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Abstract
In real world applications, graphical statistical models are not only a tool for operations such as
classification or prediction, but usually the network structures of the models themselves are also of
great interest (e.g., in modeling brain connectivity). Thefalse discovery rate (FDR), the expected
ratio of falsely claimed connections to all those claimed, is often a reasonable error-rate criterion
in these applications. However, current learning algorithms for graphical models have not been
adequately adapted to the concerns of the FDR. The traditional practice of controlling the type I
error rate and the type II error rate under a conventional level does not necessarily keep the FDR
low, especially in the case of sparse networks. In this paper, we propose embedding an FDR-control
procedure into the PC algorithm to curb the FDR of the skeleton of the learned graph. We prove
that the proposed method can control the FDR under a user-specified level at the limit of large
sample sizes. In the cases of moderate sample size (about several hundred), empirical experiments
show that the method is still able to control the FDR under theuser-specified level, and a heuristic
modification of the method is able to control the FDR more accurately around the user-specified
level. The proposed method is applicable to any models for which statistical tests of conditional
independence are available, such as discrete models and Gaussian models.

Keywords: Bayesian networks, false discovery rate, PC algorithm, directed acyclic graph, skele-
ton

1. Introduction

Graphical models have attracted increasing attention in the fields of data mining and machine learn-
ing in the last decade. These models, such as Bayesian networks (also called belief networks) and
Markov random fields, generally represent events or random variables as vertices (also referred
to as nodes), and encode conditional-independence relationships amongthe events or variables as
directed or undirected edges (also referred to as arcs) according to the Markov properties (see Lau-
ritzen, 1996, Chapt. 3). Of particular interest here are Bayesian networks (see Pearl, 1988, Chapt.
3.3) that encode conditional-independence relationships according to thedirected Markov property
(see Lauritzen, 1996, pages 46–53) with directed acyclic graphs (DAGs) (i.e., graphs with only di-
rected edges and with no directed cycles). The directed acyclic feature facilitates the computation
of Bayesian networks because the joint probability can be factorized recursively into many local
conditional probabilities.
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As a fundamental and intuitive tool to analyze and visualize the association and/or causality
relationships among multiple events, graphical models have become more and moreexplored in
biomedical researches, such as discovering gene regulatory networks and modelling functional con-
nectivity between brain regions. In these real world applications, graphical models are not only a
tool for operations such as classification or prediction, but often the network structures of the mod-
els themselves are also output of great interest: a set of association and/or causality relationships
discovered from experimental observations. For these applications, a desirable structure-learning
method needs to account for the error rate of the graphical features ofthe discovered network. Thus,
it is important for structure-learning algorithms to control the error rate of the association/causality
relationships discovered from a limited number of observations closely belowa user-specified level,
in addition to finding a model that fits the data well. As edges are fundamental elements of a graph,
error rates related to them are of natural concerns.

In a statistical decision process, there are basically two sources of errors: the type I errors, that
is, falsely rejecting negative hypotheses when they are actually true; andthe type II errors, that is,
falsely accepting negative hypotheses when their alternatives, the positive hypotheses are actually
true. In the context of learning graph structures, a negative hypothesis could be that an edge does
not exist in the graph while the positive hypothesis could be that the edge does exist. Because of
the stochastic nature of random sampling, data of a limited sample size may appearto support a
positive hypothesis more than a negative hypothesis even when actually thenegative hypothesis is
true, or vice versa. Thus it is generally impossible to absolutely prevent thetwo types of errors
simultaneously, but has to set a threshold on a certain type of errors, or keep a balance between
the them, for instance by minimizing a certain lost function associated with the errors according to
the Bayesian decision theory. For example, when diagnosing cancer, to catch the potential chance
of saving a patient’s life, doctors probably hope that the type II error rate, that is, the probability
of falsely diagnosing a cancer patient as healthy, to be low, such as less than 5%. Meanwhile,
when diagnosing a disease whose treatment is so risky that may cause the loss of eyesight, to
avoid the unnecessary but great risk for healthy people, doctors probably hope that the type I error
rate, that is, the probability of falsely diagnosing a healthy people as affected by the disease, to be
extremely low, such as less than 0.1%. Learning network structures may face scenarios similar to
the two cases above of diagnosing diseases. Given data of a limited sample size, there is not an
algorithm guaranteeing a perfect recovery of the structure of the underlying graphical model, and
any algorithm has to compromise on the two types of errors.

For problems involving simultaneously testing multiple hypotheses, such as verifying the exis-
tence of edges in a graph, there are several different criteria for their error-rate control (see Table 2),
depending on researchers’ concerns or the scenario of the study. Generally there are not mathemati-
cally or technically superior relationships among different error-rate criteria if the research scenario
is not specified. One error-rate criterion may be favoured in one scenario while another criterion
may be right of interest in a different scenario, just as the aforementioned examples of diagnosing
diseases. In real world applications, selecting the error rate of interestis largely not an abstract
question “which error rate is superior over others?”, but a practical question “which error rate is the
researchers’ concern?” For extended discussions on why there are not general superior relationships
among different error-rate criteria, please refer to Appendix C, where examples of typical research
scenarios, accompanied by theoretical discussions, illustrate that each of the four error-rate criteria
in Table 2 may be favoured in a certain study.
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The false discovery rate (FDR) (see Benjamini and Yekutieli, 2001; Storey, 2002), defined as
the expected ratio of falsely discovered positive hypotheses to all those discovered, has become an
important and widely used criterion in many research fields, such as bioinformatics and neuroimag-
ing. In many real world applications that involve multiple hypothesis testing, the FDR is more
reasonable than the traditional type I error rate and type II error rate. Suppose that in a pilot study
researchers are selecting candidate genes for a genetic research onschizophrenia. Due to the limited
funding, only a limited number of genes can be studied thoroughly in the afterward genetic research.
To use the funding efficiently, researchers would hope that 95% of the candidate genes selected in
the pilot study are truly associated with the disease. In this case, the FDR is chosen as the error rate
of interest and should be controlled under 5%. Simply controlling the type I error rate and the type
II error rate under certain levels does not necessarily keep the FDR sufficiently low, especially in
the case of sparse networks. For example, suppose a gene regulatorynetwork involves 100 genes,
where each gene interacts in average with 3 others, that is, there are 150edges in the network. Then
an algorithm with therealizedtype I error rate = 5% and therealizedpower = 90% (i.e., thereal-
ized type II error rate = 10%) will recover a network with 150×90%=135 correct connections and
[100× (100−1)/2−150]×5%= 240 false connections. This means that 240/(240+135) = 64%
of the claimed connections actually do not exist in the true network. Due to the popularity of the
FDR in research practices, it is highly desirable to develop structure-learning algorithms that allow
the control over the FDR on network structures.

However, current structure-learning algorithms for Bayesian networks have not been adequately
adapted to explicitly controlling the FDR of the claimed “discovered” networks.Score-based search
methods (see Heckerman et al., 1995) look for a suitable structure by optimizing a certain criterion
of goodness-of-fit, such as the Akaike information criterion (AIC), the Bayesian information crite-
rion (BIC), or the Bayesian Dirichlet likelihood equivalent metric (BDE), with a random walk (e.g.,
simulated annealing) or a greedy walk (e.g., hill-climbing), in the space of DAGsor their equiva-
lence classes.1 It is worth noting that the restricted case of tree-structured Bayesian networks has
been optimally solved, in the sense of Kullback-Leibler divergence, with Chow and Liu (1968)’s
method, and that Chickering (2002) has proved that the greedy equivalence search can identify the
true equivalence class in the limit of large sample sizes. Nevertheless, scores do not directly reflect
the error rate of edges, and the sample sizes in real world applications areusually not large enough
to guarantee the perfect asymptotic identification.

The Bayesian approach first assumes a certain prior probability distribution over the network
structures, and then estimates the posterior probability distribution of the structures after data are
observed. Theoretically, the posterior probability of any structure features, such as the existence
of an edge, the existence of a path, or even the existence of a sub-graph, can be estimated with the
Bayesian approach. This consequently allows the control of the posterior error rate of these structure
features, that is, the posterior probability of the non-existence of these features. It should be pointed
out that the posterior error rate is conceptually different from those error rates such as the type I
error rate, the type II error rate, and the FDR, basically because they are from different statistical
perspectives. The posterior error rate is defined from the perspective of Bayesian statistics. From
the Bayesian perspective, network structures are assumed to be random, according to a probability
distribution, and the posterior error rate is the probability of the non-existence of certain features
according to the posterior probability distribution over the network structures. Given the same data,

1. An equivalence class of DAGs is a set of DAGs that encode the same set of conditional-independence relationships
according to the directed Markov property.
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different posterior distributions will be derived from different prior distributions. The type I error
rate, the type II error rate, and the FDR are defined from the perspective of classical statistics. From
the classical perspective, there is a true, yet unknown, model behind the data, and the error rates are
defined by comparing with the true model. Nevertheless, a variant of the FDR, the positive false
discovery rate (pFDR) proposed by Storey (2002), can be interpreted from the Bayesian perspective
(Storey, 2003).

The Bayesian approach for structure learning is usually conducted with the maximum-a poste-
riori -probability (MAP) method or the posterior-expectation method. The MAP method selects the
network structure with the largest posterior probability. The optimal structure is usually searched for
in a score-based manner, with the posterior probability or more often approximations to the relative
posterior probability (for instance the BIC score) being the score to optimize. Cooper and Her-
skovits (1992) developed a heuristic greedy search algorithm called K22 that can finish the search
in a polynomial time with respect to the number of vertices, given the order of vertices. The MAP
method provides us with a single network structure, the posteriorly most probable one, but does not
address error rates in the Bayesian approach.

To control errors in the Bayesian approach, the network structure should be learned with the
posterior-expectation method, that is, calculating the posterior probabilities of network structures,
and then deriving the posterior expectation of the existence of certain structure features. Though
theoretically the posterior-expectation method can control the error rate ofany structure features, in
practice its capacity is largely limited for computational reasons. The number ofDAGs increases
super-exponentially as the number of vertices increases (Robinson, 1973). For 10 vertices, there are
already about 4.2×1018 DAGs. Though the number of equivalence classes of DAGs is much smaller
than the number of DAGs, it is still forbiddingly large, empirically asymptotically decreasing to
1/13.652 of the number of DAGs, as the number of vertices increases (Steinsky, 2003). Therefore,
exact inferences of posterior probabilities are only feasible for small scale problems, or under cer-
tain additional constraints. For certain prior distributions, and given the order of vertices, Friedman
and Koller (2003) have derived a formula that can be used to calculate theexact posterior probabil-
ity of a structure feature with the computational complexity bounded byO(NDin+1), whereN is the
number of vertices andDin is the upper bound of the in-degree for each vertex. Considering similar
prior distributions, but without the restriction on the order of vertices, Koivisto and Sood (2004)
have developed a fast exact Bayesian inference algorithm based on dynamic programming that is
able to compute the exact posterior probability of a sub-network with the computational complexity
bounded byO(N2N +NDin+1L(m)), whereL(m) is the complexity of computing a marginal condi-
tional likelihood fromm samples. In practice, this algorithm runs fairly fast when the number of
vertices is less than 25. For networks with more than 30 vertices, the authorssuggested setting more
restrictions or combining with inexact techniques. These two breakthroughs made exact Bayesian
inferences practical for certain prior distributions. However, as Friedman and Koller (2003) pointed
out, the prior distributions which facilitate the exact inference are not hypothesis equivalent (see
Heckerman et al., 1995), that is, different network structures that arein the same equivalence class
often have different priors. The simulation performed by Eaton and Murphy (2007) confirmed that
these prior distributions deviate far from the uniform distributions. This impliesthat the methods
cannot be applied to the widely accepted uninformative prior, that is, the uniform prior distribution
over DAGs. For general problems, the posterior probability of a structure feature can be approx-

2. The algorithm is named K2 because it evolved from a system named Kutato (Herskovits and Cooper, 1990).
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imated with Markov chain Monte Carlo (MCMC) methods (Madigan et al., 1995).As a versatile
implementation of Bayesian inferences, the MCMC method can estimate the posterior probability
given any prior probability distribution. However, MCMC usually requiresintensive computation
and results may depend on the initial state of the randomization.

