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Abstract

In real world applications, graphical statistical modeais aot only a tool for operations such as
classification or prediction, but usually the network staues of the models themselves are also of
great interest (e.g., in modeling brain connectivity). Thlse discovery rate (FDR), the expected
ratio of falsely claimed connections to all those claimedpften a reasonable error-rate criterion
in these applications. However, current learning algargtfor graphical models have not been
adequately adapted to the concerns of the FDR. The traditfmactice of controlling the type |
error rate and the type Il error rate under a conventional ldees not necessarily keep the FDR
low, especially in the case of sparse networks. In this payepropose embedding an FDR-control
procedure into the PC algorithm to curb the FDR of the skalefathe learned graph. We prove
that the proposed method can control the FDR under a useifisdelevel at the limit of large
sample sizes. In the cases of moderate sample size (abeudlseundred), empirical experiments
show that the method is still able to control the FDR undentber-specified level, and a heuristic
modification of the method is able to control the FDR more eataly around the user-specified
level. The proposed method is applicable to any models faclwétatistical tests of conditional
independence are available, such as discrete models arsdi@amodels.

Keywords: Bayesian networks, false discovery rate, PC algorithneotird acyclic graph, skele-
ton

1. Introduction

Graphical models have attracted increasing attention in the fields of data miimgachine learn-
ing in the last decade. These models, such as Bayesian networks (Egdedief networks) and
Markov random fields, generally represent events or random Vesias vertices (also referred
to as nodes), and encode conditional-independence relationships #meoggents or variables as
directed or undirected edges (also referred to as arcs) according Mettkov properties (see Lau-
ritzen, 1996, Chapt. 3). Of particular interest here are Bayesian rietgee Pearl, 1988, Chapt.
3.3) that encode conditional-independence relationships accordingdo¢lated Markov property
(see Lauritzen, 1996, pages 46-53) with directed acyclic graphs $PA®., graphs with only di-
rected edges and with no directed cycles). The directed acyclic feaitiliéates the computation
of Bayesian networks because the joint probability can be factorizensieely into many local
conditional probabilities.
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As a fundamental and intuitive tool to analyze and visualize the associatilorazausality
relationships among multiple events, graphical models have become more anéxplored in
biomedical researches, such as discovering gene regulatory netaratknodelling functional con-
nectivity between brain regions. In these real world applications, gralpimodels are not only a
tool for operations such as classification or prediction, but often theanktstructures of the mod-
els themselves are also output of great interest: a set of associatiom eaudai$ality relationships
discovered from experimental observations. For these applicatioresimalble structure-learning
method needs to account for the error rate of the graphical featutles discovered network. Thus,
it is important for structure-learning algorithms to control the error rate@Bdsociation/causality
relationships discovered from a limited number of observations closely lzeim&r-specified level,
in addition to finding a model that fits the data well. As edges are fundamentatele of a graph,
error rates related to them are of natural concerns.

In a statistical decision process, there are basically two sources of:ettie type | errors, that
is, falsely rejecting negative hypotheses when they are actually trughargpe Il errors, that is,
falsely accepting negative hypotheses when their alternatives, thevpdsipotheses are actually
true. In the context of learning graph structures, a negative hypstbesld be that an edge does
not exist in the graph while the positive hypothesis could be that the edzpeeakist. Because of
the stochastic nature of random sampling, data of a limited sample size may &pgegport a
positive hypothesis more than a negative hypothesis even when actuatigghtive hypothesis is
true, or vice versa. Thus it is generally impossible to absolutely preveritvinéypes of errors
simultaneously, but has to set a threshold on a certain type of errorgegpr&balance between
the them, for instance by minimizing a certain lost function associated with thes @coording to
the Bayesian decision theory. For example, when diagnosing canceitctotbe potential chance
of saving a patient’s life, doctors probably hope that the type |l erria; that is, the probability
of falsely diagnosing a cancer patient as healthy, to be low, such as &s$%. Meanwhile,
when diagnosing a disease whose treatment is so risky that may causestid &gsight, to
avoid the unnecessary but great risk for healthy people, doctobsiplsohope that the type | error
rate, that is, the probability of falsely diagnosing a healthy people agedféy the disease, to be
extremely low, such as less than 0.1%. Learning network structures magdaoarios similar to
the two cases above of diagnosing diseases. Given data of a limited saneplthsiz is not an
algorithm guaranteeing a perfect recovery of the structure of therlyimg graphical model, and
any algorithm has to compromise on the two types of errors.

For problems involving simultaneously testing multiple hypotheses, such agingrihe exis-
tence of edges in a graph, there are several different criteria fioetier-rate control (see Table 2),
depending on researchers’ concerns or the scenario of the stadgrally there are not mathemati-
cally or technically superior relationships among different error-rater@ if the research scenario
is not specified. One error-rate criterion may be favoured in one soemhile another criterion
may be right of interest in a different scenario, just as the aforemeutiexemples of diagnosing
diseases. In real world applications, selecting the error rate of inter&sigely not an abstract
guestion “which error rate is superior over others?”, but a practisastipn “which error rate is the
researchers’ concern?” For extended discussions on why tleen@tgeneral superior relationships
among different error-rate criteria, please refer to Appendix C, &vbgamples of typical research
scenarios, accompanied by theoretical discussions, illustrate that fethehfour error-rate criteria
in Table 2 may be favoured in a certain study.
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The false discovery rate (FDR) (see Benjamini and Yekutieli, 2001; $t@@02), defined as
the expected ratio of falsely discovered positive hypotheses to all tesevdred, has become an
important and widely used criterion in many research fields, such as himafcs and neuroimag-
ing. In many real world applications that involve multiple hypothesis testing, ie 5 more
reasonable than the traditional type | error rate and type Il error rafgpdse that in a pilot study
researchers are selecting candidate genes for a genetic reseactiizvaphrenia. Due to the limited
funding, only a limited number of genes can be studied thoroughly in the @lfteiyenetic research.
To use the funding efficiently, researchers would hope that 95% ofahéidate genes selected in
the pilot study are truly associated with the disease. In this case, the FDBsichs the error rate
of interest and should be controlled under 5%. Simply controlling the typet eate and the type
Il error rate under certain levels does not necessarily keep the FiiBently low, especially in
the case of sparse networks. For example, suppose a gene reguoktieoyk involves 100 genes,
where each gene interacts in average with 3 others, that is, there aeddéfin the network. Then
an algorithm with theealizedtype | error rate = 5% and threalizedpower = 90% (i.e., theeal-
izedtype Il error rate = 10%) will recover a network with 1500%=135 correct connections and
[100x (100—1)/2— 150 x 5% = 240 false connections. This means that 4240+ 135) = 64%
of the claimed connections actually do not exist in the true network. Due toojmealgrity of the
FDR in research practices, it is highly desirable to develop structureihegalgorithms that allow
the control over the FDR on network structures.

However, current structure-learning algorithms for Bayesian nesvualke not been adequately
adapted to explicitly controlling the FDR of the claimed “discovered” netwdskare-based search
methods (see Heckerman et al., 1995) look for a suitable structure by opgraiziertain criterion
of goodness-of-fit, such as the Akaike information criterion (AIC), tlagdsian information crite-
rion (BIC), or the Bayesian Dirichlet likelihood equivalent metric (BDEj)thwa random walk (e.g.,
simulated annealing) or a greedy walk (e.g., hill-climbing), in the space of D#@®seir equiva-
lence classes. It is worth noting that the restricted case of tree-structured Bayesiarorietwias
been optimally solved, in the sense of Kullback-Leibler divergence, withwCéind Liu (1968)’s
method, and that Chickering (2002) has proved that the greedy éspuieasearch can identify the
true equivalence class in the limit of large sample sizes. Neverthelesss stmnot directly reflect
the error rate of edges, and the sample sizes in real world applicationsws#y not large enough
to guarantee the perfect asymptotic identification.

The Bayesian approach first assumes a certain prior probability distriboier the network
structures, and then estimates the posterior probability distribution of theusts@fter data are
observed. Theoretically, the posterior probability of any structure fegfisuch as the existence
of an edge, the existence of a path, or even the existence of a sub-gasypbe estimated with the
Bayesian approach. This consequently allows the control of the pastenio rate of these structure
features, that is, the posterior probability of the non-existence of teesarés. It should be pointed
out that the posterior error rate is conceptually different from thos® eates such as the type |
error rate, the type Il error rate, and the FDR, basically because thdyoan different statistical
perspectives. The posterior error rate is defined from the pergpaxftBayesian statistics. From
the Bayesian perspective, network structures are assumed to bewammrding to a probability
distribution, and the posterior error rate is the probability of the non-existef certain features
according to the posterior probability distribution over the network strustusé/en the same data,

1. An equivalence class of DAGs is a set of DAGs that encode the seinoé sonditional-independence relationships
according to the directed Markov property.
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different posterior distributions will be derived from different priastdibutions. The type | error
rate, the type Il error rate, and the FDR are defined from the pergp@ditlassical statistics. From
the classical perspective, there is a true, yet unknown, model belerthth, and the error rates are
defined by comparing with the true model. Nevertheless, a variant of the #@Rositive false
discovery rate (pFDR) proposed by Storey (2002), can be intetpirete the Bayesian perspective
(Storey, 2003).

The Bayesian approach for structure learning is usually conducted \eitmaximuma poste-
riori -probability (MAP) method or the posterior-expectation method. The MAP naetbtects the
network structure with the largest posterior probability. The optimal stredsursually searched for
in a score-based manner, with the posterior probability or more oftenxdpmtons to the relative
posterior probability (for instance the BIC score) being the score to optintCaoper and Her-
skovits (1992) developed a heuristic greedy search algorithm callédhé®? can finish the search
in a polynomial time with respect to the number of vertices, given the ordegrtites. The MAP
method provides us with a single network structure, the posteriorly mosaipiebne, but does not
address error rates in the Bayesian approach.

