{
Z

g(Θ) ln p(ak
0:t ,z

k
0:t |o

k
1:t ,Θ)dΘ

}

= − lnCz+
Z

g(Θ) ln r̃k
t p(ak

0:t ,z
k
0:t |o

k
1:t ,Θ)dΘ,
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which is then substituted into the right side of (82) in the Appendix to cancel thefirst term, yielding

LB
({

qk
t

}
,g(Θ)

)
= lnCz−

Z

g(Θ) ln
g(Θ)

G0(Θ)
dΘ

= lnCz−KL
(

g(Θ)||G0(Θ)
)

= lnV̂(D(K); Θ̃)−KL
(

g(Θ)||G0(Θ)
)
, (79)

where the last equality follows from (69).
The lower bound yields a variational approximation to the logarithm of the marginal empirical

value. As variational Bayesian learning proceeds, the lower bound monotonically increases, as
guaranteed by Theorem 8, and eventually reaches a maxima, at which point one obtains the best
(assuming the maxima is global) variational approximation. By taking exponentialof the best lower
bound, one gets the approximated marginal empirical value. The lower bound also provides a
quantitative measure for monitoring the convergence of variational Bayesian learning.

5.5.2 THE COMPLETE GIBBS-VARIATIONAL LEARNING ALGORITHM

A detailed algorithmic description of the complete Gibbs-variational algorithm is given in Table
2. The algorithm calls the variational Bayesian (VB) algorithm in Table 3 as a sub-routine, to find
the variational Bayesian approximations to intractable computations. In particular, the marginal
empirical valueV̂G0(D

(Km)
m ) in (57) is approximated by the exponential of the variational lower

bound returned from the VB algorithm by feeding the episodesD
(Km)
m . The conditional poste-

rior p(Θn|
S

m∈In(c)D
(Km)
m ,G0) in (58) is approximated by the variational posteriorg(Θn) returned

from the VB algorithm by feeding the episodes
S

m∈In(c)D
(Km)
m . The variational approximation of

V̂G0(D
(Km)
m ) need be computed only once for each environmentm, before the main loop begins, since

it solely depends on the DP baseG0 and the episodes, which are assumed given and fixed. The vari-

ational posteriorg(Θn) andV̂G0

(
S

m∈In(c)D
(Km)
m

)
, however, need be updated inside the main loop,

because the clusters{In(c)} keep changing from iteration to iteration.
Upon convergence of the algorithm, one obtains variational approximationsto the posteriors of

distinct RPRs{g(Θn)}
N
n=1, which along with the cluster indicators{c1,c2, · · · ,cM} give the varia-

tional posteriorg(Θm) for each individual environmentm. By simple post-processing of the pos-
terior, we obtain the mean or mode of eachΘm, which gives a single RPR for each environment
and yields the history-dependent policy as given by (8). Alternatively,one may draw samples from
the variational posterior and use them to produce an ensemble of RPRs foreach environment. The
RPR ensemble gives multiple history-dependent policies, that are marginalized (averaged) to yield
the final choice for the action.

It should be noted that the VB algorithm in Table 3 can also be used as a stand-alone algorithm
to find the variational posterior of the RPR of each environment independently of the RPRs of
other environments. In this respect the VB is a Bayesian counterpart of the maximum value (MV)
algorithm for single-task reinforcement learning (STRL), presented in Section 4 and Table 1.

Time Complexity Analysis The time complexity of the VB algorithm in Table 3 is given as
follows where, as in Section 4.3.1, the complexity is quantified by the number of real number
multiplications in each iteration and is presented in the Big-O notation. For the reasons stated in
Section 4.3.1, the complexity per iteration also represents the complexity of the complete algorithm.

1159



L I , L IAO AND CARIN

Input: {D
(Km)
m }M

m=1, A , O, |Z|, {υ,ρ,ω}, α
Output: {υ̂n, ρ̂n, ω̂n}

N
n=1 with N ≤ M and{c1,c2, · · · ,cM}.

1. Computing the variational approximations of {V̂G0(D
(Km)
m )}:

1.1 for m= 1 to M

Call the algorithm in Table 3, with the inputsD(Km)
m , A , O, |Z|,

{υ,ρ,ω}. Record the returned hyper-parameters as{υ̂m, ρ̂m, ω̂m} and the

approximatêVG0(D
(Km)
m ).

2. Initializations: Let j = 1, N=M, ℓ = 0.
Let υn = υ̂n, ρn = ρ̂n, ωn = ω̂n, for n = 1, · · · ,N.

3. Repeat
3.1For n = 1 to N

UpdateΘn by drawing from, or finding the mode of, theG0 with hyper-
parameters{υn,ρn,ωn}.

3.2For m= 1 to M
Let cold

m = cm and drawcm according to (57).
If cm 6= cold

m
If cm = 0, start a new clusterIN+1(c) = {m}.
Elseif cm 6= 0, move the elementm from Icold

m
(c) to Icm(c).

For n =
{

cold
m ,cm

}

If In(c) is an empty set
Delete then-th cluster.

Elseif In(c) contain a single element (let it be denoted bym′)

Let υn= υ̂m′ , ρn= ρ̂m′ , ωn= ω̂m′ . Add Km′

∑M
i=1 Ki

V̂G0(D
(Km′ )
m′ ) to ℓ( j).

Else

Call the algorithm in Table 3, with the inputs
S

i∈In(c)D
(Ki)
i ,

A , O, |Z|, {υ,ρ,ω}. Record the returned hyper-parameters as

{υn,ρn,ωn}. Scale the returned̂VG0

(
S

i∈In(c)D
(Ki)
i

)

by ∑i∈In(c) Ki

∑M
i=1 Ki

and add the result toℓ( j).

If In(c) is not empty
Draw Θn drawn fromG0 with hyper-parameters{υn,ρn,ωn}.

3.3Updating N:
Let N be the number of nonempty clusters and renumber the
nonempty clusters so that their indices are in{1,2, · · · ,N}.

3.4Convergence check:
If the sequence ofℓ converges

stop the algorithm and exit.
Otherwise

Set j := j +1 andℓ( j) = 0.

Table 2: The Gibbs-variational algorithm for learning the DP posterior
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Input: D(K), A , O, |Z|, {υ,ρ,ω}.
Output: {υ̂, ρ̂, ω̂}, V̂G0(D

(K)) ≈ LB({qk
t },g(Θ)).

1. Initialize υ̂ = υ, ρ̂ = ρ, ω̂ = ω, ℓ = [], iteration= 1.
2. Repeat

2.1Computing Θ̃:
Compute the set of under-normalized probabilitiesΘ̃ using
Equations (66)-(68).

2.2Dynamical programming:
Computeα andβ variables with (30), (31), and (32), withΘ
replaced bỹΘ in these equations.

2.3Reward re-computation:
Calculate the variational recomputed reward{σk

t (Θ̃)} using
(71) and (32) and compute the weight{ηk

t (Θ̃)} using (73).
2.4Lower bound computation:

Calculate the variational lower bound LB({qk
t },g(Θ)) using

(79) and (72).
2.5Convergence check:

Let ℓ(iteration) = LB({qk
t },g(Θ)).

If the sequence ofℓ converges
Stop the algorithm and exit.

Else
Set iteration := iteration+1.

2.6Posterior update for z:
Compute theξ andφ variables using Equations (28)-(29).