Constraint-based approaches, such as the SGS3 algorithm (see Spirtes et al., 2001, pages 82–
83), inductive causation (IC)4 (see Pearl, 2000, pages 49–51), and the PC5 algorithm (see Spirtes
et al., 2001, pages 84–89), are rooted in the directed Markov property, the rule by which Bayesian
networks encode conditional independence. These methods first test hypotheses of conditional inde-
pendence among random variables, and then combine those accepted hypotheses of conditional in-
dependence to construct a partially directed acyclic graph (PDAG) according to the directed Markov
property. The computational complexity of these algorithms is difficult to analyze exactly, though
for the worst case, which rarely occurs in real world applications, is surely bounded byO(N22N)
whereN is the number of vertices. In practice, the PC algorithm and the fast-causal-inference (FCI)
algorithm (see Spirtes et al., 2001, pages 142–146) can achieve polynomial time if the maximum
degree of a graph is fixed. It has been proved that if the true model satisfies the faithfulness con-
straints (see Spirtes et al., 2001, pages 13 and 81) and all the conditional-independence/dependence
relationships are correctly identified, then the PC algorithm and the IC algorithm can exactly re-
cover the true equivalence class, and so do the FCI algorithm and the IC*algorithm6 (see Pearl,
2000, pages 51–54) for problems with latent variables. Kalisch and Bühlmann (2007) have proved
that for Gaussian Bayesian networks, the PC algorithm can consistently estimate the equivalence
class of an underlying sparse DAG as the sample sizem approaches infinity, even if the number
of verticesN grows as fast asO(mλ) for any 0< λ < ∞. Yet, as in practice hypotheses of condi-
tional independence are tested with statistical inference from limited data, false decisions cannot
be entirely avoided and thus the ideal recovery cannot be achieved. Incurrent implementations of
the constraint-based approaches, the error rate of testing conditional independence is usually con-
trolled individually for each test, under a conventional level such as 5% or 1%, without correcting
the effect of multiple hypothesis testing. Therefore these implementations may fail to curb the FDR,
especially for sparse graphs.

In this paper, we propose embedding an FDR-control procedure into thePC algorithm to curb
the error rate of the skeleton of the learned PDAGs. Instead of individuallycontrolling the type
I error rate of each hypothesis test, the FDR-control procedure considers the hypothesis tests to-
gether to correct the effect of simultaneously testing the existence of multiple edges. We prove
that the proposed method, named as the PCfdr-skeleton algorithm, can control the FDR under a
user-specified level at the limit of large sample sizes. In the case of moderatesample sizes (about
several hundred), empirical experiments show that the method is able to control the FDR under the
user-specified level, and a heuristic modification of the method is able to control the FDR more accu-
rately around the user-specified level. Schäfer and Strimmer (2005) have applied an FDR procedure
to graphical Gaussian models to control the FDR of the non-zero entries ofthe partial correlation
matrix. Different from Scḧafer and Strimmer (2005)’s work, our method, built within the frame-

3. “SGS” stands forSpirtes,Glymour andScheines who invented this algorithm.
4. An extension of the IC algorithm which was named as IC* (see Pearl, 2000, pages 51–54) was previously also named

as IC by Pearl and Verma (1992). Here we follow Pearl (2000).
5. “PC” stands forPeter Spirtes andClark Glymour who invented this algorithm. A modified version of the PC algo-

rithm which was named as PC* (see Spirtes et al., 2001, pages 89–90) was previously also named as PC by Spirtes
and Glymour (1991). Here we follow Spirtes et al. (2001).

6. See footnote 4.
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work of the PC algorithm, is not only applicable to the special case of Gaussian models, but also
generally applicable to any models for which conditional-independence testsare available, such as
discrete models.

We are particularly interested in the PC algorithm because it roots in conditional-independence
relationships, the backbone of Bayesian networks, andp-values of hypothesis testing represent one
type of error rates. We consider the skeleton of graphs because constraint-based algorithms usually
first construct an undirected graph, and then annotate it into differenttypes of graphs while keeping
the skeleton as the same as that of the undirected one.

The PCfdr-skeleton algorithm is not designed to replace or claimed to be superior overthe stan-
dard PC algorithm, but provide the PC algorithm with the ability to control the FDR over the skele-
ton of the recovered network. The PCfdr-skeleton algorithm controls the FDR while the standard
PC algorithm controls the type I error rate, as illustrated in Section 3.1. Since there are no general
superior relationships between different error-rate criteria, as explained in Appendix C, neither be
there between the PCfdr-skeleton algorithm and the standard PC algorithm. In research practices,
researchers first decide which error rate is of interest, and then choose appropriate algorithms to
control the error rate of interest. Generally they will not select an algorithm that sounds “superior”
but controls the wrong error rate. Since the purpose of the paper is to provide the PC algorithm with
the control over the FDR, we assume in this paper that the FDR has been selected as the error rate
of interest, and selecting the error rate of interest is out of the scope of the paper.

The remainder of the paper is organized as follows. In Section 2, we review the PC algorithm,
present the FDR-embedded PC algorithm, prove its asymptotic performance,and analyze its com-
putational complexity. In Section 3, we evaluate the proposed method with simulated data, and
demonstrate its real world applications to learning functional connectivity networks between brain
regions using functional-magnetic-resonance-imaging (fMRI). Finally, we discuss the advantages
and limitations of the proposed method in Section 4.

2. Controlling FDR with PC Algorithm

In this section, we first briefly introduce Bayesian networks and review the PC algorithm. Then, we
expatiate on the FDR-embedded PC algorithm and its heuristic modification, prove their asymptotic
performances, and analyze their computational complexity. At the end, we discuss other possible
ideas of embedding FDR control into the PC algorithm.

2.1 Notations and Preliminaries

To assist the reading, notations frequently used in the paper are listed as follows:

a, b, · · · : vertices
Xa, Xb, · · · : variables respectively represented by verticesa, b, · · ·
A, B, · · · : vertex sets
XA, XB, · · · : variable sets respectively represented by vertex setsA, B, · · ·
V : the vertex set of a graph
N = |V| : the number of vertices of a graph
a→ b : a directed edge or an ordered pair of vertices
a∼ b : an undirected edge, or an unordered pair of vertices
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E : a set of directed edges
E∼ : the undirected edges derived fromE, that is,{a∼ b|a→ b or b→ a∈ E}
G = (V,E) : a directed graph composed of vertices inV and edges inE
G∼ = (V,E∼) : the skeleton of a directed graphG = (V,E)
adj(a,G) : vertices adjacent toa in graphG, that is,{b|a→ b or b→ a∈ E}
adj(a,G∼) : vertices adjacent toa in graphG∼, that is,{b|a∼ b∈ E∼}
a⊥b|C : verticesa andb are d-separated by vertex setC
Xa⊥Xb|XC : Xa andXb are conditional independent givenXC

pa⊥b|C : the p-value of testingXa⊥Xb|XC

A Bayesian network encodes a set of conditional-independence relationships with a DAGG =
(V,E) according to the directed Markov property defined as follows.

Definition 1 the Directed Markov Property: if A and B are d-separated by C where A, B and C
are three disjoint sets of vertices, then XA and XB are conditionally independent given XC, that is,
P(XA,XB|XC) = P(XA|XC)P(XB|XC). (see Lauritzen, 1996, pages 46–53)

The concept ofd-separation(see Lauritzen, 1996, page 48) is defined as follows. A chain between
two verticesa andb is a sequencea = a0,a1, . . . ,an = b of distinct vertices such thatai−1 ∼ ai ∈ E∼

for all i=1, . . . , n. Vertex b is a descendant of vertexa if and only if there is a sequencea =
a0,a1, . . . ,an = b of distinct vertices such thatai−1 → ai ∈ E for all i=1, . . . ,n. For three disjoint
subsetsA, B andC⊆V, C d-separatesA andB if and only if any chainπ between∀a∈A and∀b∈B
contains a vertexγ ∈ π such that either

• arrows ofπ do not meet head-to-head atγ andγ ∈C, or

• arrows ofπ meet head-to-head atγ andγ is neither inC nor has any descendants inC.

Moreover, a probability distributionP is faithful to a DAGG (see Spirtes et al., 2001, pages 13
and 81) if all and only the conditional-independence relationships derived from P are encoded by
G. In general, a probability distribution may possess other independence relationships besides those
encoded by a DAG.

It should be pointed out that there are often several different DAGs encoding the same set of
conditional-independence relationships and they are called anequivalence classof DAGs. An
equivalence class can be uniquely represented by a completed acyclic partially directed graph
(CPDAG) (also called the essential graph in the literature) that has the same skeleton as a DAG
does except that some edges are not directed (see Andersson et al., 1997).

2.2 PC Algorithm

If a probability distributionP is faithful to a DAG G, then the PC algorithm (see Spirtes et al.,
2001, pages 84–89) is able to recover the equivalence class of the DAGG, given the set of the
conditional-independence relationships. In general, a probability distribution may include other
independence relationships besides those encoded by a DAG. The faithfulness assumption assures
that the independence relationships can be perfectly encoded by a DAG.In practice, the information
on conditional independence is usually unknown but extracted from datawith statistical hypothesis
testing. If thep-value of testing a hypothesisXa⊥Xb|XC is lower than a user-specified levelα
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(conventionally 5% or 1%), then the hypothesis of conditional independence is rejected while the
hypothesis of conditional dependenceXa ��⊥ Xb|XC is accepted.

The first step of the PC algorithm is to construct an undirected graphG∼ whose edge direc-
tions will later be further determined with other steps, while the skeleton is kept the same as that
of G∼. Since we restrict ourselves to the error rate of the skeleton, here we only present in Al-
gorithm 1 the first step of the PC algorithm, as implemented in software Tetrad version 4.3.8 (see
http://www.phil.cmu.edu/projects/tetrad), and refer to it as the PC-skeleton algorithm.

Algorithm 1 PC-skeleton

Input: the dataXV generated from a probability distribution faithful to a DAGGtrue,
and the significance levelα for every statistical test of conditional independence

Output: the recovered skeletonG∼

1: Form the complete undirected graphG∼ on the vertex setV.
2: Let depthd = 0.
3: repeat
4: for each ordered pair of adjacent verticesa andb in G∼, that is,a∼ b∈ E∼ do
5: if |adj(a,G∼)\{b}| ≥ d, then
6: for each subsetC⊆ adj(a,G∼)\{b} and|C| = d do
7: Test hypothesisXa⊥Xb|XC and calculate thep-valuepa⊥b|C.
8: if pa⊥b|C ≥ α, then
9: Remove edgea∼ b from G∼.

10: UpdateG∼ andE∼.
11: break thefor loop at line 6
12: end if
13: end for
14: end if
15: end for
16: Let d = d+1.
17: until |adj(a,G∼)\{b}| < d for every ordered pair of adjacent verticesa andb in G∼.

The theoretical foundation of the PC-skeleton algorithm isProposition 1: if two verticesa and
b are not adjacent in a DAGG, then there is a set of other verticesC that either all are neighbors of
a or all are neighbors ofb such thatC d-separatesa andb, or equivalently,Xa⊥Xb|XC, according to
the directed Markov property. Since two adjacent vertices are not d-separated by any set of other
vertices (according to the directed Markov property),Proposition 1 implies thata andb are not
adjacent if and only if there is a d-separatingC in either neighbors ofa or neighbors ofb. Readers
should notice that the proposition does not imply thata andb are d-separated only by such aC, but
just guarantees that a d-separatingC can be found in either neighbors ofa or neighborsb.

Proposition 1 If vertices a and b are not adjacent in a DAG G, then there is a set of vertices C
which is either a subset ofadj(a,G) \ {b} or a subset ofadj(b,G) \ {a} such that C d-separates
a and b in G. This proposition is a corollary of Lemma 5.1.1 on page 411 of bookCausation,
Prediction, and Search(Spirtes et al., 2001).
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The logic of the PC-skeleton algorithm is as follows, under the assumption of perfect judgment
on conditional independence. The most straightforward application ofProposition 1 to structure
learning is to exhaustively search all the possible neighbors ofa andb to verify whether there is
such a d-separatingC to disconnecta andb. Since the possible neighbors ofa andb are unknown,
to guarantee the detection of such a d-separatingC, all the vertices other thana andb should be
searched as possible neighbors ofa and b. However, such a straightforward application is very
inefficient because it probably searches many unnecessary combinations of vertices by considering
all the vertices other thana and b as their possible neighbors, especially when the true DAG is
sparse. The PC-skeleton algorithm searches more efficiently, by keeping updating the possible
neighbors of a vertex once some previously-considered possible neighbors have been found actually
not connected with the vertex. Starting with a fully connected undirected graph G∼ (step 1), the
algorithm searches for the d-separatingC progressively by increasing the size ofC, that is, the
number of conditional variables, from zero (step 2) with the step size of one (step 16). Given the
size ofC, the search is performed for every vertex paira andb (step 4). Once aC d-separatinga
andb is found (step 8),a andb are disconnected (step 9), and the neighbors ofa andb are updated
(step 10). In the algorithm,G∼ is continually updated, so adj(a,G∼) is also constantly updated
as the algorithm progresses. The algorithm stops when all the subsets of the current neighbors of
each vertex have been examined (step 17). The Tetrad implementation of the PC-skeleton algorithm
examines an edgea ∼ b as two ordered pairs (a, b) and (b, a) (step 4), each time searching for
the d-separatingC in the neighbors of the first element of the pair (step 6). In this way, both the
neighbors ofa and the neighbors ofb are explored.