To control errors in the Bayesian approach, the network structundaie learned with the
posterior-expectation method, that is, calculating the posterior probabilftiestwork structures,
and then deriving the posterior expectation of the existence of certactsteueatures. Though
theoretically the posterior-expectation method can control the error rateycdtructure features, in
practice its capacity is largely limited for computational reasons. The numl2AGE increases
super-exponentially as the number of vertices increases (Robins&®). For 10 vertices, there are
already about 2 x 108 DAGs. Though the number of equivalence classes of DAGs is much smaller
than the number of DAGs, it is still forbiddingly large, empirically asymptoticallgrdasing to
1/13.652 of the number of DAGs, as the number of vertices increasesq8te2®03). Therefore,
exact inferences of posterior probabilities are only feasible for smalé sroblems, or under cer-
tain additional constraints. For certain prior distributions, and given theraf vertices, Friedman
and Koller (2003) have derived a formula that can be used to calculagx#oe posterior probabil-
ity of a structure feature with the computational complexity bounde®@y°»*+1), whereN is the
number of vertices anDj, is the upper bound of the in-degree for each vertex. Considering similar
prior distributions, but without the restriction on the order of verticesyistd and Sood (2004)
have developed a fast exact Bayesian inference algorithm baseghamat programming that is
able to compute the exact posterior probability of a sub-network with the catigmal complexity
bounded byO(N2N 4+ NPn*+1 (m)), whereL(m) is the complexity of computing a marginal condi-
tional likelihood fromm samples. In practice, this algorithm runs fairly fast when the number of
vertices is less than 25. For networks with more than 30 vertices, the astlggssted setting more
restrictions or combining with inexact techniques. These two breakthsomgidle exact Bayesian
inferences practical for certain prior distributions. However, as Rraadand Koller (2003) pointed
out, the prior distributions which facilitate the exact inference are not thygsis equivalent (see
Heckerman et al., 1995), that is, different network structures thahdhe same equivalence class
often have different priors. The simulation performed by Eaton and Mu(p007) confirmed that
these prior distributions deviate far from the uniform distributions. This imphas the methods
cannot be applied to the widely accepted uninformative prior, that is, tifieromprior distribution
over DAGs. For general problems, the posterior probability of a stredeature can be approx-

2. The algorithm is named K2 because it evolved from a system nametbKHi@rskovits and Cooper, 1990).
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imated with Markov chain Monte Carlo (MCMC) methods (Madigan et al., 1998)a versatile
implementation of Bayesian inferences, the MCMC method can estimate the pogtehability
given any prior probability distribution. However, MCMC usually requirggnsive computation
and results may depend on the initial state of the randomization.

Constraint-based approaches, such as the*3@®rithm (see Spirtes et al., 2001, pages 82—
83), inductive causation (I¢Ysee Pearl, 2000, pages 49-51), and thé &@gorithm (see Spirtes
et al., 2001, pages 84—89), are rooted in the directed Markov profieetyule by which Bayesian
networks encode conditional independence. These methods firstpesiheses of conditional inde-
pendence among random variables, and then combine those accepttitebgp of conditional in-
dependence to construct a partially directed acyclic graph (PDAGJdiogdo the directed Markov
property. The computational complexity of these algorithms is difficult to aradyactly, though
for the worst case, which rarely occurs in real world applications, riglgiounded byO(N22V)
whereN is the number of vertices. In practice, the PC algorithm and the fast-cadfisadnce (FCI)
algorithm (see Spirtes et al., 2001, pages 142—-146) can achieve polyrione if the maximum
degree of a graph is fixed. It has been proved that if the true moddiestise faithfulness con-
straints (see Spirtes et al., 2001, pages 13 and 81) and all the conditidapendence/dependence
relationships are correctly identified, then the PC algorithm and the IC algod#n exactly re-
cover the true equivalence class, and so do the FCI algorithm and thald6rithnf (see Pearl,
2000, pages 51-54) for problems with latent variables. Kalisch d@rdinBann (2007) have proved
that for Gaussian Bayesian networks, the PC algorithm can consistetithatsthe equivalence
class of an underlying sparse DAG as the sample sizwproaches infinity, even if the number
of verticesN grows as fast a®(m") for any 0< A < o. Yet, as in practice hypotheses of condi-
tional independence are tested with statistical inference from limited date,datgsions cannot
be entirely avoided and thus the ideal recovery cannot be achievedrrient implementations of
the constraint-based approaches, the error rate of testing conditideakeindence is usually con-
trolled individually for each test, under a conventional level such as 544 without correcting
the effect of multiple hypothesis testing. Therefore these implementations inaydarb the FDR,
especially for sparse graphs.

In this paper, we propose embedding an FDR-control procedure inf@Ghedgorithm to curb
the error rate of the skeleton of the learned PDAGs. Instead of individoatijrolling the type
| error rate of each hypothesis test, the FDR-control procedurddmsshe hypothesis tests to-
gether to correct the effect of simultaneously testing the existence of multiglese We prove
that the proposed method, named as theg;Ps&eleton algorithm, can control the FDR under a
user-specified level at the limit of large sample sizes. In the case of modarafde sizes (about
several hundred), empirical experiments show that the method is ablettoldbe FDR under the
user-specified level, and a heuristic modification of the method is able to tih@feDR more accu-
rately around the user-specified level. &fdr and Strimmer (2005) have applied an FDR procedure
to graphical Gaussian models to control the FDR of the non-zero entribe girtial correlation
matrix. Different from Schfer and Strimmer (2005)’s work, our method, built within the frame-

3. “SGS” stands foBpirtes,Glymour andScheines who invented this algorithm.

4. An extension of the IC algorithm which was named as IC* (see Ped&0, 2&ges 51-54) was previously also named
as IC by Pearl and Verma (1992). Here we follow Pearl (2000).

5. “PC” stands foPeter Spirtes an€lark Glymour who invented this algorithm. A modified version of the PC algo-
rithm which was named as PC* (see Spirtes et al., 2001, pages 89a8@reviously also named as PC by Spirtes
and Glymour (1991). Here we follow Spirtes et al. (2001).

6. See footnote 4.
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work of the PC algorithm, is not only applicable to the special case of Gauswaels, but also
generally applicable to any models for which conditional-independenceaestsrailable, such as
discrete models.

We are particularly interested in the PC algorithm because it roots in conditiaependence
relationships, the backbone of Bayesian networks,@mdlues of hypothesis testing represent one
type of error rates. We consider the skeleton of graphs becauseaiotibased algorithms usually
first construct an undirected graph, and then annotate it into diffgrees of graphs while keeping
the skeleton as the same as that of the undirected one.

The PGyr-skeleton algorithm is not designed to replace or claimed to be superiothevstan-
dard PC algorithm, but provide the PC algorithm with the ability to control the FiaR the skele-
ton of the recovered network. The BEskeleton algorithm controls the FDR while the standard
PC algorithm controls the type | error rate, as illustrated in Section 3.1. Siece dne no general
superior relationships between different error-rate criteria, as iegulan Appendix C, neither be
there between the R{skeleton algorithm and the standard PC algorithm. In research practices,
researchers first decide which error rate is of interest, and thersetagpropriate algorithms to
control the error rate of interest. Generally they will not select an alguaritiat sounds “superior”
but controls the wrong error rate. Since the purpose of the paper isxmprthe PC algorithm with
the control over the FDR, we assume in this paper that the FDR has beetedels the error rate
of interest, and selecting the error rate of interest is out of the scope paiber.

The remainder of the paper is organized as follows. In Section 2, wendhr@PC algorithm,
present the FDR-embedded PC algorithm, prove its asymptotic performaartanalyze its com-
putational complexity. In Section 3, we evaluate the proposed method with sichalata, and
demonstrate its real world applications to learning functional connectivityarks between brain
regions using functional-magnetic-resonance-imaging (fMRI). Finaleydigcuss the advantages
and limitations of the proposed method in Section 4.

2. Controlling FDR with PC Algorithm

In this section, we first briefly introduce Bayesian networks and revieviPth algorithm. Then, we
expatiate on the FDR-embedded PC algorithm and its heuristic modificatiom, v asymptotic

performances, and analyze their computational complexity. At the endjseesd other possible
ideas of embedding FDR control into the PC algorithm.

2.1 Notations and Preliminaries

To assist the reading, notations frequently used in the paper are listeltbassf

a, b, - : vertices

Xa, Xp, -+ : variables respectively represented by vertiges, ---

AB, - . vertex sets

Xa, Xg, - . variable sets respectively represented by vertex&seBs - -
\% : the vertex set of a graph

N=|V| : the number of vertices of a graph

a—b : a directed edge or an ordered pair of vertices

a~b . an undirected edge, or an unordered pair of vertices
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E : a set of directed edges

E~ : the undirected edges derived frdmthat is,{a~ bja— borb— ac E}
G=(V,E) : adirected graph composed of vertice¥iand edges itk

G~ = (V,E™) :the skeleton of a directed gragh= (V,E)

adj(a,G) : vertices adjacent tain graphG, that is,{bja— borb— ac E}
adj(a,G™) : vertices adjacent tain graphG™, that is,{bla~ b€ E™~}

alb|C : verticesa andb are d-separated by vertex §&t

XaL Xp|Xc : Xa andX, are conditional independent giveg

Palblc : the p-value of testingXa L Xp|Xc

A Bayesian network encodes a set of conditional-independence ralaitisrwith a DAGG =
(V,E) according to the directed Markov property defined as follows.

Definition 1 the Directed Markov Property: if A and B are d-separated by C where A, B and C
are three disjoint sets of vertices, thep &nd >g are conditionally independent giverz Xhat is,
P(Xa, Xg|Xc) = P(Xa|Xc)P(Xg|Xc). (see Lauritzen, 1996, pages 46-53)

The concept ofl-separation(see Lauritzen, 1996, page 48) is defined as follows. A chain between
two verticesaandb is a sequenca = ag, a1, . . ., a, = b of distinct vertices such that_; ~a € E™

for all i=1, ... , n. Vertexb is a descendant of vertexif and only if there is a sequenae=
ap,ay,...,an = b of distinct vertices such tha 1 — a € E for all i=1, ...,n. For three disjoint
subset#\, BandC C V, C d-separate8 andB if and only if any chaintbetweeriva € Aandvb € B
contains a vertey € 1tsuch that either

« arrows ofrtdo not meet head-to-headyandy € C, or
» arrows ofrtmeet head-to-head ptindy is neither inC nor has any descendantsGn

Moreover, a probability distributioR is faithful to a DAG G (see Spirtes et al., 2001, pages 13
and 81) if all and only the conditional-independence relationships defieen P are encoded by
G. In general, a probability distribution may possess other independdatiemships besides those
encoded by a DAG.

It should be pointed out that there are often several different DA@sding the same set of
conditional-independence relationships and they are calleelgaivalence classf DAGs. An
equivalence class can be uniquely represented by a completed acytiadiypalirected graph
(CPDAG) (also called the essential graph in the literature) that has the $abetos as a DAG
does except that some edges are not directed (see Andersson@93)., 1

2.2 PC Algorithm

If a probability distributionP is faithful to a DAG G, then the PC algorithm (see Spirtes et al.,
2001, pages 84-89) is able to recover the equivalence class of the@Afiven the set of the
conditional-independence relationships. In general, a probability distibmay include other
independence relationships besides those encoded by a DAG. Thalfeidsf assumption assures
that the independence relationships can be perfectly encoded by albpactice, the information
on conditional independence is usually unknown but extracted fromadttatatistical hypothesis
testing. If thep-value of testing a hypothesi, L Xy|Xc is lower than a user-specified level
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(conventionally 5% or 1%), then the hypothesis of conditional indeperedienrejected while the
hypothesis of conditional dependenégt” Xy|Xc is accepted.