2.7Update of hyper-paramters:
Compute the updated{υ̂, ρ̂, ω̂} using (76), (77), and (78).

Table 3: The variational Bayesian learning algorithm for RPR

• The computation of̃Θ based on Equations (66)-(68) runs in timeO(|Z|), O(|A ||Z|), and
O(|A ||O||Z|2), respectively.

• Computation of theα variables with (30) and (32) (withΘ replaced byΘ̃) runs in time
O(|Z|2∑K

k=1Tk).

• Computation of theβ variables with (31) and (32) (withΘ replaced byΘ̃) runs in time
O(|Z|2∑K

k=1 ∑Tk

t=0,rk
t 6=0

(t+1)), which isO(|Z|2∑K
k=1T2

k ) in the worst case and isO(|Z|2∑K
k=1Tk)

in the best case, where the worst and best cases are distinguished by the sparseness of imme-
diate rewards, as discussed in Section 4.3.1.

• The reward re-computation using (71), (32), and (73) requires timeO(∑K
k=1Tk) in the worst

case andO(K) in the best case.

• Computation of the lower bound using (72) and (79) requires timeO(|A ||O||Z|2).
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• Update of the hyper-parameters using (76), (77), and (78), as well as computation of the
ξ andφ variables using (28) and (29), runs in timeO(|Z|2∑K

k=1T2
k ) in the worst case and

O(|Z|2∑K
k=1Tk) in the best case.

The overall complexity of the VB algorithm is seen to beO(|Z|2∑K
k=1T2

k ) in the worst case and
O(|Z|2∑K

k=1Tk) in the best case, based on the fact that∑K
k=1Tk ≫ |A ||O| in general. Thus the VB

algorithm has the same time complexity as the value maximization algorithm in Table 1. Note
that the time dependency on the lengths of episodes is dictated by the sparseness of the immediate
rewards; for most problems considered in Section 6, the agent receives rewards only when the goal
state is reached, in which case the VB algorithm scales linearly with the lengths of episodes.

The complexity of the Gibbs-variational algorithm can be easily obtained basedon the complex-
ity analysis above for the VB algorithm. At the beginning and before enteringthe main loop, the
Gibbs-variational algorithm calls the VB to compute the variational approximationof the marginal
empirical value{V̂G0(D

(Km)
m )} for each environmentm, by feeding the associated episodesD

(Km)
m .

These computations are performed only once. For each environment the VB runs until convergence,
with a time complexity betweenO(|Z|2∑Km

k=1Tm,k) andO(|Z|2∑Km
k=1T2

m,k) per iteration, depending
on the sparseness of the immediate rewards. Inside the main loop, the Gibbs-variational algorithm
calls the VB to compute the variational posterior of distinct RPR for each cluster n, by feeding
the merged episodes

S

m∈In(c)D
(Km)
m . These computations are performed each time the clusters are

updated, with a time complexity betweenO(|Z|2∑m∈In(c) ∑Km
k=1Tm,k) andO(|Z|2∑m∈In(c) ∑Km

k=1T2
m,k)

per iteration for clustern.

6. Experimental Results

We compare the performance of RPR in multi-task reinforcement learning (MTRL) versus single-
task reinforcement learning (STRL), and demonstrate the advantage of MTRL. The RPR for MTRL
is implemented by the Gibbs-variational algorithm in Table 2 and the RPR for STRLis implemented
by the maximum-value (MV) algorithm in Table 1. The variational Bayesian (VB) algorithm in
Table 3, which is a Bayesian counterpart of the MV algorithm, generally performs similar to the
MV for STRL and is thus excluded in the comparisons.

Since the MV algorithm is a new technique developed in this paper, we evaluatethe performance
of the MV before proceeding to the comparison of MTRL and STRL. We alsocompare the MV to
the method of first learning a POMDP model from the episodes and then finding the optimal policy
for the POMDP.

6.1 Performance of RPR in Single-Task Reinforcement Learning (STRL)

We consider the benchmark example Hallway2, introduced in Littman et al. (1995). The Hallway2
problem was originally designed to test algorithms based on a given POMDP model, and it has
recently been employed as a benchmark for testing model-free reinforcement algorithms (Bakker,
2004; Wierstra and Wiering, 2004).

Hallway2 is a navigation problem where an agent is situated in a maze consisting of a number
of rooms and walls that are connected to each other and the agent navigates in the maze with the
objective of reaching the goal within a minimum number of steps. The maze is characterized by 92
states, each representing one of four orientations (south, north, east,west) in any of 23 rectangle
areas, and four of the states (corresponding to a single rectangle area) represent the goal. The
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observations consist of 24 = 16 combinations of presence/absence of a wall as viewed when standing
in a rectangle facing one of the four orientations, and there is an observation uniquely associated
with the goal. There are five different actions that the agent can take:{stay in place, move forward,
turn right, turn left, turn around}. Both state transitions and observations are very noisy (uncertain),
except that the goal is fully identified by the unique observation associatedwith it. The reward
function is defined in such a way that a large reward is received when theagent enters the goal from
the adjacent states, and zero reward is received otherwise. Thus the reward structure is highly sparse
and both the MTRL and STRL algorithms scale linearly with the lengths of episodes in this case, as
discussed in Sections 4.3.1 and 5.5.2.

6.1.1 PERFORMANCE AS AFUNCTION OF NUMBER OF EPISODES

We investigate the performance of the RPR, as a function ofK the number of episodes used in the
learning. For each givenK, we learn a RPR from a set ofK episodesD(K) that are generated by
following the behavior policyΠ, and the learning follows the procedures described in Section 4.

The conditions for the policyΠ, as given in Theorem 5, are very mild, and are satisfied by a
uniformly random policy. However, a uniformly random agent may take a long time to reach the
goal, which makes the learning very slow. To accelerate learning, we use asemi-random policyΠ,
which is simulated by the rule that, with probabilitypquery, Π chooses an action suggested by the
PBVI algorithm (Pineau et al., 2003) and, with probability 1− pquery, Π chooses an action uniformly
sampled fromA . The use of PBVI here is similar to the meta-queries used in Doshi et al. (2008),
where a meta-query consults a domain expert (who is assumed to have access to the true POMDP
model) for the optimal action at a particular time step. The meta-queries correspond to human-
robot interactions in robotics applications. It should be noted that, by implementing the reward
re-computation in RPR online, the behavior policy in each iteration simply becomesthe RPR in the
previous iteration, in which case the use of an external policy like PBVI is eliminated.

In principle, the number of decision states (belief regions)|Z| can be selected by maximizing
the marginal empirical valuêVG0(D

(K)) =
R

V̂(D(K))G0(Θ)dΘ with respect to|Z|, where an ap-
proximation ofV̂(D(K)) can be found by the VB algorithm in Table 3. Because the MV does not
employ a prior, we make a nominal priorG0(Θ) by letting it take the form of (45) but with all
hyper-parameters uniformly set to one. This leads toG0(Θ) ≡ Cmv, whereCmv is a normalization
constant. Therefore maximization ofV̂G0(D

(K)) is equivalent to maximization of
R

V̂(D(K);Θ)dΘ,
which serves as an evidence of how good the choice of|Z| fits to the episodes in terms of empirical
value. According to the Occam Razor principle (Beal, 2003), the minimum|Z| fitting the episodes
has the best generalization. In practice, letting|Z| be a multiple of the number of actions is usually
a good choice (here|Z| = 4×5 = 20) and we find that the performance of the RPR is quite robust
to the choice of|Z|. This may be attributed to the fact that learning of the RPR is a process of
allocating counts to the decision states—when more decision states are included, they simply share
the counts that otherwise would have been allocated to a single decision state.Provided the sharing
of counts is consistent amongµ, π, andW, the policy will not change much.