The accuracy of the PC-skeleton algorithm depends on the discriminability ofthe statistical test
of conditional independence. If the test can perfectly distinguish dependence from independence,
then the algorithm can correctly recover the true underlying skeleton, as proved by Spirtes et al.
(2001, pages 410–412). The outline of the proof is as follows. First, allthe true edges will be
recovered because an adjacent vertex paira∼ b is not d-separated by any vertex setC that excludes
a andb. Second, if the edge between a non-adjacent vertex paira andb has not been removed,
subsets of either adj(a,G)\{b} or adj(b,G)\{a} will be searched until theC that d-separatesa and
b according toProposition 1 is found, and consequently the edge betweena andb will be removed.
If the judgments on conditional independence and conditional dependence are imperfect, the PC-
skeleton algorithm is unstable. If an edge is mistakenly removed from the graph in the early stage
of the algorithm, then other edges which are not in the true graph may be included in the graph (see
Spirtes et al., 2001, page 87).

2.3 False Discovery Rate

In a statistical decision process, there are basically two sources of errors: the type I errors, that
is, falsely rejecting negative hypotheses when they are actually true; andthe type II errors, that is,
falsely accepting negative hypotheses when their alternative, the positive hypotheses are actually
true. The FDR (see Benjamini and Yekutieli, 2001) is a criterion to assess theerrors when multiple
hypotheses are simultaneously tested. It is the expected ratio of the number of falsely claimed
positive results to that of all those claimed to be positive, as defined in Table 2. A variant of the
FDR, the positive false discovery rate (pFDR), defined as in Table 2, was proposed by Storey (2002).
Clearly, pFDR = FDR /P(R2 > 0), so the two measures will be similar ifP(R2 > 0) is close to 1,
and quite different otherwise.

483



L I AND WANG

Test Results
Truth

Negative Positive Total
Negative TN (true negative) FN (false negative) R1

Positive FP (false positive) TP (true positive) R2

Total T1 T2

Table 1: Results of multiple hypothesis testing, categorized according to the claimed results and the
truth.

Full Name Abbreviation Definition
False Discovery Rate FDR E(FP/R2) (See note *)
Positive False Discovery Rate pFDR E(FP/R2|R2 > 0)
Family-Wise Error Rate FWER P(FP≥ 1)
Type I Error Rate (False Positive Rate) α E(FP/T1)
Specificity (True Negative Rate) 1−α E(TN/T1)
Type II Error Rate (False Negative Rate) β E(FN/T2)
Power (Sensitivity, True Positive Rate) 1−β E(TP/T2)

Table 2: Criteria for multiple hypothesis testing. HereE(x) means the expected value ofx, and
P(A) means the probability of eventA . Please refer to Table 1 for related notations. * If
R2 = 0, FP/R2 is defined to be 0.

The FDR is a reasonable criterion when researchers expect the “discovered” results are trustful
and dependable in afterward studies. For example, in a pilot study, we areselecting candidate genes
for a genetic research on Parkinson’s disease. Because of the limited funding, we can only study a
limited number of genes in the afterward genetic research. Thus, when selecting candidate genes
in the pilot study, we hope that 95% of the selected candidate genes are trulyassociated with the
disease. In this case, the FDR is chosen as the error rate of interest andshould be controlled under
5%. Since similar situations are quite common in research practices, the FDR hasbeen widely
adopted in many research fields such as bioinformatics and neuroimaging.

In the context of learning the skeleton of a DAG, a negative hypothesis could be that a connection
does not exist in the DAG, and a positive hypothesis could be that the connection exists. The FDR
is the expected proportion of the falsely discovered connections to all those discovered. Learning
network structures may face scenarios similar to the aforementioned pilot study, but the FDR control
has not yet received adequate attention in structure learning.

Benjamini and Yekutieli (2001) have proved that, when the test statistics have positive regression
dependency on each of the test statistics corresponding to the true negative hypotheses, the FDR can
be controlled under a user-specified levelq by Algorithm 2. In other cases of dependency, the FDR
can be controlled with a simple conservative modification of the procedure byreplacingH∗ in
Eq. (1) withH(1+ 1/2, . . . ,+1/H). Storey (2002) has provided algorithms to control the pFDR
for independent test statistics. For a review and comparison of more FDR methods, please refer
to Qian and Huang (2005)’s work. It should be noted that the FDR procedures do not control the
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realizedFDR of a trial underq, but control theexpected valueof the error rate when the procedures
are repetitively applied to randomly sampled data.

Algorithm 2 FDR-stepup

Input: a set ofp-values{pi |i = 1, . . . ,H}, and the threshold of the FDRq
Output: the set of rejected null hypotheses

1: Sort thep-values ofH hypothesis tests in the ascendant order asp(1) ≤ . . . ≤ p(H).
2: Let i = H, andH∗ = H (or H∗ = H(1+ 1/2, . . . ,+1/H), depending on the assumption of the

dependency among the test statistics).
3: while

H∗

i
p(i) > q and i > 0, (1)

do
4: Let i = i−1.
5: end while
6: Reject the null hypotheses associated withp(1), . . . , p(i), and accept the null hypotheses associ-

ated withp(i+1), . . . , p(H).

Besides the FDR and the pFDR, other criteria, as listed in Table 2, can also beapplied to assess
the uncertainty of multiple hypothesis testing. The type I error rate is the expected ratio of the type I
errors to all the negative hypotheses that are actually true. The type II error rate is the expected ratio
of the type II errors to all the positive hypotheses that are actually true. The family-wise error rate is
the probability that at least one of the accepted positive hypotheses are actually wrong. Generally,
there are not mathematically or technically superior relationships among these error-rate criteria.
Please refer to Appendix C for examples of typical research scenarioswhere each particular error
rate is favoured.

Controlling both the type I and the type II error rates under a conventionallevel (such asα <
5% or 1% andβ < 10% or 5%) does not necessarily curb the FDR at a desired level. As shown
in Eq. (2), if FP/T1 and FN/T2 are fixed and positive, FP/R2 approaches 1 whenT2/T1 is small
enough. This is the case of sparse networks where the number of existingconnectionsT2 is much
smaller than the number of non-existing connectionsT1.

FP
R2

=
FP
T1

FP
T1

+(1− FN
T2

) T2
T1

. (2)

2.4 PC Algorithm with FDR

Steps 8–12 of the PC-skeleton algorithm control the type I error rate of each statistical test of con-
ditional independence individually below a pre-defined levelα, so the algorithm can not explicitly
control the FDR. We propose embedding an FDR-control procedure intothe algorithm to curb the
error rate of the learned skeleton. The FDR-control procedure collectively considers the hypoth-
esis tests related to the existence of multiple edges, correcting the effect of multiple hypothesis
testing. The proposed method is described in Algorithm 3, and we name it as thePCfdr-skeleton
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algorithm. Similar to the PC-skeleton algorithm,G∼, adj(a,G∼) andE∼ are constantly updated as
the algorithm progresses.

The PCfdr-skeleton and the PC-skeleton algorithms share the same search strategy, but differ
on the judgment of conditional independence. The same as the PC-skeletonalgorithm, the PCfdr-
skeleton algorithm increasesd, the number of conditional variables, from zero (step 3) with the step
size of one (step 25), and also keeps updating the neighbors of vertices(steps 14 and 15) when some
previously-considered possible neighbors have been considered not connected (step 13). The PCfdr-
skeleton algorithm differs from the PC-skeleton algorithm on the inferenceof d-separation, with its
steps 11–20 replacing steps 8–12 of the PC-skeleton algorithm. In the PC-skeleton algorithm, two
vertices are regarded as d-separated once the conditional-independence test between them yields a
p-value larger than the pre-defined significant levelα. In this way, the type I error of each statistical
test is controlled separately, without consideration of the effect of multiple hypothesis testing. The
PCfdr-skeleton algorithm records inpmax

a∼b the up-to-date maximump-value associated with an edge
a ∼ b (steps 9 and 10), and progressively removes those edges whose non-existence is accepted
by the FDR procedure (step 12), withPmax = {pmax

a∼b}a6=b and the pre-defined FDR levelq being
the input. The FDR procedure,Algorithm 2 , is invoked at step 12, either immediately after every
element ofPmax has been assigned a validp-value for the first time, or later once any element of
Pmax is updated.

Thepmax
a∼b is the upper bound of thep-value of testing the hypothesis thata andb are d-separated

by at least one of the vertex setsC searched in step 7. According to the directed Markov property,a
andb are not adjacent if and only if there is a set of verticesC⊆V \{a,b} d-separatinga andb. As
the algorithm progresses, the d-separations betweena andb by vertex setsC1, . . . ,CK ⊆V \ {a,b}
are tested respectively, and consequently a sequence ofp-valuesp1, . . . , pK are calculated. If we use
pmax

a∼b = maxK
i=1 pi as the statistic to test the negative hypothesis that there is, though unknown,aCj

amongC1, . . . ,CK d-separatinga andb, then due to

P(pmax
a∼b ≤ p) = P(pi ≤ p for all i = 1, . . . ,K) ≤ P(p j ≤ p) = p, (3)

pmax
a∼b is the upper bound of thep-value of testing the negative hypothesis. Eq. (3) also clearly shows

that the PC-skeleton algorithm controls the type I error rate of the negativehypothesis, since its step
8 is equivalent to “ifpmax

a∼b < α, then . . . ” if pmax
a∼b is recorded in the PC-skeleton algorithm.

The statistical tests performed at step 8 of the PCfdr-skeleton algorithm generally are not in-
dependent with each other, since the variables involved in two hypothesesof conditional indepen-
dence may overlap. For example, conditional-independence relationshipsa⊥b1|C anda⊥b2|C both
involve a andC. It is very difficult to prove whether elements ofPmax have positive regression
dependency or not, so rigorously the conservative modification of Algorithm 2, should be applied
at step 12. However, sincepmax

a∼b is probably a loose upper bound of thep-value of testinga ≁ b, in
practice we simply apply the FDR procedure that is correct for positive regression dependency.

It should be noted that different from step 9 of the PC-skeleton algorithm,step 14 of the PCfdr-
skeleton algorithm may remove edges other than justa ∼ b, because the decisions on other edges
can be affected by the updating ofpmax

a∼b.
A heuristic modification of the PCfdr-skeleton algorithm is to removepmax

a∼b from Pmax once
edgea ∼ b has been deleted fromG∼ at step 14. We name this modified version as the PCfdr* -
skeleton algorithm. In the PCfdr-skeleton algorithm,pmax

a∼b is still recorded inPmax and input to the
FDR procedure after the edgea ∼ b has been removed. This guarantees that the algorithm can
asymptotically keep the FDR under the user-specified levelq (see Section 2.5). The motivation of
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Algorithm 3 PCfdr-skeleton

Input: the dataXV generated from a probability distribution faithful to a DAGGtrue,
and the FDR levelq for the discovered skeleton

Output: the recovered skeletonG∼

1: Form the complete undirected graphG∼ on the vertex setV
2: Initialize the maximump-values associated with edges as

Pmax= {pmax
a∼b = −1}a6=b.

3: Let depthd = 0.
4: repeat
5: for each ordered pair of adjacent verticesa andb in G∼, that is,a∼ b∈ E∼ do
6: if |adj(a,G∼)\{b}| ≥ d, then
7: for each subsetC⊆ adj(a,G∼)\{b} and|C| = d do
8: Test hypothesisXa⊥Xb|XC and calculate thep-valuepa⊥b|C.
9: if pa⊥b|C > pmax

a∼b, then
10: Let pmax

a∼b = pa⊥b|C.
11: if every element ofPmax has been assigned a validp-value by step 10,then
12: Run the FDR procedure,Algorithm 2 , with Pmax andq as the input.
13: if the non-existence of certain edges are accepted,then
14: Remove these edges fromG∼.
15: UpdateG∼ andE∼.
16: if a∼ b is removed,then
17: break thefor loop at line 7.
18: end if
19: end if
20: end if
21: end if
22: end for
23: end if
24: end for
25: Let d = d+1.
26: until |adj(a,G∼)\{b}| < d for every ordered pair of adjacent verticesa andb in G∼.