The first step of the PC algorithm is to construct an undirected g&plwvhose edge direc-
tions will later be further determined with other steps, while the skeleton is kepaime as that
of G™. Since we restrict ourselves to the error rate of the skeleton, here we@sent in Al-
gorithm 1 the first step of the PC algorithm, as implemented in software Tetramnet.3.8 (see
http://www.phil.cmu.edu/projects/tetrad), and refer to it as the PC-skeletorithfgor

Algorithm 1 PC-skeleton
Input: the dataXy generated from a probability distribution faithful to a DAGg e,

and the significance level for every statistical test of conditional independence
Output: the recovered skeletd®™

1. Form the complete undirected gra@h on the vertex set.

2: Letdepthd = 0.

3: repeat

for each ordered pair of adjacent vertigeandb in G~, thatis,a~b € E~ do
5 if |adj(a,G™)\ {b}| >d, then

6 for each subsef C adj(a,G™)\ {b} and|C| =d do

7 Test hypothesiXa | Xp|Xc and calculate the-valuep,, pc-
8
9

A

if Paipc > a,then
Remove edga ~ b from G™.

10: UpdateG™~ andE"™.

11: break thefor loop at line 6
12: end if

13: end for

14: end if

15:  end for

16: Letd=d+1.
17: until |adj(a,G™) \ {b}| < d for every ordered pair of adjacent verticandb in G™.

The theoretical foundation of the PC-skeleton algorithfariposition 1. if two verticesa and
b are not adjacent in a DAG, then there is a set of other vertide@shat either all are neighbors of
aor all are neighbors df such thaC d-separatea andb, or equivalentlyXa_L X,|Xc, according to
the directed Markov property. Since two adjacent vertices are noparad by any set of other
vertices (according to the directed Markov properBioposition 1 implies thata andb are not
adjacent if and only if there is a d-separatf@gn either neighbors o or neighbors ob. Readers
should notice that the proposition does not imply thanhdb are d-separated only by suciCabut
just guarantees that a d-separatthgan be found in either neighborsabr neighbors.

Proposition 1 If vertices a and b are not adjacent in a DAG G, then there is a set of esrtic
which is either a subset @fdj(a,G) \ {b} or a subset ofdj(b,G) \ {a} such that C d-separates
a and b in G. This proposition is a corollary of Lemma 5.1.1 on page 411 of bGaksation,
Prediction, and Searc(Spirtes et al., 2001).
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The logic of the PC-skeleton algorithm is as follows, under the assumptioerfefgb judgment
on conditional independence. The most straightforward applicatid®ragosition 1 to structure
learning is to exhaustively search all the possible neighboesasfdb to verify whether there is
such a d-separating to disconnect andb. Since the possible neighborsaandb are unknown,
to guarantee the detection of such a d-separaingll the vertices other thaa andb should be
searched as possible neighborsacdindb. However, such a straightforward application is very
inefficient because it probably searches many unnecessary combativertices by considering
all the vertices other thaa andb as their possible neighbors, especially when the true DAG is
sparse. The PC-skeleton algorithm searches more efficiently, by keapthating the possible
neighbors of a vertex once some previously-considered possibleaoesghave been found actually
not connected with the vertex. Starting with a fully connected undirectgzhga (step 1), the
algorithm searches for the d-separatigprogressively by increasing the size ©f that is, the
number of conditional variables, from zero (step 2) with the step size ®f{step 16). Given the
size ofC, the search is performed for every vertex paandb (step 4). Once & d-separating
andb is found (step 8)a andb are disconnected (step 9), and the neighboesaridb are updated
(step 10). In the algorithmG™ is continually updated, so g@d G™) is also constantly updated
as the algorithm progresses. The algorithm stops when all the subsetsaifrtent neighbors of
each vertex have been examined (step 17). The Tetrad implementation @f-8ieRton algorithm
examines an edge ~ b as two ordered pairsa{ b) and @, a) (step 4), each time searching for
the d-separatin@ in the neighbors of the first element of the pair (step 6). In this way, both the
neighbors ofa and the neighbors df are explored.

The accuracy of the PC-skeleton algorithm depends on the discriminabitite statistical test
of conditional independence. If the test can perfectly distinguish dbpee from independence,
then the algorithm can correctly recover the true underlying skeletorroasgby Spirtes et al.
(2001, pages 410-412). The outline of the proof is as follows. Firsthaltrue edges will be
recovered because an adjacent vertexgaitb is not d-separated by any vertex €dhat excludes
a andb. Second, if the edge between a non-adjacent vertexapaidb has not been removed,
subsets of either a@j, G) \ {b} or adjb,G) \ {a} will be searched until th€ that d-separatessand
b according tdProposition 1is found, and consequently the edge betwaandb will be removed.
If the judgments on conditional independence and conditional depemdeadmperfect, the PC-
skeleton algorithm is unstable. If an edge is mistakenly removed from thé grdpe early stage
of the algorithm, then other edges which are not in the true graph may beeddluthe graph (see
Spirtes et al., 2001, page 87).

2.3 False Discovery Rate

In a statistical decision process, there are basically two sources o$:ethe type | errors, that
is, falsely rejecting negative hypotheses when they are actually trughargpe Il errors, that is,
falsely accepting negative hypotheses when their alternative, the pdsjtpotheses are actually
true. The FDR (see Benjamini and Yekutieli, 2001) is a criterion to assesgsrims when multiple
hypotheses are simultaneously tested. It is the expected ratio of the nufmiadsety claimed
positive results to that of all those claimed to be positive, as defined in Tablevariant of the
FDR, the positive false discovery rate (pFDR), defined as in Table2pvegosed by Storey (2002).
Clearly, pFDR = FDR P(R; > 0), so the two measures will be similarf{R, > 0) is close to 1,
and quite different otherwise.
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Truth

Test Results Negative Positive Total
Negative TN (true negative) FN (false negative) R1
Positive FP (false positive) TP (true positive) Ry
Total T1 To
Table 1: Results of multiple hypothesis testing, categorized according to thedlaesults and the

truth.
Full Name Abbreviation Definition
False Discovery Rate FDR E(FP/Rz) (See note *)
Positive False Discovery Rate pFDR E(FP/Rz|Rz2 > 0)
Family-Wise Error Rate FWER P(FP>1)
Type | Error Rate (False Positive Rate) a E(FP/T1)
Specificity (True Negative Rate) “a E(TN/T1)
Type Il Error Rate (False Negative Rate) B E(FN/T2)
Power (Sensitivity, True Positive Rate) -1B E(TP/T2)

Table 2: Criteria for multiple hypothesis testing. H&éx) means the expected value xyfand
P(A4) means the probability of everit. Please refer to Table 1 for related notations. * If
R, =0, FP/Ry is defined to be 0.

The FDR is a reasonable criterion when researchers expect thevelisdd results are trustful
and dependable in afterward studies. For example, in a pilot study, weelaing candidate genes
for a genetic research on Parkinson’s disease. Because of the limiiddyuwe can only study a
limited number of genes in the afterward genetic research. Thus, wheirsgleandidate genes
in the pilot study, we hope that 95% of the selected candidate genes aregsalgiated with the
disease. In this case, the FDR is chosen as the error rate of interestiarid be controlled under
5%. Since similar situations are quite common in research practices, the FDbedraswidely
adopted in many research fields such as bioinformatics and neuroimaging.

In the context of learning the skeleton of a DAG, a negative hypothesld be that a connection
does not exist in the DAG, and a positive hypothesis could be that theectiom exists. The FDR
is the expected proportion of the falsely discovered connections to a# thissovered. Learning
network structures may face scenarios similar to the aforementioned pilgtbtudhe FDR control
has not yet received adequate attention in structure learning.

Benjamini and Yekutieli (2001) have proved that, when the test statistiegiusitive regression
dependency on each of the test statistics corresponding to the truevadgatbtheses, the FDR can
be controlled under a user-specified legddy Algorithm 2. In other cases of dependency, the FDR
can be controlled with a simple conservative modification of the procedumeggcingH* in
Eqg. (1) withH(1+1/2,...,4+1/H). Storey (2002) has provided algorithms to control the pFDR
for independent test statistics. For a review and comparison of more FIibdse please refer
to Qian and Huang (2005)’s work. It should be noted that the FDR proes do not control the
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realizedFDR of a trial unden, but control theexpected valuef the error rate when the procedures
are repetitively applied to randomly sampled data.

Algorithm 2 FDR-stepup

Input: a set ofp-values{pi|i =1,...,H}, and the threshold of the FD&r
Output: the set of rejected null hypotheses

1: Sort thep-values ofH hypothesis tests in the ascendant ordep@s< ... < p).

2: Leti=H, andH* =H (orH*=H(1+1/2,...,+1/H), depending on the assumption of the
dependency among the test statistics).

3: while

*

Tp(i) >q and i>0, Q)

do

4:  Leti=i-—1.

end while

6: Reject the null hypotheses associated vty - . ., i), and accept the null hypotheses associ-
ated withp( 1), .- -, P(H)-

a

Besides the FDR and the pFDR, other criteria, as listed in Table 2, can adgplied to assess
the uncertainty of multiple hypothesis testing. The type | error rate is the gatio of the type |
errors to all the negative hypotheses that are actually true. The tygetiate is the expected ratio
of the type Il errors to all the positive hypotheses that are actually triue family-wise error rate is
the probability that at least one of the accepted positive hypothesestaadiyawrong. Generally,
there are not mathematically or technically superior relationships among threseage criteria.
Please refer to Appendix C for examples of typical research scenghiee each particular error
rate is favoured.

Controlling both the type | and the type Il error rates under a conventlenal (such asx <
5% or 1% and3 < 10% or 5%) does not necessarily curb the FDR at a desired level. Amsho
in Eq. (2), if FP/T; and FN'T, are fixed and positive, FfR, approaches 1 whefp/T; is small
enough. This is the case of sparse networks where the number of exigtingctionsl, is much
smaller than the number of non-existing connections

i L )
B~ FP FNN T2

2.4 PC Algorithm with FDR

Steps 8-12 of the PC-skeleton algorithm control the type | error ratecof gatistical test of con-
ditional independence individually below a pre-defined leveto the algorithm can not explicitly
control the FDR. We propose embedding an FDR-control proceduré¢hatalgorithm to curb the
error rate of the learned skeleton. The FDR-control procedure tio#gcconsiders the hypoth-
esis tests related to the existence of multiple edges, correcting the effectitgilenypothesis
testing. The proposed method is described in Algorithm 3, and we name it &Ciheskeleton
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algorithm. Similar to the PC-skeleton algorith@®;, adja,G™~) andE™ are constantly updated as
the algorithm progresses.

The PGy-skeleton and the PC-skeleton algorithms share the same search stratedjffeb
on the judgment of conditional independence. The same as the PC-slagboithm, the P, -
skeleton algorithm increasdsthe number of conditional variables, from zero (step 3) with the step
size of one (step 25), and also keeps updating the neighbors of véstieps 14 and 15) when some
previously-considered possible neighbors have been consideredmeected (step 13). The BE
skeleton algorithm differs from the PC-skeleton algorithm on the inferehdeseparation, with its
steps 11-20 replacing steps 8-12 of the PC-skeleton algorithm. In thkdk&em algorithm, two
vertices are regarded as d-separated once the conditional-indaperdst between them yields a
p-value larger than the pre-defined significant laveln this way, the type | error of each statistical
test is controlled separately, without consideration of the effect of multypethesis testing. The
PGadr-skeleton algorithm records ipl’X the up-to-date maximurp-value associated with an edge
a~ b (steps 9 and 10), and progressively removes those edges whosxiatemce is accepted
by the FDR procedure (step 12), witi"® = {pl'®} .., and the pre-defined FDR levglbeing
the input. The FDR proceduréjgorithm 2, is invoked at step 12, either immediately after every
element ofP™® has been assigned a valigvalue for the first time, or later once any element of
PMaXis updated.