The performance of the RPR is compared against EM-PBVI, the method thatfirst learns a
predictive model as in Chrisman (1992) and then learns the policy based onthe predictive model.
Here the predictive model is a POMDP learned by expectation maximization (EM)based onD(K)

and the PBVI (Pineau et al., 2003) is employed to find the policy given the POMDP. To examine the
effect of the behavior policyΠ on the RPR’s performance, we consider three differentΠ’s, which
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respectively have a probabilitypquery= 5%,30%,50% of choosing the actions suggested by PBVI,
wherepquerycorresponds to the rate of meta-query in Doshi et al. (2008). The episodes used to learn
EM-PBVI are collected by the behavior policy withpquery= 50%, which is the highest query rate
considered here. Therefore the experiments are biased favorably towards the EM-PBVI, in terms of
the number of expert-suggested actions that are employed to generate the training episodes.

The performance of each RPR, as well as that of EM-PBVI, is evaluatedon Hallway2 by fol-
lowing the standard testing procedure as set up in Littman et al. (1995). Foreach policy, a total of
251 independent trials are performed and each trial is terminated when either the goal is reached
or a maximum budget of 251 steps is consumed. Three performance measures are computed based
on the 251 trials: (a) the discounted accumulative reward (i.e., the sum of exponentially discounted
rewards received over theNte ≤ 251 steps) averaged over the 251 trials; (b) the goal rate, that is, the
percentage of the 251 trials in which the agent has reached the goal; (c) the number of steps that the
agent has actually taken, averaged over the 251 trials.

The results on Hallway2 are summarized in Figure 1, where we present each of the three perfor-
mance measures plus the learning time, as a function of log10 of the number of episodesK used in
the learning. The four curves in each figure correspond to the EM-PBVI, and the three RPRs with
a rate of PBVI query 5%, 30%, and 50%, respectively. Each curve results from an average over 20
independently generatedD(K) and the error bars show the standard deviations. For simplicity, the
error bars are shown only for the RPR with a 50% query rate.

As shown in Figure 1 the performance of the RPR improves as the number of episodesK used
to learn it increases, regardless of the behavior policyΠ. As recalled from Theorem 5, the empirical
value functionV̂(D(K);Θ) approaches the exact value function asK goes to infinity. Assuming the
RPR has enough memory (decision states) and the algorithm finds the global maxima, the RPR will
approach the optimal policy asK increases. Therefore, Figure 1 serves as an experimental verifica-
tion of Theorem 5. The CPU time shown in Figure 1(d) is exponential in log10K or, equivalently, is
linear inK. The linear time is consistent with the complexity analysis in Section 4.3.1.

The error bars of goal rate exhibits quick shrinkage withK and those of the median number of
steps also shrinks relatively fast. In contrast, the discounted accumulative reward has a very slow
shrinkage rate for its error bars. The different shrinkage rates show that it is much easier to reach
the goal within the prescribed number of steps (251 here) than to reach thegoal in relatively less
steps. Note that, when the goal is reached at thet-th step, the number of steps ist but the discounted
accumulative reward isγ−trgoal, wherergoal is the reward of entering the goal state. The exponential
discounting explains the difference between the number of steps and the discounted accumulative
reward regarding the shrinkage rates of error bars.

A comparison of the three RPR curves in Figure 1 shows that the rate at which the behavior
policy Π uses or queries PBVI influences the RPR’s performance and the influence depends onK.
WhenK is small, increasing the query rate significantly improves the performance; whereas, when
K gets larger, the influence decreases until it eventually vanishes. The decreased influence is most
easily seen between the curves of 30% and 50% query rates. To make the performance not degrade
when the query rate decreases to as low as 5%, a much largerK may be required. These experimental
results confirm that random actions can accomplish a good exploration of available rewards (the
goal state here) by collecting a large number of (lengthy) episodes and theRPR learned from these
episodes perform competitively. With a small number of episodes, however, random actions achieve
limited exploration and the resulting RPR performs poorly. In the latter case, queries to experts like
PBVI plays an important role in improving the exploration and the RPR’s performance.
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Figure 1: Performance comparison on the Hallway2 problem. The horizontal axis is log10 of the
number of episodesK used in learning the RPR. The horizontal axis in each sub-figure
is (a) Goal rate (b) Discounted accumulative reward (c) Number of stepsto reach the
goal (d) Time in seconds for learning the RPR. The four curves in each figure correspond
to the EM-PBVI and the RPR based on a behavior policyΠ that queries PBVI with a
probability pquery= 5%, 30%, 50%, respectively. The EM-PBVI employs EM to learn a
POMDP model based on the episodes collected byΠ with pquery= 50% and then uses the
PBVI (Pineau et al., 2003) to find the optimal policy based on the learned POMDP. Each
curve results from an average over 20 independent runs and, for simplicity, the error bars
are shown only for the RPR with a 50% query rate. The performance measures in (a)-(c)
are explained in greater detail in text.

It is also seen from Figure 1 that the performance of EM-PBVI is not satisfactory and grows
slowly with K. The poor performance is strongly related to insufficient exploration of the environ-
ment by the limited episodes. For EM-PBVI, the required amount of episodesis more demanding
because the initial objective is to build a POMDP model instead of learning a policy. This is because

1165



L I , L IAO AND CARIN

policy learning is concerned with exploring the reward structure but building a POMDP requires ex-
ploration of all aspects of the environment. This demonstrates the drawbackof methods that rely on
learning an intervening POMDP model, with which a policy is designed subsequently.

6.2 Performance of RPR in Multi-task Reinforcement Learning (MTRL)

We investigate the performance of RPR on three MTRL problems. The first two are robotic naviga-
tion in mazes and the last one is multi-aspect classification.

6.2.1 MAZE NAVIGATION

In this problem, there areM = 10 environments and each environment is a grid-world, that is, an
array of rectangular cells. Of the ten environments, three are distinct andare shown in Figure 2,
the remaining are duplicated from the three distinct ones. Specifically, the first three environments
are duplicated from the first distinct one, the following three environments are duplicated from the
second distinct one, and the last four environments are duplicates from the third distinct one. We
assume 10 sets of episodes, with them-th set collected from them-th environment.

In each of the distinct environments shown in Figure 2, the agent can take five actions{move
forward, move backward, move left, move right, stay}. In each cell of the grid-world environments,
the agent can only observe the openness of the cell in the four directions. The agent then has a total
of 16 possible observations indicating the 24 = 16 different combinations of the openness of a cell
in the four orientations. The actions (except the actionstay) taken by the agent are not accurate and
have some noise. The probability of arriving at the correct cell by takingamoveaction is 0.7 and the
probability of arriving at other neighboring cells is 0.3. The perception is noisy, with a probability
0.8 of correctly observing the openness and the probability 0.2 of making a mistaken observation.
The agent receives a unit reward when the goal (indicated by a basket of food in the figures) is
reached and zero reward otherwise. The agent does not know the model of any of the environments
but only has access to the episodes, that is, sequences of actions, observations, and rewards.