* A heuristic modification at step 15 of the algorithm is to remove fromPmax the pmax
a∼bs whose asso-

ciated edges have been deleted fromG∼ at step 14, that is, to updatePmax asPmax= {pmax
a∼b}a∼b∈E∼

right after updatingE∼ at step 15. This heuristic modification is named as thePCfdr* -skeleton
algorithm .

the heuristic modification is that if an edge has been eliminated, then it should notbe considered in
the FDR procedure any longer. Though we cannot theoretically prove the asymptotic performance
of the heuristic modification in the sense of controlling the FDR, it is shown to control the FDR
closely around the user-specified level in our empirical experiments and gain more detection power
than that of the PCfdr-skeleton algorithm (see Section 3).
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2.5 Asymptotic Performance

Here we prove that the PCfdr-skeleton algorithm is able to control the FDR under a user-specified
levelq (q > 0) at the limit of large sample sizes if the following assumptions are satisfied:

(A1) The probability distributionP is faithful to a DAGGtrue.

(A2) The number of vertices is fixed.

(A3) Given a fixed significant level of testing conditional-independencerelationships, the power
of detecting conditional-dependence relationships with statistical tests approaches 1 at the
limit of large sample sizes. (For the definition of power in hypothesis testing, please refer to
Table 2.)

Assumption (A1) is generally assumed when graphical models are applied, although it restricts the
probability distributionP to a certain class. Assumption (A2) is usually implicitly stated, but here
we explicitly emphasize it because it simplifies the proof. Assumption (A3) may seem demanding,
but actually it can be easily satisfied by standard statistical tests, such as thelikelihood-ratio test
introduced by Neyman and Pearson (1928), if the data are identically and independently sampled.
Two statistical tests that satisfy Assumption (A3) are listed in Appendix B.

The detection power and the FDR of the PCfdr-skeleton algorithm and its heuristic modification
at the limit of large sample sizes are elucidated in Theorems 1 and 2. The detailedproofs are
provided in Appendix A.

Theorem 1 Assuming (A1), (A2) and (A3), both the PCfdr-skeleton algorithm and its heuristic mod-
ification, the PCfdr* -skeleton algorithm, are able to recover all the true connections with probability
one as the sample size approaches infinity:

lim
m→∞

P(E∼
true ⊆ E∼) = 1,

where E∼true denotes the set of the undirected edges derived from the true DAG Gtrue, E∼ denotes the
set of the undirected edges recovered with the algorithms, and m denotesthe sample size.

Theorem 2 Assuming (A1), (A2) and (A3), the FDR of the undirected edges recovered with the
PCfdr-skeleton algorithm approaches a value not larger than the user-specified level q as the sample
size m approaches infinity:

limsup
m→∞

FDR(E∼,E∼
true) ≤ q,

whereFDR(E∼,E∼
true) is defined as







FDR(E∼,E∼
true) = E

[

|E∼\E∼
true|

|E∼|

]

,

Define |E∼\E∼
true|

|E∼| = 0, if |E∼| = 0.

2.6 Computational Complexity

The PCfdr-skeleton algorithm spends most of its computation on performing statistical testsof con-
ditional independence at step 8 and controlling the FDR at step 12. Since steps 13 to 19 of the
PCfdr-skeleton algorithm play a role similar to steps 8 to 12 of the PC-skeleton algorithmdo, and
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all the other parts of both algorithms employ the same search strategy, the computation spent by
the PCfdr-skeleton algorithm on statistical tests has the same complexity as that by the PC-skeleton
algorithm. The only extra computational cost of the PCfdr-skeleton algorithm is at step 12 for con-
trolling the FDR.

The computational complexity of the search strategy employed by the PC algorithm has been
studied by Kalisch and B̈uhlmann (2007) and Spirtes et al. (see 2001, pages 85–87). Here to make
the paper self-contained, we briefly summarize the results as follows. It is difficult to analyze the
complexity exactly, but if the algorithm stops at the depthd = dmax, then the number of conditional-
independence tests required is bounded by

T = 2C2
N

dmax

∑
d=0

Cd
N−2,

whereN is the number of vertices,C2
N is the number of combinations of choosing 2 un-ordered and

distinct elements fromN elements, and similarlyC2
N−2 is the number of combinations of choosing

from N−2 elements. In the worst case thatdmax= N−2, the complexity is bounded by 2C2
N2N−2.

The bound usually is very loose, because it assumes that no edge has been removed untild = dmax.
In real world applications, the algorithm is very fast for sparse networks.

The computational complexity of the FDR procedure, Algorithm 2, generally isO( H log(H)
+ H) = O(H log(H)) whereH = C2

N is the number of inputp-values. The sorting at step 1 costs
H log(H) and the “while” loop from step 3 to step 5 repeatsH times at most. However, if the
sortedPmax is recorded during the computation, each time when an element ofPmax is updated at
step 10 of the PCfdr-skeleton algorithm, the complexity of keeping the updatedPmax sorted is only
O(H). With this optimization, the complexity of the FDR-control procedure isO(H log(H)) at its
first operation, and isO(H) later. The FDR procedure is invoked only whenpa⊥b|C > pmax

a∼b. In the
worst case thatpa⊥b|C is always larger thanpmax

a∼b, the complexity of the computation spent on the
FDR control in total is bounded byO(C2

N log(C2
N)+ TC2

N) = O(N2 log(N)+ TN2) whereT is the
number of performed conditional-independence tests. This is a very loosebound because it is rare
that pa⊥b|C is always larger thanpmax

a∼b.
The computational complexity of the heuristic modification, the PCfdr* -skeleton algorithm, is

the same as that of the PCfdr-skeleton algorithm, since they share the same search strategy and both
employ the FDR procedure. In the PCfdr* -skeleton algorithm, the size ofPmax keeps decreasing as
the algorithm progresses, so each operation of the FDR procedure is more efficient. However, since
the PCfdr* -skeleton algorithm adjusts the effect of multiple hypothesis testing less conservatively,
it may remove less edges than the PCfdr-skeleton algorithm does, and invokes more conditional-
independence tests. Nevertheless, their complexity is bounded by the same limitin the worst case.

It is unfair to directly compare the computational time of the PCfdr-skeleton algorithm against
that of the PC-skeleton algorithm, because if theq of the former is set at the same value as theα of
the latter, the former will remove more edges and perform much less statistical tests, due to its more
stringent control over the type I error rate. A reasonable way is to compare the time spent on the
FDR control at step 12 against that on conditional-independence tests atstep 8 in each run of the
PCfdr-skeleton algorithm. IfPmax is kept sorted during the learning process as aforementioned, then
each time (except the first time) the FDR procedure just needs linear computation time (referring to
the size ofPmax) with simple operations such as division and comparing two numerical values.Thus,
we suspect that the FDR procedure will not contribute much to the total computation time of the
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structure learning. In our simulation study in Section 3.1, the extra computation added by the FDR
control was only a tiny portion, less than 0.5%, to that spent on testing conditional independence,
performed with the Cochran-Mantel-Haenszel (CMH) test (see Agresti,2002, pages 231–232), as
shown in Tables 3 and 4.

2.7 Miscellaneous Discussions Discussions

An intuitive and attracting idea of adapting the PC-skeleton algorithm to the FDR control is to
“smartly” determine such an appropriate threshold of the type I error rateα that will let the errors
be controlled at the pre-defined FDR levelq. Given a particular problem, it is very likely that the
FDR of the graphs learned by the PC-skeleton algorithm is an monotonically increasing function of
the pre-defined thresholdα of the type I error rate. If this hypothesis is true, then there is a one-to-
one mapping betweenα andq for the particular problem. Though we cannot prove this hypothesis
rigorously, the following argument may be enlightening. Instead of directly focusing on FDR =
E(FP/R2) (see Table 2), the expected ratio of the number of false positives (FP) to the number of
accepted positive hypotheses (R2), we first focus onE(FP)/E(R2), the ratio of the expected number
of false positives to the expected number of accepted positive hypotheses, since the latter is easier
to link with the type I error rate according to Eq. (2), as shown in Eq. (4),

E(FP)

E(R2)
=

E
(

FP
T1

)

E
(

FP
T1

+(1− FN
T2

) T2
T1

) =
E
(

FP
T1

)

E
(

FP
T1

)

+
(

1−E
(

FN
T2

))

T2
T1

=
α

α+(1−β) T2
T1

, (4)

whereα andβ are the type I error rate and the type II error rate respectively. A sufficient condition
for E(FP)/E(R2) being a monotonically increasing function of the type I error rate includes (I)
(1−β)/α > ∂(1−β)/∂α, (II) T1 > 0 and (III)T2 > 0, where∂(1−β)/∂α is the derivative of(1−β)
overα. If (1−β), regarded as a function ofα, is a concave curve from (0, 0) to (1,1), then condition
(I) is satisfied. Recall that(1−β) versusα actually is the receiver operating characteristic (ROC)
curve, and that with an appropriate statistic the ROC curve of a hypothesis test is usually a concave
curve from (0, 0) to (1,1), we speculate that condition (I) is not difficultto satisfy. With the other two
mild conditions (II)T1 > 0 and (III) T2 > 0, we could expect thatE(FP)/E(R2) is a monotonically
increasing function ofα. E(FP)/E(R2) is the ratio of the expected values of two random variables,
while E(FP/R2) is the expected value of the ratio of two random variables. Generally, thereis not a
monotonic relationship betweenE(FP)/E(R2) andE(FP/R2). Nevertheless, if the average number
of false positives,E(FP), increases proportionally faster than that of the accepted positives,E(R2),
we speculate that under certain conditions, the FDR =E(FP/R2) also increases accordingly. Thus
the FDR may be a monotonically increasing function of the thresholdα of the type I error rate for
the PC-skeleton algorithm.

However, even though the FDR of the PC-skeleton algorithm may decreaseas the pre-defined
significant levelα decreases, the FDR of the PC-skeleton algorithm still cannot be controlledat the
user-specified level for general problems by “smartly” choosing anα beforehand, but somehow has
to be controlled in a slightly different way, such as the PCfdr-skeleton algorithm does. First, the
value of such anα for the FDR control depends on the true graph, but unfortunately the graph is
unknown in problems of structure learning. According to Eq. (2), the realized FDR is a function of
the realized type I and type II error rates, as well asT2/T1, which in the context of structure learning
is the ratio of the number of true connections to the number of non-existing connections. Since
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T2/T1 is unknown, such anα cannot be determined completely in advance without any information
about the true graph, but has to be estimated practically from the observeddata. Secondly, the
FDR method we employ is such a method that estimates theα from the data to control the FDR
of multiple hypothesis testing. The output of the FDR algorithm is the rejection of those null
hypotheses associated withp-valuesp(1), . . . , p(i) (see Algorithm 2). Givenp(1) ≤ . . . ≤ p(H),
the output is equivalent to the rejection of all those hypotheses whosep-values are smaller than or
equal top(i). In other words, it is equivalent to settingα = p(i) in the particular multiple hypothesis
testing. Thirdly, the PCfdr-skeleton algorithm is a valid solution to combining the FDR method with
the PC-skeleton algorithm. Because the estimation of theα depends onp-values, andp-values are
calculated one by one as the PC-skeleton algorithm progresses with hypothesis tests, theα cannot
be estimated separately before the PC-skeleton algorithm starts running, but the estimation has to
be embedded within the algorithm, like in the PCfdr-skeleton algorithm.