The p'3x is the upper bound of the-value of testing the hypothesis tlaindb are d-separated
by at least one of the vertex s€@searched in step 7. According to the directed Markov proparty,
andb are not adjacent if and only if there is a set of vertiCes V \ {a,b} d-separating andb. As
the algorithm progresses, the d-separations betwesrdb by vertex set€,...,Ck CV \ {a,b}
are tested respectively, and consequently a sequeneealliesps, . . ., px are calculated. If we use
P = ma>{<:1 pi as the statistic to test the negative hypothesis that there is, though unkaGyn,
amongC;, ...,Ck d-separating andb, then due to

P(phep < p) =P(pi < pforalli=1,...,K) <P(p; < p) =p, (3)

pIaxis the upper bound of the-value of testing the negative hypothesis. Eq. (3) also clearly shows
that the PC-skeleton algorithm controls the type | error rate of the nedgtpathesis, since its step
8 is equivalent to “ifp]'® < a, then ... " if pT'@ is recorded in the PC-skeleton algorithm.

The statistical tests performed at step 8 of thegR€keleton algorithm generally are not in-
dependent with each other, since the variables involved in two hypotbésesaditional indepen-
dence may overlap. For example, conditional-independence relatiorship&C anda L b,|C both
involve a andC. It is very difficult to prove whether elements B"® have positive regression
dependency or not, so rigorously the conservative modification of Atgor2, should be applied
at step 12. However, sinq& %) is probably a loose upper bound of thevalue of testinga ~ b, in
practice we simply apply the FDR procedure that is correct for positiyession dependency.

It should be noted that different from step 9 of the PC-skeleton algoritep,14 of the Pfg-
skeleton algorithm may remove edges other thangustb, because the decisions on other edges
can be affected by the updating @f%).

A heuristic modification of the Pg-skeleton algorithm is to removpl'®s from P™® once
edgea ~ b has been deleted fro®™ at step 14. We name this modified version as theyC
skeleton algorithm. In the Rg-skeleton algorithmp®X is still recorded inP™® and input to the
FDR procedure after the edge~ b has been removed. This guarantees that the algorithm can
asymptotically keep the FDR under the user-specified lgysee Section 2.5). The motivation of
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Algorithm 3 PGg,-skeleton

Input: the dataXy, generated from a probability distribution faithful to a DA®g e,
and the FDR leved for the discovered skeleton

Output: the recovered skeletd®™

1: Form the complete undirected gra@ir on the vertex se¥

2: Initialize the maximunp-values associated with edges as
P = { P = — 1},

3: Let depthd = 0.

4: repeat

5. for each ordered pair of adjacent vertieeandb in G™, thatis,a~ b € E~ do
6: if |adja,G™)\ {b}| >d, then

7: for each subsef C adj(a,G™) \ {b} and|C| =d do

8: Test hypothesiXa | Xp|Xc and calculate th@-valuep,, pic-

o: if Paipc > Paop: then
10: Let p3%h = Paibic-
11: if every element oP™®has been assigned a vafievalue by step 1&then
12: Run the FDR procedurdlgorithm 2, with P"®andq as the input.
13: if the non-existence of certain edges are acceitesh
14: Remove these edges fro@T.
15: UpdateG™ andE™.
16: if a~ bisremovedthen
17: break thefor loop at line 7.
18: end if

19: end if
20: end if
21: end if
22: end for
23: end if
24:  end for

25. Letd=d+1.
26: until |adj(a,G™)\ {b}| < d for every ordered pair of adjacent verticeandb in G™.

* A heuristic modification at step 15 of the algorithm is to remove fil®fii* the pI'3's whose asso-
ciated edges have been deleted fiémat step 14, that is, to updaR'® asP™® = { pl'®} 4 beE~
right after updatinge™ at step 15. This heuristic modification is named as Ri@+-skeleton

algorithm.

the heuristic modification is that if an edge has been eliminated, then it shoube iwonsidered in
the FDR procedure any longer. Though we cannot theoretically prevasymptotic performance
of the heuristic modification in the sense of controlling the FDR, it is shown téralothe FDR
closely around the user-specified level in our empirical experimentsaindwpre detection power
than that of the Pfg-skeleton algorithm (see Section 3).
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2.5 Asymptotic Performance

Here we prove that the Rg&-skeleton algorithm is able to control the FDR under a user-specified
level g (g > 0) at the limit of large sample sizes if the following assumptions are satisfied:

(Al) The probability distributiorP is faithful to a DAG Gyye.
(A2) The number of vertices is fixed.

(A3) Given a fixed significant level of testing conditional-independemtationships, the power
of detecting conditional-dependence relationships with statistical testsea@® 1 at the
limit of large sample sizes. (For the definition of power in hypothesis testingselefer to
Table 2.)

Assumption (Al) is generally assumed when graphical models are apptrealjgh it restricts the
probability distributionP to a certain class. Assumption (A2) is usually implicitly stated, but here
we explicitly emphasize it because it simplifies the proof. Assumption (A3) mamy skemanding,
but actually it can be easily satisfied by standard statistical tests, such ldeeti®od-ratio test
introduced by Neyman and Pearson (1928), if the data are identically dadendently sampled.
Two statistical tests that satisfy Assumption (A3) are listed in Appendix B.

The detection power and the FDR of thegg&keleton algorithm and its heuristic modification
at the limit of large sample sizes are elucidated in Theorems 1 and 2. The detaited are
provided in Appendix A.

Theorem 1 Assuming (Al), (A2) and (A3), both the &keleton algorithm and its heuristic mod-
ification, the PGy+-skeleton algorithm, are able to recover all the true connections with itiba
one as the sample size approaches infinity:

Moo P(Ere CE™) =1,

where E;,. denotes the set of the undirected edges derived from the true RAGES” denotes the
set of the undirected edges recovered with the algorithms, and m déhetesmple size.

Theorem 2 Assuming (Al), (A2) and (A3), the FDR of the undirected edges eemtwith the
PCiqr-skeleton algorithm approaches a value not larger than the user-spetéfiel q as the sample
size m approaches infinity:

limsupFDR(E™, E,e) < 0,

m—oo

whereFDR(E™, Efje) is defined as
FDRE™Ejue) = E|[ESel],
DefineEgfl = 0, if [E¥[=0,

2.6 Computational Complexity

The PGyr-skeleton algorithm spends most of its computation on performing statisticabfesin-
ditional independence at step 8 and controlling the FDR at step 12. Simppelldo 19 of the
PGaqr-skeleton algorithm play a role similar to steps 8 to 12 of the PC-skeleton algadithmand
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all the other parts of both algorithms employ the same search strategy, thetationpspent by
the PGy -skeleton algorithm on statistical tests has the same complexity as that by thellR@s
algorithm. The only extra computational cost of therf>Gkeleton algorithm is at step 12 for con-
trolling the FDR.

The computational complexity of the search strategy employed by the PC atgdréb been
studied by Kalisch and &himann (2007) and Spirtes et al. (see 2001, pages 85-87). Here ¢o mak
the paper self-contained, we briefly summarize the results as follows. ifficali to analyze the
complexity exactly, but if the algorithm stops at the deghth drax then the number of conditional-
independence tests required is bounded by

dmax

T=2%5 Gia
=0

whereN is the number of verticeé;,%, is the number of combinations of choosing 2 un-ordered and
distinct elements fronN elements, and similarigZ _, is the number of combinations of choosing
from N — 2 elements. In the worst case tltgf.x= N — 2, the complexity is bounded byc22N-2,

The bound usually is very loose, because it assumes that no edgechagimved untitl = dmax

In real world applications, the algorithm is very fast for sparse netsvork

The computational complexity of the FDR procedure, Algorithm 2, general®( ikl log(H)

+ H) = O(Hlog(H)) whereH = C3 is the number of inpup-values. The sorting at step 1 costs
Hlog(H) and the “while” loop from step 3 to step 5 repeétstimes at most. However, if the
sortedP™® s recorded during the computation, each time when an eleme?itdfis updated at
step 10 of the Pfg-skeleton algorithm, the complexity of keeping the upd®&& sorted is only
O(H). With this optimization, the complexity of the FDR-control procedur®($i log(H)) at its
first operation, and i©(H) later. The FDR procedure is invoked only wheq pc > pi%. In the
worst case thap,, pc is always larger thapZ'%), the complexity of the computation spent on the
FDR control in total is bounded b®(CZlog(C3) + TC3) = O(N2log(N) + TN?) whereT is the
number of performed conditional-independence tests. This is a very boosal because it is rare
that pa pic is always larger thapy's).

The computational complexity of the heuristic modification, thegRP&keleton algorithm, is
the same as that of the REskeleton algorithm, since they share the same search strategy and both
employ the FDR procedure. In the B-skeleton algorithm, the size 8" keeps decreasing as
the algorithm progresses, so each operation of the FDR procedureg=ffioient. However, since
the PGgyr+-skeleton algorithm adjusts the effect of multiple hypothesis testing lessrvatisely,
it may remove less edges than theif?Gkeleton algorithm does, and invokes more conditional-
independence tests. Nevertheless, their complexity is bounded by the sanie fimitvorst case.

It is unfair to directly compare the computational time of thedr€keleton algorithm against
that of the PC-skeleton algorithm, because ifgha the former is set at the same value asdhaf
the latter, the former will remove more edges and perform much less statissitsaldee to its more
stringent control over the type | error rate. A reasonable way is to cartpa time spent on the
FDR control at step 12 against that on conditional-independence testtppa® in each run of the
PGqr-skeleton algorithm. IP™Xs kept sorted during the learning process as aforementioned, then
each time (except the first time) the FDR procedure just needs linear cdioputiame (referring to
the size oP™®) with simple operations such as division and comparing two numerical valbes,
we suspect that the FDR procedure will not contribute much to the total datigutime of the
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structure learning. In our simulation study in Section 3.1, the extra computatitzddny the FDR
control was only a tiny portion, less than 0.5%, to that spent on testing camliifedependence,
performed with the Cochran-Mantel-Haenszel (CMH) test (see AgBii2, pages 231-232), as
shown in Tables 3 and 4.