Algorithm Learning and Evaluation For each environmentm = 1,2, · · · ,10, there is a set of
K episodesD(K)

m , collected by simulating the agent-environment interaction using the models de-
scribed above and a behavior policyΠ that the agent follows to determine his actions. The behavior
policy is the semi-random policy described in Section 6.1, with a probabilitypquery= 0.5 of taking
the actions suggested by PBVI.

Reinforcement learning (RL) based on the ten sets of episodes{D
(K)
m }10

m=1 leads to ten RPRs,
each associated with one of the ten environments. We consider three paradigms of learning: the
MTRL in which the Gibbs-variational algorithm in Table 2 is applied to the ten sets of episodes
jointly, the STRL in which the MV algorithm in Table 1 is applied to each of the ten episode
sets separately, and pooling in which the MV algorithm is applied to the union of the ten episode
sets. The number of decision states is chosen as|Z| = 6 for all environments and all learning
paradigms. Other larger|Z| give similar results and, if desired, the selection of decision states
can be accomplished by maximizing the marginal empirical value with respect to|Z|, as discussed
above.

The RPR policy learned by any paradigm for any environment is evaluatedby executing the
policy 1000 times independently, each time starting randomly from a grid cell in theenvironment
and taking a maximum of 15 steps. The performance of the policy is evaluated by two performance
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Figure 2: The three distinct grid-world environments, where the goal is designated by the basket of
food, each block indicates a cell in the grid world, and the two gray cells areoccupied
by a wall. The red dashed lines in (a) and (c) indicate thesimilar parts in the two
environments. The agent locates himself by observing the openness of a cell in the four
orientations. Both the motion and the observation are noisy.

measures: (a) the average success rate at which the agent reaches the goal within 15 steps, and (b)
the average number of steps that the agent takes to reach the goal. When the agent does not reach
the goal within 15 steps, the number of steps is 15. Each performance measure is computed from
the 1000 instances of policy execution, and is averaged over 20 independent trials.

We examine the performance of each learning paradigm for various choices ofK, the number of
episodes per environment. Specifically we consider 16 different choices: K = 3,4,5,6,7,8,9,10,11,
12,24,60,120,240. The performances of the three learning paradigms, averaged over 20 indepen-
dent trials, are plotted in Figure 3 as a function ofK. Figures 3(c) and 3(d) are respectively dupli-
cates of Figures 3(a) and 3(b), with the horizontal axis displayed in a logarithmic scale. By (57),
the choice of the precision parameterα in Dirichlet process influences the probability of sampling
a new cluster; it hence influences the resulting number of distinct RPR parametersΘ. According to
West (1992), the choice ofα is governed by the posteriorp(α|K,N) ∝ p(N|K,α)p(α), whereN is
the number of clusters updated in the most recent iteration of the Gibbs-variational algorithm. One
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Figure 3: Comparison of MTRL, STRL, and pooling on the problem of multiple stochastic envi-
ronments summarized in Figure 2. (a) Average success rate for the agentto reach the goal
within 15 steps. (b) Average step for the agent reaching the target. (c) Average success
rate for the agent with the horizontal axis in log scale.(d) Average step with the horizontal
axis in log scale.

may chooseα by sampling from the posterior or finding the mean. WhenK is large andN ≪ K
and the priorp(α) is a Gamma distribution, the posteriorp(α|K,N) is approximately a Gamma
distribution with the meanE(α) = O(N log(K)). For the different choices ofK considered above,
we chooseα = 3n, with n= 2,3, . . . ,15 respectively. These choices are based on approximations of
E(α) obtained by fixingN at an initial guessN = 8. We find that the results are relatively robust to
the initial guess provided the logarithmic dependence onK is employed. The density of the DP base
G0 is of the form in (45), with all hyper-parameters set to one, making the basenon-informative.

Figures 3(a) and 3(b) show that the performance of MTRL is generally much better than that of
STRL and pooling. The improvement is attributed to the fact that MTRL automatically identifies
and enforces appropriate sharing among the ten environments to ensure that information transfer is
positive. The improvement over STRL indicates that the number of episodesrequired for finding
the correct sharing is generally smaller that that required for finding the correct policies.

The identification of appropriate sharing is based on information from the episodes. When the
number of episodes is very small (say, less than 25 in the examples here), the sharing found by
MTRL may not be accurate; in this case, simply pooling the episodes across all ten environments
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may be a more reasonable alternative. When the number of episodes increases, however, pooling
begins to show disadvantages since the environments are not all the same and forcing them to share
leads to negative information transfer. The seemingly degraded performance of pooling at the first
two points in Figure 3(c) may not be accurate since the results have large variations when the
episodes are extremely scarce; much more Monte Carlo runs may be required to obtain accurate
results in these cases.

The performance of STRL is poor when the number of episodes is small, because a small set
of episodes do not provide enough information for learning a good RPR.However, the STRL per-
formance improves significantly with the increase of episodes, which whittles down the advantage
brought about by information transfer and allows STRL to eventually catchup with MTRL in per-
formance.
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Figure 4: Hinton diagrams of the between-task similarity matrix inferred by the MTRL for the
problem of multiple stochastic environments 2. The number of episodes per environment
is (a) 3 (b) 10 (c) 60 (d) 120.

Analysis of the Sharing Mechanism We investigate the sharing mechanism of the MTRL by
plotting Hinton diagrams. The Hinton diagram (Hinton and Sejnowski, 1986) is aquantitative way
of displaying the elements of a data matrix. Each element is represented by a square whose size
is proportional to the magnitude. In our case here, the data matrix is the between-task similarity
matrix (Xue et al., 2007) learned by the MTRL; it is defined as follows: the between-task similarity
matrix is a symmetric matrix of sizeM×M (whereM denotes the number of tasks andM = 10 in
the present experiment), the(i, j)-th element measuring the frequency that taski and taskj belong
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to the same cluster (i.e., they result in the same distinct RPR). In order to avoid the bias due to any
specific set of episodes, we perform 20 independent trials and average the similarity matrix over
the 20 trials. In each trial, if tasksi and j belong to one cluster upon convergence of the Gibbs-
variational algorithm, we add one at(i, j) and( j, i) of the matrix. We compute the between-task
similarity matrices when the number of episodes is respectivelyK = 3,10,60,120, which represent
the typical sharing patterns inferred by the MTRL for the present maze navigation problem. The
Hinton diagrams for these four matrices are plotted in Figure 4.

The Hinton diagrams in Figures 4(a) and 4(b) show that when the number ofepisodes is small,
environments 1, 2, 3, 7, 8, 9, 10 have a higher frequency of sharing the same RPR. This sharing
can be intuitively justified by first recalling that these environments are duplicates of Figures 2(a)
and 2(c), and then noting that the parts circumscribed by red dashed linesin Figures 2(a) and 2(c)
are quite similar. Meanwhile the Hinton diagrams also show a weak sharing between environments
4,5,6,7,8,9,10, which are duplicates of Figures 2(b) and 2(c). This is probably because the episodes
are very few at this stage, and pooling episodes from environments that are not so relevant to each
other could also be helpful. This explains why, in Figure 3(a), the performance of pooling is as good
as that of the MTRL when the number of episodes is small.