Another idea on the FDR control in structure learning is a two-stage algorithm.The first stage
is to draft a graph that correctly includes all the existing edges and their orientations but may also
include non-existing edges as well. The second stage is to select the real parents for each vertex,
with the FDR controlled, from the set of potential parents determined in the first stage. The advan-
tage of this algorithm is that the selection of real parent vertices in the second stage is completely
decoupled from the determination of edge orientations, because all the parents of each vertex have
been correctly connected with the particular vertex in the first stage. However, a few concerns about
the algorithm should be noticed before researchers start developing thistwo-stage algorithm. First,
to avoid missing many existing edges in the first stage, a considerable number of non-existing edges
may have to be included. To guarantee a perfect protection of the existing edges given any ran-
domly sampled data, the first stage must output a graph whose skeleton is a fully connected graph.
The reason for this is that the type I error rate and the type II error rate contradict each other and
the latter reaches zero generally when the former approaches one (seeAppendix C). Rather than
protecting existing edges perfectly, the first stage should trade off between the type I and the type II
errors, in favour of keeping the type II error rate low. Second, selecting parent vertices from a set of
candidate vertices in the second stage, in certain sense, can be regarded as learning the structure of
a sub-graph locally, in which error-rate control remains as a crucial problem. Thus erro-rate control
is still involved in both of the two stages. Though this two-stage idea may not essentially reduce the
problem of the FDR control to an easier task, it may break the big task of simultaneously learning
all edges to many local structure-learning tasks.

3. Empirical Evaluation

The PCfdr-skeleton algorithm and its heuristic modification are evaluated with simulated data sets,
in comparison with the PC-skeleton algorithm, in the sense of the FDR, the type I error rate and the
power. The PCfdr-skeleton and the PC-skeleton algorithms are also applied to two real functional-
magnetic-resonance-imaging (fMRI) data sets, to check whether the two algorithms correctly curb
the error rates that they are supposed to control in real world applications.

3.1 Simulation Study

The simulated data sets are generated from eight different DAGs, shownin Figure 1, with the
number of verticesN = 15, 20, 25 or 30, and the average degree of verticesD = 2 or 3. The DAGs
are generated as follows:
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(1) SampleN×D
2 undirected edges from{a∼ b|a,b∈V anda 6= b} with equal probabilities and

without replacement to compose an undirected graphG∼
true.

(2) Generate a random order≻ of vertices with permutation.

(3) Orientate the edges ofG∼ according to the order≻. If a is beforeb in the order≻, then
orientate the edgea∼ b asa→ b. Denote the orientated graph as a DAGGtrue.

For each DAG, we associate its vertices with (conditional) binary probability distributions as
follows, to extend it to a Bayesian network.

(1) Specify the strength of (conditional) dependence as a parameterδ > 0.

(2) Randomly assign each vertexa ∈ V with a dependence strengthδa = 0.5δ or −0.5δ, with
equal possibilities.

(3) Associate each vertexa∈V with a logistic regression model

∆ = ∑
b∈pa[a]

Xbδb,

P(Xa = 1|Xpa[a]) =
exp(∆)

1+exp(∆)
,

P(Xa = −1|Xpa[a]) =
1

1+exp(∆)
,

where pa[a] denotes the parent vertices ofa.

The parameterδ reflects the strength of dependence because if the values of all the otherparent
variables are fixed, the difference between the conditional probabilities of a variableXa = 1 given a
parent variableXb = 1 and -1 is

∣

∣logit[P(Xa = 1|Xb = 1,Xpa[a]\{b})]− logit[P(Xa = 1|Xb = −1,Xpa[a]\{b})]
∣

∣= |2δb| = δ,

where the logit function is defined as logit(x) = log( x
1−x).

Since the accuracy of the PC-skeleton algorithm and its FDR versions is related to the discrim-
inability of the statistical tests, we generated data with different values ofδ (δ= 0.5, 0.6, 0.7, 0.8,
0.9 and 1.0) to evaluate the algorithms’ performances with different power of detecting conditional
dependence. The larger the absolute value ofδ is, the easier the dependence can be detected with
statistical tests. Because statistical tests are abstract queries yieldingp-values about conditional in-
dependence for the structure-learning algorithms, the accuracy of the algorithms is not determined
by the particular procedure of a statistical test, or a particular family of conditional probability dis-
tributions but by the discriminability of the statistical tests. Given a fixed sample size, the stronger
the conditional-dependence relationships are, the higher discriminability the statistical tests have.
By varying the dependence strengthδ of thebinary conditional probability distributions, we have
varied the discriminability of the statistical tests, as if by varying the dependence strength ofother
probability distribution families. To let the readers intuitively understand the dependence strength
of theseδ values, we list as follows examples of probability pairs whose logit contrastsare equal to
theseδ values:
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Figure 1: DAGs used in the simulation study.N denotes the number of vertices andD denotes the
average degree of the vertices. Unshaded vertices are associated withpositive dependence
strength 0.5δ, and shaded ones are associated with negative dependence strength−0.5δ.
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0.5 = logit( 0.5622 ) - logit( 0.4378 ), 0.6 = logit( 0.5744 ) - logit( 0.4256 ),
0.7 = logit( 0.5866 ) - logit( 0.4134 ), 0.8 = logit( 0.5987 ) - logit( 0.4013 ),
0.9 = logit( 0.6106 ) - logit( 0.3894 ), 1.0 = logit( 0.6225 ) - logit( 0.3775 ).

.

In total, we performed the simulation with 48 Bayesian networks generated with all the combi-
nations of the following parameters:

N = 15,20,25,30;
D = 2,3;
δ = 0.5,0.6,0.7,0.8,0.9,1.0.

From each Bayesian network, we repetitively generated 50 data sets each of 500 samples to es-
timate the statistical performances of the algorithms. A non-model-based test, theCochran-Mantel-
Haenszel (CMH) test (see Agresti, 2002, pages 231–232), was employed to the test conditional
independence among random variables. Both the significant levelα of the PC-skeleton algorithm
and the FDR levelq of the PCfdr-skeleton algorithm and its heuristic modification were set at 5%.

Figures 2, 3 and 4 respectively show the empirical FDR, power and type Ierror rate of the al-
gorithms, estimated from the 50 data sets repetitively generated from each Bayesian network, with
error bars indicating the 95% confidence intervals of these estimations. ThePCfdr-skeleton algo-
rithm controls the FDR under the user-specified level 5% for all the 48 Bayesian networks, and
the PCfdr* -skeleton algorithm steadily controls the FDR closely around 5%, while the PC-skeleton
algorithm yields the FDR ranging from about 5% to about 35%, and above 15% in many cases,
especially for those sparser DAGs with the average degree of verticesD = 2. The PCfdr-skeleton al-
gorithm is conservative, with the FDR notably lower than the user-specifiedlevel, while its heuristic
modification controls the FDR more accurately around the user-specified level, although the correct-
ness of the heuristic modification has not been theoretically proved. As the discriminability of the
statistical tests increases, the power of all the algorithms approaches 1. When their FDR levelq is
set at the same value as theα of the PC-skeleton algorithm, the PCfdr-skeleton algorithm and its
heuristic modification control the type I error rate more stringently than the PC-skeleton algorithm
does, so their power generally is lower than that of the PC-skeleton algorithm. Figure 4 also clearly
shows, as Eq. 3 implies, that it is the type I error rate, rather than the FDR, that the PC-skeleton
algorithm controls under 5%.

Figure 5 shows the average computational time spent during each run of thePCfdr-skeleton al-
gorithm and its heuristic modification on the statistical tests of (conditional) independence at step 8
and the FDR control at step 12. The computational time was estimated on the platform of an Intel
Xeon 1.86GHz CPU and 4G RAM, and with the code implemented in Matlab R14. Tables 3 and
4 show the average ratios of the computational time spent on the FDR control tothat spent on the
statistical tests. The average ratios are not more than 2.57‰ for all the 48 Bayesian networks. The
relatively small standard deviations, as shown in brackets in the tables, indicate that these estimated
ratios are trustful. Because the PCfdr-skeleton algorithm and its heuristic modification employ the
same search strategy as the PC-skeleton algorithm does, this result evidences that the extra compu-
tation cost to achieve the control over the FDR is trivial in comparison with the computation already
spent by the PC-skeleton algorithm on statistical tests.
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Figure 2: The FDR (with 95% confidence intervals) of the PC-skeleton algorithm, the PCfdr-
skeleton algorithm and the PCfdr* -skeleton algorithm on the DAGs in Figure 1, as the
dependence parameterδ shown on the x-axes increases from 0.5 to 1.0.
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Figure 3: The power (with 95% confidence intervals) of the PC-skeleton algorithm, the PCfdr-
skeleton algorithm and the PCfdr* -skeleton algorithm on the DAGs in Figure 1, as the
dependence parameterδ shown on the x-axes increases from 0.5 to 1.0.
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Figure 4: The type I error rates (with 95% confidence intervals) of the PC-skeleton algorithm, the
PCfdr-skeleton algorithm and the PCfdr* -skeleton algorithm on the DAGs in Figure 1, as
the dependence parameterδ shown on the x-axes increases from 0.5 to 1.0.
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Figure 5: The average computational time (in seconds, with 95% confidence intervals) spent on the
FDR control and statistical tests during each run of the PCfdr-skeleton algorithm and its
heuristic modification.

δ N=15 N=20 N=25 N=30

D
=

2

0.5 1.11e-03 (3.64e-04) 7.19e-04 (2.32e-04) 5.44e-04 (1.79e-04) 4.81e-04 (1.37e-04)
0.6 1.48e-03 (2.03e-04) 1.24e-03 (2.15e-04) 1.21e-03 (3.32e-04) 1.09e-03 (1.44e-04)
0.7 1.58e-03 (1.68e-04) 1.61e-03 (2.01e-04) 1.59e-03 (1.31e-04) 1.64e-03 (1.09e-04)
0.8 1.63e-03 (1.64e-04) 1.81e-03 (1.61e-04) 1.93e-03 (1.20e-04) 1.89e-03 (1.04e-04)
0.9 1.59e-03 (1.50e-04) 1.83e-03 (1.50e-04) 2.06e-03 (1.19e-04) 1.95e-03 (9.63e-05)
1.0 1.64e-03 (1.51e-04) 1.88e-03 (1.59e-04) 2.15e-03 (1.12e-04) 2.01e-03 (9.01e-05)

D
=

3

0.5 1.69e-03 (3.70e-04) 1.50e-03 (2.55e-04) 9.80e-04 (1.90e-04) 9.10e-04 (1.52e-04)
0.6 2.06e-03 (2.82e-04) 2.22e-03 (1.45e-04) 1.93e-03 (1.71e-04) 1.82e-03 (1.47e-04)
0.7 2.11e-03 (1.84e-04) 2.36e-03 (1.24e-04) 2.31e-03 (1.19e-04) 2.29e-03 (1.12e-04)
0.8 2.02e-03 (1.68e-04) 2.35e-03 (1.20e-04) 2.45e-03 (1.28e-04) 2.20e-03 (1.15e-04)
0.9 2.04e-03 (1.50e-04) 2.34e-03 (9.05e-05) 2.53e-03 (1.15e-04) 2.03e-03 (1.23e-04)
1.0 1.99e-03 (1.41e-04) 2.28e-03 (9.18e-05) 2.57e-03 (9.66e-05) 1.92e-03 (1.25e-04)

Table 3: The average ratios (with their standard deviations in brackets) ofthe computational time
spent on the FDR control to that spent on the statistical tests during each run of the PCfdr-
skeleton algorithm.
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δ N=15 N=20 N=25 N=30

D
=

2
0.5 8.88e-04 (2.57e-04) 5.93e-04 (2.25e-04) 3.94e-04 (1.60e-04) 3.24e-04 (1.15e-04)
0.6 1.12e-03 (2.99e-04) 8.82e-04 (3.19e-04) 7.08e-04 (2.58e-04) 5.86e-04 (1.81e-04)
0.7 1.17e-03 (2.76e-04) 1.04e-03 (2.92e-04) 9.02e-04 (1.51e-04) 7.45e-04 (1.37e-04)
0.8 1.16e-03 (2.66e-04) 1.04e-03 (1.83e-04) 1.03e-03 (1.38e-04) 8.23e-04 (1.24e-04)
0.9 1.22e-03 (2.73e-04) 1.08e-03 (1.91e-04) 1.06e-03 (8.76e-05) 8.37e-04 (1.35e-04)
1.0 1.21e-03 (2.68e-04) 1.11e-03 (2.09e-04) 1.12e-03 (1.04e-04) 8.31e-04 (1.05e-04)

D
=

3

0.5 1.33e-03 (3.42e-04) 1.01e-03 (1.86e-04) 6.74e-04 (1.54e-04) 5.49e-04 (1.08e-04)
0.6 1.44e-03 (3.46e-04) 1.19e-03 (1.63e-04) 1.08e-03 (2.08e-04) 7.97e-04 (8.83e-05)
0.7 1.43e-03 (2.41e-04) 1.20e-03 (1.10e-04) 1.09e-03 (1.51e-04) 7.19e-04 (7.80e-05)
0.8 1.36e-03 (1.38e-04) 1.17e-03 (9.36e-05) 1.10e-03 (1.20e-04) 6.48e-04 (9.32e-05)
0.9 1.35e-03 (1.34e-04) 1.24e-03 (1.03e-04) 1.10e-03 (8.31e-05) 6.19e-04 (6.57e-05)
1.0 1.39e-03 (1.72e-04) 1.29e-03 (1.01e-04) 1.14e-03 (9.77e-05) 5.98e-04 (4.86e-05)

Table 4: The average ratios (with their standard deviations in brackets) ofthe computational time
spent on the FDR control to that spent on the statistical tests during each run of the PCfdr* -
skeleton algorithm.