2.7 Miscellaneous Discussions Discussions

An intuitive and attracting idea of adapting the PC-skeleton algorithm to the FiDRat is to
“smartly” determine such an appropriate threshold of the type | errororétat will let the errors

be controlled at the pre-defined FDR legglGiven a particular problem, it is very likely that the
FDR of the graphs learned by the PC-skeleton algorithm is an monotonicaiasing function of

the pre-defined threshold of the type | error rate. If this hypothesis is true, then there is a one-to-
one mapping betweem andq for the particular problem. Though we cannot prove this hypothesis
rigorously, the following argument may be enlightening. Instead of direcityding on FDR =
E(FP/Ry) (see Table 2), the expected ratio of the number of false positives (FR® tauthber of
accepted positive hypothesé&®), we first focus orke (FP) /E(R;), the ratio of the expected number
of false positives to the expected number of accepted positive hypstheisee the latter is easier
to link with the type | error rate according to Eq. (2), as shown in Eq. (4),

E(FP) E(7) £ (%) o 4)

ER)E(Tra-0h) E(T)-(-E(R)F «rOBE

wherea andf3 are the type | error rate and the type Il error rate respectively. Acgerffi condition

for E(FP)/E(R2) being a monotonically increasing function of the type | error rate includes (I
(1-B)/a>0(1—B)/oa, (Il) Ty > 0and (1) T, > 0, whered(1— ) /da is the derivative of 1—B)
overa. If (1—), regarded as a function af is a concave curve from (0, 0) to (1,1), then condition
(1) is satisfied. Recall thatl — 3) versusa actually is the receiver operating characteristic (ROC)
curve, and that with an appropriate statistic the ROC curve of a hypothssis tesually a concave
curve from (0, 0) to (1,1), we speculate that condition (1) is not diffitmitatisfy. With the other two
mild conditions (II)T; > 0 and (Ill) T, > 0, we could expect thd (FP)/E(Ry) is a monotonically
increasing function ofi. E(FP)/E(Ry) is the ratio of the expected values of two random variables,
while E(FP/Ry) is the expected value of the ratio of two random variables. Generally,itheot a
monotonic relationship betwed(FP)/E(R,) andE(FP/Ry). Nevertheless, if the average number
of false positiveskE (FP), increases proportionally faster than that of the accepted posiiyBs),

we speculate that under certain conditions, the FDR EP/R;) also increases accordingly. Thus
the FDR may be a monotonically increasing function of the threshalfithe type | error rate for
the PC-skeleton algorithm.

However, even though the FDR of the PC-skeleton algorithm may decasabe pre-defined
significant levelt decreases, the FDR of the PC-skeleton algorithm still cannot be contablied
user-specified level for general problems by “smartly” choosing aeforehand, but somehow has
to be controlled in a slightly different way, such as thesd?Gkeleton algorithm does. First, the
value of such am for the FDR control depends on the true graph, but unfortunately tyghgs
unknown in problems of structure learning. According to Eq. (2), thkzexh FDR is a function of
the realized type | and type Il error rates, as wellg8T;, which in the context of structure learning
is the ratio of the number of true connections to the number of non-existingections. Since
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T,/T1 is unknown, such aa cannot be determined completely in advance without any information
about the true graph, but has to be estimated practically from the obsgat@d Secondly, the
FDR method we employ is such a method that estimatesi thhem the data to control the FDR
of multiple hypothesis testing. The output of the FDR algorithm is the rejection asetmull
hypotheses associated wifhvaluespy), - .., p) (see Algorithm 2). Giverpy) < ... < pH),
the output is equivalent to the rejection of all those hypotheses whwskies are smaller than or
equal top;. In other words, it is equivalent to setting= py; in the particular multiple hypothesis
testing. Thirdly, the P¢g.-skeleton algorithm is a valid solution to combining the FDR method with
the PC-skeleton algorithm. Because the estimation ofitHepends ormp-values, ang-values are
calculated one by one as the PC-skeleton algorithm progresses with égisatsts, the cannot
be estimated separately before the PC-skeleton algorithm starts runnirige mstimation has to
be embedded within the algorithm, like in the {g&keleton algorithm.

Another idea on the FDR control in structure learning is a two-stage algorittue first stage
is to draft a graph that correctly includes all the existing edges and themtations but may also
include non-existing edges as well. The second stage is to select theareatspfor each vertex,
with the FDR controlled, from the set of potential parents determined in thetige. The advan-
tage of this algorithm is that the selection of real parent vertices in the destage is completely
decoupled from the determination of edge orientations, because all gwtpaf each vertex have
been correctly connected with the particular vertex in the first stage. ¥mwaefew concerns about
the algorithm should be noticed before researchers start developingithi&gage algorithm. First,
to avoid missing many existing edges in the first stage, a considerable nuihmoerexisting edges
may have to be included. To guarantee a perfect protection of the exislygs given any ran-
domly sampled data, the first stage must output a graph whose skeletorlyscafimected graph.
The reason for this is that the type | error rate and the type Il error oateadict each other and
the latter reaches zero generally when the former approaches ongpserdix C). Rather than
protecting existing edges perfectly, the first stage should trade off batthe type | and the type II
errors, in favour of keeping the type Il error rate low. Second, selgparent vertices from a set of
candidate vertices in the second stage, in certain sense, can be degmidarning the structure of
a sub-graph locally, in which error-rate control remains as a crucil@m. Thus erro-rate control
is still involved in both of the two stages. Though this two-stage idea may nenésky reduce the
problem of the FDR control to an easier task, it may break the big task of smeoliigly learning
all edges to many local structure-learning tasks.

3. Empirical Evaluation

The PGyr-skeleton algorithm and its heuristic modification are evaluated with simulatedetata s
in comparison with the PC-skeleton algorithm, in the sense of the FDR, the tyrme f&te and the
power. The Pég-skeleton and the PC-skeleton algorithms are also applied to two real fualetion
magnetic-resonance-imaging (fMRI) data sets, to check whether the tawatligs correctly curb
the error rates that they are supposed to control in real world applisation

3.1 Simulation Study

The simulated data sets are generated from eight different DAGs, simowigure 1, with the
number of verticedN = 15, 20, 25 or 30, and the average degree of verfices2 or 3. The DAGs
are generated as follows:
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(1) Sample™32 undirected edges frorfa ~ bja,b € V anda # b} with equal probabilities and
without replacement to compose an undirected gGjh.

(2) Generate a random orderof vertices with permutation.

(3) Orientate the edges @&~ according to the ordex. If ais beforeb in the order-, then
orientate the edga ~ b asa — b. Denote the orientated graph as a DSg,e.

For each DAG, we associate its vertices with (conditional) binary probabiltyilolitions as
follows, to extend it to a Bayesian network.

(1) Specify the strength of (conditional) dependence as a paratetér

(2) Randomly assign each vertexc V with a dependence strengdy = 0.5 or —0.59, with
equal possibilities.

(3) Associate each vertexe V with a logistic regression model

A= % Xod,
bepaal
exp(d)
P(Xa = 1|Xpaa)) = T+ expd)’
1

P(Xa = —1|Xp4q) = Trexpd)’

where péa] denotes the parent verticesaf

The parameted reflects the strength of dependence because if the values of all thepatteert
variables are fixed, the difference between the conditional probabiliteesariableX; = 1 given a
parent variable<, =1 and -1 is

|logit[P(Xa = 1/Xp = L, Xoga (b} )] — 10Git[P(Xa = 1|Xo = —1, Xpga\ (by)]| = [230] =3,

where the logit function is defined as logif = log(%y).

Since the accuracy of the PC-skeleton algorithm and its FDR versionstsdétethe discrim-
inability of the statistical tests, we generated data with different valuég(of 0.5, 0.6, 0.7, 0.8,
0.9 and 1.0) to evaluate the algorithms’ performances with different poiadatecting conditional
dependence. The larger the absolute valué isf the easier the dependence can be detected with
statistical tests. Because statistical tests are abstract queries yigldabges about conditional in-
dependence for the structure-learning algorithms, the accuracy ofgibrittams is not determined
by the particular procedure of a statistical test, or a particular family ofitiondl probability dis-
tributions but by the discriminability of the statistical tests. Given a fixed sampde thie stronger
the conditional-dependence relationships are, the higher discriminabilityatigtisal tests have.
By varying the dependence strengtlof the binary conditional probability distributions, we have
varied the discriminability of the statistical tests, as if by varying the deperdgnength obther
probability distribution families. To let the readers intuitively understand tpeddence strength
of thesed values, we list as follows examples of probability pairs whose logit contaastequal to
thesed values:
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Figure 1: DAGs used in the simulation study.denotes the number of vertices abdlenotes the

average degree of the vertices. Unshaded vertices are associatpdsitithe dependence
strength (60, and shaded ones are associated with negative dependence strérigth
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0.5 = logit( 0.5622 ) - logit( 0.4378), 0.6 = logit( 0.5744 ) - logit( 0.4256 ),
0.7 = logit( 0.5866 ) - logit( 0.4134), 0.8 = logit( 0.5987 ) - logit( 0.4013 ),
0.9 = logit( 0.6106 ) - logit( 0.3894 ), 1.0 = logit( 0.6225 ) - logit( 0.3775 ).

In total, we performed the simulation with 48 Bayesian networks generated Mitte @ombi-
nations of the following parameters:

N = 15,2025 30:
D = 23
& = 0.5,0.6,0.7,0.8,0.9,1.0.

From each Bayesian network, we repetitively generated 50 data satefez@0 samples to es-
timate the statistical performances of the algorithms. A non-model-based teSg¢hean-Mantel-
Haenszel (CMH) test (see Agresti, 2002, pages 231-232), was yaapto the test conditional
independence among random variables. Both the significantdeg€éthe PC-skeleton algorithm
and the FDR leved) of the PGy,-skeleton algorithm and its heuristic modification were set at 5%.

Figures 2, 3 and 4 respectively show the empirical FDR, power and tgper rate of the al-
gorithms, estimated from the 50 data sets repetitively generated from egehi®@anetwork, with
error bars indicating the 95% confidence intervals of these estimationsPJeskeleton algo-
rithm controls the FDR under the user-specified level 5% for all the 4&8agy networks, and
the PGyr+-skeleton algorithm steadily controls the FDR closely around 5%, while theke{@ton
algorithm yields the FDR ranging from about 5% to about 35%, and abd%eih many cases,
especially for those sparser DAGs with the average degree of veltiee®. The PGy-skeleton al-
gorithm is conservative, with the FDR notably lower than the user-speé&fiet] while its heuristic
modification controls the FDR more accurately around the user-specifidddétthough the correct-
ness of the heuristic modification has not been theoretically proved. Asstenagnability of the
statistical tests increases, the power of all the algorithms approacheseh téir FDR level is
set at the same value as theof the PC-skeleton algorithm, the RBEskeleton algorithm and its
heuristic modification control the type | error rate more stringently than theke@ton algorithm
does, so their power generally is lower than that of the PC-skeleton algotigure 4 also clearly
shows, as Eq. 3 implies, that it is the type | error rate, rather than the FRRthidn PC-skeleton
algorithm controls under 5%.