As the number of episodes progressively increases, the ability of MTRL toidentify the correct
sharing improves and, as seen in Figures 4(b) and 4(c), only those episodes from relevant environ-
ments are pooled together to enhance the performance—a simple pooling of allepisodes together
deteriorates the performance. This explains why the MTRL outperforms pooling with the increase
of episodes. Meanwhile, the STRL does not perform well for limited episodes. However, when
there are more episodes from each environment, the STRL learns and performs steadily better until
it outperforms the pooling and becomes comparable to the MTRL.

6.2.2 MAZE NAVIGATION 2

We consider six environments, each of which results from modifying the benchmark maze problem
Hallway2 (Littman et al., 1995) in the following manner. First the goal state is displaced to a new
grid cell and then the unique observation associated with the goal is changed accordingly. For each
environment the location of the goal state is shown in Figure 5 as a numbered circle, where the
number indicates the index of the environment. Of the six environments the firstone is the original
Hallway2. It is seen that environments 1,2,3 have their goal states near the lower right corner
while environments 4,5,6 have their goal states near the upper left corner. Thus we expect that the
environments are grouped into two clusters.

For each environment, a set ofK episodes are collected by following a semi-random behavior
policy Π that executes the actions suggested by PBVI with probabilitypquery = 0.3. As in Sec-
tion 6.2.1 three versions of RPR are obtained for each environment, basedrespectively on three
paradigms, namely MTRL, STRL, and pooling. Theα is chosen as 5log(K) with 5 corresponding
to an initial guess ofN andG0 is of the form of (45) with all hyper-parameters close to one (thus the
prior is non-informative). The number of decision states is|Z|= 20 as in Section 6.1.1. The perfor-
mance comparison, in terms of discounted accumulative reward and averaged over 20 independent
trials, is summarized in Figure 6, as a function of the number of episodes per environment.

Figure 6(a) shows that the MTRL maintains the overall best performance regardless of the num-
ber of episodesK. The STRL and the pooling are sensitive toK, with the pooling outperforming the
STRL whenK < 540 but outperformed by the STRL whenK > 540. In either case, however, the
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Figure 5: Displacements of goal state in the six environments considered in Maze Navigation 2.
Each environment is a variant of the benchmark Hallway2 (Littman et al., 1995) with
the goal displaced to a new grid cell designated by a numbered circle and thenumber
indicating the index of the environment. The unique observation associated with the goal
is also changed accordingly in each variant.
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Figure 6: Performance comparison on the six environments modified from thebenchmark problem
Hallway2 (Littman et al., 1995). (a) Discounted accumulative reward averaged over the
six environments (b) Discounted accumulative reward in the first environment, which is
the original Hallway2.

MTRL performs no worse than both. The MTRL consistently performs well because it adaptively
adjusts the sharing among tasks asK changes, such that the sharing is appropriate regardless ofK.
The adaptive sharing can be seen from Figure 7, which shows the Hintondiagram of the between-
task similarity matrix learned by the MTRL, for various instances ofK. WhenK is small there is a
strong sharing among all tasks, in which case the MTRL reduces to the pooling, explaining why the
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MTRL performs similar to the pooling whenK ≤ 250. WhenK is large, the sharing becomes weak
between any two tasks, which reduces the MTRL to the STRL, explaining why the two perform
similarly whenK ≥ 700. As the number of episodes approaches toK = 540, the performances of
the STRL and the pooling tend to become closer and more comparable until they eventually meet
at K = 540. The range ofK near this intersection is also the area in which the MTRL yields the
most significant margin of improvements over the STRL and the pooling. This is so because, for
this range ofK, the correct between-task sharing is complicated (as shown in Figure 7(b)), which
can be accurately characterized by the fine sharing patterns provided by the MTRL, but cannot be
characterized by the pooling or the STRL.

Figure 6(a) plots the overall performance comparison taking all environments into considera-
tion. As an example of the performances in individual environments, we show in Figure 6(a) the
performance comparison in the first environment, which is also the original Hallway2 problem. The
change of magnitude in the vertical axis is due to the fact the first environment has the goal in a
room (instead in the hallway), which makes it more difficult to reach the goal.
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Figure 7: Hinton diagrams of the between-task similarity matrix learned by the MTRL from the
six environments modified from the benchmark problem Hallway2 (Littman et al.,1995).
The number of episodes is is (a)K = 40 (b)K = 540 (c)K = 810.

6.2.3 MULTI -ASPECTCLASSIFICATION
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Figure 8: A typical configuration of multi-aspect classification of underwater objects.
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Figure 9: Frequency-domain acoustic responses of the five underwater objects (a) Target-1 (b)
Target-2 (c) Target-3 (d) Target-4 (e) Clutter.

Multi-aspect classification refers to the problem of identifying the class label of an object using
observations from a sequence of viewing angles. This problem is generally found in applications
where the object responds to interrogations in a angle-dependent manner. In such cases, an obser-
vation at a single viewing angle carries the information specific to only that angle and the nearby
angles, and one requires observations at many viewing angles to fully characterize the object.

More importantly, the observations at different viewing angles are not independent of each other,
and are correlated in a complicated and yet useful way. The specific form of the angle-dependency
is dictated by the physical constitution of the object as well as the nature of theinterrogator—
typically electromagnetic or acoustic waves. By carefully collecting and processing observations
sampled at densely spaced angles, it is possible to form an image, based onwhich classification can
be performed. An alternative approach is to treat the observations as a sequence and characterize
the angle-dependency by a hidden Markov model (HMM) (Runkle et al., 1999).
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In this section we consider multi-aspect classification of underwater objectsbased on acoustic
responses of the objects. Figure 8 shows a typical configuration of the problem. The cylinder
represents an underwater object of unknown identityy. We assume that the object belongs to a
finite set of categoriesY (i.e.,y∈ Y ). The agent aims to discover the unknowny by moving around
the object and interrogating it at multiple viewing anglesϕ. We assume the angular motion is one-
dimensional, that is, the agent moves clockwise or counterclockwise on the page, but does not move
out of the page. The set of angles that can be occupied by the agent is then [0◦,360◦], which in
practice is discretized into a finite number of angular sectors denoted bySϕ.

In the HMM approach (Runkle et al., 1999),Sϕ constitutes the set of hidden states, and the state
transitions can be computed using simple geometry (Runkle et al., 1999), underthe assumptions
that each time the agent moves by a constant angular step and that the specific angles occupied
by the agent are uniformly distributed within any given state. Refinement of state transitions and
estimation of state emissions can be achieved by maximizing the likelihood function constructed
from the training sequences. In the training phase, one trains an HMM foreachy ∈ Y . For an
unknown object, one collects a sequence of observations (sensor data) and submit it to the HMM
for eachy ∈ Y ; the y yielding the maximum likelihood is then declared to be the identity of the
unknown object. Obviously the agent must follow a common protocol to collectthe data sequences
in both the training and test phases, to ensure that their statistics are consistent. Since such a protocol
is not part of the HMMs, a question arises as to how to specify the protocol.

From the perspective of sequential decision-making, multi-aspect classification can be formu-
lated as a reinforcement learning problem, with a state spaceS = Sϕ ×Y , where× is a Cartesian
product. BothSϕ andY are only partially observable (through sensor data). The RL approach
possesses several conspicuous advantages over the HMM approach. First, the sensor data are now
collected in an active manner, under the control of agent actions. When two data sequences are
collected by following the same policy of choosing actions, they are automaticallyensured to be
consistent in statistics, hence there is no need to specify a separate common protocol for collecting
the sequential data. Second, unlike maximizing the data likelihood (under a given data collection
protocol), the agent is now free to choose a more flexible learning objective by setting an appropri-
ate reward structure. Third, unlike building a HMM for eachy∈ Y , the different categories are now
coalesced into a single RPR (details are presented below), making the RL a discriminative approach
vis-a-via the generative HMM approach.