3.2 Applications to Real fMRI Data

We applied the PCfdr-skeleton and the PC-skeleton algorithms to real-world research tasks, study-
ing the connectivity network between brain regions using functional magnetic resonance imaging
(fMRI). The purpose of the applications is to check whether the two algorithms correctly curb the
error rates in real world applications. The purpose of the applications is not, and also should not
be, to answer the question “which algorithm, the PCfdr-skeleton or the PC-skeleton, is superior?”,
for the following reasons. Basically, the two algorithms control different error rates between which
there is not a superior relationship (see Appendix C). Secondly, the error rate of interest for a spe-
cific application is selected largely not by mathematical superiority, but by researchers’ interest and
the scenario of research (see Appendix C). Thirdly, the simulation study has clearly revealed the
properties of and the differences (not superiority) between the two algorithms. Lastly, the approx-
imating graphical models behind the real fMRI data are unknown, so the comparison on the real
fMRI data is rough, rather than rigorous.

The two algorithms were applied to two real fMRI data sets, one including 11 discrete variables
and 1300 observations, and the other including 25 continuous variables and 1098 observations. The
first data set, denoted by “the bulb-squeezing data set”, was collected from 10 healthy subjects each
of whom was asked to squeeze a rubber bulb with their left hand at three different speeds or at
a constant force, as cued by visual instruction. The data involve elevenvariables: the speed of
squeezing and the activities of the ten brain regions listed in Table 5. The speed of squeezing is
coded as a discrete variable with four possible values: the high speed, themedium speed, the low
speed, and the constant force. The activities of the brain regions are coded as discrete variables
with three possible values: high activation, medium activation and low activation. The data of each
subject include 130 time points. The data of the ten subjects are pooled together, so in total there
are 1300 time points. For details of the data set, please refer to Li et al. (2008).

The second data set, denoted by “the sentence-picture data set”, was collected from a single
subject performing a cognitive task. In each trial of the task, the subjectwas shown in sequence
an affirmative sentence and a simple picture, and then answered whether the sentence correctly
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Full Name Abbreviation
Left/Right anterior cingulate cortex LACC, R ACC
Left/Right lateral cerebellar hemispheres LCER, RCER
Left/Right primary motor cortex LM1, R M1
Left/Right pre-frontal cortex LPFC, RPFC
Left/Right supplementary motor cortex LSMA, R SMA

Table 5: Brain regions involved in the bulb-squeezing data set. The prefixes “L” or “R” in the
abbreviations stand for “Left” or “Right”, respectively.

L_ACC

L_PFC

R_ACC

L_CER R_CER

R_M1L_M1

L_SMA

R_PFC

Speed

R_SMA

Figure 6: The networks learned from the bulb-squeezing data set, by thePCfdr-skeleton and the PC-
skeleton algorithms. For ease of comparison, the networks learned by the two algorithms
are overlaid. Thin solid black edges are those connections detected by both the two
algorithms; thick solid red edges are those connections detected only by the PC-skeleton
algorithm. For the full names of the brain regions, please refer to Table 5.

described the picture. In half of the trials, the picture was presented first,followed by the sentence.
In the remaining trials, the sentence was presented first, followed by the picture. The data involve
the activities of 25 brain regions, as listed in Table 6, encoded as continuous variables, at 1098 time
points. For details of the data set, please refer to Keller et al. (2001) and Mitchell et al. (2004).

The PCfdr-skeleton and the PC-skeleton algorithms were applied to both the bulb-squeezing and
the sentence-picture data sets. Both the FDR levelq of the PCfdr-skeleton algorithm and the type-I-
error-rate levelα of the PC-skeleton algorithm were set at 5%. For the bulb-squeezing dataset, all
of whose variables are discrete, conditional independence was tested with Pearson’s Chi-square test;
for the sentence-picture data set, all of whose variables are continuous, conditional independence
was tested with the t-test for partial correlation coefficients (Fisher, 1924).

The networks learned from the bulb-squeezing data set and the networks learned from the
sentence-picture data set are shown in Figures 6 and 7 respectively. For ease of comparison, the
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Full Name Abbreviation
Calcarine fissure CALC
Left/Right dorsolateral prefrontal cortex LDLPFC, RDLPFC
Left/Right frontal eye field LFEF, RFEF
Left inferior frontal gyrus LIFG
Left/Right inferior parietal lobe LIPL, R IPL
Left/Right intraparietal sulcus LIPS, RIPS
Left/Right inferior temporal lobule LIT, R IT
Left/Right opercularis LOPER, ROPER
Left/Right posterior precentral sulcus LPPREC, RPPREC
Left/Right supramarginal gyrus LSGA, R SGA
Supplementary motor cortex SMA
Left/Right superior parietal lobule LSPL, RSPL
Left/Right temporal lobe LT, R T
Left/Right triangularis LTRIA, R TRIA

Table 6: Brain regions involved in the sentence-picture data set. The prefixes “L” or “R” in the
abbreviations stand for “Left” or “Right”, respectively.

CALC

L_IT

L_SPL
R_IPS

R_IT

R_OPER

L_DLPFC

L_PPREC

L_T

R_DLPFC

R_T

SMA

L_FEF
R_FEF

R_SGA

L_IFG

L_OPER

L_TRIA

L_IPL

L_IPS

L_SGA

R_SPL

R_IPL

R_PPREC

R_TRIA

Figure 7: The networks learned from the sentence-picture data set, by the PCfdr-skeleton and the
PC-skeleton algorithms. For ease of comparison, the networks learned bythe two al-
gorithms are overlaid. Thin solid black edges are those connections detected by both
the two algorithms; thin dashed blue edges are those connections detected only by the
PCfdr-skeleton algorithm; thick solid red edges are those connections detected only by
the PC-skeleton algorithm. For the full names of the brain regions, please refer to Ta-
ble 6.

501



L I AND WANG

Bulb-Squeezing
AssumedTruth RealizedDetection

Exist Non-Exist Correct False FDR Type I Error Rate
PCfdr 17 11∗(11−1)

2 −17= 38
17 0 0.00% 0.00%

PC 17 1 5.56% 2.63%

Sentence-Picture
AssumedTruth RealizedDetection

Exist Non-Exist Correct False FDR Type I Error Rate
PCfdr 39 25∗(25−1)

2 −39= 261
39 3 7.14% 1.14%

PC 39 12 23.5% 4.60%

Table 7: Therealizederror rates of the PCfdr-skeleton and the PC algorithms on the bulb-squeezing
and sentence-picture data sets, under the TI assumption that all and only those connections
detected by both of the two algorithms truly exist.

networks learned by the two algorithms are overlaid. Thin solid black edges are those connections
detected by both the two algorithms; thin dashed blue edges are those detectedonly by the PCfdr-
skeleton algorithm; thick solid red edges are those detected only by the PC-skeleton algorithm. In
Figure 6, there are 17 thin solid black edges, 0 thin dashed blue edge and 1thick solid red edge; in
Figure 7, there are 39 thin solid black edges, 3 thin dashed blue edges and12 thick solid red edges.

The results intuitively, though not rigorously, support our expectation of the performances of
the two algorithms in real world applications. First, since the data sets are relatively large, with the
sample sizes more than 1000, it is expected that both algorithms will recover many of the existing
connections, and consequently the networks recovered by the two algorithms may share many com-
mon connections. This is consistent with the fact that in Figures 6 and 7 thereare many thin solid
black edges, that is, the connections recovered by both algorithms.

Second, since the PCfdr-skeleton algorithm is designed to control the FDR while the PC-skeleton
algorithm to control the type I error rate, it is expected that the two algorithms will control the
corresponding error rate under or around the pre-defined level, which is 5% in this study. To verify
whether the error rates were controlled as expected, we need to know which connections really exist
and which do not. Unfortunately, this is very difficult for real data sets, because unlike the simulated
data, the true models behind the real data are unknown, and in the literature,researchers usually
tend to report evidences supporting the existence of connections ratherthan supporting the non-
existence. However, since the sample sizes of the two data sets are relatively large, more than 1000,
we can speculate that both of the two algorithms have recovered most of the existing connections.
Extrapolating this speculation a bit, we intuitively assume that those connectionsdetected by both
of the two algorithms truly exist while all the others do not. In other words, we assume that all
and only the thin black edges in the figures truly exist. We refer to this assumption as the “True
Intersection” (TI) assumption. The statistics about Figures 6 and 7, under the TI assumption, are
listed in Table 7. TherealizedFDR of the PCfdr-skeleton algorithm on the bulb-squeezing and
sentence-picture data sets are 0.00% and 7.14%, respectively; therealizedtype I error rate of the
PC-skeleton algorithm on the bulb-squeezing and sentence-picture data sets are 2.63% and 4.60%,
respectively. Considering that therealizederror rate, as a statistic extracted from just a trial, may
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slightly deviate from its expected value, these results, derived under the TI assumption, support that
the two algorithms controlled the corresponding error rate under the pre-defined level 5%.

Third, according to Eq. (2), the sparser and the larger the true networkis, the higher the FDR
of the PC-skeleton algorithm will be. For the bulb-squeezing data set, thereare 11 vertices, and
under the TI assumption, 17 existing connections and 38 non-existing connections. In this case, the
realizedFDR of the PC-skeleton algorithm is only 5.56% (Table 7). For the sentence-picture data
set, there are 25 vertices, and under the TI assumption, 39 existing connections and 261 non-existing
connections. In this case, therealizedFDR of the PC-skeleton algorithm rises to 23.5% (Table 7).
This notable increase of therealizedFDR is consistent with the prediction based on Eq. (2).

It should be noted that the preceding arguments are rough rather than rigorous, since they are
based on the TI assumption rather than the true models behind the data. However, because the true
models behind the real data are unknown, the TI assumption is a practical and intuitive approach to
assess the performance of the two algorithms in the two real world applications.

4. Conclusions and Discussions

We have proposed a modification of the PC algorithm, the PCfdr-skeleton algorithm, to curb the false
discovery rate (FDR) of the skeleton of the learned Bayesian networks.The FDR-control procedure
embedded into the PC algorithm collectively considers the hypothesis tests related to the existence
of multiple edges, correcting the effect of multiple hypothesis testing. Under mildassumptions,
it is proved that the PCfdr-skeleton algorithm can control the FDR under a user-specified levelq
(q > 0) at the limit of large sample sizes (see Theorem 2). In the cases of moderate sample size
(about several hundred), empirical experiments have shown that the method is still able to control
the FDR under the user-specified level. The PCfdr* -skeleton algorithm, a heuristic modification of
the proposed method, has shown better performance in the simulation study, steadily controlling
the FDR closely around the user-specified level and gaining more detectionpower, although its
asymptotic performance has not been theoretically proved. Both the PCfdr-skeleton algorithm and
its heuristic modification can asymptotically recover all the edges of the true DAG(see Theorem
1). The idea of controlling the FDR can be extended to other constraint-based methods, such as
the inductive causation (IC) algorithm (see Pearl, 2000, pages 49–51)and the fast-causal-inference
(FCI) algorithm (see Spirtes et al., 2001, pages 142–146).

The simulation study has also shown that the extra computation spent on achieving the FDR
control is almost negligible when compared with that already spent by the PC algorithm on statistical
tests of conditional independence. The computational complexity of the new algorithm is closely
comparable with that of the PC algorithm.

As a modification based on the PC algorithm, the proposed method is modular, consisting of
the PC search strategy, statistical tests of conditional independence and an FDR-control procedure.
Different statistical tests and FDR-control procedures can be “plugged in”, depending on the data
type and the statistical model. Thus, the method is applicable to any models for whichstatistical
tests of conditional independence are available, such as discrete models and Gaussian models.