Figure 5 shows the average computational time spent during each runPGtheskeleton al-
gorithm and its heuristic modification on the statistical tests of (conditional) imilmee at step 8
and the FDR control at step 12. The computational time was estimated on themlatfan Intel
Xeon 1.86GHz CPU and 4G RAM, and with the code implemented in Matlab R14esT8kand
4 show the average ratios of the computational time spent on the FDR continalt tepent on the
statistical tests. The average ratios are not more than 2.57%o. for all theyé8iBa networks. The
relatively small standard deviations, as shown in brackets in the tablesatedhat these estimated
ratios are trustful. Because the fg&skeleton algorithm and its heuristic modification employ the
same search strategy as the PC-skeleton algorithm does, this resultesgitleat the extra compu-
tation cost to achieve the control over the FDR is trivial in comparison withdahgpatation already
spent by the PC-skeleton algorithm on statistical tests.
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Table 3: The average ratios (with their standard deviations in bracketis¢ @omputational time
spent on the FDR control to that spent on the statistical tests during eaohthe PGy, -
skeleton algorithm.
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Table 4: The average ratios (with their standard deviations in bracketis¢ @omputational time
spent on the FDR control to that spent on the statistical tests during eachthe PGy+-
skeleton algorithm.

3.2 Applications to Real fMRI Data

We applied the Pfg-skeleton and the PC-skeleton algorithms to real-world research tastg; stu
ing the connectivity network between brain regions using functional megresonance imaging
(fMRI). The purpose of the applications is to check whether the two algosittorrectly curb the
error rates in real world applications. The purpose of the applicationstjsand also should not
be, to answer the question “which algorithm, theidpGkeleton or the PC-skeleton, is superior?”,
for the following reasons. Basically, the two algorithms control differerdrerates between which
there is not a superior relationship (see Appendix C). Secondly, tberate of interest for a spe-
cific application is selected largely not by mathematical superiority, but l®arekers’ interest and
the scenario of research (see Appendix C). Thirdly, the simulation staslglearly revealed the
properties of and the differences (not superiority) between the tweithgws. Lastly, the approx-
imating graphical models behind the real fMRI data are unknown, so thearsop on the real
fMRI data is rough, rather than rigorous.

The two algorithms were applied to two real fMRI data sets, one including 1fetiseariables
and 1300 observations, and the other including 25 continuous variatel088 observations. The
first data set, denoted by “the bulb-squeezing data set”, was colleotadl.h healthy subjects each
of whom was asked to squeeze a rubber bulb with their left hand at tiiffesedt speeds or at
a constant force, as cued by visual instruction. The data involve elamables: the speed of
squeezing and the activities of the ten brain regions listed in Table 5. Tlee sffesqueezing is
coded as a discrete variable with four possible values: the high speedetliem speed, the low
speed, and the constant force. The activities of the brain regionodesl @s discrete variables
with three possible values: high activation, medium activation and low activalioe data of each
subject include 130 time points. The data of the ten subjects are pooled tpgetlretotal there
are 1300 time points. For details of the data set, please refer to Li et a8)(200

The second data set, denoted by “the sentence-picture data set”, Neasecofrom a single
subject performing a cognitive task. In each trial of the task, the subjastshown in sequence
an affirmative sentence and a simple picture, and then answered whethssnfence correctly
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Full Name Abbreviation
Left/Right anterior cingulate cortex ACC, RACC
Left/Right lateral cerebellar hemispheres GER, RCER
Left/Right primary motor cortex w1, RM1

Left/Right pre-frontal cortex LPFC, RPFC

Left/Right supplementary motor cortex _&MA, R.SMA

Table 5: Brain regions involved in the bulb-squeezing data set. The @sefiX or “R” in the
abbreviations stand for “Left” or “Right”, respectively.

Figure 6: The networks learned from the bulb-squeezing data set, BYOfeskeleton and the PC-
skeleton algorithms. For ease of comparison, the networks learned bydlatgevithms
are overlaid. Thin solid black edges are those connections detectedtlbyhieotwo
algorithms; thick solid red edges are those connections detected only bgtbieelieton
algorithm. For the full names of the brain regions, please refer to Table 5.

described the picture. In half of the trials, the picture was presenteddiistyed by the sentence.
In the remaining trials, the sentence was presented first, followed by theepidihe data involve
the activities of 25 brain regions, as listed in Table 6, encoded as contimagables, at 1098 time
points. For details of the data set, please refer to Keller et al. (2001) &nbeM et al. (2004).

The PGyr-skeleton and the PC-skeleton algorithms were applied to both the bulbzeggead
the sentence-picture data sets. Both the FDR lgeélthe PGqy,-skeleton algorithm and the type-I-
error-rate leveb of the PC-skeleton algorithm were set at 5%. For the bulb-squeezingeiat|
of whose variables are discrete, conditional independence was tagtdebarson’s Chi-square test;
for the sentence-picture data set, all of whose variables are contincamditional independence
was tested with the t-test for partial correlation coefficients (Fisher,)1924

The networks learned from the bulb-squeezing data set and the nstieathed from the
sentence-picture data set are shown in Figures 6 and 7 respectieglgase of comparison, the
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Full Name Abbreviation
Calcarine fissure CALC
Left/Right dorsolateral prefrontal cortex -DLPFC, RDLPFC
Left/Right frontal eye field LFEF, RFEF
Left inferior frontal gyrus LIFG

Left/Right inferior parietal lobe LUPL, R_IPL
Left/Right intraparietal sulcus 1PS, RIPS
Left/Right inferior temporal lobule uT, RT
Left/Right opercularis LOPER, ROPER
Left/Right posterior precentral sulcus _RPREC, RPPREC
Left/Right supramarginal gyrus BGA, RSGA
Supplementary motor cortex SMA
Left/Right superior parietal lobule SPL, RSPL
Left/Right temporal lobe LT, RT
Left/Right triangularis LTRIA, R_TRIA

Table 6: Brain regions involved in the sentence-picture data set. Thagwéfi’ or “R” in the
abbreviations stand for “Left” or “Right”, respectively.

Figure 7: The networks learned from the sentence-picture data sete B3Gh-skeleton and the
PC-skeleton algorithms. For ease of comparison, the networks learnta thyo al-
gorithms are overlaid. Thin solid black edges are those connections detgctsoth
the two algorithms; thin dashed blue edges are those connections detelgtéy tme
PGar-skeleton algorithm; thick solid red edges are those connections detedyebyon
the PC-skeleton algorithm. For the full names of the brain regions, pletesetoeTa-
ble 6.
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Bulb-Squeezing

AssumedTruth RealizedDetection
Exist Non-Exist Correct False FDR  Type | Error Rate
Per 11*(1171) . 17 0 000% 000%
pc 7 —17=38 17 1 556% 2.63%
Sentence-Picture
AssumedTruth RealizedDetection
Exist Non-Exist Correct False FDR Type | Error Rate
PCfdr 25*(2&1) . 39 3 714% 114%
pc 2~ —39=261 39 12  235% 4.60%

Table 7: Theaealizederror rates of the Pg;-skeleton and the PC algorithms on the bulb-squeezing
and sentence-picture data sets, under the Tl assumption that all andasdyctinnections
detected by both of the two algorithms truly exist.

networks learned by the two algorithms are overlaid. Thin solid black edgdab@se connections
detected by both the two algorithms; thin dashed blue edges are those detdgtby the PGy, -
skeleton algorithm; thick solid red edges are those detected only by thed®&eskalgorithm. In
Figure 6, there are 17 thin solid black edges, 0 thin dashed blue edgetlaic# &olid red edge; in
Figure 7, there are 39 thin solid black edges, 3 thin dashed blue edgé& #midk solid red edges.

The results intuitively, though not rigorously, support our expectatiohe performances of
the two algorithms in real world applications. First, since the data sets areebldérge, with the
sample sizes more than 1000, it is expected that both algorithms will recovgrohtre existing
connections, and consequently the networks recovered by the twitlablgpmay share many com-
mon connections. This is consistent with the fact that in Figures 6 and 7aheraany thin solid
black edges, that is, the connections recovered by both algorithms.

Second, since the R{zskeleton algorithm is designed to control the FDR while the PC-skeleton
algorithm to control the type | error rate, it is expected that the two algorithithsentrol the
corresponding error rate under or around the pre-defined levahw$5% in this study. To verify
whether the error rates were controlled as expected, we need to kriotveamnections really exist
and which do not. Unfortunately, this is very difficult for real data setsaise unlike the simulated
data, the true models behind the real data are unknown, and in the literasgarchers usually
tend to report evidences supporting the existence of connections th#mesupporting the non-
existence. However, since the sample sizes of the two data sets are Ielatye, more than 1000,
we can speculate that both of the two algorithms have recovered most ofistiageconnections.
Extrapolating this speculation a bit, we intuitively assume that those connedetasted by both
of the two algorithms truly exist while all the others do not. In other words, ssime that all
and only the thin black edges in the figures truly exist. We refer to this assumgsithe “True
Intersection” (TI) assumption. The statistics about Figures 6 and 7y uhed| assumption, are
listed in Table 7. Theealized FDR of the PGy-skeleton algorithm on the bulb-squeezing and
sentence-picture data sets are 0.00% and 7.14%, respectivehgattzedtype | error rate of the
PC-skeleton algorithm on the bulb-squeezing and sentence-picturestiatae 2.63% and 4.60%,
respectively. Considering that tealizederror rate, as a statistic extracted from just a trial, may
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slightly deviate from its expected value, these results, derived undet tesidimption, support that
the two algorithms controlled the corresponding error rate under the fireeddevel 5%.

Third, according to Eqg. (2), the sparser and the larger the true nefgjattie higher the FDR
of the PC-skeleton algorithm will be. For the bulb-squeezing data set, #nergl vertices, and
under the Tl assumption, 17 existing connections and 38 non-existingcioms. In this case, the
realizedFDR of the PC-skeleton algorithm is only 5.56% (Table 7). For the sentgictdgre data
set, there are 25 vertices, and under the Tl assumption, 39 existingotiomseand 261 non-existing
connections. In this case, thealizedFDR of the PC-skeleton algorithm rises to 23.5% (Table 7).
This notable increase of thealizedFDR is consistent with the prediction based on Eq. (2).

It should be noted that the preceding arguments are rough rather tlaousg since they are
based on the Tl assumption rather than the true models behind the data.gfdvemause the true
models behind the real data are unknown, the Tl assumption is a practicaltaitive approach to
assess the performance of the two algorithms in the two real world applications

4. Conclusions and Discussions

We have proposed a modification of the PC algorithm, thg,PReleton algorithm, to curb the false
discovery rate (FDR) of the skeleton of the learned Bayesian netwdhiesEFDR-control procedure
embedded into the PC algorithm collectively considers the hypothesis tesesireldhe existence
of multiple edges, correcting the effect of multiple hypothesis testing. Under asgdmptions,
it is proved that the Pfg-skeleton algorithm can control the FDR under a user-specified ¢evel
(g > 0) at the limit of large sample sizes (see Theorem 2). In the cases of n®daraple size
(about several hundred), empirical experiments have shown that tthednis still able to control
the FDR under the user-specified level. Thgdr&keleton algorithm, a heuristic modification of
the proposed method, has shown better performance in the simulation saatiijyscontrolling
the FDR closely around the user-specified level and gaining more detgaieer, although its
asymptotic performance has not been theoretically proved. Both the$€leton algorithm and
its heuristic modification can asymptotically recover all the edges of the true (38& Theorem
1). The idea of controlling the FDR can be extended to other constraisibasthods, such as
the inductive causation (IC) algorithm (see Pearl, 2000, pages 48n81he fast-causal-inference
(FCI) algorithm (see Spirtes et al., 2001, pages 142-146).