In our experiment, there are a total of five objects, four of them are targets of interest and one of
them represents the clutter. The frequency-domain acoustic responsesof these objects are shown in
Figure 9, for a full coverage of angles from 0◦ to 360◦; the data are real measurements as described
in Runkle et al. (1999). We aim to distinguish each target from clutter and thisgives four tasks,
where taski is defined by the problem of distinguishing target-i from clutter,i = 1,2,3,4, and the
targets and clutter are as shown in Figure 9. Each task is a multi-aspect classification problem.6

From the data in Figure 9 targets 1 and 2 have similar angle-dependent scattering phenomena, and
therefore Tasks 1 and 2 are expected to be related. Targets 3 and 4 alsoappear to have similar angle-
dependent scattering characteristics, and therefore Tasks 3 and 4 are expected to also be related. In
fact, although the target details are too involved to detail here, targets 1 and2 are both of a cylindrical
form (like those in Runkle et al., 1999), while targets 3 and 4 are more irregular in shape.

6. The data are available athttp://www.ee.duke.edu/ ˜ lcarin/ShellData.zip .
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The RPR for Multi-aspect Classification In applying the RPR to multi-aspect classification,
our approach is distinct from an HMM construction (Runkle et al., 1999) intwo important respects.
First, the RPR is a control model and it aims to optimize the value function, instead of the likelihood
function. Since the RPR takes into account a reward structure, it can be more flexible in specifying
the learning objective. Second, the RPR embraces all objects in the same representation, instead of
having a separate model for each individual object. As a result, it is a discriminative model instead
of a generative model (this may be viewed as a discriminative extension of thetraditional generative
HMM).

The RPR does not manipulate the angular states—it works directly with observations. Since
classification is treated as a control problem in the RPR, we need two extra components, actions
and rewards, to complete the specification. We consider four actions, thatis,A ={declare as target,
declare as clutter, move clockwise and sense, move counterclockwise and sense}. When the agent
takes actionmove clockwise and sense, it moves 5◦ clockwise and collects an observation; when the
agent takes actionmove counterclockwise and sense, it moves 5◦ counterclockwise and collects an
observation. The reward structure is specified as follows. A correct declaration receives a reward of
5 units, a false declaration receives a reward of−5, and the actionsmove clockwise and senseand
move counterclockwise and senseeach receives a reward of zero units. The objective, therefore, is
to correctly classify the target with the minimal number of sensing actions.

The episodes used in learning the RPR consist of a number of observationsequences, each
observation is associated with the actionmove clockwise and senseor move counterclockwise and
senseand the terminal action in each episode is the correct declaration. The correction declaration is
available because the episodes in this problem are the training data in standard classification, hence
the ground truth of class labels is known. Note that the training episodes always terminate with a
correct declaration, thus the agent never actually receives the penalty−5 during the training phase.
Alternatively, one may split each episode into two, respectively terminated withthe correct and the
false declaration. Recall the false declaration receives the minimum rewardwhich, after an offset of
5 to make all rewards non-negative, is converted to zero. Since a zero reward received at the end of
an episode nullifies the entire episode, such an alternative is equivalent toexcluding the penalized
episodes.

Classification Results The raw data are shown in Figure 9, for the five objects we are considering.
Each datum is the response of an object measured at a particular angle and the data set for an
object consists of measurements collected at 0◦,1◦, · · · ,359◦. Each raw datum is converted into
a feature vector using matching pursuit (McClure and Carin, 1997), andthe feature vectors are
further discretized by vector quantization (Gersho and Gray, 1992) to produce a finite code-book.
As mentioned earlier, we have a total of four tasks, each task being to distinguish each of the four
respective targets from the clutter.

Four methods are compared: the MTRL, the STRL, the pooling, and the hidden Markov models
(HMM), where the first three are as described in Section 6.2.1 and the lastone is the standard hidden
Markov model (Rabiner, 1989). The four methods yield four corresponding agents, each following
the policy resulting from one of the algorithms.

When the agents collect episodes during the training phase, they start from angles that are uni-
formly drawn from{1◦, 2◦, · · · , 360◦}. For each starting angle, two episodes are collected: the
first is obtained by moving clockwise to collect an observation at every 5◦ and terminating upon
the 10-th observation, and the other is the same as the first but the agent moves counterclockwise.
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During the testing phase, both the RPR agents and the HMM agent start fromangles uniformly
drawn from{1◦, 2◦, · · · , 360◦}; however, the RPR agents follow one of the three policies (resulting
respectively from the MTRL, the STRL, and the pooling) to choose an action from A , while the
HMM agent collectsn observations by moving consistently clockwise or counterclockwise (either
direction is chosen with a probability of 0.5) and then makes a declaration, wheren is adaptively
set to themaximumof the numbers of observations used by the three RPR agents starting fromthe
same angle.

Figure 10 summarizes the performance as a function of the number of trainingepisodesK,
where the performance is evaluated by the correct classification rate as well as the average number
of sensing actions (i.e., the average number of observations collected) before a declaration is made.
Each point in the figures is an average from 20 independent trials.
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Figure 10: Performance comparison on multi-aspect classification of underwater targets (a) Av-
erage classification rate as a function of the number of training episodes per task (b)
Average number of sensing actions (average number of observations collected) before a
declaration is made, as a function of the number of training episodes per task.

It is seen from Figure 10(a) that the MTRL achieves the highest classification rate regardless
of the number of training episodesK. The pooling performs worse than the STRL and the poor
performance persists even whenK is small. The latter is in contrast with the results on the maze
navigation problems in Sections 6.2.1 and 6.2.2, where the pooling performs better than the STRL
with a smallK. The reason for this will be clear below from the sharing-mechanism analysis.
It is noted that all three RPR algorithms perform much better than the HMM, demonstrating the
superiority of discriminative models over generative models in classification problems.

As shown by Figure 10(b), pooling takes the least number of sensing actions, which may be at-
tributed to the over-confidence arising from an abundant set of trainingdata, noting that the pooling
agent learns its policy by using the episodes accumulated over all tasks. Incontrast, the STRL agent
takes the most number of actions. Considering that the STRL agent bases policy learning on the
episodes collected from a single task, which may contain inadequate information, it is reasonable
that the STRL agent is less confident and would make more observations before coming to a con-
clusion. The sensing steps taken by the MTRL agent lies in between, since itrelies on related tasks,
but not all tasks, to provide the episodes for policy learning.
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Figure 11: Sharing mechanism for multi-aspect classification of underwater targets. Each figure
is the Hinton diagram of the between similarity matrix, with the number of training
episodes per task: (a) 10 (b) 30 (c) 110 (d) 170.

Analysis of the Sharing Mechanism The Hinton diagram of the between-task similarity matrix
is shown in Figures 11(a), 11(b), 11(c), 11(d), for the cases whenthe number of training episodesK
is equal to 10, 30, 110, 170, respectively.