It should be noted that the PCfdr-skeleton algorithm is not proposed to replace the PC-skeleton
algorithm. Instead, it provides an approach to controlling the FDR, a certainerror-rate criterion
for testing the existence of multiple edges. When multiple edges are involved in structure learning,
there are different applicable error-rate criteria, such as those listed inTable 2. The selection of these
criteria depends on researchers’ interest and the scenarios of studies, which is beyond the scope of
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this paper. When the FDR is applied, the PCfdr-skeleton algorithm is preferable; when the type I
error rate is applied, the PC-skeleton algorithm is preferable. The technical difference between the
two algorithms is that the PCfdr-skeleton algorithm adaptively adjusts the type I error rate according
to the sparseness of the network to achieve the FDR control, while the PC-skeleton algorithm fixes
the type I error rate.

Currently the FDR control is applied only to the skeleton of the graph, but not to the directions
of the edges yet. The final output of the PC algorithm is a partially directed acyclic graph that
uniquely represents an equivalence class of DAGs, so a possible improvement for the PCfdr-skeleton
algorithm is to extend the FDR control to the directions of the recovered edges. Because both type
I and type II errors may lead to wrong directions in the later steps of the PC algorithm, minimizing
direction errors may lead to a related, yet different, error-control task.

The asymptotic performance of the PCfdr-skeleton algorithm has only been proved under the
assumption that the number of vertices is fixed. Its behavior when both the number of vertices and
the sample size approach infinity has not been studied yet. Kalisch and Bühlmann (2007) proved
that for Gaussian Bayesian networks, the PC algorithm consistently recovers the equivalence class
of the underlying sparse DAG, as the sample sizem approaches infinity, even if the number of
verticesN grows as quickly asO(mλ) for any 0< λ < ∞. Their idea is to adaptively decrease the
type I error rateα of the PC-skeleton algorithm as both the number of vertices and the sample size
increase. It is desirable to study whether similar behavior can be achievedwith the PCfdr-skeleton
algorithm if the FDR levelq is adjusted appropriately as the sample size increases.

A Matlab® package of the PCfdr-skeleton algorithm and its heuristic modification is download-
able at www.junningli.org/software.
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Appendix A. Proof of Theorems

To assist the reading, we list below notations frequently used in the proof:

G∼
true : the skeleton of the true underlying Bayesian network.

Aa∼b : the event that edgea∼ b is in the graph recovered by the PCfdr-skeleton algorithm.

AE∼
true

: AE∼
true

=
T

a∼b∈E∼
true

Aa∼b, the joint event that all the edges inG∼
true, the skeleton of the true DAG,

are recovered by the PCfdr-skeleton algorithm.

E≁

true : the set of the undirected edges that are not inG∼
true.

pa∼b : the value ofpmax
a∼b when the PCfdr-skeleton algorithm stops.

C∗
a∼b : a certain vertex set that d-separatesa and b in Gtrue and that is also a subset of either

adj(a,G∼
true) \ {b} or adj(b,G∼

true) \ {a}, according to Proposition 1.C∗
a∼b is defined only

for vertex pairs that are not adjacent in the true DAGGtrue.
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p∗a∼b : the p-value of testingXa⊥Xb|XC∗
a∼b

. The conditional-independence relationship may not be
really tested during the process of the PCfdr-skeleton algorithm, butp∗a∼b can still denote the
value as if the conditional-independence relationship was tested.

H∗: the value in Eq. (1) that is eitherH or H(1+1/2, . . . ,+1/H), depending on the assumption
of the dependency of thep-values.

Lemma 1 If as m approaches infinity, the probabilities of K eventsAi(m), · · · ,AK(m) approach 1
at speed

P(Ai(m)) = 1−o(β(m))

where lim
m→∞

β(m) = 0 and K is a finite integer, then the probability of the joint of all these events

approaches 1 at speed

P

(

K
\

i=1

Ai(m)

)

≥ 1−Ko(β(m))

as m approaches infinity.

Proof

∵

K
T

i=1
Ai(m) =

K
S

i=1
A i(m).

∴ P

(

K
T

i=1
Ai(m)

)

= 1−P

(

K
S

i=1
A i(m)

)

≥ 1−
K
∑

i=1
P(A i(m))

= 1−
K
∑

i=1
[1−P(Ai(m))] = 1−

K
∑

i=1
o(β(m)) = 1−Ko(β(m)).

Corollary 1 If Ai(m), · · · ,AK(m) are a finite number of events whose probabilities each approach
1 as m approaches infinity:

lim
m→∞

P(Ai(m)) = 1,

then the probability of the joint of all these events approaches 1 as m approaches infinity:

lim
m→∞

P

(

K
\

i=1

Ai(m)

)

= 1.

Lemma 2 If there are F (F≥ 1) false hypotheses among H tested hypotheses, and the p-values
of the all the false hypotheses are smaller than or equal toF

H∗ q, where H∗ is either H or H(1+
1/2, . . . ,+1/H), depending on the assumption of the dependency of the p-values, then all the F
false hypotheses will be rejected by the FDR procedure, Algorithm 2.

Proof
Let pi (i = 1, · · · ,H) denote thep-value of theith hypothesis,pf denote the maximum of thep-
values of theF false hypotheses, andr f denote the rank ofpf in the ascending order of{pi}i=1,··· ,H .
∵ pf is the maximum of thep-values of theF false hypotheses.
∴ r f = |{pi |pi ≤ pf }| ≥ F .
∴

H∗
r f

pf ≤ H∗
F pf .
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∵ pf ≤ F
H∗ q.

∴
H∗
r f

pf ≤ H∗
F pf ≤ q.

∴ Hypotheses withp-values not greater thanpf will be rejected.
∵ The p-values of theF false hypotheses are not greater thanpf .
∴ All the F false hypotheses will be rejected by the FDR procedure, Algorithm 2.

Proof of Theorem 1
If there is not any edge in the true DAGGtrue, then the proof is triviallyE∼

true = /0 ⊆ E∼. In the
following part of the proof, we assumeE∼

true 6= /0. For the PCfdr-skeleton algorithm and its heuris-
tic modification, whenever the FDR procedure, Algorithm 2, is invoked,pmax

a∼b is always less than
max

C∈V\{a,b}
{pa⊥b|C}, and the number ofp-values input to the FDR algorithm is always not more than

C2
N. Thus, according to Lemma 2, if

max
a∼b∈E∼

true

{

max
C∈V\{a,b}

{pa⊥b|C}
}

≤ |E∼
true|

C2
N ∑C2

N
i=1

1
i

q, (5)

then all the true connections will be recovered by the PCfdr-skeleton algorithm and its heuristic
modification. LetA ′

a⊥b|C denote the event

pa⊥b|C ≤ |E∼
true|

C2
N ∑C2

N
i=1

1
i

q,

A
′
E∼

true
denote the event of Eq. (5), andAE∼

true
denote the event that all the true connections are recov-

ered by the PCfdr-skeleton algorithm and its heuristic modification.
∵ A

′
E∼

true
is a sufficient condition forAE∼

true
, according to Lemma 2.

∴ AE∼
true

⊇ A
′
E∼

true
.

∴ P(AE∼
true

) ≥ P(A ′
E∼

true
).

∵ A
′
E∼

true
is the joint of a limited number of events as

A
′
E∼

true
=

\

a∼b∈E∼
true

\

C⊆V\{a,b}
A

′
a⊥b|C,

and lim
m→∞

P(A ′
a⊥b|C) = 1 according to Assumption (A3).

∴ According to Corollary 1, lim
m→∞

P(A ′
E∼

true
) = 1.

∴ 1≥ lim
m→∞

P(AE∼
true

) ≥ lim
m→∞

P(A ′
E∼

true
) = 1.

∴ lim
m→∞

P(AE∼
true

) = 1.

Lemma 3 Given any FDR level q> 0, if the p-value vector P= [p1, · · · , pH ] input to Algorithm
2 is replaced with P′ = [p′1, · · · , p′H ], such that (1) for the those hypotheses that are rejected when
P is the input, p′i is equal to or less than pi , and (2) for all the other hypotheses, p′

i can be any
value between 0 and 1, then the set of rejected hypotheses when P′ is the input is a superset of those
rejected when P is the input.
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Proof
Let R andR′ denote the sets of the rejected hypotheses whenP andP′ are respectively input to the
FDR procedure.

If R= /0, then the proof is triviallyR′ ⊇ /0 = R.
If R 6= /0, let us defineα = max

i∈R
pi andα′ = max

i∈R
p′i . Let r = |R| denote the rank ofα in the

ascending order ofP andr ′ denote the rank ofα′ in the ascending order ofP′.
∵ p′i ≤ pi for all i ∈ R.
∴ α′ ≤ α.
∵ α′ = max

i∈R
p′i .

∴ r ′ ≥ |R| = r.
∵

H∗
r α ≤ q.

∴
H∗
r ′ α′ ≤ H∗

r α ≤ q.
∴ WhenP′ is the input, hypotheses withp′i smaller than or equal toα′ will be rejected.
∵ p′i ≤ α′,∀i ∈ R.
∴ R⊆ R′, equivalentlyR′ ⊇ R.

Corollary 2 Given any FDR level q> 0, if the p-value vector P= [p1, · · · , pH ] input to Algorithm
2 is replaced with P′ = [p′1, · · · , p′H ] such that p′i ≤ pi for all i = 1, · · · ,H, then the set of rejected
hypotheses when P′ is the input is a superset of those rejected when P is the input.

Proof of Theorem 2
Let E∼

stop andE≁

stop denote the undirected edges respectively recovered and removed by the PCfdr-
skeleton algorithm when the algorithm stops. Let sequencePmax

1 , · · · ,Pmax
K denote the values ofPmax

when the FDR procedure is invoked at step 12 as the algorithm progresses, in the order of the update
process ofPmax, and letE≁

k denote the set of removable edges indicated by the FDR procedure, with
Pmax

k as the input.E≁

k may include edges that have already been removed.
∵ The PCfdr-skeleton algorithm accumulatively removes edges inE≁

k .

∴ E≁

stop=
K
S

k=1
E≁

k .

∵ Pmax is updated increasingly at step 10 of the algorithm.
∴ According toCorollary 2 , E≁

1 ⊆ ·· · ⊆ E≁

K .

∴ E≁

stop=
K
S

k=1
E≁

k = E≁

K .

Let P = {pa∼b} denote the value ofPmax when the PCfdr-skeleton algorithm stops.
∵ The FDR procedure is invoked wheneverPmax is updated.
∴ The value ofPmax does not change after the FDR procedure is invoked for the last time.
∴ P = Pmax

K .
∴ E∼

stop is the same as the edges recovered by directly applying the FDR procedureto P.

The theorem is proved through comparing the result of the PCfdr-skeleton algorithm with that
of applying the FDR procedure to a virtualp-value set constructed fromP. The virtualp-value set
P∗ is defined as follows.

For a vertex paira ∼ b that is not adjacent in the true DAGGtrue, let C∗
a∼b denote a certain

vertex set that d-separatesa andb in Gtrue and that is also a subset of either adj(a,G∼
true) \ {b} or
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adj(b,G∼
true)\{a}. Let us defineP∗ = {p∗a∼b} as:

p∗a∼b =

{

pa⊥b|C∗
a∼b

: a∼ b∈ E≁

true,

pa∼b : a∼ b∈ E∼
true.

Thoughpa⊥b|C∗
a∼b

may not be actually calculated during the process of the algorithm,pa⊥b|C∗
a∼b

still
can denote the value as if it was calculated. Let us design a virtual algorithm,calledAlgorithm∗, that
recovers edges by just applying the FDR procedure toP∗, and letE∼∗ denote the edges recovered
by this virtual algorithm. This algorithm is virtual and impracticable because the calculation ofP∗

depends on the unknownE∼
true, but this algorithm exists becauseE∼

true exists. For any vertex paira
andb that is not adjacent inGtrue:
∵ Xa andXb are conditional independent givenXC∗

a∼b
.

∴ pa⊥b|C∗
a∼b

follows the uniform distribution on [0, 1].

∴ The FDR ofAlgorithm∗ is underq.

When all the true edges are recovered by the PCfdr-skeleton algorithm, that is,E∼
true ⊆ E∼

stop,
the conditional independence betweenXa andXb givenXC∗

a∼b
is tested for all the falsely recovered

edgesa ∼ b ∈ E≁

true
T

E∼
stop, because for these edges, subsets of adj(a,Gtrue) \ {b} and subsets of

adj(a,Gtrue)\{b} have been exhaustively searched andC∗
a∼b is one of them. Therefore,pa∼b ≥ p∗a∼b

for all a∼ b∈E∼
stopwhen eventAE∼

true
happens. Consequently, according to Lemma 3, if eventAE∼

true

happens,E∼
stop⊆ E∼∗.