The simulation study has also shown that the extra computation spent oniagliey FDR
control is almost negligible when compared with that already spent by thége@thm on statistical
tests of conditional independence. The computational complexity of the Igenitam is closely
comparable with that of the PC algorithm.

As a modification based on the PC algorithm, the proposed method is modulsisttanof
the PC search strategy, statistical tests of conditional independenca &iRacontrol procedure.
Different statistical tests and FDR-control procedures can be “plligge depending on the data
type and the statistical model. Thus, the method is applicable to any models for sthistical
tests of conditional independence are available, such as discrete mod@&suassian models.

It should be noted that the Rfzskeleton algorithm is not proposed to replace the PC-skeleton
algorithm. Instead, it provides an approach to controlling the FDR, a cestedn-rate criterion
for testing the existence of multiple edges. When multiple edges are involvediatustr learning,
there are different applicable error-rate criteria, such as those listedbia 2. The selection of these
criteria depends on researchers’ interest and the scenarios ofsstwtlieh is beyond the scope of
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this paper. When the FDR is applied, theiRGkeleton algorithm is preferable; when the type |
error rate is applied, the PC-skeleton algorithm is preferable. The tedldificrence between the
two algorithms is that the Rg-skeleton algorithm adaptively adjusts the type | error rate according
to the sparseness of the network to achieve the FDR control, while thedt€eskalgorithm fixes
the type | error rate.

Currently the FDR control is applied only to the skeleton of the graph, bubrtbe directions
of the edges yet. The final output of the PC algorithm is a partially directgdiagraph that
uniguely represents an equivalence class of DAGs, so a possible iempeot for the P¢g,-skeleton
algorithm is to extend the FDR control to the directions of the recoveredgsefprause both type
| and type Il errors may lead to wrong directions in the later steps of the RiGithlgn, minimizing
direction errors may lead to a related, yet different, error-control task

The asymptotic performance of the fg&keleton algorithm has only been proved under the
assumption that the number of vertices is fixed. Its behavior when both thbeamwof vertices and
the sample size approach infinity has not been studied yet. Kalisch i@mchBnn (2007) proved
that for Gaussian Bayesian networks, the PC algorithm consistentlyaecthe equivalence class
of the underlying sparse DAG, as the sample sizapproaches infinity, even if the number of
verticesN grows as quickly a©(m") for any 0< A < . Their idea is to adaptively decrease the
type | error raten of the PC-skeleton algorithm as both the number of vertices and the sample size
increase. It is desirable to study whether similar behavior can be achigtrethe PGy,-skeleton
algorithm if the FDR levey is adjusted appropriately as the sample size increases.

A Matlab® package of the P -skeleton algorithm and its heuristic modification is download-
able at www.junningli.org/software.
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Appendix A. Proof of Theorems

To assist the reading, we list below notations frequently used in the proof:
Giue - the skeleton of the true underlying Bayesian network.
A, the event that edge~ b is in the graph recovered by the BGskeleton algorithm.
At Aeze = [1 Aab, the joint event that all the edges@y,e, the skeleton of the true DAG,
are recc?;gfgtéueby the Rzskeleton algorithm.
Tue . the set of the undirected edges that are n@j{.
Pa~b : the value ofp]'dX when the P-skeleton algorithm stops.

~p . @ certain vertex set that d-separateand b in Gyye and that is also a subset of either
adj(a, Gie) \ {b} or adjb,Gg,e) \ {a}, according to Proposition 1C;_, is defined only
for vertex pairs that are not adjacent in the true DBGie.
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Pap : the p-value of testingXa LXs|Xc: ,. The conditional-independence relationship may not be
really tested during the process of thegg?Gkeleton algorithm, bup;_, can still denote the
value as if the conditional-independence relationship was tested.

H*: the value in Eq. (1) that is eithét orH(1+1/2,...,4+1/H), depending on the assumption
of the dependency of the-values.

Lemma 1 If as m approaches infinity, the probabilities of K evedtém), -, 4 (m) approach 1
at speed

P(A(m)) =1-o(B(m)
WherenIniLn B(m) =0 and K is a finite integer, then the probability of the joint of all these events
approaches 1 at speed

K
P (ﬂ 4 (m)> > 1—Ko(B(m))
i=1
as m approaches infinity.

Proof

Corollary 1 If 4;(m),---, 4k (m) are a finite number of events whose probabilities each approach
1 as m approaches infinity:

lim P((m) =1,

then the probability of the joint of all these events approaches 1 as m agpes infinity:

me(fam)-
i=1

Lemma 2 If there are F (F> 1) false hypotheses among H tested hypotheses, and the p-values
of the all the false hypotheses are smaller than or equq;f;tq, where H is either H or H(1+
1/2,...,41/H), depending on the assumption of the dependency of the p-values,lithies &

false hypotheses will be rejected by the FDR procedure, Algorithm 2.

Proof

Let pj (i=1,---,H) denote thep-value of theith hypothesisp; denote the maximum of thp-
values of the- false hypotheses, amgl denote the rank gbs in the ascending order ¢f; }i—1,... 1.
" ps is the maximum of the-values of the- false hypotheses.

Sre= |{|O.|p. <pi} >F.

E ':'f pr < Epr.
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pf < H q

rf pr < Hpr<a.

.. Hypotheses wittp-values not greater thgm will be rejected.

*.» The p-values of the~ false hypotheses are not greater tipan

.. All the F false hypotheses will be rejected by the FDR procedure, Algorithm 2. |

Proof of Theorem 1

If there is not any edge in the true DAG e, then the proof is triviallyE; e = 0 C E™. In the
following part of the proof, we assunig;, . # 0. For the PGy -skeleton algorithm and its heuris-
tic modification, whenever the FDR procedure, Algorithm 2, is invokegfy is always less than

. \rp\?xb}{pﬂmc} and the number gf-values input to the FDR algorithm is always not more than
€ a.

CN. Thus, according to Lemma 2, if

|Efrue
5
awrpealééue {Ce\rp\?;(b}{ aLb|C}} CN zclu q’ ®)

then all the true connections will be recovered by thggR€keleton algorithm and its heuristic
modification. Letﬂl;m‘c denote the event

|Etrue
~2<CR 1
CNZitaT

Palbic < q,

A _denote the event of Eq. (5), arfli; . denote the event that all the true connections are recov-
ered by the P¢-skeleton algorithm and its heuristic modification.

" Ag. is a sufficient condition fore ., according to Lemma 2.

leEt?ue = 'qE?ue' ,

P( ?ue) 2 P(/th?ue).

" Ag. is the joint of a limited number of events as

/qllzt?ue = m m /qéimc’
a~beEfR,eCCV\{ab}
and Iim P(%b‘c) = 1 according to Assumption (A3).
Accordlng to Corollary 1, IlrrP(ﬁlE"ue) =1.
.. 1 2 r’!]ILnoo P(ﬂEt?ue) Z nl'}IE:]oo P(/qEﬁue) -
., nl]lm P(’th?ue) =1. |

Lemma 3 Given any FDR level ¢ 0, if the p-value vector P= [p,---, pu] input to Algorithm

2 is replaced with P= [p},---, py], such that (1) for the those hypotheses that are rejected when
P is the input, pis equal to or less than;pand (2) for all the other hypotheses, gan be any
value between 0 and 1, then the set of rejected hypotheses Wisghéinput is a superset of those
rejected when P is the input.
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Proof
Let RandR denote the sets of the rejected hypotheses vhandP’ are respectively input to the
FDR procedure.

If R= 0, then the proofis trivialyR D 0=R.

If R# 0, let us definen = maxp; anda’ = rineaRxp{. Letr = |R| denote the rank ofi in the

ascending order d® andr’ denote the rank ad’ in the ascending order .
cpi<piforalieR

sal= rlneaRxpI

P> IR =r.

—*cx < q

o <Ha<q

. WhenP' i |s the input, hypotheses withf smaller than or equal to’ will be rejected.

P <o VieR

..RCR, equivalenthyR O R. m

Corollary 2 Given any FDR level ¢+ 0, if the p-value vector P-[p1,---, pu] input to Algorithm
2 is replaced with P= [p}, -, py] such that p< p; for alli = 1,---,H, then the set of rejected
hypotheses when B the input is a superset of those rejected when P is the input.

Proof of Theorem 2

Let Eg,p andEg,, denote the undirected edges respectively recovered and removee Bk
skeleton algorithm when the algorithm stops. Let sequé¥ié& - - - , P'® denote the values ¢f"2*

when the FDR procedure is invoked at step 12 as the algorithm progréssee order of the update
process oP™® and letE” denote the set of removable edges indicated by the FDR procedure, with
P"®*as the inputEy* may include edges that have already been removed.

L The PC;:dr -skeleton algorithm accumulatively removes edgeSin

stop U Ek
- PMXis updated increasingly at step 10 of the algorithm.
.'.Accordlng toCorollary 2, Ef* C --- C Ef".

stop U Ek - EK

Let P = {pa-b} denote the value d®"®*when the Pg-skeleton algorithm stops.

*.» The FDR procedure is invoked whenew#*is updated.

.. The value ofP™®does not change after the FDR procedure is invoked for the last time.
P — P}r<nax_

.. E&opls the same as the edges recovered by directly applying the FDR procedure

The theorem is proved through comparing the result of thg,R&eleton algorithm with that
of applying the FDR procedure to a virtugdvalue set constructed froR The virtualp-value set
P* is defined as follows.

For a vertex paia ~ b that is not adjacent in the true DAG;e, let C;_,, denote a certain
vertex set that d-separatasindb in Gie and that is also a subset of elther(zal;iﬁtrue) \ {b} or
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adj(b, Gie) \ {a}. Let us defind>* = {p}_,} as:

« Paipc:, - a~ be Etruea
Pab = ab
Pa~b . a~beEge

Thoughpa, pc; , May not be actually calculated during the process of the algoritgngc: , still
can denote the value as if it was calculated. Let us design a virtual algoc#ieqAlgorithm’, that
recovers edges by just applying the FDR procedure‘tand letE~* denote the edges recovered
by this virtual algorithm. This algorithm is virtual and impracticable becausedtoiation ofP*
depends on the unknowvy;,e, but this algorithm exists becauBg,, exists. For any vertex paa
andb that is not adjacent i ye:

" Xa andX, are conditional independent give;: .

. PaLbic; , follows the uniform distribution on [0, 1].