It is seen that the sharing patterns are dominated by two clusters, the first consisting of Task 1
and Task 2 and the second consisting of Task 3 and Task 4. The secondcluster remains unchanged
regardless ofK. The first cluster tends to break whenK = 30, but is resumed later on. The two
clusters are consistent with Figure 9 which shows that targets 1 and 2 are similar and so are targets
3 and 4. The fact the two clusters are persistent through the entire rangeof K implies that the tasks
from different clusters are weakly related even when the episodes arescarce, as a result pooling the
episodes across all tasks yields poor policies. This explains the poor performance of the pooling in
Figure 10(a).

To understand the reason why the cluster of tasks 1 and 2 is less stable, one need delve into
some details of the targets. Target 1 and Target 2 both have a cylindrical shape while Task 3 and
Task 4 are more irregular in shape. Similar geometry puts Targets 1 and 2 in one cluster and Targets
3 and 4 in another cluster. Moreover, the measurements of Targets 3 and 4are more noisy than the
measurements of Targets 1 and 2, because they are collected under different conditions. The low
signal to noise ratio (SNR) increases the similarity between Targets 3 and 4 since their distinctive
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features are buried in the noise. The more noise-free measurements of Target 1 and 2 yields a more
faithful representation of these targets, which tends to magnify their differences and make them
appear less similar.

7. Conclusions

We have presented a multi-task reinforcement learning (MTRL) frameworkfor partially observable
stochastic environments. To our knowledge, this is the first framework proposed for MTRL in the
partially observable domain.

A key element in our MTRL framework is the regionalized policy representation (RPR), which
yields a history-dependent stochastic policy for environments characterized by a partially observ-
able Markov decision process (POMDP). Learning of the RPR is based on episodic experiences
collected from the environment, without requiring the environment’s model. We have developed
two algorithms for learning the RPR, one based on maximum-value estimation and theother based
on the variational Bayesian paradigm. The latter offers the ability for selecting the number of de-
cision states based on the Occam Razor principle and the possibility of transferring experience
between related environments.

Built upon the basic RPR, the proposed MTRL framework consists of multiple RPRs, each
for an environment, coupled by a common Dirichlet process (DP) that is used to produce the non-
parametric prior over all RPRs. By virtue of the discreteness of the nonparametric prior, the en-
vironments are clustered into groups, with each group consisting of a subset of environments that
are related in some manner. The number of groups as well as the associatedenvironments are au-
tomatically identified, and the experiences are shared among the related environments to increase
their respective exploration. A hybrid Gibbs-variational algorithm is presented for learning multiple
RPRs simultaneously under the unified MTRL framework, based on selective use of the experiences
collected across all environments.

Experimental results demonstrate that the proposed MTRL consistently yieldssuperior perfor-
mance regardless of the amount of experiences used in learning. The twocompetitors, one based
on single-task reinforcement learning (STRL) and other based on simple pooling, are shown to be
sensitive to the amount of experiences. The superior performance is attributed to the ability of the
MTRL to automatically identify useful experiences from related environmentsto enhance the ex-
ploration. The MTRL adaptively adjusts sharing patterns to offset the changes in the experience and
hence has addressed the problem of how to positively transfer the experience from one environment
to the benefit of improving learning in another. In addition, we have also presented experimental
results on benchmark problems demonstrating the RPR as a powerful stand-alone algorithm for
single-task reinforcement learning.

The work presented in this paper mainly focuses on off-policy batch learning, assuming the
learning is based on a fixed set of episodic experiences collected by following an external behav-
ior policy. In the off-policy batch learning mode, the policy improvement is implemented without
actually re-interacting with the environment; instead the improvement is implemented through vir-
tual “reward re-computation” (discussed after (15)), which simulates there-interaction with the
environment. By taking reward re-computation out of the algorithm and implementing it via real
re-interaction, we can learn the RPRs in an on-policy online manner. In this case, the need for an
external behavior policy is eliminated and the previous version RPR is employed as the behavior
policy. In the next phase of this work, we will focus on on-policy online learning of RPRs and
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investigate how each environment can be better explored via multi-task reinforcement learning. In
this on-policy MTRL setting, multi-task learning will have two aspects: co-exploitation (already
addressed in the present paper) and co-exploration (not explicitly addressed here). It is of interest
to investigate how much benefit can be gained by simultaneous co-exploitation and co-exploration.

Although the experiments considered in the paper mainly involve robot navigation in grid-
worlds, there are many other interesting practical problems to which the proposed algorithms are
immediately applicable. The multi-aspect classification serves as a preliminary example of such
applications. Other examples include using RPRs as policies to control and coordinate a set of
sub-models such that the collective performance is optimized and more advanced tasks could be
accomplished than by any single sub-model.

For the work presented here, the DP prior is placed directly onΘ. Because of the discrete
nature ofG, this implies that when parametersΘ are shared between different environments, they
are shared exactly. This may be too restrictive for some problems; for two environments that are
similar, we may desire the associated parameters to be similar, but not exactly thesame. This may
be accommodated, for example, via the following modification to the DP prior

Θm|Ψm ∼ H(Θm|Ψm),
Ψm|G ∼ G,

G|α,G0 ∼ DP(α,G0).

This formulation results in an infinite mixture model forΘ, where each component is of the form
H. When two environments share, their parameters share a component of thisinfinite mixture, but
the specific draws will generally differ from each other—this can providegreater flexibility. The
above modification brings some challenges to the inference. Recall thatΘ is set of probability mass
functions (pmf), it is natural to requireH to be a product of Dirichlets. The difficulty now lies in
choosingG that provides a conjugate prior for the parameters ofH, which seems not easy. IfG is
properly specified, however, the inference should be a straightforward extension of the techniques
developed in this paper. An alternative to the above modification that may avoidthe inference
difficulty is to follow the approach in Liu et al. (2008) to impose soft sharing by replacing the Dirac
delta with its soft version.
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Appendix A. Proof of Theorem 5

According to Kaelbling et al. (1998), the expected sum of exponentially discounted reward (value
function) over an infinite horizon can be written as

V = E

[
∞

∑
t=0

γtrt

]
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where 0< γ < 1 is the discount factor. LetE denote the environment in question andPE the
corresponding probabilistic model (POMDP). LetΘ be the parameters specifying the RPR, the
expectation in our situation here isEepisodes|E,Θ. Thus

V = Eepisodes|E,Θ

[
∞

∑
t=0

γtrt

]

= ∑
a0r0o1a1r1···

p(a0r0o1a1r1o2 · · · |E,Θ)

[
∞

∑
t=0

γtrt

]

= ∑
a0a1···

p(a0a1 · · · |Θ)E r0o1r1o2r2···|a0a1···∼PE

[
∞

∑
t=0

γtrt

]

= ∑
a0a1···

pΠ(a0a1 · · ·)
p(a0a1 · · · |Θ)

pΠ(a0a1 · · ·)
E r0o1r1o2r2···|a0a1···∼PE

[
∞

∑
t=0

γtrt

]

(Importance sampling Robert and Casella, 1999)

= ∑
a0a1···

pΠ(a0a1 · · ·)E r0o1r1o2r2···|a0a1···∼PE

[
∞

∑
t=0

γtrt

∏t
τ=0 pΠ(aτ|hτ)

t

∏
τ=0

p(aτ|hτ,Θ)

]

= Ea0a1···∼ pΠE r0o1r1o2r2···|a0a1···∼PE

[
∞

∑
t=0

γtrt

∏t
τ=0 pΠ(aτ|hτ)

t

∏
τ=0

p(aτ|hτ,Θ)

]

= lim
K→∞

1
K

K

∑
k=1

[
∞

∑
t=0

γtrk
t

∏t
τ=0 pΠ(ak

τ|hk
τ)

t

∏
τ=0

p(ak
τ|h

k
τ,Θ)

]

(
ak

0ak
1 · · · ∼ pΠ, rk

0ok
1rk

1ok
2rk

2 · · · |a
k
0ak

1 · · · ∼ PE

)

= lim
K→∞

1
K

K

∑
k=1

[
Tk

∑
t=0

γtrk
t

∏t
τ=0 pΠ(ak

τ|hk
τ)

t

∏
τ=0

p(ak
τ|h

k
τ,Θ)

]

= lim
K→∞

V̂(D(K);Θ)

where the sum over 0≤ t < ∞ is equal to the sum over 0≤ t ≤ Tk becauserk
t = 0 for t > Tk according

to Definition 2. Q.E.D.