Let q(E∼) denote the realized FDR of reportingE∼ as the recovered skeleton of the true DAG:

q(E∼) =

{

|E∼ T

E≁

true|
|E∼| : E∼ 6= /0,

0 : E∼ = /0.

The FDRs of the PCfdr-skeleton algorithm andAlgorithm∗ areE[q(E∼
stop)] andE[q(E∼∗)] respec-

tively. HereE[x] means the expected value ofx.

∵ E[q(E∼
stop)] = E[q(E∼

stop)|AE∼
true

]P(AE∼
true

)+E[q(E∼
stop)|AE∼

true
]P(AE∼

true
)

≤ Q+P(AE∼
true

), whereQ = E[q(E∼
stop)|AE∼

true
]P(AE∼

true
).

∴ limsup
m→∞

E[q(E∼
stop)] ≤ limsup

m→∞
Q+ limsup

m→∞
P(AE∼

true
).

∵ lim
m→∞

P(AE∼
true

) = 1, according toTheorem 1.

∴ limsup
m→∞

P(AE∼
true

) = lim
m→∞

P(AE∼
true

) = 0.

∴ limsup
m→∞

E[q(E∼
stop)] ≤ limsup

m→∞
Q.

∵ Q≤ E[q(E∼
stop)].

∴ limsup
m→∞

Q≤ limsup
m→∞

E[q(E∼
stop)].

∴ limsup
m→∞

E[q(E∼
stop)] = limsup

m→∞
Q = limsup

m→∞
E[q(E∼

stop)|AE∼
true

]P(AE∼
true

).

Similarly, limsup
m→∞

E[q(E∼∗)] = limsup
m→∞

E[q(E∼∗)|AE∼
true

]P(AE∼
true

).

∵ Given eventAE∼
true

, E∼
true ⊆ E∼

stop⊆ E∼∗.
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∴ Given eventAE∼
true

,

q(E∼
stop) =

|E∼
stop|− |E∼

true|
|E∼

stop|
= 1− |E∼

true|
|E∼

stop|
≤ 1− |E∼

true|
|E∼∗| =

|E∼∗|− |E∼
true|

|E∼∗| = q(E∼∗).

∴ limsup
m→∞

E[q(E∼
stop)|AE∼

true
]P(AE∼

true
) ≤ limsup

m→∞
E[q(E∼∗)|AE∼

true
]P(AE∼

true
).

∴ limsup
m→∞

E[q(E∼
stop)] ≤ limsup

m→∞
E[q(E∼∗)].

∵ Algorithm∗ controls the FDR underq.
∴ E[q(E∼∗)] ≤ q.
∴ limsup

m→∞
E[q(E∼∗)] ≤ q.

∴ limsup
m→∞

E[q(E∼
stop)] ≤ q.

Appendix B. Statistical Tests with Asymptotic Power Equal to One

Assumption (A3) on the asymptotic power of detecting conditional dependence appears demanding,
but actually the detection power of several standard statistical tests approaches one as the number of
identically and independently sampled observations approaches infinity. Listed as follows are two
statistical tests satisfying Assumption (A3) for Gaussian models or discrete models.

B.1 Fisher’s z Transformation on Sample Partial-correlation-coefficients for Gaussian
Models

In multivariate Gaussian models,Xa andXb are conditional independent givenXC if and only if the
partial-correlation-coefficient ofXa andXb givenXC is zero (see Lauritzen, 1996, pages 129–130).
The partial-correlation-coefficientρ is defined as:

ρ = Cov [Ya,Yb]√
Var[Ya]Var[Yb]

,

Ya = Xa− < Wa,XC >,
Yb = Xb− < Wb,XC >,
Wa = argmin

w
E[(Xa− < w,XC >)2],

Wb = argmin
w

E[(Xb− < w,XC >)2].
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The sample partial-correlation-coefficientρ̂ can be calculated fromm i.i.d. samples [xai, xbi, xCi]
(i = 1, · · · ,m) as:

ρ̂ =

1
m

m
∑

i=1
[(ŷai−ya)(ŷbi−yb)]

√

1
m

m
∑

i=1
(ŷai−ya)

2 1
m

m
∑

i=1
(ŷbi−yb)

2
,

ya = 1
m

m
∑

i=1
ŷai,

yb = 1
m

m
∑

i=1
ŷbi,

ŷai = xai− < Ŵa,xCi >,
ŷbi = xbi− < Ŵb,xCi >,

Ŵa = argmin
w

m
∑

i=1
(xai− < w,xCi >)2,

Ŵb = argmin
w

m
∑

i=1
(xbi− < w,xCi >)2.

The asymptotic distribution ofz(ρ̂), wherez(x), the Fisher’s z transformation (see Fisher, 1915),
is defined as

z(x) =
1
2

log
1+x
1−x

,

is the normal distribution with meanz(ρ) and variance 1/(m−|C|−3) (see Anderson, 1984, pages
120–134). When the type I error rate is kept lower thanα, the power of detectingρ 6= 0 with Fisher’s
z transformation is the probability that

√

m−|C|−3 z(ρ̂) falls in the range(−∞,Φ−1(α/2)] or
[Φ−1(1−α/2),+∞), whereΦ is the cumulative distribution function of the standard normal dis-
tribution andΦ−1 is its inverse function. Without loss of generality, we assume the true partial-
correlation-coefficientρ is greater than zero, then the asymptotic power is

lim
m→∞

Power≥ lim
m→∞

P
(

√

m−|C|−3 z(ρ̂) ≥ Φ−1(1−α/2)
)

= lim
m→∞

(

1−Φ[Φ−1(1−α/2)−
√

m−|C|−3 z(ρ)]
)

= (1−Φ[−∞]) = 1.

B.2 The Likelihood-ratio Test Generally Applicable to Nested Models

The likelihood ratio is the ratio of the maximum likelihood of a restricted model to that of a saturated
model (see Neyman and Pearson, 1928). Letf (x,θ) denote the probability density function of
a random vectorx parametrized withθ = [θ1, · · · ,θk]. The null hypothesis restrictsθ to a setΩ
specified withr (r ≤ k) constraints

ξ1(θ) = ξ2(θ) = · · · = ξr(θ) = 0.

Given i.i.d. observationsx1, · · · ,xm, let L(θ) denote the likelihood function

L(θ) =
m

∏
i=1

f (xi ,θ).

The likelihood ratioΛ given the observations is defined as

Λ =
supL(θ)

sup
θ∈Ω

L(θ)
.
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Wald (1943) has proved that under certain assumptions onf (x,θ) andξ1(θ), · · · ,ξr(θ), the limit
distribution of the statistic−2logΛ is the χ2

r distribution with r degrees of freedom if the null
hypothesis true. If the null hypothesis is not true, the distribution of−2logΛ approaches the non-
centralχ2

r (λ) distribution withr degrees of freedom and the non-central parameter

λ = mD(θ) ≥ 0,

D(θ) =
k
∑

i=1

k
∑
j=1

ξi(θ)ξ j (θ)

k
∑

p=1

k
∑

q=1

∂ξi
∂θp

∂ξ j

∂θp

E
[

− ∂2 f (x,θ)
∂θp∂θq

]

.

If D(θ) > 0, then lim
m→∞

λ = ∞. Let t (t < ∞) denote the threshold of rejecting the null hypothesis with

type I error rate underα (α > 0). The asymptotic power of detecting aθ that is not inΩ and whose
D(θ) is greater than 0 is lim

λ→∞
P(χ2

r (λ) > t). The mean and the variance of theχ2
r (λ) distribution is

u = r +λ andσ2 = 2(r +2λ), respectively. Whenλ is large enough,

P
(

χ2
r (λ) > t

)

≥ P
(

t < χ2
r (λ) < u+(u− t)

)

= 1−P
(

|χ2
r (λ)−u| ≥ u− t

)

.

According to Chebyshev’s inequality,

P
(

|χ2
r (λ)−u| ≥ u− t

)

≤ σ2

(u− t)2 =
2(r +2λ)

(r +λ− t)2 .

∴ Whenλ is large enough,P(χ2
r (λ) > t) ≥ 1− 2(r+2λ)

(r+λ−t)2 .

∵ lim
m→∞

λ = ∞ and bothr andt are fixed.

∴ lim
m→∞

2(r+2λ)
(r+λ−t)2 = 0.

∴ lim
m→∞

P(χ2
r (λ) > t) = 1.

Appendix C. Error Rates of Interest

Statistical decision processes usually involve choices between negative hypotheses and their alter-
natives, positive hypotheses. In the decision, there are basically two sources of errors: the type
I errors, that is, falsely rejecting negative hypotheses when they are actually true; and the type II
errors, that is, falsely accepting negative hypotheses when their alternatives, the positive hypothe-
ses are actually true. In the context of learning graph structures, a negative hypothesis could be
that an edge does not exist in the graph, while the positive hypothesis could be that the edge does
exist. It is generally impossible to absolutely prevent the two types of errorssimultaneously, be-
cause observations of a limited sample size may appear to support a positive hypothesis more than
a negative hypothesis even when actually the negative hypothesis is true,or vice versa, due to the
stochastic nature of random sampling. Moreover, the two types of errorsgenerally contradict each
other. Given a fixed sample size and a certain statistic extracted from the data, decreasing the type
I errors will increase the type II errors, and vice versa. To guarantee the absolute prevention of the
type I errors in any situations, one must accept all negative hypotheses, which will generally lead
the type II error rate to be one, and vice versa. The contradiction between the two types of errors is
clearly revealed by the monotone increase of receiver operating characteristic (ROC) curves. Thus
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the errors must be controlled by setting a threshold on a certain type of errors, or trading off between
them, for instance, by minimizing a certain lost function associated with the errors according to the
Bayesian decision theory.

Rooted in the two types of errors, there are several different error-rate criteria (as listed in
Table 2) for problems involving simultaneously testing multiple hypotheses, suchas verifying the
existence of edges in a graph. The type I error rate is the expected ratio of the type I errors to
all the negative hypotheses that are actually true; the type II error rate isthe expected ratio of the
type II errors to all the positive hypotheses that are actually true; the false discovery rate (FDR)
(see Benjamini and Yekutieli, 2001; Storey, 2002), is the expected ratio offalsely accepted positive
hypotheses to all those accepted positive hypotheses; the family-wise error rate is the probability
that at least one of the accepted positive hypotheses is actually wrong.

Generally, there are no mathematically or technically superior relationships among these error-
rate criteria. Each of these error rates may be favoured in certain research scenarios. For example:

• We are diagnosing a dangerous disease whose treatment is so risky thatmay cause the loss of
eyesight. Due to the great risk of the treatment, we hope that less than 0.1% ofhealthy people
will be falsely diagnosed as patients of the disease. In this case, the type I error rate should
be controlled under 0.1%.

• We are diagnosing cancer patients. Because failure in detecting the disease will miss the
potential chance to save the patient’s life, we hope that 95% of the cancer patients will be
correctly detected. In this case, the type II error rate should be controlled under 5%.

• In a pilot study, we are selecting candidate genes for a genetic research on Parkinson’s disease.
Because of the limited funding, we can only study a limited number of genes in the afterward
genetic research, so when selecting candidate genes in the pilot study, wehope that 95% of
the selected candidate genes are truly associated with the disease. In this case, the FDR will
be chosen as the error rate of interest and should be controlled under 5%.

• We are selecting electronic components to make a device. Any error in any component will
cause the device to run out of order. To guarantee the device functionswell with a probability
higher than 99%, the family-wise error rate should be controlled under 1%.

In these examples, the particular error-rate criteria are selected by reasons beyond mathematical or
technical superiority, but by the researchers’ interest, to minimize a certainlost function associated
with the errors according to the Bayesian decision theory. Learning network structures in real world
applications may face scenarios similar to the above examples.

The excellent discrimination between negative hypotheses and positive hypotheses cannot be
achieved by “smartly” setting a threshold on a “superior” error-rate criterion. Setting a threshold
on a certain type of error rate is just choosing a cut-point on the ROC curve. If the ROC curve
is not sharp enough, any cut-point on the curve away from the ends (0,0) and (1,1) still leads to
considerable errors. To discriminate more accurately between a negativehypothesis and a positive
hypothesis, one must design a better statistic or increase the sample size to achieve a sharper ROC
curve.
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