.. The FDR ofAlgorithm* is underq.

When all the true edges are recovered by theyPskeleton algorithm, that i€ e C Egop
the conditional independence betwegnandX, given X, is tested for all the falsely recovered
edgesa~ b € EfNEg,, because for these edges, subsets ofaa@jrue) \ {b} and subsets of
adj(a, Gyue) \ {b} have been exhaustively searched @id, is one of them. Therefor@a.p > pj
foralla~b € Eg,,when eventZg; . happens. Consequently, according to Lemma 3, if exiepjt
happensEg,, C E™.

Letg(E™~) denote the realized FDR of reportiig” as the recovered skeleton of the true DAG:

rue

B0 . B~ 20
Ey=J ETC ,
%E") {o . Ev=0.

The FDRs of the Pfg-skeleton algorithm andlgorithm’ are E[q(Eg,,)] andE[q(E™~)] respec-
tively. HereE[x] means the expected valueof

E[q( &Op)] SIOp)”thrue /thrue)—i_E[ ( StOp)‘/thrue] (ﬂE(?ue)
< Q+ P(/thrue) WhereQ E t0p) ’/thrue /thrue)
. .IlmsupE [A(Egop)] < IlmsupQ+I|msupP(ﬂlE"ue)

I|m P(ﬂE"ue) =1, accordlng trheorem 1
IlmsupP(ﬂlEﬁue) = lim P(ﬂlee) =0.
IlmsupE[q( <to ]<I|msupQ

Q< E[ (EsNtop)]
I|msupQ < IlmsupE[q( S”top)].

IlmsupE[q( <o ] = limsupQ = limsupE[q(Eg,p)| e, | P( e )-
m—oo m— oo
Similarly, limsupE[q(E~*)] = limsupE[q(E™~")|Ag; . |P(Ag;,.)-
m—oo m—oo
. Given eventigg,., Efrue © EstopC E~
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.. Given eventZg;.

rue’

|E t0p| ’Et?ue’ —1_ |Et?ue| <1- |Et?ue| _ |EN*| |Etrue|
|Estopl |Esiodl = [E™] |E~]

A(Esto =q(E™).

- lim SUpE[a(Egop) | Aeg,.|P(Aeg,.) < limSUPE[Q(E™)[ Ag;, JP(Ae;,.)-

mM—o0 mM—o0

IimsupE[q( stop)] < IlmSUpE[q(EN*)]

m—o0

*.» Algorithni controls the FDR undeg.

- Ela(E™)] <q.
. limsupE[q(E™)] <

m—oo

q
. limsupE[q( sNtop)] =q |
m—oo

Appendix B. Statistical Tests with Asymptotic Power Equal to One

Assumption (A3) on the asymptotic power of detecting conditional depeedsprears demanding,
but actually the detection power of several standard statistical testsagppoone as the number of
identically and independently sampled observations approaches infinitgdlds follows are two
statistical tests satisfying Assumption (A3) for Gaussian models or discretelsnod

B.1 Fisher's z Transformation on Sample Partial-correlation-coefftients for Gaussian
Models

In multivariate Gaussian models; andX, are conditional independent give@ if and only if the
partial-correlation-coefficient of; and X, given Xc is zero (see Lauritzen, 1996, pages 129-130).
The partial-correlation-coefficieiptis defined as:

— Cov [Ya,Yh]
P = v/ Var[Y]Var[Y,]’
Ya = Xa—< WaaXC >,
Yo = Xo— <Whb,Xc >,
Wo = argminE[(Xa— <w.Xc >)?],

W, = argrUvinE[(Xb—<W,Xc>)2]-
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The sample partial-correlation-coefficigmican be calculated frommi.i.d. samples Xai, Xbi, Xci
i=1,---,mas:

X 4 5 [(5a~5a) 5o
p = = ,
L5 (Jai—¥a)? %z(yb. b)2
e
Ya = mz Yai,
- . Iﬁ]l
Yo = m_zl)’bia
1= ~
Yo = Xai— <Wh,Xci >
Yoi = Xpi— <Wh,Xci >,
~ m
W, = arg rUVinz (Xai— < W, Xci >)?,
i=1
~ m
W = argminy (Xpi— < W,Xci >)2.
i=1

The asymptotic distribution af(p), wherez(x), the Fisher’s z transformation (see Fisher, 1915),

is defined as
1+ X%

2(x) = 2' 97T
is the normal distribution with meazip) and variance A(m— |C| — 3) (see Anderson, 1984, pages
120-134). When the type | error rate is kept lower thathe power of detecting # 0 with Fisher’s
z transformation is the probability thgm— |C| — 3 z(p) falls in the range(—o, ®~1(a/2)] or
[®~1(1—0/2),4+), where® is the cumulative distribution function of the standard normal dis-
tribution and®~1 is its inverse function. Without loss of generality, we assume the true partial-
correlation-coefficienp is greater than zero, then the asymptotic power is

lim Power> lim P( 1= 32(p) > & (1—0(/2))

= i (1-0(0 H1-a/2)— /M0 3 2(p)]) = (1~ ®[) = 1.

B.2 The Likelihood-ratio Test Generally Applicable to Nested Models

The likelihood ratio is the ratio of the maximum likelihood of a restricted model to theasaturated
model (see Neyman and Pearson, 1928). L(et0) denote the probability density function of
a random vectok parametrized witl® = [81,---,65]. The null hypothesis restric&to a setQ
specified withr (r < k) constraints

€1(0) =€2(0) =---=¢&(8) =0

Given i.i.d. observationsy, - - -, xm, letL(8) denote the likelihood function

_Elf(xi,e).

The likelihood ratioA given the observations is defined as

~ supL(6)

~ supL(8)’
0eQ
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Wald (1943) has proved that under certain assumption§(g/8) and&;(8),---,&,(0), the limit
distribution of the statistic-2logA is the x? distribution withr degrees of freedom if the null
hypothesis true. If the null hypothesis is not true, the distribution 2iiog/\ approaches the non-
centraly?(\) distribution withr degrees of freedom and the non-central parameter

A = mD(B) >0,
k k
&i(6)E;(8
D) = 3 3 —OHOL
iI=1j=1 309 30P
pélqgl E azf(x,e)
"~ 00Pgpa

If D(6) >0, thenmim)\ =o0. Lett (t < ) denote the threshold of rejecting the null hypothesis with

type | error rate undex (a > 0). The asymptotic power of detectin@dhat is not inQ and whose
D(0) is greater than O i; linP(x?(A) > t). The mean and the variance of t&\) distribution is

u=r+A\ ando? = 2(r +2\), respectively. When is large enough,
P(X?(\) >t) >P(t<X?(\) <u+(u—t)) =1—P(|x2(A\) —u| > u—t).
According to Chebyshev’s inequality,

o 2r+2))
(Uu—t)2  (r+A—1)2

P (X2 —ul > u—t) <

.. WhenA is large enoughR(x?(A) >t) > 1— (fﬁf?))z.
rTI]ILn A = o and bothr andt are fixed.

w2620

S, oz =0

- lim P(X2(\) >1) = 1.

Appendix C. Error Rates of Interest

Statistical decision processes usually involve choices between neggpiethbses and their alter-
natives, positive hypotheses. In the decision, there are basically twoesoof errors: the type
| errors, that is, falsely rejecting negative hypotheses when theycanally true; and the type I

errors, that is, falsely accepting negative hypotheses when theiraltes the positive hypothe-
ses are actually true. In the context of learning graph structures, aivedypothesis could be
that an edge does not exist in the graph, while the positive hypotheda lmethat the edge does
exist. It is generally impossible to absolutely prevent the two types of esiorgltaneously, be-

cause observations of a limited sample size may appear to support a pogittadsis more than
a negative hypothesis even when actually the negative hypothesis isitiee versa, due to the
stochastic nature of random sampling. Moreover, the two types of eyemrrally contradict each
other. Given a fixed sample size and a certain statistic extracted from theldataasing the type
| errors will increase the type Il errors, and vice versa. To guaestihie absolute prevention of the
type | errors in any situations, one must accept all negative hypothebah will generally lead

the type Il error rate to be one, and vice versa. The contradiction betiveg¢wo types of errors is
clearly revealed by the monotone increase of receiver operatingatéasic (ROC) curves. Thus
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the errors must be controlled by setting a threshold on a certain type of ,erdrading off between
them, for instance, by minimizing a certain lost function associated with thesexcoprding to the
Bayesian decision theory.

Rooted in the two types of errors, there are several different eatercriteria (as listed in
Table 2) for problems involving simultaneously testing multiple hypotheses, asigkrifying the
existence of edges in a graph. The type | error rate is the expected fdlie type | errors to
all the negative hypotheses that are actually true; the type Il error réte expected ratio of the
type Il errors to all the positive hypotheses that are actually true; the tidsovery rate (FDR)
(see Benjamini and Yekutieli, 2001; Storey, 2002), is the expected ratidsedy accepted positive
hypotheses to all those accepted positive hypotheses; the family-wiserate is the probability
that at least one of the accepted positive hypotheses is actually wrong.

Generally, there are no mathematically or technically superior relationshipsggatinese error-
rate criteria. Each of these error rates may be favoured in certairrceseznarios. For example:

» We are diagnosing a dangerous disease whose treatment is so rigkyatheduse the loss of
eyesight. Due to the great risk of the treatment, we hope that less than Otialthfy people
will be falsely diagnosed as patients of the disease. In this case, the tyje tate should
be controlled under 0.1%.

» We are diagnosing cancer patients. Because failure in detecting theselisgdhmiss the
potential chance to save the patient’s life, we hope that 95% of the caatients will be
correctly detected. In this case, the type Il error rate should be comutiatider 5%.

* In apilot study, we are selecting candidate genes for a genetic rasgaRarkinson’s disease.
Because of the limited funding, we can only study a limited number of genes ifiténeard
genetic research, so when selecting candidate genes in the pilot studgper¢hat 95% of
the selected candidate genes are truly associated with the disease. Is¢hithedDR will
be chosen as the error rate of interest and should be controlled Wider 5

» We are selecting electronic components to make a device. Any error inoamyonent will
cause the device to run out of order. To guarantee the device funat@hsith a probability
higher than 99%, the family-wise error rate should be controlled under 1%.

In these examples, the particular error-rate criteria are selected lpnssasyond mathematical or
technical superiority, but by the researchers’ interest, to minimize a cévifunction associated
with the errors according to the Bayesian decision theory. Learning nestroictures in real world
applications may face scenarios similar to the above examples.

The excellent discrimination between negative hypotheses and posippath@ges cannot be
achieved by “smartly” setting a threshold on a “superior” error-raterawite Setting a threshold
on a certain type of error rate is just choosing a cut-point on the ROGcufithe ROC curve
is not sharp enough, any cut-point on the curve away from the en@dsd0d (1,1) still leads to
considerable errors. To discriminate more accurately between a nelggbiothesis and a positive
hypothesis, one must design a better statistic or increase the sample sizieve actharper ROC
curve.
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