Appendix B. Proof of Theorem 6

We begin our derivation by writing the empirical value function in its logarithm

lnV̂(D(K);Θ) = ln
1
K

K

∑
k=1

Tk

∑
t=0

r̃k
t

|Z|

∑
zk
0,··· ,z

k
t =1

p(ak
0:t ,z

k
0:t |o

k
1:t ,Θ)

= ln
K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t)

K

r̃k
t p(ak

0:t ,z
k
0:t |o

k
1:t ,Θ)

qk
t (z

k
0:t)

, (80)

where

qk
t (z

k
0:t) ≥ 0,

1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t) = 1.
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Applying Jensen’s inequality to (80), we obtain

lnV̂(D(K);Θ) ≥
K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t)

K
ln

r̃k
t p(ak

0:t ,z
k
0:t |o

k
1:t ,Θ)

qk
t (z

k
0:t)

. (81)

The lower bound is maximized when

qk
t (z

k
0:t) = qk

t (z
k
0:t |Θ)

De f.
=

r̃k
t

V̂(D(K);Θ)
p(ak

0:t ,z
k
0:t |o

k
1:t ,Θ),

which turns the inequality in into an equality. Define

LB(Θ̂|Θ) =
1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t |Θ) ln

r̃k
t p(ak

0:t ,z
k
0:t |o

k
1:t , Θ̂)

qk
t (z

k
0:t |Θ)

.

By (81), LB(Θ̂|Θ) ≤ LB(Θ̂|Θ̂) = lnV̂(D(K); Θ̂) holds for anyΘ and Θ̂. Therefore, when̂Θ =
argmax̂Θ∈F LB(Θ̂|Θ), we have

lnV̂(D(K);Θ) = LB(Θ|Θ) ≤ LB(Θ̂|Θ) ≤ LB(Θ̂|Θ̂) = lnV̂(D(K); Θ̂).

Starting fromΘ(0) we compute

Θ(1) = argmax
Θ̂∈F

LB(Θ̂|Θ(0)),

Θ(2) = argmax
Θ̂∈F

LB(Θ̂|Θ(1)),

...
...

which satisfyV̂(D(K);Θ(0)) ≤ V̂(D(K);Θ(1)) ≤ V̂(D(K);Θ(2)) ≤ ·· · . Since the value function is
upper bounded, this monotonically increasing sequence must converge,which happens at a maxima
of V̂(D(K);Θ). Q.E.D.

Appendix C. Proof of Lemma 7

Substituting (26) and (27), we have

Right side of (28)=
p(zk

τ = i,zk
τ+1 = j,ak

0:t |o
k
1:t ,Θ)

∏t
τ′=0 p(ak

τ′ |h
k
τ′)

.

Since the denominator is equal top(ak
0:t |o

k
1:t ,Θ) by (9), we have

Right side of (28)= p(zk
τ = i,zk

τ+1 = j|ak
0:t ,o

k
1:t ,Θ) = ξk

t,τ(i, j).

Similarly,

Right side of (29) =
p(zk

τ = i,ak
0:t |o

k
1:t ,Θ)

∏t
τ′=0 p(ak

τ′ |h
k
τ′)

=
p(zk

τ = i,ak
0:t |o

k
1:t ,Θ)

p(ak
0:t |o

k
1:t ,Θ)

= p(zk
τ = i|ak

0:t ,o
k
1:t ,Θ)

= φk
t,τ(i).

Q.E.D.
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Appendix D. Proof of Theorem 8

We rewrite the lower bound in (61) as

LB
({

qk
t

}
,g(Θ)

)
=

1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

Z

qk
t (z

k
0:t)g(Θ) ln r̃k

t p(ak
0:t ,z

k
0:t |o

k
1:t ,Θ)dΘ

−
1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t) lnqk

t (z
k
0:t)−

Z

g(Θ) ln
g(Θ)

G0(Θ)
dΘ. (82)

We alternatively find the{qk
t } andg(Θ) that maximizes the lower bound, keeping one fixed while

finding the other.
Keepingg(Θ) fixed, we solve max{qk

t }
LB
({

qk
t

}
,g(Θ)

)
subject to the normalization constraint

for {qk
t }. We construct the Lagrangian

ℓq = LB
({

qk
t

}
,g(Θ)

)
−λ


K−

K

∑
k=1

Tk

∑
t=1

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t)


 ,

whereλ is the Lagrangian multiplier. Differentiatingℓq with respect toqk
t (z

k
0:t) and setting the result

to zero, we obtain

∂ℓq

∂
(
qk

t (z
k
0:t)
) =

1
K

Z

g(Θ) ln r̃k
t p(ak

0:t ,z
k
0:t |o

k
1:t ,Θ)dΘ−

1
K

lnqk
t (z

k
0:t)−

1
K

+λ = 0,

which is solved to give

qk
t (z

k
0:t) = eKλ−1r̃k

t exp

{
Z

g(Θ) ln p(ak
0:t ,z

k
0:t |o

k
1:t ,Θ)dΘ

}
.

Using the constraint∑K
k=1 ∑Tk

t=1 ∑|Z|

zk
0,··· ,z

k
t =1

qk
t (z

k
0:t) = K, (62) is arrived withe1−Kλ = Cz.

Keeping{qk
t } fixed, we solve maxg(Θ) LB

({
qk

t

}
,g(Θ)

)
subject to the normalization constraint

that
R

g(Θ)dΘ = 1. Construct the Lagrangian

ℓg = LB
({

qk
t

}
,g(Θ)

)
−λ
(

1−
Z

g(Θ)dΘ
)

,

whereλ is the Lagrangian multiplier. Differentiatingℓg with respect tog(Θ) and setting the result
to zero, we obtain

∂ℓg

∂(g(Θ))
=

1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t) ln r̃k

t p(ak
0:t ,z

k
0:t |o

k
1:t ,Θ)−1− ln

g(Θ)

G0(Θ)
+λ = 0,

which is solved to give

g(Θ) =
G0(Θ)

e1−λ exp





1
K

K

∑
k=1

Tk

∑
t=0

|Z|

∑
zk
0,··· ,z

k
t =1

qk
t (z

k
0:t) ln r̃k

t p(ak
0:t ,z

k
0:t |o

k
1:t ,Θ)



 .

By using the constraint
R

g(Θ)dΘ = 1, we arrive at (63) withe1−λ = CΘ. Q.E.D.
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